Branko Griinbaum

Preface to ""Notes on Arrangements'

In the Spring Quarter of 1974 1 gave a course on "Special Topics in Geometry" at
the University of Washington. The guiding idea of the course was to present a detailed
picture of several topics involving points and lines in the real projective plane, and some
analogous results in the real projective space. The material I intended to describe was not
available in any published form. Therefore I prepared handouts which were distributed to
the participants as the quarter went on, and several copies were also sent to mathemati-
cians that I hoped will be interested in the topics discussed.

The notes are reproduced by digitally scanning the only copy of the notes that is
still in my possession. Originally, I typed the pages and drew the diagrams on (purple)
ditto masters, supplemented for some of the diagrams by ditto-masters in other colors to
illustrate the constructions. It is rather remarkable that after more than 35 years, and with
the purple ditto reproductions something completely unknown to today's younger genera-
tion, it turned out to be possible to scan and digitize the complete set of the notes. The
readability of the text is no worse than it was originally, and although some of the colors
did not scan perfectly, with a modicum of good-will all diagrams are intelligible.

The main reason for making these notes now available in digital form is that they
have been mentioned in a number of publications. As explained below, the notes have led
to the development of several of the topics discussed in them and many of the problems
and conjectures mentioned are still open.

The first section of the notes is self-explanatory. It was necessary since most of
the students in the class have never been exposed to projective geometry of any kind.

The second section reprises and presents in some detail several aspects of the
topic of arrangements of lines in the plane, that has been considered in some of my earlier
publications. Particular attention is given to simplicial arrangements, that have appeared
in various contexts — mostly due to their extremal properties; see, for example, Erdos and

Purdy [6], and Artés et al. [1]. Another part of the attraction of simplicial arrangements
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lies in the mystery of the sporadic ones among them (see Conjecture 2.1). A recent pub-
lication [11] presents an updated listing of all such arrangements, together with a new
way of looking at the kinship among them. This leads to a negative solution of Conjec-

ture 2.3: Counterexamples are arrangements listed in [11] as JA(16,5), A(17,8), and sev-

eral others. The other conjectures of this section are still open; also, the open-ended Ex-
ercises 4 and 5 are still without a satisfactory answer. The claim in the notes that there
are 91 sporadic simplicial arrangements needs to be corrected; only 90 are known (see
[L1]).

A different source of interest in simplicial arrangements is due to their relation to
the free arrangements considered by Orlik and Terao [14] — although the precise relation-
ship is not clear. On the other hand, the connection between simplicial arrangements and
simple zonohedra is well known (Coxeter [3]), as is their relevance to partial cubes (see
Eppstein [5]). Very recently, it has been found that simplicial arrangements have connec-
tions with certain Weyl grupoids (see Cuntz and Heckenberger [4]).

In Section 3 we come to the main innovation of the notes — the consideration of
simplicial arrangements in three and higher dimensions. While some of the results have
been briefly mentioned, without proofs, in [7], here are presented justifications of these
and other claims. Much of the material of Section 3 has been used as the basis of [12]. In
particular, the corrected catalogue of simplicial 3-arrangements that appears as an Ap-
pendix to Section 3 was included in [12], together with one additional arrangement not in
the Appendix. The presentation in the Notes, and later in [12], prompted several publica-
tions of J. E. Wetzel and coauthors, see [16] for details and references. The research of
Wetzel and coauthors led to the discovery of four simplicial 3-arrangements beyond the
ones in [12], and also to a number of results about simplicial arrangements in higher di-
mensions that solved some of the problems raised in the Notes.

The section on Euclidean arrangements surveys the results known at the time, cor-
rects some of them, and raises a number of open problems.

Similarly, the section on arrangements of colored lines presents the known results,

introduces a number of new concepts, and raises several problems and conjectures. Some
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of the material was presented in the abstract [8], and published in [9]. Many new devel-
opments on this and related topics are reported in [15].

The final section of the Notes deals with arrangements in which there are "omitta-
ble lines" — that is, lines such that their omission does not lead to the loss of any vertices.
The topic was started by Koutsky and Polak [13], and the Notes contain strengthenings of
their results as well as new material. An exposition of this topic in [10], based on the
Notes, led to renewed interest that resulted in a new point of view (aggregates of lines)
and to far-reaching generalizations, see [2]. Very recently, I have started studying the
analogous problem in 3-space, concerning omittable planes.

It is my hope that making the Notes readily available after such a long time will
contribute to the interest in the topics presented, and in the open problems and conjec-

tures described in the text.

Seattle, April 2010
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i. Introduction: the projective plane.

The aim of these notes 1s Lo present some of the known results
and open problems concerning various kinds of arrangements. Without
gticking to formalities we shall mainly stress the 2-dimensional
case, only briefly indicating changes that occur in higher dimensions.

We shall be interested in Buclidean as well as in projective
arrangements, and we find it best to consider them togethar; more
detailed reasons for this attitude will be given later. A definition
of arrangements will also be delayed till the next section, since
we shall devote the present one to & few words about the real
projective plans Pz. The reader wishing to supplement ‘the brlef
remarks that follow may choose from many excellent texts tha+t discuss
the projective plane from the axiomatic, geometrie, and algebrailc
points of view. Our approach is informal, intuitive and pragmatics
we shall assume that the reader ls well scquainted with the Euclidean

e and the PBuclidean d-space rd

plane E v
" For gimplicity of expression - and for occasional use in proofs -
we shall interpret the real prejective plane pe in any of the
following - mutually equivalent = ways:
Model  {i). The plane P° consists of the Euclidean plane i
augmented by one "ideal™ "point 2t infinity" for each family of
matually parallel lines, and by a “line at infinity“formed by all the

"points at infinity®. This is historically the first modsl of the



1.2
projective plane; once the terminoclogy is assimilated the model is
very convenlient. Mozt of our graphical illustrations will be in
this model.,

Model {(ii)}. The points of P* are represented by ordered
triplets x = {xoyxipxg} of real numbers, not all equal to 0, two
tripletsa x and vy = (ye,yl.yz} representing the same point if
and only if there exists a real A# 0 such that X =)yj for
8ll § . A line is represented by a triplet a = (ao,ai,az) # (0,0,0),
with proportional triplets representing the same line. A line & and
a point x are incident if and only if (a.,x} = a,x, + 8,%, + a,%,
= 0 . The "points at Infinity” Iin model (i) correspond to these
triplets x for which x, = 0 , the 1ine at infinity® to the
triplet (1,0,0) .

Model {iii). The points of P° are all pairs of sntipodal
' (opposite) points on a (unit) sphere 52 in Euclidean 3-space Ej,
while Jlines of P* correspond %o great circles on $%. Related to
this is model (iv), in which poigts of P° are represented by
lines through the origin 0 in E3. and lines of P2 are
represented by planes through 0 in Ej . _

Model (v). P* is represented in a closed circular disec D
in the Euclidean plane Ez. The peoints of pe ares the points of
the interior of D , and antipodal pairs of points of bdD. The
lines of 'Pz are represented by: the diameters of D , semi-ellipses
having diameters of I} as major axes, and the boundary bd D of D.

Model (vi). As in model (v), P is represented in a closed
circular dlse D , and its polnts are the points of int D and the
antipodal pairs of bd D. The Lines of P* ares The diametsrs of
0, the boundary of D, and circular ares in D connecting antipodal
points on bd D,
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P

A discussion of modal (v) may be Tound in Cans (19547, (19581,
[1969]. Model {(vi) was brought to my attenmtion by G. C. Shephard
in 1969, Both (v) and (vi) may be obtained from the "lower hemisphere”
of model {(1ii), the first by parallel projection, the secend by
gterecgraphic projection., Additionzl models (less easy tc describe)
may be obitained by projections from other points. Restricting in
models (v) and {vi) the attention to the interior of the dise D ,
two models of the Euclidean plane E2 are obtained.

& @ @ '

One of the advantages of P2 over E2 is the existence of
a duality in p* , that is 2 one-to-one mapping ¥ from “he points
and lines of P2 to the linss and points of P2 s Such tha: incidences
of points and lines are preserved. A mapping ¥ 1is partiwularly
easy to describe in models (ii), (1ii) and (iv). In the first,
the image 4/ (x) of a pojnt = 1s the lipe with triplet x , and
;rice versa., In the sscond, the image f/’(x) of a point x of P,
i.¢. of an antipodal pair of points on the sphere Sz. is the great
circle perpendicular to the diameter determined by the antipolal
pair of peints, and conversely. In model (iv), mutually orthegonal
lines and planes through 0 in E3 correspond to mutuglly dus.,
points and lines of p2 "

It should be stresssd that there are infinitely many different
dualities on P2, and that there is no "natural®, privileged duslity.
However, in a specific model {such as (ii) or (iii)) of P2 it ne.r
happen that one duality is singled out as more “natural®™ or geometri-

cally meaningfful than others.

& % *
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Une of the reasona for the choice of the real projective
plane as the medium in which mest of our discussions will take place
ls the validity of the Tollowing statementss

if a set of straight lines Ll""’Lh is given in P° such
that no point of P belongs to all of them, then the complement
of the union I, J oiee L)Ln consists of a finite number of open
connected sets Fi"“'"Fk « For each Fj there exists a straight
line L which misses the c¢losure of ,Fj 3 if such an 1 is chosen
ag the Mins at infinity® 4in modal (1) of P? then the closure of
Fj is a convex polygon.

Detailed proofs of those properties of P2 may be found in
Veblen~Young (1918, Chapter %1; & simple and direct approach ma& be
found also in Carver [i941],

@ o &

All the above generalizes readily to the real projective space

d

P”  of dimension d. The duality in Pd interchanges j-subapaces with

f~j=1)=-subspaces, for j = 0,1,00 opd=1 ,
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Exercises.,
i. Prove that the 8ix models of P described above are
actually equivalent to each other.

9 of the moiels (i) to (vi).

2

2. Pormulate the analogue for P
3. Consider the projections from the center O onto S of
the different Platonic solida placed so that theilr centroids

coinoide with O . Using model {(1ii) of Pz the proj2ctions of

the cube, ocizhedron, dodecahedron and icosahedron give rise to
certain tessellations of p? » Describe those tessellaiions In the
various modeis of pe e What about the tetrahedron, or about the
Archimedean solids 7

L, Deseribe a duality in each of the models (i) , (v) and (vi),
and a duallity different from those discussed above in each of the
other three models, .

5. Prove the maln property of the stereographic projection:

The image of every circle in 52 that misses the north pile N 1is
a circle in the Buclidean plane tangent at the south pole, while
circles through N (deleted at N ) are mapped anto lines in the
plane.

8. Many statements of Euclidean geometry have anaiogues in
projective geometry obtainable (in model (1)) by replacing "parallel
lines"™ by "lines intersecting at a point at infinity”. Er such =
"projectivization” of a welleknown fact about Euclidean (riangles
the situvation shown in Figure 1.1 is obtained. There is ¢ triang.e
formed by lines A, B, C, a line marked ® , and lines marked P, &4, R.
The three lines (marked S, T, U) that are determined by tie vertlices
of the triangle and the interssctions of A, B, C with P, Q, R
meet a2t one point. From which Buclidean fact does this follww ?
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Figure 1.1.
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7. Can you formulate the result dealt with in guestion 6 in
any of the other models of Pz ?

8. Prove the following theorem of G. Ewald (private communie
cation): A finite family %g of circles in the BEuclidean plane
may be cobtained as the stereographic projection of a suitable
family of ereat circles on a sultable sphere if and only if the
following conditions are satisfied:

{i) Each two circles in @? intersect at pracisely two points;

{ii) For each three circles C, C', C* in %g » the twoe points
ot ¢{)c' elther coincide with the two points of C{\C* , or
e¢lse separate them vn C .

