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Abstract
Background: Identification and characterization of the prostate stem cell is important for
understanding normal prostate development and carcinogenesis. The flow cytometry-based side
population (SP) technique has been developed to isolate putative adult stem cells in several human
tissue types including the prostate. This phenotype is mainly mediated by the ATP-binding cassette
membrane transporter ABCG2.

Methods: Immunolocalization of ABCG2 was performed on normal prostate tissue obtained from
radical prostatectomies. Normal human prostate SP cells and ABCG2+ cells were isolated and gene
expression was determined with DNA array analysis and RT-PCR. Endothelial cells were removed
by pre-sorting with CD31.

Results: ABCG2 positive cells were localized to the prostate basal epithelium and endothelium.
ABCG2+ cells in the basal epithelium constituted less than 1% of the total basal cell population. SP
cells constituted 0.5–3% of the total epithelial fraction. The SP transcriptome was essentially the
same as ABCG2+ and both populations expressed genes indicative of a stem cell phenotype,
however, the cells also expressed many genes in common with endothelial cells.

Conclusion: These results provide gene expression profiles for the prostate SP and ABCG2+ cells
that will be critical for studying normal development and carcinogenesis, in particular as related to
the cancer stem cell concept.

Background
Experimental evidence suggests that prostatic epithelial
stem cells exist and are likely localized to the basal epithe-
lium [1]. Basal, luminal secretory and a small population
of neuroendocrine cells constitute the epithelial compo-
nent of prostatic acini. Basal and luminal cells may belong

to two functional cell types descended from a common
stem cell type. We are interested in identifying and isolat-
ing this prostatic stem cell. Studies to date suggest that
stem cells from diverse tissue sources may contain a com-
mon set of gene transcripts, which are required for main-
tenance of the stem cell phenotype [2]. Considerable
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research efforts have been directed towards discovery of
markers associated with the putative prostate stem cell,
including the side population (SP) phenotype [3],
integrin α2β1 (CD49b/CD29) [4,5] and PROM1 (CD133)
[6]. Identification and characterization of a stem/progen-
itor cell population is important to our understanding of
not only normal prostate development but also the cancer
process, particularly in regard to cancer stem cells [7]. This
knowledge may lead to the development of effective can-
cer treatment strategies such as differentiation and cell-
based therapy.

The ATP-binding cassette membrane transporter ABCG2
(BCRP/Bcrp1) functions as an energy-dependent efflux
pump, and was first identified in the breast cancer cell line
MCF-7 [8]. ABCG2 is highly expressed in human endothe-
lial cells and plays an important role in the blood-brain
barrier [9-11], but it is rarely expressed in most other dif-
ferentiated cell types [12]. Expression of ABCG2 is associ-
ated with multi-drug resistance; more significantly,
ABCG2 is the molecular determinant for the SP pheno-
type and has been postulated as a universal stem cell
marker [13]. Goodell et al. discovered a small and distinct
SP of whole bone marrow cells based on their capacity to
efflux the fluorescent dye Hoechst 33342 [14]. Remarka-
bly, although this SP comprised ~0.1% of total bone mar-
row cells, it accounted for virtually all of the
hematopoietic stem cell (HSC) activity as demonstrated
by bone marrow repopulation assays [15]. Subsequent
studies of ABCG2-null mice have attributed this dye efflux
to expression of ABCG2 [13]. Since the initial discovery of
the hematopoietic SP, an analogous population has been
detected in embryonic stem cells, the liver, heart, and
many other organs including the prostate [3,13,16,17].
Collectively, these studies provide evidence that the SP
phenotype, and therefore ABCG2 expression, may repre-
sent a feature shared by stem cells of different tissue ori-
gins. However, other recent studies have found no direct
correlation between SP cells and ABCG2 expression [18].
Both SP and known stem/progenitor cells express other
ABC transporters including ABCB1 (MDR-1), ABCC1 and
ABCA2, suggesting that these latter molecules may also be
involved in determining the SP phenotype [19-21].

