
Numerical Methods for 3-dimensional Magnetic Confinement
Configurations using Two-Fluid Plasma Equations

Bhuvana Srinivasan

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2010

Program Authorized to Offer Degree:
Aeronautics & Astronautics

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Bhuvana Srinivasan

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Uri Shumlak

Reading Committee:

Uri Shumlak

Brian Nelson

Richard Milroy

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

Numerical Methods for 3-dimensional Magnetic Confinement Configurations using
Two-Fluid Plasma Equations

Bhuvana Srinivasan

Chair of the Supervisory Committee:
Professor Uri Shumlak

Aeronautics & Astronautics

The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron

fluids, and Maxwell’s equations to describe the electric and magnetic fields. Two-fluid

physics becomes significant when the characteristic spatial scales are on the order of the

ion skin depth and characteristic time scales are on the order of the inverse ion cyclotron

frequency. The two-fluid plasma model has disparate characteristic speeds ranging from

the ion and electron speeds of sound to the speed of light. In addition, the characteristic

frequencies in the system are the ion and electron plasma frequency, and the ion and electron

cyclotron frequency. Explicit and implicit time-stepping schemes are explored for the two-

fluid plasma model to study the accuracy and computational effectiveness with which they

could capture two-fluid physics. The explicit schemes explored include the high resolution

wave propagation method (a finite volume method) and the Runge-Kutta discontinuous

Galerkin (RKDG) method (a finite element method). The ideal two-fluid model is a purely

dispersive equation system with no physical or artificial dissipation. The dispersions are

physical effects responsible for the wide variety of plasma waves; they are not numerical

artifacts. This sets the two-fluid plasma model apart from other equation systems. The

finite volume and finite element methods are compared for accuracy and computational

expense for applications of the two-fluid plasma model. For realistic regimes, the explicit

time-step for the two-fluid plasma model can be very restrictive making it computationally

expensive. This motivates the implicit time-stepping scheme. A semi-implicit two-fluid

plasma model is developed using the discontinuous Galerkin method where the electron

fluid equations and Maxwell’s equations are evolved implicitly eliminating the restrictions

set by the speed of light, and the electron plasma and cyclotron frequencies. Resolving all

ion time-scales is a minimum to capture two-fluid physics, so the ion fluid equations are

solved explicitly. This allows for accuracy and physics considerations alone to determine

the time-step. Non-ideal terms are added to the two-fluid plasma model in the form of

resistivity, viscosity, and heat flux to provide a self-consistent and physically relevant two-

fluid plasma model and these are compared to solutions of the ideal two-fluid plasma model.

The two-fluid plasma model is compared to the more commonly used Hall-MHD model for

accuracy and computational effort using an explicit time-stepping scheme. Simulations of

two-fluid instabilities in the Z-pinch and the field-reversed configuration are presented in

3-dimensions.

TABLE OF CONTENTS

Page

List of Figures . v

List of Tables . x

Chapter 1: Introduction . 1

1.1 Introduction . 1

1.2 Objective . 4

Chapter 2: Full Two-Fluid Plasma Model and Asymptotic Approximations 6

2.1 Background . 6

2.2 Ideal Full Two-Fluid Plasma Model . 7

2.2.1 Source Terms of the Two-Fluid Plasma Model 11

2.3 Asymptotic Approximations . 11

2.3.1 Negligible Electron Inertia . 12

2.3.2 Infinite Speed of Light . 13

2.3.3 Reduction to Hall-MHD . 14

2.3.4 Reduction to Ideal-MHD . 18

2.4 Advantages of Full Two-Fluid Model . 19

2.5 Non-Ideal Full Two-Fluid Plasma Model . 21

2.5.1 Friction Force . 23

2.5.2 Thermal Force . 23

2.5.3 Viscosity . 24

2.5.4 Viscous Heating . 24

2.5.5 Heat Flux . 24

2.5.6 Heat Generation . 25

2.5.7 Applicability . 25

Chapter 3: Numerical Methods and Implementation Details 27

3.1 High-Resolution Wave Propagation Method 27

i

3.1.1 First Order Scheme . 28

3.1.2 High Resolution Corrections . 32

3.1.3 Limiters . 32

3.1.4 Source Term Handling . 33

3.2 Runge-Kutta Discontinuous Galerkin Method (RKDG) 34

3.2.1 The Base Scheme . 36

3.2.2 Runge-Kutta Time Integration . 38

3.2.3 Selection of Basis Functions . 39

3.2.4 General Implementation Details . 41

3.2.5 Boundary Conditions . 42

3.2.6 Limiters . 44

3.2.7 Axisymmteric Problems . 48

3.2.8 Auxiliary Variables . 49

3.2.9 Implementation Details for Hall-MHD 50

3.2.10 Implementation Details for Braginskii Transport Terms 52

3.3 Implicit Discontinuous Galerkin Method . 55

3.3.1 Implicit-DG Implementation Details 56

3.4 General Geometry with Discontinuous Galerkin Method 60

3.4.1 Linear Mapping of Elements for 3-D General Geometry 62

3.4.2 3-D Volume and Volume Jacobian . 63

3.4.3 3-D Surface Areas and Surface Jacobians 64

3.4.4 3-D General Geometry Mass Matrix 66

3.4.5 3-D General Geometry Rotation Matrix 67

3.4.6 3-D General Geometry Surface Integrals 68

3.4.7 3-D General Geometry Volume Integrals 69

3.4.8 General Geometry Test Cases . 70

Chapter 4: Comparisons between RKDG and Wave Propagation Methods 78

4.1 Linear Advection Equation . 79

4.2 Euler Equations with Dispersive Source Terms 80

4.3 Maxwell’s Equations . 92

4.4 Full Two-Fluid Plasma Model . 96

4.4.1 Two-Fluid Plasma Soliton in 1-Dimension 97

4.4.2 Axisymmetric Two-Fluid Plasma Pulse in 1-Dimension 101

4.4.3 Axisymmetric Z-Pinch Equilibrium in 1-Dimension 105

ii

4.4.4 Axisymmetric Z-Pinch Equilibrium in 2-Dimensions 108

Chapter 5: Benchmarking Collisionless and Collisional Two-Fluid Plasma Model . 116
5.1 Introduction . 116
5.2 Ideal Two-Fluid Electromagnetic Shock and Divergence Errors 117
5.3 Ideal Two-Fluid Magnetic Reconnection Benchmark 123
5.4 Non-Ideal Two-Fluid Magnetic Reconnection 129
5.5 Non-ideal Two-Fluid Axisymmetric Z-pinch 143

Chapter 6: A Semi-Implicit, Ideal, Full Two-Fluid Plasma Model 146
6.1 Motivation for a Semi-Implicit Method . 146
6.2 Iterative Solvers and Pre-conditioners for Two-Fluid Plasma model 148
6.3 Application to 1-D Electromagnetic Plasma Shock 151
6.4 Application to 2-D Magnetic Reconnection 153

Chapter 7: Comparisons of the Two-Fluid Plasma Model with Hall-MHD 157
7.1 1D Electromagnetic Plasma Shock . 158
7.2 2D GEM Challenge Collisionless Magnetic Reconnection 161
7.3 2D Axisymmetric Z-pinch . 165

7.3.1 Using Hyper-Resistivity . 168
7.4 2D Hill’s Vortex Field Reversed Configuration 170

Chapter 8: Two-Fluid Instabilities . 179
8.1 Axisymmetric Z-pinch Small-Wavelength Instability 179
8.2 Asymptotic Studies of Mass Ratio on Small-Wavelength Instability 191
8.3 Asymptotic Studies of Drift Parameter on Small-Wavelength Instability . . . 191
8.4 3-D Z-Pinch . 195
8.5 3-D Astrophysical Jets . 198
8.6 3-D Hill’s Vortex FRC . 200

Chapter 9: Conclusions . 206
9.1 Contributions . 206

9.1.1 Analytical Study of Two-Fluid Plasma Model and Asymptotic Ap-
proximations . 206

9.1.2 Implementation of Non-ideal Two-Fluid Plasma Model 206
9.1.3 Implementation of 3-D Generalized Geometry DG Method 207
9.1.4 Implementation of Explicit and Implicit-DG 207

iii

9.1.5 Comparing Finite Volume and Finite Element Methods for the Two-
Fluid Plasma Model . 208

9.1.6 Benchmark Problems using Two-Fluid Plasma Model 208
9.1.7 Implementation of Hall-MHD in WARPX and Comparing to Two-

Fluid Plasma Model . 209
9.1.8 Study of Two-Fluid Instabilities in 3-D Z-pinch and 3-D FRC 210
9.1.9 Development of WARPX . 210

9.2 Suggested Future Work . 211

Bibliography . 214

Appendix A: Braginskii’s Transport Coefficients Implemented in WARPX 223
A.1 Momentum Transfer . 224
A.2 Viscous Stress Tensor . 225
A.3 Viscous Heating . 226
A.4 Heat Flux . 227
A.5 Thermal Equilibration . 228

