INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313/761-4700 800/521-0600






Order Number 9109818

Chemometrics and infrared emission spectroscopy for remote
analysis

Pell, Randall James, Ph.D.
University of Washington, 1990

Copyright ©1990 by Pell, Randall James. All rights reserved.

U-M-I

300 N. Zeeb Rd.
Ann Arbor, MI 48106






Chemometrics and Infrared Emission Spectroscopy

for Remote Analysis
by
RANDALL JAMES PELL

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
University of Washington

1990

Approved by i/""‘“ / M

(Chairperson of Supervisory Committee)

Program Authorized
to Offer Degree C—\\ eMmi s{. Vi

ag

Date )~ A=70




© Copyright 1990
Randall James Pell



Doctoral Dissertation

In presenting this dissertation in partial fulfillment of the requirements for the
Doctoral degree at the University of Washington, I agree that the Library shall make
its copies freely available for inspection. I further agree that extensive copying of this
dissertation is allowable only for scholarly purposes, consistent with "fair use" as
prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this
dissertation may be referred to University Microfilms, 300 North Zeeb Road, Ann
Arbor, Michigan 48106, to whom the author has granted "the right to reproduce and
sell (a) copies of the manuscript in microform and/or (b) printed copies of the
manuscript made from microform."

Signature Q“"‘%\‘ M

/l-2-%0

Date




University of Washington

Abstract

Chemometrics and Infrared Emission Spectroscopy
for Remote Analysis

by Randall James Pell
Chairperson of Supervisory Committee: Professor Bruce R. Kowalski
Department of Chemistry

Chemometrics is a discipline of chemistry that uses mathematical and statistical
techniques to extract useful information from chemical data. Infrared emission
spectroscopy is one of a very few analytical techniques that allows noninvasive and
remote measurements. This dissertation uses the chemometric methods of multivariate
calibration and multiresponse nonlinear optimization to extract useful information from
infrared emission data. Partial Least Squares and Locally Weighted Regression are
used for prediction of chemical and physical properties of a free standin g polymer
system and a polymer coated aluminum system. Multiresponse nonlinear optimization
is used to model the dynamic process of a polymer curing reaction. The choice of the

propef objective function for multiresponse nonlinear optimization is also investigated.
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Introduction

The goal of process analytical chemistry is to supply quantitative and
qualitative information about a chemical process (1). Five eras of process analytical
chemistry have been identified: off-line, at-line, on-line, in-line and noninvasive. The
first two eras, off-line and at-line, are distinguished by the requirement of manual
removal of the sample from the process and transport to the measuring device. Off-
line analysis is usually performed at a centralized facility with the advantages of
sophisticated instrumentation and expert technical staff. The disadvantages are the
delay time between sample submission and reporting of analysis results and the
possible degradation or loss of sample integrity over time. In order to reduce this
delay time, at-line analyzers are moved closer to the process. These analyzers must
be simpler, easier to use, robust and rugged.

The at-line analyzer still requires manual sample removal and this is where
on-line analysis is distinctly different. The on-line analyzer samples, conditions, and
presents the sample to the instrument. An ubiquitous example of this is the process
gas chromatograph in an oil refining operation. The disadvantage of the on-line
analyzer is found in the problems associated with sampling and this has lead to in-line
analysis.

In-line analyzers perform the analysis in situ with a chemically or physically
sensitive probe inserted in the process stream. There are many types of transducers
available for in-line sensors and microlithography and micromachining are believed
to be the key to scaling these sensors down. The in-line approach has reduced the
sampling problem, but the process stream and sensor are in direct contact which may

be a problem for both the stream and the sensor.



This has lead to the fifth era of process analytical chemistry, noninvasive
analysis. This is the most desirable of the five eras because the probe is never in
physical contact with the process stream. There are few techniques available for such
an analysis and it is here that infrared emission spectroscopy can contribute to process
analytical chemistry.

Of the various vibrational spectroscopic techniques available to the analytical
chemist comparatively little use has been made of emission detection (2,3). In the
first place, most analytical measurements are performed in the laboratory where there
exists a variety of easily implemented alternatives to the emission technique, such as
transmission and diffuse reflectance spectroscopy. These other, more conventional
techniques, have better signal-to-noise ratios and do not have anomalous behavior
arising from temperature gradients, which may be present in emission analysis due to
sample heating (4). In the second place, the complex nonlinear behavior of the
emission signal (5) and, until recently, the lack of available mathematical technigues,
and computer hardware and software, have made the extraction of relevant
information from these data difficult.

Recent interest in process analytical chemistry has provided a driving force for
moving analytical measurements from the laboratory to the process line and has
accelerated the search for techniques compatible with process situations (1).
Advances in data reduction techniques from chemometrics now allow information to
be derived from data previously considered to be of little value due to signal
complexity (6, 7). In light of these developments, infrared emission deserves
reconsideration as a process monitoring tool. Its simple experimental characteristics
(the sample is the source) and noninvasive character are particularly desirable for

certain process measurement situations. In combination with chemometric data



reduction strategies, infrared emission shows promise as a tool for process analytical
chemistry (8).

Chapter one will review infrared emission theory and applications and make
clear the need for multivariate analysis to handle the complex emission signals.
Chapter two develops the theory of multivariate calibration and multiresponse
nonlinear optimization techniques used to extract information from infrared emission
signals. Chapter three will present two applications of infrared emission for the
analysis of remote samples using multivariate calibration techniques. Chapter four
presents the analysis of multiresponse data collected using infrared emission
spectroscopy froim a dynamic process. This study involves the application of
multiresponse nonlinear optimization for the extraction of information from the
dynamic process of a curing polymer on a metal surface. Chapter five will explore

the details of the fitting criterion used in multiresponse nonlinear optimization.



Chapter 1 Infrared Emission Spectroscopy

1.1 Introduction to Chapter 1

This chapter focuses on infrared emission spectroscopy. Section 1.2 is a
review of the basic theory needed to understand infrared emission spectroscopy.
Experimental considerations are discussed in Section 1.3. The final section surveys
pertinent and interesting applications of infrared emission spectroscopy, especially as

it relates to analytical chemistry.

1.2 Theory

The theory of infrared emission spectroscopy begins with the fact that all
matter at a temperature above absolute zero is constantly absorbing and emitting
radiation due to vibrations induced by thermal energies (9). Further consideration
leads to the idealization of the blackbody as an object that absorbs all radiation
incident upon it. For such a body to remain at thermal equilibrium it must also be a

perfect emitter, thus
A=E (1.1)
where A is the absorptance (the fraction of the incident radiation absorbed) and E is

the emittance (the fraction of the radiation emitted compared to a blackbody) (10).
This is Kirchoff's law and thus for a blackbody, A =E = 1.



The description of the frequency and temperature dependence of the radiation
emitted by a blackbody is given by Planck's law (11). The mathematical formulation

of Planck's law is

2
Ty(h) = 2"; hlc [W m3 sr] 1.2)
A exp{-——} -1
KT

where
h is Planck's constant, 6.6262 x 10-34 Js
c is the velocity of light, 2.9979 x 108 m/s
A is the wavelength in meters
k is the Boltzman constant, 1.308 x 10-23 J/K
T is absolute temperature in degrees Kelvin (K)

Planck's law expressed in wavenumbers is

2hc2v3

[Wm1sr]] (1.3)
hovl
el

Ip(v) =
where v is wavenumbers.
The emission intensities from a blackbody carry no chemical information,
only temperature information. Figure 1.1 displays the characteristic blackbody curves
for several temperatures.
In reality no object is a perfect blackbody, but most objects reflect and/or
transmit radiation. In considering these objects, conservation of energy principles

dictate that



A+T+R=1 (1.4)

where A is the absorptance, T is the transmittance (fraction of incident radiation
transmitted), and R is the reflectance (fraction of incident radiation reflected). If a
local thermal equilibrium is assumed (12), then by using Kirchoff's law, equation 1.4

becomes

E+T+R=1 (1.5)

From this simple equation some approximate behavior may be anticipated by

investigating the extremes. For T =0, an opaque sample,
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Figure 1.1 Graphical representation of Planck’s law with wavenumber axis.
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E=1-R (1.6)

and there should be information available similar to that from a reflection experiment.

The other extreme is R = 0, a nonreflective sample,

E=1-T 1.7

and information complementary to that obtained from a standard transmission
experiment should be available. Given T = e-%L, from Beer's law, where ¥ is the
spectral absorption coefficient and L is the sample thickness, as L. approaches zero,
e-KL approaches 1 - kL and E = kL. For substances with kL < 0.05, it may be
preferred to measure emissivity rather than the absorption in order to determine .
This is due to the relative insensitivity of emission measurements to changes in the
reflectivity as compared to transmission measurements (13).

Most objects have transmission and reflection occurring simultaneously, and
for solids there is the added complication of multiple internal reflections. A more
complex theory is needed to account for these effects. McMahon (14) developed the
theory for unidirectional emission normal to a surface from semitransparent materials
and Gardon (15) extended this work to include hemispherical radiation. These papers
rely on an accounting or ray tracing approach which has more recently been reiterated
by Hvistendahl (16). A more flexible approach has been given by Lauer using the
radiative transfer equation. This approach was developed by the astrophysicist and
provides for inclusion of spatial and angular dependencies. The radiative transfer

theory approach will be presented in an abbreviated form in Section 1.2.1.



1.2.1 Radiative Transfer Theory

The radiative transfer theory (17) begins with the radiative transfer equation

dId"f{x) = -y [1% Ipv(x) - Iux) ] (1.8)

where n is the refractive index of the medium, x is the spectral absorption coefficient,
Ipx) is the radiance given by the Planck equation, and I\(x) is the monochromatic
radiance at frequency v. This equation simply states that the change in intensity of
radiation with distance is the difference between the radiation emitted (first term on
the right of equation 1.8) and the radiation absorbed (second term on the right of

equation 1.8). Figure 1.2 displays the physical model.

t(M)

— [ (® Metal
Backing

+ I(m)
) RI \/ R2 bv

— L —pp»]

Figure 1.2 Physical model for radiative transfer theory discussion.



This equation may be solved, given the proper boundary conditions, for a
variety of experimental situations using the following assumptions: 1) Fresnel's
equations apply, 2) the material investigated is isotropic, homogeneous and may emit
and absorb, but not scatter thermal radiation, and 3) refraction of radiation within the
sample due to variations of refractive index with temperature are negligible. The
interested reader is referred to Lauer's discussion for the details an.

Given the appropriate boundary conditions, the above equation may be solved

for the radiation emitted in the positive direction, I* (12),

1o = {a-ro[2]"e} x

L
{(1-122) n2IpgM) e + [ n2 Iyx) k [ + Ry eH2L -x1 ] dx} (1.9)

where B8 = (1 - R R exp[-2xL])-1, I:,'(O) is the exiting radiance as shown in Figure
1.2, In(M) denotes the contribution by the metal backing at temperature t(M), given
by Planck's equation. Rj and R are the front surface and back surface reflectivities,
and n is the index of refraction of the film which is related to Ny, the index of
refraction of the boundary material (air), via Snell's law.

Consider the sampling situation of a free standing material. If it is known that
n and x are constant with respect to x, the position in the sample, and Ry;=R,=R, and
the sample temperature is uniform, then Iy, (x) is constant. Since there is no external
source (no metal backing), In(M) = 0 and equation 1.9 gives

I= 1-TY(d-R)

=~-’RD BB (1.10)

Let E = I/Ig, and assume n, = 1 then



11(;11:%3”—‘& (1.11)

E=
Equation 1.11 reduces to equation 1.6 as T approaches zero and to equation 1.7 as R
approaches zero. The description of the transmissive and reflective behavior of
transparent materials is also complicated by internal reflections which give rise to
apparent transmissivity, T*, and apparent reflectivity, R*. These quantities may be

related to the measured quantities (14), T and R, and are given here for completeness

R*-R[ 1+ %] (L12)

K o _(.I'_RE
T —Tl “R2T2 (1.13)

Another sampling situation that will be of interest, and easily investigated
with the radiative transfer approach, is that of a thin film on a metal surface, with both
the film and metal surface at the same temperature. This is the usual situation for
obtaining emission spectra (18). As the layers of film increase in thickness, poorer
spectral contrast (19) and anomalous spectral features have been observed (18).

These anomalous features, characterized as dips in the spectra where peaks are
expected, have been ascribed to temperature gradients by Griffiths (18), Lauer (17)
and Bates and Boyd (20), while Hvistendahl and coworkers (16) maintain it is a
reflective effect. It would appear that either explanation may be valid depending on
the sample type. For a film at a uniform temperature, Ipy(x) = Ipy\(M) = I, and thus

I=(1-R)BIp[(1-Rp)e*L-exL 41 4+Role*L-e-2xL)]  (L.14)
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which gives

g= (-R)(A- R2T2)
1-RjRoT2

(1.15)

As may be seen from equation 1.15, the emittance depends on the square of the
transmissivity, which indicates the path length is essentially doubled by the reflective
metal backing. Note that the reflectivity of the metal backing, Ry, is paired with the
transmissivity. This indicates the importance of a highly reflective backing for

maximum sensitivity to the film transmissivity.

1.3 Experimental Considerations

The experimental aspects of obtaining infrared emission spectra in the range

from about 4000 to 450 cm! (2.5 to 22.2 micron (um)) are considered in this section.

It is hoped that the reader will gain an appreciation for the advantages and
disadvantages of using infrared emission spectroscopy and an understanding of some
of the practical problems involved in measuring infrared emission spectra. This
section will not discuss the experimental aspects of laser stimulated emission
spectroscopy, but this subject will be briefly reviewed in Section 1.4.3.

One of the most fundamental considerations for obtaining an infrared
emission signal is the temperature of the sample relative to the detector. In order to
measure an emission signal the sample must be at a temperature different from the

detector. The sample may be at a temperature lower or higher than the detector, as
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demonstrated by Chase (21). Further, the sample must be at a temperature different
from the surroundings, in order to differentiate it from the surroundings. This
immediately points out one of the disadvantages of infrared emission, which is that
the sample must be at a different temperature than the surroundings and thus must be
heated or cooled. Process analysis conditions may readily meet this requirement, as
many materials are produced at above ambient temperatures.

The surroundings that may contribute to the background signal include all the
optical components within the spectrophotometer. In order to increase the signal-to-
noise ratio in an emission experiment the sample temperature may be increased or the
background temperature decreased. A decrease in the background temperature has
been achieved by cooling the entire spectrophotometer to 77 K by Allara and
coworkers (22). Cooling of the spectrophotometer to reduce the background was
necessary in order to observed emission spectra of monolayer quantities of
chemisorbed p-nitrobenzoic acid on a copper substrate. Reduction in the background
temperature by cooling the spectrophotometer is particularly important for the
application of Fourier transform infrared spectroscopy (FT-IR). This is because the
multiplex advantage is realized only if the measurement is detector noise limited,
which may not be the case depending on the region of the spectrum analyzed (23).
Huppi discusses the details of cryogenic instrumentation for Fourier transform
emission spectroscopy, especially as it relates to atmospheric studies (24).

The warmer the sample the greater the intensity of radiation emitted from the
higher energy regions of the spectrum. This points out another disadvantage of
infrared emission spectroscopy. In order to detect spectral features above 2000 cm-!
(below 5 um) sample temperatures must be relatively high, often approaching

degradation temperatures for many organic compounds.



In order to compute the emittance spectrum from the single beam emission
signal, the sample must be ratioed to the spectrum of a blackbody measured at the
same temperature. Complications associated with this procedure have been
investigated by Kember et al. (25). They found emission from a heated beam splitter
introduced extraneous spectral features in the emittance spectrum. In order to
overcome this problem a spectrum of the beam splitter was measured by placing a
mirror at the sample position. The beam splitter emission spectrum was subtracted
from both the sample emission signal and the blackbody emission signal before
taking the ratio. This resulted in other spectral anomalies associated with the phase
difference between the beam splitter emission and the sample emission. This phase
difference problem was overcome by subtraction of interferograms before ratioing.
Other complications were encountered when using a cooled detector because of the
sensitivity of cooled detectors for background radiation reflected from the
surroundings into the spectrophotometer. A four measurement technique was used to
eliminate the reflected background radiation problem. The sample spectrum was
measured at two temperatures without removing it from the sample holder and the
blackbody was measured at the same two temperatures without removin g it from the
spectrophotometer. The interferograms of the samples at the two temperatures were
subtracted from each other as were the interferograms for the blackbodies and the
differences ratioed to compute the emittance spectrum. This is shown in equation
1.16 as

_ I(Ty) - I(TH)
E= [T “To(T2) (1.16)

In equation 1.16, I3(T1) and Ig(T5) are the sample interferograms at temperatures T

13



and T, and Ip(T1) and Iy(T2) are the blackbody interferograms at temperatures T
and Tp. This procedure had been described earlier by Weber (26).

Anomalous features in infrared emittance spectra have been attributed to
temperature gradients (18) or selective reflection at the sample surface (16, 27). In
order to eliminate the selective reflection problem, Hvistendahl et al. have proposed
the ratioing of a single beam measurement to the single beam measurement of an
optically thick sample (16). They support their contention with theoretical arguments,
spectral simulations and experimental verification. Recently Rytter and Einarsrud
have suggested that this procedure of ratioing to an opaque sample should be used to
eliminate similar distortions in reflection spectroscopy (28).

Another method of background compensation involves the chopping of the
input light so that the spectrophotometer alternately senses the signal of interest and a
blackbody signal at the same temperature (17). A lock-in amplifier i§ tuned to the
chopper frequency and phase locked in such a way that the detector sees a source and
a reference signal at alternating half cycles. Thus only the difference between the
signals is amplified.

A recent paper by Wadayama et al. has demonstrated the use of a double
modulation technique in which the blackbody signal is mechanically chopped at 2.3
kHz, while the emission signal is modulated at 65 Hz using a wire-grid polarizer (29).
The signals were combined at a beam splitter and wavelength selection was
performed using a wavelength-variable wedge filter. Phase sensitive detection was
used to demodulate the signals.

Chase has commented on another problem that may be encountered in the
measurement of infrared emission spectra, that of multipassing of the radiation (21).

If the sample is placed normal to the spectrophotometer, emitted radiation that is

14



returned to the sample from the beamsplitter of a Fourier transform instrument may
be reflected from the sample back into the spectrophotometer. This effect can lead to
higher order spectral features. Chase suggests either filtering the signal,
mathematically compensating, or tilting the sample away from the norm, so that light
returning from the beamsplitter is not reflected back into the spectrophotometer.

It has been calculated that optimal measurements of emission spectra of thin
layers on metal surfaces are made at angles of 70-80° from the norm (30). In this
instance thin means that the distance between the metal surface and the sample dipole
is very small compared to the wavelength of the emitted radiation.

Sample shape and sample preparation are less critical for emission
spectroscopy. Barr has demonstrated that rough surfaces have a minimal effect on
emission spectra as compared to transmission spectra, which are severely effected by
scattered light (13). Nagasawa and Ishitani have demonstrated that emission spectra
of wire coatings may be measured and the requirement for a planar surface, as in
reflection spectroscopy, is relaxed for emission measurements (31).

Because the sample must be at a temperature different from the surroundings,
and because this is usually accomplished by heating the sample, the problem of
temperature gradients in the sample may lead to spectral anomalies. These anomalies
have been ascribed to selective reflection at the sample surface, but it would appear
that for thick samples, temperature gradients must be considered. As the samples
become thicker the spectra are more featureless and convey less information. Similar
to an absorbance experiment, as the sample thickness increases less light is
transmitted, and as the absorbance approaches one so must the emittance. Thus the
sample thickness problem is shared by both absorbance and emission techniques, but

laser heating of the surface may overcome this problem. This sampling technique is



discussed in Section 1.4.3.

One further experimental consideration is that of dynamic range. In an
absorbance or reflection experiment, the resultant spectrum may be a small difference
between two large numbers, while an emittance spectrum calculation may involve a
small difference between small numbers. This may be particularly important in the
analysis of trace quantities, for example monolayer surface species.

New hardware ideas recently introduced include the half aperture method of
Ford and Spragg (32). This is a convenient method for measuring emission spectra
using any FT-IR instrument. A mirror is inserted at a 45° angle at the Jacquinot stop
S0 as to cover half the area of the Jacquinot st6p imfxge. The source is shut off and the
emitted sample radiation directed into the interferor—neter via the 45° mirror. The
modulated radiation that is reflected back from the interferometer is imaged at the
other half of the Jacquinot stop and passes to the detector. Because the mirror covers
half the Jacquinot stop, this experiment is less efficient than the normal method of
measuring an emission spectrum, which is to replace the spectrophotometer source
with the sample.

Harrick has introduced a new accessory for infrared emission measurements
using an ellipsoidal mirror (33). By using an ellipsoidal mirror light is collected over
a larger solid angle, increasing the signal and improving the signal-to-noise ratio. The
sampling of small areas is facilitated by a microscope attachment mounted on the
emission accessory. A blackbody mask with a selection of hole sizes allows one to
control the sample area from which the emission spectrum is measured. The sample
and mask may be tilted over a broad angle range in order to improve signal intensities
for thin films on metal surfaces, as found by Greenler (30).

In review, infrared emission speétroscopy suffers from low signal levels that

16



may limit the useful frequency range, but at the same time this gives it a dynamic
range advantage over more conventional techniques. Samples must be at a
temperature different from the surroundings in order to differentiate the sample from
the surroundings, but this may be less of a problem for process analytical chemistry
because many materials are produced at above ambient temperatures. Emission
spectroscopy is somewhat more flexible in terms of sample shape and sample
preparation, but thicker samples show a loss of information, just as is experienced in
absorption measurements. Due to the fact that emission samples are usually heated,
spectral anomalies may be introduced, although with stimulated emission this feature

can be turned to an advantage.

1.4 Survey of Infrared Emission Spectroscopy Applications

Reviews of the infrared emission spectroscopy literature through 1976 were
presented by Bates (34) and Sheppard (27). Bates confines his review to FT-IR
emission spectroscopy applications in chemistry and physics, excluding astronomy
and astrophysics. He discusses thermally excited gases, solids and liquids, and
infrared chemiluminescence from diatomic and polyatomic products of gas phase
reactions. Sheppard's review is also confined to FT-IR emission applications, but
does not offer as wide a coverage of applications outside the area of chemical
analysis. Low, McManus and Abrams have provided a review of early non-FT
emission work of a chemical analytical nature (35). Griffiths and deHaseth provide
good background material in their book on FT-IR spectroscopy (23). The following
discussion will summarize recent contributions, 1976 to the present. It will include

only those papers relevant to the present research or of fundamental importance.
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Some older material may be included if not referenced by Bates or Sheppard. The
following is divided into the broad headings of gases and condensed phases with

further sub-divisions as necessary.
14.1 Gases

The review of gas analysis using infrared emission spectroscopy is divided

into laboratory measurements and remote sensing or atmospheric applications.
1.4.1.1 Laboratory Measurements

Bates has pointed out that laboratory measurements of the infrared emission
spectra of gases are important not only for providing molecular structure information,
but also because they can provide essential background information for interpreting
the results of remote sensing measurements and the emission spectra of the
atmosphere (34). Bates describes many applications of infrared emission
spectroscopy for laboratory measurements of gaseous molecules. There has been a
special interest in the spectra of molecules involved in high temperature flames or arc
discharges in order to aid in interpreting the emission spectra of stellar atmospheres.
Much work in this area has been performed by Mantz and coworkers (36,37).

Gross and Griffiths have reported on the estimation of temperatures of pure
CO; samples using emission bands near 1000 cm! (10 pm) and a method of
nonlinear regression (38). This work is an extension of similar studies by Gross and
Griffiths involving temperature estimation using absorption measurements (39). The

estimation of temperature is important for calculation of the emissivity spectrum of
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remote sources for pollutant studies.

The stimulation of infrared emission spectra of gases using a laser light source
has been reported by Robinson and coworkers (40, 41). They have reported on
quantitative analysis of simple organic molecules and have provided a catalog of
laser-stimulated infrared emission spectra. More recently Belz et al. have used a
continuous wave CO; laser to excite infrared emission spectra of nearly all molecular
gases by adding small amounts of SFg (42).

Hudson and Busch have reported on the use of infrared emission for
monitoring the emission from a flame, and thus provided a basis for detection of
chromatographic profiles (43,44). Recently Fletcher and Leone have described the
used of time resolved FT-IR emission to monitor the photodissociation of CoHp (45).
Rotational state distribution of CCH was reported, as well as the rotational energy.
Leone discusses further application of the technique for molecular

photofragmentation studies in a subsequent publication (46).

1.4.1.2 Remote Sensing and Atmospheric Applications

Some of the first remote sensing measurements for environmental pollutants
were made by Low and Clancy. They demonstrated the use of FT-IR for the
monitoring of a power plant smoke stack (47). Bands due to CO; and SO, were
clearly identifiable in the spectra. Methods for the determination of plume
temperature and concentration have been investigated by Prengle and coworkers (48).
Recently Small et al. have developed a methodology for the detection of atmospheric
pollutants by direct analysis of infrared emission interferograms (49). With a digital

filtering approach they were able to use a mobile spectrophotometer without the
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problems associated with a changing background.

There has been much interest in the emission spectrum of the atmosphere.
Mixing ratios and pollutant concentrations are of particular interest. Recent
contributions are noted from Kendall et al., in which the emission spectrum of the
lower stratosphere was measured (50). Another study by Park and Carli made use of
nonlinear least squares fitting techniques to retrieve gas concentrations, instrument
line shape, and instrument response functions simultaneously (51,52). Rinsland et al.
have also used nonlinear least squares spectral curve fitting to derive stratospheric

vertical temperature profiles from balloon-borne measurements of the 962 cm-! (104

um) band of CO; (53).

1.4.2 Condensed Phases

Within the area of condensed phase samples there are several subtopics. A
consideration of general applications is given first and more sample specific

references are discussed in subsequent sections.

1.4.2.1 General Applications for Condensed Phases

The early work in this area, 1900-1910, was pioneered by Coblentz (54-57).
He investigated the emission spectra of many materials in the 700-1400 °C
temperature range and in the 10,000 - 1250 cm-! (1 - 8 pm) wavenumber range.

In the late 50's and early 60's, Weber investigated the measurement of spectral
emissivity of solids at low temperatures (30 to 100 °C) (26,58). He introduced the

method of calculating emissivity using four measurements that was later reintroduced



by Kember et al. (25).

Stierwalt et al. have demonstrated the utility of using emission measurements
to determine absorption coefficients of near transparent materials (59). For near
transparent materials, the reflections at the interfaces for transmittance measurements
may greatly affect the computed absorption coefficients. There is much less of a
problem in emission experiments with these materials. Stierwalt has also pointed out
the utility of emission measurements for nearly opaque materials (60). He shows that
by rearrangement of equation 1.11 to yield equation 1.16

1-R—ER]

Kd:l"[m (1.16)

the calculation of the absorption coefficient, k, is possible by the measurement of the
emission at two thicknesses, even if the reflectivities are unknown. This gives rise to
two simultaneous transcendental equations. Stierwalt and Potter also reported on the
measurement of infrared emission spectra of Si, Ge and CdS in the 5000-400 cm! (2
- 25 um) range at temperatures between 50 and 200 °C (61).

Kapff measured emission spectra of liquids using a dispersive instrument
showing the dependence of the spectra on thickness and temperature (62). The
emission spectra compared well with absorption spectra for thin samples (2.54 x 10-3
cm), while most of the bands were obscured by thicknesses of 2.54 x 102 cm.

Low has made numerous contributions to the field of infrared emission
spectroscopy. He summarizes many of these applications in an applied spectroscopy
review article (35). Other publications include the investigation of emission spectra
of minerals (63,64), oleic acid on aluminum plates (65), and the remote sensing of

stack gases (47).
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Fabbri and Baraldi have measured emission spectra of vanadium oxides,
copper sulfate and silver nitrate using a grating spectrophotometer in the temperature
range of 100 to 400 °C (66). They have presented the results with respect to
variations in support, temperature, sample fineness and layer thickness. Increased
layer thickness and larger crystal size were found to give poorer spectral contrast. As
the temperature of V20, and V204 was raised to 200 °C the emission spectrum was
observed to undergo rapid and irreversible changes. The oxidation to V,05 was the
apparent product, but it is suggested that monitoring of the process for
nonstoichiometric oxide intermediates may lend valuable information with respect to
the catalytic activity of these compounds.

Griffiths has commented on the basic considerations for infrared emission
spectroscopy (18). He displays spectra of thin and thick films of silicon grease on
heated aluminum foil and explains the distortion of the spectra in thicker samples as
the result of temperature gradients.