ABCG2 expression in the prostate has been reported in
both the epithelium [22] and endothelium [23]. The SP of
the prostate has been previously isolated and character-
ized as integrin α2+ and containing a subpopulation of
quiescent (~12%) cells [3]. Immunohistochemical analy-
sis of both normal and cancerous ABCG2+ cells shows that
this subset also lacks the androgen receptor (AR) protein,
and it has been proposed that ABCG2-mediated efflux of
androgen is a mechanism for maintenance of the prostate
stem cell phenotype [24].

In the cancer stem cell model, tumors are thought to con-
tain phenotypically diverse populations of cancer cells,
but only a minority of these cells (10–35%) possess the
ability to form new tumors [7]. It is postulated that these
cancer "stem" cells drive tumor growth and expansion,
and are resistant to therapy. For breast cancer tumors, it
was found that as few as 100 tumorigenic (CD44+/CD24-

/low) cells could form new tumors that contained both the
tumorigenic and non-tumorigenic cell types [25]. These
cancer cells, like stem cells, can self-renew as well as "dif-
ferentiate" into other cancer cell types to produce tumor
heterogeneity.

The goal of this study was to determine if the SP of normal
human prostate and ABCG2+ cells are similar populations
that express putative stem cell markers. Furthermore, we
sought to more precisely define the patterns of ABCG2
expression in prostate tissue, determine if the non-
endothelial ABCG2 expressing cells could be isolated, and
finally to characterize those cells by comparing the tran-
scriptome from sorted SP cells with that of cells isolated
using an antibody (5D3) that recognizes an external
epitope of human ABCG2 [26]. This transcriptome data
can be used for future comparison with candidate cancer
stem cells isolated from prostate tumors.

Methods
Cell lines and prostate tissue
The breast cancer cell line MCF-7 and prostate cancer line
C4-2 were obtained from American Type Culture Collec-
tion (Manassas, VA) and cultured in RPMI-1640 (Cam-
brex BioScience, Walkersville, MD) media supplemented
with 10% heat-inactivated fetal bovine serum (FBS). The
tissue samples that were used in this study consisted of
cancer-free samples obtained from 30 radical prostatecto-
mies. All tissue samples were obtained under approval by
the University of Washington Institutional Review Board.
Samples of cancer-free prostate parenchyma were col-
lected following a standard protocol. To minimize RNA
degradation, upon receipt of a radical specimen, 3-mm
thick transverse sections were made of the prostate after
inking the exterior surface (the surgical margin). Between
2 and 10 g of tissue from the anterior aspect of the prostate
(transition zone) were excised. A frozen section of a block
of tissue corresponding to that non-frozen tissue from
which the cells were excised was taken and histologically
assessed to confirm that the specimen was free of cancer.
The sample was minced and digested by overnight incu-
bation at room temperature in an aqueous solution of
0.2% collagenase type I (Invitrogen, Carlsbad, CA) in
RPMI-1640 media supplemented with 5% FBS and 10-8 M
dihydrotestosterone on a magnetic stirrer. The resultant
cell suspension was filtered with a 70-μm Falcon cell
strainer to remove non-digested tissue, diluted with an
equal volume of Hanks balanced salt solution (HBSS),
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and aspirated with an 18-gauge needle. The resultant pre-
dominantly single cell preparation was partitioned into
stromal and epithelial fractions on a discontinuous Per-
coll density gradient (Amersham Pharmacia, Piscataway,
NJ) as described previously [27,28]. High purity is
obtained by this method [27]. Cells banding at a density
of ρ = 1.07 were collected as the epithelial cell fraction and
used for cell sorting. Because stromal cells (ρ = 1.035) are
less dense they cannot sediment into the epithelial density
band and the epithelial fraction is therefore relatively free
of stromal cells.

