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Abstract
Background: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and
lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for
a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The
disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be
responsible for the development of leukemia. We have used multiple microarray platforms and
bioinformatic techniques to help identify these biological pathways to aid in the understanding of
why RUNX1 mutations lead to leukemia.

Results: Here we report genes regulated either directly or indirectly by RUNX1 based on the
study of gene expression profiles generated from 3 different human and mouse platforms. The
platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from
FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse
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embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of
differentially expressed genes) significantly correlate with published microarray data from sporadic
AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological
processes were identified among the differentially expressed genes and functional assays suggest
that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation,
microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions
of the differentially expressed genes has for the first time systematically identified numerous
potential novel RUNX1 target genes.

Conclusion: This work is the first large-scale study attempting to identify the genetic networks
regulated by RUNX1, a master regulator in the development of the hematopoietic system and
leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable
importance in disease progression in both familial and sporadic leukemia as well as therapeutic
implications.

Background
The Core Binding Factor (CBF) is a transcriptional regula-
tor complex, which is composed of two sub-units [1].
Mammals have three genes coding for the α-subunits,
RUNX1, RUNX2 and RUNX3 [2], and one coding for the
β-subunit, CBFβ . The α-subunits recognize a specific
sequence (TGT/cGGT) in the regulatory regions of their
target genes in order to bind DNA directly, while the β-
subunit heterodimerizes with the α-subunits but does not
interact directly with the DNA. The interaction with CBFβ
stabilizes the RUNX-DNA complex [3,4] and protects the
RUNX proteins from degradation [5].

In humans, the CBF complex containing RUNX1 as the α-
subunit is one of the most frequent targets of chromo-
somal and genetic alterations in leukemia. Chromosomal
rearrangements involving RUNX1 or CBFβ [6], somatic
point mutations in RUNX1 [7] and amplification of
RUNX1 [8] have all been described in acute leukemia. In
addition to somatic alterations, germ-line point muta-
tions in RUNX1 are responsible for an autosomal domi-
nant platelet disorder with a propensity to develop
leukemia (FPD-AML, OMIM 601399) [9,10]. Interest-
ingly, the dosage of RUNX1 protein seems to play a role
in the determination of the leukemic phenotype. Indeed,
low dosage of RUNX1, resulting from haploinsufficient or
dominant negative mutations, lead to the development of
myeloid leukemia [9-11], whereas amplification of
RUNX1 gene is more often observed in lymphoid leuke-
mia, particularly pediatric ALL [12]. A number of observa-
tions also suggest that although RUNX1 is involved in the
first steps of leukemia development, additional somatic
mutations are necessary and probably determinant for the
leukemic phenotype: 1) The predisposition to develop
leukemia in FPD-AML patients shows that germline
RUNX1 mutations are not sufficient for the development
of the disease [10]. 2) Somatic translocations are not able
to induce leukemia in mouse cells on their own [13]. 3)
The translocation t(12;21), which fuses ETV6 (TEL) to

RUNX1, can arise in utero but does not trigger leukemia
until later in childhood, with as much as nine years
latency [14]. These additional mutations are likely to
occur in molecules involved in the same biological path-
ways as RUNX1, as hemizygous loss of several molecules
in the same biological pathway (e.g. RUNX1 and SPI1) is
thought to be almost as tumorigenic as homozygous loss
of one molecule (e.g. homozygous RUNX1 mutation in
AML-M0) [15]. Therefore the identification of down-
stream targets of RUNX1, with care to the model systems
including species and cell type of origin, is of great interest
in order to identify novel candidate molecules involved in
leukemogenesis.

The identification of the biological pathways regulated by
RUNX1 is also of importance to shed light on its in vivo
function and role in leukemia development. The observa-
tion that Runx1 knockout mice show a lack of definitive
hematopoietic maturation and die at embryonic stage 12
from hemorrhages in the central nervous system demon-
strates that RUNX1 plays a critical role during develop-
ment of the hematopoietic system [16,17]. In addition,
RUNX1 might also play a role in other systems as it is
expressed in many other embryonic tissues [18-20] and in
epithelial cells [19,20]. It is furthermore overexpressed in
endometrioid carcinoma [21] and down-regulated in gas-
tric cancer [22]. The in vivo function of RUNX1 is therefore
yet to be fully understood.

Here we describe the combination of a number of
genomic and bioinformatic approaches to identify bio-
logical pathways downstream of RUNX1, and report on a
number of processes in which RUNX1 is likely to be
involved. We also took advantage of the integration of
these approaches in order to identify novel RUNX1 target
genes.
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Results
Gene expression profiling of cells harboring different levels 
of RUNX1
Three different model systems were used to identify the
biological pathways regulated by the RUNX1 transcrip-
tion factor. These were haploinsufficiency using FPD-AML
patient B cell lines (FPD), overexpression of CBF complex
(CBF) in HeLa cells and Runx1 deficiency in mouse
embryos (E8.5 and E12) (Figure 1).

Lymphoblastic cells derived from FPD patients hetero-
zygous for a RUNX1 frameshift mutation (R135fs) were
first analyzed. This mutation results in haploinsufficiency
of RUNX1, as the mutant protein has lost its capacity to
bind DNA and to transactivate the expression of the target
genes [9]. Quantitative RT-PCR on these non-leukemic
lymphoblastic cells showed that affected individuals
express approximately 55% of the transcript level
observed in unaffected individuals (see Additional File 1
:Figure S1). The genes differentially expressed between
two affected and two non-affected cell lines are therefore
largely the result of a low dosage of RUNX1 protein. Using
human cDNA microarrays with the Hs8k cDNA clone
library from Research Genetics and a selection of control
spots, 366 genes were identified as differentially
expressed, of which 52% (192/366) were down-regulated
in affected individuals (Figure 1 and see Additional File
2).