Lauer and coworkers have made many contributions to the literature with
respect to the use of infrared emission for the study of lubrication problems. In an
initial study they used a slow scanning interferometer with the radiation from the
sample chopped, the detector alternately seeing the sample and a blackbody reference
(17). Phase sensitive detection is used to measure emission spectra from a lubricant
trapped between a steel bearing and a diamond window. The importance of proper
adjustment of the reference temperature is explained and it is demonstrated that the
result of misadjustment gives rise to peak inversions. They state that they have
learned to live with this problem by optically limiting the frequency and by obtaining
duplicate spectra with slightly different reference temperatures. This is an interesting

explanation because they claim in the theory section of their paper that peak inversion
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can result from temperature gradients, and so it is unclear how they can tell the
difference between the two effects. A subsequent publication presented dramatic
spectral changes from a fluid trapped between a bearing and diamond window as the
gap distance was decreased. They explained the observations as an indication of
molecular alignment (67). Other publications have contributed further to the study of
lubrication problems (68,69).

Frech and Bates have reported on the use of infrared emission in conjunction
with polarized Raman and infrared reflection techniques in an extensive study of NaB-
Al>O3 over a temperature range from 12 to 1073 K (70).

Chase has commented on the sensitivity and limitations of condensed phase
infrared emission spectroscopy using a Fourier transform instrument (21). He
discussed elimination of the instrumental background and illustrated the sensitivity of
the technique by measuring microgram sample quantities. Spectra measured near and
below room temperature using a room temperature detector are presented,
demonstrating that only a temperature difference between the detector and the sample
was required for the measurement of emission spectra.

A very interesting application of infrared emission has been published by
Folberth and Heim (71). A Fourier transform spectrophotometer operated in the 190
to 420 cm-1 (52.7 - 23.8 um) region was used to measure the emission spectra of
human skin. The study involved the discrimination of patients with chronic diseases
from a symptom free control group. The results were encouraging.

Solomon et al. have made use of the combination of emission and
transmission in the infrared analysis of particulates (72). They used a Fourier
transform instrument to demonstrate the feasibility of using this method for analysis

of chemical composition and size of gas-suspended solids and liquids for on-line
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applications. The general concepts of the emission/transmission (E/T) method were
developed and validated with particles of varying sizes.

Recently Ohta et al. have simulated infrared emission spectra in order to
evaluate space radiator performance (73). The method of simulation includes the
measurement of the attenuated total reflectance (ATR) spectrum and then an iterative
refinement procedure to compute the refractive index and absorption coefficient
spectra that best reproduce the ATR spectrum. It is not clear that a unique result may
be found from this procedure. Given tﬁe two basic spectral curves, the emission
spectrum was then calculated based on exact optical theory (ie. ray tracing method).
They have also recently published the results of a comparative study of the numerical
integration methods that are best suited for the calculations involved in the Kramers-
Konig relationship used for the emission spectra simulations (74). Also, recently
published is a matrix formulation for calculation of emission spectra in stratified
multilayered films (75).

Harrison and coworker have describe the measurement of thin polymer films
using a double-beam grating spectrophotometer. They applied various corrections to
the spectra to account for the blackbody reference being at a different temperature
than the sample (76).

Nagasawa and Ishitani have reported on the measurement of infrared emission
spectra of thin polymer layers on flat aluminum plates using an FT-IR instrument
(31). Detection limits equivalent to Fourier transform infrared reflection absorption
spectroscopy were found. An advantage of infrared emission was demonstrated by
measurement on nonflat surfaces. A linear relationship was found between relative
emission intensity and film thickness. This may be rationalized by recalling equation

1.15, describing emission from a thin film on a metal surface. If Rj1 ~ 0, low front



surface reflectivity, then equation 1.15 may be approximated as E = 1 - RyT2. If the

sample is thin, then T2 = e-24 may be approximated as T2 = 1 - 2xd, and thus a linear

relationship between thickness and emission signal is found.

1.4.2.2 Molten Salts

In the consideration of molten salts, the single largest advantage that emission
spectroscopy has over other infrared techniques is that the optical apparatus need not
come in contact with the corrosive high temperature melt. Molten salts provide an
abundance of radiant energy and as a result were some of the first samples studied by
emission spectroscopy using dispersive instrumentation.

Early work in this area was conducted by Wilmshurst (77). He measured
emission spectra of silver chloride and sodium nitrate with a dispersive instrument in
the range of 3000 - 750 cm-! (3.3 - 13.3 pm), demonstrating the feasibility of the
approach. He also observed splitting of peaks in the vicinity of strong absorption
bands in the emission spectrum of thicker samples and attributed this to the changes
in reflectivity due to the rapid changes in refractive index at frequencies associated
with strong absorption bands (anomalous dispersion).

Kozlowski measured emission spectra of NaNO3, KNO3, and CsNO3 near 600
°C using a dispersive instrument (78). Measurements were also made on a LiCl-KCl
eutectic at 550 °C. It was noted that the spectra from the eutectic did not correspond
well with previously reported absorption spectra and it was postulated that reaction
with the Al blackplate had taken place giving rise to AICl, .

Bates and Boyd have reported the measurement of infrared emission spectra

of alkali metal nitrates using a Fourier transform instrument (20). Spectra were
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measured in the 50 to 3000 cm-! (200 - 3.3 um) region. The distortion (splittings) of
bands as the sample thickness was increased was noted and the explanation given was
that the presence of a temperature gradient in the sample caused the outer cooler
layers to reabsorb the emission from the inner warmer layers. Distortions of bands in
the alkali-metal nitrates were interpreted as interionic interactions with some caution,
because of the probability that the distortions were due to the postulated temperature
gradient effect.

More recently Hvistendahl et al. have commented on the distortions observed
in the spectra of thick molten salt samples (16). They maintain, as Wilmshurst had
pointed out earliér, that the reflections at the surface in the vicinity of strong
absorption peaks cannot be neglected and that this is, in fact, the source of the
splittings observed by previous workers. They take issue with the previous
explanation of temperature gradients, stating that excessive temperature gradients
would probably have to be assumed in order to account for the observed distortions.
Assuming a harmonic oscillator model, they simulate the distortions in the emission
spectra assuming no temperature gradients. They then offer as a solution to the
problem, ratioing to a thick sample rather than a blackbody in order to derive a more
realistic representation of the internal transmittance of the sample. Experimental
results computed with the following equation show that distortions in the vicinity of

strong absorption bands are minimized.

_ I(thin sample) - I(background) 1.17)
" I(thick/opaque) - I(background) )



1.4.2.3 Glass

There has been much interest by the glass industry in the use of infrared
emission as concerns temperature measurement and heat transfer. Because the
materials are partially transparent in the infrared, the modes of heat transfer must
include "radiative conductance", as well as the more familiar convective and
conductive modes.

Gardon has published on the emissivity of transparent materials and brought
to light, from an engineer's point of view, the fact that the rate of emission is
dependent on the refractive index of the medium surrounding the radiator (15). He
points out that this was not new and that classical physicists had discussed this point
some time ago (79). He has also published on the calculation of temperature
distribution (80) in glass and has reviewed radiant heat transfer in glass (81).

Beattie et al. computed the emissivity spectrum of glass in the 10,000 to 1667
cmr! (1 to 6 um) range given the absorption coefficients and a specified temperature
distribution (82). They have assumed Wien's law in the derivation and integration of
the differential equations. From the results of the calculations, they constructed a
radiation pyrometer capable of measuring both the surface and inside temperatures of
glass samples. Upon careful study of their paper, there appear to be errors in the
equations for the linear temperature gradient case in their appendix (case b).

More recently Viskanta and coworkers have developed a method for
recovering the temperature distribution in semi-transparent samples using infrared
emission measurements (83). The method has been applied to dielectric coatings on
conductor surfaces in which the gray case (absorption coefficient and indices of

refraction assumed independent of wavelength) was assumed. Later the method was
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further developed to enable the calculations of temperature gradients in glass samples,
given the optical properties of the sample are known (84,85). The mcthod involves
iteratively solving the expressions for emerging intensity, and reconstructing the data
that best fits the observed emission data. '

Dvurechenskii et al. have reported on the measurement of spectral normal
emittance of silica glass samples 2 to 10 mm thick in the 5000 to 2000 cm-! (2to5
Km) region at temperatures from 327 to 1427 °C (86).

Borodai and Betina have presented results of the experimental investigation of
the optical properties of quartz ceramic in the spectral region from 25,000 to 2000

cm-1 (0.4 t0 5.0 um) over a temperature range of 800 to 1300 °C (87).

1.4.2.4 Surface Science

Some of the first attempts at the measurement of infrared emission spectra of
surface absorbed molecules were those of Eischen and Pliskin (88). They attempted
to measure the emission spectrum of thin films of oleic acid on aluminum, but were
unable to observe any bands different from those of the bulk. Other attempts were
made to measure carbon monoxide (CO) adsorbed on Pt, but these too failed. It is not
clear why the experiments failed, but several speculations are given by Eischen and
Pliskin. Some years later, Low and Inoue repeated the previous experiments of
Eischens and Pliskin measuring the emission spectrum of oleic acid on aluminum and
observed the expected shift in the carboxyl band at 1718 cm-1 (5.82 pm) to a longer
wavelength of 1563 cm-! (6.4 um) indicative of the interaction with the metal surface
(65).

Koga et al. have observed formic acid on aluminum by inducing a temperature
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gradient in the sample (89). Using a diffuse reflectance attachment and filtering the
radiation below 2000 cm-! (above 5 um), the sample was heated by the radiation
above 2000 cm-1 (below 5 um) and the emission from the sample below 2000 cm-!
was measured. They observed two peaks at 1585 and 1350 cm-! (6.3 and 7.4 um) and
noted the shift to lower frequency with deuteriated formic acid.

Several studies have dealt with metal oxides. Kember and Sheppard
investigated copper surfaces (90) and Kember et al. worked with oxide films on
aluminum (25). Zanzucchi and Yim have studied oxide coatings on iron and Invar
(36% Ni-Fe alloy) in order to understand their heat dissipation characteristics (91).

Blanke et al. have described the instrumental conditions necessary for
effective infrared emission spectroscopy. They made comparisons of the expected
signal-to-noise ratio and dynamic range between emission and reflection for the
observation of surface species (92).

Allara et al. cooled the entire spectrophotometer to liquid nitrogen
temperatures in order to reduce the background contribution to the signal arising from
the emission of the spectrophotometer itself (22). They reported spectra of monolayer
quantities of chemisorbed p-nitrobenzoic acid on a thin, oxide coated, copper
substrate at 300 K.

Greenler has contributed to the study of absorbed molecules on metal surfaces
by investigating the angular dependence of the emission from metal surfaces (30). He
presented calculations that indicated the optimal viewing angle for infrared radiation
was 70 to 80°.

More recently Conroy et al. have studied the emissivity of aluminum surfaces
in order to better understand the difficulties involved in temperature determinations

via remote sensing of infrared radiation (93).
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1.4.2.5 Reactions

Some investigations using infrared emission spectroscopy have focused on the
monitoring of reactions. Primet et al. have investigated the interactions between
propene and vanadium oxide (94). They concluded that infrared emission
spectroscopy appears to be a very suitable method for studying the interactions of
reactants with catalysts.

Van Woerkom and de Groot have reported on the design and construction of
a microreactor assembly equipped with an IR transmitting window (95,96). They
discussed the problems involved with the measurement of infrared emission spectra
for the investigation of catalytic reactions. They concluded that the experimental
difficulties were not prohibitive and presented emission spectra of powdered samples
of Pt/gamma-Al;03 and methanol adsorbed on gamma-Al,O3. Van Woerkom has
also described the use of infrared emission to investigate the curing behavior of
organic coatings (95).

Gratton et al. have described the use of infrared emission for the study of the
oxidation of metal surfaces (97). They showed good results using a standard
dispersive spectrophotometer. They monitored the oxidation of molybdenum and
observed increases in intensity and changes in bands shape during the reaction.

Jonson and coworkers have used infrared emission to monitor the spectral
changes of a series of metal oxides, resulting from the oxidation of toluene (98). A
comparison of a grating instrument and a Fourier transform instrument was made
which showed the Fourier transform instrument provided superior performance.

Lauer et al. have used infrared emission spectroscopy to investigate the

deposition from jet fuels on metal. Their results were consistent with the postulated



mechanism (99).

Wendt and coworkers have demonstrated the use of emission and absorption
spectroscopy for characterization of a copper converting process (100). Because of
the high temperatures used in the study (600 to 1200 °C), the wavelen gth region
investigated was in the visible range from 400 to 700 nanometers (nm). A grating
instrument was used with a linear diode array detector. Typical spectral acquisition
times were from 10 to 100 milliseconds. One hundred scans were used to compute an
average spectrum. Bands of PbS and PbO were observed at different times during the
converting process and the ratio of the intensity of these bands was found to be in

good agreement with thermodynamical calculations.

1.4.3 Stimulated Infrared Emission

Recently interest in obtaining emission spectra from opaque samples has lead
to the investigation of stimulated infrared emission. Lin et al. used a continuous wave
(CW) laser to excite surface emission from polymer materials at different thicknesses
(101). They termed their approach "laser-induced thermal emission" (LITE)
spectroscopy.

Jones and McClelland have demonstrated the use of CW and pulsed laser
methods for stimulation of thermal emission (102,103). They have termed their
approach "transient infrared emission spectroscopy" (TIRES). Laser saturation is
overcome by rotation of the sample. They developed an approximate theory to
explain the observations. They also made comparisons to photoacoustic absorption

spectra measured on the same material.
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1.5 Conclusions

This review of the literature has found few applications of infrared emission
spectroscopy to quantitative analysis and no uses of multivariate data analysis.
Because this technique is one of only a few that may be useful as a noninvasive
analysis technique, the reinvestigation of it with the aid of multivariate data analysis
is needed. The remainder of this dissertation will explore the application of

chemometrics and infrared emission spectroscopy for remote noninvasive analysis.
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Chapter 2 Multivariate Analysis

2.1 Introduction to Chapter 2

Multivariate analysis is the discovery of regularities in the behavior of two or
more variables and the testing of alternative models of association between two or
more variables (1). The first pursuit is exploratory in nature, while the second is
confirmatory. Multivariate analysis includes concepts and tools from applied
mathematics, statistics, geometry, and calculus and involves a varied collection of
many techniques. There are many references under the broad heading of multivariate
analysis. A few have been particularly helpful and are highlighted here. Green has
an excellent description of the mathematical tools necessary for multivariate analysis,
including geometric interpretations (1). Jolliffe discusses principal component
analysis in his book of the same name (2), while Mardia, Kent and Bibby (3) provide
a more statistical treatment of multivariate analysis. Golub and Van Loan furnish the
numerical analysis tools for the matrix computations involved in multivariate analysis
4.

Several factors have motivated the development of multivariate techniques for
analytical chemistry. Multichannel detection and the coupling of techniques such as
gas chromatography and mass spectrometry have made large quantities of
multiresponse data reasonably easy and inexpensive to collect compared with
acquiring new samples. Thus it is necessary to extract ;s much information as
possible from the available data. Computing power, both in terms of hardware and

software, is becoming more accessible, allowing multivariate analysis to be more
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easily performed. For process analytical chemistry, multivariate analysis with non-
selective robust sensors may be used to replace less robust, more selective sensors,
making multivariate analysis indispensable. Not only is multivariate analysis able to
increase productivity, it may provide information that can be found in no other way.

The application and development of multivariate techniques for use in
chemistry are part of the mission of chemometrics. Since its inception in 1972,
chemometrics has been growing steadily and has gained acceptance as a useful, if not
required, area of study (5). There is a growing base of literature on the subject
including Malinowski and Howery's book on factor analysis in chemistry (6), two
general texts (7,8), and a fourth on the specific area of multivariate calibration ).
There are currently two journals devoted to chemometrics research (10,11).
Chemometric literature reviews have been found in Analytical Chemistry every two
years since 1980 (12-17) and Applied Spectroscopy provides examples of
chemometrics applied to spectral data.

Multivariate analysis techniques for analytical chemistry include exploratory
techniques such as cluster analysis and pattern recognition, and more quantitative
techniques such as multivariate calibration and optimization. For this dissertation two
of the quantitative techniques will be of interest, multivariate calibration and
multiresponse nonlinear optimization. Multivariate calibration is an implicit or "soft"
modeling technique with few assumptions made concerning the data structure.
Multiresponse nonlinear optimization uses a "hard" theoretical model. It is concerned
with estimation of the parameters associated with the theoretical model and resolution
of the underlying basic waveforms representing the phenomena. The next two

sections detail the theory needed to understand the techniques that are a part of



multivariate calibration and multiresponse nonlinear optimization used in this

dissertation.

2.2 Multivariate Calibration

2.2.1 Overview

Multivariate calibration relates two or more indirectly measured variables
(response measurements) from two or more objects (samples) with known properties
via a mathematical model. The model is used to predict the same properties from the
indirectly measured variables of unknown objects. There are many methods for
multivariate calibration. Sanchez and Kowalski have recently provided a framework
using tensorial notation, in which instruments are classified according to the data that
they produce (18). For example, a simple pH meter produces a single number, a zero-
order tensor. The measurement of an infrared spectrum produces a vector of
numbers, a first-order tensor, and the measurement of a fluorescence excitation-
emission spectrum provides a matrix of numbers, a second-order tensor. The
calibration methods used for each type of data are different.

Univariate calibration is used for zero-order tensors, but this assumes that
there are no interferences in the response (the sensor is completely selective).
Interferences may invalidate the results of a calibration study using a zero-order
instrument, unbeknownst to the analyst. For a first-order instrument an interference
not accounted for in the calibration step may invalidate the prediction results, but
proper outlier detection can alert the analyst to the problem (19). For bilinear second-

order instruments the calibration method of generalized rank annihilation (GRAM)
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can account for uncalibrated interferences with a single calibration sample (20).

For this work, only first-order methods of multivariate calibration will be of
interest. Four methods will be discussed, classical least squares (CLS), inverse least
squares (ILS), principal component regression (PCR), and partial least squares (PLS).
Other references for first-order multivariate calibration are Beebe and Kowalski 21,
Martens and Naes (9,22), Haaland and Thomas (23), Mandel (24), Sanchez and
Kowalski (25) and Sundberg and Brown (26).

2.2.2 Notation and Preprocessing Issues

For this dissertation lower case bold face letters will represent column vectors
and upper case bold face letters will represent matrices. The transpose is denoted by
an upper case, superscript "T". Normal type face, lower case letters will represent
scalars. Lower case, normal type face letters with a single subscript, x;, will denote
single entries in the ith position of a vector, x. Those with a double subscript, xjj, will
denote a single entry in the ith row and jth column of a matrix X. Lower case, bold
face letters with a single subscript, x;, will denote the ith column vector in the matrix
X.

All data matrices used for multivariate calibration are considered to be mean
centered, that is the mean of each column is subtracted from every entry in the
column. For more information on preprocessing see Geladi and Kowalski (27,28).
Mean centering is not used for the multiresponse nonlinear study and this is discussed
in more detail in Section 4.2.2.

The calibration problem will be discussed in terms of prediction of chemical

concentrations from multivariate spectral measurements. Other constituent values
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associated with chemical samples may be predicted as has been shown in many

application studies. References may be found in the latest chemometrics review an.

2.2.3 Classical Least Squares (CLS)

Classical least squares (CLS) may be defined with the following model in

vector notation

R=CK+EgR (2.1

where R is a response matrix, (M-objects (samples) by N-variables (responses)), C is
a concentration matrix, (M-objects by L-components), K is a sensitivity matrix, (L-
components by N-variables), and ER is a matrix of residuals, (M-objects by N-
variables), containing systematic and random errors not fit by the model. Component,
as used here, is understood to mean chemical component and should not be confused
with principal component discussed in
Section 2.2.5.1. The classical least squares method is also known as the K matrix
method (29), as well as direct (30), total (31), and reverse calibration method (9). For
spectroscopic applications CLS is one of a collection of full spectrum methods.
Responses are modeled as a function of concentrations, and as for most analytical
applications this model represents the causal structure (9), that is the change in
concentration (the cause) effects a change in response.

Given the classical model, the calibration step involves the measurement of
N-variables on M-objects of which all L-component concentrations are known.

Measuring R and knowing C, the least squares solution for K is found as
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K = (CTC)1CTR 22)

where f(rcpresents the matrix of pure-component spectra at unit concentration and
unit path length. This approach minimizes the response or spectral errors. Haaland
and Thomas have described this as a factor based method in which the rows of K are
the factor loadings (loading vectors, see Section 2.2.5.1) and the columns of C are the
score vectors of the response matrix, R (see Section 2.2.5.1) (23).

For prediction of an L-component concentration vector, 'c\, from an unknown

response vector, T (N-responses by 1), the following equation is solved
rT = cTK @.3)
giving
& = K KT)1 Kr 2.4)

Numerically the inverse exists only if the rank of (f( IA(T) is L, thus there must be
more sensors than components, (N > L), and the rows of IA( must be linearly
independent, the pure spectra must be sdmewhat different, in order to solve equation
24.

The appealing features of the classical approach include improvement in
precision due to the full spectrum nature of the method (32), i.e. signal averaging, the
simultaneous fitting of spectral baselines (32,33), and the ability to examine pure

component spectra and full spectral residuals. The drawback for this approach is that
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all of the chemical components with response variance must be known and calibrated
for during the calibration step. This is understood by noting that if the response
matrix contains variance from other sources not accounted for in the concentration
matrix, the calculation of f( in equation 2.2 would be affected by those extraneous
variations. In other words, the pure component spectra would be incorrectly
estimated, and prediction of future samples using equation 2.2 would be incorrect. In
order to overcome the drawback of having to know and calibrate for all of the

components in a sample, the method of inverse least squares may be used.
2.2.4 Inverse Least Squares (ILS)
Inverse least squares (ILS) is defined with the following model
C=RB+E, (2.5)

where R is a response matrix, (M-objects (samples) by N-variables (responses)), C is
a concentration matrix, (M-objects by L-components), B is a matrix of coefficients
that relate the L component concentrations to the N observed variables, (NbyL), and
Ec is a matrix of concentration residuals, (M by L), containing systematic and random
errors not fit by the model. This method has been variously known as the P matrix
method (29), multiple linear regression (MLR) (30), as well as indirect (30), partial
(31), and forward calibration method (9). The inverse least squares approach models
the concentrations as a function of the responses, and thus does not follow the causal
structure (9).

One very important aspect of the inverse least squares model is that the
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columns of the C matrix may be treated individually, that is, each chemical

component is treated individually. Assuming the columns of E are independent, then

c=Rb+¢; (2.6)

where ¢ is a (M by 1) vector of concentration values of the analyte of interest, b is the
(N by 1) vector of calibration coefficients (the regression vector), and €c is the (M by
1) vector of concentration residuals not fit by the model.

For the calibration step in the inverse least squares method, equation 2.6 is

solved for b as follows
b= (RTR)1RT¢ Q.7
or

b=Ric (2.8)

where Rt is the pseudo-inverse of R (4). For prediction of a concentration value from

a measured response vector, rT, the following equation is solved

¢=rTh (2.9)

or

& =rTRic (2.10)

For the inverse least squares approach only one matrix inversion is required



for prediction as contrasted with the classical least squares approach where two
matrix inversions are required, equations 2.2 and 2.4. In practice the advantage of the
inverse least squares approach is that quantitative analysis may be performed even if
the concentration of only one component is known in the calibration mixtures. The
concentration variation not explicitly included in the calibration model must be
implicitly modeled during the calibration step. If some interferences are not
implicitly modeled in the calibration step, outlier detection methods should alert the
analyst to the fact that the unknown samples are different from the calibration
samples (19).

The drawback for the inverse least squares method comes in the calibration
step and the calculation of the inverse of (RTR) in equation 2.7. This inverse does
not exist if N > M, more sensors than samples, as is the case for many analytical
applications. Thus a sensor selection or dimension reduction must take place,
especially when using spectral data. In fact, if linear additivity is obeyed, the rank of
(RTR) is at most L, the number of independent chemical components, and thus using
more variables than L leads to problems of multicolinearity. Variable selection for
dimension reduction is not a trivial problem and will not be discussed here (34,35).

An alternative to variable selection is to use linear combinations of the
variables, or what has been referred to as data compression (9). The use of linear
combinations of the original variables leads to the biased regression or latent variable
regression methods of principal component regression (PCR) and partial least squares

(PLS).
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2.2.5 Biased Regression Methods

Latent variable regression methods make use of the inverse least squares
model. For this dissertation, only the single analyte calibration problem will be
considered, as presented in equation 2.6. The latent variable methods most often used
in analytical chemistry are principal component regression (PCR) and partial least
squares (PLS). The difference between these methods is in how the pseudo-inverse,
RY, used in equation 2.8 is computed. As will be shown below, the basic difference
between the way each method computes R is in how much influence the
concentration vector has on the data compression. The concentration vector has no
influence in the PCR method, while PLS allows some influence. These methods have
been characterized as discrete members of a continuum of methods by Lorber and co-
workers (31). This approach provides an interesting framework from which to study

the first-order calibration methods and will be briefly reviewed later in this section.

2.2.5.1 Principal Component Regression (PCR)

For principal component regression (PCR) the first step is principal
component analysis (PCA). PCA was first described by Pearson (36), developed
further by Hotelling (37) and was discussed in detail by Jolliffe (2). Wold et al. have
provided a tutorial for PCA (38).

For a given data matrix, R (M by N), a PCA decomposition results in a

representation of the data matrix as a sum of vector outer products



H
R= Y tipiT max(H) < min(M,N) 2.11)
i=1

or in matrix notation
R=TPT+E (2.12)

The maximum number of latent variables that may be computed is the minimum of
the number of rows or columns in R. The t; (M by 1) vectors are referred to as score
vectors and the pj (N by 1) vectors are referred to as loading vectors. Other names
that are associated with these vectors are latent variables or factors. There are many
methods to decide on the number of outer products to retain (the pseudorank) and
these are discussed below. The t; vectors and p; vectors are orthogonal to one
another, i.e. t;Ttj = 0 and p;Tpj=0 for i # j. Each score and loading vector pair
describes successively less variance of the response matrix than the previous pair.
The orthogonal nature of the score vectors imparts desirable numerical properties for
the regression analysis described below. Two methods available to compute the PCA
decomposition are the nonlinear iterative partial least squares algorithm, (NIPALS)

(39) and singular value decomposition algorithm (SVD) (4).
| The NIPALS algorithm used for calculation of the score and loading vectors is
as follows :

Step 1. Seti=1.

Step 2. Choose an initial guess for the first score vector, t;. Wold et al. suggest

using the row from the response matrix with the highest variance (40).

Step 3. Compute a least squares estimate for the first loading vector, p;.
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Step 4.

Step 5.

Step 6.

Step 7.

piT=1-2 2.13)

The elements of the loading vector, p;, may be considered as the slopes of
the regression of t; on the corresponding columns of the R matrix.

Normalize the loading vectors to length 1.

1

Pinorm = £ i where f = —— (2.14)
V(piTpy)
Compute a new score vector using a least squares estimate.
ti'new = T (2.15)
Pi Pi

Check for convergence. Compare the new score vector with the old score
vector by computing a total sum of squares of the differences between the
consecutively computed score vectors. If there is convergence, then
continue with step 7 otherwise return to step 2. If convergence is not
reached in a large number of iterations (> 50), then the data have no
preferred direction of maximum variance.

Compute a residual matrix by subtracting the outer product formed from the

score and loading vectors

E=R-tjp;T (2.16)
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and substitute E for R in step 2, seti=1i + 1, and extract the next vector
pair. This method has been described as a variant of the power method for

eigenvalue analysis (31).

The singular value decomposition (SVD) represents the matrix as a product of

three matrices

R=USVT (2.17)

where the columns of U, (M by M), are the left singular vectors (eigenvectors of
RRT), orthogonal and of unit length, representing the column space (sample or object
domain if the spectra are in the rows of R). The columns of V, (N by N), are the right
singular vectors (eigenvectors of RTR ), orthogonal and of unit length, representing
the row space (spectral domain if the spectra are in the rows of R) and S, (M by N), is
a diagonal matrix of singular values (square root of eigenvalues of RRT or RTR).

The details of the implementation of the algorithm may be found in Golub and Van
Loan (4). Comparing equation 2.17 with equation 2.12 shows P is equal to V, and U
contains the same column vectors as T, but normalized to unit length. The length of
each tj is contained in the diagonal entries of the S matrix.

The SVD provides for more numerical stability than NIPALS, but the SVD
requires computation of all of the principal components. The NIPALS algorithm
allows less than the maximum number of principal components to be computed and
may also be used on data with missing values (41).

