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Preface to "Notes on Arrangements" 

 

 In the Spring Quarter of 1974 I gave a course on "Special Topics in Geometry" at 

the University of Washington.  The guiding idea of the course was to present a detailed 

picture of several topics involving points and lines in the real projective plane, and some 

analogous results in the real projective space.  The material I intended to describe was not 

available in any published form. Therefore I prepared handouts which were distributed to 

the participants as the quarter went on, and several copies were also sent to mathemati-

cians that I hoped will be interested in the topics discussed. 

 The notes are reproduced by digitally scanning the only copy of the notes that is 

still in my possession.  Originally, I typed the pages and drew the diagrams on (purple) 

ditto masters, supplemented for some of the diagrams by ditto-masters in other colors to 

illustrate the constructions.  It is rather remarkable that after more than 35 years, and with 

the purple ditto reproductions something completely unknown to today's younger genera-

tion, it turned out to be possible to scan and digitize the complete set of the notes.  The 

readability of the text is no worse than it was originally, and although some of the colors 

did not scan perfectly, with a modicum of good-will all diagrams are intelligible. 

 The main reason for making these notes now available in digital form is that they 

have been mentioned in a number of publications. As explained below, the notes have led 

to the development of several of the topics discussed in them and many of the problems 

and conjectures mentioned are still open. 

 The first section of the notes is self-explanatory. It was necessary since most of 

the students in the class have never been exposed to projective geometry of any kind. 

 The second section reprises and presents in some detail several aspects of the 

topic of arrangements of lines in the plane, that has been considered in some of my earlier 

publications. Particular attention is given to simplicial arrangements, that have appeared 

in various contexts – mostly due to their extremal properties; see, for example, Erdös and 

Purdy [6], and Artés et al. [1]. Another part of the attraction of simplicial arrangements 
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lies in the mystery of the sporadic ones among them (see Conjecture 2.1).  A recent pub-

lication [11] presents an updated listing of all such arrangements, together with a new 

way of looking at the kinship among them. This leads to a negative solution of Conjec-

ture 2.3: Counterexamples are arrangements listed in [11] as A(16,5), A(17,8), and sev-

eral others.  The other conjectures of this section are still open; also, the open-ended Ex-

ercises 4 and 5 are still without a satisfactory answer.  The claim in the notes that there 

are 91 sporadic simplicial arrangements needs to be corrected; only 90 are known (see 

[11]). 

 A different source of interest in simplicial arrangements is due to their relation to 

the free arrangements considered by Orlik and Terao [14] – although the precise relation-

ship is not clear.  On the other hand, the connection between simplicial arrangements and 

simple zonohedra is well known (Coxeter [3]), as is their relevance to partial cubes (see 

Eppstein [5]).  Very recently, it has been found that simplicial arrangements have connec-

tions with certain Weyl grupoids (see Cuntz and Heckenberger [4]). 
 In Section 3 we come to the main innovation of the notes – the consideration of 

simplicial arrangements in three and higher dimensions. While some of the results have 

been briefly mentioned, without proofs, in [7], here are presented justifications of these 

and other claims.  Much of the material of Section 3 has been used as the basis of [12]. In 

particular, the corrected catalogue of simplicial 3-arrangements that appears as an Ap-

pendix to Section 3 was included in [12], together with one additional arrangement not in 

the Appendix.  The presentation in the Notes, and later in [12], prompted several publica-

tions of J. E. Wetzel and coauthors, see [16] for details and references. The research of 

Wetzel and coauthors led to the discovery of four simplicial 3-arrangements beyond the 

ones in [12], and also to a number of results about simplicial arrangements in higher di-

mensions that solved some of the problems raised in the Notes. 

 The section on Euclidean arrangements surveys the results known at the time, cor-

rects some of them, and raises a number of open problems. 

 Similarly, the section on arrangements of colored lines presents the known results, 

introduces a number of new concepts, and raises several problems and conjectures.  Some 
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of the material was presented in the abstract [8], and published in [9]. Many new devel-

opments on this and related topics are reported in [15]. 

 The final section of the Notes deals with arrangements in which there are "omitta-

ble lines" – that is, lines such that their omission does not lead to the loss of any vertices.  

The topic was started by Koutsky and Polak [13], and the Notes contain strengthenings of 

their results as well as new material. An exposition of this topic in [10], based on the 

Notes, led to renewed interest that resulted in a new point of view (aggregates of lines) 
and to far-reaching generalizations, see [2]. Very recently, I have started studying the 

analogous problem in 3-space, concerning omittable planes. 

 It is my hope that making the Notes readily available after such a long time will 

contribute to the interest in the topics presented, and in the open problems and conjec-

tures described in the text. 

 

       Seattle, April 2010 
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NOTES OK ARRANGEMENTS

1. Introduction\ the projective plane.

The aim of these notes is to present some of the known results

and open problems concerning various kinds of arrangements. Without

sticking to formalities we shall mainly stress the 2-dimensional

case, only briefly indicating changes that occur in higher dimensions,,

We shall be interested in Euclidean as well as in projective

arrangements„ and we find it best to consider them tcgetharj more

detailed reasons for this attitude will be given later. A definition

of arrangements will also be delayed till the next section, since

we shall devote the present one to a few words about the reeil

projective plana P^» The reader wishing to supplement-the brief

remarks that follow may choose from many excellent texts thai; discuss

the projective plane from the axiomatic, geometric, and algebraic

points of view* Our approach is informal,, intuitive and pragmatici

we shall assume that the reader is well acquainted with the Euclidean

plane E and the Euclidean d-space E •

For simplicity of expression - and for occasional use in proofs -

we shall interpret the real projective plane F*' in any of the?

following - mutually equivalent - wayst

Model* (i)„ The plane P consists of the Euclidean plane "if'

augmented by one "ideal** wpoi,nt at infinity" for each family of

mutually parallel lines, and by a "line at infinity"formed by all the

"points at infinity*. Thia is historically the first model of the



1.2,

projective plane? once the terminology is assimilated the model is

very convenient, Most of our graphical illustrations will be in

this model*

Model (ii). The l&ijrts of * are represented by ordered

triplets x * (Xq,x^,x2) of real numbers, not all equal, to 0, two

triplets x and y « (y^y^y*) representing the same point if

and only if there exists a real X &° such that x. *Ayi for

all j * A line is represented by a triplet a «= (a^a^a^) / (0,0,0)

with proportional triplets representing the same line. A line a and

apoint x are infiiflsni if and only if <(aex> * aQxc +a^ ♦ a^x,,
~ 0 . The "points at infinity* in model (i) correspond to those

triplets x for which xQ « 0 , the line at infinity" to the '

triplet (1,0,0) .

Model (ill). The points of P2 are all pairs of antipodal
(opposite) points on a (unit) sphere S2 in Euclidean 3-3pace B-*,

while lines, of V' correspond to great circles on S2. Related to

this is aojagJLiivi, in which points of F2 are represented by

lines through the origin 0 in E^, and lines of P2 are

represented by planes through 0 in Jp .

MSiigi.lxl/ * is represented in a closed circular disc D

in the Euclidean plane E2, The points of P2 ares the points of

the interior of D , and antipodal pairs of points of bd D. The

lines of P"" are represented byi the diameters of D r semi-ellipses

having diameters of D as major axes, and the boundary bd D of D.

Model (vik As in model (v)„ P2 is represented in a closed

circular disc D , and its points are the points of int D and the

antipodal pairs of bd D. The lines of P2 arei The diameters of

D, the boundary of D, and circular arcs in D connecting antipodal

points on bd D.



A discussion of model (v) may be found in Gans U95*Ii U958],

[1969 3* Model (vi) was brought to my attention by G. C* f-hephard

in 1969* Both (v) and (vi) may be obtained from the "lows* hemisphere"

of model (ill), the first by parallel projection, the second by

stereographies projection. Additional models (less easy tc describe)

may be obtained by projections from other points* Restricting in

models (v) and (vi) the attention to the interior of the '.Use D ,

two models of the Euclidean plane £ are obtained.

# * *

One of the advantages of P^ over ET is the'existence of

a duality in P*- , that is a one-to-one mapping *f from "he points

and lines of P^ to the lines and points of P^ , such ths :. incidence

of points and lines are preserved* A mapping 0 is particularly

easy to describe in models (ii), (iil) and (iv)* In the first,

the image '^(x) of a E2A0JL x is the line with triplet x , and

vice versa. In the second, the image <f(x) of a point x of P,

i.e. of an antipodal pair of points on the sphere S , is the great

circle perpendicular to the diameter determined by the antipoial

pair of points, and conversely* In model (iv), mutually orthogonal

lines and planes through 0 in E-* correspond to mutually dual

points and lines of r .

It should be stressed that there are infinitely many different

dualities on r , and. that there is no •natural", privileged duality.

However, in a specific model (such as (ii) or (iii)3 of P^ it m:j

happen that one duality is singled out as more "natural" or geometri

cally meaningful than others.

# * •
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One of the reasons for the choice of the real projective

plane as the medium in which most of our discussions will take place

is the validity of the following statements«

If a set of straight lines ^•••••I^ is given in P2 such
that no point of P^ belongs to all of them, then the complement

of the union 1^ U »•• U\ consists of a finite number of open

connected sets F^...^ . For each P. there exists a straight

line L which misses the closure of ,P. %if such an L is chosen
J

as the line at infinity" in model (i) of P2 then the closure of

F, is a convex polygon*

Detailed proofs of those properties of P2 may be found in

Veblen-Young [1918, Chapter 9h & simple and direct approach may be

found also in Carver [19^1].

* « - •

All the above generalises readily to the real projective space

P of dimension d* The duality in Pd interchanges j-subspaces with
ft-j-l)-subspaees, for j « 0,1... .,d~l .



1.5

Exercises.

1. Prove that the six models of P" described above are

actually equivalent to each other.

2. Formulate the analogue for Pa of the models (i) to (vi).
p

3. Consider the projections from the center 0 onto S* of

the different Platonic solids placed so that their ccntroids

coincide with 0 « Using model (iii) cf P* the projections of

the cube, octahedrons dodecahedron and icosahedron give rise to

certain tessellations of P^ • Describe those tessellations in the

various models of P . What about the tetrahedron,, or about the

Archimedean solids ?

k< Describe a duality in each of the models (i) , (v) and (vi),

and a duality different from those discussed above in eanh of the

other three models.

5c Prove the main property of the stereographic pro-lectioni

The image of every circle in S that misses the north pole R is

a circle in the Euclidean plane tangent at the south pole, while

circles through N (deleted at H ) are mapped anto lines in the

plane.