Appendix B: Code Structure of WARPX . 229

Appendix C: WARPX Input Files . 234
C.1 RKDG Input File for Collisional Two-Fluid Plasma Model 234
C.2 Implicit-DG Input File for Two-Fluid Plasma Model 246
C.3 RKDG Input File for Two-Fluid Plasma Model using General Geometry . . . 249
C.4 DG Write-Only SubSolvers for VisIt . 251

iv

LIST OF FIGURES

Figure Number Page

2.1 Parallel propagation dispersion diagram for two-fluid plasma model 9

2.2 Parallel propagation dispersion diagram for me/mi = 0 12

2.3 Parallel propagation dispersion diagram for c→∞ 13

2.4 Parallel propagation dispersion diagram for Hall-MHD 15

2.5 Whistler wave for Hall-MHD Vs. two-fluid model 16

3.1 Illustration of discontinuities in cell interfaces 27

3.2 Illustration of discontinuities in cell interfaces 35

3.3 Matrix coloring example for implicit DG implementation 59

3.4 General geometry mapping from arbitrary hexahedral to logical cube 61

3.5 Efficient hexahedral volume computation . 63

3.6 Surfaces belonging to a cell in WARPX . 65

3.7 Euler pulse initial condition for general geometry 72

3.8 Euler pulse after 0.25 transit times on rectangular mesh 72

3.9 Euler pulse after 0.25 transit times for skewed grid 73

3.10 Euler pulse after 0.25 transit times for star-shaped grid 73

3.11 Euler pulse after 0.25 transit times for circular grid 74

3.12 Euler pulse after 0.25 transit times for circular grid 74

3.13 3-dimensional cylindrical grid for general geometry 76

3.14 3-dimensional cylindrical grid for general geometry 77

4.1 Linear Advection Pulse: log(l2-norm) Vs log(∆x) for both methods 81

4.2 Linear Advection Pulse: log(l2-norm) Vs log(∆x) for both methods 82

4.3 Linear Advection Pulse: Computational Time Vs Grid Resolution both meth-
ods . 83

4.4 Linear solution: Initial condition for N = 9 84

4.5 Linear solution: u Vs x for 100 cells with cs =
√

2 and ωc = 10 for both
methods . 85

4.6 Linear solution: u Vs x for 100 cells with cs =
√

2 and ωc = 10 for both
methods . 86

v

4.7 Linear solution: u Vs x for 100 cells with cs =
√

2 and ωc = 50 for both
methods . 87

4.8 Linear solution: u Vs x for 100 cells with cs =
√

2 and ωc = 50 for both
methods . 88

4.9 Linear solution: u Vs x for 100 cells with cs =
√

2 and ωc = 50 for wave . . . 88
4.10 Linear solution: u Vs x for 100 cells with cs =

√
2 and ωc = 100 for wave . . . 89

4.11 Linear solution: u Vs x for 100 cells with cs =
√

2 and ωc = 50 for wave . . . 91
4.12 Maxwell’s Equations Circular Pulse: Initial Condition 93
4.13 Maxwell’s Equations Circular Pulse: results at t=0.8 94
4.14 Maxwell’s Equations Circular Pulse: results at t=0.8 94
4.15 Maxwell’s Equations Circular Pulse: results at t=0.8 95
4.16 Two-Fluid Soliton: Two-Fluid Soliton Initial Conditions 97
4.17 Two-Fluid Soliton: results at t=40 . 98
4.18 Two-Fluid Soliton: results at t=40 . 99
4.19 Radial Two-Fluid Pulse: Two-Fluid Pulse Initial Conditions 101
4.20 Two-Fluid Radial Pulse: results at t=0.8 . 102
4.21 Two-Fluid Radial Pulse: results at t=0.8 . 103
4.22 Two Fluid Equations Zpinch 1d Eq: results at t=50 106
4.23 Two Fluid Equations Zpinch 1d Eq: results at t=50 107
4.24 2d Radial Z-pinch: Two-Fluid Equilibrium Ion Density Initial Conditions . . 109
4.25 2d Radial Z-pinch: Two-Fluid Equilibrium Ion Density High Resolution So-

lution . 110
4.26 2d Radial Z-pinch: Two-Fluid Dynamics at a time of 2τa 111
4.27 2d Radial Z-pinch: Two-Fluid Dynamics at a time of 2τa 112
4.28 2d Radial Z-pinch: Two-Fluid Perturbation Growth Rates 113

5.1 Electromagnetic shock fluid densities with different error correction coefficients119
5.2 Electromagnetic shock electric field with different error correction coefficients 120
5.3 Electromagnetic shock l2-norm of ∇ ·E error for RKDG method 121
5.4 Electromagnetic shock l2-norm of ∇ ·E error for wave propagation method . 122
5.5 Electromagnetic shock l2-norm of ∇ ·E error for different grid resolutions . . 122
5.6 Benchmark GEM challenge magnetic reconnection solutions 128× 64 cells . . 125
5.7 Benchmark GEM challenge magnetic reconnection solutions 256× 128 cells . 126
5.8 Benchmark GEM challenge magnetic reconnection solutions 128× 64 cells . . 127
5.9 Benchmark GEM challenge magnetic reconnection reconnected flux 128
5.10 GEM challenge effect of mass ratio on reconnection rate 128

vi

5.11 Realistic reconnection simulations with ideal two-fluid plasma model (ρi) . . . 131

5.12 Realistic reconnection simulations with non-ideal two-fluid plasma model (ρi) 131

5.13 Realistic reconnection out-of-plane currents (jz) with ideal and non-ideal two-
fluid plasma model . 132

5.14 Realistic reconnection ideal and non-ideal total energy comparison 133

5.15 Realistic reconnection ideal magnetic reconnection solutions for δe > λ 135

5.16 Realistic reconnection non-ideal magnetic reconnection solutions for δe > λ . 136

5.17 Realistic ideal and non-ideal magnetic reconnection solutions for ρe when δe > λ137

5.18 Realistic ideal magnetic reconnection solutions for ρe when δe > λ for high
resolution . 138

5.19 Realistic magnetic reconnection Jy and Bz for the ideal two-fluid model . . . 139

5.20 Realistic magnetic reconnection Jy and Bz for non-ideal two-fluid model . . . 140

5.21 Realistic ideal and non-ideal magnetic reconnection solutions for Jz when
δe > λ . 141

5.22 Realistic ideal and non-ideal magnetic reconnection solutions for Ez when
δe > λ . 142

5.23 Axisymmetric Z-pinch initial condition for realistic parameters 144

5.24 Axisymmetric Z-pinch densities with ideal and non-ideal two-fluid plasma
model . 145

5.25 Axisymmetric Z-pinch radial electric field with ideal and non-ideal two-fluid
plasma model . 145

6.1 Initial condition total mass density for two-fluid mhdshock 148

6.2 Explicit versus implicit: total mass density for two-fluid mhdshock 152

6.3 Benchmark GEM challenge magnetic reconnection semi-implicit scaling studies154

7.1 MHDshock results for two-fluid model Vs. Hall-MHD for rLi = 7× 10−1 . . . 158

7.2 MHDshock results for two-fluid model Vs. Hall-MHD for rLi = 7× 10−2 . . . 159

7.3 MHDshock results for two-fluid model Vs. Hall-MHD for rLi = 7× 10−4 . . . 160

7.4 Magnetic reconnection initial condition for ρi 161

7.5 Magnetic reconnection initial condition for Bx 161

7.6 Magnetic reconnection ρi using two-fluid model at ωcit = 20 162

7.7 Magnetic reconnection ρi using Hall-MHD at ωcit = 20 162

7.8 Magnetic reconnection ρi using two-fluid model at ωcit = 20 with ∇ · B
correction . 162

7.9 Magnetic reconnection ρi using Hall-MHD at ωcit = 20 with ∇ ·B correction 162

7.10 GEM challenge reconnected magnetic flux Vs ωcit 163

vii

7.11 Magnetic reconnection ∇ ·B errors . 165

7.12 Magnetic reconnection ∇ ·E errors . 165

7.13 2d Radial Z-pinch: Two-Fluid Dynamics at a time of 1.5τa 166

7.14 2d Radial Z-pinch: Two-Fluid Perturbation Growth Rates 167

7.15 2d Radial Z-pinch: Two-Fluid Dynamics at a time of 1.5τa using hyper-
resistivity for Hall-MHD . 168

7.16 2d Radial Z-pinch: Drift-turbulence instability growth rates using Hall-MHD
hyper-resistivity with single wavelength perturbation 169

7.17 2d Radial Z-pinch: Drift-turbulence instability growth rates using Hall-MHD
hyper-resistivity with 8 wavelength perturbation 169

7.18 2d FRC: ρi and B streamlines for the two-fluid model 173

7.19 2d FRC: ρi and B streamlines for the Hall-MHD model 174

7.20 2d FRC: ρi and B streamlines for the two-fluid model for M = 50 and M = 100175

7.21 2d FRC Flux Conserved . 176

7.22 2d FRC: Bφ in two-fluid and Hall-MHD models at 2.5τa 177

7.23 2d FRC: Bφ in two-fluid and Hall-MHD models at 5τa 178

8.1 Axisymmetric Z-pinch drift-turbulence instability evolution 180

8.2 Axisymmetric Z-pinch drift-turbulence instability evolution of fluid energies . 182

8.3 Axisymmetric Z-pinch drift-turbulence instability evolution of fluid temper-
atures . 183

8.4 Axisymmetric Z-pinch drift-turbulence instability evolution of velocity 184

8.5 Axisymmetric Z-pinch drift-turbulence instability evolution of velocity 185

8.6 Axisymmetric Z-pinch FFT-frequency plots 187

8.7 Axisymmetric Z-pinch FFT plots of mode growth rates 188

8.8 Axisymmetric Z-pinch ion Mach number and drift parameter 189

8.9 Axisymmetric Z-pinch anomalous resistivity 190

8.10 Axisymmetric Z-pinch drift-turbulence instability for several mass ratios . . . 192

8.11 Axisymmetric Z-pinch drift-turbulence instability growth rate for several
mass ratios . 193

8.12 Axisymmetric Z-pinch drift-turbulence instability evolution for vd/vthi = 2.7 . 194

8.13 Axisymmetric Z-pinch FFT plots of mode growth rates for vd/vthi = 2.7 . . . 195

8.14 Axisymmetric Z-pinch ion Mach number and drift parameter for vd/vthi = 2.7 196

8.15 Axisymmetric Z-pinch drift-turbulence instability evolution for vd/vthi = 0.3 . 197

8.16 3-D Z-pinch sausage mode ρe using two-fluid plasma model after 4τa 198

8.17 3-D Z-pinch kink mode ρe using two-fluid plasma model after 4τa 199

viii

8.18 3-D Astrophysical jets sausage mode ρe using two-fluid plasma model 199
8.19 3-D Hill’s Vortex FRC Initial Condition for ρi 200
8.20 3-D FRC after 2.5τa and 5τa for ρi . 201
8.21 3-D FRC after 2.5τa for ρi using cylindrical grid 1 202
8.22 3-D FRC after 2.5τa for ρi using cylindrical grid 2 203
8.23 3-D FRC after 4τa for ρi using cylindrical grid 2 204