After decomposition of the response matrix the number of latent variables or

factors to retain must be chosen. The methods used to perform this selection are



discussed in Section 2.2.6.
After determination of the proper rank the principal component regression

model is formulated as

c=USVTD +¢, (2.18)

where USVT has replaced R with the understanding that an appropriate truncation of
the data matrix has taken place. Note that the same model can be formulated with US
replaced by T, and VT replaced by PT. The following definition is used in the
development of the regression model by Mandel (24) in order to provide an analysis

of variance of the regression coefficients,

a=SVTh (2.19)

Equation 2.18 may be rewritten as

c=Ua+e (2.20)

which displays PCR as the inverse least squares problem with the normalized score
vectors being used as artificial variables, linear combinations of the original variables
(34). The o vector is the regression vector, (H by 1), relating the H variables
(principal components) to the concentration vector. This vector, o , has been denoted
as the concentration loadings by Martens and Naes (9). The least squares solution to

equation 2.20 is



6= (UTUy1 UTc (2.21)
which, as a result of the properties of the U matrix, becomes
6=UTc (2.22)

Mandel has shown how this representation is useful for the discussion of the variance
properties of G and b (24).

The prediction of a concentration value, 3, from an unknown response vector,
rT, is as follows. First the unknown response vector must be centered or scaled, if the
calibration data were centered or scaled, then the regression vector, b, is multiplied by

the unknown response vector
8=rTh (2.23)
or from the solution of equation 2.19 forll;
¢ =rTVs-lg (2.24)

The coordinates for the unknown response in the calibration space (the scores) are

computed, uT = rTVS-1, and then multiplied by the regression vector, &, to compute
the concentration value. Note that the calculation of the spectral regression vector,
II;=VS'1&, involves the inverse of the S matrix and thus PCR gains stability by
elimination of eigenvalues close to zero, i.e. data compression. Mandel discusses the

“trading” of variance for bias by elimination of small eigenvalues and associated
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eigenvectors in PCR (24).
The pseudo-inverse of the response matrix, R, as used in equation 2.10 is
equal to VS-1UT, as shown by combining equations 2.22 and 2.24, and an alternative

representation of the prediction equation for PCR consistent with equation 2.10 is

& = rTys-1yTe (2.25)

PCR uses no information from the concentration vector to influence the
calculation of R and assumes latent variables associated with small variance or small
singular values contain no useful information for prediction of c, only noise. This
assumption may not always be correct, because small variance components can have
relevant information for prediction. These considerations have lead to the method of

partial least squares (PLS) (39).

2.2.5.2 Partial Least Squares (PLS)

The method of partial least squares (PLS) has been used for the prediction of
chemical and physical properties from many types of multivariate observations, for
many different sample types. References for such experiments may be found in the
fundamental reviews (15,16,17). The PLS method has been thoroughly studied by
Manne (42), Hoskuldsson (43), Lorber et al. (31), Helland (44), and summarized very
well by Martens and Naes (9). The basic idea for PLS is that the decomposition of
the data matrix should be guided to a solution that is best for prediction of the
constituent value of interest. In order to do this, the PLS decomposition is conducted

in such a way that the constituent value information is used to calculate the
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decomposition.

For this discussion only PLS1 is considered, that is, only one constituent value
at a time is used in the decomposition. The use of PLS2, PLS with two or more
constituent values used in the decomposition simultaneously, may have some
advantage if the precision of the constituent values differs widely. More precise
constituent values may offer a stabilizing effect for the prediction of the less precise
constituent values (9). The algorithm for PLS1 is discussed below, and is very
similar to the PCA calculation shown in Section 2.2.5.1. The discussion draws

largely from the work of Haaland and Thomas (23).

Step 1. Compute the weight loading vector for factor H, W, and normalize

A RTc

=< 2.
WH= T, (2.26)
A
Wy =—oH (2.27)

The entries of the weight loading vector are the slopes of the simple
regression of the constituent vector with the corresponding columns of the
R matrix, just as were found in the NIPALS calculation of the PCA

decomposition.
Step 2. Formation of the score vector, 't\H

th=Réyg (2.28)



Step 3.

Step 4.

Step 5.

Step 6.

This is similar to the prediction of a constituent value in CLS, if \'a\vH were

considered a pure component spectrum for a single component system.

Relate the score vector, to the concentrations

A tuTc
VH= A mA— (2.29)

The scalar v is the regression coefficient relating t and ¢, sometimes

referred to as the chemical loadings (9).

Compute the loading vector, p

A RT lt\HT
PH=7""""A" (2.30)
tuT iy
Calculate the residuals in R and ¢
Er =R - t4Thy 2.31)
e = ¢-vytyT (2.32)

The ER and e vectors are used in step 1 as R and C and the next vector is
extracted. Note that this algorithm is NOT iterative for each factor

calculation, as was found for the PCA calculation.

Prediction using the PLS1 algorithm is somewhat more complex than for PCR
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and this is summarized below. Given an unknown Tesponse vector, ryp

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Center and/or scale ryy if the calibration data were centered and/or scaled.
Compute the scalar score value for the unknown on the Hth factor
T =WyTry (2.33)

Compute the concentration contribution due to the Hth factor from the

unknown score value and the chemical loading

cH=cg.1 +Vu tH (2.34)
Compute the response residual

e = ep.] + PHty (2.35)

Increment H, substitute ey for ryp, and repeat with step 2 until the chosen

rank is reached.

For this implementation of the PLS1 decomposition, the score vectors are

orthogonal to one another as are the weight vectors, but the loadin g Vectors are not.

There is an alternative implementation of the PLS1 algorithm, given by Martens, in

which neither the score vectors nor the loading vectors are orthogonal (19). A

unifying and perhaps simpler approach to the latent variable regression models has



been given by Lorber et al. and is briefly reviewed here (31).

The following steps are performed for the Lorber implementation of PLS1;

Step 1. Preprocess the data matrix by centering and/or scaling.

Step 2. Compute two vectors ty and pg

RyTc

IRy cll

PH+1 = (2.36)

Ruprs1 _ _RuyTe)
IREpHAT ~ IRgRyTO)

tHs1 = (2.37)

Step 3. Construct a residual matrix, Ry.1, orthogonal to the two vectors
Ru+1 = (M - tH+1tH+1 DRAAN - pH41PHAT) (2.38)
Step 4. If more latent variables are needed increment H and g0 to step 2.
At this point T and P are column orthonormal matrices representing the

column and row space of R, respectively. The PLS approximation to the data after

appropriate truncation is
R =TQPT (2.39)
Because T and P are column orthonormal, Q may be computed as

Q =TTRP (2.40)
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and is bidiagonal for PLS1 and diagonal for PCA.
The pseudo-inverse is required for prediction, as shown in equation 2.10, and

this may be found by computing the SVD of Q

Then

Rt = PQ-1TT = PV TS, 1U,TT (2.42)

An interesting observation is that as the score vector, tH+1, is recycled through the

algorithm, the PLS solution approaches a PCA solution. Mathematically

612t;® = (RRT)t; (n-1) (2.43)

so that £;®), the first score vector on its nth iteration, approaches an eigenvector of
RRT and 62 approaches the associated eigenvalue. What this means for
intermediate vectors, i.e. vectors found before convergence, is that these vectors are
determined by the power to which (RRT) is raised. By computing the SVD of
(RRT)M it may be shown that

(RRT)n = ys2nyT (2.44)

This suggests a modification to the PLS1 algorithm. At each factor extraction step,

Ry is replaced by the SVD of Ry so
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VSUTc

PH+ = {ySUTel (2.45)

fns = USPVTphyy _ US2UTe
B+ = 0S2V Ty, Il ~ TUS2UTel

(2.46)

and the S matrix is raised to the power n within a given factor extraction

vSayTe

PH+1 = |y gnyTel 247)

_ US™VTpy,, _ _USZyTe
"1 = USEY Tpyg, il = TUSZRUTel (2.48)

Now the T and P matrices may be computed for different values of n and predictions
are performed by calculation of the pseudo-inverse as shown in equation 2.42.

The latent variable regression methods can be placed on a continuum, with
PCR at n=co, PLS at n=1, and the "MLR" solution, if it exists (i.e. N>M), is found at

n=0.

2.2.6 Rank Determination Methods

After the matrix decomposition, the data are truncated by selecting only those
latent variables that are "significant". There are many methods for selecting
"significant" latent variables (6, 23, 41,45-49). These methods are based either on a
fitting criterion, such as variance explained or standard error of estimate, or on a

predictive criterion. The more relevant methods for rank determination for
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quantitative analysis in analytical chemistry are those methods that use a prediction
error as the criterion for latent variable selection since the goal of calibration is to
predict future samples and not simply to fit the calibration data.

Using a predictive criterion presents the problem of how to assess the
predictive behavior of the quel. The best way to accomplish this is with
independent, calibration and prediction data sets. Several models are constructed
from the calibration data set using different numbers of latent variables. The
independent prediction sample set is then treated as an unknown and predictions are
made using the calibration models from the calibration data set. The predictive
residual error sumn of squares, PRESS, is the sum of the squared differences of the

. . A .
predicted concentrations, cj, from the known concentrations, c,

M
PRESS = Y (Cj-cj)? (2.49)
i=1

PRESS is computed for each model tested. The PRESS values are plotted against the
number of latent variables. Figure 2.1 displays an ideal PRESS plot shown as a
dotted line..

As relevant latent variables are added to the model, the prediction error
decreases until irrelevant information is drawn into the model, at which time the
prediction error increases. A simple choice for the number of factors to select is at
the minimum in the PRESS plot. Other methods to determine the number of factors,
such as an F-test for the significance of added latent variables, may give a number
different from the minimum (49). Another method is to compute the error in PRESS,

as defined by Breiman et al. (50), using the following equation
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*M (2.50)
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Figure 2.1 Ideal PRESS plot.

The model that gives the fewest number of factors which are within the error
band overlap of the miﬁimum in the PRESS plot is chosen as optimal. A rank of 9 is
chosen for the example shown in Figure 2.2.

If a separate calibration and prediction data set are not available, then the
method of cross-validation may be used (41, 45, 46). For cross-validation only a
calibration data set is needed and from this data set each sample is removed, one at a

time, and a separate calibration model constructed without that one sample.
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Figure 2.2 PRESS vs. number of latent variables added.

The excluded sample is predicted with the calibration model and this is repeated for
all samples and for all the different models considered (all the different numbers of
factors). The same PRESS plot is constructed and used to determine the pseudorank
of the data matrix. A statistic related to PRESS is the standard error of prediction,

SEP, and is computed as

1 M A
SEP = M 1_21 (€ - ;)2 (2.51)

The SEP is a measure of how well the model is expected to perform for prediction of
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unknowns from the same population of samples as the calibration set.

Another method for rank determination in PCA, where there are no
concentration values to predict, is to explain the data matrix to the experimental noise
level. This method requires an estimate of the experimental noise level which is
compared with the residual computed after each latent variable is extracted. Chapter
4 uses this method to determine the rank of spectral data collected from a kinetics

experiment and is discussed more fully there.
2.2.7 Locally Weighted Regression (LWR)

Bilinear models such as PLS and PCR can handle nonlinear calibration data to
some extent (9), but for large nonlinear effects an alternative method may be more
appropriate. The method of locally éveighted regression (LWR) is relatively new in
the statistical literature and may offer certain advantages for multivariate calibration
when the data are nonlinear (51). Naes et al. have recently shown that it offers
improved prediction results for near infrared data, as well as reduced model
complexity, and thus improved interpretability of the calibration model (52). Because
of the complex models found using PLS and PCR for calibration with infrared
emission data (see below), locally weighted regression was explored as an alternative.
The theory for its implementation is as follows.

In the most general sense locally weighted regression is a procedure for
relating an independent set of M measurements on N variables to a set of L dependent
variables. The procedure forms local linear or nonlinear models, with the variables
weighted in some fashion to estimate a regression surface. For the multivariate

calibration problem the dependent variable may be considered as the concentration of



chemical components and the independent variable may be spectral measurements
collected from each of the samples. The model used is the inverse least squares

model
c=Rb +e; (2.52)
where ¢ is (M by 1), R is (M by N), and b is (N by 1).

The implementation of the locally weighted regression procedure in this work
will make use of the principal component scores as artificial variables to represent the
response matrix giving

c=Ua (2.53)
where U (M by L) is the orthonormal matrix from the singular value decomposition of

the response matrix using L latent variables or L combinations of latent variables and

a is the (L by 1) regression vector. Equation 2.53 is left multiplied by a diagonal
weight matrix, W (M by M), giving

We = WUa (2.54)
The regression vector, 6(, is found with the usual least squares estimate as

& = (UTW2U)-1 UTW2¢ (2.55)

Four important considerations in LWR are, 1) the initial number of principal



components to use, 2) the model, 3) the size of the local region, and 4) the weight
function.

The number of principal components to be used is related to the model choice
and may be investigated with cross-validation. Model choice is very flexible in this
procedure in that a linear model making use of just the principal components may be
used or a polynomial combination of the principal components may be used.

The choice of the local region to use requires a distance measure. For this
work a simple Euclidian distance is used, computed with the principal component
score vectors. The local region is considered in terms of f, the fraction of points
(samples) used in the regression calculation. The fraction of points used must be
considered relative to the number of independent variables, L. In this implementation
L is the number of principal components plus the number of combinations of
principal components if a polynomial model is considered. If the number of
independent variables (and thus the number of parameters that must be estimated) is
not allowed to become a large fraction of the number of data points, then the local
regression analysis can be expected to behave reliably. Cleveland and Devlin refer to
the increase in the number of independent variables for a fixed number of data points
as the "curse of dimensionality” (51). Cross-validation is used to select f values in
the calibration studies discussed below.

The issue of the weight function is also an important consideration for LWR.
For this work the original function suggested by Cleveland and Devlin is used. This
function, known as the tricubic function, calculates the weight for the jth sample for a

calibration about the ith sample as

W(z) = (1-z3)3 (2.56)
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where

2= P——Lfl‘(':h‘;) @.57)

and p(u;,u;) is the distance of the jth sample from the ith sample and d(u;) is the
maximum of p(u;,u;) for all of the samples considered in the local region. Therefore
samples close to u; are heavily weighted and those far away have lower weights as

shown in Figure 2.3.

0 l 0.‘2 ‘ 0:4 . 0:6 . 0:8 . 1.0
Fractional distance to most
distant point considered

Figure 2.3 Tricubic weight function used for locally weighted regression.

In this implementation of LWR the weight function is directly connected to
the distance measure, in that how far away a calibration sample is from an unknown

dictates its weight. This may not be optimal for prediction. An alternative would be



to weight the samples based on their predictive ability. Cleveland and Devlin
comment that asymptotic results for nonparametric regression show that the overall
form of the weight function does not have an appreciable effect on the mean squared
error. But they do state this does not imply the form of the weight function does not
matter (51). It is beyond the scope of this work to explore the weight function issue,
but it is suggested that a reiterative weighting scheme based on prediction ability may
be an interesting area of research.

For prediction using LWR and principal components as artificial variables, a
new calibration model is required for each unknown. The unknown response is
projected onto the calibration space defined by the loading vectors (i.e. the scores for
the unknown in the calibration space are computed) and the distance from the
unkiiown to all the calibration samples is computed. The fraction of the calibration
samples that are being considered is then weighted according to the weight function
and the regression vector computed using equation 2.55. Prediction is performed

using the computed regression vector and the scores from the unknown sample.

2.3 Multiresponse Nonlinear Optimization

2.3.1 Overview

Multiresponse nonlinear optimization is the use of multiresponse data to
estimate model parameters via a nonlinear optimization technique. This differs from
the multivariate calibration problem in that a "hard" parametric model is postulated to
describe the observed data, and the parameters of the model are of interest. There is a

further distinction for multiresponse nonlinear optimization in terms of the nature of
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the data. The data may be from direct observations of the phenomenon of interest, for
example the concentrations of the three chemical species in a first-order consecutive
reaction, or the data may be from observations made in an indirect fashion, for
example the measurement of infrared spectra of a reaction mixture following a first-
order consecutive reaction scheme.

The details of the theory of multiresponse nonlinear optimization for direct
observation and indirect observation experiments are discussed below. Applications
of the methodology from the literature are discussed in 2.3.3. Chapter 5 details the

proper choice of objective function for the nonlinear optimization.

2.3.2 Theory for Multiresponse Nonlinear Optimization

For the development of the theory a distinction is drawn between the direct
(full rank) and indirect (rank deficient) observation of the phenomenon of interest.
An example of a direct observation experiment is the case of actual chemical
concentrations measured as a function of time for a kinetics experiment. The
response matrix, R, (N-times by M-chemical components) is assumed to have N > M
and be full rank, i.e. rank = M. Infrared spectra collected from the same reaction
mixture as a function of time would be an example of an indirect observation
experiment. The response matrix, R, (N-times by L-wavenumbers) for the indirect
observation experiments would most likely be rank deficient, i.e. rank < N and rank

<L.



2.3.2.1 Multivariate Nonlinear Modeling Using Direct Observations

The development of the theory for multiresponse nonlinear modeling in the
direct observation case is straightforward. Let R be a response matrix, (N-objects by
M-responses), with N > M and full rank, i.e. rank = M. For example, R for a kinetics
experiment would consist of the concentrations of the M-chemical components in the
columns measured at N-times after mixing. A postulated parametric model is used to
generate estimates of the observed data, F. The differences between estimates from
the model and the observed data are collected in a residual matrix, Z. At each step in
the parameter search a residual matrix is generated and it is the "size" of this matrix
that is used to describe the response surface and guide the optimization algorithm.

The question of how to assess the "size" of the residual matrix and the choice
of objective function are the same. The most commonly used objective function is
the total sum of squares (TSS) given as the sum of the squared entries of the residual
matrix. As pointed out by Hunter, the TSS objective function is valid only if the
response errors have equal variance and are uncorrelated (53). A weighted total sum
of squares objective function may be used, provided the weights are known or
reiteratively estimated, in order to account for the non-constant variance, but the
correlation of errors may still be a problem (54).

Box and Draper have shown, using a Bayesian approach, that the determinant
of ZTZ is a more generally applicable objective function (55). This criterion, known
as the determinant criterion, allows for non-constant response variance, as well as
correlation in the response errors. When compared with the situation of a known
variance-covariance matrix, it may be shown that the determinant criterion provides

entries in the variance-covariance matrix that are proportional to the maximum-
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likelihood estimates (55). A convenient way of considering the determinant criterion
and total sum of squares is that the determinant of ZTZ is the product of the
eigenvalues of ZTZ, while the total sum of squares is the sum of the eigenvalues of
ZTZ. The determinant of ZTZ corresponds, geometrically, to the square of the
volume of the M-dimensional parallelepiped spanned by the residual vectors.
Minimizing the determinant corresponds to minimizing the volume enclosed by the
residual vectors (56).

In order to successfully employ the determinant criterion there are
dimensional restrictions on the residual matrix, Z, and thus on the response matrix.
For a residual matrix, Z (N-objects by M-responses), the number of objects, N, must
be greater than the number of responses, M, otherwise ZTZ, which is (M by M)
would have a rank of, at most N, and the determinant would be zero for all parameter
values. This is understood by realizing that for a matrix, ZTZ, of dimension (M by
M) and of rank N, with M > N, there must be at least one zero eigenvalue and thus the
product of the eigenvalues would be zero for all parameters. Another consideration is
that the number of parameters, P, must be less than N, the number of objects,
otherwise the criterion can be made zero by fitting any one response perfectly or even

by fitting a linear combination of the responses perfectly.

2.3.2.2 Multivariate Nonlinear Modeling Using Indirect Observations

For the indirect observation case the response matrix is usually
underdetermined, in that there are more responses than objects, and is always rank
deficient. In order to meet the dimensional constraints for the determinant criterion a

data compression step is necessary. A data compression step will also offer a certain
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amount of noise reduction.

Consider a measured matrix of spectral intensities, R (N by L), as N spectra of
L wavenumbers collected at N times during the course of a chemical reaction.
Assuming the contribution of each component to the spectra is linear and independent
of all others, the response matrix from the above experiment may be written in matrix

notation as
R =DFT (2.58)

Equation'2.58 states that the data matrix, R, may be represented as the product
of a pure concentration profiles matrix, D (N by C), where C is the number of
spectrally distinguishable chemical components in the reaction mixture, and a matrix,
F (L by C), representing the pure spectra of the C chemical components. A model
may then be proposed to describe either the spectral or concentration profiles. For
example, a specific kinetic model may be assumed in order to describe the pure
concentration profiles contained in the D matrix. That is, the concentrations in D are
not random, but follow the kinetic equations as a function of time. The optimal
kinetic parameters midy then be found for this model by minimizing the residuals, Z,

of the fit to the data given by
Z =R -DFT = R-DD'R (2.59)

where ’F\‘T = f)*R, and ﬁ" is the pseudo-inverse of f), the estimated kinetic model.
Shrager and Hendler describe this approach and point out the advantage of a data

compression step involving the singular value decomposition as described below (57).



Note here that the determinant of ZTZ would be zero for any parameter estimate
because ZTZ is M by M and of rank at most N, where N is less than M, thus the need
for a data compression step in order to meet the dimensional constraints of the
determinant criterion.

The response matrix, R (N by L), may be represented by a set of orthogonal

basis vectors using the singular value decomposition as

R =USVT (2.60)

where Uis (N by N), Sis (N by L) and V is (L by L) with the properties discussed in
Section 2.2.5.1.
Data compression is achieved by selecting a reduced number of singular

vectors to represent the data matrix. As discussed in Section 2.2.6, there are many

methods to choose the appropriate number of singular vectors to retain (23,41,45-49).

Common to most of the methods is that the singular vectors associated with small
singular values are more likely due to noise than to chemical information and should
be discarded. In Chapter 4 another method for rank determination using the known
experimental error is described.

The compressed data matrix is given by

R=USVT (2.61)

where it is understood that singular vector selection has taken place. Thus R is still

(N by L), but U is now (N by C), S is (C by C) and V is (L by C), where C is the

chosen rank of the data matrix. This data compression step offers a reduced noise
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data matrix, assuming that small eigenvalues are associated more with noise than
chemical information.
It is recognized that the columns of U form an abstract linear combination of

the time profiles and that this may be represented mathematically as
U= DHT (2.62)

where the columns of D contain, for example, the concentration profiles for the three
species involved in a consecutive first-order reaction and HT is a rotation matrix. In
order to generate an estimate of the concentration profiles, lA), the kinetic parameters
must be specified. Given an estimate for D, ﬁ, an estimate for H, fl, may be

calculated as
fir = Pty 2.63)
where 1/\)Jr is the pseudo-inverse of IA) The U matrix may then be estimated as fJ by
U = B (2.64)
The residual matrix, Z, for this process is given by

A AAN
Z=U-U = U-DD'U (2.65)

Lawton and Sylvestre pointed out the utility of performing a linear least

squares calculation for the parameters of the H matrix, equation 2.63, rather than



including them as nonlinear parameters, thus reducing the number of parameters to be
estimated by the nonlinear search (58). The parameters used to generate D are
searched for by minimizing the residuals in a systematic fashion, by a modified
SIMPLEX (59) or Gauss-Newton algorithm which has recently been implemented for
linear systems of differential equations (56). It is at this point in the analysis that a
choice of objective function rﬁust be made and this is discussed in Chapter 5 of this
dissertation.

After D has been estimated the corresponding space, F, may be computed in

two ways. From the original data, R, F may be found as
FT= DR (2.66)
or a more noise free estimate may be found as
FT=Diysvr (2.67)

using the truncated data representation. Note also that H from equation 2.63 may be
thought of as a rotation of the singular vectors U, into the proper space, D. If fAr
from 2.63 is substituted for DU in equation 2.67, then

A

FT = fATSVT (2.68)

A
and it may be seen that HT is the rotation matrix for the unnormalized singular vectors
A
SVT into the space FT.

The symmetry of the problem is illustrated graphically in Figure 2.4. Starting
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with a data matrix R the singular value decomposition is used to compress the data
into the significant abstract singular vectors U and V. A parametric model may then
be postulated for either the column space or the row space and the parameters of the
model found by the nonlinear optimization technique. Once one of the spaces is
found the other may be computed as shown in equations 2.66 or 2.67 for calculation
of ﬁ‘ from f) As will be seen in Chapter 4, the use of the two spaces to apply
constraints to the nonlinear modeling can be very helpful in solving otherwise

ambiguous kinetics problems.

Spectral Profiles U Matrix

Curve Fitting

Wavelength , Wavelength

Model /' SVD
Concentration Profiles V Matrix
Curve Fitting

Figure 2.4 Multiresponse nonlinear analysis. .




2.3.3 Application of Multiresponse Nonlinear Optimization

The review of applications of multiresponse nonlinear optimization will be
broken into those references concerning direct observation experiments and those

focussed on indirect observation experiments.

2.3.3.1 Applications Involving Direct Observation Experiments

The primary paper dealing with the proper method of combining
multiresponse ddta from direct observation experiments is that of Box and Draper
(55). They showed that the proper choice of objective function for nonlinear
optimization using multiresponse data is the determinant of ZTZ, where Z is the
residual matrix. This criterion should provide for more precise parameter estimates
than a simple total sum of squares (TSS) when the response errors are of a non-
constant variance and/or there is a structure in the response variance-covariance
matrix. Chapter 5 of this dissertation explores this topic further.

Hunter discusses and compares the criteria used for fitting multiresponse data
and reiterates the understanding that the determinant criteria requires fewer
assumptions about the error structure (53).

Mezaki and Butt evaluated the total sum of squares and the determinant
criterion for estimation of kinetic parameters from multiresponse data in complex
systems (60). They found that the determinant criterion allows precise estimation of
constants which may have only a small influence in certain regions of the fitted data.
Convergence was found to be much faster using the determinant criterion and is

believed to be due to the nature of the response surface generated, rather than a
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property of the minimization technique. They claimed to have shown better
parameter precision using the determinant criterion, but it would appear on closer
inspection of the paper that questions of accuracy are being addressed.

Eakman used a combination of total sum of squares and the determinant
criterion to estimate rate constants from multiresponse isothermal time-concentration
data (61). As the initial process for multiresponse nonlinear computations Eakman
used the "approximate" TSS criterion, which may be readily differentiated, to provide
expressions for the more efficient gradient search technique. The results from the
TSS minimization were then used as a starting point for the determinant criterion
minimization using a hill-climbing search method. Eakman found the determinant
criterion to give better parameter estimates in most cases, but never poorer estimates
than the TSS criterion.

Erjavec has criticized Eakman's paper pointing out that the response variances
were not constant with time, as is required for both the TSS and determinant criterion,
and suggested that the responses should have been weighted or a log transform of the
responses used (62). Erjavec also comments, that if the point of the paper was a
comparison of fitting criteria it used poor examples. In Eakman's response to Erjavec
criticism, he agrees with Erjavec concerning the requirements of the error variance,
but showed that there was little difference in the results using a log transform and
stressed that his original paper was reporting on a computational procedure rather
than a comparison of fitting criteria (63).

Practical problems using the determinant criterion have been presented by
Box et al. (64). They demonstrated the care that must be taken in using the
determinant criterion when certain exact linear dependencies are present in the data.

They also presented a method for the detection of these dependencies. Although the
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data set they used demonstrated the point of the paper, it has since been shown that
the analysis was flawed (65). An incorrect model was used as indicated by the non-
random behavior of the residuals which were not examined in the original Box et al.
paper.

McLean et al. have furthered the investigation of Box et al. for the use of the
determinant criterion with data that have exact dependencies (singularities) (66).
They pointed out two other situations that the analyst must be aware of and suggested
methods to deal with them.

Ziegel and Gorman presented an application of the determinant criterion for
multiresponse parameter estimation using data from an oil shale pyrolysis experiment
(67). They also investigated a problem in multiresponse nonlinear optimization that
required the estimation of a large number of parameters.

Bates and Watts have contributed extensively to the nonlinear parameter
estimation literature. Recently they have presented a generalized Gauss-Newton
procedure for multiresponse parameter estimation (68) and detailed the algorithmin a

second publication (69). They have also discussed the implementation of the Gauss-

Newton algorithm for the special case of a linear system of differential equations (56).

A scparate discussion by McLean of Bates and Watts' work is very helpful for
implementation purposes (70). Bates and Watts' recent book on nonlinear regression
summarized much of this work and presents pseudo computer code for the

implementation of the algorithms (65).