6* Many statements of Euclidean geometry have analogues in

projective geometry obtainable (in model (i)) by replacing "parallel

lines" by "lines intersecting at a point at infinity". Ey such z

"projectivization" of a well-known fact about Euclidean triangles

the situation shown in Figure 1,1 is obtained. There is n triangle

formed by lines A, B, C, a line marked od , and lines marked P, Q, R.

The three lines (marked S, T, U) that are determined by tie vertices

of the triangle and the intersections of A, B, C with P„ Q, R

meet at one point. From which Euclidean fact does this follow ?
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7. Can you formulate the result dealt with in question 6 in

any of the other models of P^ ?

8. Prove the following theorem of G. Ewald (private communi

cation)* A finite family (q of circles in the Euclidean plane

may be obtained as the stereographic projection of a suitable

family of great circles on a suitable sphere if and only if the

following conditions are satisfied*

(i) Each two circles in *6 intersect at precisely two pointsi

(ii) For each three circles G, C*„ C* in x) , the two points

of cOc either eoinc5.de with the two points of cHc" ,or

else separate them on C .

u?
(iii) For any four circles C-, C«, C-, C^ in \$ the

intersection points A. and A9 of C- and C« are concycl:lc

with the intersection points A„ and A^ of C~ and C\ •

9* Can you generalize the result of question 8 to higher

dimensions ?
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T
2. Arrangements of lines in_lto_ProJeqtiye__.plaiie,,,

An arrangement of lines -fi^ in the projective plane P^ i«

any finite family fJ^, *.**lyj (wh©r« n>l) of lines in P2 ,considered
with thfi structure introduced into P~ by the lines I* t the points

.of intersection of the lines (called vertices of A~ } , the segments

of the L.fs determined by the vertices of snL (we shall call thsa

the edges of Jh ) t and th© connected polygonal regions which form

the complement of L4 \J *** U\ 8the closure of each such region
is called a Jfige of >/fc • Thus, each arrangement of lines determines

& cell-complex in P2 and w© shall say that two arrangements are

i££H&2£&A& Provided the celi-ssoraplexes generated by them in the

plane are Isomorphic,

If all the lines of an arrangement vl in r pass through

one point the arrangement is called tr&Y^al* Although trivial arran

gements are in certain respects exceptional and have td'be excluded

from certain considerations, we shall not follow the frequent

convention to deal only with non-trivial arrangements. It is obvious

that two trivial arrangements are isomorphic if and only if they

contain the same number of lines«

Qn$ of the most natural questions about arrangements is the

enu,m,eration problem* Determine the number c(n) of distinct isomorphism

©lasses of arrangements of n lines in P^ •

The total knowledge available at present on the enumeration

problem i3 contained in*

Theorem 2,1. c{l) » i, c{2) « 1, c(3) • 2, c(4) « 3 •

c(5) - 5 , c(6) - 18*

The proof of theorem 2*1 is by exhaustive inductive construction?

followed by elimination of the arrangements obtained in duplicate.

Representatives of each type are shown in Figure 2,1, (Our values



I /

^ /

k /
Is

Figure 2.1. Tho different isomorphism types of arrangements of at
most 6 lines. Black circles indicate vertices belonging to 3 or more

lines»
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for e(n) differ from those found in many other places because of

our including the trivial arrangements that are excluded by most

other authors•)

It would be very interesting to obtain at least some information

on the behaviour of c(n) for large values of n i however, it

appears that it is very hard to establish any non-trivial estimates,

Bart of the reasons for that may possibly be found in the following

observations.

Instead of considering arrangements in the' reaX projective

plane we could have modified our definitions to fit arrangements

of linfcs in any projective plane P2(F) over an ordered field F .

(In mo&el (ii) of Section 1, consider triplets (xQ0x1,x2) of elements

of F *) The polygonal Jordan curve theorem, needed to define the

cell complex determined by a family of lines in P^(F) ,holds in

those projective planes, and the definitions of isomorphism, etc,

remain unchanged. However, the number of distinct isomorphism types

of arrangements of n lines in P^F) may depend on F ,at least

for certain n and F , For example, it is not hard to verify that

the arrangement of 9 lines shown in Figure 2,2 exists in P^F) if
and only if F contains a subfield isomorphic to Q(5 ) » tha

extension of the field of rational numbers by J5 .Therefore c(9)
is strictly greater than the number of isomorphism types of arrangements

of 9 lines in (for example) the projective plane over the rationalo.

Actually (compare Exercises 1,2,3) the number of different isomorphism

types depends very strongly on the properties of real algebraic closure

of F - which appear to be hard to take into account in enumeration

procedures•

In order to appreciate another difficulty in enumeration, we

consider the question of how could one construct inductively all the
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types of arrangements of n*l lines in P2 if one knows all the
types of arrangements of n lines. Since the deletion of any line

from an arrangement of n-H lines yields an arrangement with n lines,

the most simpleninded idea is to add - in all possible ways - an

additional line to a representative of each type of arrangements of

n lines. However, experimentation with this idea quickly shows that

the outcome may depend on which particular representative of an

isomorphism type of n lines one starts with. For example, the two

arrangements of 6 lines shown by solid lines in Figure 2,3 are clearly

Isomorphici however, the arrangement of ? lines obtained in Figure

2,3(b) by the addition of the dashed line is not obtainable from

the representative of the same type in Figure 2e3(a)« In other words, the

inductive construction may require different representatives of the

same isomorphism class - but it is not known ahead of time which

representatives.

One attempt to overcome this difficulty is as followsi Taking

one fixed representative of an isomorphism type of arrangements of

n lines, we add the (n+Dst line 1^ wschematically* - namely we

do not insist on the afrraftgfttness of 1^ but only that* it cross

each of the other lines precisely once* (We shall later discuss in

more detail such "pseudolines" and arrangements formed by them.) This

would enable on© to find all the different isomorphism types, and

then one would only ne«*d to go and choose convenient representatives

of the appropriate types so that 1^ o»ay bs drawn as a straight
line. However, this program is not satisfactory because in some cases

it is not possible to rffJL^ge by straight -lings, in P2 the "arrangement*
obtained. The smallest known (and probably the smallest possible)

examples of that situation occurs for n « 8 j one is shown in
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Figure 2.4, where the "pseudolin©" 1^ is indicated by the dashed

line. O.^iis 1^ can not be drawn as a straight line for any represen

tative of the isomorphism class indicated by the 8 solid linos in

Figure 2.4, since - by the well known Pappus theorem - the lin«

determined by the points A and B necessarily passes through C •

{It should be noted that this difficulty does not prevent the

inductive proof of Theorem 2bl simply because for each "pseudollne"

it is possible to find - in the cases considered in the theorea - a

suitable arrangement that allows it to be drawn as a straight line.

Probably the determination of <S(7) and c(8) could be made in the

same way, but the difficulty would - by the above - appear in

connection with c(9) •)

In contrast to those negative aspects it should be stressed

that the function c(n) is nevertheless algoriths&cally computable?

in other words, the successive values of s(n) could be computed

one by one by a suitable ^ririg machine. This assertion can be

established (similarly to the proof given for the analogous statement

about polytopes, see GrOnbauia [1967t Section 5*53) using Tarski's

[1951] decidability theorem for elementary algebra (see*for example,

Robinson [1963, Theorem &.2.28L Cohen [196?]). However,'it is not

known whether the function enumerating the different isomorphism

types of arrangements of n lines in P^(F) is algorithmicaliy

computable when F is the field of rationals , or any ordered field

that does not contain a subfield isomorphic to the real algebraic

numbers•

* «• #



An arrangement Vt of n lines in P" is called simple

provided no vertex of A belongs to 3 or more lines. Thus simpleness

is a property of the isomorphism types$ and one? may formulate the

enumeration .problem for .simple arrangements * Determine the number

cs{n) of distinct isomorphism types of simple arrangements of n

lines in P' . We haves

Theorem 2.2. c8(l) * 1 , e8(2) • 1 , cs(3) ** 1 . c8(fr) « i ,

e8(5) - 1. c8(6) * k , cs(7) • 11 • and c8(8) • 135*

The values given in Theorem 2.2 were determined, essentially

by variants of the method explained above, for n< 7 by White Cl93^-3,

Cunnings [19323. C.19333, and R. Klee [1938]. Halsey [1972] established

os(8)^ 135 *while Canhan [1972] proved cs{8) * 135. Representatives

of the 11 types of simple arrangements of 7 lines are shown in Fig.2.51

the only set of drawings of the 135 simple arrangements of 8 lines

known to me is in Canhan [1972].

Another very interesting kind of arrangements are the sfoapltclaj.

ones s An arrangement tfL is ainplieial provided each face of xnL is

a triangle. For each n ^> 3 there exists at least one isomorphism

type of simplicial arrangements of n lines,- the nearrPencil AqM *
which consists of n«4 lines forming a trivial arrangement and

another line that does not pass through the point common to ths

others. Two other infinite families of simplicial arrangements may

be described as follows? The arrangement JtAZ\a) is formed, for

k 5: 3 , by the k lines determined by the edges of a regular k»gon in

the Euclidean plane, and 'She k axes of symmetry of that k-geni the

arrangement JL<(bm+l) is obtained, for m> 2f from the arrangement

<A-Ai*m) by the addition of the line at infinity.

Concerning the number e^n) of distinct isomorphism types
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Figure 2.5«
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of simplicial arrangements of n lines we haves

Theorem 2.3. cA(3) • c*W K ^C5) * 1 . cA(6) * c*(7) -

c*(8) » 0^(9) * 2 , 0^(10) - fc , c^(ll) • 2- , c4{12) * * ,

c^(13) * c^(14) « 5 • 0^(15) » 6 ,

Representatives of all the isomorphism types of simplicial

arrangements of at most. 15 lines are shown in Figure 2.6.

As we shall see later, simplicial arrangements are the solutions

of several extremal problems. It is therefore rather remarkable that

the following conjecture seens to be validi

Conjecture 2.1. Except for the infinite families ^(n)
(n>3). v^1(2k) (k>3)tan<* ^(tom-l) (ra> 2) there exist
only finitely many isomorphism classes of simplicial arrangements

of n lines, all with n £ 37 •

k total of 91 types of simplicial arrangements -not in the

three infinite families i.3 Jraown? 90 of them are listed and illustrated

in Grtnbaura [1971]• an additional type in Gr&nbaum [1972, Fig. 2.33c

The simplicial smngenents were introduced in Melchior [19^03

« a rather naive but still remarkable paper, that appears to havs

been forgotten (along with simplicial arrangements) for almost 30

yearsj a version of Conjecture 2.1 was formulated by Melchiorr and

we shall have occasion to mention him several more times.

A "pro .1ective trans?ornation is a mapping of P^ onto itself

that preserves colllnearity. In model (ii) of Section 1, each

projective transformation may be described by a (non-singular)

linear transformation of the vector space of triplets (x^x^aX^)

onto itself» Two arrangemsnts of lines in P^ are proiectiyeilv

bivalent provided there exists a projective transformation of ?
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v? A0(5)

A0(6)

A^?} i0(8) A^) , Ax•

Figure 2.6. Simplicial arrangements with at most 15 lines.

