Measuring Molecular Adsorption on Graphitic Surfaces via Sprayed Graphene Field Effect Transistors

ResearchWorks/Manakin Repository

Search ResearchWorks


Advanced Search

Browse

My Account

Statistics

Related Information

Measuring Molecular Adsorption on Graphitic Surfaces via Sprayed Graphene Field Effect Transistors

Show full item record

Title: Measuring Molecular Adsorption on Graphitic Surfaces via Sprayed Graphene Field Effect Transistors
Author: Page, Tamon
Abstract: The characterization of biomolecular adsorption is instrumental in applications such as biomedical implants and diagnostic devices. Graphitic surfaces such as graphene and pyrolytic graphite are prime candidates for these applications. However, a literature survey of adsorption characterization techniques shows a lack of scalable, high-throughput platforms for in-situ monitoring of biomolecular adsorption on graphitic surfaces. This thesis develops and evaluates a platform using sprayed graphene field effect transistors for in-situ tracking of biomolecular adsorption onto graphitic surfaces. The binding affinities of graphite-binding peptides to a graphitic surface were electrically characterized using sprayed graphene field effect transistors (SGFETs) fabricated with solution exfoliated graphene. The binding affinities of these peptides were also characterized using atomic force microscopy (AFM) and mechanically exfoliated graphene field effect transistors (GFETs) to confirm the validity of the SGFET platform. Binding constants obtained via GFET and AFM were comparable with those observed using SGFETs. The sprayed graphene film serves as a scalable platform to study biomolecular adsorption to graphitic surfaces.
Description: Thesis (Master's)--University of Washington, 2012
URI: http://hdl.handle.net/1773/20800
Author requested restriction: No embargo

Files in this item

Files Size Format View
Page_washington_0250O_10387.pdf 1.454Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record