B.1 General flowchart of WARPX structure . 230

ix

LIST OF TABLES

Table Number Page

3.1 Axis boundary conditions for Braginskii transport auxiliary variables 54

4.1 Some l2-norm slopes for advection equation problem 80
4.2 Some l2-norm dispersive Euler equation problem,ωc = 10 86
4.3 l2-norm for dispersive Euler equation problem, ωc = 50 89
4.4 l2-norm for dispersive Euler equation problem, ωc = 100 90
4.5 l2-norm for Maxwell equation problem . 95
4.6 l2-norm for two-fluid soliton problem . 97
4.7 l2-norm for two-fluid pulse problem . 104
4.8 l2-norm for two-fluid 1d Zpinch problem . 108

6.1 CPU time for various PETSc iterative solvers for two-fluid plasma shock . . . 149
6.2 CPU time for various PETSc preconditioners for two-fluid plasma shock . . . 151

x

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to the Department of Aeronautics &

Astronautics and especially to her committee chair, Professor Uri Shumlak, for the support,

both financial and moral, and the guidance that he has provided during the course of the

author’s graduate career. The author also wishes to express gratitude to Dr. Ammar Hakim

for his immense help with the code, WARPX, and all the advice that he has provided to the

author over their years of collaboration. The support of Prof. Shumlak and Dr. Hakim made

this dissertation possible. The author is thankful for the valuable suggestions and time of her

committee members, Prof. Randall LeVeque, Prof. Arthur Mattick, Prof. Richard Milroy,

Prof. Brian Nelson, and Prof. John Slough. The author would like to acknowledge the help

of Dr. Loren Steinhauer in properly interpreting the two-fluid instability. The author would

like to thank Dr. John Loverich for suggestions that proved valuable to the completion of

this dissertation, and Robert Lilly for engaging in interesting and enlightening discussions

ranging from plasma physics to history. The computing resources provided by the ICE

cluster at the University of Washington and the Jaws and Mana clusters at the Maui High

Performance Computing Center are gratefully acknowledged. The research resulting in this

dissertation was funded by the AFOSR Grant FA9550-05-1-0159. The author is grateful

for the constant support and encouragement from her parents, Geetha and Subbaraman

Srinivasan, from her sister, Jaishri Srinivasan, and from all the amazing friends that made

graduate school a pleasant experience, with a special mention for Colin Adams.

xi

DEDICATION

To my parents, Geetha and Subbaraman Srinivasan.

xii

1

Chapter 1

INTRODUCTION

1.1 Introduction

The majority of matter in the universe is in plasma state, dissociated into ions and elec-

trons, motivating the study of plasma physics. Plasma physics is relevant to study stellar

structures, interstellar media, and effects of the solar wind on the earth’s magnetosphere,

to state a few space physics and astrophysics applications. Plasma physics also plays a key

role in the development of controlled thermonuclear fusion specifically magnetic confine-

ment fusion and magneto-inertial fusion. In addition, a study of space propulsion systems

employing plasma dynamics such as ion thrusters, magnetoplasmadynamic thrusters, Hall

thrusters, Helicon thrusters, etc. requires an understanding of plasma physics.

A number of classical plasma models have been developed over the years to solve prob-

lems relevant to laboratory and space plasmas. The particle description of plasmas is the

most fundamental model involving position and velocity tracking for each particle or super-

particle. The Lorentz forces on the particles are calculated using Maxwell’s equations of

electromagnetics and the motions of the charged particles produce electromagnetic fields

that interact with other particles in the system. In order to model bulk plasma behavior,

the Vlasov model is used where the individual particles are replaced by a continuous distri-

bution function. The Vlasov model contains an infinite number of moment equations and is

a function of position and velocity which makes it six-dimensional. The full two-fluid plasma

model described in this dissertation results from taking the 2nd moment of the Vlasov model

while assuming isotropic pressure for closure and ignoring higher-order tensors. Fluid mod-

els of plasmas have 3 dimensions compared to the 6 dimensions of the Vlasov model which

make them computationally less intensive particularly for simulations of large-scale experi-

ments. Although this reduction results in a loss of physics, the fluid description is able to

capture an enormous amount of physics relevant to fusion and propulsion devices.

2

There are a number of fluid models of plasmas that are applicable in different regimes.

The purpose of this dissertation is to study the ideal two-fluid plasma model and apply

asymptotic approximations to reduce it to the more commonly used Hall-MHD model. The

two models are compared for their ability to capture two-fluid physics and the computational

effort required for problems such as the electromagnetic plasma shock, GEM challenge mag-

netic reconnection, the axisymmetric Z-pinch and the Field Reversed Configuration (FRC).

Two-fluid effects become significant when the characteristic spatial scales are small com-

pared to the ion skin depth and the characteristic time scales are short compared to the

inverse ion cyclotron frequency. The full two-fluid plasma model has been used to study

several plasma problems and has been benchmarked to previously published results. Hakim,

Loverich, and Shumlak[1] implement an explicit finite volume method, the high resolution

wave propagation method, for the two-fluid plasma model. Loverich and Shumlak[2] imple-

ment an explicit finite element method, the Runge-Kutta discontinuous Galerkin method,

for the two-fluid plasma model. The two-fluid plasma model has been applied to study in-

stabilities resulting from two-fluid effects in the Z-pinch[3] and in the FRC[4] using explicit

time-stepping schemes. The study of the two-fluid model in this dissertation is extended

to include non-ideal terms in the form of frictional forces, thermal forces, viscosity, ther-

mal equilibration of the ion and electron species, and heat flux. This allows the two-fluid

plasma model to capture physics associated with collisionality and provides a more complete

physically relevant model for comparisons to benchmark results. A description of the fluid

models is presented in Chapter 2.

The numerical method primarily used in this dissertation is the discontinuous Galerkin

method. The equation systems studied here are described by balance laws of the form

∂Q
∂t

+∇ · F = S, (1.1)

where Q ∈ Rm represents the m conserved variables, F ∈ Rm×d represents fluxes where d

is the number of spatial dimensions, and S ∈ Rm represents the source terms. For all unit

vectors ω ∈ Rd the flux Jacobian, ∂(F · ω)/∂Q, is assumed to have real eigenvalues and a

complete set of right eigenvectors. In the absence of source terms Eq. (1.1) is a hyperbolic

3

system of conservation laws[5, 6]. The conserved quantities for the two-fluid plasma model

presented in this dissertation are the ion and electron densities, ion and electron momenta,

ion and electron total energies, electric fields, and magnetic fields.

An additional objective of this dissertation is to explore various time integration schemes

for the discontinuous Galerkin method particularly for applications of the two-fluid plasma

model. In this dissertation, the Runge-Kutta time integration scheme is used with the

discontinuous Galerkin method. An implicit time integration scheme is explored for the

discontinuous Galerkin model in order to overcome the time-step restrictions of the speed of

light and the electron plasma and cyclotron frequencies in the two-fluid plasma model. The

numerical methods used in this dissertation and the implementation details are presented

in Chapter 3. The advantages of using an implicit time integration over the Runge-Kutta

time integration are described. Most of the implementations presented here use a Cartesian

geometry with a rectangular grid. Some applications such as a 3-dimensional FRC require

the use of general geometry body-fitted grids in order to eliminate the effect of the rect-

angular grid on the evolution of the circular geometry. The implementation details of a

general geometry discontinuous Galerkin method are presented in Chapter 3.

In Chapter 4 of this dissertation, the high-resolution wave propagation method, a finite

volume method, is compared to the Runge-Kutta discontinuous Galerkin (RKDG) method,

a finite element method, for plasma fluid equations. The two-fluid plasma model has purely

dispersive source terms that bear physical relevance in the form of the various plasma waves

in the system. The numerical methods are compared for their ability to capture this physical

dispersion.

In Refs.[1] and [2], the full two-fluid plasma model has been solved using explicit time-

stepping schemes with the finite volume and the finite element methods respectively. When

using explicit time-stepping schemes, the two-fluid plasma model encounters a severe time-

step restriction governed by either the speed of light that shows up in Maxwell’s equations

or the electron plasma frequency that results from the inclusion of the electron mass in the

equations. This provides the motivation to study a semi-implicit, two-fluid plasma model

where the time-step is determined by accuracy and physics considerations alone. A semi-

implicit, two-fluid plasma model is described in Chapter 6 and it is compared to the explicit

4

time integration scheme for the two-fluid plasma model.

Chapter 8 details the applications of the two-fluid plasma model explored as a part

of this dissertation. A comparison between the two-fluid plasma model and Hall-MHD

is provided here. A non-ideal two-fluid plasma model using Braginskii’s transport terms

are explored for some benchmark problems. The non-ideal two-fluid model is used to study

several applications of the two-fluid plasma model that were previously explored without the

inclusion of transport terms. A fully 3-dimensional implementation of the two-fluid model

is presented using the Runge-Kutta discontinuous Galerkin method with general geometry

to simulate plasma instabilities in a Z-pinch and an FRC.