The asterisk * indicates that the line at infinity belongsto
the arrangement. The near-pencils N{n) « An(n) not shown for
n > 9.
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Figure 2,6. (Continued
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aJ(u) (12) aJ(13)

•:"A2(12) A3(X2) AJ|{13>

2«5»' (Continued)
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Figure 2^6© (Continued)
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Figure 2.6* (Continued)



24-r
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Figure 2» 6 #(Continued)
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2«6's



2d5<h

A3(15)
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that maps one arrangement onto the other• An arrangement «rt of lines

in P^ is said to be of a protectively unique, ty.pe if every arrangement

isomorphic to sc is protectively equivalent to (/L *

It i?a easily checked that all arrangements of at most 4 lines

are of protectively unique types, except the trivial arrangement of

k lines• All simple arrangements of 5 or more lines* and all near-

pencils of at least 5 lines, are not of protectively unique types.

Conjecture 202, Except for near-pencils with n ;> 5» all

simplicial arrangements are of protectively unique types,,

The validity of Conjecture 2*2 has been established for all

known simplicial arrangements.

Conjecture, 2*3» Every arrangement of n ^ 6 lines that is

of a protectively unique type may be obtained from a simplicial

arrangement by successively adding lines determined by already

present vertices.

Let isomorphic arrangements of lines /t(Q) and Ail) be

called isotpjglc. provided there exist arrangements #4.(t) of lines ,

for 0 fr * ~ i * that depend continuously on' t , such that each

^(t) is isomorphic with A(0) e It is clear that isotbpy is,
formally, a finer equivalence relation than isomorphism. However,

Conjecture 2A, Every two isomorphic arrangements of lines

in r" are isotopic.

The validity of Conjecture 2 A for arrangements of at most

6 lines may be established by an examination of the possible types

of arrangements (see Figure 2.1). Similarly, it is not hard (but tedious)
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to establish its validity for all types of simple arrangements of

at most 8 lines, and for all known types of simplicial arrangements.

r
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Exercises

1« Find an arrangement of lines that exists in a projective

plane P~(F) over an ordered field F if and only if F contains

a subfield isomorphic to 9(2*) , the extension of the ratlonals by

2. Prove that ?**(?) contains an isomorphic copy of every

arrangement possible in F if and only if F contains a subfield

isomorphic to the field A of real algebraic numbers. (Compare

Grftnbaum [196?, Section 5.53.)

3. Let A again denote the field of all real algebraic

numbers. Prove that P\A) contains isomorphic copies of all

arrangements of lines possible in any ? (F) , where F is an

ordered field* Archimedean or not. (For the technique, see LindstrOm

[19713.)

Jfr. It would be interesting to find an arrangement & of

n lines with the property that in order to obtain all the arrangements

of n ♦ 1 lines that are obtainable from arrangements isomorphic

to q4: on® ^as ^° use several different arrangements» (In other

words, the example in Figure 2.3 shows that for certain isomorphism

classes some representatives bum not "suitable" for all extensionsi

are there isomorphism classes in which no x*epresentative is "suitable"

for all extensions ?)

5. Can you characterise those types for which every representa*

tlve is *suitable" for all extensions ? Certainly all arrangements

of prpjectively unique types have this property, but many other

arrangements have it as well.

6. Prove that every two simple arrangements of n lines are

transformable into each other by a finite sequence of steps, each

of which is either an isotcpy, or else a "switching" of a triangle

(as indicated in Figure 2.7). (Ringel [19573.)



Figure 2.7c The "switching" of
a triangle*

2.9a
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3.1
- i

3« d-Arrangement3,

The d-dimensional real projective space P may be defined

and visualized for d > 3 by analogues of the methods discussed in

Setion 1 for P^ • Some familiarity with P and its simplest

properties will be assumed in the sequel*

^ d^arrangement, or arrangement of hyperpfllanes j.n P*\ is any

finite family /L of (d-l)-dimensional hyperplanes, together with

the eell-decomposition of the space Pa determined by the hyperplanes

A d-srrangement </t is trlvfo-X if the intersection of all the

hyperplanes in <r? is non-empty* The number of hyperplanes in

an arrangement <fc is denoted by n(*t) ,

Two d-arrangements are called isomorphic provided the cell

complexes determined by them are isomorphic The number of k-faces

(that is, k-dimensional cells) of an arrangement cri shall b@ denoted

by fjt(^) • Tne d-faces of a d-arrangement, are frequently called

facets. The f-vector of ad-arrangement A. is f(A.) •(fQ(o£)»

A d-arrangement vri is called simple provided each vertex of Jx

belongs to precisely d hyperplanes of *fk . It follows that in

each simple d-arrangement every k-face Is contained in -precisely

d-k hyperplanes of <rb ,

A d-arrangement cA is called simpliclal provided all faces

of y/t are simplices of the appropriate dimensions.

In analogy to the definitions in the case of arrangements of

lines, we shall denote by c(n,d) , c(n.d) , cs(n,d) and c4(n,d)

the numbers of distinct isomorphism types of d-arrangements of n

hyperplanes, counting either all types9 or all non-trivial, or all

simple, or all simplicial ones. For d > 3 very little is known
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about these numbers? we havei

Theorem 3.1. (i) e(d,d) • 0 , 5(1,1) « 1 •

(ii) c(n,l) • c(n.l) * cs(n,l) • c^(n.l) * 1 for n> 2 .

(iii) c(n,d) » c(n$d) 4- e(n,d-i) .

(ivj c(d+l,d) • cs(d-H,d) « cA(d+l.d) « to

(v) c(d+2,d) = d .

(vi) cs(d*i7d) • cs(d+2,d) * es(d+3,d) « i ,

(vii) c8(7.3) - 11 • e3(8,4) « 135 .

(viii) eA{d*l,d) = c^(d+2Bd) - 1 •

(ix) cA(4,l) * cA(5a2) «= 1 , cA(d^3td) • 2 for d >, 3 ,

Proof, Parts (i) to (v) and (viii) are trivial, as are the first

two assertions in (vi) and in (ix). Part (vii) results from a theorem

of McMullen [1971] and theorem 2.2 of the preceding section, although

already White [1939] had conjectured that es(7*3) • 11. McMullen

[1971] established also the third part of (vi), and computed c(d+3,d)

for all d (though the formula seems to be marred by misprints).

We shall prove"" c*(d+3rd) « 2 for d > 3 a little later, after

describing a method of construction of simpllci&l arrangements.

If .yfi:% is a ds-arrangement and ^" is a dM-arrangement, the

join <jL * Jt* V JtK is a d-arrangement (where d * d'+d**! )

defined as follows* In P we take skew subspaces P and P^*,

that contain •^' and Jlm . The (d-l)-hyperplanes that form <A~ are

precisely those spanned by the (d'-l)-hyperplanes of Jt% with P**",

and by the (dM-l)-hyperplanes of J[a with Pd' .It may easily be

verified that n( J{) » n(^') ♦ n(j&") ,and

tAA) =fk(«#) ♦ fk(j£"> ♦ 2 J>L tAJC)fAAm) for 0<k£d,
K K i*j+l=k x J

i.j > 0

and that c^1 V */£" is simplicial if and only if ^ • and

are simplicial. Moreover, the join operation is associative and
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commutative.

The join construction applies even in case d" » 0 , when the

(unique) O-arrangement A°(0) has n(A°(0)) «0, f0(A°(O)> •1,
and is simplicial.

We shall use the symbol A (n) to denote a simplicial d-arrange-

raent of n hyperplanesi subscripts will be used to distinguish between

non-isomorphic arrangements with the same d and n « Thus, the

1-arrangement AMn) is determined by n points in Px and satisfies

n(A*(n)) •fgU^n)) •f1(A1(n)) *n. The 2-arrangement Ag(n+1) =
A (n)vAJ(0) is easily seen to be the near-pencil which in Section

2 was denoted by AQ(n+l) .

It is easy, to verify by induction on d that for d > 2 the

only type of simplicial d-arrangement with d*2 hyperplanes is

Ad(d*2) = A1-(3) V*°Wj/_... v A°(0)y ,while Ad(d+1) =vA°(0)v wvA°(0),
d-l terms d*i terms

For each d > 3 we have the following two types of simplicial

d-arrangements of d+3 hyperplanesi

Ad(d*3) - A1^) V A°(0) V ... V A°(0)
d-2 terms

and

Ad(d+3) =A1(3) VA1(3)V £°(Q)V ... N/A°(0) .
d-3 terms

It is easily verified that Ad(d+3) and Ad(d+3) are not isomorphic.
To see- that those are the only possible types of simplicial

d-arrangements with d*3 hyperplanes we use induction on d .

For d « 3 , a given simplicial 3-arrangeraent A^(6) either

contains a vertex that belongs to 5 planes, or not. In the former

case A3(6) is the join of A°(0) with the only type A2(5) * A1(^)vA°(o:
so A^(6) is Aj(6). In the other case the simplicial 2-arrangement
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induced in each plane must be A (4), one line of which is the trace

of two planes of A-*(6)r since that line can not pass through the

vertex determined by two other lines, it follows that the six planes of

A?(6) form two pencils of 3 planes each, so that A^(6) is A1(3)VA (3)

For d > 4 p any given A (d*3) must contain a vertex that

belongs to d*2 hyperplanes. Indeed, if this were not 30, then the

(d-l)-arrangements induced in each of the hyperplanes of A (d+3) by

the other hyperplanes would have to be either of type A " (d) or of

type A *(d+l), with some (d-2)-flat the trace of (at least) two

hyperplanes of A (d*3). In the first case some vertex of A (d)

would be incident with all but one hyperplane of A (d+3)? while in

the second case the same conclusion results since because of the

simpliciality of Ad(d*3) the "double" (d-2)-flat can not be the

exceptional flat of the near-pencil A 1(d+l) * But if some vertex

of A3(d+3) belongs to d+2 hyperplanes, then Ad(d>3) * A°(0)

Ad""1(d+2) , and the assertion (ix) of theorem 3.1 follows.