2.3.3.2 Applications Involving Indirect Observation Experiments

Perhaps the first to demonstrate multiresponse nonlinear parameter estimation
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for data from an indirect observation experiment were Sylvestre, Lawton, and Maggio
(47). They used principal component analysis and nonlinear regression to estimate
equilibrium constants from ultraviolet (UV) spectrophotometric measurements. They
eliminated the rotational ambiguity of PCA, thus providing spectral curve resolution,
as well as equilibrium constant parameter estimation. In this work they also
described a method of rank determination that makes use of an estimate of the
measurement noise as compared to the residual after each principal component is
extracted.

Shrager and Hendler applied singular value decomposition to the analysis of
spectra collected from pH and electrochemical titrations (57). They presented a
mcthbd for rank determination involving the autocorrelation of the singular vectors.
Shrager further investigated the use of SVD on synthetic data by simulating a pH
titration experiment monitored with ultraviolet/visible (UV/VIS) spectroscopy (71).
He explored the use of SVD as the pKs of the pure component titration profiles
became less well separated and demonstrated the wealth of information that may be
derived using a multivariate approach.

Frans and Harris also discussed the analysis of data consisting of UV/VIS
spectra collected during a pH titration (72). Synthetic data were used to study their so
called "reiterative least squares method" using different noise conditions and different
spectral and pK resolution conditions. The power of the multivariate approach was
demonstrated by resolving the spectra from a highly overlapped four component
mixture of acid/base indicators. In a later paper, Frans and Harris investigated the use
of SVD analysis on the same pH indicator data (72). They found the SVD least
squares approach, which involved fitting of all the columns of U (see equation 2.62)

simultaneously, used less computer time and provided superior parameter estimation



and spectral reconstruction than previous approaches.

Cochran and Home presented a strategy for resolving rapid scanning
wavelength experiments using PCA (73). Cochran et al. demonstrated an application
of the strategy on the analysis of data from stopped-flow kinetics experiments on liver
alcohol dehydrogenase catalyzed reduction of p-nitroso-N,N-dimethylaniline by 1,4-
dihydronicotinamide adenine dinucleotide (74). They identified spectra and
concentration-time profiles of the reactants and two intermediates demonstrating how
information on transient species may be obtained.

Application of multiresponse nonlinear analysis to data from rapid scanning
stopped-flow spéctrophotometry was described by Halaka et al. (75). They used a
weighted principal component analysis, presented by Cochran and Horne (76), to
resolve the absorption surfaces generated during the reduction of cytochrome ¢
oxidase by 5,10-dihydro-5-methylphenzine into individual spectral shapes and
concentration-time profiles.

Shrager has recently summarized the analysis of rank deficient multiresponse
data fitting and demonstrated the need for proper weighting of the singular vectors
(77). Further comments on this problem are the subject of Chapter 5 of this

dissertation.

2.4 Conclusions

Multivariate calibration and multiresponse nonlinear optimization have been
discussed. Classical and inverse regression techniques were reviewed within the
framework of multivariate calibration. The biased regression techniques of PLS and

PCR are part of a continuum of regression techniques using the inverse regression
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model. A relatively new technique known as locally weighted regression was
reviewed. Multivariate calibration has been very successful in extracting information
from data previously considered to be useless for analytical purposes. It is believed
that by using these implicit modeling techniques in conjunction with infrared
emission spectroscopy a powerful process analysis tool will be available.
Multiresponse nonlinear optimization was reviewed and a distinction was
drawn between experiments in which the phenomon were directly or indirectly
observed. By combining multireponses in the estimation of nonlinear model
parameters higher precision is expected. Introducting a hard model into the
consideration of multivariate data provides a method to eliminate the rotational

ambiguity of principal components analysis.
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Chapter 3 Calibration Studies Using Infrared
Emission for Remote Analysis

3.1 Introduction to Chapter 3

In a recent review of process analytical chemistry, noninvasive, remote
methods of analysis were identified as highly desirable (1). Infrared emission
spectroscopy (IES) is obviously such a technique, but its use has been limited due to
the lack of suitable instrumentation of requisite sensitivity and ruggedness and the
difficulty in deriving quantitative information from the observed spectra (2,3). The
advent of process qualified Fourier transform infrared spectrophotometers has
eliminated the instrumentation problem, but quantitation remains a challenge.
Spectral interferences and anomalies due to blackbody emission, temperature
gradients, self-reabsorption and internal reflections all contribute to the complications
inherent in infrared emission spectroscopy (2,4).

Some of these complications may be overcome by careful experimental
design, but these design considerations may not be possible in a process monitoring
environment. An alternative is to mathematically extract information that may be
available. Two approaches are possible, a "hard” modeling approach in which a
mathematical model is derived from physical and chemical theory, or a "soft"
modeling approach in which the data are analyzed with few assumptions about the
data structure. Chapter one presented the "hard" model theory for infrared emission
spectroscopy and highlighted some of the difficulties encountered when applying

such an approach. Chapter two presented an alternative in terms of multivariate



calibration. This chapter explores—tl‘ié use of the multivariate calibration approach for
the prediction of chemical and physical properties from the infrared emission spectra
of polymers and polymers coated on aluminum.

The analysis of polymer materials for composition as well as other physical
properties is an important task for many industries. Section 3.2 details the use of
multivariate calibration for the prediction of vinyl acetate concentration, thickness,
and temperature from the infrared emission spectra of moderately thick, free standing
samples of Du Pont's Elvax® polymer product. PLS and locally weighted regression
are used for the data analysis.

The application of organic coatings to metal surfaces is an important process
in the aluminum industry. Many types of coating materials are applied including
mineral oil, synthetic oil, bonded polymer coatings, and heavy wax coatings.
Measurements of degree of coating cure, coating homogeneity and coating weight per
unit surface area are important considerations.

Section 3.3 presents the results from the use of multivariate calibration and
infrared emission spectroscopy for the determination of loading weight of polymer
coating materials on metal surfaces. In the production facility the polymer is applied
to the metal surface and cured by passage through recirculating hot air ovens. The
coated aluminum sheet is coiled as it leaves the hot air ovens. The current technique
for coating weight analysis involves the removal of a small sample from the end of a
production coil and the measurement of the weight loss after stripping the polymer
coating from the metal. This analysis method is invasive, destructive, and hardly
compatible with a continuous coating operation producing coated materials at a rate
of hundreds of feet per minute.

The ideal method would allow on-line measurement of coating weight, in a
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noninvasive and nondestructive manner. Infrared emission would appear to be an
ideal approach to obtain these on-line measuzements for these process conditions. In
order to evaluate IES for measuring coating weight on aluminum surfaces, laboratory
experiments were conducted. These experiments were used to determine the loading
weight prediction errors usin_g infrared emission spectroscopy and multivariate
calibration. The effect on prediction error of angle of observation and sample

temperature were explored.

3.2 Elvax® Polymer Calibration Study
3.2.1 Experimental and Data Analysis

Samples used in this study consisted of a series of polyethylene and vinyl
acetate co-polymers. Vinyl acetate monomer concentrations for the samples were
28, 18, 15, 9.5 and 9.0% by weight. These samples correspond to the Du Pont
product numbers Elvax® 265, 450 (and 470), 550, 770 and 750. Vinyl acetate
concentrations are mean values for the monomer, before polymerization, from the
published nominal values with a range of +/- 1% absolute. (Subsequent analysis
of the polymers for vinyl acetate concentration using proton NMR was consistent
with these data and showed a precision of about +/- 1 %, see Appendix A). The
sample pellets were pressed into films of varying thickness using a Carver press
with a heated plate attachment. Thicknesses were selected using calibrated metal
shims. Samples were pressed for approximately 5 minutes at about 1000 psi, at
10 °C below the published softening point of the particular polymer.

Data were collected on a Perkin-Elmer Model 1800 FT-IR spectrophotometer
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equipped with a liquid nitrogen cooled, wide band mercury-cadmium-telluride (MCT)
detector in which the normal source was replaced by a heated cell containing the
sample. Samples were held in the cell as polymer films. In contrast to most other
studies, no reflecting backplate was employed. Single beam emission spectra were
measured from 4000 to 450 cm-! (2.5 to 22.2 micrometers (um)) at 2 cm-! intervals
by the co-addition of 16 to 32 scans at 4 cm! resolution. Data were collected on
samples prepared from the five different concentrations of vinyl acetate (28, 18, 15,
9.5, and 9.0%) at four thicknesses (0.508, 0.305, 0.203, 0.102 mm) and three
temperatures (120, 110, and 100 °C). Temperature was controlled to +/- 1 °C using a
Perkin-Elmer temperature controller. Each concentration and thickness corresponded
to a physically different pressing of the sample pellets. Temperature variations were
induced in a systematic fashion from 100 to 120 °C on each pressed sample.

Data analysis was performed using partial least squares (PLS). The region
from 2000 to 450 cm-1 (5 to 22 um) of the single beam emission spectra, consisting of
776 data points, was used in all cases and the data were mean centered before
application of PLS. The 4000 to 2000 cm-! (2.5 to 5 um) region was eliminated due
to poor signal-to-noise ratio as discussed in Chapter 1. The selection of the optimal
number of latent variables used in the PLS model was based on the estimated error of
the predictive residual error sum of squares (PRESS, see equation 2.49) as calculated
by Haaland et al. using equation 2.50 (5).

The standard error of prediction (SEP, see equation 2.51) was used to evaluate
the predictive ability of the method. This gives a more conservative estimate of the
predictive ability of the model (that is, the ability of the model to acc;Jrately predict

an unknown sample) than if the predicted samples were included in the model.
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3.2.2 Partial Least Squares Regression Results

Figure 3.1 compares a typical single beam emission spectrum from a thin
sheet of Elvax® with the corresponding transmission spectrum. This particular
sample contained 18% vinyl acetate, at 0.1 mm thickness measured at 120 °C. The

transmission spectrum is the same material at approximately 50 to 100 um thickness.
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Figure 3.1 a) Single beam emission spectrum of 18 % vinyl acetate Elvax ®,
0.102 mm at 120 °C b) Transmission measurement of the same
material.

No attempt was made to correct the emission spectra with respect to
response of the instrument or temperature. This could have been done by ratioing
to a blackbody at the sample temperature, but then the temperature information

would be lost. The position of emission bands corresponds directly with bands



seen in the reference transmission spectrum in Figure 3.1b. Due to multiple
radiation transfer events from thick films, the band shapes in the emission
spectrum are distorted and intensities are dependent on temperature according to
Planck's equation. Nevertheless, specific group frequencies and indicator
(fingerprint) bands can be readily identified in the emission spectrum of this
sample. Indicative of the acetate functional group are the C=O stretch at 1740
cm-1 (5.7 um), and the 1240 cm-! (8.1 pm) and 1375 cm-! (7.3 pm) bands due to
the protons of the CH3-(C=0) group. The 1450 and 720 cm! bands (6.9 and 13.9
Hm) are clearly identifiable, indicating deformation and rocking of CHp groups
arising from the (poly)ethylene contribution.

A single beam emission spectrum of each of the 20 sample films (five
concentrations at four thicknesses) was measured at three temperatures (100, 110
and 120 °C). This gave a total of 60 possible spectra. The measurements were
always made by increasing the sample temperature from 100 to 120 °C thus
instrument drift over the time of the collection of the spectral data may be
correlated with the temperature variance and may adversely affect the predictive
ability of the method with respect to temperature. Seven of these spectra were
eliminated before the data analysis phase. Six of the eliminated spectra were of
the 0.508 mm thickness samples at 28 and 18 % vinyl acetate and at all three
temperatures. At this thickness these samples were not adequately held in the
sample holder and were observed to have collapsed out of the focus point under
their own weight. A seventh sample was eliminated (9% vinyl acetate at 0.508
mm and 110 °C) because of an obvious lack of temperature control adjustment .
The remaining 53 single beam emission spectra were used as a training set to

build a model using PLS analysis. A separate PLS model was built to predict
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each of the variables of interest, namely vinyl acetate concentration, thickness,
and temperature. Four additional samples were prepared as "unknowns" to further
test the predictive ability of the method. The four samples contained 18% vinyl
acetate (Du Pont product number 470 rather than product number 450 used in the
calibration set). Thre;: of-tlie samples were pressed to 0.152 mm thickness and
one to 0.127 mm thickness. Single beam emission spectra of the three 0.152 mm
samples were measured at 105 °C and 115 °C. The emission spectra of the 0.127
mm samples were measured at 118, 113, 108 and 102 °C, yielding a total of 10

"unknown" spectra.
3.2.2.1 Prediction of Vinyl Acetate Concentration

Prediction of vinyl acetate concentration of samples from a co-polymer of
ethylene and vinyl acetate might be anticipated as an easy task if the spectroscopic
responses used were linear with concentration. The infrared emission spectra
observed in these experiments have a complex behavior with respect to vinyl acetate
concentration even at a constant thickness and temperature as Figure 3.2 displays.
Changes in refractive index due to changes in concentration may result in changes in
selective reflections at the surface. Changing thermal propertieé of the samples may
change the nature of possible temperature gradients in the samples. Itis hoped that
with the implicit modeling approach the detailed understanding and physical

modeling of this complex system will not be necessary. The modeling and

understanding of the physics that is the reality of the experiment are not unimportant,

but it may not be practical to expect to use such knowledge in a process monitoring

situation.
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Figure 3.2 Infrared emission spectra as a function of vinyl acetate concentration
at a constant thickness of 0.102 mm and temperature of 120 °C.

An additional complication for this calibration problem is that thickness and
temperature variations are included in the data set. These variations have as much if
not more of an effect on the observed spectra than does vinyl acetate concentration.
Rather than attempting to remove the temperature information (which might be a
valuable piece of data in a process situation), by ratioing to a blackbody at the same
temperature, the raw uncorrected data were used and an implicit model built using
PLS. In this situation an inverse least squares approach must be used because the
"pure spectrum" of thickness and temperature are not known.

Two methods to assess the predictive ability of a calibration model are leave
one (or many) out cross-validation or prediction of an independent data set. Because

of the manner in which the data were collected (temperature variations induced on a
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sample of given concentration and thickness without preparation of a completely new
sample at each temperature), the leave one out cross-validation calculation of the SEP
does not reflect all of the variations encountered due to sample positioning and
pressing. This may result in an underestimation of the SEP. To provide an estimate
of the predictive ability of the method with respect to all aspects of the analysis,
specific cross sections of the data (i.e., all the 18 % samples) were excluded, and the
remaining data used to build a calibration model and predict the left out cross section
of data. A separate leave one out cross-validation on the remaining calibration data
was also performed for comparison. Table 3.1 summarizes the results for these
analyzes.

Table 3.1 Standard error of prediction (SEP) results for vinyl acetate
concentration (absolute %) in Elvax® samples using PLS.

SEP with 0.5 SEP without 0.5
Exp.# Callbration Data Validation Data mm samples  mm samples

Absolute % Absolute %

1 All 53 samples Leave one out CV 1.1(12) 1.2(13)

2 Leave out 18 % Leave one out CV 1.5 (10) 1.2(9)

3 Leave out 18 % Predict 18 % 1.5 (10) 2.9(9)

4 Leave out 15 % Leave one out CV 1.4 (10) 1.6 (7)

5 Leave out 15 % Predict 15 % 2.3(10) 1.0 (7)

6 Leave out 9.5 % Leave one out CV 1.4 (8) 1.2(10)

7 Leave out 9.5 % Predict 9.5 % 2.0(8) 1.9 (10)

8 All 53 samples Ten "unknowns" 1.0 (12) NA

9 All 53 samples Best independent 4 0.6 (12) NA

10 All 53 samples Worst independent 4 1.3(12) NA

CV means cross-validation.
NA means not applicable.

The numbers in parentheses in Table 3.1 indicate the number of latent

variables used for the optimal model choice using equation 2.50. Many of the 0.508
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mm samples were initially eliminated from the data set and the remaining samples at
this thickness appeared to be somewhat anomalous. Therefore separate predictions
with and without the 0.508 mm (referred to as 0.5 mm in Table 3.1) samples were
performed.

For the leave one out cross-validation using all 53 samples a 12 factor model
resulted in an SEP of 1.1 % absolute. This was in reasonable agreement with the
NMR analysis of these samples which had a precision of about 1.0 % absolute. It did
not make a significant difference if the 0.508 mm data were included or not.

Other attempts to assess the predictive ability are shown in experiments 2
through 7 of Table 3.1 in which sections of the concentration data were removed (ie.,
all the 18 % data at all thicknesses and temperatures, for example), and either a leave
one out cross-validation on the remaining data or a separate prediction of the
excluded data was used as the validation method. As may be seen there are some
fluctuations in the SEPs and the number of factors used, depending on which section
of the data was eliminated. Experiment 3 appears to be extreme, with an SEP of 2.9
% for the prediction of the left out 18 % data without the 0.5 mm samples. Itis
difficult to explain this result because most of the other experiments showed a
decrease in the SEP upon removal of the 0.508 mm data.

Perhaps the best measure of predictive ability is the use of all 53 samples in
the calibration set and the prediction of separate unknowns, experiments 8 through 10
in Table 3.1. Experiment 8 is in good agreement with the leave one out cross-
validation of the calibration data with an SEP of 1.0 %. Even in the worst case (the
four most poorly predicted, fully independent unknowns) the SEP only rises to 1.3 %.
The above results show that by using PLS with a 12 factor model the prediction of

vinyl acetate concentration may be performed to an SEP level of less than 1.3 %
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absolute, even with changing sample thickness and temperature. These variations
associated with thickness and temperature have been implicitly modeled in the

calibration step.

3.2.2.2 Prediction of Thickness

The single beam spectra showed considerable variation with thickness. While
a fair amount of structure is seen in thinner samples, the identifiable bands are
broadened and the amount of visible structure decreases as thickness increases as seen

in Figure 3.3.
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Figure 3.3 Infrared emission spectra as a function of thickness at a constant
vinyl acetate concentration of 15 % and temperature of 120 °C.
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The apparent anomalous behavior of the 0.508 mm spectrum is believed to be
due to insufficient heating of the thicker samples. Although this may be adequate
justification for removal of these samples from consideration, they have been
retained, in order to provide a worst case scenario.

Given this variance with respect to thickness, a calibration model was
developed to predict thickness with varying vinyl acetate concentration and
temperature using the 53 spectra calibration set. Other combinations of the data were
used to help assess the predictive ability and these results are summarized in Table
3.2. The numbers in parentheses indicate the number of factors used for an optimal
calibration model.

Table 3.2 Standard error of prediction (SEP) results for thickness (mm) in Elvax®
samples using PLS.

Exp.# Calibration Data Validation Data SEP (mm)
o —

1 All 53 samples Leave one out CV 0.018 (12)
2 Leave out 0.203 mm Leave one out CV 0.015 (10)
3 Leave out 0.203 mm Predict 0.203 mm 0.06 (10)
4 All 53 samples Ten "unknowns" 0.06 (12)
5 All 53 samples Best independent 4 0.05 (12)
6 All 63 samples Worst independent 4 0.06 (12)

CV means cross-validation.

A 12 factor model was found to be optimal using leave one out cross-
validation, giving an SEP of 0.018 mm. Removing all samples at 0.203 mm and
performing a leave one out cross-validation analysis on the remaining data gave
an SEP of 0.015 mm, although prediction of the 0.203 mm samples showed a 0.06

mm SEP. Prediction of "unknowns" using the entire calibration set showed SEP
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values of 0.05 to 0.06 mm. This would indicate caution is required in the
interpretation of SEP results from a leave one out cross-validation calculation if
the data do not reflect all of the errors in the method. Reference thickness values
were estimated to have a precision of about 0.03 mm and thus an SEP of 0.06 mm
was not unreasonable considering that concentration and temperature were also
varying in the calibration data set.

It is interesting to note that concentration and thickness variances have
been separated in this analysis. If the system had followed a simple Beer's law
model, or even the more complex equations for emission from a free standin g
polymer, the separation of the variance due to concentration from the variance due
to thickness would be mathematically impossible. For this analysis the rather
complex behavior of the emission signal has allowed the concentration and

thickness variances to be separated.

3.2.2.3 Prediction of Temperature

Because uncorrected single beam data were used, the spectra also contained
temperature information and this is displayed in Figure 3.4 for a sample with a vinyl
acetate concentration of 15 % and a thickness of 0.102 mm.

Spectra from the samples showed an increase in intensity with increasing
temperature indicating temperature prediction may also be possible. Infrared
emission is used extensively for temperature measurements, however some
measurement or estimate of sample emissivity is normally required. For opaque
(optically thick) samples this value might be assumed to be relatively constant over

the range of samples analyzed, but with non-opaque samples the emissivity is
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changing as concentration and thickness change, making temperature estimation more

difficult. If sample composition and thickness were known, this could be estimated.

M w
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Figure 3.4 Infrared emission spectra as a function of temperéture at a constant vinyl
acetate concentration of 15 % and thickness of 0.102 mm.

However, since the PLS models have been able to estimate composition and thickness
fairly well, it seems reasonable that temperature may also be predicted. Againa

calibration model was developed to predict temperature with varying composition and
thickness using the same spectral data. The results of this analysis are shown in Table

3.3.

99



Table 3.3 Standard error of prediction (SEP) results for temperature (°C) in

Elvax® samples using PLS.
Exp.# Calibration Data Validation Data SEP (mm)
1 All 53 samples Leave one out CV 4(10)
2 Leave out 0.203 mm Leave one out CV 55 (13)
3 Leave out 0.203 mm Predict 0.203 mm 3.8(13)
4 All 53 samples Ten "unknowns” 9 (10)

CV means cross-validation.

The SEP from a leave one out cross-validation using the entire calibration
set was +/- 4 °C; while the total temperature range was only 20 °C. Prediction of
the "unknowns" showed even poorer performance, giving an SEP of +/- 9 °C.
These results are not nearly as satisfying as the previous predictions of vinyl
acetate concentration and thickness. Later investigation of the temperature
controlling device showed large errors in the reproducibility of the temperature
settings, and thus reasonable prediction errors for temperature would not be
expected. Subsequent laboratory studies using liquid samples, in which
temperature was controlled with greater precision, have shown that adequate
prediction of temperature is possible even with thickness and concentration
variations also present (6). In spite of not knowing the temperature reference
values very well prediction of vinyl acetate concentration and thickness was
accomplished. The temperature variance was implicitly modeled which may be

the more probable course of action in a process measurement situation.
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3.2.4 Locally Weighted Regression Results

The very complex models required to predicted vinyl acetate concentration
and thickness from infrared emission spectra are due to the linear nature of the
calibration technique and the nonlinear nature of the data. By taking advantage of
local linear regions, locally weighted regression (LWR) may be expected to perform
as well if not better than PLS or PCR for data that show nonlinear behavior.

Locally weighted regression has been applied to the infrared emission data
described in Section 3.2.1 using the principal components calculated from the entire
calibration data set of 53 samples. Four different models were investigated (1) a two
principal component linear model, (2) a two principal component quadratic model
with cross terms, (3) a three principal component linear model, and (4) a four
principal component linear model.

The fraction of data used, f, in each local regression is an important
parameter, as described in Section 2.2.7. This fraction criterion was tested for each of
the four models over the range of 0.20 to 1 at 0.10 intervals, using a leave one out
cross-validation estimate of the SEP for comparisons. Table 3.4 displays the results
for the prediction of vinyl acetate concentration and Figure 3.5 summarizes those

results graphically.
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Table 3.4 Standard error of prediction results for vinyl acetate concentration,

absolute % vinyl acetate, of Elvax® samples as a function of the
model choice and fraction of the data (f) used with locally weighted

102

regression.
f No. of SEP, 2 SEP, 3 SEP, 4 SEP, 2
points factor linear factorlinear factor linear factor QUAD

0.20 11 8.1 11 0.9 9.2
0.30 16 7.2 1.0 0.9 8.3
0.40 21 7.0 11 1.0 7.8
0.50 27 69 1.2 1.1 75
0.60 32 6.8 1.2 1.2 7.4
0.70 37 6.8 1.3 13 7.2
0.80 42 6.8 14 1.4 7.2
0.90 48 6.8 15 1.5 7.0
1.00 53 6.8 16 1.7 6.9
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i=lgure 3.5 Graphical representation of Table 3.4.
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As may be seen the two principal component linear and quadratic models
performed much more poorly than the 12 factor PLS model. The three principal
component and four principal component linear models perform as well as.the PLS
model up to a data fraction of about 0.6. This gives a sample to variable ratio of
about 8:1 which suggest the method will behave reliably.

Table 3.5 and Figure 3.6 display the result for the thickness prediction. The
two principal component models are again not found to perform as well as the PLS
model, but the three and four principal component models do perform as well uptoa
data fraction of about 0.4 to 0.5.

Table 3.5 Standard error of prediction results for thickness (mm) of Elvax®

samples as a function of the model choice and fraction of the data f)
used with locally weighted regression.

f No. of SEP, 2 SEP, 3 SEP, 4 SEP, 2
points factor linear factor linear factorlinear factor QUAD

0.20 11 0.057 0.019 0.018 0.074
0.30 16 0.055 0.020 0.018 0.062
0.40 21 0.055 0.022 0.018 0.059
0.50 27 0.056 0.025 0.020 0.058
0.60 32 0.057 0.026 0.021 0.059
0.70 37 0.057 0.028 0.023 0.059
0.80 42 0.059 0.031 0.025 0.058
0.90 48 0.060 0.033 0.028 0.057

1.00 53 0.061 0.038 0.033 0.056
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Figure 3.6 Graphical representation of Table 3.5.

This regression method provides an alternative to the standard PLS approach.

By using fewer principal components from the entire data set, in a local fashion with

proper weighting, a simpler model can be used to provide the same prediction error.

A simpler miodel may be more easily interpreted, although the interpretation of

multivariate regression models should be approached with caution, as has been

recently shown by Seasholtz and Kowalski (7).
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3.3 Loading Weight Prediction of Thin Polymer Films on Metal

Surfaces

Laboratory experiments were conducted to test the use of infrared emission
spectroscopy and multivariate calibration for the prediction of film thickness of thin
polymer coatings on metal surfaces. Thickness, angle of observation, and

temperature were varied in these experiments.
3.3.1 Experimental and Data Analysis

Four sets of samples were provided by Ruth Roberts, Staff Scientist, of the
Aluminum Company of America (ALCOA). The sample sets were designated as Set
#1, #2, #3, and #4. Set #1 consisted of 11 samples of aluminum coated with a clear
vinyl thermoset polymer ranging in loading weight from 0.75 t0 9.15 milligrams per
square inch (MSI). Table 3.6 displays the details of Sample Set #1.
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Table 3.6 Loading weight reference data for Sample Sets #1, #2, #3, and #4 in
milligrams per square inch (MSI).

Sample # Set #1, Set #2, Set #3, Set #4,
clear low nominal high
(MSI) (MSI) (MS!) (MSI)
1 0.75 5.59 4.65 5.03
2 1.50 6.19 5.59 5.65
3 2.66 6.42 6.33 (2) 6.63
4 3.20 7.44 4.30 (3) 7.56
5 4.15 7.94 717 8.86
6 511 8.61 7.69 9.02
7 5.78 9.25 854 10.09
8 6.49 10.10 9.16 10.84
9 7.90 10.53 (2) 9.86
10 8.30 10.89 (3) 10.56 (2)
11 9.14 11.62 11.69

Numbers in parentheses indicate multiple samples at that loading weight.

Sample Sets #2, #3, and #4 are aluminum coated with a different polymer than
the one used in Sample Set #1. They are distinguished from each other by haQing
low, nominal, and high pigment levels. The details are given in Table 3.6.

Emission spectra from 4000 to 450 cm-! (2.5 to 22.2 pm) at 4 cm-! resolution
were measured using a Perkin-Elmer 1720 FT-IR spectrophotometer. Samples were
mounted on a heated aluminum block and secured with spring steel clips. Emitted
radiation was collected from a 16 mm spot approximately 30 inches from the
spectrophotometer using a two mirror arrangement. Radiation was detected using a
Judson wide band MCT liquid nitrogen cooled detector. In all cases each spectrum
was the result of the co-addition of 10 spectra and was not corrected for instrument
response or temperature. Acquisition time was approximately 12 seconds.

Data from 3000 to 450 cm-! (3.3 to 22.2 jum) were converted to the JCAMP

(8) data format and transmitted to the Laboratory for Chemometrics Vax computer



system for further processing using the MATLAB (The MathWorks, Inc. Sherborn,
MA) computing environment. Each spectrum was smoothed using the MATLAB
DECIMATE function, reducing the number of data points by a factor of four from
2551 to 638 data points. This more reasonably reflects the true number of data points
from a 4 cm! resolution measurement.