Immunohistochemistry
Blocks of unfixed prostate tissue, typically from the
peripheral zone where cancer arises, were harvested at the
time of surgery. Serial 5-μm sections were prepared from
randomly selected frozen blocks, fixed in cold acetone,
and processed for immunohistochemistry. Immunohisto-
chemistry was performed as described previously, using a
three-step indirect avidin-biotin-peroxidase procedure
[29]. The primary antibodies used were mouse mono-
clonal anti-ABCG2 (BXP-34, Chemicon, Temecula, CA)
diluted 1:100 in phosphate-buffered saline (PBS), and
CD138 (MI15, BD-PharMingen, San Diego, CA) diluted
1:100 in PBS. Antigen was localized using biotinylated
anti-mouse IgG (BA-2000, Vector Labs, Burlingame, CA)
as the secondary antibody, and diaminobenzidine tet-
rahydrochloride was the chromogen. The sections were
counterstained in hematoxylin. Immunostained sections
were imaged with an Olympus BX41 microscope (Olym-
pus, Melville, NY) equipped with a MircoFire digital cam-
era (Optronics, Goleta, CA). Percentage of ABCG2+/
CD138+ basal cells was obtained by manual counting of 5
representative CD138+ glands (approximately 1 in 20
glands in a field contained ABCG2-positive basal epithe-
lial cells). Composite images were constructed with Pho-
toshop CS (Adobe Systems, San Jose, CA).

Hoechst 33342 labeling and SP sorting
The epithelial cell fraction enriched by Percoll gradient
was resuspended at a concentration of 106 cells/ml in
HBSS, supplemented with 10% FBS, 20 mM N-2-hydrox-
yethylpiperazine-N'-2-ethanesulfonic acid (HEPES), pH
7.4, and 1% D-glucose. Hoechst 33342 (Molecular
Probes, Eugene, OR) was added to a concentration of 2–5
μg/ml. Cells were incubated at 37°C for 90 min and then
placed on ice until analysis. Fluorescence-activated cell
sorting (FACS) was done using a high-speed cell sorter
(InFlux, Cytopeia, Seattle, WA) following the protocol of
Goodell et al. [14]. Fluorescence from the Hoechst-
stained cells was excited by 100–150 mW UV from an
Innova 305c argon ion laser (Coherent, Santa Clara, CA).
Fluorescence was monitored at two emission bands from
400 – 480 nm (Hoechst blue) and from 690 – 800 nm
(Hoechst red). Epithelial cells were sorted by magnetic

cell sorting (MACS, Miltenyi Biotech, Auburn, CA) for
CD44+ (basal) cells prior to SP sort. In MACS sorting, cells
were resuspended in 0.1% bovine serum albumin (BSA)-
HBSS and labeled with phycoerythrin (PE)-conjugated
CD44 antibody (BD-PharMingen). After the primary anti-
body, the cells were incubated with anti-PE microbeads
(Miltenyi Biotec). The cell suspension was filtered and
then sorted by using the "DOUBLE POSITIVE SORT" pro-
gram of an AutoMACS system (Miltenyi Biotec). Both the
positive and negative fractions were analyzed by FACS to
assess sorting efficiency using a FACSCalibur flow cytom-
eter (Becton Dickenson, Mountainview, CA). The selected
epithelial cells were then sorted for SP. The sorted SP cells
were lysed in RLT Buffer (Qiagen, Germantown, MD) and
RNA was isolated using RNeasy kits (Qiagen). The RNA
quality was monitored by using Agilent 2100 Bioanalyzer
with RNA Nano Labchip (Agilent Technologies, Palo Alto,
CA). Some degradation was evident, likely due to the SP
sorting process.

MACS isolation of ABCG2+ cells
The epithelial cell fraction was resuspended in 0.1% BSA-
HBSS, and labeled with anti-CD31-PE followed by anti-
PE microbeads. This step was intended to first remove
ABCG2+/CD31+ endothelial cells. The CD31-negative
fraction was then incubated with anti-ABCG2-PE. The
reaction was stopped by the addition of 1 ml 0.1% BSA-
HBSS and centrifugation. The labeled cells were resus-
pended and 15 μl paramagnetic microbead-conjugated
anti-PE antibody was added for 15 min. Afterwards, the
positive and negative cells were separated with an AutoM-
ACS using the "DOUBLE POSITIVE SORT" program. Aliq-
uots of the positive and negative cell fractions were
analyzed by FACS to assess sort efficiency. The ABCG2-
positive cells were pelleted by centrifugation and resus-
pended in RLT for storage at -80°C. RNA was isolated and
the RNA quality was monitored. Only RNA samples that
were of sufficient concentration and showed no degrada-
tion were used for array hybridization.