The last part of Theorem 3*1 may probably be generalized as

follows t

Conjecture 3.1. For each ra > 1 there exists a constant T"!

such that cA(d*mfd)^ /"» for all d ,
*" m

It is even possible that one may take TT * cr(2m,m) •

* * #

Besides the (extensive) collection of simplicial 2-arrangements

discussed In Section 2 (and in the catalogue of GrtJnbaum [1971 ])•

and the"trivial" simplicial arrangements A (0) and A (n) for n> 1,

we have seen just one method of generating simplicial arrangements!

the joining of lower-dimensional simplicial arrangements. Two other

methods are known, and wo shall nov; describe them.
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The first of those methods is a generalization to higher dimen

sions of the formation (as described on p. 2.5) of the 2-arrangements

A*(2k) and A^(ton+i)„ Starting from aregular polytope G in 3d
(see Coxeter [19^8] for material on regular polytopes), a simplicial

d-arrangement is obtained by taking the hyperplanes generated by the

facets of C together with (all, or a suitable subset of) the

hyperplanes invariant under some of the symmetries of C B and with

the possible inclusion of the hyperplane at infinity. However, as

we shall see below, the indication in GrQnbaum [1971] that the

inclusion of all the hyperplanes of symmetry always leads to a

simplicic1 arrangement is not true.

We shall first describe in some detail the application of

this method to the cases of d-simplices and d-cubes.

d & d+PWe shall denote by A * the d-arrangement of ( 2 ) hyperplanes

obtained in the following manneri d*l hyperplanes are determined by

the facets of aregular d-simplex TdCEd ,while C^1) hyperplanes
are hyperplanes of symmetry of T , each determined by d-l vertices

of T and the midpoint of the edge connecting the remaining two

2 A
vertices. Thus A • is the arrangement denoted by kA6) in

Figure Z<.&.

Theorem 3.2. The d-arrangement Ad* is simplicial for each d> 2.

£roof, Since the assertion is obviously true for d « 2, we may

proceed inductively as follows. Each of the (d-l)-arrangements

induced in %the hyperplanes of A *^ by the other hyperplanes of

A ^ is isomorphic to Aa" * ,and is therefore simplicial. Each

facet of A • that is contained in T is a simplex having one

vertex at the centroid of T , while its remaining vertices are just

the vertices of one of the facets of Ad"1,/^ . Each of the facets of
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A*9^ outside Td is the convex hull that crosses the hyperplane
d £at infinity of a j5-simplex and a ^-simplex induced by A on

the faces of dimensions j% and j2 of T ,«her® J^jg-H « d«

It is not hard to see that fd(Ad'A )«(d*2)*/2 .and
f (Ad'A )= (d+2)S(<M)A. (Note that the value of fd_t can bo

computed in two ways: By observing that it is ( 2 -*fd-l*A * *
and also by noting that 2fd_t - <d+l)fd Ithe agreement confirms

the simplicial character of A * •)

For 06l k£ d+1 we shall denote by Ad,a,k the d-arrangement

of 2d+2(0) * k hyperplanes obtained in the following wayt Starting

from the d-cube Cd = {{x^...^} ££d| \xL\< 1 for 1<i< dj
we take the 2d hyperplanes determined by the facets of C together

with the 2(0) hyperplanes of symmetry of Ca determined by equations

of the type x.« +x. for 1 £ i <£ j^ d t and with the k raidplanes
1 — j -

of Cd , each of which is determined by one of the equations x^ * 0 „

for i « l,2,...,k if k £ d , and with all those and the hyperplane

at infinity if k * d+1.

Theorem 3.3. The d-arrangement Ad'a,k is simplicial for

all d > 1 and for all k , 0 £ k £ d*l .

The proof can be accomplished in analogy to the proof of theorem

3,2, observing that the arrangements induced in the hyperplanes of

Ad,DiK are axi of types Ad~1'^,;' for various values of j . For

data on arrangements A^a,lc see the Appendix.
It is not known what other simplicial d-arrangements *aay be

obtained by systematic procedures from regular simplices and cubes,

utilising their various symmetries. Information on the known

possibilities of this kind for d * 3 is collected in the
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Similarly, it is not known what simplicial arrangements may be derived

from the d-crosspolytopes. Again, the results available in the case

of the cctahedron (that is, d*3) are presented in the Appendix.

Applied to the regular dodecahedron, the method leads to at least

two simplicial 3-arrangements* one with 27 planes (12 planes determined

by the faces of the dodecahedron, and 15 planes of mirror-symmetry

of the dodecahedron) and one with 28 planes (obtained from the previous

one by adjoining the plane at infinity). For details see the Appendix.

In contrast to that we haves

Theorem 3.4. The 3-arrangements */£-*( 35) and t/?p(36) of

35 or 36 planes, formed by the 20 planes spanned by the facets of a

regular icosahedron and its 15 planes of mirror-symmetry, with the

plane at infinity in case of 0$ (36) , are not simplicial.

Proof. The 2-arrangements induced on each of the planes of

\/L (35) or A (36) by the other planes are easily seen to be

the following onesi since in b) non-simplicial 2-arrangements are

obtained , the theorem is established.

a) In each of the facet-planes, the arrangement obtained is as

shown in Figure 3.1» it is a simplicial arrangement of 22 lines,

denoted A~(22) in the catalogue of Grflnbaum [1971].

b) In each of the planes of symmetry, the induced 2-arrangement

is the non-simplicial one shown in Figure 3.2.

c) In case of cft.-*(36) , the arrangement induced in the plane

at infinity is shown in Figure 3.3i it is the simplicial arrangement

of 25 lines denoted A~(25) in Grflnbaum [1971]*

The second method for generating simplicial d-arrangements starts

from (all, or some suitable subsets of)the d-hyperplanes



Figure 3-3.- ^he simplicial 2-arrangement A*(22) induced in each

facet-plane of the regular icosahedron by the other facet-planes
(purple lines and line at infinity) and the planes of symmetry
(red lines). Closely spaced lines actually coincide•



3.1 h

Figure 3-2. The 2-arrangement of 18 lines induced in each symmetry
plane of the regular icosahedron by the 20 facet planes (purple lines
and the other 14 symmetry planes. The numbers indicate how many of
the planes have coinciding traces. In case of the 5-arrangement

*A?(36)* the line at infinity should be adjoined to yield an ^ (19)



3.7

Figure 3° 3» ^he simplicial 2-arrangement A:J,(25) induced in the
plane at infinity by the 20 facet-planes of-'the regular icosahedron
(purple lines) and the 15 planes ©f symmetry (red lines). The
numbers indicate how many planes have coinciding traces.
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naturally associated with symmetries of a regular (d+1)-polytope.

The d-arrangement is obtainable by intersecting this family of

d-hyperpianes with the hyperplane at infinity of P .It is easily

checked that if all the hyperplanes of mirror-symmetry of a regular

(d+l)-polytcpe are taken, the resulting d-arrangement is simplicial.

However, simplicial arrangements arise from many other sets of

symmetry hyperplanes as well.

The simplicial 2-arrangements obtainable by this method from

the tetrahedron, the cube (or octahedron), and the dodecahedron

(or icosahedron) are shown in Figures 3»^* 3«5» and 3.6,

For each d > 2, the d-arrangement obtained by intersecting with

the hyperplane at infinity all the hyperplanes of mirror symmetry

of the (i^l)-simplex T is isomorphic with A '

The 12 3-flats bisecting the main body diagonals of the 24-cell

in ET intersect the hyperplane at infinity in a 3-arrangement

isomorphic to the one designated AJ(12) in the Appendixi an isomorphic

3-arrangement results from the intersection of the hyperplane at

Infinity by the 12 3-flats of mirror-symmetry of the 24-cell that

are parallel to a pair of facets of the 24-cell0 The two sets of

12 3-flats taken together induce in the hyperplane at infinity the

arrangement Aj(24).

Actually, there are two other, rather obvious, ways of obtaining

simplicial*arrangements from known ones*

(i) The (d-l)-arrangement induced in one hyperplane of a

simplicial d-arrangement by the other hyperplanes is itself simplicial;

(ii) In many cases a simplicial d-arrangement may be obtained



\
\

z

k\{6)

3o8a

Purples 6 planes of mirror-
symmetry,,

Red: 3 midplanes between
skew edges.

A?(9)
Figure 3„4„ Simplicial 2-arrangements obtained by intersecting
the hyperplane at infinity with symmetry planes of the regular
tetrahedron. ao indicates the line at infinity.



3o8b

Purplej 6 planes of mirror-symmetry

Red: 3 midplanes (mirror symmetry)

Green: 4 bisectors of body diagonals

Blue: 12 bisectors.

a|(13)
Figure 3o5» (first part),. Simplicial 2-arrangements obtained by
intersecting the hyperplane at infinity with symmetry planes of
the regular cube*

Af(9)



Figure 3*5 (second part)



A*(i5)

3o8d

Purple: 15 planes of mirror—symmetry

Red: 6 midplanes of parallel facets

Green: 10 bisectors of main diagonals.

a|c
Figure 3.6 (first part). Simplicial 2-arrangements obtained by

intersecting the hyperplane at infinity with symmetry planes of

the regular dodecahedron.



A^(25)
Figure 3»6 (second part)

3o8e



3o8f

Af(3x)

Figure 3„6 (third part)
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from another d-arrangement by deleting one or several of its

hyperplanes.

A large part of the known simplicial 2-arrangements may be

obtained by combinations of the methods discussed above, although

there appear several "unsystematic*' ones that do not seem obtainable

in this ivay„
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Exercises.

1. Show that an arrangement isomorphic to A • is generated

by all the hyperplanes determined by any d*2 points in "general

position" in Pa .

2. Present a detailed proof of Theorem 3.3*

3. Show that if the hyperplane at infinity is adjoined to

Ad,D |k ^Wftere o^- k£ d t the arrangement obtained is isomorphic

to A*'0'"*1 .

4. Determine the f-vectors, and the numbers of flats of

d a d O ik
various dimensions, for the arrangements A * and A * p ,

5. Find examples of 3-arrangements that are not simplicial

although all their 2-faces are triangles.

6. Show that the family of all 25 symmetry planes of the

3-cube considered in Figure 3.5 does not intersect the plane at

infinity in a simplicial 2-arrangement.

7o Prove the assertion made on p. 3*8 that the arrangement

Ad*^ may be obtained by intersecting the hyperplane at infinity

with the d-flats of mirror symmetry of the regular (d*l)-simplex.