WARPX, Washington Approximate Riemann Plasma code that was developed at the

University of Washington, is used for all the simulations in this dissertation. WARPX is a

generalized geometry parallel C++ code and it is embarrassingly parallel for explicit simu-

lations of the two-fluid plasma model. It uses MPI[7, 8], HDF5[9], LAPACK[10], PETSc[11]

and SCons[12] as its main dependencies. Python and VisIt[13] are used for pre- and post-

processing, and for visualization. The code is written with consideration for implementing

any equation system with any numerical method with a focus on hyperbolic balance laws.

This code contains a software framework that is general for both the wave propagation

method and any desired order of the explicit or implicit DG method using the same flux,

source and Riemann problem solvers for each hyperbolic equation system that is being

simulated.

1.2 Objective

The objective of this dissertation is to study the two-fluid plasma model for applications to-

wards experimental geometries. In order to do this, a numerical method capable of capturing

the two-fluid physics needs to be developed and implemented. This provides the motivation

for the comparisons between the finite volume and finite element methods specifically for

the two-fluid plasma model that has been performed in this dissertation. A suitable time-

integration scheme needs to be developed to account for the disparate speeds and frequencies

in the two-fluid plasma model. This provides the motivation to study and implement implicit

time-integration schemes for applications of the two-fluid plasma model and to determine

5

if the desired physics and accuracy can be achieved by taking large time-steps. Results of

an implicit implementation are presented in this dissertation.

Once a suitable numerical method is developed, the two-fluid plasma model needs to be

benchmarked. Hall-MHD has been increasingly used in the plasma physics community to

capture two-fluid physics. A Hall-MHD model is developed within the WARPX framework

as a part of this dissertation and is compared to the two-fluid plasma model for applications

of the electromagnetic plasma shock and GEM Challenge magnetic reconnection. These

benchmark applications contain previously published results and performing a comparison

of the two-fluid plasma model to Hall-MHD sheds light on the difference in physics between

the two models as well as the computational difficulties associated with implementing each

of the models.

In order to make the model as complete as necessary, non-ideal terms are included in

the two-fluid plasma model to account for the effects of transport and collisions. While a

collisionless plasma assumption is sufficient for a number of problems, the effect of collisions

need to be taken into account to accurately model plasma geometries in certain regimes.

This dissertation explores the inclusion of transport in the two-fluid plasma model.

The objective of this dissertation is to develop a suitable numerical method and a phys-

ically relevant full two-fluid plasma model with generalized geometry to study two-fluid

instabilities that develop in a 3-dimensional Z-pinch and an FRC.

6

Chapter 2

FULL TWO-FLUID PLASMA MODEL AND ASYMPTOTIC
APPROXIMATIONS

2.1 Background

In this chapter, the ideal two-fluid plasma model is described and asymptotic approximations

are applied to the full two-fluid plasma model to derive the Hall-MHD model. Analytical

dispersion relations are presented and several intermediate models are explored. The non-

ideal two-fluid plasma model is presented to include effects of transport and collisions.

The equations described here are the five-moment equations that result from taking

the zeroth, first and second moments of the collisionless Boltzmann equation or the Vlasov

equation

∂fs

∂t
+ v · ∇f +

q

m
(E + v ×B)

∂f

∂v
= 0 (2.1)

where f = f(r,v, t) is the particle density distribution function as a function of space, veloc-

ity and time respectively such that
∫
fdv = n. Here n is the number density of the species,

with the species being ions and electrons. E and B represent the electric and magnetic

fields and q and m represent the species charge and mass. This is a 6 dimensional equa-

tion and is coupled with Maxwell’s equations for a continuum description of a collisionless

plasma. Infinite moments of the Vlasov equation can be taken, however, it is possible to

obtain a simplified model suitable for numerical modeling by making some approximations

and truncating the series of equations.

The Vlasov equation is multiplied by a chosen set of moments and is integrated over all

velocity space to obtain the fluid equations. The first moment is the mass of the species, ms

which gives rise to the continuity equation with a mass density ρ and a mean velocity u of

the species. The next three equations are obtained by multiplying the Vlasov equation by

the next moment, the mass momentum (mu), and integrating in velocity space. This results

7

in the momentum equation with ρu representing the momentum term. The last moment

is obtained by multiplying the tensor product mvv to the Vlasov equation and integrating

over velocity space. This would ordinarily result in 6 independent equations containing an

anisotropic pressure tensor. In order to simplify the equation system and provide a closure,

an isotropic pressure is assumed and an equation of state is used to describe the evolution

of the pressure, P . This results in an equation for the energy, E. The resulting ideal

two-fluid plasma model contains 5 equations to evolve the 5 conserved variables, continuity,

momentum in 3 directions, and energy for each of the ion and electron species. Additional

equations evolve the electric and magnetic fields.

2.2 Ideal Full Two-Fluid Plasma Model

The full two-fluid plasma model used in this dissertation is described by a complete set

of Euler equations for the ions, a complete set of Euler equations for the electrons and a

complete set of Maxwell’s equations to evolve the electric and magnetic fields. The source

terms couple the fluid and field variables. Writing these in balance law form described by

Eq. (1.1),

∂ρs

∂t
+∇ · (ρsus) = 0 (2.2)

∂ρsus

∂t
+∇ · (ρsusus + psI) =

ρsqs
ms

(E + us ×B) (2.3)

∂εs
∂t

+∇ · ((εs + ps)us) =
ρsqs
ms

us ·E (2.4)

where subscript, s, denotes electron or ion species, qs and ms are the species charge and

mass. The energy is defined as

εs ≡
ps

γ − 1
+

1
2
ρsu

2
s. (2.5)

It can be seen that the source terms of Eq. (2.3) contain the Lorentz forces on the electrons

and ions. These source terms couple the fluid equations to the electromagnetic terms of

Maxwell’s equations. The Lorentz forces act as body forces on the electrons and ions. The

evolving electromagnetic source terms can make the equation set and the solutions rather

8

complicated.

Maxwell’s equations are used to evolve the electric and magnetic fields using Faraday’s

law and Ampere’s law described by

∂B
∂t

+∇×E = 0 (2.6)

1
c2
∂E
∂t
−∇×B = −µ0

∑
s

qs

ms
ρsus (2.7)

Additional constraints are required to preserve divergence,

∇ ·E =
%c

ε0
(2.8)

∇ ·B = 0. (2.9)

Although Eqs.(2.6) and (2.7) provide sufficient information to solve the equation system and

advance the solution, divergence errors can develop in the solution. Often, these appear

as small numerical errors initially and then grow with time. Solving Eqs.(2.8) and (2.9)

additionally leads to an over-specified system of equations. Hence, the perfectly hyperbolic

Maxwell’s equations[14] are used to evolve the electric and magnetic fields while maintaining

the divergence constraints as shown in Eqs.(2.12) and (2.13)

∂B
∂t

+∇×E + γ∇Ψ = 0 (2.10)

1
c2
∂E
∂t
−∇×B + χ∇Φ = −µ0J (2.11)

1
χ

∂Φ
∂t

+∇ ·E =
%c

ε0
(2.12)

1
γc2

∂Ψ
∂t

+∇ ·B = 0 (2.13)

where %c and J are the charge density and the current density defined by

%c ≡
∑

s

qs
ms

ρs (2.14)

J ≡
∑

s

qs
ms

ρsus. (2.15)

9

Figure 2.1: Parallel propagation dispersion relation of ω vs k for the two-fluid plasma model.
Left plot shows R- and L-mode waves and right plot shows the low-frequency R-mode wave,
the whistler wave, that has an asymptote at the electron cyclotron frequency. The right-
hand-side plot is an expanded scale of the left-hand-side plot.

In Eqs.(2.12) and (2.13), Φ and Ψ are the scalar error correction potentials for the divergence

of E and divergence of B respectively. It is noted that as the error correction coefficients,

χ and γ are large, the divergence constraints are closer to being maintained. For many

problems, the error correction coefficients can be set to 1 such that the errors are propagated

out of the domain at the speed of light. This is often a sufficient condition, however,

for some problems better divergence correction is required to capture the evolution of the

electromagnetic waves. In such situations increasing the error correction coefficients leads to

a more restrictive time-step than the speed of light. For problems with electric and magnetic

fields, it is important to ensure that the divergence constraints are satisfied initially.

Figure 2.1 shows the dispersion diagrams for parallel propagation using the two-fluid

model. The R-mode, L-mode and whistler waves, which are a part of the low-frequency

spectrum of the R-mode wave, are shown and it is seen that the whistler wave has an

asymptote at the electron cyclotron frequency.

For the ideal two-fluid plasma model, the characteristic speeds in the system are the fluid

speeds of sound and the speed of light. The numerical method used to solve the two-fluid

plasma model needs to be capable of resolving the physics in the presence of such disparate

characteristic speeds. Furthermore, the characteristic frequencies in the system include the

electron and ion plasma frequencies, and the electron and ion cyclotron frequencies. All

10

the speeds and frequencies must be resolved in the system to capture full two-fluid physics

when using an explicit time-integration scheme. The explicit time step is described by

∆t = min

(
CFL

∆x
c
,
0.1
ωpe

,
0.1
ωce

,
0.1
ωpi

,
0.1
ωci

)
(2.16)

where c is the light speed,

ωps =

√
nsq2s
ε0ms

, ωcs =
qsB
ms

, (2.17)

CFL is the Courant condition for stability, and the factor of 0.1 for each of the frequencies

is to ensure that the Nyquist condition for proper sampling is maintained for resolving these

time scales.

The two-fluid model is valid for simulations involving electron demagnetization due to

the inclusion of electron inertia. Electron inertia allows the electrons to break the frozen-in

flux condition. The two-fluid model is also valid in regimes where the ion Larmor radius is

much smaller than the scale-length of interest as well as when the ion Larmor radius is much

larger than the scale-length of interest. For large ion Larmor radii, single-fluid models are no

longer relevant since the Larmor radius is assumed to be negligible in the single-fluid regime

and two-fluid models are required to capture the physics. To include effects of anisotropic

pressure, finite Larmor radius effects need to be included and higher moments of the fluid

equations need to be taken to explore this regime.