For overexpression studies, HeLa epithelial cells were
transduced using adenoviral vectors. FACS analysis
showed that over 90% of HeLa cells were transduced by a
EGFP-expressing adenovirus (data not shown). This sys-
tem results in a highly homogenous cell population in
which small changes of expression can be identified. The
wild type CBF complex α-subunit, RUNX1, was overex-
pressed together with the β-subunit, CBFβ (see Additional
File 1: Figure S2) and seven hybridizations were per-
formed. Following overexpression of the CBF complex,
721 genes were differentially expressed including the up-
regulation of 42% of the genes (300/721; Figure 1 and see
Additional File 2).

Finally, we compared the expression profiles of two wild
type and two Runx1 knockout mouse embryo propers at
each embryonic stages E8.5 and E12 using Affymetrix
chips. Despite the heterogeneity of the samples, 931 and
297 genes were differentially expressed at embryonic
stages E8.5 and E12, respectively. Of these genes, 57%
(533/931) and 72% (214/297) were down-regulated in
the knockout embryos (Figure 1 and see Additional File
3). These differences in expression are likely to reflect the
lack of hematopoiesis and the premature death, respec-
tively, observed in the Runx1 embryos.

We then compared the different datasets using a mean-
rank gene set enrichment test (MR-GSE) in order to deter-
mine the level of connection between the 3 approaches
(FPD cell lines, CBF overexpression and Runx1 knockout
mouse embryos), disregarding the cell type and the organ-
ism. High correspondence was observed between the two
human datasets. The correspondence between the human
and the mouse datasets was not as good, although still sig-
nificant. This might partially be explained by the difficul-
ties of matching human and mouse platforms (see
Additional File 1: Figure S3).

Correlation with clinical AML samples
It was first necessary to determine whether the genes iden-
tified in nonmyeloid cells in this study may play a role in
myeloid leukemia development. We therefore compared
our data to previously published microarray data
obtained from 285 AML and 8 healthy samples [23],
using the MR-GSE test. The high correspondence between
the FPD-AML and CBF datasets had already suggested that
a large number of downstream genes were similar
between epithelial and lymphocytic cells. Therefore we
used each approach as representative of the RUNX1 gene
dosage, regardless of the cell type. The AML samples used
in the comparison include 22 patients with a t(8;21)
translocation, which fuses RUNX1 to ETO, and 18
patients with inv(16), which fuses the co-factor CBFβ to
MYH11. The other samples include a range of common
alterations or no identified mutations. RUNX1 activation

Gene expression profiles and overlapsFigure 1
Gene expression profiles and overlaps. The three plat-
forms used in this study are indicated. The number of up-, 
down- or all differentially expressed genes (DEGs) are indi-
cated below each platform.
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targets should be positively correlated with RUNX1
expression whereas repression targets should be nega-
tively correlated. Therefore we ranked all the probes-sets
on the microarrays according to their correlation with
RUNX1 across the 293 AML and normal samples (Figure
2A). MR-GSE tests demonstrated that genes up-regulated
in the FPD-AML patients (likely to represent genes
repressed by RUNX1), had an expression trend opposite
to RUNX1 in the AML patients, suggesting indeed that
these genes are repressed in vivo in the presence of RUNX1
(p = 7 × 10-6; Figure 2B). On the other hand, the down-
regulated genes do not show any statistically significant
trend (Figure 2C). Similarly, the genes activated by the
exogenous CBF complex had an expression pattern simi-
lar to RUNX1 across the clinical samples (p = 1 × 10-4; Fig-
ure 2D), whereas genes repressed by the CBF complex had
an expression pattern opposite to RUNX1 (p = 2 × 10-5;
Figure 2E).

MR-GSE tests also showed that genes differentially
expressed in the B cell lines derived from FPD-AML
patients tended to be differentially expressed in the blasts
and mononuclear cells of 22 clinical patients with a
t(8;21) translocation (p = 10-10) and of 18 patients with
the inv(16) abnormality (p = 3.5 × 10-9). For example, the
top 14 differentially expressed genes in the FPD-AML
dataset that are also differentially expressed in the clinical
samples are shown in Additional File 1 (Table S3). As a
whole, these results demonstrate that the genes identified
in our study are likely to play an important role in the
development of the disease.

Biological processes regulated by RUNX1: bioinformatic 
approaches
Bioinformatics tools taking into account all differentially
expressed genes (direct and indirect RUNX1 targets) were
used to systematically identify the biological processes in
which RUNX1 may be involved. A number of gene ontol-
ogy (GO) annotations were significantly enriched in each
dataset (Table 1). Some were identified in more than one
dataset such as "cadmium ion binding" and "immune
response". Other significantly represented processes were
identified through the use of Ingenuity Pathways Analysis
(Ingenuity Systems, http://www.ingenuity.com) (Figure
3). These include cancer related genes as well as genes
involved in hematological disorders. To complete this
analysis, a MR-GSE was also performed using a number of
published gene sets related to thrombocytopenia, leuke-
mia and cancer (Figure 4, see Additional File 1: Table S4
and Additional File 4). Significant correlation was
obtained between the microarray datasets and a number
of these sets of genes, including genes involved in meg-
akaryopoiesis and cytokinesis, genes differentially
expressed following irradiation of lymphoblasts, and

genes consistently differentially expressed in solid-tissue
tumors.

Biological processes regulated by RUNX1: in vivo 
confirmations
We designed a series of assays that were performed on
either cell lines, or directly on samples from FPD-AML
patients with RUNX1 mutations, to confirm the distur-
bance of several interesting biological processes identified
by the above approaches.