8. Investigate the arrangements obtainable by the various

constructions discussed on pages 3#5 to 3.8, starting from the

d-simplex, the d-cube, the d-cross-polytopes, the 24-cell, the

120-cell, the*600-cell.
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CATALOGUE OF SIMPLICIAL 3-ARRANGEMENTSi

Corrections and additions

lo Page C06 should be discarded, sinoe the arrangement denoted

A^(I3) is nor simplicial; even the traces in the 6 planes of

mirror symmetry are not simplicial - as is visible in the illustration

(wrongly denoted A^(7) )0

2o On page C0ll , lines 2 and ~1, instead of A?(iO) should

be a|{10) o

3o Insert page C~iOa, in which a new simplicial 3-arrangement

A£(17) is describedo

4-0 Add pages C-20 to C-25, in which a new simplicial

3-arrangement A;*(30) is described=

Seattle, June 197^

r



C-iOa

Arrangement: Af{17)

17 planes: 3 A*(8) , 8 A*(lO) , 6 A*(lO)

f * ( 53* 293, 480, 240 )

t3 s 9 » \ = 23 ? t6 * 14 t tQ * 6 f t9 * 1

<y * 32

h * 65 * h2 • 3^ e h3 « 28 t h^ * 3 -

Constructions:

(i) From Aj(18) by deleting the plane at infinity«

(ii) From the regular octahedron: 8 facet planes

6 planes of mirror symmetry

r 3 midpianes between opposite vertices



r

Col

Appendix to Section 3*

CATAIgggg OF SIMPIICIAL ^ARRANGEMENTS

We have seen that the joins of lower-dimensional sirapiicial

arrangesents yield sirapiicial arrangements0 In case of 3->arrangements

it is clearly possible to join either one 1-arrangement with another

1-arrangement, or else a sirapiicial 2-arrangement with a point (that

isp the 0-arrangement A (0) )0 The following catalogue deals only

with simplicial 3'^a^angements that are mrt_o_btainah;le as joins

of lower-dimensional ones0

At present,, 13 such simplicial arrangements have been investigated9

although it is clear that additional ones existo (For example, one

derived from the intersections of the 3~fXats of mirror-symmetry of

the regular 120~cell (or of the 600~ceii) with the hyperplane at

infinity of E4o)

Per each of the 13 arrangements described below, the catalogue

contains the following data:

io The symbol of the arrangement0

2o A description of the 2-arrangements induced in each plane

by the other planes0 This comprizes the symbol of the 2-arrangement*

and a diagram showing the 2-arrangement and relating it to the

construction of the 3~arrangement0

3o The f-vector of the arrangement, where f, is the number

of k-faeeso

4-c The numbers t, of vertices each of which is 3„ncident with

precisely k planes0

5o to » the number of ordinary vertices of the arrangement0



Col*

^ 60 h „ the number of lines cf the arrangementP and the

numbers h, of lines contained in precisely k planes0

7o A list of all known methods of generating the arrangement»

and alternate designations used elsewhere0

In the tracings of the 2-arrs.ngements induced in the planes

by the other planes9 closely spaced lines indicate planes with

coinciding traces0 CO indicates the line at infinity<,



10 planes: 10 A~(6)

f =» ( 15. 75> 120? 60 )

% " 10
<y * io

C.2

h * 25 ? h2 « 15 . h~ = 10

Constructions:

Arrangement: A^(iO)

t6-5

(i) k facet-planes of the regular tetrahedron,

together with 6 planes of mirror symmetry.

Traces:

k facet-planes Af{6) 6 planes of symmetry A?(6)

\

Y

i •-.-•-.

(ii) A3*A .

(iii) The ten planes determined by any 5 points in "general position'

in the projective 3-space,

(iv) Intersection of the 3~flats of mirror symmetry of the

regular 4«simplex with the hyperplane at infinity0



Co3

Arrangements A?{12)

12 planes: 12 &f(7)

f - ( 24, 120, 192, 96 )

t- • 12 12

C-J « 12

h * 3^ t h2 * 18, h~ • 16

Constructions t

(i) 6 facet-planes of the regular cube

and 6 planes of mirror symmetry

Traces:

6facet-planes A^(7)

(ii) 8 facet-planes of regular octahedron

3 planes of mirror symmetry, and

1 plane at infinity.

— -zH

y

y

•

6 planes of symmetry A^(7)

Traces»
8 facet-planes A.(7)

CO

-A-V/.

3 planes of symmetry A.(7) l Diane^at
1 infinity Aj(?)

oo

V .-oO

/ \
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Arrangement: A£(12) - continued

(iii) 3 planes of side facets

2 base planes

1 midplane between bases

6 cutting planes

Traces:
2/3 side planes A~(7)

;

21 midplane A!r(7)

. : /

2 base planes A7(7)

X

6 cutting planes Af(7)
i

(iv) Intersection of the 12 perpendicular bisectors of the

main body diagonals of the regular 24—cell with the hyperplane

at infinityo

(v) Intersection of the 12 mid-3-fiats parallel to pairs of

opposite facets of the regular 24-cell with the hyperplane at

infinity.

(vi) A3»D,0e
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Arrangement: A^(13)

13 planes:

f « { 28, 148, 240, 120 )

t3 - 66 t4 *s I0e

U) « 16

h • 40 ? h0 * 21, h

6 A*(7)P 6 A*(8), 1 Af(9)

Traces:

'6

3 - A7

Constructions:

(i) 6 facet-planes of the regular cube

6 planes of symmetry

1 plane at infinity

( At(12) with plane at infinity )

'7

26 facet-planes A;r{7) 6 planes of symmetry Af(8) I plane at «
- x _ jr-i „ s a * &

.!

.... ......'

. CO
CO

/ ii ^ l|
(ii) Prom Aj{12) by adjoining one midplane parallel to a

pair of opposSe facetso

(iii) From a|(15) by deleting the two bases..
(iv) A3flD* 1 o

infinity A*($

55
oo

' ~~T



C„6

Arrangement: A|(13)

13 planes: 6 Aj(7). 3 AJ(8), 4 Aj(9)

f - ( 33. 159, 252, 126 )

t3 * 12

OJ * 22

tb 10

h m43 ? h2 * 30, h,

Constructions i

t6 . 10,

K. * 3

*o = 1

(i) 4 facet-planes of the tetrahedron

6 planes of mirror-symmetry

3 midplanes between skew edges

\

Traces s

2
4 fa©et---planes Af(9)

X

-

6 planes of symmetry

A^(7)

\

• }̂/

3 midplanes

A*(8)

•



Co?

Arrangement: A^(14)

14 planesi 2 kf(?)9 8 A*{8).

t - ( 320 176. 288, 144 )

t3 -2, tk * 169 t5 - Z0 t6 - 89

Ay « 20

h-46 | h2 • 25, h3 * 200 h^

Constructions:

(i) 6 facet-planes of the regular cube

6 planes of mirror-symmetry

2 midplanes between parallel facets

Tracesi

4 Af(9)

«*«? — 2 , t
8

^L
'.

!

* /.--

2,2 faert planes Ai(9) 2 planes of symmetry A^(7) 2 midplanes

Co

JZ\
ou

/

4 faoet-planes A?(8) 4 planes of symmetry A?{83

\
oo

NT*

/

(ii) From A^(l3) by adding amidplane parallel to facets
(iii) A3'^2 .

A*<9)



C„8

Arrangement:

15 planes: 6 A2(8)f 9 (A^(9)

f * ( 36, 2040 336, 168 )

tfy - 18, t5 « 6P t6 - 8,
\jj m 24

h » 52s h* - 30, h0 - 19.
4 = 3

(i) 6 facet-planes of the regular cube

6 planes of mirror-syrometry

3 midplanes between parallel facets

Traees«

6 facet-planes A^(9) 6 planes of symmet
JL

A3ti5)

t8 * 3

/;

• .,.,

\

/

t9 - i

7

A*(8) 3midplanes a|(9)

(ii) Prom A3(l4) by adding either the third midplane, or the plane

at infinity$ A3*0|3 .



Co9

15 planes: 9 A~{8)P

f - ( 39, 219a 360, 180 )

t^ « 24D t

24U)

Arrangement

6 A|(10)

t6 « 6 t? - 9

h ^ 53 u - 27, h~ = 26

Constructions:

(i) 3 side-facet- planes of regular
3-sided prism

(iij 2 base planes

(ill) 1 midiDlane between bases

(iv) 3 planes of mirror-symmetry

(v) 6 cutting planes

Traces s

3side facets A2(8) 2base planes A^ClO)

a|(15)

imidplane A^IO

6 cutting planes Af(8) 3 planes of mirror-symmetry A~{10
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Colo

16 planes: 16 A2(9)

f • ( 400 232, 384, 192 )

t,4 * 16, t- « 12

6t) » 28

h a 68 h2 - 36, h

Arrangement: A3(16)

'6

16 hi. a 6

Constructions:

(i) Adding the plane at infinity to A3(15) j A3eO* ^

(ii) 6 facet-planes of the regular cube

6 planes of rairror-symmetry

4 skev/ planes {facet-planes of
inscribed regular tetrahedron)

t9 a *
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Arrangement x A3(18)

18 planes: J Aj(9)0

f » ( 60, 3^80 576, 288 )

t* - 36P t. - 3

8 A2(10)P 6 A^(ll)0 1 a|{13)

u) - 39

h - 7^0 h, - 39

H * 81 t- a 6

H3 = 32 h* - 3

i) 8 facet-planes of the regular octahedron

6 planes of mirror-symmetry

3 midplanes between opposite vertices

I plane at infinity

Tracesi

*8 - 6 tQ - 1

I

8 facet-planes A«(10)
1

6 planes of symmetry Af(ll)



C012

Traces (continued):

23 midplanes A~(9) 1 plane at infinity A?(13)

00
CO



Col3

24 planes: 24 A~{13)

f a ( 120, 696. 1152, 576 )

CO - 96

h « 122?

%
96

h« = 72 h.

Arrangement: A3(24)

t9 = 24

32 h^- 18

Constructions:

(i) Intersecting the 12 3~flats that perpendicularly bisect

the main body-diagonals of the 24-cell, and the 12 midplanes

between parallel facetsf with the hyperplane at infinity of E

(ii) 6 facet-planes of the regular cube

6 planes of mirror-symmetry

3 midplanes between parallel facets

8 skew planes (bounding a regular
octahedron)

1 plane at infinity

Traces:

6 facet-planes a|(13) 6planes of symmetry a|(13) 3midplanes a|(13)

4



Col4

Traces (continued):

8 skew planes a|(13)

A
\

co

1 plane at infinity A~(13)

vX
X

m

/ s

A MZL
\ x

K
\n



C015

Arrangement: A?(27)

27 planes: 12 AJ(l6), 15 A£{14)

f a ( 170, 1010, 1680„ 840 )

tj a 30, t^ » 60, t6 a 67o
00 te 102

h « 157; h* a 81, h. a 7Q„

Constructions:

t1Q - 12

h5 « 6

(1) 12 facet«planes of the regular dodecahedron

15 planes of mirror-symmetry

Traces 2

212 facet-planes A£(l6)

15



C.16

Traces (continued)

15 planes of symmetry A?(14)



Coi7

Arrangement : A£(28)

1 A*(21)28 planes: 12 A£(l6)0 15 AJ{15).

f a (186, 1146„ 1920, 960)

:1001 t6 « 58, t? - 15, tiQ.a 12
X

CO a 118

h - 172; h2 - 90. h3 a 76, h5«6

Constru^cticns,:

(i) The plane at infinity added to A^(27)
(that ist 12 facet planes of the regular dodecahedron

15 planes of mirror symmetry

1 plane at infinity.)