The two-fluid plasma equation system is different from Euler equations or Navier-Stokes

equations. The two-fluid plasma equations are dispersive and not dissipative. The dispersion

is not a numerical artifact. The dispersive nature is a physical effect that leads to the wide

variety of plasma waves. Mathematically, the dispersive effects are generated from the source

terms of the two-fluid plasma equations. Explicit methods are often challenging to use in

the presence of such dispersions because increasing the grid resolution can trigger waves of

smaller wavelengths making it difficult to capture these physical dispersions accurately.

11

2.2.1 Source Terms of the Two-Fluid Plasma Model

The two-fluid plasma model has physical dispersion that comes about from the presence of

dispersive source terms. The source Jacobian for equation Eq. (1.1) is ∂S
∂Q . The first three

eigenvalues of the source Jacobian are 0,±iωp where ω2
p = ω2

pe +ω2
pi. The plasma frequency

is defined as

ωps =

√
nsq2s
ε0ms

, (2.18)

where subscript s represents each species (electrons and ions). The remaining six eigenvalues

are all imaginary roots of a 6th order polynomial described as follows with respect to λ,

− 1
M2

λ
(
λ2 + ω2

pe + ω2
pi

) (
B4λ2r4i +M2λ2

(
λ2 + ω2

pe + ω2
pi

)2

+B2r2i
(
M2λ4 + λ4 + 2M2ω2

peλ
2 +M2ω4

pe + ω4
pi + 2

(
λ2 −Mω2

pe

)
ω2

pi

))
= 0 (2.19)

where M is the electron-to-ion mass ratio, ri is the ion charge-to-mass ratio, and B is the

total magnitude of the magnetic field. All non-zero eigenvalues, λ, are imaginary.

Since the source Jacobian has only imaginary eigenvalues, the waves of the two-fluid

model are not damped. This plasma model is not diffusive but instead is dispersive with

undamped oscillations. These dispersions are not numerical but are physical and are respon-

sible for the wide variety of plasma waves. In Chapter 4, the wave propagation and RKDG

methods are studied for their abilities to capture these physical dispersions accurately. Ex-

plicit methods are often unstable when such oscillations are present because refining the

grid can excite waves of smaller wavelengths making it difficult to capture the dispersions

accurately.

2.3 Asymptotic Approximations

Two asymptotic approximations are applied to the full two-fluid plasma model described

previously to obtain the reduced fluid models. These approximations are negligible electron

inertia and infinite light speed. Quasi-neutrality follows from the infinite light speed ap-

proximation. In this section, each asymptotic approximation is applied independently and

12

Figure 2.2: Parallel propagation dispersion relation of ω vs k when electron inertia is ignored
in the two-fluid plasma model. The dashed black line represents the speed of light and is
included for scale. Right plot has an expanded scale to show the solution of the left plot
for smaller values of k. The blue line is the whistler wave and reaches an asymptote at the
speed of light. The red line is the ion cyclotron wave. The green line denoted by ω2 is an
additional wave of the dispersion relation that has an asymptote at the speed of light.

the resulting dispersion relations are studied. Applying both approximations together gives

the Hall-MHD model.

2.3.1 Negligible Electron Inertia

Realistic ion-to-electron mass ratio is approximately 1836 when the ion is a single proton.

Since the ions are more massive than the electrons, electron inertia is neglected in a majority

of plasma fluid models. Neglecting electron inertia reduces the electron momentum equation

described in Eq. (2.3) to the generalized Ohm’s law,

neqeE = ∇pe − Je ×B. (2.20)

where Je = neqeue. This approximation also eliminates the kinetic energy term in the

electron energy described by Eq. (2.5).

The dispersion diagram for parallel propagation when ignoring electron inertia in the

two-fluid model is shown in Fig. 2.2. The red line is the ion cyclotron wave and it has an

asymptote at the ion cyclotron frequency. The dispersion wave represented by the blue line

is the whistler wave and it reaches an asymptote at the speed of light. The dispersion wave

13

Figure 2.3: Parallel propagation dispersion relation of ω vs k when speed of light is assumed
to be infinite in the two-fluid plasma model. The left plot shows the whistler wave that has
an asymptote at the electron cyclotron frequency and the right plot shows the ion cyclotron
wave with an asymptote at the ion cyclotron frequency. Right plot has an expanded scale to
show the solution of the left plot for smaller values of k and shows the ion cyclotron wave.

represented by the green line also reaches an asymptote at the speed of light.

2.3.2 Infinite Speed of Light

The infinite speed of light approximation is used to ignore the high frequency electromag-

netic waves so that the regime of interest lies in the lower frequency plasma waves. This

approximation is achieved by assuming that the vacuum permittivity of free space is 0 thus

implying infinite speed of light. Applying this approximation eliminates the displacement

currents from Ampere’s law in Eq. (2.11) and results in

J =
1
µ0
∇×B (2.21)

such that J = Ji + Je.

The dispersion diagrams for parallel propagation are shown in Fig. 2.3. Quasineutrality

is automatically implied through the mathematics of this approximation from Eq. (2.12) be-

cause of the ε0 → 0 assumption. The parallel dispersion relations for the infinite light speed

assumption yield a whistler wave with an asymptote at the electron cyclotron frequency and

an ion cyclotron wave with an asymptote at the ion cyclotron frequency. The high frequency

14

R- and L-mode waves do not appear in this approximated model since ε0 → 0 eliminates the

ion and electron plasma frequencies as well as the speed of light. No displacement currents

are present in this model.

From Poisson’s equation,

ε0∇ ·E = qi(ni − ne). (2.22)

For ε0 → 0, ni = ne, where n represents the number density of each species. Therefore, the

infinite light speed approximation implies neutrality.

2.3.3 Reduction to Hall-MHD

Applying all 3 of the above approximations together gives Hall-MHD. In the Hall-MHD

model, the electron momentum equation reduces to the generalized Ohm’s law, Ampere’s

law reduces to the form described in Eq. (2.21), and the electron continuity equation is

eliminated. Hall-MHD as implemented in this dissertation is described by a complete set of

Euler equations for ions, an electron energy equation, the reduced Ampere’s law (described

by Eq. (2.21)) and Faraday’s law (described by Eq. (2.10)).

Ref.[15] details a hyperbolic divergence cleaning method for the MHD equations based

on the perfectly hyperbolic Maxwell’s equations[14]. This technique is applied to the Hall-

MHD equation system where the fluid equations are

∂ρi

∂t
+∇ · (ρiui) = 0 (2.23)

∂ρiui

∂t
+∇ · (ρiuiui + piI) = niqiE + Ji ×B (2.24)

∂εi
∂t

+∇ · ((εi + pi)ui) = Ji ·E (2.25)

∂εe
∂t

+∇ · ((εe + pe)ue) = Je ·E. (2.26)

Here Ji and Je are the ion and electron currents. Assuming infinite speed of light leads to

ni = ne, eliminating the need for a separate electron continuity equation. The assumption

of negligible electron inertia eliminates the electron kinetic energy from the electron energy

15

equation and the electron momentum equation reduces to the generalized Ohm’s law

neqeE = −Je ×B +∇pe. (2.27)

Faraday’s law contains the divergence correction potential Ψ

∂B
∂t

+∇×E +∇Ψ = 0 (2.28)

∂Ψ
∂t

+ Γ2∇ ·B = −ζΨ. (2.29)

Here Γ is the speed at which the divergence of B errors are propagated out of the domain and

ζ provides dissipation for the divergence errors. To obtain a perfectly hyperbolic divergence

correction formulation, ζ is often assumed to be 0 such that the error is propagated out of

the domain without dissipation similar to the implementation for the full two-fluid plasma

model.

Figure 2.4: Parallel propagation dispersion relation of ω vs k when all 3 assumptions are
applied to the two-fluid model to reduce it to Hall-MHD. The green line is the ion acoustic
wave and the red line is the ion cyclotron wave. The whistler wave, denoted by the blue
line, grows quadratically without bound.

The dispersion diagram for parallel propagation is shown in Fig. 2.4. Figure 2.4 shows

that the whistler wave for the Hall-MHD model grows quadratically without bound in

regimes where the ion skin depth, δi, and the ion cyclotron frequency, ωci, become significant.

16

If the scale length of interest L � δi the dispersion diagram resembles that of ideal-MHD

and is only described near the origin of Fig. 2.4. This may be better seen by studying the

dispersion relation for parallel propagation for Hall-MHD,

ω =
1
2
ωciδ

2
i k

2 +

√
v2
Ak

2 +
1
2
ω2

ciδ
4
i k

4 (2.30)

where vA is the Alfvén velocity. For L � δi and ω � ωci, the Alfvén wave dispersion

relation varies linearly with k and resembles ideal-MHD. However, for sufficiently large k,

the whistler wave becomes,

ω = ωciδ
2
i k

2. (2.31)

Therefore, for a regime where L <∼ δi and ω >∼ ωci, the whistler wave grows quadratically

without bound.

Figure 2.5: The whistler waves of the two-fluid model (green line), Hall-MHD (blue line)
and an infinite light speed with finite electron mass model (red dashed line) are compared.
Finite electron mass allows the whistler wave to have an asymptote at the electron cyclotron
frequency whereas ignoring electron mass causes it to grow without bound as seen in Hall-
MHD.