(iii) For any four circles Ci. Cz, Cj. Gy in ﬁ? the
intersection points A, and A, of C, and C, are concyclic
with the intersection points Aj and A# of C3 and Cu .

$. Can you generalize the result of question 8 to higher

dimensions ?
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An arrangement of lines gQ;in the projective plane P* is=
sny finite family {xi,,“$g§n} {(whers n>1) of lines in P2 » eonsidersd
with the structure introduced into PZ by the lines Lj 1 the points

. of intersection of the lines {called vertices of A )} ., the segments

of the Lj's determined by the vertices of 34, (we shall call them
the gdges of A& ), and the cormected polygonal regions which form

the complement of 11 LJouﬁ k/Lh s the eclosure of each such region

is ecallsd a face of #@; , Thus, sach arrangement of lines determines
2 cell-complex in P and we shall say that two arrangements ars
jsomorpnic provided the cell-complexes generated by them in the

plane sare isomorphic.

If alli the lines of an arrangement 04. in P2 PESS throuéh
one point the arrangement iz called irivial. Although trivial arran-
goments are in certain respects exceptional and have tb ‘be excluded
from certain considerations, we shall not follow the frequent
convention to deal only with nonntriviél arrangements. It is obvious
that two trivial arrangements are isomorphic if and only 1f they
contain the same number of lines,

Ona of the most natural gquestions about arrangements is the

n problem: Determine the number c{(n) of distinet jieomorphlion

clesses of arrangements of n 1lines in P2 .

The total knowledge available at present on the enumeration
pioblem is éﬁntained ins

Theorem 2,1. c{i) =1, e(2) =1, ¢{3) =2, o) =3,
e{s) = 5, c(6) = 18,

The proéf of thecrem 2.1 is by exhaustive inductive consiruction,
followed by elimination of the arrangements obtained in duplicate.
Representatives of each type are shown in Figure 2.1, (Our values
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Pigure 2.1. The different 1som~urphism types of armngemants of at
most 6 lines., Black circles indicate vertices belonging tc 3 or more
lines.
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for e(n) differ from those found in many other places because of
our including the trivial arrangements that are excluded by most
other suthors.)

It would be very interesting %o obtain at least some infornatian-
on the behaviocur of o{n) for large values of n ; however, 1t
.appears that it is very hard to establish any non-trivial estimates.
Part of the reasons for that may possibly be found in the following
obgervations,

Instead of considering arrangements in the' rsal projectlive
plane we could have modified our definitions to fit arrangements
of lines in any projective plane PZ(F) over an ordered fisld F .
(In model (1ii) of Section 1, consider iriplets (xoaxi,xzi of elements
of P .) Te polygonal Jordan curve theorem, needed to define tﬁe
cell complex determined by a family of lines in PZ(F) , holds in
those projective planes, and the definitionsof iscmorphism, etc.
remain unchanged., However, the number of distinct isomorphism types
of arrangements of n lines in Pz(F) may depend on F , at least
for certain n and F . Por example, it is not hard to verify that
the arrangement of ¢ lines shown in Figure 2.2 exists in Pz(P) if
and oniy if P contains a subfield isomorphic to Q(Si) » the
extension of the field of rational numbers by ‘J_1g Thersfore ¢(9)
is strictly greatef than the number of iscmorphism types of arrangenents
of 9 lines in (for example) tﬁe projective plane over the rationals.
Actually (compare Exercises 1,2,3) the number of different iscmorphism
types depends very strengly on the properties of real algebraie closure
of P - which appear to be hard to take into acccunt in enumeration
procedures,

in order to appreclate another difficulty in enumeration, we

considsr the question of how could ome construct inductively all the
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types of arrangements of n¢l lines in Pz if one knows all. the
types of arrangements of n lines. Since the deletion of any line
from an arrangement of n+l lines ylelds an arrangement with n 1lines,
the most simpleminded idea is to add - in all possible ways - an
_additional line to a representative of each type of arrangements of
n lines. However, experimentation with this idea quickly shows that
the outcome may depend on which particular representative of an
jsomorphism ¢ype of n lines one starts with. For gxample, tha two
arrangements of 6 lines shown by solid lines in Figure 2,3 are clearly
isomorphic; however, the arrangement of 7 lines obtained in Pigure
2,3(b) by the addition of the dashed line is not obtainable from
the representative of the same iype in Flgure 2,3(a). In other words, the
inductive construction may require different representatives of %he
gsame isomorphism class - but it is not known ahead of time which
reprasentatives, i

One attempt to overcome this difficulty is as follows: Taiing
one Pixed representative of an isomorphism type of arrangenents of
n lines, we add the (n¥i)st lino Lot "gehematically” - namely we
do not insist on the giraighiness of Hn+1 but only that it cross
sach of the other lines precisely once. (We shall later discuss in
more detail such "pseudolines® and arrangements formed by them.) This
would enable one to find all the different isomorphism types, and
then one would only nesd to go and choose convenient representatives
of the appr;priate types so that Lh+1 may ba drawn as a straight
1line. However, this program is not satisfactory because in some cases

28 in P2 the “arrangement®

obiained., The smallest known (and probably the smallest possible)

sxamples of that situation occurs for n = 8 ; one is shown in
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fgure 2.3,
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Figure 2.4, where the "pseudoline® L9 is indicated by the dashed
line, This_ 19 can not be drawn &s a strailght line for any represen-
tative of the isomorphism class indicated by the £ solid lines in
Pigure Z.4, since ~ by the well known Pappus theorem = the line

" determined by the pointz A and B necessarily pasaes through € .
{It should be noted fhat this difficulty does not preveni the
inductive prcof of Theorem 2.1 simply because for each "paesudoline”
it is possible to find - in the cases consldered ;n the theorem - a
suitable arrangement thet allows it to be drawn as a straight line.
Probably the determination of «{7} and ¢(8) could be made in the
same way, but the difficulsty would = by the above = appear in
connection with ¢(9) .J .

In contrast to those negative aspects it should be stressed
that the function e¢(n) is neverthsless slgorithmieally computables
in other words, the successive values of c(n} could %é computed
one by one by a suitable Turing machine., This assertion can be
establizhed {similarly to the proef given for the analogous statement
about polytopes, see Crinbaum [1967, Section 5.5]) using Tarski’s
{1951 ] decidability theorem for elementary algsbra (see, for example,
Robinson {1963, Theorem %.2.28], Cohen [1967]). However, it iz not
known whether the function enumerating the different isomorphism
types of arrangements of n 1lines in PZ(P) is algorithmically
computable when P -is the field of rationals , or any ordered field

that does not contain 2 subfield isomorphic to the rsal algebraie

numbers.
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is called gsimple

provided no vertex of a@. helongs to 3 or more lines. Thus simpleness

An arrangement -ﬂz of n 1lnes in P2

f‘ is a property of the isomorphism types, and one may formulate the
enumeration problem for simpie arrangements : Determine the number

Ce9(n) of aistinctiscmorphism types of simple arrangements of n
lines in P® ., We haves
Theorem 2,2, ¢ 1} =1, %2 =1, ¢5(3) =1, B(B) =1,
c®(5) =1, o¥(6) =4, o%7) =11, and ¢®(8) = 135,

The values given in Theorem 2.2 were determined,esgentialiy
by varianis of the method explained above, for n< 7 by White £1932],
Cummings {19321, [1933], and R, Klee {1938]). Halsey [1972] estadlished
6%(8) < 135 , while Canham {1972] proved c¢%(8) = 1138, Representatives
of the 11 types uf simple arrangements of 7 lines are shown in ?ig.2.5;
the only set of drawings of the 135 a?mple arrangenents of 8 lines

known to me is in Canham (19727].
W@ & ’ &

Another very interesting kind of arrangementz are the gimplicisl
ones: An arrangement gﬁé iz aimpiieial provided each face of tAE is
a triangle. For each néz 3 there exists at least one isomorphisa
type of simplicial arrangements of n lines, the pesr-pencil g@o(n} ¢
which consists of n-i lines forming & trivial arrangement and
another line that does not pass through the point common to ths
others. Two other infinite families of simplicial arrangements may
e described-as follows: The arrangenent d@i(zk) is formed, for
k >3, by the k lines determined by the edges of a regular k-gon in
the Buclidean plane, and the k axes of symmetry of that k-goenj; the
arrangeuent J@l(hm+1) is cbtained, for m > 2, from the arrangement

& dqi(um} by the addition of the line at infinity,
Concerning the number ¢Xn) of distinct isomorphism typss
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(1} : (2} (3)

-~
(&) (5 : <+ (6)
ji:i;é;@%;}“‘ | j E\
(7) (8) | (9)

Figure 2.3%.

{10) {11)
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of simplilcial arrangements of n  1lines we have:

Theorem Z.3. cA(3) = cAlM) = o4(5) =1, cA(6) = c(7) =
edig) w A9) =2, A1) =k, A1) =2, Al12) =4,
?(13) = A(14) = 5, ¢*{15) = 6 ,

Representatives of nll the isomorphism tyvpes of simpliclal
arvangements of at most 15 lines are shown in Pigure 2.6.

As we shall sse later, simpliclal arrangements are the solutions
of several extremal protlems., It 1s therefore rather remarkable that

the following conjecturz seems to be valid:s

Conjecture 2,1. Except for the infinite families aéo(n)
in 2 3, d@ (2k) = 3), ﬁﬁlihmﬂ) {m> 2) there exist
only finitely many liscmorphism 2lasses of simpliclal arrangements
of n 1lines, all with n < 37 .
A total of 91 tyges of simplicial arrangements not in the
~ three infinite families i3 known: 90 of them are listed and illustrated
in Grfinbaum [1971], an additional type in Grindaum [1972, Fig. 2.3
The simplicial arrangements ware introduced in Melchior {1940]
- & rather naive dbut still remarkable paper, that appears to have
been Torgotien {along with simplicial srrangements) for almost 30
years; a version of Conjecture 2.1 was formulated by Melchior. and
we 3hall have cccasion to mention him several more times,

* € ®

A gréjecﬁi?e transformation is a mapping of p= ento itsel?
that preserves collinearity. In model {ii) of Section 1, each

projective transformation may be described by a (non-singular)
linear transformation of the vector space of triplets (xo,xi,xzk
on%o itself. Two arrangements of lines in P are projectively
equivalent provided there exists a projective transformation of P2
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Pigure 2,6, Simplicisl arrangements with at most 15 lines,
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that maps one arrangement onto the other. An arrangement DAL of lines
in P2 is said to be of a prejectively unique type if every arrangement
isomorphic to f% is projectively equivalent teo cf@

It i3 easily checked that all arrangements of at most 4 lines
. are of projectively unigue types, except the trivial arrangement of
4 iines. All simple arrangements of 5 or more lines; and all near-
penicils of at least 5 lines, are not of projectively unique types,

Conjecture 2.2. Except for near-pencils with n > 5, all

simplicial arrangements are of projectively unique types.,

The validity of Conjecture 2.2 has been established for all
known simplicial arrangements.