Affymetrix expression profiling
Five separate biological replicates of the sorted cell popu-
lation were assayed to produce a dataset using the Human
Genome U133 Plus 2.0 GeneChips (Affymetrix, Santa
Clara, CA). The U-133 Plus 2.0 array contains probesets
representing 54,675 genes, splice variants, and ESTs. In
addition to the SP and ABCG2+ cells, transcriptomes of
the following prostate cell types have been previously
determined: CD104+ (basal epithelial) cells, CD26+

(luminal epithelial) cells, CD49a+ (stromal) cells, and
CD31+ (endothelial) cells [30]. The GeneChips were pre-
pared, hybridized, and scanned according to the protocols
provided by Affymetrix. Briefly, 200 ng of RNA was reverse
transcribed with poly (dT) primer containing a T7 pro-
moter, and the cDNA was made double-stranded. In vitro
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transcription was performed to produce unlabeled cRNA.
Next, first-strand cDNA was produced with random
primer. cDNA was made double-stranded with poly (dT)
primer/T7 promoter. Finally, in vitro transcription was
performed with biotinylated ribonucleotides. The biotin-
labeled cRNA was hybridized to the GeneChips. The chips
were washed and stained with streptavidin-PE using an
Affymetrix FS-450 fluidics station. Data was collected with
an Affymetrix GeneChip Scanner 3000.

Data analysis
Comparative analysis between the SP, ABCG2+ and the
other cell-type datasets was used to identify genes specific
to stem cells. CEL files produced by GeneChip Operating
Software (GCOS, Affymetrix) were loaded into Gene-
Spring 7.2 (Agilent) via the robust multiple array average
(RMA) preprocessor. The GeneSpring RMA preprocessor
uses the same analysis algorithm for Affymetrix array data
as the open source Bioconductor project. GeneSpring's
replicate error model was used for our analysis. Genes in
the dataset with an average raw fluorescence signal <50
were considered to be undetected by the experiment. Sta-
tistical significance of differential expression between the
various cell sorts was determined by 1-way ANOVA at p <
0.05.

Gene expression validations
Reverse transcriptase-polymerase chain reaction (RT-PCR)
was used to validate expression. For cell lines and tissue
specimens, 1 μg RNA was reverse transcribed with super-
script II reverse transcriptase (Invitrogen, Carlsbad, CA) at
50 C for 50 mins followed by 10 min at 70 C. Gene-spe-
cific primers for PCR (Table 1) were designed to produce
amplicons from 100–650 bp in size. PCR was carried out
at 95 C 30 s, 55 C 30 s, 72 C 1 min for 35 cycles. PCR prod-
ucts were resolved on 2% agarose gels. The ribosomal
gene RPL13a served as the internal reference for each sam-
ple. Quantitative real-time PCR was performed by using
SYBR Green I on ABI 7900HT (Applied Biosystems, Foster
City, CA). Up to 1 μg of RNA from CD31+ and ABCG2+

(5D3+) cells were used for cDNA synthesis. The cDNA was
then used as template for real-time PCR with gene specific
primers. The quantitative PCR (qPCR) assay was run in a
96-well Optical Reaction Plate (Applied Biosystems) with
20 μl final volume per well. Each sample was run in trip-
licate for each gene. The reaction contained 3–5 μl tem-
plate cDNA, 10 μl SYBR Green PCR Master Mix (Applied
Biosystems) and 10 pmol each of forward and reverse
primer. Gene-specific primers for qPCR were designed
using Primer Express™ 1.5 (Applied Biosystems) (Table
2). Primer Sets were initially validated for equal amplifi-
cation efficiencies of the genes. qPCR was carried out at 95
C 30 s, 55 C 30 s, 72 C 1 min for 40 cycles with RPL13a as
the internal reference for each sample. The comparative Ct
method was used to assess relative mRNA levels between

two samples using CD31+ cells as a calibrator basis for
comparison.