Heterozygous RUNX1 point mutations affect 
proliferation
RUNX1 is thought to be involved in the balance between
cell proliferation and differentiation, whose disruption
leads to leukemia development. However, the molecular
mechanisms behind this regulation are not known. We
observed that genes participating in cellular proliferation
were significantly enriched in both FPD and CBF datasets
(Table 1 and Figure 3). The genes responsible for this
enrichment are indicated in Additional File 1 (Table S5).
We therefore performed a BrdU proliferation assay in
order to determine whether a subtle proliferation defect
was present when RUNX1 level was lower in FPD-AML
patients. A slower proliferation was indeed observed in
FPD-AML lymphoblasts derived from two independent
families compared to unaffected cells (Figure 5A, p <
0.001).

RUNX1 modulates microtubule stability
A significant enrichment of molecules containing a com-
mon tubulin motif was observed following overexpres-
sion of the CBF complex (Table 1). Five tubulin isoforms
were down-regulated following overexpression of the CBF
complex. These data led to the observation that CBF over-
expression affected the expression of 57 genes associated
with cytoskeletal structures according to GO annotation
(see Additional File 1: Table S6). This class of genes was
not significantly represented in the dataset from the FPD-
AML cell lines, however this may be the result of the not
complete knock-down of RUNX1 in the affected individ-
uals leading to small changes that are not detected by
microarray analysis. Therefore we also tested whether
microtubule stability was affected in these cell lines. Sig-
nificantly higher microtubule polymer levels were
observed in the affected patients compared to the unaf-
fected individuals (Figure 5B and 5C; p < 0.002). Further-
more, the microtubules in affected cells could not be
stabilized using the drug Taxol to the same extent as the
unaffected cells (Figure 5D; p < 0.0003). This might result
from the inability of the drug to bind to the microtubule
molecule because of the unusual presence of other micro-
tubule stabilizing proteins or from a lack of soluble tubu-
lin molecules in the cellular environment. In any case,
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Correlation with clinical AML dataFigure 2
Correlation with clinical AML data. A. Published microarray data on 285 AML patients [23] were ordered using Gene 
Recommender according to the expression pattern of the 11 probe sets for RUNX1. The patients with t(8;21) are marked in 
orange and those with inv(16) in red. Probes co-regulated with RUNX1 are highly ranked (yellow bar), whereas probes show-
ing an expression pattern the least similar to RUNX1 are ranked lowest (blue bar). B-C. Random permutations were per-
formed to compare the rank of the genes differentially expressed in FPD platform and random set of genes. The histograms 
show the percentage of up- or down-regulated genes in FPD relative to their rank with "0" being the probes co-regulated with 
RUNX1 (yellow) and "1" being the probes the least similar to RUNX1 (blue). The trends observed in the histograms are rep-
resented as triangles or rectangle. D-E. Similar histograms showing percentage of up- or down-regulated genes in CBF relative 
to their rank.
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these results suggest that RUNX1 is involved in microtu-
bule dynamics.

Neither the proliferation nor the tubulin defects are due to
the EBV transformation of the cell lines as many inde-
pendent proliferation and tubulin polymerization assays
performed on lymphoblastic cell lines derived from fami-
lies with predispositions to various haematological malig-
nancies do not show similar familial clustering (data not
shown).

Genomic instability
Highly significant correspondence was observed between
the FPD, CBF and mouse datasets and the genes switched
on after irradiation of lymphoblasts (Figure 4). We used a

glycophorin A assay to test whether the FPD-AML patients
are more prone to somatic genetic mutations than unaf-
fected individuals. This test assesses the frequency of
mutation events occurring at the glycophorin A locus in
erythroid progenitors in blood of heterozygous individu-
als (MN phenotype) [24]. Although more samples would
be necessary for corroboration, a significant trend was
present between the blood of two affected patients and
five unaffected individuals, suggesting that a subtle
increase of mutation rate may occur when RUNX1 activity
is impaired (Figure 5E; p < 0.01). This increased mutation
rate appears to be higher in the assay that would detect
deletions (NO), that are the predominate mutations aris-
ing due to ionizing irradiation [25].

Processes identified by Ingenuity Pathways AnalysisFigure 3
Processes identified by Ingenuity Pathways Analysis. Evidence that each dataset is involved in the given function as 
determined by the use of Ingenuity Pathways Analysis (Ingenuity Systems, http://www.ingenuity.com). The threshold for the sig-
nificance is indicated by a vertical bar and represents a p-value of 0.05.
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Identification of potential novel RUNX1 target genes – co-
expression in human tissues and hematopoietic cell lines
We reasoned that direct RUNX1 target genes must be
expressed in the same tissues or cells as RUNX1. Thus, the
expression patterns of a number of differentially
expressed genes, chosen due to potential functions in
leukemia development, were compared to that of RUNX1
(see Additional File 5). The expression of 22 genes in 20
human tissues, 19 hematopoietic cell lines and normal
human bone cells was assessed using cDNA panels [26]. 9
of these genes show a high expression in a number of
hematopoietic cell lines and all the others show common
expression with RUNX1 in various tissues such as liver
and peripheral blood leukocytes (PBLs).

Identification of potential novel RUNX1 target genes – 
data overlaps
In order to distinguish between the direct RUNX1 target
genes and those effected further downstream by a disreg-
ulation of RUNX1 level, we hypothesized that the genes in
common in more than one dataset were more likely to be
at the top of the genetic pathways regulated by RUNX1
and to be enriched for direct target genes. As suggested by
the significant MR-GSE results, we observed statistically
significant overlap between each dataset. Among the 366
genes differentially expressed in FPD-AML cell lines, 69

genes were also differentially expressed following overex-
pression of the CBF complex, while only 32 were expected
by chance (Figure 6A). As anticipated when comparing an
under- and overexpression system, 61% (42/69) of the
genes in this overlap were differentially expressed in the
opposite direction. Among these 69 genes 16 were also
differentially expressed in at least one embryonic stage of
the Runx1 knockout embryos (Table 2, Figure 6A).