Figure 2.5 compares the whistler wave of the two-fluid plasma model, Hall-MHD, and

the asymptotic model that contains electron inertia but assumes infinite speed of light. It

17

is seen that neglecting the electron inertia is the cause of the unbounded whistler wave and

assuming finite electron mass makes this whistler wave have an asymptote at the electron

cyclotron frequency, ωce. This unbounded whistler wave is problematic for simulations that

use the Hall-MHD model because waves of higher and higher frequency need to be resolved

as the wave number increases. This requires smaller and smaller time steps in order to

resolve the two-fluid physics and hence, longer simulation times. The explicit time-step for

Hall-MHD is described by

∆t = min

(
CFL

∆x
vW

, CFL
∆x
vM

, CFL
∆x
vH

,
0.1
ωci

)
(2.32)

where

vW =
kv2

A

ωci
, vM =

√
v2
A + c2si, vH = − J

nq
(2.33)

Here, vA is the Alfvén velocity, vW is the whistler velocity, vM is the magnetosonic velocity,

and vH is the Hall velocity. J is the magnitude of the total current. To compute the whistler

wave, the wave number, k, is chosen to be at the grid scale such that k = π/∆x.

In order to overcome the grid scale dependence of the whistler wave, a cut-off frequency

can be chosen such that any phenomena occurring on higher frequencies will not be resolved.

This does not lead to an asymptote for the whistler wave like with the two-fluid plasma

model. Instead, it just cuts-off the dispersion relation above the specified wave number.

This is done by employing a hyper-resistivity similar to the one described in Ref.[16] which

is purely included for numerical reasons. This modifies the generalized Ohm’s law such that

neqeE = −Je ×B +∇pe + ν∇ · ∇J (2.34)

where ν is the hyper-resistivity parameter, which is most often held constant through all

space and time. Hyper-resistivity includes another time-scale,

∆t <
∆x2

2.0ν
(2.35)

18

that needs to be checked for stability of explicit methods.

The Hall-MHD model does not include electron inertia, so it does not describe electron

demagnetization. However, it does apply to regimes where the Larmor radius is much

smaller or much larger than the scale-length of interest.

2.3.4 Reduction to Ideal-MHD

Hall-MHD is further reduced to Ideal-MHD by neglecting the Hall and diamagnetic drift

terms. Ideal-MHD is described by,

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu
∂t

+∇ · (ρuu + P I− BB
µ0

+
B2

2µ0
I) = 0

∂ε

∂t
+∇ ·

[(
ε+ P +

B2

2µ0

)
u− (B · u)

µ0
B

]
= 0

∂B
∂t

+∇ · (uB−Bu) = 0

which results in Ohm’s law reducing to,

E = −u×B. (2.36)

where u represents the bulk fluid velocity. This reduction of the generalized Ohm’s law

results because of the small Larmor radius assumption that estimates that the ratio of the

Hall term to the u×B term goes as

J
ne ×B
u×B

∼ rLi

L
(2.37)

where rLi is the ion Larmor radius and L is the scale-length of fluid motion. A similar

approximation is applied to eliminate the diamagnetic drift term from Eq. (2.20) assuming

the Hall term and diamagnetic drift term are approximately the same order of magnitude.

Also, ideal-MHD assumes infinite conductivity.

The MHD model is used for a number of problems involving large-scale plasma mo-

19

tions. However, it is not applicable in regimes where two-fluid effects become significant

such as turbulence through microinstabilities, or in regions where Larmor radius effects or

high frequency modes become important. Ideal-MHD is not applicable in regimes where ion

demagnetization becomes important such as in Hall thrusters. The tearing and tilt insta-

bilities in an FRC (field reversed configuration) are other examples of applications where

ideal-MHD is not applicable. The tearing mode requires breaking up and reconnection of

field lines which cannot happen with infinite conductivity. Ideal-MHD is highly unstable to

the tilt mode instability while the instability is believed to be stabilized by kinetic effects.

The dispersion diagram for ideal-MHD sits near the origin of the Hall-MHD dispersion

diagram in Fig. 2.4 at the L� δi limit.

2.4 Advantages of Full Two-Fluid Model

In summary, the two-fluid plasma model retains the two-fluid physics by including the Hall

and diamagnetic-drift terms that are neglected in single fluid plasma models. The two-fluid

plasma model is different from the commonly used Hall-MHD model in three specific ways.

The two fluid model includes

• finite electron mass,

• finite speed of light, and

• non-neutral effects.

Retaining the electron inertia allows the whistler wave to reach an asymptote at the

electron cyclotron frequency and this allows for ease of computation. Since the asymptote

for the whistler wave now lies at the electron plasma frequency, there is no need to set

an artificial resistivity or viscosity to choose a cut-off frequency for the whistler wave.

This allows for two-fluid solutions to be obtained without the effect of artificial parameters

introduced for purposes of numerical difficulties.

Secondly, retaining the speed of light in Maxwell’s equations allows displacement cur-

rents to be captured in the system. The relevance of this term is often argued and it has

20

been pointed out that not including relativistic effects makes this model incomplete. How-

ever, the interest lies in capturing the physics associated with the ion and electron fluids.

Electromagnetic waves can be captured without including relativistic effects and having

waves in the system that propagate at speeds close to the speed of light does not require

relativistic effects. Relativistic effects are important if the fluid motions occur at speed of

light time-scales, which is not the case for the simulations presented in this dissertation.

The fluid physics at the very high frequency electromagnetic time scales is not presently of

interest for the applications concerned in this dissertation.

In most plasma fluid models commonly used in the plasma physics community, a parallel

electric field cannot exist unless there is a resistivity included in the equation system. In

this context, parallel and perpendicular are in relation to the magnetic field. To elaborate,

Ohm’s law, E = −u × B, does not allow for a parallel electric field unless an ηJ term

is also included. This implies that in most reduced fluid models, a parallel electric field

can exist only if there is a parallel current and resistivity. In the two-fluid plasma model,

including Ampere’s law with the displacement currents allows a parallel electric field to be

present even if there is no parallel current. Also, the two-fluid model here is idealized, i.e.

no explicit resistivity, nevertheless, a parallel electric field can exist and can be captured

in the system. Yet another advantage of including the displacement current term comes

from its potential application to coil boundary conditions or similar scenarios. In reduced

fluid models, coil boundaries are included by specifying a Bcoil and a Bplasma separately. In

order to couple the two magnetic fields, a region of high resistivity, η, needs to be assumed

between the coil boundary and the plasma configuration. The impact of doing this on the

physics of the system could potentially introduce artificial artifacts because there needs to

be a region of low density plasma between the coil and the plasma configuration that carries

a current with high resistivity. For the two-fluid plasma model, retaining the displacement

current term allows for the coil boundary conditions to be introduced within the plasma

configuration self-consistently using Maxwell’s equations.

Including the speed of light and consequently the displacement currents allows for non-

neutral effects to be captured in the plasma. Single fluid MHD and even Hall-MHD cannot

capture non-neutral effects. Hall-MHD includes the Hall term, the diamagnetic drift term,

21

and in some cases electron inertia, however, an inherent assumption of Hall-MHD is neu-

trality. The neutrality assumption does not allow local charge separation as a result of

which potentially large local electric fields are missed. Non-neutral effects are important

in plasmas and the full two-fluid plasma model is required to capture them. Even with an

ideal full two-fluid plasma model (i.e. no explicit resistivity or transport), an anomalous

resistivity can be observed. As will be presented later in this dissertation, the field-reversed

configuration (FRC) is an example where such anomalous resistivity has been observed in

experiments.

2.5 Non-Ideal Full Two-Fluid Plasma Model

A number of problems are in the collisionless regime and can be solved with the ideal two-

fluid plasma model. Examples of these are the electromagnetic plasma shock, collisionless

magnetic reconnection, etc. In order to have a physically relevant model when the system

is in a collisional regime, it is important to take effects of transport into account through

the inclusion of friction forces, thermal forces, viscosity, thermal equilibration, and heat

flux in the fluid equations. Re-writing Eqs.(2.2-2.4) with transport coefficients based on

Braginskii’s derivations[17], the non-ideal two-fluid equations are

∂ρe

∂t
+∇ · (ρeue) = 0 (2.38)

∂ρeue

∂t
+∇ · (ρeueue + peI) =

ρeqe
me

(E + ue ×B)−∇ ·
←→
Π e + Rei (2.39)

∂εe
∂t

+∇ · ((εe + pe)ue) =
ρeqe
me

ue ·E−∇ · qe −
←→
Π e : ∇ue +Qe (2.40)

with subscript e for electrons and

∂ρi

∂t
+∇ · (ρiui) = 0 (2.41)

∂ρiui

∂t
+∇ · (ρiuiui + piI) =

ρiqi
mi

(E + ui ×B)−∇ ·
←→
Π i −Rei (2.42)

∂εi
∂t

+∇ · ((εi + pi)ui) =
ρiqi
mi

ui ·E−∇ · qi −
←→
Π i : ∇ui +Qi (2.43)

22

with subscript i for ions. Here, Rei is the momentum transfer term,
←→
Π is the viscous

stress tensor, q is the heat flux, and Q is the thermal equilibration between the species.

The
←→
Π : ∇u term represents the heat generated due to viscosity. In this dissertation,

gyroviscosity is neglected for simplicity therefore, an absence of magnetic field is assumed

for computing the viscous stress tensor. Each of these transport terms are identical to those

described in Ref.[17]. These transport coefficients are expanded in Appendix A in order to

understand their implementation in WARPX.

When transport is included in the system, the electron and ion collision frequencies must

be additionally taken into account. In regimes where the collisionality is small, the explicit

time-step is set by the electron or ion plasma frequencies, the electron or ion cyclotron

frequencies, or the speed of light. However, in regimes of high collisionality, the electron

and ion collision frequencies could restrict the explicit time-step. The collision frequency is

given by

νe =
neq

4
e lnΛ

12π3/2ε20m
1/2
e (kTe)3/2

(2.44)

νi =
niq

4
i lnΛ

12π3/2ε20m
1/2
i (kTi)3/2

(2.45)

where subscripts e, i represent electrons and ion respectively, n represents the number den-

sity of the species and lnΛ = ln(12πnλ3
D) where λD is the Debye length of the species.