Traces: 1 plane at infinity A?(21)

*15



C-18

Arrangement: A|(28)

a2 228 planes: 4AJ(l3h 4 A|(13}, 8A^Q6)5 6 A^(17)
f a ( i94fc 1154„ 1920, 960 )

t^ « 24, V - 84

10^ 126

h a 170$ h0 a 90

Constructions a

fc. - 18.

tn - 6
tg a 40, tg « 18

8

9
c
•o

hj ^ 64,> h^ = 16

6 Aj(i7)

3.

(i) 6 planes of square facets ©f th<
regular euboctahedron

8 planes of triangular facets

6 planes of mirror-symmetry

3 midplanes

4 bisecting planes

1 plane at infinity

Traces:

6 planes of square facets a£(17) planes of triangles A^(l6)

(P



Traces (continued):

6 planes of symmetry A^(17)

•p
4 bisecting planes A!r(l3)

C-19

3 midplanes A~(13

i plane at infinity A^(l3)
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C-20

Arrangement: A^{30)

30 planes: 6 A*(13) 18 A?(17) 6 A?(19)

f =» ( 228., 1380, 2304, 1152 )

% • 144 , t6 • 36 y t? - 24 , tg • 18 ,

0; * 150

13

h * 194? h„ ^99* h~ * 84, h,, « 9,

Constructions:

(i) 2 base-facet "olanes of a six-sided prism

^--" 6 side-facet planes

^.- 3 planes of symmetry

* 3 planes of symmetry

1 midplane

2 parallel planes

12 skew planes

1 plane at infinity

•*-"'••"*
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Traces:

2 base-facet planes
2A£(i3)

2 parallel planes

A?(1Q)

0-21

€P
0*



C-22

side-facet planes Aj(l7j

GO



C--23

3 planes of symmetry A7(i9)

co



'3

i midplane A~(19)

12 skew planes A^(i7)

\iA

\\/vyy\//
ZE 3zT



3 planes of

symmetry

Af(l3)

1 plane at infinity

Af(l3)

C-25
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Euclidean arrangements

. Although this concept (and the dual one) were among the first

notions related to arrangements that were considered (see Staine?

[1826 31 as well as the long list of other references given in

OrGnb&ura [1967. P* 39i])* the first general and satisfactory definition

seems tc he that given in Canham [1972]. Following Canham, we shall

say that a non-trivial E&cJsidean d-arrangement (or arrangement of

hyperplanes in Euclidean d-space E ) is the cell-decomposition of

E determined by any family of n hyperplanes such that no point

of Is belongs to all the hyperplanes, and no line is parallel to

all of them. A Euclidean d-arrangement is called simple, if no point

of $r belongs to more than d hyperplanes, and no line is parallel

to d hyperplanes.

Two Euclidean d-arrangements are weakly isomorphic if the cell

complexes determined by them are isomorphic under a homeomorphisa tf

of %r onto itselfo Tho Euclidean d-arrangements are isomorphic if

they are weakly isomorphic under an orientation-preserving homeomorphiss

f of Ed onto itself*
The completion of r to P" by the addition of the hyperplane

at infinity clearly associates with each Euclidean d-arrange»ent a

d-arrangement in P , obtained by taking the completions in P^ of

the hyperplanes .of the Euclidean arrangement, together with the

hyperplane at infinity. Conversely, from each d-arrangement \j\,

P each choice of one hyperplane of c^ as the "hyperplane at

infinity9' determines a Euclidean d-arrangement.
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This observation, and his enumeration and construction of all

types of simple arrangements of at most 8 lines in F0 , enabled
»

Canham [1972] to determine the following values for the numbers of

Euclidean 2-arrangements with at roost 7 lines* In the formulation

of Canham*s result we shall denote by 'Sftnjd) and cs(n,d) the

number of distinct weakly isomorphic, or distinct isomorphic, types

of simple Euclidean d-arrangements of n hyperplanes•

Theorem 1♦ The numbers of distinct types of simple

Euclidean arrangements of at most 7 lines arei

3J|{3.2> «c"(3.2) »1| ^(4,2) *c*(4,2) »1 * 0^5.2) -6 ,

c*(5,2) «? i c®<6,2) -43 ,ej(6f2) - 79 î <7.2) «922 ,

cj(7.2) - 1765.

Actually, all the numbers quoted in the theorem were obtained

already by R. Klee [19383, who asserted also that e®{8,2) - 77,064

(along with some other related numbers)» However, the value Klee

assigns to cf(8,2) is certainly wrong, although it possibly expresses

the number of non-isomorphic types of simple Euclidean arrangements

of pseudolines. The reason for this (and for my crediting the result

of the theorem to Canham) 13 that Klee's method is appropriate for

the counting of types of pseudoiines, but can not distinguish the
a

strstchable ones among them. Klee is aware of the danger, but by

mistaken arguments (on pp„ 12, 13) convinces himself that all the

arrangements he is obtaining are stretchable. By Canham§s result, this

stretchability actually occurs for n • 7 » but examples derivable

from the non-stretohable simple arrangement of 9 p®«udolines in P2

(Ringel [19563» Grttnbaum [1972, p.423) show that the stretchability

for n « 8 .



Ta* liBiM part of a Euclidean arrangement consists of all tha

bounded cells of the arrangements it haa b@en the object of esveral

investigations about which tee shall report below* If the Euclidean

arrangement is viewed as a projective arrangement from which one

hyperplane was deleted as the "hyperplane at infinity". the"finite

part" of the Euclidean arrangement becomes the complex consisting

of all the (closed) cells of the projective arrangement that miss the

"hyperplane at infinity"• This provides a possibility of treating

different questions on Euclidean arrangements in a projective formu

lation* often this variant is actually a strengthening of thai purely

projective version established earlier. The following examples should

clarify this relatioship* many other interesting problems of thie

type remain to be investigated.

Consider first the following analogue of the weUTknown Sylvester

Theorem^ £. Each non-trivial Euclidean 2-arrangeaent haa a

simple vertex (that is, a vertex that belongs to precisely two lines
of the arrangement).

„, The equivalent statement in the projective setting is the

following one, which is clearly stronger than just an affirmative

solution of Sylvester's problems

iO«?.Pr«ffl 2L*. If all the simple vertices of a non-trivial

arrangement -i/fe in P2 are on one line L ©f & „ then c4 ia a
near-pencil and L is the exceptional line of ^ *

Paviick [19733 mentions Theorem 2, and claims that it had been

proved by Melchior [1940]. This in incorrect, since Melchior proved

only that each non-trivial projective arrangement has simple vert

that is, gave a solution to Sylvester's problem. Although there are
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several simple and straightforward solutions of Sylvester's problem

in the projective plane (based either on Euler's formula, or en other

elementary considerations), none seems to be adaptable to a proof of

Theorem Z or 2*. The only proof of those I know uses the much stronger

result of Kelly-Woser [19583 to the effect that each non-trivial

projective arrangement cn~ with n(aft) lines has at least t^lvb) 5
>Jn{<fl)/7 simple vertices.

Proof of Theorem.2*, Assume all simple vertices of the arrangement

fiz. are on the line L ? if the arrangement Jk obtained from o4> hy

omitting the line L is trivial„ then <rt is a near-pencil and L

its exceptional line, as claimed* Hence we need consider only the

case in which \/i is non-trivial« All the %Z{A) > 3n(o4 )/? •
»3(n(*A) - l)/7 simple vertices of iA must correspond to vertices

of rft incident with precisely 3 lines, one of which is L „ Therefore

L must be intersected by at least inijl) ♦ 2*^(n(A) *1) s9n( J\)/7 -6/
lines of <rt, ,which is impossible since </h contains only r\{A) - 1

lines different from L .

Assuming Theorem 2, P&vlick [19733 gives the easy proof (by

induction on n ) of the following result i

Theorem 3, If a Euclidean 2-arrangeraent of n lines has at

least Z vertices then it has at least n-1 vertices.

An equivalent projective formulation isi

Theorem 3»fii If Jb is a non-trivial arrangement of n lines in
P2 and if L is any line of i/L •then either (A is a near-pencil
and L its exceptional line, or else t/c has at least n-2 vertices

not on L •
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a One of the earliest results on Euclidean arrangements is the

following (Roberts [188835«

Theorem 4« In each simple Euclidean 2-arrangement of n lines.

the finite part contains at least n-2 triangles•

Actually, Roberts8 procf of Theorem 4 is invalid* and no proof

of the assertion has ever been published. In his forthcoming thesis.

Shannon [19751 establishes it in the following vastly generalised ferns

Theorem^* If «/^* is an arrangement of n hyperplanes in 2**

such that no point of P belongs tc n-2 or more of the hyperpl^ss,

end if H is one of the hyperplanes of ^ , then among the facets of

• (/b there are at least n~(d+i) d-siraplicas eaeh of which haa as

(d-l)-face in H ,



6.

Exercises and problems*

1. The enumerations in Klee [1938] were based on the following

constructioni If in each 2-faee of a simple Euclidean arrangement of

n lines or pseudolines we mark a "node", and If we connect "nodes** in

faces that have a common (bounded or unbounded) edge by an "arc** we

obtain a planar -flap which is isomorphic (as a planar map) to a "Klee

diagram", that is, a subdivision of the regular (2n)-gon into rhombl.

Conversely,, each such subdivision is a Klee diagram and corresponds

to (a family of mutually isomorphic) simple arrangements of n pseudo-

lines. The example in Figure I should help clarify the correspondencej

in its first part "nodes* are represented by open circles, "arcs" by

dashed lines* (Prove the validity of the above statement about Klee

diagrams! probably the simplest way is by induction on n of the more

general construction, in which the regular (2n)-gon is replaced by

one with only a center of symmetry.) What misled Klee (at least

psychologically) is the curious fact that even the Klee diagrams of

non-stretchable arrangements of pseudolines may be represented by ,

(rectilinear) rhombi.