Identification of potential novel RUNX1 target genes – 
regulatory region analysis
In order to accumulate evidence that some of the genes
present in these overlaps are direct target genes, we
searched for human RUNX1 binding sites, which were
conserved in mouse using the oPOSSUM software (http:/
/www.cisreg.ca/cgi-bin/oPOSSUM/opossum see Addi-
tional File 1) [27]. Many differentially expressed genes
contained at least one conserved RUNX1 binding site in
their regulatory regions and the overlaps between the
datasets show a higher enrichment for such genes as
hypothesized above (Figure 6A).

The regions flanking five putative conserved binding sites
identified in three differentially expressed genes, and one
negative control region, were cloned upstream of a luci-
ferase reporter gene and co-transfected together with plas-

Table 1: Gene ontology enrichment

FPD CBF E8.5 E12

GO: Biological 
processes

Immune response p = 6.5 
× 10-5 36 genes

Macromolecular complex 
assembly p = 0.02 47 genes

Blood vessel development p 
= 0.06 15 genes

Response to external 
stimulus* p = 0.0003 18 genes

Negative regulation of 
apoptosis p = 0.002 16 genes

Cell growth p = 0.02 21 genes Behavior p = 0.0003 14 genes

Response to biotic stimulus p 
= 0.002 19 genes

Immune system process p 
= 0.0006 18 genes

Cell proliferation p = 0.01 36 
genes

GO: Molecular 
functions

Cadmium ion binding p = 
0.002 4 genes

RNA binding p = 0.03 50 
genes

IgG binding p = 0.006 3 genes

Cadmium ion binding p = 
0.03 4 genes

Ferric-chelate reductase 
activity p = 0.03 2 genes

Polysaccharide binding p = 
0.03 6 genes

GO: cellular 
component

Spindle p = 0.06 11 genes Cell junction p = 0.06 14 
genes

Cell surface p = 0.05 9 genes

Extracellular space p = 0.06 
37 genes

InterPro motifs 
(FatiGo)

Vertebrate 
metallothionein p = 

0.0001

Vertebrate 
metallothionein p = 0.02

Tubulin p = 0.04

The most significant gene ontology annotations are indicated for each dataset as identified through GOStat in April 2007. InterPro motifs were 
identified through the FatiGo program. The p-values are corrected for multiple testing (False discovery rate, Benjamini).
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MR-GSE testFigure 4
MR-GSE test. Representation of the p-values (corrected 
for multiple testing) resulting from the MR-GSE test for each 
dataset and 10 gene sets specified in Additional File 1 (Table 
S4). In brief they are gene sets Mekagaryocyte differentiation, 
Identification of genes involved in the differentiation of meg-
akaryocytes. DEGs between stem cells and differentiated 
megakaryocytes; Platelets, Transcription profiling of human 
blood platelet; ; Normal megakaryocytes, Genes highly 
expressed in megakaryocytes; ET megakaryocytes, Genes 
highly expressed in essential thrombocytopenia megakaryo-
cytes; Cytokinesis proteome, Identification of proteins 
present in the midbody during cytokinesis; Spindle check-
point, Review ; DNA repair, Review; Lymphoblast irradia-
tion; high dose, Effect of ionising radiation on lymphoblasts; 
Lymphoblast irradiation; low dose, Effect of ionising radiation 
on lymphoblasts; Genes DE in cancer, Meta-analysis of can-
cer microarray data to identify genes consistently DE in 
tumours. This represents whether the genes present in the 
published gene sets are also differentially expressed in our 
expression profiles. For example, the genes expressed in 
normal or diseased megakaryocytes (lines 3 and 4) are signif-
icantly represented in the differentially expressed genes iden-
tified in the FPD and CBF approaches.
Figure 5
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mids expressing RUNX1 and CBFβ. These genes were
selected because of their presence in the overlap between
the human datasets and/or their interesting functions;
ANXA1 (Annexin 1) is involved in cell proliferation and
cytoskeleton regulation; ARMET (Arginine-rich, mutated

in early stage tumors) is mutated in cancer; CYR61
(Cysteine-rich, angiogenic inducer, 61) promotes prolifer-
ation and angiogenesis. An increase in luciferase activity
was observed for ANXA1 binding sites and for one of the

A. Overlaps between the datasets and percentage of genes with a RUNX1 binding site in their regulatory regionsFigure 6
A. Overlaps between the datasets and percentage of 
genes with a RUNX1 binding site in their regulatory 
regions. The overlaps between the different platforms are 
represented with arrows. * indicates that the genes differen-
tially expressed in at least one of the mouse datasets are 
considered for the following overlap. The number of differ-
entially expressed genes (DEGs) containing a conserved 
RUNX1 binding site (with CBS) in their regulatory regions, 
as determined by the oPOSSUM program [27], over the 
number of analyzed genes is indicated for each dataset and 
overlap. The corresponding percentage is indicated in brack-
ets. B. Luciferase assay for 5 RUNX1 binding sites corre-
sponding to 3 differentially expressed genes. The 
transactivation activity of RUNX1 over these sites was meas-
ured as the fold change of the luciferase activity in the pres-
ence of the CBF complex compared to the endogenous 
activity of each construct. The standard errors of three inde-
pendent replicates are shown. CASP3 was shown as a nega-
tive control as no binding site was found for this gene. The 
difference in expression for the three genes in each dataset is 
indicated in the table. 0 means no difference in expression, ↓ 
stands for down-regulated and ↑ stands for up-regulated.