As an initial characterization of the instrument, the spectrum of a blackbody
(10 scans co-added) was measured repeatedly at 1.08 minute intervals over a twenty
minute time period at temperatures of 70, 80 and 90 °C. These data may then be used
to compute the standard deviation and relative standard deviation spectrum so the
noise characteristics across the spectrum and at the different temperatures may be
investigated. Figure 3.7 displays the relative standard deviation spectrum at 90 °C
over the range from 4000 cm-! to 604 cm™1 (2.5 to 16.5 um) and over the region used
for calibration from 1404 cm-! to 604 cm1 (7.1 to 16.5 pum) in the inset. Similar
spectra were obtained for the lower temperature experiments, but with poorer signal-

to-noise ratio.
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Figure 3.7 Relative standard deviation of 90 °C blackbody data. Inset is region
of spectrum used for calibration.

From the relative standard deviation spectrum it may be seen that the signal- |
to-noise ratio decreases at high wavenumbers. This is consistent with lower light
levels at these frequencies due to a fall off in intensity as describcd by Planck's law.
Noise due to water vapor may be seen in the 1800 to 1500 cm-! (5.5 to 6.6 um) range
and fluctuations due to CO; are observed in the 2250 cm-1 (4.4 um) region. Within
the spectral region used for calibration a spectral anomaly is noted. This is believed
to be associated with the beam splitter coating and/or the products of the beam splitter
reacting with moisture. Another anomalous band was found at approximately 1450
cm! (6.9 um), although it is not apparent in Figure 3.7. Noise in the calibration
region ranges from 0.05 to 0.12 % for a signal-to-noise ratio of about 2000:1 to 833:1.

In the course of conducting these experiments over a three day period, three

samples were measured at random times in order to assess the reproducibility of the




measurements. Six spectra were measured from samples containing 0.75, 5.78 and
9.14 MSI from Sample Set #1 and those from the 5.78 MSI sample are displayed in
Figure 3.8. One measurement was made on day one, two measurements on day two
and three measurements on day three. Measurements were from the middle of the
sample at 80 °C and at an observation angle of zero degrees from the norm of the
sample plane. There is considerable day to day variation, but less so on a given day
(see Figure 3.9 for 3 spectra from 5.78 MSI sample collected durning a single day).
Any one calibration experiment was always completed in a single day thus

minimizing the effect of these variations.
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Figure 3.8 Fluctuation in the infrared emission spectra for a 5.78 MSI sample
measured over a three day period.
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Figure 3.9 Fluctuation in the infrared emission spectra for 5.78 MSI sample,
three spectra measured on a single day.

The current method for measuring polymer loading weight is to weigh a
sample of coated aluminum of a known area, strip the polymer layer off with methyl
ethyl ketone, reweigh the bare 51uminum, and compute the loading weight in
milligrams per square inch (MSI). In order to gauge the precision of the reference
method and the coating technique a study was conducted at the ALCOA research
laboratories. The current procedure for the preparation of laboratory samples uses a
draw bar. A draw bar is a steel rod with a wrapping of wire the thickness of which
determines the loading weight of the coating. Three bars were evaluated in the
ALCOA tests, bars #18, #36 and #38.

For each draw bar five panels of aluminum were coated yielding a total of 15
panels. From each panel, five samples were taken and strip weights determined,

yielding a five by five matrix of strip weights for each of the three experimeﬁts. In



111

order to estimate the precision of the method, each matrix of data was subjected to an
analysis of variance with the different panels considered as the different treatments.
The following results for the within treatment variance estimates, related standard

deviations, and grand means are shown in Table 3.7.

Table 3.7 Analysis of variance results for reference calibration

loading weight data.
Bar # Variance Standard Mean
(MSI)2 Deviation (MSI)
(MSI)
-#18 0.006 0.08 5.57
#36 0.010 0.10 10.90
#38 0.016 0.13 11.64

This provides an estimate of the experimental error in the reference method of about
0.1 MST at one standard deviation. The on-line specification for measurement
precision is 0.2 MSI (9). Further details for the infrared emission experiments are

discussed below as pertains to each data set.

3.3.2 Partial Least Squares Regression Results

3.3.2.1 Analysis of Sample Set #1

This sample set consisted of eleven samples coated with varying amounts of a

clear vinyl thermoset polymer from 0.75 to 9.14 MSI, Table 3.6. Distinct spectral

differences were noted with changes in polymer film loading weight. Figure 3.10

displays emission spectra (uncorrected for instrument response and temperature)
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measured from three samples of different loading weights at 80 °C and at an angle of
observation of zero degrees from the norm of the sample plane over the wavenumber
range 2704 to 604 cm-! (3.7 to 16.6 pm). The intensity generally increases as the
loading weight increases, except for some crossing of the 9.14 and 5.11 MSI sample

spectra in the 800 cm-! (12.5 um) region.
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Figure 3.10 Sample Set #1 emission spectra as a function of loading weight at a
constant temperature of 80 °C and a zero degree angle of
observation. .

The spectral response is also a function of the angle of observation and the
temperature as shown in Figures 3.11 and 3.12. Sample # 6 at 5.11 MSI is displayed

at 0, 45 and 70 degrees from the norm in Figure 3.11.
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Figure 3.11 Sample Set #1 emission spectra as a function of angie of
observation at constant loading weight of 5.11 MSI and 80 °C.

The same sample at zero degrees from the norm at temperatures of 70, 80 and
90 °C is displayed in Figure 3.12. The intensity as a function of angle of observation
would appear to depend somewhat on the spectral location, but generally angles
closer to the norm showed larger intensities. The estimated thickness of the films was
1to 10 um. If the films had been thinner then larger intensities would have been
expected at larger angles from the norm, as found by Greenler (10). One might have
expected an intensity increase with increasing angles from the norm of the sample
plane due to the increase in viewing area, but this was not observed. Spectral changes
with temperature showed the expected response, increasing in intensity at all

wavenumbers as the temperature was increased.



114

0.35

0.30

0.25

0.20

0.15

Arbitrary Units

0.10

0.05

700 800 900 1000 1100 1200 1300 1400
Wavenumber

Figure 3.12 Sample Set #1 emission spectra as a function of temperature at a
constant loading weight of 5.11 MSI and zero degrees from the
norm observation angle.

In order to investigate the effects that temperature and angle of observation
have on a multivariate calibration approach for loading weight prediction, .the'
following experiments were conducted. The temperatures chosen for these
experiments were close to the expected process temperature of 80 °C.

Emission spectra were collected from three positions on each sample (low,
medium and high) by repositioning the sample without removal from the sample
holder, and at three temperatures, 70, 80 and 90 °C, with a constant angle of
observation of zero degrees from the norm. This gives a total of 99 spectra for the
eleven samples tested. The sample and temperature selections for each measurement
were performed in a random fashion.

Multivariate calibration using FLS was applied to the mean centered data at

each temperature setting. This partitions the data into three sets, each containing 33
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samples and 638 responses. The region from 1404 to 672 cm-! (7.1 to 14.9 um),

containing 184 data points, was selected for calibration. This selection avoids the

water vapor region of the spectrum and the low signal-to-noise region above 2000

cmrl (below 5 pm), as shown in Figure 3.7. Each temperature data set was first

analyzed individually. For each of the temperature settings the standard error of

prediction results (leave one out cross-validation) are presented in Table 3.8.
Table 3.8 Standard error of prediction results for loading

weights, MSI, for Sample Set #1 as a function of
temperature and the model complexity using PLS.

No. of SEP at 70 °C SEP at 80 °C SEP at 90 °C

Factors (MSI) {MSI) (MSI)
1 0.63 0.58 0.66
2 0.58 0.54 0.60
3 0.56 0.50 0.59
4 0.49 0.46 0.52
5 0.38 0.42 0.44
6 0.36 0.41 0.38
7 0.34 0.39 0.38
8 0.32 0.38 0.38
9 0.29 0.41 0.25 ¢
10 0211 0.24 0.24
11 0.22 0.21 0.21
12 0.21 0.19 0.26
13 0.25 0.23 0.27
14 0.28 0.24 0.36
15 0.37 0.29 0.35

Eleven samples used for a total of 33 spectra.
1 Indicate the optimal choice of the number of latent variables.

At each temperature a minimum of about 0.2 MSI in the SEP was found at
about ten factors. This is not a very satisfying result considering only one
experimental parameter is varying, the loading weight. Leverage plots indicated the

0.75 MSI sample might be an outlier, although deletion of the three samples at this
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loading weight did not improve the prediction significantly. Several other
combinations of samples were removed from the calibration without any significant
effect on the prediction error. Inspection of the plot of the first score vector versus

loading weight was very revealing, as shown in Figure 3.13.
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Figure 3.13 Scores from one factor model vs. the reference Ioadmg weights for
Sample Set #1.

Ina PLS analysis one expects maximum correlation between the PLS latent
variables' (the scores) and the constituent values. As may be seen in Figure 3.13, it
appears as though the samples at 0.75, 2.66 and 3.2 MSI are outliers or otherwise
anomalous samples. If these nine samples (three samples in triplicate) are removed

the results of the analysis change dramatically as shown in Table 3.9.



Table 3.9 Standard error of prediction results for loading weights,
MSI, for Sample Set #1 as a function of temperature and
the model complexity using PLS. (Outliers deleted)

No. of SEPat70°C SEP at 80°C SEP at90°C

Factors (MSI) (MSI) (MSI)
1 033¢% 0.30 0.23
2 0.29 0.31 0.23
3 0.30 0.33 0.24
4 0.31 0.32 0.25
5 0.32 0.30 0.28
6 0.27 0.30 0.29
7 0.24 0.29 0.28
8 0.22 0.28 0.29
9 0.22 0.29 0.28
10 0.20 0.32 0.30
11 0.32 0.36 0.34
12 0.46 0.40 0.39
13 0.54 0.37 0.42
14 0.47 0.28 0.38
15 0.51 0.27 0.34

Eight samples used for a total of 24 spectra.
T Indicates optimal model choice.

Now in each case a one factor model is chosen and the SEP for the 90 °C data
is close to that specified for an on-line instrument, 0.2 MSL Itis satisfying to see that
the prediction error improves with an increase in temperature, as one might expect
due to an increase in the signal-to-noise ratio. It should be noted that even with the
deletion of these outlier samples nearly the entire original calibration range is still
being covered.

The strip weights for several of the normal and outlier samples were
reevaluated and found to agree with the reference values within the estimated 0.1 MSI
precision of the reference method. At this point it is not clear why the three samples
at 0.75, 2.66, and 3.20 MSI are anomalous.

A second experiment was performed to assess the effect of observation angle
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on predictive ability. In this experiment a spectrum from a single position on each
sample was measured at 0, 45 and 70 degrees from the norm. The sample and angle
of measurement were selected in a random fashion. Table 3.10 displays the
prediction results with the outliers included.

Table 3.10 Standard error of prediction results for loading weights, MSI, for

Sample Set #1 as a function of angle of observation and the model
complexity using PLS. All samples used

No. of SEP, 0 degrees SEP, 45 degrees SEP, 70 degrees
Factors from norm from norm from norm
(MSI) (MSI) (MSI)
%
1 0.76 1 097t 1.12 ¢
2 0.84 1.36 1.58
3 0.94 1.60 1.39
4 1.05 1.38 1.17
5 0.99 1.27 1.07
6 0.96 1.16 1.09
7 1.21 0.86 0.91
8 2.87 0.82 1.07
9 3.03 0.76 1.44

T Indicates the optimal model choice.

Table 3.11 displays the prediction results with the 0.75, 2.66, and 3.2 MSI
outlier samples removed. The prediction error is significantly reduced. There also
appears to be better prediction provided when using data from the zero degree angle
of observation, which is consistent with the larger overall spectral intensities observed

at the zero degree angle of observation, as shown previously in Figure 3.11



Table 3.11 Standard error of prediction results for loading weights, MSI, for Sample
Set #1 as a function of angle of observation and the model complexity
using PLS. (Outliers deleted)

No. of SEP, 0 degrees SEP, 45 degrees SEP, 70 degrees
Factors from norm from norm from norm

(MSI) (MSI) (MSI)

1 043 062t 0.72 t

2 0.50 0.66 1.00

3 0.58 0.72 0.98

4 0.65 0.80 0.85

5 0.72 0.92 0.83

6 0.63 0.96 0.93

1 Indicates the optimal model choice.

All 99 samples were used in an attempt to predict loading weight. As seen in
Table 3.12, the prediction of loading weight using all the samples gave an SEP of
about 0.2 MSI, but the model is very complex, requiring 16 to 17 factors, and it does

not appear to make much difference whether the outliers are excluded or not.
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Table 3.12 Standard error of prediction results for loading weights,
MSI, for Sample Set #1 as a function of model
complexity using PLS and data from all temperatures
with and without outliers.

No. of SEP With outllers SEP Without outliers
Factors (MSI) (MSI)

1 1.31 1.47
2 1.24 1.38
3 1.16 1.17
4 1.06 0.99
5 0.94 0.68
6 0.84 0.66
7 0.77 0.57
8 0.71 0.51
9 0.64 0.49
10 0.54 0.47
Rk | 0.45 0.46
12 0.35 0.36
13 0.30 0.25
14 0.23 0.25
15 0.22 0.24
16 0.21 0.22
17 0.20 0.21

18 0.20 0.21 1
19 0.19 0.20
20 0.19 0.20

T Indicates optimal model choice.

A separate calibration was used to predict temperature from all 99 samples.
As shown in Table 3.13 temperature prediction was optimal at 18 factors giving a
SEP of 1.5 °C using all the data and 0.5 °C for the data with the outliers excluded.



Table 3.13 Standard error of prediction results for temperature
(°C), for Sample Set #1 as a function of model
complexity using PLS and data from all temperatures
with and without outliers.

No. of SEP With outllers SEP Without outliers

Factors (MSI) (MSI)
1 7.53 6.60
2 7.29 6.09
3 5.86 4.56
4 6.31 4.15
5 5.97 2.74
6 5.28 2.64
7 5.13 2.11
8 4.66 1.67
9 4.41 1.41
10 3.74 1.27
- 11 3.48 1.13
12 2.70 0.77
13 2.30 0.73
14 2.09 0.72
15 1.90 0.66
16 1.79 0.59

17 1.65 0.56 t
18 154 1 0.55
19 1.44 0.55
20 1.43 0.53

1 Indicates optimal model choice.

Many more latent variables are needed to model the loading weight variance
when all the temperature information is included. This may in fact be somewhat
unrealistic because temperature variations in a real process are probably much
smaller. An experiment was conducted in order to assess what prediction error would
be incurred given different levels of temperature fluctuation. For each concentration
level, a temperature difference spectrum was constructed by subtractin g the 70 °C
spectrum from the 80 °C spectrum, thus creating a 10 °C difference spectrum. This
spectrum was scaled and added in a random fashion to the 90 °C data to simulate one,

two, three, four, and five degree temperature variances. This assumes the spectral
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changes are linear with the temperature fluctuations, which is reasonable over small

temperature changes.

Because of the computation time required to do a full cross-validation study

the standard error of estimation (SEE) was used instead of SEP. SEE is computed

just as SEP is, but the samples that are predicted are also used in the model building.

Table 3.14 displays the SEE results for 20 repeats of the noise addition experiments

using a one factor model, mean centered with outliers removed.

Table 3.14 Standard error of estimate for simulated temperature
variance experiments and associated standard deviation for

20 experiments.

Temperature Mean SEE, 20 trials
varlance
0 0.20
1 0.25
2 0.39
3 0.51
4 0.70
5 0.81

Std. Dev. of SEE

0.06
0.06
0.07
0.12

A variance of 1 °C does not appreciably increase the SEE over the baseline

SEE of 0.20 MSI. Further increases in the temperature fluctuations increased the SEE

in a nearly linear fashion. It is not known what the real process temperature

variations might be, but this experiment would indicate a greater than 1 °C variance

level would result in unacceptably large loading weight estimation errors.

As was discussed at the beginning of this section, random fluctuations

occurred in the emission spectrum of a single sample over the course of time. These

deviations appeared to be simple instrumental offsets and elimination of these may



improve prediction. Attempts at unit area, unit length, first and second derivative
transformation and fixing the baseline to an anchor point, showed no improvement in
SEE. In fact in most instances the transformations significantly degraded the SEE.

In conclusion three of the samples appeared to be different from the rest of the
samples in Sample Set #1. This was shown by the dramatic decrease in the
complexity of the model when they were eliminated, although strip wei ght analysis of
several samples indicated that the reference values were within the expected range.
Prediction error was better for the higher temperatures, as would be expected, and
approached that specified for on-line use (0.2 MSI). As for observation angle, it
appeared that observations closer to the norm were better. Loading weight prediction
was better at a single temperature setting. Temperature and loading weight prediction
for all the data taken together over the three temperature ranges required a much more

complex model for reasonable prediction errors.

3.3.2.2 Analysis of Sample Sets #2, #3, and #4

Results from Sample Sets #2, #3, and #4 will be reviewed together. For each
set the following experiment was performed. Three spectra from each sample were
measured at three positions on the sample (low, medium and high) at 80 °C and zero
degrees from the norm. The spectra were resampled and smoothed to reduce the
number of responses from 2551 to 638. Figure 3.14 displays spectra from samples at
5.59,9.25 and 11.62 MSI containing low pigment concentrations. Figure 3.15
displays spectra for samples at 5.59, 9.16 and 11.69 MSI and nominal pigment
concentrations, while Figure 3.16 displays spectra for samples at 5.03, 9.02 and 10.84

MSI with high pigment concentrations, all measured at 80 °C and zero degrees from
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the norm of the sample plane.
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Figure 3.14 Spectra from low pigment concentration samples as a function of

loading weight.
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Figure 3.15 Spectra from nominal pigment concentration samples as a function
of loading weight.
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* Figure 3.16 Spectra from high pigment concentration samples as a function of
loading weight.



126

As may be seen there are still distinct spectral changes associated with loading
weight changes, in spite of the presence of pigment. Table 3.15 displays the
prediction results using PLS to calibrate for loading weight for each of the sample
types. The data were mean centered before application of PLS.

Table 3.15 Standard error of prediction results for loading weights, MSI,

for Sample Sets #2, #3, and #4 as a function of model
complexity using PLS.

No. of SEP for SEP for SEP for
Factors SET #2, SET#3 SET #4,
Low ~ NOMINAL T HIGH +
(MSI) (MS)) (MS))
1 0.66 0.80 0.55
2 0.49 0.64 0.44
3 0.44 0.51 0.41
4 0.41 0.45 0.38
5 0.39 0.40 0.30
6 0.33 0.39 0.15*
7 0.24 0.36 0.13
8 0.18* 0.20 0.13
9 0.15 0.17 0.12
10 0.15 0.13* 0.12
1 0.14 0.10
12 0.14 0.11
13 0.14 0.10
14 0.14 0.10
15 0.12 0.1

~ 15 samples, 45 spectra, range from 5.59 to 11.62 MSI.
1 15 samples, 45 spectra, range from 4.65 to 11.69 MSI.
+ 8 samples, 24 spectra, range from 5.03 to 10.84 MSI.
* Indicates optimal model choice.

In this case the model is more complex than for Sample Set #1, probably due
to the pigment and the associated scatter of the radiation. In each case the chosen

number of factors for the model results in an SEP that approaches the reference
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method error and is below the on-line specification error. No obvious outlier samples
were identified.

In summary, the prediction of polymer coating weight from the infrared
emission spectra using PLS is possible with a prediction error (for laboratory
measurements) near that required for an on-line measurement. Clear samples are
predicted with a simpler model than the pigmented samples. Prediction error
variation for the clear samples with temperature and observation angle are consistent
with the observed signal intensity changes with temperature and observation angle.
That is, better prediction is observed for higher temperatures and observations angles

closer to the norm where higher signal intensities are observed.

3.3.3 Locally Weighted Regression Results

Locally weighted regression (LWR) analysis was applied to the infrared
emission data collected from the four Sample Sets discussed in Section 3.3.1. In each
case seven models were tested, one through six factor linear models and a two factor
quadratic model. The models were compared using a leave one out cross-validated

SEP over the data fraction range of 0.3 to 0.9.

3.3.3.1 Analysis of Sample Set #1

For Sample Set #1 the results for the LWR analysis of the 90 °C data at zero
degrees from the norm are shown in Table 3.16. All the samples are used and the
previously found "outliers” are not removed. As may be seen the locally weighted

regression SEP approaches the PLS calibration SEP (0.25 at nine factors, Table 3.8)



using three factors and 0.3 of the points in the local regression.

Table 3.16 Standard error of prediction results for loading weights, MSI, for Sample Set
#1 using locally weighted regression as a function of model choice and
fraction of the data (f) used. (Outliers not removed)

1factor 2factor 3factor 4factor 5factor 6factor Quadratic
f Pts. SEP SEP SEP SEP SEP SEP SEP
(MSI) (MSI) (MSI) (MSI) (MSI) (MSI) "~ (MSI)

03 10 0.52 0.53 0.28 0.33 0.43 0.41
04 13 0.54 0.52 0.35 0.34 0.30 0.44
05 17 0.53 0.55 0.37 0.35 0.30 0.47
06 20 0.53 0.59 0.42 0.40 0.34 0.42
07 23 0.56 0.60 0.46 0.43 0.41 0.44
08 26 0.58 0.60 0.48 0.44 0.44 0.42
09 30 0.58 0.61 0.49 0.45 0.45 0.43

oW
BINE833

A three factor model using 0.3 of the data is approaching the nine factor PLS
results, indicating that the locally weighted regression surface is adapting to the
regression surface containing the "outliers.” Had the calibration space been more
adequately sampled, the nonlinearities of the regression surface introduced by the
“outliers" could have been better approximated. Table 3.17 displays the locally

weighted regression results for Sample Set #1 with the outliers removed.
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Table 3.17 Standard error of prediction results for loading weights, MSI, for Sample Set
#1 using locally weighted regression as a function of model choice and
fraction of the data (f) used. (Outliers removed)

f Pts.

03 10
04 13
05 17
06 20
07 23
08 26
09 30

1factor 2factor 3factor 4factor 5 factor 6 factor
SEP
(MSI)

0.24
0.22
0.22
0.23
0.24
0.24
0.25

SEP

(MSI)

SEP
(MS))

0.28
0.24
0.23
0.23
0.22
0.22
0.24

SEP
(MSI)

0.77
0.67
0.25
0.23
0.23
0.23
0.23

SEP
(MSI)

0.56
0.39
0.33
0.29
0.28
0.28
0.27

SEP
(MSI)

0.53
0.36
0.29
0.28
0.29
0.31
0.30

Quadratic
SEP
(MSI)

1.49
1.04
0.45
0.31
0.29
0.30
0.27

The prediction error using LWR for the data with the outliers removed is not

improved significantly over the PLS results. This is because the nonlinearities

introduced by the outlier samples have been removed. A minimum in the prediction

error is found at a data fraction of 0.4 with one factor, but it does not appear to be

significantly different from the prediction error at a data fraction of 0.9 and one

factor.

3.3.3.2 Analysis of Sample Sets #2, #3, and #4

For Sample Set #2 the locally weighted regression results for five factors and

a data fraction of 0.3, shown in Table 3.18, are comparable to the results for the eight

factor PLS model shown in Table 3.15.



Table 3.18 Standard error of prediction results for loading weights, MSI, for Sample Set
#2 using locally weighted regression as a function of model choice and
fraction of the data (f) used.

1factor 2factor 3factor 4factor S5factor 6factor Quadratic
f Pts. SEP SEP SEP SEP SEP SEP SEP
(MSI) (MSI) (MSI) (MSI) (MSI) (MSI) (MSI)

03 10 0.46 0.36 0.28 0.28 0.18 0.36 0.36
04 13 0.51 0.42 0.35 0.30 0.19 0.24 0.32
05 17 0.53 0.44 0.37 0.30 0.19 0.20 0.29
06 20 0.54 0.45 0.38 0.31 0.21 0.17 0.31
0.7 23 0.55 047 0.41 0.33 0.24 0.18 0.35
08 26 0.56 0.48 0.43 0.36 0.28 0.21 0.38
09 30 0.56 0.50 0.43 0.38 0.31 0.27 0.40

The LWR results for Sample Set #3 are shown in Table 3.19 and may be
compared to the PLS results in Table 3.15. The locally weighted regression SEP at
five factors and a data fraction of 0.3 is comparable to the ten factor PLS model.

Table 3.19 Standard error of prediction results for loading weights, MSI, for Sample Set

#3 using locally weighted regression as a function of model choice and
fraction of the data (f) used.

1factor 2factor 3factor 4factor 5factor 6factor Quadratic
f Pts. SEP SEP SEP SEP SEP SEP SEP
(MSI) (MS)) (MSI) (MSI) (MSI) (MSI) (MSI)

03 14 0.52 0.56 0.39 0.32 0.12 0.12 0.63
04 18 0.56 0.56 0.41 0.31 0.19 0.13 0.59
05 23 0.61 0.58 0.40 0.31 0.25 0.19 0.60
06 27 0.65 0.59 0.41 0.33 0.27 0.23 0.60
07 32 0.70 0.60 0.41 0.35 0.31 0.27 0.59
08 36 0.73 0.60 0.46 0.37 0.31 0.29 0.56

09 41 0.73 0.61 0.52 0.39 0.32 0.32 0.58
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The LWR results in Table 3.20 for Sample Set #4 show little improvement
over the PLS results. Blank entries in the table denote a poorly posed regression
problem.

Table 3.20. Standard error of prediction results for loading weights, MS|, for Sample Set #4

using locally weighted regression as a function of model choice and fraction of
the data (f) used.

1factor 2factor 3factor 4factor 5factor 6factor Quadratic
f Pts. SEP SEP SEP SEP SEP SEP SEP
(MSI) (MSI) (MS1) (MSI) (MSI) (MSI) (MSI)

03 14 0.54 0.33 0.31 0.24 0.23 0.58
04 18 0.52 0.40 0.32 0.25 0.20 0.54
05 23 0.53 0.43 0.35 0.26 0.22 0.19 0.37
06 27 0.55 0.43 0.35 0.28 0.24 0.17 0.40
07 32 0.56 0.43 0.36 0.28 0.26 0.16 0.38
08 36 0.57 0.43 0.36 0.30 0.30 0.15 0.37
09 44 0.58 0.44 0.37 0.34 0.34 0.15 0.38

For the low and nominally pigmented samples there was a reduction in model
complexity using LWR with similar prediction results as those obtained using PLS.
The high pigment samples showed similar LWR model complexity and prediction
error as compared to the PLS model. It is possible that the regression surface for
Sample Set #4 is much more complex than the other sample set regression surfaces
and more samples would be needed to accurately represent a complex surface, as
pointed out by Cleveland (11). Note that Sample Set #4 contains the fewest samples
of all the sample sets.

In conclusion, the locally weighted regression approach provided for similar
prediction error for Sample Set #1 even with the outliers included when compared

with the PLS model with the outliers included. Naes et al. have found similar
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behavior with the LWR approach accurately predicting samples that had been
previously designated as outliers in a PCR analysis of near infrared data (12).
Whether or not LWR is a substitute for outlier deletion will probably depend on the
particular data set and moreover on the experimental design. If an outlier is to be
considered as a sample that introduces a significant nonlinearity into the data set, then
rigorous sampling of the regression surface is imperative if that part of the regression
surface is to be modeled properly. These considerations are beyond the scope of this
research and as was suggested by Naes et al. the LWR approach should be tested

more thoroughly to determine to which data sets it may be appropriately applied (12).

3.4 Conclusions

The ethylene and vinyl acetate co-polymer system was chosen due to the
interest in process analysis applications. Concentration prediction errors were
comparable to the precision from the NMR analysis method. Reference thickness
values were estimated to have a precision of 0.03 mm and thus the SEP of 0.06 mm
does not seem unreasonable, given that concentration and temperatures were also
varying in the calibration set. Temperature prediction was not as good and it is
believed this was due to the poor temperature reproducibility of the temperature
controller. Nevertheless the challenge of prediction of composition of samples which
are not simple mixtures of the components of interest, but the product of a
polymerization reaction, has been met.

The number of factors used for the models may seem excessive. But it must
be remembered that the uncorrected single beam spectral data were used, in which

nonlinear variations are observed, forcing the model to use more linear factors than



one might expect from such a chemically simple system. The major problems arise
from the lack of linearity of intensity due to multiple radiation transfer events, which
are in turn dependent on sample temperature and geometry (thickness). As with any
calibration method, care must be taken to see that the unknown sample is adequately
represented in the calibration set.

The locally weighted regression approach provided a simpler calibration
model with the same prediction error as found from a PLS analysis. This provides for
the possibility of more easily interpreted models, but interpretation of multivariate
calibration models should be treated with some caution ™).