A ncm-stretohable Euclidean arrangement of 8 pseudolines, obtain

fros the non-stretchable simple arrangement of 9 pseudolines in the

projective plane, described by Ringel [1956] and Grtabaum [1972, Pig* 3«!

by taking one of them as the "line at infinity", has the Klee dlagrma

shown in Figure 2. (Check that assertion? the nearly-vertical line

in Figure 3*3 of Gnmbaum [1972] was taken as the line at infinity in

the preparation of Figure 2,) The construction of Klee diagraas of

Euclidean arrangements may be compared to the correspondence between

projective arrangements and sonotopes (Coxeter [1962], McMullen [19713t

Grtabaum [1971].)
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2. Generalise the construction of Klee diagrams to not

necessarily simple Euclidean arrangements of pseudolines,

3. Consider anal' iof K3 -Euclidean arranges:
in 3-dimensional splice*

b* The proof of theorem 2* given above may easily be modified

so as to show that in every non-trivial 2-arrangeaent A that is not

a near-pencil, and for each line L in <# . there are at least

2n(c&)/21 simple vertices of qQ; that are not on L.
5. Prove that theorem 2* remains valid even if it is not

assumed that the line L that contains all the simple vertices of
</£ is a line of <fb ,

6. Prove theorem 2* for arrangements of pseudolines.

7. Provide examples establishing that no analogue of theorem 2*
is valid for d-arrangements in Pd dor d> 3*

8. No analogue of theorem 3holds for arrangements of planes in
2 (or in higher dimensions). For each n> k and each k, 2< k<*n9
find an arrangement of n planes in E3 that has precisely k
vertices.

9. As a complement of theorea 3, Pavliek [1973] formulates the

following conjecture (verified by him for n « 4,5,6*7)* For e&oh n

and for each choice of p such that either p«0 or p» l or n-1 £ p
^(2) »there exists a Siclidean 2-arrangement with n lines and

precisely p. vertices.

Prove that this conjecture is true for n « 6 and n » 9, and
that it is false for each n >, 10.
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10. A problem somewhat complementary to theorem 4 has recently

been proposed by K. Fujiwura (see M. Gardner [1972]). In our

terminology, Fujimura's problem iss What is the D&ximal number of

triangles possible in the finite part of a Euclidean arrangeaant of

n lines ? As maximal known number of such triangles Gardner mentionst

Number of liness

maximal known

number of triangless

4

2

5

5 | ?

8 9

11 15 21
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Arrangei s 2JL££i2E£f3 Lines.

This is a very interesting topic with many novel "1 >es of

problems, in which relatively little has been published so far

although many people appear to have thought at least fleetingly

about some of the questions.

Let trL he an arrangement of n lines m P ; we say that

\jL is k-colored if the lines of crfc are grouped in k sets, the

"colors'3 of <rL o We call a vertex of \y~c monochromatic if all

the lines of Lr~L incident with it have the same color.

The first problem we shall discuss originated with R« L. Graham;

it concerns the existence of monochromatic vertices in 2~coId:-.\-.1

araitgements s An affirmative answer was; announced by motzkin Ll9^?]j

and a proof was published by Chakerian U970]. Tore preciselyj

Theorem 1• If a non-trivial arrangement \jrt in P is colored

by two colors then crfc contains at least one monochromatic vertex.0

Proof« (Prom Chakerian [1970]). Consider the arrangement ,yV

in the ™odel of r on the 2-sphere. Then t*e assertion is obviously

a special case of the following result, which is known as Cauchy's

lemma; a variant of it was first established by Cauehy Li813] in

his proof of the famous "rigidity theorem" for convex 3-u:or.ytopes«.

I It is ironic that Cauchy's version was actually insufficient f

the needs of his proof, although it would have hcen adequate for

the proof of Theorem 1„)

Cauchy's grama. There is no possibility to color each edge of

a planar fraph G (without Loops or multiple edges) by one of tv;o

colors so that at each vertex of G, in the cyclic sequence of edges

around the vertex there ha at least k- cl • of color„
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Proofc Assume such a coloring of a graph G possible* Let v,

e. f, c be the numbers of vertices, edges, faces 'countries) and

connected components of G , and let p, he the number- of ':•

faces of f? •Then 2e =^kp, , f- > Pj. ,and -- by
relation - v*l+c+e~fo The tota] imber m of changes of

color around all vertices satisfies, on the one hand, m > ^Vo

the other hand, since m is also the total number of changes of

color around the faces of G , and since around a k-gonal face th

may be at most 2tk/2] changes of color, v;e have mi: ^1- 2|.k/2]p,

Combining those inequalities with the previous equations we obtain

k + 4c + 2p,- + 2pg -i- 4p? + 2pQ + 5pc + „•.. ^ 0 «which is clearly

impossible. M

A different proof of Theorem i was privately communicated to

me in 1971 by G. D. Chakerian, who credited it to Sherman K. Steins

it is as follows:

Call "good configuration" any near-pencil formed by k- lines.

two of each color. Each "good configuration" contains two triangles

with a common edge so that the disposition of colors is as indicated

(for the shaded triangles) in the schemes of Figure 1. (Actual.

each "good configuration0 contains two such pairs.) Call the union

of these two triangles a "characteristic triangle" of the "good

configuration"o Clearly, if (/L were a non-trivial arrangement

colored 'by 2 colors, without any monochromatic vertices,, then v/u

would contain some "good configurations"» Let us choose one such,

the "characteristic triangle" of which is he sense

that it does not properly contain the "characteristic triangle" of

any other "good configuration",, Without loss of generality we
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Figure 2Figure i••-.

7
/

.-

Figure 3o Colorings of near-pencils A.

Figure 40 A,(10) ,

typical for A1(4-k+2).

_

•e 5o A. (12), typical

(4k), With ) line

infinity: A.{13)s typical for

Ai(4k4-i) 0
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may assume that the situation is as indicated by the solid lines

in Figure Z9 the minimal "characteristic triangle" being again

shadedo Now, if the vertex V were not monochromatic, there obviously

would exist a "good configuration" (of the other color-scheme) with

apex at V p the "characteristic triangle" of which would be

contained in one of the parts forming the supposedly minimal one

we started witho The contradiction reached completes the proof of

Theorem l, HE

Although both proofs .of Theorem 1 have great similarities

with proofs of Sylvestercs problem about simple points, there are

significant and interesting differences• First, as mentioned by

Motzkin [1967J; a "combined theorem" that would assert the existence

of a MlSi£ gioftogfagomatjc vertex does not hold*. Also, the number

of monochromatic vertices does not have to increase with the number

of lines in the arrangement0 Indeed, in each of the 3 known infinite

families of simplicial arrangements (Grilnbaum L19713? 11972]) it is

possible to color the lines by 2 colors so that there is only one

monochromatic vertex, and it is incident with as many lines as

desiredo The examples in Figures 3, be and 5 should be sufficient

to explain the idea0

For an arrangement i7x colored by k colors lf2».0Pik , let n

ni = ni^c^ denote the number of lines of color i ,and let 3^ * s.ttc)
denote the number of monochromatic vertices of && all lines thro<

which have color i 0 A k-colored arrangement i/G is called biased,

provided s^d/t) «= 0 for all i> 2 BIn a 2-colored biased arrangement
we call 6(</k) fc: n«(^t) « nAtfz) the chromatic deficit of i7c o



Correction

In Conjecture 1 the words "that is not a near-pencil"

should be replaced by "for which the lines of color 2 do not

form a trivial arrangement (pencil)"*

Analogous corrections should be made in Conjecture 2,

and in Remark 4 (on page 8)„



Motzkin [1967] mentions that he is aware of iO infinite

families of 2-colored biased arrangements C/L- with 0^ f (c7c) fr 1

and that the greatest chromatic deficit (jisf) » 4. known to him

occurs in the arrangement of Figure 6, (Color 1 - red, color 2 - green)..

We supplement Moiskin's findings by the fol ngi

^^£em_2s There exist at least two infinite families . of

2-eolcred biased arrangements with 0 « /.<- ,

(Obviously, strictly speaking the only formal assertion of

this theorem is that there are infinitely many examples; however, as

seen in the proof., they form "families" in a natural way„)

££2S£° The first such family has n.. - 6k , n? ~ 6k + 4 , for

^ - i»2jooo 0 Its formation is best seen from Figure 7, in which the

cases k - 1,2,3 are illustrated (in each case, the line at

infinity belongs to the arrangement and has color 2 - green)0 The

second family is illustrated ( by cases k ^ 1*2,3 ) in Figures 7a and

8, Each arrangement in it may he interpreted as obtained from an

arrangement in the first family by deleting certain lines0

To complement Theorem 2 we make
(that is not a •

Con.lecture !„ For each 2-colored biased arrangement^ near-pencil

the chromatic deficit is at most k- ; J(j£) £ l\. „
2-colored arrangements with a single monochromatic vertex-

appear to have many special properties We have:

TMoremJ,^ (Shannon [197^-1) If v4> is a 2»colored biased

arrangement with s^Ji) • l , then all the lines of </L that have
color 1 are incident with that vertexo

tot a nsnr-pencii) ,
^vinje^tureo2.*_ If ctt is a 2«colored biased arrangementwith

si(o4) =-- i then 3~«/t) £i 0
The arrangements A^k+l) in Figure 5 shew that equality in

this conjecture holds for infinitely many arrangements* Actually,,



Figure 6„ A^(16), with
red line at infinity„

Figure 7b„

12 red lines

l6 green ,

with oo

gre

Figure 7a

6 red lines,, 10 green , with

green line at infinity,

4a -



'4-b

. 7cc 18 red . »s, 22 -i i,-nes (including
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Figure 8b«

13 red lines

22 green (including od )

4c -

Figure 8ac

12 rod lines

16 green (including co )

-.ill
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there are many other 2-colored biased arrangements (ft with s.(gL

... ff(cft)

Turning to a different type of questions, we shall say that a
A

k-coloring of an arrangement [fc is nice, provided k > 2 and no

vertex of /c is bichromatic (that is, incident with lines of just

two different colors)« The results of Grflnbaum [1956], Edelstein

[1957], Herzog-Kelly [i960], Edelstein-Herzog-Kelly L1963], Edelstein

-Kelly [5.966] may be reformulated (by duality) to assert that among

certain families of arrangements of infinitely manj£ lines only the

trivial arrangements are nicely colorable (by any number of colors)0

However, as noted in several of those papers, there exist non-trivial

nicely colored (finite) arrangements*, The (dual of the) first example

(Herzog-Kelly [1960]) is shewn in Figure 9b; it may be generalized

to the nicely 3-colorable arrangements of 3k lines,, k> 2, obtained

by extending the sides of a regular (2k)~gon, and talcing also its k

longest diagonals (Edelstein-Kelly [1966]);] see Figure 9 for k = 2,

3o^t5 © The number of colors used in nicely colored arrangements

may be arbitrarily large, as is shown by the following result

which the notation of Grtobaum [1971J is used):

Theorem 4B All arrangements A^te-2) and Aj(8k+4) ,where

k > 1 8 have nice (2k+l)-colorings0

Proof,, The methi c 1< rii ; is rather clearly indicated in

Figure 10 and 11, which illustrate e cases k « 1, 2 0

It may be observed that many other simplicial arrangements

have nice colorings. Fo:c example. 3) has a nice .u-ing,

A.(15) has a nice 5~coloring9 while A-(15) has nice colorings with

6, 79 8, or 9 colors (see Figure 12)c



5a

_

—-

Figure 9a

Figure 9 b

.ire 9e

Figure 9d

/

•

'•vx

are 10
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A1(12)

Figure ilo

Ax{20)

Figure 12• A-(i5) . Dashed and solid lines of the same color

may be assigned "different colors as wello



In all known examples of nicely colored arrangements each

color is assigned to relatively few lines„ We have two conjectures

i^£^£^B£§LJio -- an arrangement is nicely k-colored with

k i> 5? then some color is assigned tc L\- or fewer lines0

2£^iM&J&J£M^!k* There exists an absolute constant c such

that for each nice k-coloring of an arrangement «rith k >. 4a each

color is assigned to at most c lines0

The example of a nicely 5-colored arrangement of 15 lines

shown in Figure 13 proves that if ists then c >?•



- 6a ~

Figure 13
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Rem . ' and problems.