Functional assays on FPD-AML cell linesFigure 5
Functional assays on FPD-AML cell lines. A. The results 
of a BrdU proliferation assay are indicated for each cell line. 
Dark bars indicate affected individuals. The standard errors 
of two independent replicates are shown. A two-way 
ANOVA resulted in a significant p-value (p < 0.001) between 
affected and unaffected individuals. B. Examples of the tubulin 
polymerization assay for an affected and an unaffected indi-
viduals in each family. s:soluble tubulin; p:polymerized tubulin. 
C. The percentage of polymerized tubulin is shown for each 
cell line. Dark bars indicate affected individuals. The standard 
errors of three independent replicates are indicated. A two-
way ANOVA resulted in a significant p-value (p < 0.002) 
between affected and unaffected individuals. D. Percentage of 
polymerized tubulin in the same cell lines before (darker left 
bars) and after (second bars) induction of polymerization by 
Taxol. A significant smaller induction is observed in affected 
individuals (dark bars) as demonstrated by an ANOVA (p < 
0.0003). E. Glycophorin A assay. The numbers of N0 (loss of 
the M allele), NN (mutation changing M to N allele) or total 
mutant (both N0 and NN) cells are indicated for each indi-
vidual. The standard errors of three to five technical repli-
cates are indicated. Dark bars represent affected individuals 
(A1-A2). The control C5 is the unaffected sister of patient 
A1. ANOVAs were performed for each kind of mutation and 
the p-values are indicated.

Table 2: Genes differentially expressed in FPD, CBF and in E8.5/
E12

Gene name RefSeq RUNX1 BS

ITM2C NM_030926 y
GLO1 NM_006708 ND
OGT NM_003605 y
ALAS1 NM_000688 ND
HSPA4L NM_014278 y
PPIB NM_000942 ND
CIB1 NM_006384 N
BASP1 NM_006317 y
TACC1 NM_006283 ND
CTSC NM_001814 y
PBX3 NM_006195 y
TGFBR3 NM_003243 ND
ANZA1 NM_000700 y
ELF1 NM_172373 ND
IFRD1 NM_001550 ND
MT1G NM_005950 ND

RUNX1 BS: presence of a RUNX1 binding site in the regulatory 
region of the gene as determined by oPOSSUM. y stands for the 
presence of binding site and ND stands for not determined due to the 
absence of the gene in oPOSSUM.
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ARMET binding sites and a diminution of the luciferase
activity was observed for the CYR61 binding site (Figure
6B). No modification of the luciferase activity was
observed for a sequence derived from the negative control
CASP3 regulatory region (where no conserved binding
site was identified by the oPOSSUM program). It is likely
that a combination of a number of binding sites and the
presence of additional co-factors are necessary for a cor-
rect and synergistic in vivo regulation of these genes and it
might explain the small activity observed for the ARMET
binding sites. It might also explain the activation of the
ANXA1 site while this gene was repressed by the overex-
pression of the CBF complex.

Discussion
RUNX1 is one of the most frequent targets of somatic
mutations in leukemia and is mutated in an autosomal
dominant disorder affecting platelets and predisposing to
leukemia development. Better characterization of its in
vivo function is likely to give insight into the mechanisms
leading to the development of leukemia, and will provide
new candidate genes for leukemogenesis. We do not
believe that as a transcription factor and master regulator
of hematological cancers, RUNX1 will alter the function
of only one oncogenic molecule, but multiple molecules
in the same pathways, and our analyses and functional
assays are carefully designed to study these effects. We
have described a combination of genomic and bioinfor-

Part of the networks downsteam of RUNX1Figure 7
Part of the networks downsteam of RUNX1. Additional data from the literature and our studies were used to update 
the standard Ingenuity Pathway System (Ingenuity® Systems, http://www.ingenuity.com) network analyses. Genes up-regulated 
(red) or down-regulated (green) in either FPD or CBF are indicated. Selected chosen functions with significant network nodes 
are shown including all the genes involved in cytoskeleton organization. Grey arrows represent transcriptional regulation, grey 
lines represent direct interaction, dotted lines represent indirect link. Each kind of molecule is represented by a different sym-
bol (see http://www.ingenuity.com).
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matic approaches to identify the biological pathways and
genes regulated by RUNX1, an overview of which is in Fig-
ure 7. Each approach independently provides a large
source of data to identify RUNX1 targets according to
RUNX1 gene dosage. However, the combination of them
is powerful because of their convergence. Although the
approaches described here are not the ideal models to
study myeloid leukemia, each of them has their own
advantages and their integration compensates for their
limitations: 1) The use of cells derived from patients har-
bouring a RUNX1 mutation but who have not yet devel-
oped leukemia allow us to observe effects, largely due to
changes in RUNX1 dosage. However, it should be kept in
mind that due to the difficulties of obtaining myeloid cell
lines, these studies were performed in lymphoid cells. 2)
The overexpression system using HeLa cells provided a
highly homogenous cell population, which is necessary to
perform gene expression profiling. 3) The knockout
mouse embryos represent various cell types, however they
give us global information of the complete absence of
RUNX1, which is difficult to obtain using cell lines. Effi-
cient and homogenous knockdown levels are indeed dif-
ficult to obtain using siRNA especially in hematopoietic
cells [28].

The highly significant correlation observed between the
genes identified in the FPD-AML cells and the overexpres-
sion system and clinical data on AML samples supports
the hypothesis that large number of genes would be
broadly regulated by RUNX1 in our various approaches
disregarding of the cell type. Genes identified as differen-
tially expressed following disregulation of RUNX1 expres-
sion level and/or in these AML samples are good
candidates for targets of secondary hits during leukemo-
genesis downstream of RUNX1 mutation. The various
approaches described in this study, including conserved
binding sites and co-expression studies, will also help to
further prioritize genes that might sustain secondary hits.
For example, the gene encoding the Cyclin D3 (CCND3)
was differentially expressed following overexpression of
the CBF complex and mutations in this gene have been
described in acute myeloid leukemia patients [29].