Conjecture 2.3. Every arrangement of n > & linss that is
of 2 prejectively unique type mway be obtained from a simpliecial
arrangement by successively adding lines determined by already
present vertices. -

% & %

Let isomorphic arrangements of lines a%(o) and d@(l) e
called isotopic provided there exist arrangementa g4(t) of iines ,
for 0 <%t < 1 , that depend continucusly ori t , such that saoch
;f&(t) is isomorphic with d@(@)e It is cleer that isotopy i3,
formally, a finer equivalence relation than isomorphism. However,
wa haves

Conjecture 224. Every itwo isomorphic arrangements of lipas
in p2 are isctopic,

The validity of Conjecture 2.4 for arrangements of at moat
§ lines may be sstablished by an examination of the possible iypes
of arrangements (see Figure 2.1). Similarly, it is not hard (but tedious)
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(‘ to establish its validity for all types of simple arrangements of

at most B lines, and for a1l known types of simplicial arrangements,
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Exercises

1, PFind an arrangement of lines that exists in a projective
plane PE(F) over an ordered fisld F if and only if F contains
& subfield isomorphic to Q(2§J » the extension of the rationals by

2. Prove that PE(F} containg an isomorphic copy of every
arrangément poasible in P2 if and only if P contains a subfieid
isomorphic to the field A of real algebraic numbers. (Compare
Grinbaum (1967, Section 5.51.)

% Let A agaln denote the field of all real algebraic
numbers. Praove that PZ(A) contains isomorphic copies of all
arrangements of lines pgs3ible in any PE(F) , where F 1is an

ordered field, Archimedean or not. (For the technique, see Lindstrém
[19711.)

k., It would be interesting to find an arrangement A of
n lines with the proparty that in order to ebtain all the arrangements
of n 4 1 lines that are obtainable from arrangements lsomorphic
to g@é one has to use several differertarrangements. (In other
words, the example in Flgurs 2.3 shows that for certain isomorphism
classes some representatives are not “suitable® for all extensions;
ars thers isomorphism classes in which no representative is “suitable®
for all extensions ?)

1 q§n you charszcterize those types for which every representa-
tive is "suitable® for 2ll extensions ? Certainly all arrangemeﬁts
of projectively unique types have this property, but many other
arrengements have it as well,

&, Prove that every two simple.ar;éngementa of n lines arse
transformable into each other by a finite sequence eof steps, each
of whichk is either an isotopy, or else z "switching” of a triang;e

{az indizated in Figure Z.7). (Ringel [19571.)
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Figure 2.7. The “switching®™ of
a triangle.



Re2.1

Refaerences

R J. Canham

1972 Arrangementa of hyperplanes in projective and
Buclidean spaces. '
Phe Ds Thesie, University of East Anglia, Norwich 1972.

P, J. Cohen

1967 Decision procedures for real and p-adic fields,
Mimeographed notes, Stanford University 1967.
{ = Comm, Pure Appl. Math.22{196¢), 131 = 151,)

Le D. Cummings

1932 Hexagonal systeams of seven lines in a plane.
Bull, Amer. Math. Secc. 38(1932), 105 - 110.

1933 On a methed of compariscon for straight-line nets.
Bull. Amer. Math. Soc. 39(1933), 411 - 416,

B, Grinbaum

1967 Convex polyiopes.
Interscience, Londen 19687.

1971 Arrangemenis of hyperplanes,
Proc. Second Louisizna Conference on Comblnatoriecs,
Graph Theory and Computing (R, C. Mullin et al, eds.)
Iouisiana State University, Baton Rouge 1971, ppe. 41 «~ 106, -

1972 Arrvangements and spreads, :
CEM3S Regional Conference Series in Mathematics No., 10,
Amer. Math. So¢., Providence, R.I, 1972,

E ® Ro Halsey

1972 Zonotopal complexes on the d-cube.
Ph, D. Thesis, University of Washington, Semnttle 1972,

R. Klee

1938 Uber die einfachen Konfigurationen der euklidischen
und dezr projektiven Ebene,
Focken and Jltmanns, Dresden 1938,

-

B, Iindstrim

1971 On the realization of convex polytopes, Euler's formula
and M8bius functiona. :
Aequationes Math, 6(1971), 235 - 240,



N
P

L

Ao

H.

Melchior
1940

Ringal

1957 .

Robinson

1963

Tarski

1951

S. White
1932

Rﬂz.z

Uber Vielseite der projektiven Ebene,
Deutsche Math. 5{1940), 461 « 475,

ﬁber Geraden in allgemeiner lage,

Intredusticn to model theory and to the metamathematies
of algebra, .
North-Holland, Amsterdam 1963,

A decision method for elementary algebra and geometry.
Univ. of California Press, Berkeley 1951.

The plane figure of seven lines.
Bull. Amer. ¥ath. Soc. 38(1932), 59 = 65.



L 3.1
s

3. d-Arrasngements.
The d=-dimensionzl real projective spacs Pd may be defined

and visualized for d 2 3 by analogues of the methods discussed in
Setion i for P2 . Some famillarity with Pd and its simplest
propsrties will be assumed in the sequel.

A d-arrapngement, or arrangement of hyperplanes in Pd, is any
finite family JQ, of {d-1)-dimensional hyperplanes, together with
the cell-decomposition of the space pd determined by the hyperplanes.
A dearrangement JQ: is trivial if the intersection of all the
hyperplanes in JQT is noneempty. The number of hyperplanes in
an arrangement o is denoted by n(#&) .,

Two d-arrangements are called isomorphic provided the cell
complexes determined by them are isomorphic. The number of k-faceg
(that is, k-dimensional cells) of an arrangement Ut shall be denoted
by fk(f%) » The d-faces of a d~arrangement are freqﬁéntly called
facets. The f-vector of a d-arrangement A is f(A) = (fo(Jg),

K5 TR X 3 L

A d-arrangement A is called gimple provided sach vertex of J‘&
belongs to precisely d hyperplanes of oéé » It follows that in
each simple d-arrangement every k-face 1s contained in -precisely
d=k hyperplanes of \f% ]

A  d-arrahgement AL is ealled simplicial provided all faces

of \f% are~simplices of the appropriate dimensions.

In analogy to the definitions in the case of arrangements of
lines, we shall denote by ¢(n,d) , ¢(n,d) , ¢°(n,d) and c¢4(n,d)
the numbers of distinet isomorphism types of d-arrangements of n
hyperplanes, counting either all types, or all non-trivial, or all
simple, or all simplicial ones., Por d > 3 wvery little is known
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about these numbers; we havet

Theorem 3.1, (1) e(d,d) =0, &(1.,1) =1 .
(11)  eln,1) = &(n,1) = ¢%(n,1) = ¢®(n,1) =1 for n> 2 ,
(11i) ¢(n.,d) = ¢(n,d) + &{n,d=1) ,
(iv)  c(d+1,d) = c5(d+1,d) = c(d+1,d) = 1,
(v}  elda+2,d) |
(vi) c®(d*1.3) = ¢®(d+2,d) = ¢%(d+3,d) = 1 .
(vii) ¢%(7,3) = 11, c%(8,4) = 135 ,
(viii) c®(d+1,d) = c?(d+2,d) =1 .

d .

(ix) e®#,1) = ¢®(5,2) =1 , cXd+3,4) =2 for d>3 .

Proof. Parts (i) to (v) and (viii) are trivial, as are the first
two assertions in (vi) and in (ix), Part (vii) results from & theorem
of McMulleﬁ [1971] and theorem 2,2 of the preceding section, although
already White [1939] had conjectured that ¢°(7,3) = 11. McMullen
(19717 established zlso the third part of (vi), and computed c(d+3,d)
for all 4 (though the formula seems to be marred by misprints).

We shall prove ¢d{d+3,d) = 2 for d > 3 a 1little later, after

describing a method of construction of simplicial arrangements.

If . A' is a d’-arrangement and A" 1is a d®-arrangement, the
Join A = J%' v;lﬂ? is 8 d-arrangement (where d = d'+d%+1 )
defined as follows: In Pd we take skew subspaces Pd' and Pd‘,
that contain e;{' and JQT e The {(d-1)-hyperplanes that form A are
precisely those spanned by the (d’'-1)-hyperplanes of (A' with Pd',
and by thé (d"=1)~hyperplanes of g@“ with pd’
verified that n(d@) =n(A') ¢ n(d&") , and
flh) = £ (A") + £,(A") + 214-3%;1: £ (R (A" for O<k<a,

i,5>0

and that o{' v A" is simplicial if and only if A°' and of®

« It may easily be

are simplicial. Moreover, the join operation is associztive and
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commutative., . .

Eﬂé-jdgghgcnstruétgon applies even in éase d® = 0 , when the
(ﬁnique) O-arrangement AOEO) has n(Aoio)) =0 , fO(AO(O)) = 1,
and is simplicial. . )

We shall use the symbol Ad(ﬁ} to denote a simplicial d-arrange-
ment of n hyperplanes; subseripts will be used to distinguish between
non=isomorphic arrangements with the same d snd n . Thus, the
i-arrangement Al(n) is determined by n points in P! 2nd satisfies
n(al(n)) = £,(4'(n)) = £,(A'(n)) = n . The 2-arrangement AZ(n+1) =
Al(n)v 29%(0) ie easily seen to be the near-pencil which in Section
2 wag denoted by AO(n+1) .

It is easy to verify by induction on d that for d > 2 the

only type of simplicial d-arrangement with d+2 hyperplanes is

A%(a+2) = Al(B) v 49(0) V _eas V AO(GZ » while Ad(d+1).=|é259):i:::£3£E2¢
d=1 terms d+i terms

For each d 2 3 we have the following two types of simplicial
d-arrangements of d+3 hyperplanes:

d 1 G 0 '
Ag(d+3) = AT(L) V A7(0) Vv oo v A7(0)
d=2 ternms

and

Ag(a+3) = Al(3) v al(3) v @P\),V ... va2o0) .
d=3 terms

It is easily vé}ified that Ag(d+3) and Ag(d+3) are not isomorphic.

To see that those are the only possible types of simplicial
d-arrangements with d+3 hyperplanes we use induction on 4d .

For 4 = 3, a given simplicial 3-arrangement A3(6) either
containg a vertex that belongs to 5 planes, or not. In the former
case A3(6) is the join of AO(OJ with the only type A2(5) = Al(h)\fAOKﬁ

g0 A3(6) is Ag(é). In the other case the simplicial 2-arrangement
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induced in each plane must be Az(h). one line of which is the trace
of two planes of A3(6); since that line can not pass through the
vertex determined by two other lines, it follows that the six planes of
A3(6) fbrm two pencils of 3 planes each, so that 53(6) is Al(j)\fal(j)

For d > 4 , any given Ad(d+3) must contain a vertex that
belongs t¢ d+42 hyperplanes, Indeed, if this were not so, then the
(d=1)=-arrangements induced in each of the hyperplanes of Ad(d+3) by
the other hyperplanes would have %o be either of type A%"1(4) or of
type Ad'l(d+1), with some (d-2)=-flet the trace of (at least) two
hyperplanes of Ad(d+3). In the first case some vertex of Adcl(d)
would be incident with all but one hyperplane of Ad(d+3). while in
the second case the same conclusion results since because of the
simpliciality of A%9(d+3) the "double” (d-2)-flat can not be the
exceptional flat of the near-pencil Ad"l(d+1) » But if some vertex
of AB(d+3) belongs to d+2 hyperplanes, then Ad(dJB) = AO(O)
Ad°1(d+2) , and the assertion (ix) of theorem 3.1 follows.

The last part of Theorem 3.1 may probably be generalizad as

follows:

Conjecture 3.1, For each m> 1 there exists a constant ]r;
such that cA(d+m,d):5 7*5 for all 4 .

It is even possible that one may take Tfﬁ = A(zm,m) .

. +* & # ’

Besidgs the (extensive) collection of simplicial 2-arrangements
discussed in Section 2 (and in the catalogue of Gréinbaum [19711]),
and the"trivial” simplicial arrangements AO(O) and Al(n) for ns i,
we have gseen just one method of generating simplicial arrangements:

the joining of lower-dimensional simplicial arrangements. Two other

methods are known, and we shall now describe them.
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The first of those methods is a generalization to higher dimen-

gions of the formation {as described on p. 2.5) of the 2-arrangements
e« Ai(Zk) and Af(am+1). Starting from a regular polytope C in Ed

{see Coxeter [1948] for material on regular polytopes), a simplicial
d-arrangement 1ls obtained by taking the hyperplanes generated by the
facets of C together with (all, or a suitable subset of) the
hyperplanes invariant under some of the symmetries of C , anﬁ with
the possible inclusion of the hyperplane at infinity. However, as
we shall see below, the indication in Griinbaum {1971 ] that the
inelusion of all the hyperplanes of symmetry always leads to a
simplicial arrangement is not true.