Loading weight of a bonded polymer on a metal surface was predicted using
IES and PLS to within the precision needed for on-line measurements, after suspected
outliers were removed. Better results were found for the polymer sample set
containing ne pigment. Higher temperatures and observation angles closer to zero
degrees from the norm of the sample plane gave smaller prediction errors. Locally
weighted regression showed some reduction in model complexity for the same

prediction errors as found using PLS.
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Chapter 4 Polymer Cure Reaction Monitoring

4.1 Introduction to Chapter 4

The cure process of a polymeric coating on a metal surface is an obvious
application for infrared emission spectroscopy. A thin organic film applied to a highly
reflective surface provides good spectral contrast (1) and low background emission. Van
Woerkom has reported monitoring the cure reaction of hexamethoxymethylmelamine
with an esterdiol using infrared emission spectroscopy (2). He monitored the methoxy
group using the 915 cm! band and applied a univariate approach to the data analysis.

There has also been considerable interest in polyurethane cure monitoring (3).
This chapter details an investigation into the use of infrared emission spectroscopy for
noninvasive remote monitoring of the cure reaction of a commercial urethane paint
product. Results from absorption spectroscopy data analysis are compared to emission
spectroscopy results and the relationship of the two techniques is discussed.
Multiresponse nonlinear curve fitting is used to model the absorption, raw emittance and
a linearized emittance data set. Model parameters for the raw emittance data collected at

different temperatures are compared.

4.2 Experimental and Data Analysis

The materials used for these experiments consisted of a two component Du Pont
urethane paint product, Centari®, product numbers 780s and 782s. In order to insure

complete mixing, the manufactures' suggested proportions of each component were
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mixed for 10 minutes using a magnetic stirrer. Initial experiments had indicated that
insufficient mixing of the materials resulted in very poor reproducibility. The mixture
was then spin coated onto a one inch aluminum disk for the emission experiments, or
onto a KBr window for the absorption experiments. The aluminum disk was placedon a
heated stage and the KBr disk was placed in a heated sample holder. The data collection
was started immediately.

A Perkin-Elmer 1720 FT-IR spectrophotometer, modified by Perkin-Elmer for
emission measurements, was used for all data collection. The heating unit for the
emission experiments was an aluminum block, 9 cm by 9 cm, heated with two 200 watt
cartridge heaters, 7.6 cm long and 0.6 cm in diameter, and controlled by an Omega
controller. A temperature probe in the center of the heated block continually monitored
the block temperature; this was fed back to the Omega controller for temperature control
to +/- 1 °C. Radiation from the emitting sample was collected at a distance of 30 inches
from the spectrophotometer from a spot size of 16 mm using an optics extension. The
heated stage for the absorption measurements was a standard Perkin-Elmer heating unit.

The collected radiation was modulated with an interferometer and the signal
detected using a Judson narrow band mercury-cadmium-telluride (MCT) liquid nitrogen
cooled detector for the emission measurements. A triglycine sulfate (TGS) detector was
used for the absorption measurements. All emission spectra were the result of the
coaddition of 10 single beam uncorrected spectra collected at 4 cm-! resolution requiring
approximately 12 seconds to acquire. The ratio of the spectra with that from a blackbody
spectrum at the same temperature was then computed. The blackbody consisted of a
heated block of aluminum with a cone bored into it 80 mm deep with a 20 mm opening

coated with soot. The emittance calculated for such a configuration is 0.999 (4).
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Absorption spectra were collected in the scan mode providing data that were the
ratio with a blank spectrum, in this case the blank was air. No spectral averaging was
performed for the absorption data because one scan had a sufficient signal-to-noise ratio.
Also because of the longer scan time using the TGS detector, significant changes in the
reaction system would take place over the time for multiple scans, especially at the
beginning of the reaction. Data were collected as a function of time using a Model 7700
Perkin-Elmer Professional computer running an "OBEY" program that records the time
of the data collection as part of the header file saved to disk. The data were converted to
the JCAMP file format (5), transmitted to a VAX computer system and analyzed with
programs developed with the MATLAB (The MathWorks, Inc. Sherborn, MA)

computing environment.
4.2.1 Rank Determination

Determination of the pseudorank of a data matrix is one of the most fundamental
questions in multivariate analysis. This information can give insight into the number of
varying and distinguishable chemical components. Also, compression of data from
numerical rank to pseudorank also offers a reduction in noise and results in a better posed
problem. There are many methods to assess the pseudorank of a data matrix (6, 7, 8).
The method of Lawton, Sylvestre and Maggio is particularly appealing because it is less
arbitrary than others. This method involves the calculation of the following test statistic

M N A
5 El(Yij-Yij)z

02 = l=lj=
M-K) (N-K)

4.1)
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where Yijis the i,j entry in the data matrix and Qij is the estimated i,j matrix entry using
K singular vectors. The values of N and M are the number of rows and columns in the
data matrix. The test statistic, 62, is the total sum of squares of the residuals divided by
the number of degrees of freedom, adjusted for the number of factors used. This test
statistic is compared with the estimated noise in the experiment. The number of singular
vectors to include in the data compression step is that number which explains the data to
the estimated noise level.

Because of the integer nature of matrix rank the test statistic from equation 4.1
will not agree exactly with the experimental error estimates when the correct model is
found. It must bé decided if it is best to remain above the noise level, choosing a less
complex model, rank K, or select a more complex model, rank K+1, and thus explain the
data to below the estimated noise level. In this chapter it has been decided that choosing
a model that may include some noise is better than leaving useful information out, and
thus a more complex model will be chosen.

Experimental error estimates were made as follows. A matrix of data, spectra as a
function of time, was collected on a well cured polymer under the same experimental
conditions as the analytical data, except that no reaction was taking place. The
experimental noise level was then estimated by performing an ANOVA (analysis of
variance) on the static data set over the same wavelength and time range as the analytical
data. The different wavelengths are designated as the "treatments” and the within
treatment variance computed and used as an experimental error estimate (9). The test
statistic using equation 4.1 is computed for several different models (different number of
factors or pseudoranks) and compared with the within treatment standard deviation
estimate from the ANOVA calculation. Simulations were conducted on rank three data

matrices which showed the method performed well up to about 5 % added noise. Added
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noise in this case is a matrix of normally distributed random numbers with a standard
deviation of a given percentage of the largest intensity in the data matrix. The noise
estimates will have some variability and thus this procedure should be treated as a guide
for rank selection and used in conjunction with visual inspection of the singular vector

plots.

4.2.2 Analysis of Closed Data

This section will review the special problems associated with closed data sets and
the use of closed models in multiresponse nonlinear optimization. A familiar form of
closure is the constant sum relationship found, for instance in mineral concentrations of
geologic samples, in which the constituent concentrations sum to 100 %. In terms of the
analysis of multiresponse data from indirect experimental measurements the concepts and
effects of closure are somewhat more subtle.

The details of closure and its effect on the pseudorank of a data matrix are given
in Appendix B. The following discussion concerns the proper modeling of multiresponse
data that are suspected of having a closure relationship. Given a data matrix, R, that is
the product of two matrices, D and F, and further that the columns of D are related by j, a
vector of linking coefficients (a closure relationship), such that Dj = ¢, where c is a
constant vector, then the matrix R will have characteristics of the closure relationship in
D propagated through to it from the relationship R = DFT,

In practice this situation might arise if a two step consecutive first-order reaction
is monitored using a spectral measurement. The columns of D, which are the
concentration profiles, are constrained by a constant sum equal to the initial concentration

of species A, and thus the matrix F would represent the pure spectra. As shown in
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Appendix B this type of closure relationship is mathematically equivalent to the addition
of a constant background spectrum to each row of R.

The problem arises in the multiresponse analysis when choosing whether or not to
model a baseline by the addition of a column of ones to the D matrix. Addition of a
column of ones will make the columns of the D matrix linearly dependent if there already
exists a relationship of the form Dj = ¢. The pseudoinverse may still be computed, but
the rotation matrix, fl, from equation 2.63 will have one column of zeros (in the noise
free case). Because of this the reconstructed spectra found using equation 2.68 will be
linear combinations of the three pure spectra and the background. The pure spectra,
convolved with the background, may be recovered from these linear combinations by
subtracting the reconstructed background from each of the reconstructed pure spectra.

What this means in practice is that a simple background offset and the equivalent
closure relationship may not be resolved from each other. For the analysis discussed in
Section 4.3 no baseline modeling is attempted because of this closure constraint on the

model.

4.3 Results and Discussion

Figures 4.1 and 4.2 display the infrared absorption and emittance spectra
measured as a function of time while monitoring the reaction of the two component
commercial paint product at 100 °C. The spectral bands noted in these figures are
indicative of the formulations used for urethane coating preparation. The band

assignments are summarized in Table 4.1.
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Figure 4.2 Infrared emittance spectra from 4000 to 600 cm™1 monitoring the
reaction of a two component paint mixture at 100 °C.



Table 4.1 Band assignments for spectra displayed in Figures 4.1 and 4.2.

Wavenumber Behavior With Time Assignment
%
1137 increasing c-0-ca

1230 increasing N-C=0Amide ll} 8
1465 static CH scissor b
1514 increasing Amide Il €
1692 static carbonyl
1730 increasing urethane carbonyl Amide | €
2271 decreasing N=C=0 isocyanate €
2800-2900 static CH stretching b

3390 increasing NH stretching b
3529 decreasing OH stretching P

a) Ref. (10).

b) Ref. (11).

c) Ref. (12).

The formation of the urethane linkage is noted by an increase in the 1730 and

3390 cm-! bands (5.78 and 2.95 um) corresponding to the amide I and amine

functionality, as well as the decrease of the isocyanate and alcohol bands at 2271 and

3529 cm'! (4.4 and 2.83 um), respectively.
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Comparisons of the absorption spectra in Figure 4.1 with the emittance spectra in

Figure 4.2 show a marked difference in the signal-to-noise ratio, especially above 2500

cmr! (below 4 pum). This is characteristic of the Planck blackbody function peaking in

intensity at approximately 1000 cm! (10 pm) at 100 °C and rapidly decreasing at higher

spectral energies. In spite of this discrepancy in the signal-to-noise ratio there are still

discernible changes in the emittance signal at the 2271 cmr! (4.4 pm), 1514 cm°! (6.6

Hm), 1230 cm-! (8.1 pm) and 1137 cm-! (8.8 pm) as observed in the absorbance spectra.
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The spectra from the emittance experiment appear to be much less well defined
than from the absorption experiment. Less overall change in signal intensity for an
equivalent time interval is also noted for the emittance data when compared to the
absorbance data. This discrepancy between the absorption and emittance data sets is due
to the nonlinear relationship between emittance intensity and concentration. This may be
readily understood by referring to equation 1.15 and recalling A = -log(T), where
T = e*¢l, and thus kcl = Aflog(e) where « is the extinction coefficient, ¢ is concentration
and 1is path length. Note that A is absorbance and not absorptance as used in Chapter 1.
Substituting into equation 1.15, the following relationship between absorbance and

emittance may bé derived

_ (1-Ry) (1 - Rge-2A/log(e))

€= 1R Ry 2ATE®

4.2)

Figure 4.3 displays the emittance calculated using equation 4.2 versus absorbance
for a single wavelength with Ryo=1 and several values of Rj. Recall R; is the front
surface reflectivity and R; is the reflectivity of the backplate. From Figure 4.3 it may be
seen that the relationship between absorbance and emittance is nonlinear for experiments
in which absorbance measurements exceed approximately 0.2 absorbance units. As the
front surface reflectivity becomes larger the onset of the nonlinear behavior is found at
smaller absorbance values. Since absorbance is linearly related to concentration (if Beer's
law is followed) the above analysis indicates that the emittance response will be
nonlinearly related to concentration at an optical density that would normally show linear

behavior for absorbance measurements.
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Figure 4.3 Emittance versus absorbance computed from equation 4.2 for a
single wavelength.

From Figure 4.1 it may be seen that for the isocyanate functionality the
absorbance at 2271 cm-! (4.4 um) has a maximum of about 0.6 absorbance units.
Because the absorbance and the emittance experiments were conducted under the same
experimental conditions (same measured weight of material applied to the same area) this
suggests that the emittance measurements for these experiments will be nonlinearly
related to concentration, especially at the beginning of the reaction when the absorbance

is high. If equation 4.2 is solved for absorbance in terms of emittance,

A=-%log{ e-1+R 7} 4.3)
€R1R2 - Ry + RJR
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the linearization of the emittance data may be carried out. Equation 4.3 indicates that for
the emittance data to be properly linearized Ry and Rz must be known. It may be
assumed that the back surface reflectivity is relatively high and constant with wavelength,
characteristic of a metal, but the front surface reflectivity will be a function of
wavelength, showing a maximum near an absorbance maximum. In a curing process the
concentration of the chemical components will also be changing with time and thus the
front surface reflectivity may be a function of time as well as wavelength. An exact
correction for this behavior would appear to be impossible without the corresponding
absorbance data and thus an approximate linearization is suggested. If the front surface

reflectivity is ignored, equation 4.3 simplifies to
1 1-¢
A=-5log {_RZ } (4.9)

and a linear relationship between absorbance and emittance is found if the logarithm of
one minus the emittance is computed. Figure 4.4a displays the emittance versus the
absorbance for the maximum of the isocyanate peak at 100 °C. As may be seen there is a
distinct curvature to the plot as predicted by equation 4.2. Figure 4.4b displays the

emittance data linearized as - %log {IT-;} versus the absorbance data. The transformed

emittance data show a much more linear relationship with the absorbance data. The
computed slope of the plot in Figure 4.4b is 0.6 indicating that R is not negligible
(expected slope is one if R1=0). If the data are linearized with increasing levels of Ry, the
slope of the linearized emittance versus absorbance plot approaches one at about

R;1=0.07.
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Other emittance data were collected at higher temperatures to observe the
variation in the emittance intensities as a function of time under differing process
conditions. Figure 4.5 displays the time profiles of the emittance response at 2271 cm-!
(4.4 um) corresponding to the isocyanate functionality at process temperatures of 100,
134 and 154 °C. As may be seen an increase in temperature shows an increased rate of
consumption of isocyanate demonstrating the ability of the emission measurement to

distinguish changes in the process over time with changes in temperature.

Emittance

o 5 10 15 20 25 30 35
Time in minutes

Figure 4.5 Time profiles for isocyanate emittance response at 100, 134 and 154 °C.

In order to identify other sources of variation in the spectra the standard deviation
is computed at each wavenumber over time. Figure 4.6 displays the standard deviation
spectrum for absorbance data measured at 100 °C. There are five regions of significant

variation that will be considered from these data as indicated on the plot by the
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superimposed circles. Those regions are 1) 3684 to 3204 cm-1, 2) 2404 t0 2164 cm-!, 3)

1844 to 1604 cm! , 4) 1604 to 1488 cml, and 5) 1284 to 1044 cm-1.

Standard Deviation

Wavenumber

Figure 4.6 Standard deviation spectrum for 100 °C absorbance data.

Figure 4.7 displays the same plot for the emittance data at 100 °C with the

corresponding areas of significant variance from the absorbance data denoted by the

superimposed circles. As may be seen Region 1 from the emission experiment is of little

use and will not be considered.
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Figure 4.7 Standard deviation spectrum for 100 °C emittance data.

The isocyanate band has been used as a measure of reactivity for urethane
formation reactions by many other workers (11, 13, 14, 15). Most of these studies have
made use of only one or two spectral intensities or an integrated area of the isocyanate
band and assumed a simple second-order reaction scheme to fit the data. Instead of
pursuing a univariate analysis it was decided to explore the use of multivariate analysis
methods, making use of all the sources of variance.

When using a multivariate measurement more information can be derived from
the data than for a univariate measurement. One of the most informative pieces of
information is the pseudorank of the data matrix. For absorbance measurements in the
range of zero to one absorbance units, Beer's law should be satisfied and thus the
pseudorank can be related to the number of chemical components in the mixture,

provided there are no interactions. The relationship of the pseudorank of the emittance
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data matrix and the number of chemical components is not as apparent, because of the
nonlinearities, and will require some care in interpretation.

Rank analysis was initially performed on the isocyanate region of the absorbance
data, Region 2, as this region was expected to give a simple interpretation and provide a
basis of comparison for the emittance data analysis. The results for the rank determination
step are summarized in Table 4.2, where a rank of three is indicated. Further rank
analysis was performed on the data by successively augmenting other regions of the
spectrum to Region 2. The results for the absorbance regions of interest, that is, Regions
2,2345 and 12345 are given in Table 4.2. Table 4.3 gives the rank analysis results for
the emittance data of Regions 2 and 2345.

Table 4.2 Experimental noise estimation and residual values

used for rank determination of 100 °C absorbance
data.

Region Noise Resldual Rank
estimate (Eq. 4.1)

2 28e-7 59e-5
1.3 e-6
7.0 e-8
49 ¢-8
2.7e-8

OHWON -

12345 1.8e-6 4.0 e-4
3.4¢-6
6.3e-7
15e-7
1.0e-7

LW =

2345 24 e-6 5.4¢e-4
73 e-7
15e7
10e-7
8.9 e-8

ABWN
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Table 4.3 Experimental noise estimation and residual values
used for rank determination of 100 °C emittance

data.
Region Noise Residual Rank
estimate (Eq.4.1)
———

2 6e-6 26e4 1
72e-6 2

4.2 e-6 3

35e-6 4

3.2¢e-6 5

2345 3e6 4.1 e-4 1
6.8 e-6 2

23e-6 3

1.5e-6 4

1.2e-6 5

The analysis for Region 2345 for the absorbance data suggests a rank of 2, but a
visual examination of the singular vector plots indicates that the third singular vector is
clearly non-random indicating a rank of three. This rank determination method is not
foolproof and must be used in conjunction with a visual assessment of the singular
vectors. In each case the singular vectors clearly show non-random behavior through the
third singular vector.

The need for three singular vectors to explain the absorbance data is consistent
with the known chemistry of these materials. The system proceeds through three distinct
physical states during the course of the reaction (16). The first physical state is a liquid,
the second state is a gel and the final state is a crosslinked polymer. Further, it is known
that approximately one third of the isocyanate is consumed at the gel point. If these

physical states are distinct, then it would be expected that the functional groups on the
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molecule would be presented with distinct environments which would in turn affect the
spectral characteristics. It follows from the principal component analysis and the known
behavior of the system that the pseudorank is revealing the three physical states. Feger
has presented the description of an ideal isocyanate and alcohol system in terms of pregel
and postgel periods, but applies only a univariate data analysis (13).

The same rank analysis was performed for the 100 °C emittance data and a rank
of three was determined. A graphical representation of the singular vectors from the
emittance data is shown in Figure 4.8. Note that singular vector four is offset for visual
clarity. This clearly shows the non-random behavior of the third singular vector
indicating a rank of three. Figure 4.9 displays the corresponding spectral singular vectors
for these data. These vectors are offset for visual clarity and show non-random behavior
through vector three with some slight non-random behavior in vector four which may be
associated with carbon dioxide in the beam path. Considering the nonlinear
concentration/response relationship of the emittance data the rank was expected to be
somewhat higher than the corresponding absorbance data. It is not, and this suggests that
not as many features are being detected in the emittance experiment as compared with the

absorbance experiment and it may be that the nonlinearity is inflating the rank.
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Figure 4.8 Time varying singular vectors one to four for 100 °C emittance data.
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Figure 4.9 Spectral singular vectors corresponding to time singular vectors
displayed in Figure 4.8.
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Given an estimate of the pseudorank of the data matrix and prior information
concerning the reaction course (i.e., the change of state) a model describing the time
course of the reaction may be postulated. A simple scheme consistent with this
information is

kk Kk
A =B =C

in which the different states A, B and C are associated with the different physical states
by the model pafameters k; and k,.

Given a model for the time behavior, multivariate nonlinear optimization was
used to estimate the model parameters. A model was built for the absorption data,
including regions one through five, giving 334 spectral responses and a time range of 1.8
to 22 minutes yielding 35 time points. The hydrocarbon band at 2950 cm-1, which should
remain unchanged during the course of the reaction, was observed to decrease rapidly in
intensity at time point one and leveled off to a constant by time point number five. Thus
the data analysis used information beginning with time point five. The nonlinear model

parameters and associated parameter error estimates are summarized in Table 4.4.
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Table 4.4 Nonlinear mode! parameter estimates for absorption, emittance and
linearized emittance data at 100 °C.

Data set R1 R2 k1 ko

Absorption -- -- 0.80 +/- 0.04 0.08 +/- 0.01
Emittance - - 0.24 +/- 0.03 0.03 +/- 0.01
Emittance (linearized *) 0 1 1.4 +4/-05 0.10 +/- 0.02
Emittance (linearized) 0.07 1 1.2 +/-04 0.08 +/- 0.01

* kq and kp are reported after removal of two outliers.

These model parameters and error estimates are computed as the mean and
standard deviation from Monte Carlo calculations. For each Monte Carlo calculation the
nonlinear optimization was performed after the addition of a matrix of normally
distributed random numbers of which the standard deviation was scaled to the
experimental error estimate. For each parameter and error estimate 50 Monte Carlo
calculations were performed. The estimated parameters are consistent with a rapid
change from a liquid state to a gel state and a slower reaction to the final crosslinked
state.

Also note that a delay time parameter is used in the data fitting in order to adjust
the isocyanate pure component band ratio for A and B to 3:2. This is consistent with the
consumption of one third of the isocyanate at the gel point. The delay parameter does not
affect the fit of the data to this model, only the ratio of the reconstructed spectra. The
delay parameter was determined in a separate optimization, with k; and k fixed, that
gave a ratio of A to B of 3:2. Then the delay parameter was fixed for the Monte Carlo
error estimate calculations for kj and ky. The invariance of the fit of the data to the
model with changes in the delay parameter was an empirical observation using

synthesized data.
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From the multivariate analysis several plots are available to help assess the quality
and reasonableness of the fit. Figure 4.10 displays the fit of the rotated model to the first
three absorbance data singular vectors. The fit is generally quite good with only slight
systematic deviations noted in the second singular vector in the early part of the reaction.

Figure 4.11 shows the fit in the more familiar concentration and time domain.

o o
()] (]
L4

1
B
¥

Arbitrary Units
R

0 5 10 15 20 25
Time in minutes

Figure 4.10 Fit of the model to the first three singular vectors for the absorbance
data.
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Figure 4.11 Fit of the absorption data in concentration and time space.

Figures 4.12 through 4.16 display the reconstructed pure component spectra for
each of the five regions. The error bands indicate the extremes of the reconstruction from
all possible combinations of parameters and associated standard deviations. For example
there are three ways to associate the standard deviation with the parameter estimates,
either add it, subtract it or add nothing. Thus for a two parameter problem there are nine
ways to incorporate the error information. The nine spectra for each 'pure component'
reflect the nine combinations of parameters and associated standard deviations. Figure
4,12 displays the alcohol and amine region and as expected the ‘A’ state contains mostly
alcohol while the 'B' state shows less alcohol and more of the amine functionality. The
'C' state is dominated by mostly the amine functional group. Figure 4.13 displays the
reconstructed spectra of the isocyanate region where the ratio of 'A’ to 'B' has been

adjusted to 3:2 by a delay time parameter of 0.9 minutes. The 'C' spectrum shows even
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less intensity which is of course consistent with the consumption of isocyanate as the
reaction proceeds from the gelled to the crosslinked state. Each of the other regions show
a consistent behavior with respect to what is known about the chemistry of the system
except for the urethane carbonyl region in Figure 4.14. Here there appears to be
somewhat less of a clear distinction between the 'A' and 'B' states with 'B' of a similar
intensity as 'A', but slightly broadened. This is most likely a result of the shifting of the

urethane carbonyl band with the changes of state (17).

Pure Compenent Response

3250 3300 3350 3400 3450 3500 3550 3600 3650
Wavenumber

Figure 4.12 Reconstructed "pure component” spectra for absorbance data in the 3684 to
3216 cm-1 region, the alcohol and amine region.
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Figure 4.13 Reconstructed "pure component” spectra for absorbance data in the 2404
to 2164 cm-1 region, the isocyanate region.
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Figure 4.14 Reconstructed "pure component” spectra for absorbance data in the 1840
to 1604 cm1 region, the urethane carbonyl region.
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Figure 4.15 Reconstructed "pure component" spectra for absorbance data in the 1604
to 1488 cm-1 region, the Amide Il region.
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Flgure 4.16 Reconstructed "pure component” spectra for absorbance data in the 1284
to 1044 cm-1 region, the Amide Ill and C-O-C region.
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The reconstructed spectra may also be used as a guide for the nonlinear
optimization, in that physically meaningful results require that the reconstructed spectra
have all positive intensities. This is particularly important for the above postulated model
because this model has two equally valid minima on a residual error surface. These
minima correspond to the same model parameters, which have simply been exchanged
with each other. This feature of the model has been observed by others and is known as
the slow-fast ambiguity (18). For the above example, if the model parameters are
exchanged the spectrum for component B in Region 1 and 2 will show negative features
indicating physically meaningless results. Band inversions will not always occur upon
insertion of the parameters in the incorrect order, but there may be enough of a difference
in the reconstructions from what is expected that an analyst would be alerted to the
problem.

In order to investigate the emittance data, only Region 2 was considered. Region
one is clearly dominated by noise as shown in Figure 4.7 and in anticipation of the
nonlinear emittance response relationship it was felt that the approximate linearization
would be most plausible in a restricted spectral region. The same multiresponse
nonlinear analysis was performed on the raw emittance data. The Monte Carlo model
parameters and associated error estimates are displayed in Table 4.4. The fit of the model
to the raw data is displayed in Figure 4.17 and appears to be very good. There is poor
correspondence between the estimated model parameters for the 100 °C absorption and
the corresponding emittance data, as might be expected considering the nonlinear
emittance and concentration relationship. A simple linearization of the data was
attempted using equation 4.4. The model parameters using the linearized data given in
Table 4.4 are shown to correspond more closely to the absorbance data, but only because

of larger errors associated with them. This decrease in the precision of the parameter
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estimates is the result of either noise introduction when performing the linearization step
or a loss of rank via linearization. As the R} parameter is changed from 0 to 0.08, the
third singular vector from the singular value decomposition of the linearized emittance
data is characterized by less random behavior as shown in Figure 4.18. Recall that
univariate manipulation of the emittance data indicated that an Rj value of 0.07 gave a
slope of nearly one for the absorbance versus linearized emittance. The parameter
estimates with Ry equal to 0.07 are also displayed and show better correspondence with

the absorbance data with some reduction in the error estimates.
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Figure 4.17 Fit of model to raw emittance data at 100 °C.
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Figure 4.18 Change in third singular vector for emittance data as a function of
R1 linearization parameter.

Even though the emittance data in the raw form do not give readily interpretable
model parameters, as might be found from an absorbance experiment, and linearization
introduces large uncertainties into the parameter estimates, the model parameters from the
raw emittance data may still be useful as a method of comparing systems and
summarizing data. Table 4.5 displays the model parameters computed from the raw
emittance data for replicate experiments at 100 °C and 134 °C and a single experiment at

154 °C.



Table 4.5. Nonlinear model parameter estimates for raw emittance data at

three temperatures.

DATA k1 (min-1) ka2 (min-1)
Emittance (raw 100 °C) 0.24 +/- 0.03 0.03 +/- 0.01
Emittance (raw 100 °C) 0.19 +/- 0.03 0.05 +/- 0.03
Emittance (raw 100 °C) 0.22 +/- 0.02 0.04 +/- 0.01
Emittance (raw 134 °C) 0.76 +/- 0.06 0.09 +/- 0.01
Emittance (raw 134 °C) 0.66 +/- 0.06 0.08 +/- 0.01
Emittance (raw 134 °C) 0.68 +/- 0.04 0.08 +/- 0.01
Emittance (raw 154 °C) 2.24+/-0.8 04 +/- 0.1
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As may be seen the model parameters from the replicate analyses are within the
estimated error of each analysis, indicating the reproducible nature of the experiments
and supporting the validity of the error estimates. The k; model parameter appears to be
the most affected by temperature, while the k, parameter remains fairly insensitive to
changes in temperature until 154 °C. These parameters may give useful insight into the

reacting system or at the least give a convenient method of summarizing the observations.

4.4 Conclusions

Infrared absorption and emittance data have been collected from a reacting
polymer system. It is found that a univariate inspection of the isocyanate band shows
distinct differences in the time profiles for different temperature experiments. A
comparison of the emittance data with the absorption data indicates that the emittance
data require a preprocessing linearization step before results comparable to the
absorbance data may be found. The standard deviation spectrum of the data over time

indicates five regions of variance. Rank analysis of the absorption data indicates three
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singular vectors are needed to describe the observed spectral/temporal variance. The
three singular vectors are interpreted as revealing the three physical states of the reacting
polymer system.