In order to generate insights into the in vivo role of
RUNX1, we employed bioinformatics tools to identify
processes that were changed following alteration of
RUNX1 expression level. We have shown that genes
involved in megakaryopoiesis tend to be differentially
expressed in the FPD and CBF datasets, demonstrating
that a large number of the differentially expressed genes
may play a role in platelet formation. Enrichment for
genes involved in cell proliferation was also observed in
both the FPD and CBF datasets, and functional assays on
the FPD-AML cell lines showed that heterozygous muta-
tion of RUNX1 reduced proliferation of lymphoblasts.

These data validate our integrative approach as they con-
firm studies in transgenic mice expressing the fusion pro-
teins CBFβ-MYH11 [30] and RUNX1-ETO [13], which
both act in a dominant negative fashion over the wild-
type protein. These mice show a decrease in both lym-
phoid and myeloid cell proliferation. This observation
also correlates with mouse data showing that Runx1 pro-
motes cell cycle progression from G1 to S phase [31]. An
anti-proliferative effect of a RUNX1 mutant protein may
have an oncogenic effect due to an improper balance
between proliferation and differentiation. For example,
overexpression of RUNX1 usually results in ALL while
complete or partial loss of RUNX1 results in AML devel-
opment.

Our integrative approach unraveled a novel process that
may play an important role in RUNX1 function, involving
the cytoskeletal dynamics. Indeed following the finding
that an enrichment of microtubule and cytoskeleton
related molecules was observed when the CBF complex
was overexpressed, functional assay using the FPD-AML
cells demonstrated an increase of polymerized microtu-
bules in FPD-AML affected cells compared to cells from
unaffected individuals. Microtubules are important in
many processes such as cell migration, cell division, cellu-
lar transport and signal transduction [32] and microtu-
bule remodeling is essential during the cell cycle,
especially during mitosis when a correct microtubule net-
work is essential for proper chromosomal segregation
[33]. Interestingly, the fusion protein, CBFβ-MYH11 that
results from inv(16), co-localizes with the actin cytoskele-
ton and disorganizes stress fibers and F-actin structures
[34]. A mild microtubule defect might partially explain
the platelet defect observed in FPD-AML patients, as
microtubules are necessary at several different stages of
megakaryopoiesis including endomitosis, production of
platelets from mature polyploid megakaryocytes, and
release of the content of platelet granules [35]. Moreover,
mutations in the actin-binding protein WASP and the
myosin heavy chain MYH9 cause the Wiskott-Aldrich [36]
and May-Hegglin [37] syndromes of thrombocytopenia,
respectively. However, RUNX1 is likely to regulate only
specific tubulin isoforms or tissue-specific cytoskeleton-
associated proteins as a strong cytoskeleton defect would
be more detrimental to the whole organism. In addition,
the dosage of normal RUNX1 activity necessary for nor-
mal function might differ according to cell type, and some
cell types may be more susceptible than others to pertur-
bation in RUNX1 levels. Interestingly, Taxol resistant
leukemic cells have been shown to have a reduced total
level of tubulin and an increased level of polymerized
tubulin [38], similar to the results seen in the FPD-AML
cells. Furthermore, a high level of survivin (BIRC5), which
was down-regulated following overexpression of the CBF
complex, is associated with resistance to Taxol [39]. This
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is the first evidence demonstrating a relationship between
RUNX1 and microtubule dynamics.

Finally, we showed that the predisposition of FPD-AML to
develop leukemia may be due to an increased rate of
mutation in RUNX1 heterozygous cells. Every dataset
showed significant correspondence with genes involved
in DNA damage response. Although not conclusive, the
glycophorin A assay, which measures the frequency of the
progeny of mutated erythrocyte precursors in blood,
showed a mild increase in mutation frequency in FPD-
AML patients compared to unaffected individuals.
Recently, it was shown that the RUNX1-ETO fusion pro-
tein induces mutations in transfected U937 myeloid cells
[40]. This study demonstrated that the fusion protein reg-
ulates many genes involved in the base excision repair
pathway, which mainly corrects for point mutations. Fur-
thermore, a higher incidence of leukemia in CBFβ-
MYH11 chimeras compared to normal chimeras when
exposed to ENU mutagenesis has also been observed
[41,42]. This demonstrates that alteration of RUNX1 func-
tion may increase the rate of mutation and lead to an
accumulation of mutated cells.

The three processes described here (proliferation,
cytoskeleton stability and genomic instability) are tightly
interconnected and may explain the phenotype observed
in FDP-AML patients. Indeed, a proliferation defect would
have an impact on megakaryopoiesis and cytoskeleton
remodeling. In turn, a cytoskeleton defect could also
affect proliferation and trigger chromosomal aberrations.
The necessary threshold level of RUNX1 expression is
likely to be cell-specific, explaining why RUNX1 hetero-
zygous mutation affects only hematopoietic cells; never-
theless, our observations could conceivably suggest
possible involvement of RUNX1 in solid-tissue tumor.

We also identified new potential RUNX1 target genes by
analyzing the regulatory regions and the expression pat-
tern of the differentially expressed genes present in the
overlaps between the different platforms. Many RUNX1
target genes have already been described in the literature,
mainly from in vitro studies and in mouse cells [43,44].
Four of the published target genes, CSF1R, MYB, MPO and
TIMP1, were differentially expressed in the Runx1 knock-
out embryos. In addition, target genes that were described
more recently, including CCND3 [45] and IGFBP3 [46],
were identified following overexpression of the CBF com-
plex. That there was not more correlation may be due to
incomplete microarray platforms, but more importantly
is likely to reflect the bias present in the published RUNX1
target genes that were identified because of their primary
role in hematopoiesis and these may not represent the
most common RUNX1 target genes. Interesing candidates
were among the 16 genes differentially expressed in every

dataset, such as Annexin I (ANXA1), which was shown to
reduce inflammation, by inhibiting neutrophil recruit-
ment [47] and has an anti-proliferative effect by inducing
aberrant cytoskeleton formation [48]. This gene is likely
to play an important role downstream of RUNX1.