We shall first describe in some detail the application of
this method to the cases of d-simplices and d-cubes.

%8 4he d-arrangement of (dgz) hyperplanes

We shall denote by A
obtained in the following manner: d+1 hyperplanes are determinéd by
the facets of a regular d-simplex 8 gl ¢ while (dgl) hyperplanes
are hyperplanes of symmetry of Td. each determined by d-1 vertices
of pd and the midpoint of the edge connecting the remaining two
vertices, Thus A%'Y 1ig the arrangement denoted by A1(6} in
Pigure 2.6, .

Theorem 3.,2. The d-arrangement Ad’A

is simpliciél for each d > 2.
froof. Since the assertion is obviously true for d = 2, we may

proceed inductively as follows. Each of the (d=-i)=-arrangements

induced in *the hyperplanes of Ad“& by the other hyperplanes of

Ad“d is isomorphic to p4-1,4

d,A

, and is therefore simplicial. Each

that is contained in T 1is a simplex having one

vertex at the centroid of Td. while its remaining vertices are just

facet of A

™ the vertices of one of the facets of Ad'l'ts . Bach of the facets of
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Ad'A outside Td is the econvex hull that crosses the hyperplane

at infinity of a ji-sisnplex and a jg-simplex induced by Ad’A on

the faces of dimensions ji and 32 of 'I."‘1 » where jinrjzﬂ = 4,
It is not hard to see that fd(Ad’A ) = (d+2):/2 , and

(Ad"A ) = (a+2)i(d+1)/. (Note that the value of f can be
d=1
d=1,4, |

f3a1
computed in two ways: By cbserving that it is (d;‘a)rd_‘lm

and also by noting that Zfd_1 = (d+1)rd 3 the agreement confirms
the simplicial character of Ad’A il

For 0 < k < d+1 we shall denote by 9. 03K 4pne  guarrangement
of 2d+ 2(%) + k hyperplanes obtained in the following way: Starting
from the d-cube C° = {(xip..,,xd} € Ed\ |lxgl€ 1 for 121% d}
we take the 2d hyperplanes determined by the facets of cd together
with the 2(;_1) hyperplanes of symmetry of G“i determined by equations
of the type Xj= 4X; for 1< 14 j<£d , and with 1‘;h‘a k- midplanes
of Cd , each of which is determined by one of the equations X5 = D
for 1 = 1,2,ee05k if k< & , and with all those and the hyperplane
at infinity if k = d+l.

Theorem 3.3. The d-arrangement A% 0K 49 gimpliciel for
all d>1 and for all k , 0 <k <del .

The proof can be accemplished in analogy to the proof of theorem
3.2, observing that the arrangements induced in the hyperplanes of
adr DK are 511 of types p8-1:04J  for various values of § . For
data on arrangements A-° 03k 0 the Appendix.,

It is not known what other simplicial d-arrangemente may be
obtained by systematic procedures from regular simplices and cubes,
utilizing their various symmetries. Information on the known

possibilities of this kind for d = 3 1is collected in the Appendix.
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Similarly, it is not known what simplicial arrangements may be derived
from_the d-crosspolytopes. Again, the resulis available in the case
éf %he-octahedron (that is, d=3) are presented in the Appendix.

| Applied to the regular dodecahedron, the method leads to at least
;wo—simplicial J-arrangements: one with 27 planes (12 planes determined
by-the faces of the dodecahedron, and 15 planes of mirror-symmetry
of the dodecahedron) and one with 28 planes (obtained from the previous
one by adjoining the plane at infinity). For details see the Appendix.

In contrast to that we have:

Theorem 3.4. The 3-arrangements ~f%3(35) and J%3(36) of

35 or 36 planes, formed by the 20 planes spanned by the facets of a
regular icosahedron and its 15 planes of mirror-symmetry, with ﬁhe
plane at infinity in case of d%j(jé) + are not simplicial.

| Proof. The 2-arrangements induced on each of the planes of
f%j(js) or d%3(36) by the other planes are easilﬁ'seen to be
the following ones; since in b) non-simplicial 2-arrangements are
obtained, the theorem is established.

a) In each of the facet-planes, the arrangement obtained is as
shown in Figure 3.1; it is a simplicial arrangement of 22 lines,
denoted A3(22) in the catalogue of Griinbaum [197%t].

b) In each of the planes of symmetry, the induced 2-arrangement
is the non-simplicial one shown in Figure 3.2.

c¢) In case of J%3(36) » the arrangement induced in the plane
at Infinity is shown in Flgure 3,3; it is the simplicial arrangement
ef 25 lines denoted A3(25) in Grtnbaum [1971].

The second method for generating simplicial d-arrangements starts

from (all, or some suitable subsets of)the d-hyperplanes



¢™ Figure 3.1.

facet-plane of the regular icosahedron by the other facet-planes
(purple lines and line at infinity) and the planes of symmetry
(red lines). Closely spaced lines actually coincide.

The simplicial 2-avrangement A%*(22) induced in each
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- Figure 3%.2. The 2-arrangement of 18 lines induced in each symmetry
plane of the regular icosahedron by the 20 facet planes (purple lines)
and the other 14 symmetry planes. The numbers indicate how many of
the planes have coinciding traces. In case of the 3-arrangement

A3(36), the line at infinity should be adjoined to yield an 4 2(19).




3.7¢

Figure 3.3. The simplicial 2-arrangement A§(25) induced in the

plane at infinity by the 20 facet-planes of-the regular icosahedron
(purple lines) and the 15 planes of symmetry (red lines). The
numbers indicate how many planes have ceoinciding traces.

'(’



3.8
™ naturally associated with symmetries of a regular (d+1)-polytope.

The d-arrangement is obtainable by intersecting this family of
d=hyperplanes with the hyperplane at infinity of Pd*I. It is easily
checked that if all the hyperplanes of mirror-symmetry of a regular
{d+1)-polytope are taken, the resulting d-arrangement is simpllicial.
However, simplicial arrangements arise from many other sets of
gymmetry hyperplanes as well.

The simplicial 2-arrangements obtainable by this method from
the tetrahedron, the cube (or octahedron), and the dodecahedron
(or icosahedron) are shown in Figures 3.4, 3.5, and 3.6.

For each d > 2, the d-arrangement obtained by intersecting with
the hyperplane at infinity all the hyperplanes of mirror symmetry

d+1 is isomcrphic with Ad’A .

of the (d+1)~simplex T
The 12 3-flats bisecting the main body diagona;s_of the Zh-éell
in Ek intersect the hyperplane at infinity in a 3-arrangement
jisomorphic to the one designated A%(lz) in the Appendix; an isomorphic
j-grrangement results from the intersection of the hyperplane at
infinity by the 12 3-flats of mirror-symmetry of the 24-cell that
are parallel to a pair of facets of the 24-cell. The two sets of
12 3-flats taken together induce in the hyperplane at'infinity the
arrangement A}(zh).
Actually, there are two other, rather obvious, ways of obtaining
simplicial- arrangements from known ones:
(i) The (d-1)-arrangement induced in one hyperplane of a
simplicial d-arrangement by the other hyperplanes 1g itself simplicial;

P (ii) In many cases a simplicial d-arrangement may be obtained
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a2(6) A%(9)

Figure 3.4, Simplicial 2-arrangements obitained by intersecting

ZTIN

¥he hyperplane at infinity with symmetry planes of the regulaw

tetrahedron. €9 indicates the line at infinity.
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3.8b
Purple: 6 planes of mirror-symmetry

; i
r i
f{"”— E Red: 3 midplanes (mirror symmetry)
S 4
g N o Green: 4 bisectors of body diagonals
1 ~ :
e i
;”' e e |1 Blue: 12 bisectors.
i -
| =
|
% /
S _,_fg-,_,;ﬁ N—
2 =
A1(6) Ai(9)

2
A3(13)

Figure 3.5. (first part). Simplicial 2-arrangements obtained by

intersecting the hyperplane at infinity with symmetry planes of
the regular cube.
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Purple: 15 planes of mirror-symmetry
Red: 6 midplanes of parallel facets

Green: 10 bisectors of main diagonails.

2 2 \

A7(15) A5(21)
Figure 3.6 (first part). Simplicial 2-arrangements obtained by
infersecting the hyperplane at infinity with symmetry planes of

the regular dodecahedron.
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from another d-arrangement by deleting one or several of its

hyperplanes,
A large part of the known simplicial 2-arrangements may be

obtained by combinations of the methods discussed above, although

there appear several "unsystematic®” ones that do not seem obtainable

in this way.



3.10
Exerclses.

1. Show that an arrangement isomorphic to Ad’A is generated
by all the hyperplanes determined by any d+2 points in "general
position® in P4 .

2. Present a detalled proof of Theorem 3.3.

3, Show that if the hyperplane at infinity is adjoined to

pde 1k , where 0<£ k< d , the arrengement obtained is isomorphic

to adrH ikl
4, Determine the f-vectors, and the numbers of fiats of

N L

various dimensions, for the arrangements A

5, Find examples of 3-arrangements that are not simplicial
although all their 2-faces are triangles, _

&. Show that the family of all 25 symmetry planes of the
Jecube considered in Figure 3.5 does not intersect the plane at
infinity in a simplicial Z-arrangement. .

7. Prove the assertion made on p. 3.8 that tﬁe arrangement
Ad'A may be obtained by intersecting the hyperplane at infinity
with the d-flats of mirror symmetry of the regular (d+i)-simplex.

8, Investigate the arrangements obtainable by the various
constructions discussed on pages 3,5 to 3.8, starting from the
d-simplex, the d-cube, the d-cross-polytopes, the 24-cell, the
120-cell, the 600-cell.

-
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CATALOGUE OF SIMPLICIAL 3-=ARRANGEMENTS:

Corrections and additions

e S e e s TS T S S E I EEE D e EE

1. Page C.6 should be discarded, since the arrangement denoted
A%(iB) is nor simplicial; even the traces in the 6 planes of
mirror symmetry are not simplicial -~ as is visible in the illustration

(wrongly denoted Af{?) ) B

2. On page C.i1 , lines 2 and <1, instead of A?(io) should

2
be A2(10) &

3. Insert page C=i0a, in which a new simplicial 3=arrangement

Af(17) i3 described.

4, Add pages C=20 to C=25, in which a new simplicial

3j-arrangement A%(BO) is described.

Seattle, June 1974
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C=10a

Arrangement: Ag(l?)

=EksEEgEmssn

17 planes: 3 A?(S) .8 Ag(io) . 6 A%(IO)

r=1( 53, 293, 480, 240 )

t3 =9 , Ty, = 23 , t6 = 14 | ta =6 , tg = 1
W = 32
h = 65 ; h2 = 34 , h3 = 28 , h& =3 .