Often, lnΛ = 10 is used since it is representative of the plasma parameter for most con-

figurations. In addition to the two-fluid time-scales described in Eq. (2.16), the explicit

time-scale is further affected by the collision frequencies when using transport coefficients

∆t = min

(
∆tITF ,

0.1
νe
,
0.1
νi

)
. (2.46)

where ∆tITF is the minimum time-step from the ideal two-fluid plasma model.

Collisions distort the trajectory of a particle and alter its velocity. In a magnetic field,

collisions disturb the regular gyro-motion of the particles and renew their trajectories at

each collision time. In regions of low magnetic field, ωce/νe � 1 whereas in regions of large

23

magnetic field, ωce/νe � 1. In a strong magnetic field, the magnetic field has a large effect

on the transport properties in the transverse direction. Along the magnetic field, however,

particles move freely and the transport in the longitudinal direction is similar to the case

of B = 0.

The ions are more massive than the electrons, and this difference in the masses makes the

individual species reach equilibrium separately before the two species come to equilibrium

with each other. This is given by the ratio τee : τii : τei = 1 :
√
mi/me : mi/me for Te = Ti.

A brief overview of the transport terms is provided here based on the detailed discussion

provided by Braginskii in Ref.[17].

2.5.1 Friction Force

The friction force term, RU , accounts for the inter-species collisions of electrons with ions

where both ions and electrons lose momentum as a result of the friction force. However,

since the ions are much more massive than the electrons, the electrons lose more momentum

to the ions in the process. This results in a frictional force that is exerted on the electrons

by the relatively stationary ions, and it is equal and opposite to the force exerted by the

electrons on the ions. This term basically accounts for the ηj electrical resistivity force.

If electron-electron collisions occur more frequently than the electron-ion collisions, the

u‖ term contribution to the friction force would decrease and become negligible. In the

presence of a strong magnetic field, the longitudinal resistivity is smaller than the transverse

resistivity, η‖ < η⊥ since the coefficient of friction is smaller in the direction of longitudinal

current compared to the direction of transverse current.

2.5.2 Thermal Force

The thermal force term, RT , arises when there is an electron temperature gradient in the

presence of a strong magnetic field. The temperature gradient creates an anisotropy in the

friction forces due to electron gyration around the magnetic field lines and the collisions of

the electrons with ions generates a thermal force.

24

2.5.3 Viscosity

The viscosity for each species Πs included in this dissertation is assumed in the absence

of a magnetic field, therefore, it excludes gyroviscosity. It corresponds to a random-walk

diffusion of momentum with a frequency of ν. In the absence of a magnetic field the rate-

of-strain tensor obtained is symmetric because of the inclusion of velocity gradients along

with their transpose for all terms of the tensor, and the inclusion of velocity divergence for

the diagonal terms of the tensor. This results in a symmetric viscous stress tensor. For

ion and electron fluids with similar temperatures and densities, the diffusivity is given by

D ∼ η/ρ, where D is the diffusivity, η ∼ 1/
√
m is the viscosity coefficient, m is the mass,

and ρ is the mass density. The electron diffusivity exceeds the ion diffusivity by
√
mi/me

for similar temperatures. However, the ion viscosity is greater than the electron viscosity

by the same factor of
√
mi/me. This implies that the viscosity of a plasma is primarily

governed by the ions. Ions have large momentum owing to their large masses, therefore, the

diffusion of momentum i.e. viscosity, is dominated by the ions.

2.5.4 Viscous Heating

In the presence of diffusion, such as viscosity, there is dissipation of energy in the form of

heat[17]. In a plasma this is sometimes called gyrorelaxational heating. The viscous stress

tensor and the velocity gradient of each of the electron and ion species are reduced to a

scalar viscous heating term in the energy equation,
←→
Π : ∇u.

2.5.5 Heat Flux

The heat flux of electrons and ions, qe and qi, is included in the model and corresponds to

a random-walk heat diffusion with a frequency ν. The first component of the electron heat

flux is qe
U and it describes the terms in the heat flux that are proportional to the relative

velocity between the species. The current along a magnetic field is primarily carried by

electrons owing to their higher velocities. Since the energy fluxes are not balanced due to

the acceleration of electrons, heat flow is present such that the flux is from the fast electrons

to the slow electrons. Across a magnetic field, the friction force of the ions on electrons

25

accelerates the electrons over half a rotation while retarding them over the other half. The

difference in the electron energies in the accelerated and retarded regions accounts for heat

flux across field lines.

In addition to the current driven heat flux term, thermal heat conduction within the

electrons provides the second component of electron heat flux, qe
T . There is a corresponding

term for the ion heat flux, qi
T , Motion across a magnetic field line is displaced by approxi-

mately a Larmor radius between collisions rather than the mean free path in the longitudinal

direction. In the direction parallel to the magnetic field, the electron thermal conductivity is

greater than the ion thermal conductivity by a factor of
√
mi/me assuming similar species

temperatures. However, in the transverse direction, the ion thermal conductivity is greater

than the electron thermal conductivity by the same factor.

2.5.6 Heat Generation

The thermal equilibration term is the result of heat generation due to collisions of electrons

with ions. For electrons, heat is generated as a result of the frictional force exerted by the

ions on the electrons. This corresponds to an Ohmic heating term, RU · u and a Joule

heating term, RT · u. The fraction of the Ohmic heating and Joule heating acquired by

the ions goes as a ratio of the mass ∼ me/mi and consequently, can be neglected for the

massive ions.

The collisions of the electrons with the ions transfer energy as a function of the mass

ratio. This results in an energy exchange term, Q∆, that acts as a thermal equilibration

term and is a function of species temperatures as well. If the ions and electrons have

the same temperature, this term is 0. In the absence of all other transport terms, this

thermal equilibration term drives the electrons and ions to reach an equilibrium at the

same temperature.

2.5.7 Applicability

The transport terms described and used in the dissertation are applicable under the following

conditions. Firstly, the ions are required to be more massive than the electrons to satisfy

26

the conditions under which the transport terms have been approximated. Secondly, the

time variation must be slower than the collision time, i.e. the plasma quantities must not

change significantly within a collision time. Thirdly, spatial variations are expected to be

slow enough to satisfy the following conditions: the characteristic scale length over which

quantities change significantly parallel to the magnetic field is expected to be larger than the

mean free path, and the characteristic scale length over which quantities change significantly

perpendicular to the magnetic field is expected to be larger than the Larmor radius. Also,

the presence of instabilities in a plasma can limit applicability of the transport terms.

The small spatial scale phenomena such as the behavior within a shock or small temporal

scale phenomena such as dynamics within a Debye sphere violate the applicability of this

model and are not being explored in this dissertation. The instabilities explored in this

dissertation satisfy the temporal and spatial scales required for the applicability of this

model. Therefore, since the scales are within the regime of applicability, this model can be

used to study two-fluid instabilities in a plasma.

27

Chapter 3

NUMERICAL METHODS AND IMPLEMENTATION DETAILS

3.1 High-Resolution Wave Propagation Method

The high resolution wave propagation method can be applied to balance laws of the form

Eq. (1.1). This section describes the wave propagation algorithm and the higher order

corrections that are implemented to increase the order of accuracy from first to second.

LeVeque describes this method in greater detail in [18, 19, 6]. This method is described

in detail for two-fluid plasma equations in Ref.[1]. The wave propagation scheme belongs

to the class of Godunov methods which rely on the solution of Riemann problems. The

essential idea is as follows. The domain is discretized into cells and the solution in each cell

is assumed to be represented by averages. At each cell interface the solution is reconstructed

and will, in general, be discontinuous. This discontinuity is used as an initial condition for

a Riemann problem. Figure 3.1 illustrates the discontinuity in the conserved variable at the

cell interface, while the flux is continuous. The solution of the Riemann problem gives the

conserved variables at the interface which are then used to compute numerical fluxes. Once

the fluxes are known the solution in each cell is updated by tallying how much flux flows

into the cell.

Figure 3.1: The conserved variables are allowed to be discontinuous at each cell interface
while the flux through the interface is continuous.

28

In one dimension, second order accuracy can be achieved by performing a linear re-

construction of the waves needed to compute the numerical fluxes at the cell interface. In

multiple dimensions high resolution transverse corrections are included which account for

flow that is transverse to the coordinate axes. After solving the Riemann problem at each

cell interface to determine the positive- and negative-going fluctuations, a second transverse

Riemann problem is solved to compute the transverse fluctuations as detailed in Ref.[6].

With these transverse corrections the method is formally second order accurate and is sta-

ble to a CFL number of unity.

3.1.1 First Order Scheme

The scheme is detailed in one spatial dimension here and it can be extended to account for

multiple dimensions. In one dimension, a homogeneous hyperbolic equation is written as

∂Q
∂t

+
∂F
∂x

= 0, (3.1)

where Q represents the conserved variable and F represents the flux in the X direction. The

domain that this equation is discretized on is defined within the boundaries, [xa, xb]. The

cells are introduced as Ii = [xi−1/2, xi+1/2], for each cell interval, where xi−1/2 and xi+1/2

are the coordinates at the left and right edges of each cell. The cell center is defined as (xi),

where xi ≡ (xi−1/2 + xi+1/2)/2. Now, taking the conservation law defined in Eq. (3.1), and

integrating it over cell Ii from time tn to tn+1 gives the update formula

Qn+1
i = Qn

i −
∆t
∆x

(
[F]n+1/2

i+1/2 − [F]n+1/2
i−1/2

)
(3.2)

where Qn
i represents the value of the conserved variable based on the cell average,

Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

Q(x, t)dx. (3.3)

29

Here ∆x ≡ xi+1/2 − xi−1/2, ∆t ≡ tn+1 − tn and the numerical flux at each of the cell

interfaces, [F], is defined as

[F]n+1/2
i−1/2 ≈

1
∆t

∫ tn+1

tn

F
(
Q(xi−1/2, t), xi−1/2

)
dt. (3.4)

It is seen that the expression in Eq. (3.2) resembles the central difference formula. This

equation is a general update formula for finite volume schemes. The numerical flux can be

updated by using several different approaches and the choice of the flux update forms the

basis for the various finite volume schemes. This method approximates the value of the

conserved variable in a given cell as the cell average. Therefore, for cells sharing a given

interface, the value at that interface will be discontinuous in general. A Riemann problem

needs to be solved at each cell edge to determine the numerical flux at each interface.