Conclusion
In summary, this combination of gene expression profil-
ing platforms allowed prioritization of novel candidate
genes for leukemogenesis according to distinct parameters
and has shed light on RUNX1 functions by identifying
biological pathways downstream of RUNX1 such as
microtubule stability and genomic instability and identi-
fied a large number of potential novel RUNX1 target
genes. Whether or not these are direct RUNX1 targets
remains to be demonstrated by further research.

Methods
Adenovirus production
Recombinant adenoviruses expressing RUNX1 p49 iso-
form [49] or CBFβ were generated as described [50],
except that VmRL-CMV1 and pSCOT were used as the ade-
novirus backbone and transfer vector respectively. For
details, see Additional File 1.

Cell lines and RNA extraction
EBV-transformed lymphoblasts generating B cell lines
from FPD-AML patients (Pedigree 2, individuals V:1 and
V:2;) [9] and related unaffected individuals (Pedigree 2,
individuals IV:1 and V:3) were used for the FPD microar-
ray dataset. HeLa cells (4 × 107) were infected with a mul-
tiplicity of infection (MOI) of 100 for each adenovirus
and incubated for 48 hours. The Qiagen RNeasy maxikit
was used for the extraction of total RNA in each case.
Runx1 knockout and wild-type embryo propers at embry-
onic stages E8.5 and E12 were homogenized in Trizol
(Invitrogen) and total RNA extracted following the manu-
facturer's protocol.

Mouse samples
Runx1 knockout mice have been previously described
[16]. They are maintain on a BalbC genetic background at
the Biological Resource Center, (Biopolis, Singapore) and
all animal experiments followed the guidelines set by the
National Advisory Committee for Laboratory Animal
Research. Wild-type and Runx1 knockout mouse embryo
propers were harvested at embryonic stages E8.5 and E12.

cDNA Microarray hybridization
cDNA microarrays were printed by the Australian
Genome Research Facility (AGRF) with the Hs8k cDNA
clone library from Research Genetics and a selection of
control spots. In total there were 8132 EST probes printed
in duplicate. The array also contained 12 copies of the
Lucidea Universal ScoreCard controls (Amersham). Labe-
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ling, hybridization, and washing were performed as
described [51]. In the case of the FPD dataset, four hybrid-
izations were performed comparing two affected individ-
uals against two unaffected individuals of pedigree 2. For
the overexpression system, 2 different RNA samples from
HeLa cells overexpressing EGFP were used as reference
and 2 different RNA samples from HeLa cells overexpress-
ing RUNX1 and CBFβ were used as experimental RNAs.
Seven hybridizations (including 3 dyeswaps) were per-
formed. The data were filtered for genes whose difference
in expression was due to EGFP, using four hybridizations
between EGFP expressing cells and normal HeLa cells.

Affymetrix genechip hybridization
Labelling, hybridization and washing were performed by
the AGRF following the Affymetrix protocol (701725
rev5). Briefly, total RNA (100 ng) was amplified using T7-
oligo dT and the Megascript T7 kit (Ambion). A second
round of cDNA synthesis was performed using the total
amount of the amplified RNA. Biotin-labeled RNA was
subsequently synthesized using the GeneChip IVT Labe-
ling Kit. Labelled RNA (15 μg) was fragmented and the
mouse genome 430 2.0 arrays were hybridized overnight
and washed as described before being scanned using a
GeneChip scanner 3000 (Affymetrix). Two biological rep-
licates were used for each condition.

Microarray analysis
The cDNA microarray images were analyzed using SPOT
software [52]. Spots were assigned quality weights based
on their segmented pixel areas and the log-ratios were
print-tip loess normalized [53]. Duplicate printings of
each probe on each array were combined using the com-
mon correlation method of [51]. For the mouse Affyme-
trix GeneChips, the intensities for each probe set were
normalized and summarized using the Robust Multi-array
Analysis algorithm [54]. Differential expression was
assessed using empirical Bayes moderated t- and F-statis-
tics from the LIMMA package [55]. Recognizing that p-
value calculations make normality and other distribu-
tional assumptions, which are hard to verify for microar-
ray data, we decided to use control probes and
appropriate plots to guide our criteria for differential
expression as far as possible. For the cDNA data, conserv-
ative threshold values for differential expression were cho-
sen to minimize the false-positive and false-negative rates
estimated from Scorecard control probes printed on the
arrays. This resulted in a threshold value of |t|>4 for the
FPD data. Of 204 calibration control probes printed on
the arrays, none reached this cutoff for statistical signifi-
cance, suggesting a false discovery rate less than 1/204,
without relying on any distributional assumptions. For
the mouse Affymetrix data, a threshold of |t|>3 was cho-
sen from a q-q plot of the moderated t-statistics.

For the overexpression system arrays, a combination of
criteria was used to assess differential expression. These
arrays were analyzed as part of a larger microarray study
using the same overexpression system to study a range of
AML related genes. Genes with |t|>4 were initially
assigned as differentially expression, with only one cali-
bration control probe reaching this threshold. A series of
nested F-tests (with p-value cutoff 1e-5) was also per-
formed using the larger dataset in order to get an
improved estimate of the number of genes significantly
differentially expressed in more than one condition
simultaneously. This increased the number of differen-
tially expressed genes by a third. Finally, genes were
removed from the differentially expressed list if their
response to RUNX1/CBFβ transduction was not signifi-
cantly greater than their response to the adenovirus alone.

All the analyzed datasets have been deposited at the NCBI
Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/
geo/ under accession numbers GSE2592 (mouse Affyme-
trix data), GSE2593 (overexpression experiment) and
GSE2594 (FPD-AML arrays).