Results
Immunolocalization of ABCG2+ epithelial cells to the basal 
epithelium
Fig. 1 shows the result of prostate immunostaining of
ABCG2 and the prostate basal epithelial marker CD138
(syndecan 1) [29]. The ABCG2 antibody recognizes an
internal epitope of the human ABCG2 protein [31]. All
basal cells of a particular acinus were labeled by CD138
but only about 3% of these cells were also positive for
ABCG2. Most glands had very few or no ABCG2+ cells.
Furthermore, distribution of the ABCG2-positive cells
within the basal epithelium consisted of both single cells
and cell clusters. Three cell types could be distinguished:
ABCG2+/CD138+ basal cells, ABCG2-/CD138+ basal cells,
and ABCG2+/CD138- endothelial cells of vessels, which
are known to express ABCG2 [11].

Prostate epithelial SP
Hoechst 33342 labeling and analysis of human prostate
epithelial cells by FACS detected a distinct SP as shown in
Fig. 2. The prostate SP constituted 0.5–3% of the total epi-
thelial cell fraction. Light scattering analysis of the SP cells
(Fig. 2A) indicated that they were smaller and less granu-
lar than the non-SP cells, which is characteristic of stem
cells [32,33]. The Hoechst profile was plotted with BLUE
on the y-axis and RED on the x-axis (Fig. 2B). The SP sort-
ing protocol was also used on two ABCG2+ cancer cell
lines (MCF-7 and C4-2) as positive controls (Fig. 2C and
2D respectively).

Prostate epithelial ABCG2+

CD31 labeling and sorting of prostate epithelial cells by
MACS resulted in removal of 99.94% CD31-positive cells
(Fig 3). The CD31 negative fraction was subsequently
sorted using ABCG2 (Fig. 3).

Prostate SP, ABCG2+, and endothelial cell transcriptomes
Analysis of the transcriptomes of prostate SP and ABCG2+

cells revealed that the SP cell population was not signifi-
cantly different from the ABCG2+ population. Fig. 4
shows the expression overlap of SP, ABCG2+, and
endothelial cell transcriptomes in a Venn diagram. The SP
transcriptome contained 5,011 probesets while the
ABCG2+ transcriptome contained 23,973 probesets, and
the endothelial transcriptome contained 21,145
probesets. Of the probesets detected in the SP transcrip-
tome 23 were not detected in the ABCG2+ or endothelial
datasets. However, the low number of probesets present
in the SP data suggests that RNA quality (perhaps due to
Hoechst toxicity) may have significantly affected the
number of genes detected. Overall, the ABCG2+ transcrip-
tome contained 3,704 probesets not detected in the SP or
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endothelial data. In addition to ABCG2, all three popula-
tions contained other ABC transporters including ABCE1,
ABCB1, ABCG1 and ABCE1. The expression of stem cell
markers detected by the arrays for each population is
listed in Table 3. Of these, NR6A1 and NES were detected
in the SP, ABCG2+ and CD31+ cell populations; and BMP-
4, POU5F1, KIT and VM were detected in the ABCG2+ and
CD31+ populations. Differentiation associated genes ker-
atin 18 (K18), prostate acid phosphatase (PAP), and pros-
tate stem cell antigen (PSCA) were downregulated in both
SP and ABCG2+ cell populations compared to the prostate
basal epithelial (CD104+) and luminal epithelial (CD26+)
cell transcriptomes.

Molecular signature of stem cells in prostate SP cells
SP and non-SP cells were analyzed by RT-PCR. Analysis of
the sorted SP cells showed that they were enriched in
ABCG2 expression in comparison to the non-SP, and were
AR- (Fig. 5A). In addition to ABCG2, the SP cells were
shown to differentially express the following genes: (a)
nestin (NES), a marker first identified in neural stem cells
[34], and subsequently in other stem cell types, with
expression higher in SP than non-SP; (b) telomerase
(TERT), a known marker of stem cells, again higher in SP
than non-SP; and (c) BMI-1, a transcription repressor spe-
cific for the induction of telomerase in epithelial cells and
the extension of proliferative lifespan, and for the mainte-
nance of hematopoietic stem cells [35], with expression
confined mainly to SP. RT-PCR analysis of CD31+

endothelial cells also showed expression of these genes

(Fig. 5B). The sorted SP cells likely still contained some
CD31+ (ABCG2+) endothelial cells as indicated by RT-
PCR (Fig. 5A). Additionally, qPCR was performed on
CD31+ and ABCG2+ cells. Increased levels of expression
for TERT, CD133, BMI-1, NES and ABCG2 were evident in
the ABCG2+ cells vs CD31+ was verified (Fig. 6). These
results suggest that the SP, ABCG2+ and CD31+ cells each
have some intrinsic expression of genes characteristic of
stem cells, but that the ABCG2+ sorting results in a greater
enrichment of these genes than in CD31+ cells.