1Q From biased arrangements with a single monochromatic

vertex (such p.s those in Figures 4 and 5) it is easy to obtain

examples of non-trivial arrangements colored by 3 colors (each

assigned to arbitrarily large numbers of lines) that have no

monochromatic vertices (Motzkin [19^7])°

2CGeneralizing Theorem 1 to d-arrangements, Shannon Li97--!-]

has proved the following result:

If the hyperplanes of a d-arrangement */c in projective d-sp:.

are colored by at most d colors9 there exists in Sz a monochromatic

(d~2)«flat (that is3 a (d«2)-flat that is determined by the

hyperplanes of crt , and is such that all hyperplanes of c/t that

contain it have the same color)0

3o Already for d»3 it is easy to find 2-colored d-arrangements

with no monochromatic vertices0 For example (in the notation of

Section 3 of these Motes) it is possible to 2~color the planes in

all arrangements A (p) V A (q) , with pf q >_ 2 , so that no vertex

be monochromatic, and the same is possible in every arrangement

A (0) \/ eft: , where \f'C is a biased 2-colored arrangement of lines

in P . But there are examples with this property that are yicg

joins of lower-dimensional arrangements0 For example, if 5 of the

planes of symmetry in A;?(10) are given one color,, while the sixth

plane of symmetry and the 4 other planes have another colort there

is no monochromatic vertex, Similarly for Ar(l5) th 6 planes of

symmetry of one Lanes and 3 mid~plan.es of the o
•~>

Ani6) . A^(l8) (6 planes of symmetry have one color while 8 fa
~,>

planes, 3 midplanes and plane at infinity have thy Aj(2?)n
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28) ,and A^(28 lanes of symmetry and 3 midplanes one

colorP the other 19 ; other). It would be interesting

to kno< ether every 3 ment w: 2 vertices has

this proper- ;

4-o Theorem 1 (and both proofs given for it) generalize to

arra \ snts of pseudolines in P B However lonjecture 1 dues

not hold for such a ents. Indeed, ind 15 we

show two 2-colored biased arrange ;s of 28 psei nes each, s

that the chromatic deficit of each equals 6 „ V/e cunj 2 that

the chromatic deficit of every 2-colored biased arrangement of

pseudolines (other than a near-pencil) is at most 6 c

5. Theorem 1 and Chakerian's [1970] proof of it apply as

well to the ease of digon-free arrangements of curves. (Concerning

such arrangements, and the terminology we use, see Grtinbaum [1972],

However, if digons are permitted. Theorem 1 neeo. not hold,. In Figure

16 we show two non-trivial examples of 2-colored arrangements of

circles without monochromatic vertices a

60 Mediating Shannon's theorem 3 it is easy to see that

Conjecture 2 is.equivalent with the following conjecture of Shanr

If n points of the Euclidean plane are not collinear they

determine at least n-1 different slopes (directions) 0

7, As a counter :cely colored

arrangements, Herz lly [i960] pro re is no non-trivial

arrangement colored with k> 2 that lacks both bichromatic

and trichromatic vertices*
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Figure 140 ii red pseudolines, 1? green ones (including co ) „



//

/ / /H /N V\ x// / A,/ . HA \
/A

Figure 15. 11 red pseudolines, 17 green ones (including gd ).
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Figure 16

A
v.

n « 6 m = 2
n - 9 m = 3

Figure 17u Properly 2-colored arrangements.



« 9 -

8o A k-coloring of a d-arrangement </L is nice provided each

(d--Z)-flat cf (fz. is either monochromatic, or else is contained in

hyperplanes of at least 3 colors«, It was observed by Edelstein-Kelly

[1966] that the 3«arrangement A^(12) (formed by the 6 facet-planes
of a cube, and its 6 planes of mirror-symmetry through pairs of

opposite edges) has a nice 3-coloring (each color is assigned to

two parallel facet-planes and the two symmetry planes perpendicular

to them)B Remarkably? no other (non-trivial) nicely colored

3-arrangement is knowno Moreovert Edelstein-Kelly L1966] prove:

For d ^ 4 there exist no non-trivial nicely colored d-arrangements0

9o In the dual formulation, the notion of nice k-ccloring

may be phrased as follows 1 A set 5 C P is k-nice provided each

partition of S into k disjoint non-empty sets S*%o*c9S^ has

the property that any line meeting two distinct S.!s meets at

least one more S. 0 The papers mentioned on page 5 deal mainly

with the following types of problems related to k«nicenesss Prove,

under suitable conditions on the nature of the pairwise disjoint

sets IC ,„0oK, CP , that if every line meeting two eof the K, fs

meets at least a third, then \J K. is contained in a line0 We shall
i

say that such families have the Sylvester property. since the

original problem of Sylvester was to show that families in which

each K. is a single point have that propertyc. The result of

Edelstein-Kelly L1966] mentioned in 8C above establishes the

Sylvester property of families of finite sets such that the affine

hull cf Uk» has dimension at least k , Edelstein-Herzog-Kelly
i x

[1963] prove the Sylvester property for families of compact sets

K. such that \J K. is infinite„
i



10o An arrangement vri of lines in P is properly k-colored

provided each line of (/a is assigned to one of k colors so that

every monochromatic vertex is incident with two lines only0 It is

easily checked that the arrangement A. (10) (see Figure ••!-) is not

properly 2-colorable0 Although we have not established the existence

of a k such that every arrangement is properly k-colorable, no

examples are known that need k colors for a proper coloringo

2
SSBl^5JilE.i.c Every arrangement of lines in P is properly

3"COlorabIe0

Another open problem is whether in properly 2-colored

arrangements of n lines (other than near-pencils) the number m

of monochromatic vertices is necessarily large for large n 0

Experimental evidence seems to point that way., The largest n for

which a properly 2-colored arrangement of n lines with m = 2 is

known is n ~ 6 ; for m - 3 the largest known n is 9 (see

Figure 17 ).

11o In a recent letter, M. A. Rabin informed me that he had

heard of Graham's problem in 1966, and had at time found a proof

Of Theorem 1. his paper with T. S. Motzkin, mentioned in Chakerian

[1970]? will soon be submitted for publication; it will contain

(among others) proofs of the statements in Motzkin Ll967 3°
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tranglate® of these four in tho direotion of P*« If there are

£***»<>« ^i^reoti&nsji, we xetdp repeating taie prctoess9 arriving at a

k
set oonsisting of at most 2 additional points a^d having the

given k points ©mitta&le.* Oaraful aho&eee of the translations

^@od provost the introduction of other onittable points« (See Pig« %

for k * 3 o)..
«

Let <*C denote the arrangement g*

lines of t/b 9 lot s((A) denote the raanber of linos in Ji
let s(n) * max (sCA) j n(<A) * nj * Prom the example fo
^heoron i {and easy variants) it is obvious that ®{n) > In/Jl

If the C2s)«gon m&& in tho ©flnstwotioa

the line al infinity we nm that al6M>l > 2k*2 (whi&h

greater than C(<8w*)/33 J*

The only other sasss in fihieh a value of sin) gsoatsr than

[h/35 -it &n'3*en are listed in Sfcble i • €eneemlng the

for l®&&& n we ventre

I»««f **fc,. 9

s(n)/n •
n -fcor>

Other rotated problems ares Oiven an arrangement •>''-.

for whioh fche lines ^v****^ are onlttable ('that is,

analogous problem arise® if It is required ttat tho linos

s «sA
,>

v. tr&

t~*



,

«* £&\ «B

p.



f

be preoisfcly the oniY'caD.ie

we shall ©all this the striot problem.

It Is not hard to mm that the answer 2

the striot problem) whenever k < * .Also* a modifieati

eonstruetlon u&®& in tho jroof of theorem 2 show®

affirmative (even for the striot problem) ritenever ;:.r.

pencil•The ©nly other eases in whi<sh an answer is te.wn

noted in Table.lt or derivable from them* ^ q
CScmleotuye. There exists an n su#h that if n(^

gi

ashore y€ is feh® set of onittablo linos
s ®v a noar*penoll»

oi

s affiraative (even-f.or

of the

^

> n



®(n|> for that example

«

3
g

16

Ho 3 lines concurrent

A0(6) ;

A,(9)
AA(8)99

25

28

3*

io

1Q

Aj(2i)
:

p*5)

,(37)

'2 EM

e

A0(iO>

A0(12)

A2(13)

A0(i4)

8 sides of regular octagon and 8 lines
through its center

V1*

X* * indicates arrangement' obtained by the construction

mentioned on page Z. AAn) refers to the simplioial arrangements

1] 9 and in pert also in these note®* 1.

refers to the simplioial tArrangements of poeudoli^es shown te
»

Plgures 2 and 3*



:m

tf f s!



;j. B9(40), a s



•

lA,

1* Provide a detailed proof of the assertion made on page

3 that the striot extension problem has an affirmative solution

whenever A,Q is anear-pencil« (In Pigure fc ens way of showing it
is indicated in ©ass vKq *^W *again th: dual formulation of

the problem is employed,)

2e Determine whether the 5 extended sldss af a regular

pentagon can be {the only) ©mittabl© lines of so:ue arrangement,

3« Show that th© construction described in *she proof of

theorem Z is "essentially" best possible in the fillowing senses

There exists a constant c > 0 ®&©h that for es*h k me can

find k conourrent line® l>$ 6&*'» $1*^ with the pnperty that any

arrangemcmt A> for whlsh sac*h 3»£ is omittable mtiefies i

n(A)>«2ki

t i«



"•'.''.; •;:;: V'C



•-»

V» Pf'

be on the omittab^e points in complete spates* of •
points and straight lints in the plans**

ech« J&iiseian and English su35Baries«3
(S^opls Pftst. Hat* 85(1960), 60-69* m Zk9 # AAM.

B, Grfln n urn

/

. ma Confersnee on Combinatories,
: and Ccrcputing (R«0a Mullin et ail.,

Louisiana State University, -Baton Bout?* 1971<!pPo&i - i©6.
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