Constructiocns:

£1) From Af(iS) by deleting the plane at infinity.
(ii) From the regular octahedron: 8 facet planes

6 planes of mirror symmetry

3 midplanes beiween opposite vertices.
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Appendix to Section 3:

e S i e v D T o e et e e o e ey
===/ == =Iw= SETSZENSmIIITIDIOIE

We have seen that the joins of lower-dimensional simpliecial
arrangements yield simplicial arrangements. In case of 3J-arrangements
it is clearly possible to join either one 1-arrangement with another
i-arrangement, or else a simplicial 2-zrrangement with a point (that
ig, the C-arrangement AO(O) ). The following catalogue deals only
with simplicial 3-arrangements that are not_obtainable as joinms
of lower-dimensional ones,

At present, 13 such simplicial arrangements have been investigated,
although it is clear that additional ones exist. (For example, one
derived from the intevsections of the 3=flats of mirror-symmetry of
the regular 120-cell (or of the 600-cell) with the hyperplane at
infinity of Euo)

Fer each of the 13 arrangements descyribed below, the catalogue
eontains the following data:

i. The symbol of the arrangement.

2. A description of the 2-arrangements induced in each plane
by the other planes. This comprizes the symbol of the 2-arrangement,
and a diagram showing the 2-arrangement and relating it tc¢ the
construction of the 3-arrangement.

3. The f=vector of the arrangement, where fk is the number
of k-faces.

L, The numbesrs %, of vertices each of which is incident with
precisely k planes.

5. W, the number of crdinary vertices of the arrangement.
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6. h , the number of lines of the arrangement, and the
numbers hk of lines contained in precisely k planes.
7. A 1ist of all known methods of generating the arrangement,

and alternate designations used elsewhere.

In the tracings of the 2-arrangements induced in the planes
by the other planes, closely spaced lines indicate planes with

coineciding traces., (o indicates the line at infinity.



C.2

Arrangement : Ag(io)

10 planes: 10 Af(é)
£

I

( 15, 75, 120, 60 )

'th'""lo t6=5
W= 10
h = 25 ; h2 = 15 , h3 = 10
Constructions:

(i) & facet-planes of the regular tetrahedron, ;ﬁj

P4

y.
together with 6 planes of mirror symmetry. /|

'(é;-:“""
e, s s

e

-,

Traces: 2
b facet-planes Ai(G)

(i1) a>4,

(iii) The ten planes determined by any 5 points in “general position”
in the projective 3=-space.

(iv) 1Intersection of the 3-flats of mirror symmetry of the

regular 4-gimplex with the hyperplane at infinity.
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Arrangement: A2(12)

12 planes: 12 Af;'( 7)

f=( 2%, 120, 192, 96 )

t3 = j2 té = 12
W = 12
h = 34 3 h2 = 18, h3 = 16
Congtructions:
(i) 6 facet-planes of the regular cube 2N = A
and 6 planes of mirror symmetiy e !
i ! i
} i i
i 4 H
| SO
i = 1 I
H - 4 ;j ,f""f
E A, ¥
Traces:
6 facet-planes Ai(?) 6 planes of symmetry Af(?)
E i o0 ? P
N i N
_ B NI
// f i\.‘ :;',f
s i g =
(ii) 8 facet-planes of regular octahedron,
3 planes of mirror symmetry, and
1 plane at infinity.
Traces: 2
8 facet-planes AZ (7) 3 planes of symmetry A1(7) i planesa
infinity A (?)
C(D
o0 o0 P
/ . 0
/ \( = u\\‘\ﬁ{ il YR
7 N S
//\\\ I \/
o e
< 7\ N\
/ N
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Arrangement: Ag(iz) - continued

(iii) 3 planes of side facets _ﬁ%i;ﬂ;;;:xfé?
2 base planes 'ﬁa§§§ﬁgffﬁf
1 midplane between bases i\jA;/ﬁjJ ;_
& cutting planes ,f

~_ |f
Traces: 2 T i >
3 side planes Ai(?) 2 base planes A1{7)
N | | Z N\ 7/
x \é‘: = = '.:; g | N \ :’!:
i i . L/ V4
m 51MM R VAN f}§
s ; “ \\:‘v /'fr ,_\;{, \
i N )

i midplane Af(?)

‘-. b s
\ N/ /oo . S

TAS ” = 9y
\ ,.f?' \\\\ / ~
A
gl —‘-!:".’.,,,. __'5.:*_{_,_,_. =
== \{.ﬁ-.. e
/| W
fl. \ \l\.. -
/ ) - 7

(iv) Intersection of the 12 perpendicular bisectors of the
main body diagonals of the regular 24-cell with the hyperplane
at infinity.

{(v) Intersection of the 12 mid-3-flats parallel to pairs of
opposite facets of the regular 24-cell with the hyperplane at

infinity.
(Vi) AB»C]I 0 .
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Arrangements A%(lB)

13 planes: 6 A%(?)o 6 A§(83, 1 A§(9)

f = { 28, 148, 240, 120 )

t3 = 6, %), = 10, tg = 9, t7 = 3
W) = 16

h =240 3 h, = 21, h3 = 19

Constructions:

(i) 6 facet-planes of the regular cube
6 planes of symmetry
i plane at infinity
( A%{iz) with plane at infinity )

Traces:

6 fscet-planes A%(?) 6 planes of symmetry A?(B)

H ;
! s ' -
| . N A b
.._\!‘ "_{ _—
7 e
Y Fd - .
I o0
hY
PS i oo
Ny,
F 3
\\ .
;/ % o
Sar—— i it ‘J:,‘__,,..,._ /’,-’/ : ._.\l:‘-:\
b " 7 | o
s N s 3 ,
/ j ' :

1 plane at 2
infinity Ai(Q

“\ l
! ] P
\.\ | Vi
N, PN | LTI S

I3 rd ]
™
AN A1 09
X ‘--’"}
.‘* l\
: ™,

/ N‘.
L
Pl | ™
;o \

v ¢ ~
& ! \

(ii) From A%(iZ) by adjoining one midplane parallel to a

pair of opposie facets.

(iii) From Ag(15) by deleting the two bases.
(iV) AB:DS 1 F



C.6

i3 planes:
f=( 33, 159, 252, 126 )
t3 = 12, tg = 10,

b = 22

%:1'1'33 h2=309 h

Constructions:

6 aZ(7),

Arrangement:

3 A%(s),

(i) & facet-planes of the tetrahedron
6 planes of mirror-symmetry
3 midplanes between skew edges
Traces:s

L facet-planes A§(9)

/\\,

,a,\\
/ & .'\\_ ﬂ
/ \ ! /
/,/ Y \"‘-..\
Y k_..._,_... et
=

£ o \‘ >

6 planes
AZ(7)

ey
7
y 2 \,
=4 i R Srend
7 =
'] 4 ~,
7 t ™

of symmetry

3 nmidplanes
A2(8)




C.7

Arrangement: Ag( 1k)

14 planes: 2 Ag(y), 8 A%{B), L A§(9)

= (32, 176, 288, 144 )

t3 = 2, t4 = 16, ts = 2, t6 = 8, t? = 2, ta = 2
W = 20
h = 46 3 hZ = 25, h3 = 20, h@ =
Congtructions: Y
“” Tl &Y ol
(1) 6 facet-planes of the regular cube P ,_:_'__4.;"_;_:.-—-"/ E
6 planes of mivror-symmetry : : l ]
2 midplanes between parallel facets Q -’ "*--: -
- § g
ke N
Traces:
2 face planes A?(?) 2 planes of symmetry A?(?) 2 midplanes A‘i?(9)

\J lim
INA
| ;il
4 facet-planes A?(B)

(ii) From A%(iB) by adding a midplane parallel to facets
(131) a3:03s2

Y b




C.8

Arrangement: A2(15)
15 planes: é A%(B), 9 (A§(9)
f=( 36, 204, 336, 168 )
th = 18, t5 = 6, ts = 8, ts = 3, t9 = 1

W = 2k
h=52; hy=30, Dhy=19, by =3

Constructions:
(i) 6 facet-planes of the regular cube

6 planes of mirror-symmetry
3 midplanes between parallel facets

Traces:

6 facet-planes A?(?) 6 planes of symmetry A%(&) 3 midplanes A§(9)

\

88

\i.'/ao‘ S{i;§= |

|
l i
/\

! j
| ; i

L

(ii) From A%(i@) by adding either the third midplane, or the plane
at infinity: A3 » 0033
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Arrvangement: Ag(ls)

¢ 15 planes: 9 A%(B), 6 Ag(lﬂ)
f=( 39, 219, 360, 180 )
t4 & 2#9 1 té i 69 t? = 9
W = 24
h = 533 h, = 27, h3 = 26

Constructions:

(i) 3 side~facet planes of regular
3=sided prism

(1ii) 2 base planes
{1i1) 1 midplane between bases

{iv) 3 planes of mirror-symmetry

{v) 6 cutting planes
Tracess

3 side facets A?(S) 2 base planes A%{io) i midplane A%{IO)

e Sttt sty

S F—

/

[ n .




C.10
Arrangement: A%(lé)

16 planes: 16 A§(9)
f= (40, 232, 384, 192 )
t[& = 6, “t5 = 12, 1',6 = 8,
b = 28
h = 58; h2=36, h3"¢16, hh’g’é

Congtructicns:

(i) Adding the plane at infinity to A%(15) 3 ABEE]’a .
(ii} 6 facet-planes of the regular cube

6 planes of mirror-symmetry fff;»';’;*

4 skew planes (facet-planes of
inscribed regular tetranedron)

‘.\ '

T a8 s S SR

"}“. .
[}
A

B

!

U

1
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Arrangements A%(lS)

18 planes: 3 AS(9), 8 A?{io)n 6 Ag(ii)o 1 A%(13)

f=( 60, 348, 576, 288 )

| t-‘& = 360 ts = 3& ts = 8, & = 69 t8 = 6’ G = i
W = 39
h = 71"0 hz = 399 h3 - 329 h;_b L 3

Congtructions:
(i) 8 facet-planes of the regular ociahedron

6 planes of mirror-symmetry
3 midplanes between opposite vertices

1 plane at infinity

Traces:

8 facet-planes A%(io) 6 planes of symmetry A%(ll)




C.12

Traces (continued):

3 midplanes A§(9) i plane at infinity A§(13)

A




Coi3
- Arvangement: A%(Z#)
2 planes: 24 A%(iB)

£ = ( 120, 696, 1152, 576 )
Ty = 96, tg 24

it

W = 96
h = 122; h, = 72, h3 = 3P, h, = 18

Constructions:

(i) Intersecting the 12 3-flats that perpendicularly bisect
the main body-diagonals o¢f the 24-cell, and the 12 midplanes
between parallel facets, with the hyperplane at infinity of E4 o

(ii) 6 facet-planes of the regular cube

6 planes of mirror-symmetry
3 midplanes between parallel facets

8 skew planes (bounding a regular
octahedron)

1 plane at infinity

Traces:
6 facet-planes A§(13) 6 planes of symmetry A§(13) 3 midplanes A%(IB)




C.14
Traces (continued):

- 8 skew planes A§(13) 1 plane at infinity Ag(lj)




Col5

Arrangement: Ag(27)

27 planess 12 Aﬁ(is). 15 Aﬁ(w)

f= (170, 1010, 1680, 840 )

%3 = 309 tk‘ = 60’9 t6 = 6?0 tio = 129
W = 102

h = 157; h2 = 81, h3 = 70, h5 = 6
Congtructions:

(L) 12 facet-p'anes of the regular dodecahedron

i5 planes of mirror-symmetry

Traces:

12 facet-planes Aﬁ(ié)

/"

t

i5

-” iklﬁw A &
" /‘::figéagi éﬁfﬁgﬁfﬁ%ﬁ/ .
S
NN |



C.16
-~ Traces (continued):
15 planes of symmetry Aﬁ(lib)
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Arrangement: Ag(zs)

28 planes: 12 AZ(16), 15 az(15), 1 A§(21)

f = (186, 1146, 1920, 960) '
t, = 100, to= 58, t, =15, =12,

W = 118

h = 172:  hy = 90, hy = 76, h = 6

Constructiong:
(i) The plane at infinity added %o A%(Z?)