Discussion
Immunohistochemical analysis of ABCG2 expression
identified two distinct positive populations in the pros-
tate: an endothelial population and a nonendothelial
basal epithelial population. Identification of nonen-
dothelial expression was accomplished by comparing
serial sections stained with the basal cell marker CD138 to
ABCG2 staining patterns. Nonendothelial ABCG2 cells
were identified as CD138+/ABCG2+. Nonendothelial
staining for ABCG2 was observed in small clusters of cells
in the basal epithelium of a few prostate glands. Endothe-
lial CD138-/ABCG2+ staining was observed in capillaries
in the stroma, or at periglandular location.

Using a protocol established for mouse bone marrow SP
analysis, we isolated an SP in normal human prostate tis-
sue obtained from radical prostatectomies. The forward
and side scatter plot revealed a smaller and less granular
population of cells corresponding to the SP defined by the

Table 1: Primer sequences used for RT-PCR.

Gene Sense Primer Antisense Primer PCR Product

ABCG2 [GenBank:NM_004827] AAGCCATTGGTGTTTCCTTG CCTGAGATCCTGAGCCTTTG 124
AR [GenBank:NM_000044] GCAGAGTGCCCTATCCCAGTC GGCAGTCTCCAAACGCATGT 101
BMI-1 [GenBank:NM_005180] AAGTCTTGCCTGCTTTCCAA CAGCGGTAACCACCAATCTT 316
PECAM1 (CD31) [GenBank:BC051822] TGGGCCACAATCGCCTTGTCCT TCCACATCAGCCCCACCGGAAT 130
PROM1 (CD133) [GenBank:NM_006017] GCGTCAAGATACTTCAACGCACAGGG CAGCTATCAATGTTGTGATGGGCTTGTC 650
NES [GenBank:BC108285] CCTTCTCCAAGGAAACAGGGTCA ATTTGAGGACCTGGGGACTGAGGCAC 428
RPL13a [GenBank:BC014167] CCGAGAAGAACGTGGAGAAG CTTTCAAGCAACTTCCGGAG 240
TERT [GenBank:NM_003219] TTTGGCCGAGGCCTGCATGT TGGTGGGGGTGGAAGGCAAA 252

Table 2: Primer sequences used for qPCR.

Gene Sense Primer Antisense Primer

ABCG2 [GenBank:NM_004827] CACAAGGAAACACCAATGGCT ACAGCTCCTTCAGTAAATGCCTTC
BMI-1 [GenBank:NM_005180] AAATGCATCGAACGAGAATC AATGAACCCTCCACAAAGCA
PECAM1 (CD31) [GenBank:BC051822] GAGCACAGTGGCAACTACACG GACCACGATGCTGCTGAC
PROM1 (CD133) [GenBank:NM_006017] CATGTTTGGAGGATCTTGCTAGC TTCCCGCACAGCCCC
NES [GenBank:BC108285] CATTGTCCCCGTCGGTCTC GAGGATGGACAGACGCGGC
RPL13a [GenBank:BC014167] CCGAGAAGAACGTGGAGAAG CTTTCAAGCAACTTCCGGAG
TERT [GenBank:NM_003219] ACCGTCTGCAGGAGATC GACCTGAGCTCGACGAC
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Table 3: List of stem cell markers. Columns list the gene as detected (+) or undetected (-) in the SP, ABCG2 and CD31 cell 
transcriptomes.