Multivariate nonlinear curve fitting is applied to the 100 °C absorption and
emittance data yielding quite different nonlinear model parameter estimates due to the
nonlinear concentration/response relationship for the emittance data. A simple
linearization applied to the emittance data shows improved comparability with the
absorption data, but at the expense of poorer model parameter precision. Modeling of the
raw emittance data for several tests at the same temperature indicates that the procedure is
reproducible and shows changes in model parameters for experiments at different
temperatures. Although the computed parameters from the raw emittance data may not
be as readily interpretable as those from an absorption experiment they may still be useful

as a basis for comparison of experiments.
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Chapter 5§ Multiresponse Fitting Criteria Tests

3.1 Introduction to Chapter 5

Multivariate measurements are common place in many research laboratories
and there is a realization that more information is made available using multivariate
mathematical and statistical techniques to analyze these data (1). A number of
methods are available to extract useful information from multivariate data and some
of these techniques were discussed in Chapter 2. This chapter is concerned with the
proper choice of objective function when performing multiresponse nonlinear
optimization analysis. As explained in Chapter 2 the multiresponse nonlinear
optimization problem may be analyzed by discussing two data types: direct
observation (full rank) data and indirect observation (rank deficient) data.

Statistical considerations for properly combining multiresponse data for
nonlinear modeling when there is a direct observation of the phenomena of interest
and the data are full rank have been previously presented by Box and Draper (2).
They employed a Bayesian approach and found a generally applicable objective
function to be the determinant of the dispersion of the residual matrix rather than the
more commonly used total sum of squares of the residual matrix.

Recently the analysis of this type of problem, in which nonlinear parameters
are found via an optimization algorithm for rank deficient data, has been explored by
Shrager and Hendler (3) and Frans and Harris (4,5). Shrager has also recently
summarized the analysis of this type of problem and demonstrated the need for proper

statistical analysis of the data (6). He finds improved parameter precision using a
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weighted total sum of squares (TSSW) objective function compared with a simple
total sum of squares (TSS) objective function.

Use of the determinant criterion (DET) for multiresponse nonlinear analysis
has focused on full rank, overdetermined data matrices (7). Multiresponse nonlinear
analysis of rank deficient, underdetermined data matrices has employed a total sum of
squares (4,5,8) or a weighted total sum of squares objective function (6). This
apparent disjoint treatment of multiresponse nonlinear parameter estimation has
motivated the current investigation. It is the intention of this chapter to examine both
the full rank and rank deficient multiresponse parameter estimation problems. A
specific goal is to compare and contrast different objective functions and recommend

the optimal criterion.

5.2 Experimental and Data Analysis

A general description of the experimental conditions common to all
experiments will be given below, with the specifics for each unique experiment to be
discussed in Section 5.3. All experiments were conducted using synthetic data. The
generation of added noise for each experiment was accomplished using the RAND
function from MATLAB (The MathWorks, Inc. Sherborn, MA) which generates
normally distributed numbers with zero mean and variance of one. Signal-to-noise
was computed as a ratio of the largest entry in the data matrix to the standard
deviation of the added noise.

The noise structure was controlled in the following manner. For a given
response matrix, R (N-objects by L-responses), a target variance-covariance matrix, B

(L by L), was identified (structures used are described below). The Cholesky



decomposition was performed on the target variance-covariance matrix giving a
matrix C (L by L) such that CTC =B. A noise matrix, E (N by L), is then created
using the RAND function. The variance associated with E was adjusted by scalar
multiplication of all entries in E. A structured error matrix, Eg, was then created by
right multiplication of E by C. The resulting matrix, Eg, will then have a variance-
covariance structure similar to the target matrix. The extent to which the variance-
covariance structure of the resulting matrix, Eg, reproduces the target matrix variance-
covariance structure will depend on the number of rows in E, where more rows will
result in a better approximation.

There are many choices for variance-covariance structure, but some are more
interesting than others. In order to have a guide for this selection an empirical noise
matrix was measured. Infrared spectra were collected over time measuring the
transmission of a polyurethane film in which no systematic temporal changes were
taking place. A calculation of the response correlation structure for the spectral
region from 2164 to 2404 cm-1 at 4 cm-1 intervals is shown in Figure 5.1 (every third

response correlation is shown).
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Flgure 5.1" Empirical response noise correlation matrix for infrared spectra, 2164 10 2404
cm-1, collected over time on a system with no systematic temporal changes.

As may be seen, there are high and relatively constant off diagonal terms in the
correlation matrix. Given this empirical result it was decided to test variance-
covariance structures with constant and equal off diagonal terms. The off diagonal
terms used were 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, or 0.8 and the diagonal elements were
equal to one in most cases. The designations for these structures in the tables are 0.0,
0.1,0.2,0.4,0.5, 0.6, 0.8. One other interesting noise structure is the "diagonal ridge"
structure (9). In this structure the biggest correlations are next to the principal
diagonal, tapering off toward the left and right and upward and downward. This
structure is denoted by 0.9-0.0, indicating that the off diagonals closest to the
principal diagonal are 0.9 and taper off in a linear fashion to 0.0 furthest away from

the main diagonal.



For the direct observation experiments the independent responses were the
concentrations of the species (A, B and C) involved in a two step consecutive first-

order reaction scheme following the model

A =Agekt 5.1
B= ll((_zl-:% (ekit - e-kat) 5.2)
C=Ap-B-A (5.3)

where k) and kg are the kinetic parameters, t is time and A is the initial concentration
of A.

For the indirect experiment simulations, there are two data matrices required
to construct the observed data as shown in equation 2.58. One of the matrices
corresponds to the parameterized model. Two parametric models were considered for
these experiments. The first was a consecutive first-order reaction scheme, as was
considered above for the direct observation experiments, with a time axis from 0 to 1

and an interval such that 40 time points were generated, as shown in Figure 5.2.
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Figure 5.2 Pure concentration profiles for first-order consecutive reaction
scheme.

The second parameterized model used the Henderson-Hasselbalch equation for pH
titrations

1

(EHPI = T ok 4

where the pH range considered was from 3 to 11, with an interval such that 40 data

points were generated. Three chemical features were generated using the Henderson-

Hasselbalch equation with pKs of 6, 7 and 8. This is shown graphically in Figure 5.3.
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Figure 5.3 Concentration profiles for pure components obeylng the Henderson-
Hasselbalch equation.

Gaussian peak models, simulating pure spectra, were used with the
consecutive reaction model and the pH titration model to generate the indirect
observation data using equation 2.58. Three gaussian peaks, with mean values of
450, 500 and 550 nm over a spectral axis of 350 to 650 nm at an interval giving 60

data points, were used as shown in Figure 5.4.
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Figure 5.4 Pure spectral profiles used in the indirect observation experiment
simulations. Peak maximum at 350, 450 and 550 nm, half width at
half height is 50 nm, the low overlap experiment.

The spectral features for the pH titrations are characterized by reaching a
maximum intensity at the high pH region showing no absorbance in the acidic form.
For each type of indirect experiment the spectral features are the same, but the
parameterized models are a consecutive first-order reaction and a pH titration.

A modified SIMPLEX, implemented in MATLAB, was used as the
optimization routine with the known true values of the parameters used as starting
values. For each of the different objective functions several noise levels and
variance-covariance noise structures were tested. At each of the different noise levels
and variance-covariance structures 50 repeats of the optimization were performed and

the standard error of prediction, SEP, defined as



1 m
SEP=A[ Z]( pi- §i )2 (5:5)
1=

was computed. In equation 5.5 p;j is the known parameter value used to create the
data and f; is the value returned by the optimization routine. Even though SEP is
referred to as a standard error of prediction and is computed as an accuracy measure,
it reflects the precision of the parameter estimates because in all cases the correct
model is known and used.

The SIMPLEX search was terminated when the maximum of the sum of
absolute differences between parameter values at the lowest residual node and all
other nodes was less than a preset tolerance. A tolerance level of 0.0001 was used for
all experiments except for the indirect observation experiment when the first-order
consecutive reaction model was used with a tolerance of 0.001. All simulations were
performed in the MATLAB computing environment on either 2 VAX running VMS,
a SUN running UNIX or a VAX running ULTRIX.

5.3 Results and Discussion
5.3.1 Direct Observation Experiments

Five different experiments were performed for the direct observation case.
For each experiment a comparison of TSS and DET objective functions was made at
four signal-to-noise ratios and five variance-covariance noise structures. The

simulation parameters unique to each experiment are detailed below.
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5.3.1.1 Experiment #1

For Experiment #1 the time axis was from 0 to 1 at an interval of 0.02, giving
51 time data points and thus a response matrix of 51 rows by 3 columns. The true
kinetic parameters were k1 = 10 and k2 = 5. The four signal-to-noise ratios were
50:1, 25:1, 16.7:1 and 12.5:1. The five vaﬁance-covaﬁaﬁce structures have ones on
the diagonal and either 0.0, 0.2, 0.4, 0.6 or 0.8 on the off diagonals.

The results for these experiments, 1000 in all, are shown in Table 5.1.
Table 5.1 SEP for direct measure experiment, consecutive first-order reaction kinetics,

k1=10, k2=5, diagonals of variance-covariance matrix are all ones.

Results for k1.
0.0 0.2 0.4 0.6 0.8

S/N TSS_ _DET | TSS _DET | TSS _DET | TSS _DET | TSS DET

50:1 013 013} 010 0.13] 010 0.13] 0.08 0.09 | 0.07 0.07
2511 026 030)] 025 030] 022 026 015 0.16 ) 0.13 0.12
16.7:1 041 040) 035 038] 031 028]) 027 027 ] 0.18 0.21
12.5:1 055 068 038 050 048 039] 041 034 )| 023 0.23

Resuilts for ko,
0.0 0.2 0.4 0.6 0.8

SIN ISS_ _DET | TSS _DET | 1SS _DET | TSS DET | 7SS DET

50:1 005 0.05)004 005} 005 0.04]004 003]002 0.02
251 009 012010 0.10 | 0.09 0.07 | 0.05 0.07 | 0.04 0.05
16.7:1 016 017 J 016 0.14 } 012 0.11 ] 010 0.11 | 0.06 0.07
12.5:1 024 023|015 0.8 | 0.17 0.7 ] 0.14 015 | 0.11 0.10

The SEPs using the TSS and DET criteria for kj and k are shown as a
function of signal-to-noise ratio down the rows and as a function of noise structure

across the columns. The one immediately obvious trend is that the SEP increases as
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the signal-to-noise ratio decreases for a given noise structure, which is not
unexpected. At a given noise level the SEP for both criteria tends to decrease as the
variance-covariance off diagonal entries increase. Overall there appears to be little
difference between the determinant criterion and the total sum of squares criterion for

these experimental parameters.

5.3.1.2 Experiment #2

For this experiment the time axis was from 0 to 1 at an interval of 0.02, giving
51 time data points as in Experiment #1 and the kinetic parameters were kj = 10 and
k2 =5. The variance-covariance structure used the same set of off diagonal entries as
in Experiment #1. The diagonal entries were changed from all ones to three, two, and
one in order to test for differences in objective function performance under conditions

of non-constant variance. The simulation results are summarized in Table 5.2.



Table 5.2 SEP for direct measure experiment, consecutive first-order reaction kinetics
experiment, k1=10, k=5, diagonals of variance-covariance matrix are 3, 2, 1.

Results for k1.
0.0 0.2 0.4 0.6 0.8

S/N JSS__DET | 7SS _DET | TSS _DET | TSS _DET | TSS _DET

50:1 020 0201020 019 | 016 020 ]| 0.18 0.21 | 0.17 0.19
251 044 048 | 043 047 | 040 047 | 039 044 | 033 0.33
16.7:1 068 064 J 066 062 ] 057 060 ]055 0501] 053 055
12511 1099 107 097 105|065 077 |08 071 ] 0.83 0.71
Results for ka.
0.0 0.2 0.4 0.6 0.8

S/N TSS__DET | TSS _DET | 1TSS DET | TSS DET | TSS DET

50:1 0.07 -0.07 } 007 0.07 | 005 0.07 ] 0.06 0.06] 006 005
25:1 013 0.16 10143 0.15] 013 012 | 0.13 0.11 ] 0.09 0.10
16.7:1 022 023 J021 022]020 019 ] 017 0.16 | 0.15 0.17
12.5:1 033 0311032 030]020 024|025 023]023 022

As observed for Experiment #1 there is a general increase in the SEP values
for increasing noise levels at a constant noise structure. There is also a trend toward

smaller SEP values for a given noise level as the off diagonal entries in the variance-

covariance matrix are increased, although it is not as pronounced as in Experiment #1.

Overall the SEPs are larger for Experiment #2 than for Experiment #1, as would be
expected because of the larger diagonal entries in the variance-covariance matrix
which lead to a larger total variance. There appears to be no advantage of one

criterion over the other for these experimental parameters.
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5.3.1.3 Experiment #3

In order to investigate the effect of observing fewer data points on the
performance of the two objective functions only the first 35 % of the data were used
in Experiment #3. The time axis was from 0 to 0.35 at an interval of 0.02, giving 18
time data points. The kinetic parameters were kj = 10 and kj = 5. The variance-
covariance structure was all ones on the diagonal and 0.0, 0.2, 0.4, 0.6 or 0.8 on the
off diagonals. Table 5.3 displays the results for these simulations.

Table 5.3 Reduced sample size. SEP for direct measure experiment, consecutive first-order

reaction Kinetics experiment, k1=10, ko=5, observed for first 35 % of time,
diagonals of variance-covariance matrix are all ones.

Results for k1.
0.0 0.2 0.4 0.6 0.8

S/N ISS_ _DET | TSS _DET | TSS DET | TSS DET | 1SS DET

50:1 013 013 1009 0.16 ]| 010 0.12 ] 0.09 0.09 | 0.06 0.06
251 023 0291024 025021 026|017 o0.18 ]| 012 0.14
16.7:1 038 0551039 0421035 036024 020 ] 021 0.20
12.5:1 060 056 )| 046 066 | 044 051 ] 038 038 ] 025 0.25

Results for ka.
0.0 0.2 0.4 0.6 0.8

S/N ISS _DET | TSS _DET | TSS _DET | TSS DET | 1SS DET

50:1 007 0.07 | 0.06 0.07 ] 006 0.06 | 0.05 0.05 | 0.04 0.04
25:1 014 014 1045 014 | 013 0.14 ] 010 0.08 | 0.08 0.06
16.7:1 016 022 ]1025 024020 021|016 0.14 | 0.09 0.09
12.5:1 030 030027 033025 0.27 ] 022 024])] 015 0.09

Similar observations are found for these experiments as were found for
Experiments #1 and #2. The SEP increases with increasing noise level and decreases

with increasing size of the off diagonal variance-covariance entries. Experiment #1



showed similar results for kj as those found in Experiment #3, while for ko higher
error estimates in Experiment #3 are noted. This is to be expected because of fewer
data points defining the time at which species C would be observed. Again there

appears to be no clear distinction between the two criteria.
5.3.14 Experiment #4

Because the accuracy with which the noise variance-covariance structure is
generated depends on sample size (in this case on the number of time data points), a
fourth experiment was conducted using 201 time data points in order to have better
control over the noise structure. For this experiment the time axis was from 0 to 1 at
an interval of 0.005, giving 201 time data points. The kinetic parameters were k;j =
10and ky = 5. The variance-covariance structure was all ones on the diagonal and
0.0, 0.2, 0.4, 0.6 or 0.8 on the off diagonals. The simulation results are summarized

in Table 5.4.
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Table 5.4 Increased sample size. SEP for direct measure experiment, consecutive first-
order reaction kinetics experiment, k1=10, ko=5, diagonals of variance-covariance
matrix are all ones, 201 data points.

Results for k1.
0.0 0.2 0.4 0.6 0.8

SIN ISS_ _DET | TSS _DET | TSS DET | 1SS DET | 1SS DET

50:1 0.06 007 | 006 005 ) 006 005] 005 0.05] 003 0.03
25:1 013 014 | 0.10 0.14 ] 0.10 0.10 | 0.08 0.08 ] 0.06 0.06
16.7:1 022 020020 017 § 018 017 | 0.12 0.14 | 0.09 0.09
12.5:1 025 027|028 026|023 02| 018 0.19 ] 013 0.13

Results for ko.
0.0 0.2 04 0.6 0.8

SIN ISS__DET | TSS _DET | 1SS _DET | TSS DET | TSS DET

50:1 003 002003 002]0.02 002]0.02 0.02]001 0.01
251 0.03 004 | 004 004 | 003 004 ] 003 0.03] 003 002
16.7:1 009 007 007 007 )] 005 006] 006 0.05] 004 0.03
12.5:1 0.11 010 | 012 0.09 | 009 0.08 | 0.07 0.07 | 0.04 0.04

The same SEP trends are present as were found in Experiment #1. The SEP
values are lower in this experiment when compared with Experiment #1, as would be
expected, because of the increased number of time points observed. There still

remains an unclear distinction between the two criteria.

5.3.1.5 Experiment #5

A fifth experiment was conducted in order to test if a difference in the
objective function performance could be detected with poorer time resolution. The
kinetic parameters were set to k1 = 8 and ko = 6. The time vector was from O to 1 at
an interval of 0.02, giving 51 time data points. The variance-covariance structure was

all ones on the diagonal and 0.0, 0.2, 0.4, 0.6 or 0.8 on the off diagonals.



Table 5.5 displays the simulation results for these 1000 experiments. Similar
observations, as noted in the other experiments, may be made about the results from
this experiment. The SEP increases for a decrease in signal-to-noise ratio and

decreases as the noise structure is increased.

Table 5.5 Poorer time resolution. SEP for direct measure experiment, consecutive first-order
reaction kinetics experiment, k1=8, ko=6, diagonals of variance-covariance matrix

are ali ones.

Results far k1.
0.0 0.2 0.4 0.6 0.8

S/N ISS _DET | TSS _DET | TSS _DET | TSS DET | TSS DET

501 008 "0.09 | 0.06 0.09 | 007 0.08 ] 006 0.07] 005 0.05
251 018 022 J 018 023|016 0.18 ] 0.10 0.12 | 0.10 0.09
16.7:1 028 029 | 025 028 ]023 020019 0.19 ] 0.13 0.16
12.5:1 039 050 )029 034]037 027029 023] 016 0.16

Results for ka.
0.0 0.2 0.4 0.6 0.8

S/N 1SS _DET | TSS _DET | TSS _DET | TSS DET | 1SS DET

50:1 007 006 | 0.06 007 | 0.06 006 ]| 0.05 0.04 | 0.03 0.03
251 013 016 | 0.14 0.14 J 012 0.11 | 0.07 0.09 | 0.06 0.06
16.7:1 022 023|022 020]016 0.16 | 0.13 0.14 | 0.09 0.10
12,51 033 032021 025]024 023]018 020 ) 014 0.13

For the indirect observation experiments it has been shown that the SEP for
the parameter estimates generally increases with decreasing signal-to-noise ratio and
decreases for increasing variance-covariance structure. Better parameter estimates are
found if more time data points are used because of the signal averaging. When the
diagonal terms in the variance-covariance noise structure are larger, the noise
variance is larger and the parameter estimates are poorer. No clear distinction is

found between the two criteria for this model and these experiments.
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5.3.2 Indirect Observation Experiments

For the indirect observation study two different experiments were simulated.
One in which spectral measurements were made as a first-order consecutive reaction
occured and a second in which spectral measurements were made during a pH
titration. For each experiment the same three spectral features were used as described
in the Section 5.2 and shown in Figure 5.4. In each case four signal-to-noise ratios
and six variance-covariance structures were tested. Three singular vectors were used
to represent the compressed data. A comparison was made between the total sum of
squares (TSS), total sum of squares with weights (TSSW) and the determinant

criterion (DET). The details unique to each experiment are presented below.

5.3.2.1 First-order Consecutive Reaction Results

For the first-order consecutive reaction study two experiments were
performed, one at low spectral overlap and one at high spectral overlap. For the low
spectral overlap experiments each of the three spectral features has a half width at half
height of 50 nm. For the high overlap experiments each has a half width at half
height of 73.5 nm. Each response matrix is 40 time points by 60 spectral points. The
kinetic parameters were kj = 10 and k2 = 5 in both cases. The SIMPLEX stopping

tolerance was set to 0.001.



5.3.2.1.1 Low overlap results

The results for the low overlap experiments are displayed in Tables 5.6 and
5.7. Table 5.6 displays the results for kj and Table 5.7 displays the results forks, A
decrease in the signal-to-noise ratio leads to an increase in the parameter SEP, as
expected. The SEP for the TSS criterion is highest in nearly all cases. There is a
general increase in SEP with an increase in the variance-covariance structure from 0.0
to 0.8 for the TSS criterion at a constant noise level. There is a general trend of
decreasing SEP as the variance-covariance structure increases for a given noise level
for the DET criterion. This is especially evident at the lower signal-to-noise ratios.
The SEP for the TSSW criterion is fairly constant with noise structure at low noise
intensity, but at the highest noise level TSSW shows an increase in SEP with

increasing noise structure.
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Table 5.6 SEP for indirect, consecutive first-order reaction kinetics experiment, low overlap,
results for k1.

0.0 0.2 0.4

S/N ISS__TSSW__DET | TSS _TSSW DET | 7SS TSSW DET

100:1 0.29 016 0.18 | 0.47 016 0.16 | 0.57 014 0.14
50:1 0.63 030 033 | 096 030 0.30 | 1.19 028 0.26
25:1 1.29 0.58 0.79 | 1.64 057 0.70 | 2.01 060 0.61

12.5:1 2.25 1.44 1.72 | 4.35 154 159 | 4.73 4.62 1.24

0.5 0.8 0.9-0.0

S/N ISS _TSSW__DET | TSS _TSSW_ DET ! 1TSS TSSW DET

100:1 0.63 0.13 0.13 ] 0.88 009 0.09 | 0.72 0.32 0.30
50:1 1.31 | 027 024 | 146 026 0.5 f 1.29 0.75 0.64
2511 2.14 0.65 0.55 | 3.01 093 031 ] 253 1.41 1.33
12.5:1 544 588a 1.17 |22.73 1538b 0.77 | 487 159.06c 2.71

a. Two results over 20. New SEP after eliminating two outliers is 2.8.
b. Two results over 20. New SEP after eliminating two outliers is 2.9.
c. Two results over 20. New SEP after eliminating two outliers is 4.0.

Table 5.7 SEP for indirect, consecutive first-order reaction kinetics experiment, low overiap,
results for ko.

0.0 0.2 0.4

SIN JSS_ _TSSW_ DET | TSS _TSSW_ DET | TSS TSSW DET

1001 0.14 004 0.06 | 0.22 004 0.05] 0.28 004 0.04
50:1 0.34 009 0.12 ] 0.53 009 0.11 | 0.69 007 0.09
251 0.77 0.18 0.26 § 0.81 019 022 | 0.95 017  0.19
12.5:1 1.25 043 078 | 1.42 044 073 | 1.43 045 046

0.5 0.8 0.9-0.0

SIN ISS__TSSW__DET | 1TSS _TSSW_ DET | TSS TSSW DET

100:1 0.31 0.04 0.04 | 0.60 002 0.03 | 0.33 013 0.13
501 0.79 007 0.09 | 0.87 0.05 0.05 | 0.79 030 0.29
25:1 1.00 016 0.17 | 1.33 013 010 | 1.20 079 072

1251 1.32 0.43 0.4t | 1.46 077 023 | 1.41 113 124




The overall result is that the TSSW criterion may be somewhat better at the
lowest variance-covariance structure, but at high noise and high variance-covariance
structure the determinant criterion is superior. In fact, in some cases (S/N = 12.5:1
and noise structure at 0.6 and 0.8), the TSSW diverged to grossly incorrect estimates.
Even if these outliers are eliminated from the SEP calculation, the DET criterion was
still a better performer.

For the diagonal ridge noise structure, 0.9-0.0, the TSSW for k; performs very
poorly at the lowest signal-to-noise ratio, converging to grossly incorrect estimates in
two cases and giving an SEP of 159.06. The determinant criterion performs better
even when these outlier results were eliminated from the TSSW SEP calculation. For
the ko parameter very similar performance for the DET and TSSW objective

functions was found for the diagonal ridge structure.

5.3.2.1.2 High overlap results

For the high spectral overlap experiments the results are displayed in Tables
5.8 and 5.9. For these experiments the overall SEP increased as compared to the low
overlap experiments due to poorer spectral resolution. The same trends were found as
were noted for the low overlap case except that they became evident with less
structure in the noise. For example, the TSSW criterion diverges to grossly incorrect
parameter estimates for kj at a noise structure level of 0.2 for the high overlap case,
while the difference does not become evident in the low overlap case until a noise
structure level of 0.4 or 0.5. Note also that the determinant criterion was never found

to diverge to grossly incorrect parameter estimates.

186



187

Table 5.8 SEP for indirect, consecutive first-order reaction kinetics experiment, high overlap,
results for k1.

0.0 0.2 0.4

—S/N__ | TSS _TSSW _DET | TSS _TSSW DET | 1SS TSSW DET

100:1 0.45 024 0.25 | 0.83 024 022 | 1.12 023 0.20
50:1 1.09 052 048 | 1.66 0.53 0.44 | 1.96 050 0.39
251 1.65 104 1.15 ] 2.23 094 098 | 2.71 113  0.83

12.5:1 3.34 329 258 f 473 652a 227 | 690 10.73b 1.93

a. Three results over 20. New SEP after eliminating 3 outliers is 3.0.
b. Three results over 20. New SEP after eliminating 3 outliers is 4.4.

0.5 0.8 0.9-0.0

SIN ISS _TSSW _DET | TSS _TSSW_DET | TSS TSSW DET

100:1 1.17 023 0.18 | 1.31 0.25 012 | 1.34 0.54 0.49
5011 1.82 049 035 | 2.01 0.49 0.23 | 1.92 1.27 1.03
2511 2.94 123 0.74 | 6.61 1.77 0.47 | 3.20 2.13 1.95
12.5:1 8.18 13.77a 1.78 {3046 26262b 1.03 | 659 173.81c 3.99

a. Six results over 20. New SEP after eliminating six outliers is 3.8.
b. Seven results over 20. New SEP after eliminating seven outliers is 3.1.
c. Eleven results over 20. New SEP after eliminating eleven outliers is 4.5.
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Table 5.9 SEP for indirect, consecutive first-order reaction kinetics experiment, high overiap,
results for ko.

0.0 0.2 0.4

S/N TSS _TSSW__DET | TSS _TSSW_ DET | TSS TSSW DET

100:1 0.24 005 0.06 |} 043 005 0.05 | 0.64 004 0.04
50:1- 0.63 0.11 0.12 | 1.05 0.1 0.10 | 1.18 009 0.09
2511 0.87 019 027 | 1.08 022 022} 1.32 025 0.19

12.5:1 1.51 062 0.78 | 1.51 052 072 | 1.39 046 057

0.5 0.8 0.9-0.0

SIN ISS__TSSW_ DET | TSS _TSSW_ DET | TSS TSSW DET

100:1 0.68 004 0.04 ] 0.74 0.02 0.02 | 0.75 017 047
5011 1.00 008 0.08 | 1.1 006 0.05] 1.10 044 043
251 130 - 022 0.17 ] 1.46 0.32 0.10 | 1.41 114 093
12.5:1 1.40 070 052 | 1.60 0.46 0.21 | 1.63 1.52 1.43

The performance of the two criteria is more comparable for the ko parameter
at the low noise sturcture experiments. At the highest noise structure level, 0.8, and
two lowest signal-to-noise ratios, 25:1 and 12.5:1, the determinant criterion is better

by a factor of three and two, respectively.
5.3.2.2 pH Titration Experiments

For the indirect observation of a changing equilibrium, two experiments were
performed, one at low spectral overlap and a second at high spectral overlap, as in the
consecutive first-order reaction simulations discussed in Section 5.3.2.1. The true
PKa values were k1 = 6, ko =7, and k3 = 8. Six different variance-covariance

structures were tested at four noise levels.
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5.3.2.2.1 Low overlap results

Standard error prediction results for ki, k2 and k3 for the low overlap
experiments, are displayed in Tables 5.10, 5.11 and 5.12, respectively. The familiar
trend of increasing SEP with increasing noise may be seen in these tables. The TSS
criterion is the poorest performer under all conditions tested. There appears to be a
general trend of increasing SEP for the TSS and TSSW with increasing noise
structure, for a constant signal-to-noise ratio. The DET criterion SEP generally
decreases as the noise structure increases for a constant signal-to-noise ratio. These
trends give the determinant criterion a distinct advantage with as little noise structure
as 0.2. The kj SEP using the determinant criterion is as much as ten times better than
the TSSW SEP at the 0.8 noise structure level with a 25:1 signal-to-noise ratio. For
the diagonal ridge structure the determinant criterion is more advantageous for

determining kj at high noise levels.
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Table 5.10 SEP for indirect pK determination, low overlap, results for k1.