(that is: 12 facet planes of the regular dedecahedron
15 planes of mirror symmetry
i plane at infinity.)

Traces: i plane at infinity A%(ZI)




C-18
Arrangements Ag(ZB)

@ 28 planes: 4 AZ(13), 4 a5(13), 8 A5(26), 6 AD(17), 6 AZ(17)
f= (194, 1154, 1920, 960 )

ty = 2k, %, = 84, t5 = 18, gz = 40, tg = 18, ty = 3,
t11 = 5, t13 8 |

W= 126

h = 170 h, = 90, h3 = 64, hy, = 16

Constructions:

(i) 6 planes of square facets of the
regular cubgsctahedron

8 planes of triangular facets
6 planes of mirror-gymmetry

3 midplanes

I bisecting planes
1 plane at infinity
Traces:

6 planes of square facets Ai(l?)




C=19
., Traces (continued):

6 planes of symmetry AS(I?) 3 midplanes A%(lj)

«

7
o’ oo




r =20

e i GO
30 planes: 6 Af(ia), 18 Aﬁ(i?), 6 Af(zg)

f = ( 228, 1380, 2304, 1152 )

'{:q’—"llllla, t6'—°36, t?=21!—, t8=18, ‘t13=6
(U = 150
h = 194, hﬂ.2 = Qg h3 = 84, hl{- = G, ) h6 = 2
Constructions:

(i) 2 . base~facet planes of a six-sided prism /"-’

" 6 side-facet planes

- 3 planes of symmetry

- " 3 planes of symmetry

s gt st S
it
wws  wvas el fr fae e

_~ 1 midplane
_~ 2 mparallel planes
12 skew planes

1

_~~ 1 plane at infinity




C-21

Traces:
&=
2 Tbase-facet planes oo
2 o°
&2

\l/
N

\ . 0o
V4 o0
s 7]
oo
an

| \ 7/
2 parallel planes \\\\\ \\ ;
i 4

B
A7(19) \
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i midplane A§(19)

12 skew planes Ai(i?)
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Euclidean arrangemegfg
Although this concept {and the dual one) were among the first

notions related to arrangements that were considered (ses Stainer
{1826], as well as the long list of other references given in

Grtnbaum (1967, p. 391]), the first general and satisfactory definition
geenms to be that given in Canham [1972]. Following Canham, we shall

say that a non-trivial Byclidean d-arrangement (or arrangement of

hyperplanes in Buclidean d-gpace Ed) is the cell-decomposition of

Ed

determined by any family of n hyperplanes such that no point
of_ Ed belongs to all the hyperplanes, and no line is parallel te
all of them. A Buclidean d-arrangement is called gjimple if no point
of Ed belongs to more than d hyperplanes, and no line is pargllel
to d hyperplanea,

Two Euclidean d-arrangements are weakly isomorphic if the cell
complexes determined by them are isomorphic under a hbﬁeomorphian qﬂ
of EY onto itself, Tho Euciidean d-arrangements are isomorphigc if
they are weakly isomorphic under an orientation-preserving homecmorphies
qp of o onto itsgelf,

The completion of - Ed to Pd by the addition of the hyperplane
at infinity clearly associates with each Fuclidean d-arrangement a
d=arrangement in Pd. obtained by taking the completions in Pd of
the hyperplanss of the Euclidean arrangement, together with the
hyperplane at infinity. Conversely, from each d-arrangement tfﬂ, in

d

P°  each choiee of one hyperplane of (7% as the "hyperplane at

infinity® determines a Euclidean d-arrangement.
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~ This observatién, and his enumeration and construction of all
types of simple arrangements of at most 8 lines in pe » enabled
Canham [1972] to determihe.tha following values for the numbers of
Euclidesn 2-arrangements with at most 7 lines. In the formulation
of Canham's result we shall denote by 3§(n.d) and c:(n,d) the
number of distinet weakly isowmorphic, or distinet isomorphic, types
of simple Buclidean d-arrangements of n hyperplanes.

Theorem 1. The numbers of distinct types of simple

Buclidean arrangements of at most 7 lines are:

3.2) = cl(3,2) =1 As,2) = S(4,2) =15 83¢5,2) =6,
cgl5:2) = 7 1 B5(6,2) =43, c(6,2) = 79 3 €3(7,2) = 922 ,
cg(7.2) = 1765,

Actually, all the numbera guoted in the theorem were obtﬁined
already by R. Klee [1938], who asserted alsec that czfalz) = 77,068
(along with some other related numbers). However, the value Kles
assigns to 02(8,2) is ecertainly wrong, although it possibly expressss
¢the number of non-isomorphic types of simple Euclidean arrangements
of pseudolines. The reason for this (and for my crediting the result
of the theorem to Canham} iz that Klee'’s method is appropriate for
the counting of types of pssudolines, but can not distingulsh the
gtretchable oné; among them. Klee is aware of the danger, but by
mistaken arguments {on pp. 12, 13) convinces himself that all the
arrangements he is obtaining are stretchable. By Canham’s result, this
stretchability actually occcurs for n = 7 , but examples derivable
from the non-stretchable simple srrangement of 9 pseudolines in P2
(Ringel {19561, Griinbaum {1972, p.42]) show that the siretchability
fails for n =8 . |
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The finite part of a Euclidesn arrangement consists of all the
bounded cells of the arrangement; it has been the objsct of saveral
investigations about which we shall report below. If the Euclidesn
arrangement is viewed 8s a projective arrangement from which one
hyperplane was deleted as the "hyperplane at inTinity®, the"finlte
part” of the Puclidean arrangement becomes the complex consisting
of all the (closed) cells of the projective arrangement that miss tha
“hyperplane at infinity®. This provides a possibility of treating
different questions on Euclidean arrangements in a projective Tormue
lation; often this variant is actually a strengthening of the purely
projective version established earlier. The following examples should
elarify this relatioship; many other interesting problems of this
type remain to be investigated,

Consider first the following analogue of the well-known Sylvestaer
problems

Theorem 2. . Each non-trivial Buclidsan 2-arrangement has a
simple vertex (that is, a vertex that belongs to precisely two linag
of the arrangement).

-~ The equivalent statement in the projective setting ia the
following one, which is clsarly stronger than just an atfiraativc
solution of Sylvester's problems

Theoren 'é*. If all the simple vertices of a non-trivial
arrangement uﬁk in P° are on one line L of 34,, then ﬁ{.is a
near-pencil and L is the exceptional line of 04; ®

Paviick [1973] mentions Theorem 2, and claims that it had been
proved by Melchior {1940]. This in incorrect, since Melchlor proved
only that each non-trivial projective arrangement has simple vertices,-
that is, gave a solution to Sylvester®s problem. Although there are
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gseveral simpls and stfaightfor’warﬁ solutions of Sylvester's problem
@™ in the projective plane (based either on Euler’s formula, or on sthexr

elamentary considerations).'ncne geems to be adaptable to & proofl of

Theorem 2 or 2%, The only proof of Athose I know uses ths much strcnger

result of Kelly-Moser {[1958] to the effect that each non-trivial

projective arrangement Jd— with n(uQ) lines has at least té(u%) =

23n(£)/? simple vertices.

Proof of Theorem 2%, Assume all simple vertices of the arrangsment
A are on the line 1L ; if the arrangement A’ obtained from 64; by
omitting the line L is trivial, then 0‘4 is a near-pencil and L

its exceptional line, as claimed. Hence we need consider only the

case in which ﬁl is non-trivial, All the tz(ﬂ,‘) = 3n(€4’)/? =

=3(n{&) -~ 1)/7 simple vertices of 04-, must correspond to vertices

of \ﬂ.- incident with precisely 3 lines, cne of which is L , Therefore
¢ L must be intersected by at least gn(ﬂ:) & 2.-‘%(11(..&.) w1) = onl /7 - &

lines of ¢% , which is impossible since /& contains only n{A)} -1

lines different from L .

Assuming Theorem 2, Paviick [1973] gives the easy proof (by
induction en n )} of the following results

Theorem . If a Fuclidean 2-arrangement of n lines has at
least 2 vertices then it has at least n-i vertlces.

An equivalent projective formulation is:

Theorsem . Ir A-, is a non=trivial arrangement of n lines in
P° and if L is any line of 0% , then either u’q‘- is a near-pencil
and L its exceptional line, or else u"'& has at least n-=2 vertices

not on L .

®.
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fne of the sarliest results on Buclildean arrangemants iz the
following (Roberts [18881):

Theorem &. In each simppla Zucildean Z-arrangement of n lines,
the finite part contains at least n-2 <riangles.

Actually, Roberts® proef of Theorem 4 is invalid, and no proef
of the assertion has ever besn published. In his forthconing thesis,
Shannon (1975] establishes it in the following vastly generalised forms

Theorem 5. If f% is an arrangoment of n hyperplanes in Pd
guch that no point of pd belongs tc n-2 or more of the hyperplanes,
end if H ias one of the hyperplanes of 4= , then among the facets of
(A: thers are at least n-{d+i) d-simplices each of which haa mne
(d=i)=face in H . '



P

Bxercises and problems.
1. The enunmerations in Klee [1938] were based on the following

construction: If in each 2-face of a simple Buclidean arrangement of
n lines or peseudolines we mark & "node®, and if we connect "nodes® in
faces that have a common {beunded or unbeounded) edge by an “arc®, we
obtain a planar map which is isomorphic (as a planar map) to & “Klee
diagram®, that is, a subdivision of the regular (2n)-gon into rhombi,
Conversély, each such subdivision is a Klee diagram and corresponds
to (a family of mutually iscmorphic) asimple arrangements of n peeudo-
linez, The example in.Figura 1 should help clarify the correspondence;
in its firat part "nedes® are represented by open circles, "arcs® by
dashed lines. (Prove the validity of the above statement about Klde
diagrams; probably the zimplest way is by induction on n of the more
general conmstruction, in which the regular (2n)=-gon is replaced by
one with only a center of symmetry.) What misled Klee (at least
psydwlogically) is the curious fact that even the Kles diagrams of
non-stretchable arrangements of pseudolines may be represented by
(rectilinear) rhombi,

A non-stretchable Euclidean arrangement of 8 paeudolines, obiainal

from the non-stretchable simple arrangement of 9 pseudolines in the

projective plane described by Ringel [1956] and Griinbaum (1972, Pig. 3..
by taking one of them as the "line at infinity", has the Klee dlagrams
gshown in Pigure 2. (Check that assertion; the nearly-vertical line

in Pigure 3.3 of Grunbaue [1972] was taken as the line at infinity in
the preparation of Pigure 2.) The construction of Klee dlagrams of
Fuelidean arrangements may be compared to the correspondence between
projective arrangements end sonctopes (Coxeter [1962], McMullen [19711],
Granbaum [1971].)
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2., GCeneralize the construction of Kles diagrames to not
necessgarily simple BFuclidean arrangements of pssudolines,

3. Consider analeguss of Kleo dlagrams for Puslidean arrsnramesis

e -

/7

in 3-dimensional apaca,

4. The proof of theorem 2% given above may easily be modified
80 as to show that in every non-trivial Z2-arrangsment ﬂ that is not
& near-pencil, and for each line L in «j% + there are at leaat
2n(d%)/21 simple verticez of qQ- that are not on L

5. Prove that theorem 2* remains valid even if it is not
assumed that the line L +that contains all the simple vertices of

‘Aiisal.’meofd% @

6. Prove thecrem 2® for arrangements of pseudolines. ’

7. Provide examples establishing that no analogue of thecrem 2%
'As valid for dearrangements in pd dor d > 3,

8. Ko analogue of theorem 3 holds for arrangements of planes in
7 (or in higher dimensions). Por sach n 254 and esch k, 2< k <y,
find an arrangement of n planes in EJ thet has precisely k
vertices, |

9. As a complement of theorem 3, Paviiek {1973] formulates the
following conjecture (verified by him for n = 5,5,6,7)¢ F;ar e8&ch n
and for each choice of p such that either P=0orp=iorn-i<p

< (2) . there axists a Euclidean 2-arrangement with n lines and

precisely p. vertices,

Prove that this conjecturs is true forn = § and n = 9, and
that it is false for each n 2 10,
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10, A probiem somewhat complementary to theorem 4 has recently
been proposed by K. Fujimura (gsse H. Gardner [1972]). In our
terminology, Fujimura‘’s problem iss Whet is the maximal number of
triangles possible in the finite part of & Fuclidean arrangement of
n lines ? As maximal known number of such trisngles Gardner mentiﬁnsa

L]

Number of lines: 3 [ & | 5 { & 7 I 8 I 9

Maximal Imown
number of triangless 1

2!5_‘? 11!15|21,
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Arprangements of colered lines.