Gene Description SP ABCG2 CD31

ALPP Alkaline phosphatase - - -
AFP Alpha-fetoprotein - - -
BMP-4 Bone morphogenic protein - + +
T Brachyury - - -
TNFRSF8 CD30 - - -
TDGF-1 Cripto - - -
GATA-4 GATA-4 - - -
FOXD3 Genesis - - -
NR6A1 Germ cell nuclear factor + + +
HNF-4A Hepatocyte nuclear factor-4 - - -
NES Nestin + + +
N-CAM Neuronal cell-adhesion molecule - - -
POU5F1 Oct-4 - + +
PAX6 Homo sapiens paired box gene 6 - - -
KIT Stem cell factor (SCF or c-Kit ligand) - + +
TERT Telomerase - - -
VM Vimentin - + +

* [38]

ABCG2+ cells in the prostate epitheliumFigure 1
ABCG2+ cells in the prostate epithelium. Serial sections of normal human prostate were stained for ABCG2 (A – C) or 
CD138 (D – F). A subpopulation of cells in the basal epithelium is ABCG2+. Endothelial cells of capillaries (black arrow) are 
also ABCG2+ but are CD138- (red arrow). All basal cells of a particular small gland were ABCG2+/CD138+ (B). Original mag-
nification is 100×, magnification for C and F is 200×.
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Hoechst RED/BLUE profile. Transcriptome analysis of the
prostate SP was compared to previously sorted prostate
cell transcriptomes [30]. In contrast to the CD antibody-
sorted cell types, far fewer genes were detected in SP sorted
cells. RNA integrity is critical for determining gene expres-
sion, and suboptimal RNA quality in the SP sorted cells

was the probable cause of this decrease in genes detected.
Hoechst 33342 is a DNA intercalating agent that results in
significant cellular toxicity [36], and may have caused
RNA degradation in cells isolated in this fashion. Several
studies have addressed the potential toxicity of Hoechst
33342 [36,37], however, very little research has looked at

Prostate epithelial side populationFigure 2
Prostate epithelial side population. Prostate cells prepared from tissue specimens were analyzed for Hoechst 33342 dye 
efflux. The cytograms show (A) forward and side light scatter of the SP and non-SP populations as defined by (B) the dye 
efflux characteristics of the cells. Cytograms show the dye efflux characteristics of (C) the prostate cancer cell line C4-2 and 
(D) the breast cancer cell line MCF-7 used as positive controls.
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the effects of the SP technique on the quality of RNA iso-
lated from these cells. To mitigate the effects of Hoechst
toxicity on RNA degradation, the monoclonal antibody,
clone 5D3, was used to generate a transcriptome for the
ABCG2+ prostate epithelial cells. MACS was chosen as the
separation method because the procedure is much faster
than FACS (minutes vs. hours).

Transcriptome analysis of the SP and ABCG2+ cells from
the prostate included the endothelial (CD31+) population
[30] since these cells also express ABCG2. As expected, all

three populations (prostate SP, ABCG2+ and CD31+)
expressed higher levels of ABCG2 than the other prostate
cell types: luminal, stromal, basal, and epithelial (data not
shown). Additionally, all three populations contained
other ABC transporters including ABCE1, ABCB1, ABCG1
and ABCE1 [see Additional file 1]. The ABCG2+ (5D3)
transcriptome dataset was found to contain many genes
present in endothelial cells, although it did contain 232
unique probesets with a raw fluorescence signal >100 [see
Additional file 2]. The sorting scheme used to isolate
ABCG2+ cells by presorting with CD31-PE might have

Flow analysis of prostate epithelial cellsFigure 3
Flow analysis of prostate epithelial cells. Epithelial cells collected on a Percoll density gradient were stained with CD31 
and ABCG2. Cells in R3 of each cytogram were sorted for further analysis.