0.0 0.2 0.4

SN ISS _TSSW__DET | 7SS _TSSW_DET | TSS TSSW DET

200:1 0.04 0.01 0.01 ] 0.06 0.01 0.01 | 0.09 0.02  0.01

100:1 0.08 0.01 0.02 § 0.09 003 0.02 ] 0.19 003 0.02

50:1 0.27 0.03 0.03 ] 0.35 005 0.03 ] 034 006 0.03

25:1 0.33 006 0.08 ] 0.44 0.13 0.07 ] 0.44 017 0.05
0.5 0.8 0.9-0.0

S/N TSS _TSSW _DET | TSS _TSSW_ DET | TSS TSSW DET

200:1 0.10 002 0.01 ] 0.13 002 001 | 0.14 002 0.02
100:1 0.23 0.04 0.01 } 0.19 005 0.01 | 0.23 005 0.04
50:1 0.37 0.07 0.02 | 0.33 0.17 0.02 | 047 010  0.08
25:1 041 . 019 0.05 ] 0.62 029 0.03 | 0.50 0.31 0.24

Table 5.11 SEP for indirect pK determination, low overlap, results for k.

0.0 0.2 0.4

SIN TSS _TSSW__DET | TSS _TSSW_ DET | TSS TSSW DET

200:1 0.06 0.01 0.02 } 0.09 002 002 ] 0.15 0.03 0.01
100:1 0.12 0.02 0.03 | 0.12 004 002 | 0.27 005 0.02
50:1 0.35 0.04 0.06 | 0.47 0.08 0.06 | 0.59 010 0.05
25:1 1.16 010 012 | 0.92 0.21 0.13 | 0.95 046  0.11

0.5 0.8 0.9-0.0

SIN TSS__TSSW _DET | TSS _TSSW_ DET | TSS TSSW DET

200:1 0.1 003 0.01 ] 0.16 0.03 0.01 | 0.20 004 0.02
100:1 0.33 007 0.02 } 0.36 0.08 0.01 | 0.37 0.08 0.05
501 0.54 012 0.05 | 0.84 0.21 0.03 | 0.54 0.16 0.1
251 0.70 0.61 0.08 | 0.86 050 0.07 | 1.18 073 034
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Table 5.12 SEP for indirect pK determination, low overlap, results for k3.

0.0 0.2 0.4

S/N 1SS _TSSW_ _DET | TSS _TSSW DET | TSS TSSW DET

200:1 0.04 0.01 0.01 | 0.06 0.01 0.01 | 0.12 0.02 0.01
100:1 0.09 0.01 0.01 ] 0.14 0.02 0.02 | 0.29 003 0.02
50:1 0.40 002 0.03 | 0.66 005 0.04 | 0.68 0.08 0.03
251 0.70 0.07 0.06 | 0.72 023 0.07 ] 0.96 034 0.07

0.5 0.8 0.9-0.0

S/IN ISS_ _TSSW_ _DET | TSS _TSSW_DET | TSS TSSW DET

200:1 0.09 0.02 0.01 ] 0.1 0.02 0.01 ] 0.13 003 0.02
100:1 0.36 005 0.01 ] 046 0.05 0.01 | 0.50 005 0.06
50:1 0.74 010 0.03 | 0.69 012 0.02 | 0.67 013 0.09
25:1 074 - 035 0.05 | 0.65 062 0.04 | 0.62 045 037

5.3.2.2.2 High overlap results

The results for the high overlap experiments are displayed in Tables 5.13,
5.14, and 5.15. They show the same general trends as observed in the low overlap
case. Overall the SEPs are larger than the lower overlap experiments, as expected.

Although there were no goss divergence problems experienced by the TSSW
criterion in these experiments, the determinant criterion is found to have superior
performance especially at the low signal-to-noise ratios and the high variance-

covariance noise structure.
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Table 5.13 SEP for indirect pK determination, high overlap, results for k1.
0.0 0.2 0.4

S/N TSS _TSSW _DET | 7SS _TSSW_DET | TSS TSSW DET

200:1 0.08 0.01 0.01 | 0.17 0.01 0.01 | 0.19 0.02 0.01
100:1 0.16 0.01 0.02 | 0.20 003 0.02 | 0.20 005 0.02
50:1 0.49 0.03 0.03 | 0.32 006 0.03 ] 0.39 007 0.03
25:1 0.43 0.07 0.06 ] 0.53 013 0.06 | 043 017  0.05

0.5 0.8 0.9-0.0

S/N ISS _TSSW_ _DET | TSS _TSSW_DET | TSS TSSW DET

200:1 0.14 002 0.01 ] 0.18 0.02 0.01 | 0.18 0.02 0.03
100:1 0.24 0.05 0.01 | 0.31 0.05 0.01 | 0.20 006 0.04
50:1 039 - 007 0.02 | 0.33 0.09 0.02 | 0.81 010 0.07
251 0.42 0.17 0.05 | 0.59 024 003 | 0.63 026 035

Table 5.14 SEP for indirect pK determination, high overlap, results for ko.
0.0 0.2 0.4

S/N TSS _TSSW_ _DET | TSS _TSSW_DET | TSS TSSW DET

200:1 0.10 0.01 0.02 | 0.19 0.02 0.02 ] 0.23 0.03 0.02
100:1 0.27 002 0.04 ] 0.28 0.06 0.04 | 0.30 007 0.03
5011 0.56 0.05 0.06 | 0.58 009 008 | 0.65 0.11 0.06
25:1 0.84 012 012 | 098 027 0.14 | 1.00 036 0.12

0.5 0.8 0.9-0.0

S/N ISS _TSSW _DET | TSS _TSSW_DET | TSS TSSW DET

200:1 0.25 003 001 | 0.27 004 001 ] 0.26 005 0.03
100:1 0.36 0.08 0.03 ] 0.50 008 0.02 | 047 009 0.07
50:1 0.72 0.11 0.05 | 0.70 0.18 0.04 | 058 018 017
251 0.77 038 009 | 0.84 053 0.07 | 1.01 056 0.35
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Table 5.15 SEP for indirect pK determination, high overlap, results for k3.
0.0 0.2 0.4

S/N ISS_ _TSSW_ _DET | TSS _TSSW_ DET | TSS TSSW DET

200:1 0.07 0.01 0.01 } 0.10 0.01 0.01 | 0.13 002 0.01
100:1 0.17 0.01 0.02 | 0.39 0.03 0.02 | 0.39 0.05 0.02
50:1 0.75 003 003 ] 072 006 0.04 | 0.84 008 0.04
251 0.80 007 0.07 | 144 0.i18 0.08 | 0.79 0.31 0.07

0.5 0.8 0.9-0.0

S/N ISS__TSSW _DET | TSS _TSSW DET | ¥SS TSSW DET

200:1 0.20 003 001 ] 0.18 0.03 0.01 | 0.18 0.03 0.02
100:1 0.49 005 0.01 | 0.69 005 0.01 ]| 056 005 0.05
5011 085 - 0.09 003} 077 017 0.02 | 0.73 0.16  0.23
251 0.97 052 0.06 ] 0.68 046 0.04 | 1.14 038 045

5.4 Conclusions

The choice of the proper objective function for multiresponse nonlinear
parameter estimation has been considered. A distinction was drawn between the full
rank or direct observation experiment, and the rank deficient or indirect observation
experiment. The model for a first-order consecutive reaction was used in the full rank
experiments and two objective functions were tested, the TSS and the DET criteria.
There was no clear distinction between the two objective functions based on
parameter SEP comparisons. While these simulations do not support the use of one
criterion over the other for the full rank case, they do suggest that the determinant
criterion be used because, in theory, the determinant criterion should perform better

and has been shown not to perform significantly worse than the TSS in these studies.
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For the rank deficient experiments, three objective functions were considered,
(1) TSS, (2) TSSW and (3) DET. Two experimental situations were considered, a
consecutive first-order reaction and a pH titration, using spectral measurements as the
indirect observation technique in both cases. The TSS is never recommended as an
objective function. The TSSW has some advantage at low noise intensity and
structure, but the determinant criterion is a better performer in the high noise
intensity, high noise structure situations. In light of the high noise structure observed
experimentally it is suggested that the DET criterion be used for highest parameter

precision.
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Appendix A NMR Determination of Vinyl Acetate
Concentration in Selected Elvaxe
samples

Proton nuclear magnetic resonance spectroscopy (NMR) was used to confirm
the vinyl acetate concentration in the Elvax® samples used in the infrared emission
study discussed in Chapter 3. Samples analyzed were 28, 18, 15, 9.5 and 9.0% vinyl
acetate concentration corresponding to the Du Pont product numbers 265, 450, 550,
770, and 750, respectively. Each sample was analyzed in triplicate by dissolving
approximately 0.18 grams in enough o-dichlorobenzene to produce a solution of
approximately 2.5 wt. %. All samples were soluble at 80 °C and the NMR spectra
(200 MHz) were collected at 80 °C.

The spectrum showed four peaks at 0.5, 0.9, 1.1 and 1.8 ppm. The 1.8 ppm
resonance is associated with the methyl protons on the acetate group, while the other
three resonances are associated with the ethylenic protons, although only half of the
1.1 ppm peak area is associated with the ethylene portion of the molecule. The peak
assignments are displayed in Table A.1

Given these resonances one third of the P4 area is proportional to the number
of moles of vinyl acetate and the sum of one half P3 and P2 and P1 divided by four is
proportional to the number of moles of ethylene. The following formulas state this

mathematically
Moles of vinyl acetate o %* P2 (A.1)

%+P2+Pl

Moles of ethylene o< —F (A.2)



The molar ratio of vinyl acetate to ethylene may be found by dividing

equation A.1 by A.2. The weight percent is then computed as

wt % vinyl acetate = 86

where 86 is the molecular weight of vinyl acetate and 28 is the molecular weight of

ethylene.

86 * mole ratio

* mole ratio + 28 100%

Table A.1 Peak assignments for NMR analysis of Eivax® samples.

(A.3)

Peak Label Resonance Frequency Assignment
(ppm)

Peak 1 (P1) 0.5 Methyl associated
with ethylene
Ethylenic protons

Peak 2 (P2) 0.9 associated with
polyethylene
backbone

Peak 3 (P3) 11 Ethylenic

Peak 4 (P4) 1.8 Methy! protons of vinyl
acetate group

Table A.2 summarizes the predicted and expected weight percent. An

ANOVA was performed on the data where the different samples were the treatments.

The within treatment variance estimate was found to be 0.83 wt%?2 giving an

estimated standard deviation of 0.91 wt%.
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Table A.2 Expected and measured viny! acetate concentrations.

Du Pont Product wt % Vinyl Acetate  wt % Vinyl Acetate

Number Expected Found
265 28 27.99
265 28 20.38
265 28 28.86
450 18 18.56
450 18 17.08
450 18 20.14
550 15 16.94
550 15 15.90
550 15 16.15
770 9.5 11.73
770 9.5 10.40
770 9.5 10.00
750 9 9.78
750 9 10.15
750 9 10.70




Appendix B Observations on the Effects of Closure,
Linear Baselines and Mean Centering on
Exploratory Multivariate Data Analysis

B.1 Introduction to Appendix B

Closed data sets are conventionally characterized by the unit-sum constraint.
They occur in many areas of the natural sciences, for example, mineral compositions
summing to 100 % in geochemical samples. According to Reyment (1) too little
attention has been paid to the proper statistical analysis of these data, save a recent
contribution by Aitchison (2,3). Reyment states that the incorrect application of
statistical techniques to closed data sets will at best lead to misleading results and at
worst to just plain wrong results. He characterizes the situation as grave. Misleading
results are especially prevalent in multivariate statistical analysis of closed data sets.
Aitchison has given the first unified treatment of the analysis of compositional data
and offers alternative approaches which are distortion free. He demonstrates the
utility of the log-ratio transformation applied to closed data for increased
interpretability of principal components.

Moderm analytical measurements may give rise to data that are closed in the
conventional sense and further may give rise to a more subtle closure effect when
systems are observed by making indirect multivariate measurements. If, for example,
spectral measurements are recorded for a series of multicomponent samples, then the
resulting data matrix may be represented as an outer product of two matrices, call

them submatrices (assuming linearly additive data), either of which may have closure
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in the conventional sense, and thus the product matrix (the observed data matrix ) will
exhibit properties resulting from a "propagation” of the conventional closure.

Johansson et al. considers the consequence of normalization of the data (a
class of closure as discussed below) with respect to information loss and the effects
on the interpretability of principal component plots (4). Martens and Naes have
recently commented on closure and its relationship to multivariate calibrations (5).
The determination of pseudorank and its relationship to closure have been discussed
by Cochran and Horne for the specific example of a kinetics experiment (6). They
analyzed the dispersion and covariance matrix and gave a set of rules for relating the
pseudorank as found from each analysis to the number of chemical species in a series
of samples.

The purpose of this appendix is to discuss the closure problem within the
context of analytical chemistry, specifically with respect to indirect multivariate
measurements. The main thrust of this work is two fold 1) discuss the effect closure
can have on data matrices that result from indirect multivariate observations, i.e.,
spectral data, specifically with respect to the interpretation of the pseudorank and 2)
offer a simple systematic approach for the characterization of the submatrices making
up the indirect observation matrix. The characterization procedure will clarify what
statements may be made about the submatrices with respect to closure and/or baseline

properties.

B.2 Discussion

In this appendix scalars will be denoted by plain lowercase letters, vectors by

bold lowercase letters, and matrices by bold uppercase letters. Vectors will be



column vectors, and row vectors will be represented as a column vector transposed
(using a superscript T). The inner product of two vectors with an equal number of
elements, xTy, is a scalar, and the outer product, xyT, is a matrix.

The concept of rank will be involved in the discussion and so as to orient the
reader the following definitions are given. Rank is the maximum number of outer
products that may be computed from the decomposition of a data matrix and is less
than or equal to the smaller of the number of rows or columns of the data matrix. A
single outer product has rank one. Pseudorank is the number of "significant” outer
products that may be computed and is therefore always less than or equal to the rank.
A matrix is said to'be full rank if the pseudorank = rank = min(rows, columns). In
this appendix a matrix is considered rank deficient if the pseudorank < min (rows,
columns).

It may be noted that most data matrices dealt with in analytical chemistry are
rank deficient, in that the pseudorank for a 50 by 500 matrix may be only three. The
pseudorank is associated with the number of chemical species for data that are
linearly additive (e.g. obeys Beer's law in spectroscopy). For nonlinear data the
pseudorank may or may not be very informative. There are many methods for
pseudorank determination which will not be explored here (7-14). The following will
distinguish two types of closure, demonstrate the equivalence of a baseline with one
of the closure types, and propose a method to characterize data matrices with respect

to closure and baseline properties.
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B.2.1 Distinction of Classes of Closure

The first class of closure that has been observed will be denoted as imposed
closure. It is characterized by the imposition of a constant norm on each of the rows
or columns of a data matrix or the imposition of an arithmetic relationship on the
rows or columns that is the result of a known or suspected theoretical behavior, for
instance a stoichiometric relationship. This type of closure is usually the result of a
preprocessing step and is the conventional closure type. Three common processing
procedures are 1) dividing each element in a row or column by the sum of the
absolute values of all elements, 2) dividing each element by the square root of the
sum of the squared element entries, and 3) dividing each element by the largest
element. All of these operations may be thought of as imposing a particular unit
vector norm.

In general, vector norms, known as the p-norms, are given for a vector x by

Il x I =[Z(Ixil)l/p] p=12.#00 ;
1

II'x lloo =max (Ix;1) (B.1)

It may be seen that the three common preprocessing steps given above are
simply the 1, 2 and infinity p norms. The imposition of a unit 1-norm, or division of
each row or column entry by the sum of absolute values of all row or column entries,
may be thought of as a unit area norm and is most commonly found in self-modeling

curve resolution (15, 16). The 2-norm, division of each entry by the square root of



213

the sum of squared entries is the unit length norm and is commonly found as part of
the autoscaling process. Autoscaling is used if the response variables have different
units of measure. The infinity norm, division of each entry by the largest entry is
common practice in the reporting of mass spectral data. The detection of the 1 and 2
norms is a trivial observation, the sums of the rows or columns add to a constant for
the 1-norm or the diagonal entries for XXT or XTX are unity for a matrix with a
constant 2-norm imposed on the rows or columns, respectively. Imposition of the
infinity norm results in a loss of more information than imposition of the other two
norms and may be observed by noting that the maximum entry in each row or column
is one.

The imposition of an arithmetic relationship such as that resulting from
stoichiometry may be detected by an eigenvector analysis. Box et al. have shown
how exact linear relationships may be found by a comparison of the eigenvalues with
the expected value of the eigenvalues (17).

The second class of closure will be denoted as propagated closure. This class
of closure is found in matrices that can be written as the product of two other
matrices, either or both of which have an equation that links the entries in the rows or

columns. A linking equation for the columns of a matrix may be represented as

N
Yaiij=1 (foralli) (B.2)
=1

or in matrix notation

Ap=1 (B.3)



where 1 is a vector of ones and B is a vector of linking coefficients, the entries of
which are not necessarily all equal. Note that a specific example of this
representation of closure is the unit 1-norm provided the data matrix (A in equation
B.3) has all positive elements and the B is a vector of ones. The 2-norm does not fall
into this type of relationship as it is not possible to express the relationship between
the rows or columns of a matrix that has a 2-norm relationship using equation B.3
because the linking coefficients are different for each row or column. Relationships
involving stoichiometric consideration can be represented by equation B.3.

In practice this type of closure can be found, for example, in multivariate
calibration where the response matrix X has propagated closure because it can be
written as the product of a concentration matrix and a pure component response
(spectral) matrix, in which the experiment has been designed such that the
concentrations of the species in each sample sum to the same constant. A completely
analogous situation occurs for the multivariate observation of kinetic experiments in
which the reacting species always sum to a constant initial concentration of reactants.
A matrix with propagated closure does not display any of the obvious properties of
imposed closure (i.e. constant row or column sums etc.), but does display other more

subtle effects.
B.2.2 Equivalence of Propagated Closure and a Baseline

The detection of propagated closure is not as obvious as imposed closure and
is further complicated by its equivalence to a simple baseline offset. A simple
baseline offset is defined as the addition of the same vector to each of the rows or

columns of a data matrix and may be represented as an additional outer product or
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component of the form le, for adding the vector by to all the rows, and bclT for
adding the vector b to all the columns. A more complex baseline offset would
involve the addition of different amounts of a constant vector to each of the rows or
columns. This type of offset may still be represented as an outer product, but with the
vector of ones replaced by a nonconstant vector. Either type of offset may be treated
as an additional component, but only the simple offset can be shown to be
mathematically equivalent to propagated closure.

The equivalence of simple baseline offsets and propagated closure may be
shown as follows. A matrix X, with M rows and N columns representing two
chemical componénts and containing a simple baseline offset added to each row may

be written as

X=CRT +B, = clr'lr + czrg + lbf (B.4)

This equation, as well as all subsequent equations, may represent either a noise free
data matrix, where exactly three outer products can represent the data, or an
approximation to a data matrix with measurement noise, where three "significant"
outer products can represent the data. Compare equation B.4 to a matrix possessing a
linking equation across the rows of the C matrix containing three components which

may be written as
X=CRT= clr'f + c2r'2r + c3r§ (B.5)

Because the linking equation is given by Byc; + Bycy + Byes =1, ¢, =(1 - Boc, -

B1¢3)/B;, equation B.5 becomes
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X= (1 - ; “Bye )r'{+ czrg + c3r§ (B.6)
1

tz(rg' Ez-r'f)+ c3(r3 E3’-|-TJ ﬂlllr'f (B.7)

=7 + 573 + 1bT (B.8)

which shows that mathematically closure linking the columns of C (which span the
column space of X) and a baseline added to every row of the matrix X are equivalent
(18). Similarly, a linking equation in the columns of R (which span the row space of
X) is equivalent to a baseline offset added to each column.

The above representation of closure as an outer product with a vector of ones
suggests a method for detection. This may be performed by the projection of a
column or row of ones onto the appropriate space. For a rank deficient matrix the
projection may be computed by using a suitable representation of the column or row
space, for exémple, the columns of U or V, respectively from the singular value
decomposition of X = USVT that has been appropriately truncated. If the operation of
UUT or VVT on a vector of ones returns a vector of ones, then the column or row
space, respectively has either closure or a baseline.

If the data were corrected for the baseline offset, then the above test could be
used to indicate the presence of closure. This may be very helpful in a kinetics
experiment in which the observation should be closed and a positive indication of
closure for baseline corrected data would demonstrate that all the species in the

observed reaction are giving rise to a signal. Clarification of what may be interpreted



from a change in pseudorank upon mean centering is found by the application of the

following methodology.

B.2.3 Methodology for Rank Interpretation

The pseudorank of a data matrix may or may not be related to the number of
chemical components present in the samples depending on the structure of the matrix.
A method for exploratory data analysis using mean centering is presented to aid in
determining the properties of the submatrices making up a data matrix and to show
how the pseudorank is related to the number of chemical components. It is
appropriate at this point to precisely define a few terms. Column centering a matrix is
defined as the subtraction of the mean of each column from every entry in that
column. The result is a zero sum for each column. Similarly, row centering a matrix
is defined as the subtraction of the mean of each row from every entry in that row.
The result is a zero sum for each row.

Mean centering is used in the following three step procedure summarized in
graphical form in Figure B.1. First, determine the pseudorank of the raw data matrix.
This will determine if the matrix is full rank or rank deficient. Second, determine the
pseudorank of the column centered matrix, and third, determine the pseudorank of the
row centered matrix. The procedure can be followed in Figure B.1 for a mawix (M by
N) with M < N. The results for a matrix (M by N) with M > N are obvious. An
important distinction is drawn between full rank and rank deficient matrices, since

each have different geometric properties with respect to centering.
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The behavior of the full rank matrix with respect to centering is
governed by a type of degrees of freedom restraint since the pseudorank
equals the rank. This is in contrast to the rank deficient case where the
pseudorank is less than the rank. As may be seen in Figure B.1 one of the
possibilities for the full rank case is missing. This missing option
corresponds to not having a rank reduction upon centering along the rank
determining dimension (the lesser of the rows or columns). The reason the

rank must always be reduced is a demonstration of the degree of freedom

m
constraint mentioned above in that after centering, 2 Xij=0forj=1,.N,
i=1

which is a linear dependence, and will force rank reduction. Also, case two
shown in Figure B.1 will only arise with nonsquare matﬁces for the same
reason.

In Figure B.1 the row and column centering results produce six
submatrix classifications. The closure and baseline properties associated

with each position are shown pictorially in Figures B.2 through B.6.
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i
>“f

1. X= l Ll 1 (+ Br) (+Bc)
2. X= [ :l.l ! (+ Bc)

Case 2

All other full rank matrices

Figure B.2 Possible matrix structures corresponding to Cases 1 and 2.



Figure B.3 Possible matrix structures corresponding to Case 3.
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Case 4

3. X= . , +B;

Figure B.4 Possible matrix structures corresponding to Case 4.
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Case 5

TL_I-
B

+ B,

2. X= .i . (+BC)

3. X= L ] +Bc

|

Figure B.5 Possible matrix structures corresponding to Case 5.
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Figure B.6 Possible matrix structures
corresponding to Case 6.

The background matrices B; and B are given as a vector added equally to all of the
rows and columns respectively, and are defined pictorially in Figure B.2. The arrows
through the matrices indicate where the closure relationship is located. For example,
in Figure B.2, case 1 number 1, the horizontal arrow means that there is closure
linking the vectors spanning the column space (the columns of C). Similarly, the
vertical arrow means that there is closure linking the vectors spanning the row space
(the rows of RT). The parenthesis around the addition of the background indicates
that the matrix will be in this category whether the background is present or not. Note
that closure is not indicated along any of the non-rank-determining dimensions.
Interpretation of the pseudorank however, does depend on the knowledge of the
presence of the background. In all cases the smaller calculated (pseudo)rank
represents the number of independently varying chemical components.

The statements that may be made regarding the closure and baseline
characteristic of the submatrices after application of the three step procedure to the
raw data matrix may be derived mathematically. These mathematical manipulations

aid in the understanding of how the pseudorank can be interpreted for a given
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situation. For example, consider the matrix X in equation B.5, and assume the f; = 1

for alli. The rank of the raw matrix is three, since it may be written as the sum of

’

three outer products (see equation B.8). A matrix with the mean of the columns in

every row may be written as
;(c = Ellr'{ + Ezlrg + 'c'3lr§ (B.9)
where c; are the means of the ¢;. The column centered matrix f(c is
X.= el + cyr] + car - (Ellr'f +c,drs + Ealrg) (B.10)

Using the given closure information, ¢ +tey+eg= 1 and substituting for <)
Re=(1-p-¢5-51) 1T+ (51 ) J 4 (es-50) ] D)

ic = cz(-rl + r2) + c3( rl+ r3 (r'{ c1 1 czr; c3r§) (B.12)
It can be shown thatif ¢; + ¢, +¢3 =1, ¢, +Cy+ cy = 1. Substituting forc,,

Xc= cz(-r] + r2) +

c3( -y + r3 + l(r1 (l -C,- 53) r'f-Ezrg - E3r§) (B.13)

X.= (cz- 132) ( T+ r2) (c3- 153) ( -r) +T3 ) (B.14)
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which is rank 2. A matrix with the mean of the rows in every column may be written

as
Xr=T1e 1T+ 7,017+ Tyes17 (B.15)
Row centering gives
X, = clr'f + czr;: + c3r§ - (?lcllT + ?2c21T +'f3c3lT) (B.16)
X, = cl(r'f -T, lT)+ cz(rg - ?21T)+ c3(r§ - ?slT) (B.17)

Using the closure information,

K= (1- - )T - 51T of S-S0 )r o1 -T1T)  ®18)

X, = cQ(r; -1+ (?1 - ?2) lT)+
c3(r§ - r? + (?1 - ?3)1T)+1(r'f - ?llT) (B.19)
which is rank 3. The matrix X therefore is a member of case 4, specifically matrix 2

shown in Figure B.4. In this case, the pseudorank calculated for the raw matrix 3 is

the number of chemical species giving rise to a signal. In the case that there is no



227

closure and a baseline is added to every row (case 4, matrix 3), the pseudorank of the
raw matrix would be one more than the number of chemical species.

The utility of these results is best demonstrated by an example. Consider
monitoring a chemical reaction at J wavelengths over a period of time collecting I
spectra and saving the results in a matrix dimensioned I rows by J columns (I<J).
Suppose it is known that the background spectra in this particular type of
spectroscopy are constant over all wavelengths, i.e. are simple offsets from zero, and
so the first derivative of all the spectra are taken to remove the baseline. If the
background spectra were linear the second derivative would be necessary to
completely remove the baseline. Another method for removing baselines is to
subtract an observed baseline. This is often used if the baseline is complex, and
therefore the first or second derivatives cannot remove it. However, one must caution
against using a noisy measurement of the baseline, as well as subtracting an incorrect
amount of the baseline from the sample.

In this example, after completing the three step procedure described above, it
was found that this matrix is an example of case 4. The matrices belonging to case 4
are shown in Figure B.4. Because all the background was removed by the derivative,
the first and third matrix structures can be eliminated from consideration. Therefore,
the matrix must have imposed closure linking the vectors spanning the column space,
and the pseudorank calculated for the raw matrix represents the number of chemical
components giving rise to a signal (recall equations (B.5 throngh B.8)). The number
of chemical components is NOT equal to the column centered pseudorank because the
rank reduction was due to the closure property.

From this analysis, the experimenter knows that all components involved in

the reaction have been observed, which is information necessary for further modeling.
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If the observed data fit into case 6 instead, this would indicate that there is no closure,
and not all of the species in the reaction were observed. If the background had not
been removed, the detection of closure would not be possible. If there was a nonzero
background in all rows of the matrix (all spectra) the matrix would have belonged to
case 4 whether there was closure or not (assuming there could not be closure linking

the pure spectra which are the basis of the row space).

B.3 Conclusions

In chemonietrics the interpretation of the pseudorank can provide valuable
information regarding the observed chemistry. If linear additivity of the data holds
the pseudorank can represent the number of independently varying chemical
components. However, without considering the possibility of a background or
closure, incorrect conclusions may be drawn. In this discussion two classes of closure
were presented. Further, the second class of closure, propagated closure, was shown
to be equivalent to a simple background. A three step procedure was presented as a

tool in exploratory data analysis to aid in the interpretation of the pseudorank.
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