This is a very interesting topic with many novel tyves of
problems, in which relatively lititle has been publisghed so far
although many people appear to have thought at least fleetingly
about some of the cuestions.

Let :ﬁg be an arrangement of n lines in P7 ; we say that

0%1 is k-golored if the lines of CAE are grouped in k sets, the
*e¢olors™ of G;E o We ¢all a vertex of Ul% monechromatic if all
the lines of UK% incident with it have the same color.

The first problem we shall discuss originated with R. L. Graham;
it concerns the existence of meonochromatic vertices in 2-colored
arangements. An affirmative answer was announced by lotzkin L1967 ],
and a2 proof was published by Chakerian [1970]. lore precisely:

Theorem 1. If a non-trivial arrangement JQLin P is colored
by two colors then 04: contains at least one monochromatic vertex.

Proof. {(From Chekerian [1970]). Consider the arrangement \j{

2 : . i ; v & "
B on the Z-sphere. Then the assertion is obviocusly

in the medel of
a special case of the following result, which is known as Cauchy's
lemma: a variant of it was first established by Cauchy [1813] in
his proof of the famous “"rigidity theorem” for convex 3-polytopes.
{ It is ironic that Cauchy's version was actually insufficient for
the needs of his proof, although it would have been adeguate for

the proof of Theorem 1.)

Cauchv's lemma. There is no possibility to color each edge of

a planar praph € (without loops or multiple edges) by one of iwo
colors so that at each vertex of G, in the cyclic seguence of edges

.

around the vertex there be at least & changes of color.



.
Proof. Assume such a coloring of a graph G pcssible. Let v,

e, £, ¢ be the numbers of vertices, edges, faces (countries) and

connected components of G , and let P be the number of kegonal

t

faces of & ., Then Z2Ze Ei_.p . i = :E:D , and - by Fuler’s
relation ” v=1+c+e=-Ff . The total number m of changes of
color around all vertices satisfies, on the one hand, n Ei@vo On
the other hand, since m is also the total number of changes of
color around the faces of G , and since around a k~gonal face there
may be at most 2[k/2] changes of color, we have m< %?. ZLR/Z]pk N
Combining those inequalities with the previgus equatioiéuge obtain

b + he + 2p5 + 2pg + @97 + 2pg *+ 6p9 + y.o £ 0 , which is clearly
impossible. ff]

A different proof of Theorem 1 Qas privately communicated to
me in 1971 by G. D. Chakerian, wno credited it <o Sherman K. Stein;
it is as follows:

Call "sood configuration” any near-pencil formed by 4 lines,
two of each color. Bach "good configuration” contains two triangles
with a common edge so that the disposition of colors is as indicated
(for the shaded triangles) in the schemes of Figure 1. (Actually,
each "good configuration® contains two such pairs.) Call the union
of these two triangles a “"charvacteristic triangle” of the "good
configuration”. Clearly, if 04, were a non-trivial arrangement
colered by 2 coleors, without any monochromaiic vertices, then V%,
would contain some "pood configurations®. Let us choose one such,
the “"characteristic triangle® of which is mipnimal in the sense
that it does not proverly contain the “"characteristic triangle™ of

any other “"gcod configuration®. Without lLoss of generality we
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Figure 3., Colerings of near-pencils Ao(n) i

pa—
ey

Figure 4, ﬁi(iﬂ) :

typical for A1(¢k+2)u

Figure 5. Aiilz), typical
for Aiibk)a With (green) line =zt
infinity: A1(13), typical for
{ -4
A (Beki)
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may assume that the situation is as indicated by the solid lines
in Figure 2, the minimal "characteristic triangle® being again
shaded. Now, if the vertex V were not monochromatic, there obviously
would exist a "good configuration” (of the other color-scheme) with
apex at V , the "characteristic triangle” of which would be
contained in one ¢f the parts forming the supposedly minimal one
we started with. The contradiction reached completes the proof of
Theorem 1. B

Although both proofs 0f Theorem 1 have great similarities
with proofs of Sylvester®s problem about simple points, there are -
significant and interesting differences. First, as mentioned by
Motzkin [1967], a “combined theorem” that would assert the existence
of a gimple monochromatic vertex does not hold., Also, the number
of monochromatic vertices does not have 1o increase with the number
of lines in the arrangement. Indeed, in each of the 3 known infinite
families of simplicial arrangements (Grilnbaum (19711, [1¢72]) it is
possible to color the lines by 2 cclors so that there is only cne
monochromatic vertex, and it is incident with as many lines as
desired. The examples in Figures '3, 4, and 5 should be sufficiént
to explain the idea..

For an arrangement gfé ¢alored By k ¢610P8 1,2 evvek 5 Jet n
By = ni(dl) dencte the number of lines of color 1 , and let s; = siﬁé)
dencte the number of monochromatic vertices ofgfii all lines through
which have color i . A k-=colored arrangement 045 is called biased
provided Si(#%) =0 forall 12 2 , In a 2-colaored biased srrangement

we call g{J%) = nzfﬁl) - n?{a%) the ¢hromatic deficit of gf% a




Correction

In Conjecture 1 the words "that is not a near-pencil”
should be replaced by "for which the lines of color 2 do not
form a trivial arrangement (pencil)”.

Analogous corrections should be made in Conjecture 2,

and in Remark 4 (on page 8).
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Motzkin [1967 ] mentions that he is aware of 10 infinite
families of 2-colored biased arrangements G{- with 0<£ 6_(di) <,
and that the grestest chromatic deficit (S(#%) = & known to him
occurs in the arrangement of Figure 6.{Color i = red, color 2 = green).
We supplement Motzkin's findings by the following:

Theorem 2. There exist at least two infinite families . of
2-=colored biased arrangements with §\= L

(Obviously, strictly speaking the only formal assertion of
this theorem is that there are infinitely many exampies: however, as
seen in the procf, they form "families” in a natural way. )

Froof, The first such family has ny = 6k , n, = 6k + 4 , for
k=1,2,000 o Its formation is best seen from Figure 7, in which the
cases k = 1,2,3 are illustrated (in each case, the line at
infinity belongs to the arrangement and has colér 2 = green). The
second family is illustrated ( by cases k¥ = 1.2,3 ) in Figures 7a and
8. Each arrangement in it may be interpreted zs obtained from an
arrangement in the first family by = deleting certain lines.

- To complement Theorem 2 we make

(}hat is not a:
Conjecture 1. For each 2-colored biased arrangement¥ ™ neare pencil

the chromatic deficit is at most &4 ; cy(ygﬁ.é Lo

2-colored arrangements with a single = monochromatic vertex
appear to have many special properties. We have: _

Theorem 3. (Shannon [1974]) If ﬁﬁr a 2=colored biased
arrangement with si(#%} = § , then all the lines of 7%. that have
coler 1 are incident with that vertex.

(not a near-pencil)
Conijecture 2, Tl(f%-ﬁs a Zegolered blased TPTEﬂQemunu{With

51(04:) = 1 then J\rt) <£i,

The arrangements A (Lk+¢ in Figure 5 show that equality in

this conjecture holds for infinitely many arrangements. Actually,



Figure 6,

Au(ié) » “ri.th

red line at infinity.

Figure 7b.
12 red lines
16 green ,
with
green.

Figure 7a. A3(16)
6 red lines, 10 green , with
green line at infinity.
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there are many other 2-colored biased arrangements j@ with si{d[)

=1 = S‘(d%) ;

Turning to a different type of qguestions, we shall say that a

k-colering of an arrangement UQ: is nic

wien

provided k> 2 and no
vertex of J%r is bichromatic (that is, incident with lines of just
two different colors). The results of Grinbaum [1956], Edelstein
(19577, Herzog-Kelly [1960]1, Edelstein-Herzog-Kelly [1963], Edelstein
~Kelly [1966] may be reformulated (by duality) to assert that among

certain families of arrangsments of infinitelv many lines only the

trivial arrangements are nicely colorable (by any number of colors).
However, as noted in several ¢f those papers, there exist non=trivial
nicely colored (finite) arrangements. The (dual of the) Tirst example
(Herzog-Kelly [1960]) is shown in Figure 9b; it may be generalized
to the nicely 3-colorable arrangements of 3k lines, k> 2, obtained
by extending the sides of a regular (2k)-gon, and taking alse its k
longest diagonals (Edelstein-Kelly [19661);] see Fijure 9 for k = 2,
34,5 o The number of colors used in nieely colored arrangements
may be arbitrarily large, as is shown by the following result (in
which the notation of Grinbaum [19711 is used):

Theorem 4, ALl arrvangements Ag{4k+2) and Ay (Bk+4) , where
k> 1 , have nice (2k+i)=-colorings.

Proof, The method of coloring is rather clearly indicated in
Figure 10 and 11, which illustrate the cases k =1, 2 ,

It may bte observed that many other simplieial arrangements

have nice colorings. For example, Aa(ijﬁ has a nice 7=ceoloring,

<]

Ai(iﬁ) has a nice 5-coloring. while A5(15} has nice colerings with

6, 7, B, or 9 colors (see Figure 12).
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A1(12)

Figure i1,

Figure 12, As(is) . Dashed and solid lines of the same color

may be assigned different colors as well.
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In all known examples of nicely colored arrangements each
color is assigned %o relatively few lines. We have two conjectures:

Conjecture 3. If an arrangement is nicely k~colored with

k 2 5, then some color is assigned te 4 or fewer lines,

Conjecture 4, There exists an absolute constant ¢ such

that for each nice k~celoring of an arrvangement with k > 4, each
coler is assigned to at moest ¢ lines.
The example of a nicely 5«colored arrangement of 15 lines

shown in Figure 13 proves that if ¢ exists then ¢ > 7.
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Remarks and problems .

«

1. From biased arrangements with a single monochromatic
vertex (such as those in Figures 4 and 5) it is easy to cbiain
examples of non-trivial arrangements colored by 3 colors {each
assigned to arbitrarily large numbers of lines) that have no
monochromatic vertices (Motzkin [19671).

2 .Generalizing Theorem 1 to d-arrangements, Shannon [1974])
has proved the following result:

If the hyperplanes of a d-arrangement #@ in projective d-space
are colored by at most d colors, there exists in 94; a monochromatic
(d=2)=flat (that is, a (d-2)-flat that is determined by the
hyperplanes of lfk , and is such that all hyperplanes of J43 that
contain it have the same color).