CD31- CD31+

CD31-/ABCG2+CD31-/ABCG2-
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been inefficient in removing all CD31+ cells. However,
MACS sorting of ABCG2+ cells did result in a more com-
plete transcriptome than the SP sorting method [see Addi-
tional file 3], as evidenced by the nearly 5-fold increase in
number of genes identified. RT-PCR analysis revealed that
SP cells expressed higher levels of the putative stem cell
markers NES, TERT, and BMI-1, in addition to ABCG2
compared to non-SP cells. In the same analysis, other
markers, such as the endothelial marker CD31 [29] and
the prostate stem cell marker CD133 [6] were expressed at
similar levels by both SP and non-SP cells. CD31+ cells
also expressed NES, BMI-1, TERT and CD133. qPCR anal-
ysis of ABCG2+ cells verified that the ABCG2+ sorting
resulted in enrichment for these genes as compared to
CD31+ cells. Based on these transcriptome and RT-PCR
analyses, the distinction between the prostate endothelial
cell and the putative prostate stem cell isolated based on
SP expression is not entirely clear. The ABCG2+ popula-
tion shares many endothelial genes as well, however,
based on transcriptome and qPCR analyses, it seems to be
a more distinct population than the SP cells. Because of
their expression of ABCG2, endothelial cells are a major
potential contaminant of stem cells isolated by methods
targeting this marker. Alternative sorting schemes to iso-
late purer ABCG2+/CD31- populations are currently being
explored in our lab.

Our study was not designed to provide a functional assay
for these putative stem cells. The sorting methods utilized
resulted in very small numbers of cells that were insuffi-
cient for in vitro studies. Additionally, the fact that these
cells express ABCG2, which is hypothesized to efficiently
pump out differentiation inducing molecules [24], may
render them non-responsive to differentiation signaling.
This transcriptome data has, however, provided a wealth
of targets for further studies aimed at identifying the
mechanisms that govern the process of self-renewal and
development of prostate stem cells.

Conclusion
Our data show that ABCG2 efflux of Hoechst 33342 or
antibodies to ABCG2 could be used in isolating a subset
of prostate cells that may include the prostate stem cells.
The prostate cells isolated by SP and antibodies for
ABCG2 have gene expression characteristics consistent
with the endothelial cell phenotype and a number of stem
cell markers. Because of potential RNA degradation
caused by the SP process, it may be that antibody sorting
based on ABCG2 expression is a better method of isola-
tion for the putative prostate stem cell. Future studies are
needed to determine more conclusively whether SP or
ABCG2+ results in organ-specific stem cell enrichment in
the prostate, or whether other putative markers such as
integrin α2β1 (CD49b/CD29) [4,5] and PROM1 (CD133)
[6] are better suited for prostate stem cell isolation.
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Additional material

Additional file 1
ABC transporters in SP, ABCG2+ and endothelial cell transcriptomes. 
Transcriptome analysis of prostate SP, ABCG2+ and endothelial cells 
detected 19 probesets for ABC genes with a raw fluorescence signal > 100.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2490-7-6-S1.pdf]

Additional file 2
ABCG2 unique genes. Transcriptome analysis of prostate ABCG2+ 

detected 1291 probesets not detected in the SP or endothelial data with a 
raw fluorescence signal > 50, 232 probesets with signal > 100.

Overlap of prostate cell transcriptomesFigure 4
Overlap of prostate cell transcriptomes. The Venn dia-
gram depicts shared genes expressed by each cell type: 
ABCG2+ (5D3) are red, endothelial (CD31+) are green, and 
SP are blue. Other colors show genes that are shared 
between the cell types, and white shows genes shared by all 
three.
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Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2490-7-6-S2.xls]

Additional file 3
SP unique genes. Transcriptome analysis of prostate SP detected 17 
probesets not detected in the ABCG2+ or endothelial data with a raw flu-
orescence signal > 50, 8 probesets with signal > 100.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2490-7-6-S3.pdf]

Gene expression analysis of prostate SP cellsFigure 5
Gene expression analysis of prostate SP cells. (A): Expression of various stem cell genes in human prostate SP (SP+) vs. 
non-SP (SP-), by reverse transcription polymerase chain reaction (RT-PCR). The ribosomal protein-encoding gene RPL13a 
served as the reaction control. Nestin, telomerase, Bmi-1 are reported in the literature to be stem cell genes. CD133 has been 
reported as a prostate stem cell gene. Androgen receptor (AR) is known to be expressed by differentiated cells. The SP+ and 
SP-cells were also CD31+, indicating possible endothelial contamination. (B): Prostate endothelial cells (CD31+) also 
expressed these genes.
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