Mean-rank gene set enrichment tests (MR-GSE)
A version of statistical gene set testing was used to investi-
gate associations between the expression profiles
obtained from different experiments. Each test uses a set
of genes selected as differentially expressed in one data set
(the reference dataset) and determines whether the gene
set tends to be highly ranked in another dataset (the test
dataset). The test statistic is the mean rank of the gene set
in the test dataset. This approach, which we call mean-
rank gene set enrichment (MR-GSE), is very similar to
Tian et al's Tk test [56] and Kim and Volsky's PAGE test
[57]. The main difference is that MR-GSE averages the
ranks of t-statistics instead of t-statistics themselves, which
makes it less influenced by individual genes in the gene
set. This has the advantage of giving more weight to gene
sets with a larger number of active genes, and it also
allows us to use the same testing procedure with a range
of ranking procedures other than t-statistics. Where possi-
ble, MR-GSE is used with moderated t-statistics rather
than ordinary t-statistics, as these are preferable for micro-
array analysis including gene set testing [56,58]. Unlike
earlier Gene Set Enrichment Analysis methods [59], MR-
GSE can be used to test individual gene sets in isolation
and has good power even for microarray experiments with
small to moderate sample sizes.

The null hypothesis tested by MR-GSE is that the gene set
is randomly chosen. When the reference and test datasets
share the same microarray platform, p-values can be com-
puted using Wilcoxon two-sample rank tests [60]. When
the reference and test datasets are based on different
microarray platforms (cDNA vs Affymetrix), the p-values
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were instead computed using random permutations of
probes on the reference arrays. This was done to avoid any
bias arising from probe selection on the cDNA platform or
from multiple probe-sets for individual genes on the
Affymetrix platform.

For the integration of gene expression profiling data and
biological processes regulated by RUNX1, genes were
ranked in the test datasets by absolute moderated t-statis-
tic. For the correlation with clinical AML samples, the test
dataset was the previously published expression profiling
data on 285 AML patients and 8 healthy individuals [23].
In this case, the Affymetrix probe-sets were ranked accord-
ing to their correlation with the 11 RUNX1 probe-sets
across the 293 RNA samples. Correlations were computed
using Gene Recommender [61], which provides a very
robust correlation measure suitable for this purpose.
Probe-sets were also ranked by moderated t-statistic on
their ability to distinguish the healthy patients from the
22 patients with t(8;21) or from the 18 patients with
inv(16).

The MR-GSE p-values are computed by permuting genes
rather than permuting arrays. This is necessary because the
tests are designed for use with small numbers of arrays.
The computation necessarily assumes that different genes
have statistically independent expression values within
experimental groups. When the gene set contains genes
which are highly interdependent, and which vary substan-
tially between biological replicates, the test may be anti-
conservative. We checked the independence assumption
for our data by computing average inter-gene correlations
using REML. The inter-gene correlations were found to be
generally very small at the expression level (data not
shown), suggesting that the MS-GSE results are meaning-
ful on our data.

Bioinformatic identification of biological processes and 
cross-platform comparison
Enrichment of a gene ontology annotation in a dataset of
differentially expressed genes compared to the genes
present on the array was determined using the GOStat
program http://gostat.wehi.edu.au/[62]. For the MR-GSE
test, relevant gene sets were taken from published reviews
or independent microarray data (see Additional File 1:
Table S4)

BrdU proliferation assay
The Cell Proliferation ELISA, BrdU kit (Roche) was used to
measure proliferation of cell lines derived from two inde-
pendent families, including the family used for the micro-
array experiment (Pedigree 2) [9] and an additional
family harboring a nonsense mutation Y260X present
outside of the Runt domain (Pedigree 3, affected individ-
uals III:7 and IV:4 and one unaffected individual III:8 [9]).

Briefly, the cells were split into 96-well plates at an equal
density. BrdU was added to the cells for 4 hours and the
cells were then treated according to the manufacturer's
protocol. The optical density (OD450) was measured on
an ELISA plate reader. Technical triplicates and two inde-
pendent experiments were performed. A two-way ANOVA
(analysis of variance) test was performed.

Tubulin polymerization assay
Soluble (cytosolic) and polymerized (cytoskeletal) frac-
tions of tubulin were separated from the cell lines treated
with or without 4 μg/ml of Taxol as described [63]. The
same cell lines used for the proliferation assay were
assessed. Results were expressed as a percentage of polym-
erized tubulin by dividing the densitometric value of
polymerized tubulin (insoluble) by the total tubulin con-
tent (sum of densitometric value of soluble and polymer-
ized tubulin). Three independent experiments were
performed and a two-way ANOVA was done.

Glycophorin A assay
Blood samples were collected in EDTA-tubes, with
informed consent, from seven individuals heterozygous
(MN phenotype) at the glycophorin A locus. These
include: a FPD-AML patient harboring a frameshift muta-
tion (N69fsX94) and her unaffected sister, a second FPD-
AML patient harboring a nonsense mutation (Pedigree 3
(Y260X), individual IV:4) [9] and 4 independent unaf-
fected individuals. The assay is described in detail in Addi-
tional File 1. A two-way ANOVA test was performed to
compare the 5 controls to the 2 affected individuals.

Luciferase reporter assay
Genomic regions overlapping the conserved binding sites
(300–400 bps) were amplified from BACs and cloned
into pGL3-Basic vector (Promega #E1751). Each construct
was co-transfected into HeLa cells using lipofectamine
2000 (Invitrogen) along with pSCOT plasmids expressing
RUNX1 and CBFβ or empty vector to keep the amount of
plasmid constant. For normalization, 20 ng of pRL-TK
vector (Renilla luciferase Promega #E2241) was also co-
transfected. The luciferase activities were measured using
the Dual-Luciferase Reporter Assay System (Promega
#E1910). The increase or decrease in luciferase activity
was determined as a function of the endogenous activity
of each construct.

cDNA panel production
The human cDNA panel was generated as described [26].
The relative amount of each cDNA was normalized
according to housekeeping gene levels. More details are
described in Additional File 1.
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