3. Already for d=3 it is easy to find 2-=colored d-arrangements
with no monochromatic vertices. For example (in the notation of
Section 3 of these Notes) it is possible to 2=color the planes in
all arrangements Ai(p)‘w Aiiq) » With p, @ 2.2 , so that no vertex
be monochromatic, and the same is possible in every arrvangement
AO(O) v OA% , where Lf% is 2 biased 2-colored arrangement ¢f lines
in P2 . But there are examples with this property that are not
joins of lower=dimensional arrangements. For example, if 5 of the
planes of gymmetry in A%(l@) are given one color, while the sixth
plane of symmetry and the 4 other planes have another color, there
is no monochromatic vervex. Similarly for 53(15) (with 6 planes of

e
&

symmnetry of one colow, € facet=planes and 3 mideplanes of the other),
b
A%(ié) . A§(18) (6 planes of symmetry have one color while 8 facet~

planes, 3 midplanes and plane at infinity have the otherj, A%(Z?),



= =
A3{28} . and A?(ZS) ( & planes of symmetry and 3 midplanes one
i 2

color, the other 19 planes the other). It would be interesting

-~

40 know whether every 3-arrangement without sinple vertices has

this property.

-

L, Theorem i {and both proofs given for it) generalize %o

2

arrangenents of pseudolines in P% . However, Conjecture 1 does

not held for such arrangements. Indeed, in Figures 14 and 15 we
show two 2-colored biased arrangements of 28 pseudolines each, such
that the chromatic deficit of each equals 6 . We conjeciure that
the chromatic deficit of every 2-colored biased arrangement of
pseudolines (other than a near-pencil) is at most 6 .

5. Theorem 1 and Chakerian’s [1970] proof of it apply as
well to the case of digon-free arrangements of curves. {Concerning
such arrangements, and the terminology we use, see Grinbaum [1972].)
However, if digons are permitted, Theorem 1 nesd not hold. In Figure
16 we show ©Two non-trivial examples of 2-colored arrangements of
circles without monochromatic veriices.

6, ‘ediating Shamnon's theorsm 3 it is easy to see that
Conjecture 2 is equivalent with the following conjecture of Shannon:

If n points of the Euclidean plane are not collinear they
determine at least n-i different slopes (directions) .

7. As a counterpart to the existence of nicely colored
arrancements, Herzog-Kelly 119601 prove that there is no non=trivial
arrangement colored with k2> 2 colors that lacks both bichromatic

and trichromatic vertices.
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Figure 17. Properly 2-colored arrangements.
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8., A k-coloring of a d-arrangement \fg is nice provided each

(d=2)=~flat of dQ. is either monochromatic, or else is contained in

hyperplanes of at least 3 colors. It was observed by Edelstein-Kelly

[1966]) that the 3-arrangement A%(iz) (formed by the 6 facet-planes

of a cube, and its 6 planes of mirror-symmetry through pairs of

opposite edges) has a nice 3=coloring (each cclor is assigned %o

two parallel facet-planes and the twe symmetry planes perpendicular

to them). Remarkably, no other (non-trivial) nicely colored

3-arrangement is known. Moreover, Edelstein-Kelly (1966] prove:

For d.2:4 there exist no non-trivial nicely colored d-arrangements.
9, In the dual formulation, the noticn of nice k=coloring

may be phrased as follows: A set 5 C pd g k-nice provided each

partition of S into k disjoint non=empty sets Sieonnysk has

the property that any line meeting two distinct Si's meets at

least one more Si . The papers mentioned on page 5 deal mainly

with the following types of problems velated te k-niceness: Prove,

under suitable conditions on the nature of the pairwise disjoin%

sets KipcnnKk‘C:Pd, that if every line meeting two ecf the Ki°s

meets at least a third, then k)‘ﬁi is contained in a line. We shall

i

say that such families have the Sylvester preperiy, since the

original problem of Sylvester was to show that families in which

each K. is a single point have that property. The result of

Edelstein~Kelly [19667] menticned in 8. above establishes the

Sylvester property of families of finite sets such that the affine

hull of lglKi has dimension at least # . FEdelstein=Herzog-Kelly
i

[1963] prove the Sylvester property for families of compact sets

Ki such that (j Ki ig infinite.
i



10. An arrangement & of lines in pé

is properly k-golored
provided each line of géE is assigned to one of k colors so that
every monochromatic vertex is incident with two lines only. It is
easily checked that the arrangement Al(iO) (see Pigure 4) is not
properly 2-colorable. Although we have not established the existence
of a k such that every arrangement is properly k-colorable, no
examples are known that need 4 colors for a proper coloring.

, P . Do
Conjecture. Every arrangement of linses in P

is properly
3=colorable.

Another open problem is whether in properly 2-colored
arrangements of n lines (other than near-pencils) the number m
of moncchromatic vertices is necessarily lavge for large n o
Experimental evidence seems to peint that way. The largest n for
which a properly 2-colored arrangement of n lines with m = 2 is
known is n =6 ; for m = 3 the largest known n is 9 (see
Figure 17 ).

ii, In a recent letter, M. A, Rabin informed me that he had
heard of Graham's problem in 1966, and had at time found a proof
of Theorem 1. }His paper with T. S. Motzkin, mentioned in Chakerian
[1970], will soon be submitted for publication; it will contain

(among others) procofs of the statements in Moizkin 11967 1.
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v . ' Cmittable lines.

-~ Pellowing Koutsk§-Poldk [1960) (uhe dsals with the dusl
situation! we shall call & iins I of an errangement J& of ].i.nes
in p* prw!.uea each vertex of ¢t is mlso & vertex of
the arrangement &\ {£] ¢ in other werds, I is omittadle provided
no vortex of v@: that ldes em 5 4is simple. let s( V) demote

" the mumber of cmittable lines of yL that pess through the vertex
A eof ,;4 o ’
Koutsky-Polak [1560] proved ¢hs following fesults
haoran 1 s{4 .7} g nldVs . |
Prouf. Consider the dual situstion, in which peints P; are

glven, and all linees deterained by them form the arrengeasnt. Let -
omittable 2oinsa Pyec..oP, be on the line at infinity.
izt K be the convex hull of the remaining poinits -?m_igwe,?“
[ & K ig clesvly 2-dimemsional. Bagh of the twe eupport lines of X throwgh
the point P; ( for ssehk § = 1,2,.00,8 ) conteing at least two
of the pointa Py, 8<jxny "hemse 'K hie at lamat ' 28 vertises,
n> 38 , and the thecrem is establichsd.’ '

The estimate in Thecrem 1 iz beat pesaille, a2 is showm by the
éxaeples in which n = 33 , and the lines of (f@_ are s.{i.) e 28
oxtended sides of & reguley (28)=gen cenmtsyyd at V 3 (44) m
8 lines of sysmetry of the (2s)-gon that pasy through pairs ef -~
dismetral vertisces. |

Angther result of Koutskf-Pelak [1960] ias

Theoram Zo Gdven k 1ines Lic...oly Jossing through a seasmsn
wertex V , there axists em arrengsment JL such thet the llmes
Iyocoosly ' are the only smiténble linsu of vi .




L

Progf. We shall prove thie ém@ in the dual fermulations; the
cunges v i and X = 2 Aare trdvial. If ke 3, lot the collinsar .
pointe By, Py Py {(vhich are o becoms omitiable} be at the line
at¢ infinity. ¥e take pointa vl » Vz cellinesr with P,, them
censider tremslsotes of them, ?’3,, Yy » in direction of P, , then
transliater of these four in the direstion eof Pﬁ' I thore are more
points (divsetions), we kesp repeating the yrocsss, arriving n.t )
g6t consisting of at wmoat 2F  paditional points m& having the
given Xk pointe omitiable. lareful chelces of the translations
uoed preveat the introdustion of other omittable peints. (See Pig. 1
for k=3 .), . |

et i dengte the arrangensnt gensrated by the Mﬁhbh
Lines of & , ist 5{&31 dsnote the mumber of lines in ﬁ o and
let s(n) = mex {a{&) () = n} o Prom the axample following
Theores 1 {and easy varisnte) it is obtvieus that s{n) > In/3]1
if the (2z)=-gen used in the constwuction has ¢dd s , by adjoining
the line at infiaity we seo that s(éked) > 2ke2 (which is BW%
greater than [(6x94)/3] } 5

The only other oasss in smt@.aa 2 mlua of s(:ﬂ @uﬁw M
in/37 4z known — listed in Table 1 . @mmmm the MMVQ.M "

ﬁ‘er iarge n we ventars

Gonjsoture. iim sin)/n -1/3 .
n =% a ‘

Other relnted problems eres Uiven sn arrangement v‘éo of lines
Tyseosoly » d08a thore oxiet sn arvangement % that oxtemdn A ,
for which the Lines Iy,eecsly are cultboble (“thet ia, ol ok )
an analogous problem srides if it is required that the lines of 44,



Plgare 1.
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Be precisaly the onlttedble lines 'of' b ( het s, ._,QQ = ﬁ }o
ws ghall call this the strict Frobler.

Tt i@ not hard to see thet the answer is alfirmative {aven for
the strict proviem) whenever k < & o Aluo, a»o&ificatim of the
construction vesd in the preef of Theorsm 2 shows that the answer i8

‘affirastive {wm Por the atrist problem) rhenever '.-;40 is 2 nour=

pencil, The enly cther caaes in which on inswer is kncwn srs those
noted in Table.1, or deriwmble from them.
Copjeeture. Thers exisis &n A sueh ‘tm% if n(v@)} )
whara gé is the set of omittable lines of seme arrangenins gﬂ 0 then
U‘g is gither trivial, or a near-pancil.
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n e{nd> Exmmple ﬁ, for that ezample
16 b P a10) | Agle) | ;
i5 & &5(15} ~{ Ko 3 lines concurrent

16 é i A Aa(é)
21 P As{21) Ag(9)

22 8 & &O(B)

25 10 B,§25) A,(10)

28 i0 Aa(io)

3b 10 ® Agl12)

37 - 13 ﬁa(j?} '52(13)

RO it o Ao(ﬂ&}

50 16 B,(k0) 8 sides of regular octagon and 8 lines

through its centor

T 16 @ %(16)

Pshis 1. ® indicates ammamnt obteined by the constmotim

nemtioned on page 2.

j(za) vefers to the simplicial amumnta

listed in Grinbaus [197:1] , end in pert alsc in these notes. nztns
refers %0 thc simplicial errengosents er puudolmu ahm is .

Figures 2 and 3.
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o Pigure 2. Bnﬂzﬁh 2 sisplicisl arrangenent of 25
veswdolines.
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1. Provide a detailed prosf of the assertion made on page
3 that the atrict sxtension problsm has an affirmetive solutien |
whenever #%O is & near-pencil. (In Pigure & cne way of showing it
is indlcuted in case b, = A(¥) ; again the dusi formulatien of
the problem iz employed.) .
# 2, Determine whether ths &5 extsnded sides ¥ a regular
pentagon can be fthe only) omittadbls lines of scie arrangement.
# 3. Show that the comstruction described in the proof of
Theorem 2 iz “essentislly” best possidle in ths fHlloewing sense:
Theré exiats & constant ¢ > 0 such that for es:h k one can
?ind Xk concwrrent 1ines Ljeesesly, with the priperty that sny
arvangemont ok for whish esch L, 1is omittable ixtiefies |
wl{d) > o 2k,

# indicates unseglved yr@blem¢'






To Ksmm&,, ond V. Paisk

1360 Hote on thy oalibisahls poin‘ta in ewpl@ e sg:stw of .
peints and steaight linss in the plane.
zech., ;;wesaian and English mmrie >
sopls Phst Ft, 8501960}, 60 - £9. ¥R 28, # ALRE,
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Avrangements of hyperplanes.

Proc. Sacond ILouvlzsisne Conferenss ¢n Osmbinaterics,
Graph Theeory and Computing (R.C. Mullia et al., ¢da.).
Lewieianas State Ualveraity, Baton Rougs 1971.pp.8l - 106,
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