For the homogeneous, hyperbolic equation described by:

∂Q
∂t

+
∂F
∂x

= 0, (3.5)

the Riemann problem is an initial value problem described by the initial conditions Q(x <

0, 0) = Ql and Q(x > 0, 0) = Qr, where Ql,r are constant vectors. If a hyperbolic equation

system is linear then the Riemann problem has exact solutions. If it is a nonlinear equation

set, then valid solutions around x = 0 (i.e. at the interface) can be obtained for short time

intervals by introducing a linearization. As mentioned previously, the linear hyperbolic

equation system described by Eq. (3.5) can be written in the form

∂Q
∂t

+ A
∂Q
∂x

= 0, (3.6)

where the flux Jacobian, A, is constant for the linear system described here. This is a

hyperbolic system, so it is known that all the eigenvalues of the flux Jacobian are real and

the eigenvectors are assumed to be linearly independent, and in this case, orthonormal.

In order to obtain the wave equations for the wave propagation method, Eq. (3.5) can be

30

multiplied with the left eigenvectors, lp, to obtain

∂wp

∂t
+ sp∂w

p

∂x
= 0, (3.7)

where wp ≡ lp ·Q. To solve the Riemann problem for such linear systems exactly, wp(x, t)

needs to be determined. This is done by obtaining the initial condition for wp
0(x, 0), where

wp
0(x) = lp ·Q(x, 0). Once this is done, Q(x, t) =

∑
pw

prp is solved to obtain the solutions.

rp, lp and sp represent the right eigenvectors, the left eigenvectors and the eigenvalues of A.

The wave propagation method involves solving the Riemann problem at each cell in-

terface and this solution is used to arrive at the following approximation to the numerical

fluxes by accounting for the right- and left-going fluctuations.

[F]i−1/2 =
1
2
(
Fi + Fi−1

)
− 1

2
(
A+∆Qi−1/2 −A−∆Qi−1/2

)
. (3.8)

Taking this expression and plugging it in the update formula defined by Eq. (3.2), the

following equation is obtained:

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
. (3.9)

The A±∆Qi−1/2 terms here are called the fluctuations and they are described by

A−∆Qi−1/2 =
∑

p:sp
i−1/2

<0

Zp
i−1/2 +

1
2
Zi−1/2 (3.10)

A+∆Qi−1/2 =
∑

p:sp
i−1/2

>0

Zp
i−1/2 +

1
2
Zi−1/2 (3.11)

where p : sp
i−1/2 < 0 represents all the negative eigenvalues, to account for the negative-

going fluctuations from the i − 1/2 interface. Likewise, p : sp
i−1/2 > 0 represents all the

positive eigenvalues at the i− 1/2 interface.

Zp
i−1/2 = lpi−1/2 ·

(
Fi − Fi−1

)
rp
i−1/2 (3.12)

31

and

Zi−1/2 =
∑

p:sp
i−1/2

=0

Zp
i−1/2. (3.13)

The above expression is the F-Wave method as developed by LeVeque[6]. If using the

Q-Wave method, then Zp
i−1/2 will have the jump in the conserved variable, Q, instead of

the jump in flux, F. Most of the simulations performed in this dissertation use the Q-

Wave method with Roe-averaged fluxes[20]. The approximate Riemann solver of Roe is

conservative and less computationally expensive than solving an exact Riemann problem

even for non-linear problems with discontinuous solutions. Treating the fluctuations in

Eq. (3.9), the identity,

A−∆Qi−1/2 +A+∆Qi−1/2 =
∑

p

Zp
i−1/2 = Fi − Fi−1 (3.14)

follows from the definition of Zp
i−1/2 described by Eq. (3.12) (in this case for the F-Waves).

If using Q-Waves, then the F is replaced with Q in the flux difference expression defined

by Eq. (3.14). At each cell interface, the right and left eigenvectors, rp
i−1/2, l

p
i−1/2 and the

eigenvalues sp
i−1/2 are computed from the flux Jacobian. The eigensystem used for linear

systems is constant throughout, however, for nonlinear systems special treatments, i.e. an

appropriate averaging, must be performed (such as Roe averaging). If Roe averages are not

used, the scheme still provides the appropriate solution and continues to remain conserva-

tive when F-Waves are used as long as the method chosen to obtain the eigensystem is

consistent throughout. To elaborate, using F-Waves, one can consistently choose arithmetic

averages or just the left or right value for the conserved variables to arrive at the values

for the fluctuations, and the result will continue to remain conservative as long as the same

treatment is maintained throughout the domain and through all times. With Q-Waves

however, an appropriate averaging scheme such as Roe averaging must be chosen for the

solution to remain conservative. If Roe averages are used then a conservative solution can

be obtained using either F-Waves or Q-Waves. The method described in this section can

be applied to a variety of hyperbolic problems including those that have spatially dependent

32

conserved variables and flux functions.

3.1.2 High Resolution Corrections

The algorithm detailed in the previous section is only first order accurate and to increase

the order of accuracy from first to second, certain corrections need to be performed. This

is done by taking a Taylor series expansion of the conserved variables. The second order

terms from this expansion are retained. The new, second order accurate algorithm is now

described by

Qn+1
i = Qn

i −
∆t
∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
− ∆t

∆x

(
[F̃]i+1/2 − [F̃]i−1/2

)
, (3.15)

where the new term introduced here, [F̃]i−1/2, is the correction flux given by

[F̃]i−1/2 =
1
2

∑
p

sign(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)
Zp

i−1/2. (3.16)

This correction increases the order of the high resolution wave propagation method and

makes it equivalent to the standard Lax-Wendroff algorithm[6]. As a result of this increased

accuracy to second order in Eq. (3.15), the algorithm can experience severe oscillations near

discontinuities similar to the Lax-Wendroff algorithm.

3.1.3 Limiters

Limiters can be applied in regions with sharp discontinuities. This limits the formal order

of accuracy of the algorithm to first in these regions by replacing Zp
i−1/2 in Eq. (3.16) by a

limited wave Z̃p
i−1/2 = Zp

i−1/2φ(θp
i−1/2). Here, φ(θ) is the limiter function that is chosen

θp
i−1/2 ≡

Zp
I−1/2 · Z

p
i−1/2

Zp
i−1/2 · Z

p
i−1/2

(3.17)

33

with I = i− 1 if sp
i−1/2 > 0 and I = i+ 1 if sp

i−1/2 < 0. Some of the limiters that have been

used with the wave propagation algorithm include the min-mod limiter,

φ(θ) = minmod(1, θ), (3.18)

the Superbee limiter,

φ(θ) = max(0,min(1, 2θ),min(2, θ)), (3.19)

the Van Leer limiter,

φ(θ) =
θ + |θ|
1 + |θ|

, (3.20)

and the monotonized centered limiter,

φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)). (3.21)

To extend these corrections to multi-dimensions, high resolution transverse corrections need

to be performed in a similar manner to account for flow that is transverse to the coordinates.

3.1.4 Source Term Handling

The source terms are handled by performing a source term splitting method which involves

solving the homogeneous equation separately from the ordinary differential equation (ODE).

The ODE is the part that accounts for the source terms and it is described by:

dQ
dt

= S. (3.22)

For purposes of achieving higher order accuracy, i.e. second order accuracy in this case,

the ODE described by Eq. (3.22) is first advanced with a time step of ∆t/2. Then the

homogeneous equation is solved over a full time step of ∆t following which, the ODE is

advanced again by another half time step of ∆t/2. The results from each time advance are

34

used as initial conditions for the time steps that follow. To solve the ODE, any ODE scheme

can be used and the one chosen here is that of the fourth order Runge-Kutta scheme. The

source term splitting method detailed here is called Strang splitting [21].

For linear ODEs, taking the source Jacobian can determine the solution type. If the

eigenvalues of the Jacobian are real, then the solution grows or decays for positive and nega-

tive eigenvalues respectively. For imaginary eigenvalues, however, the solution is oscillatory

and the frequency of these harmonics is governed by the magnitude of the eigenvalues. The

real component of the eigenvalues can lead to growing or decaying oscillations.

If there is a hyperbolic, homogeneous part to the equation system, then disturbances

propagate as waves with finite speeds in the medium. Capturing these wave-propagations

can play a significant role in understanding the physics described by the equation set. The

source terms need to be treated appropriately because they could significantly affect the

solution.

The source terms of the two-fluid system are particularly challenging as they represent

undamped oscillations, i.e., the Jacobian of the source terms has purely imaginary eigen-

values. Such sources add physical dispersion to the system which can be difficult to resolve.

For a discussion relevant to the two-fluid system see Ref.[1].

3.2 Runge-Kutta Discontinuous Galerkin Method (RKDG)

The RKDG method is a finite element method as opposed to the finite volume presented

in Sec. 3.1. The RKDG method achieves higher spatial order by expanding the solution in

polynomial basis functions. The balance law described in Eq. (1.1) is multiplied by a set

of basis functions and is integrated over the element. The conserved variable is defined as

a linear combination of the basis functions. In this paper tensor products of the Legendre

polynomials are chosen as basis functions. This allows the construction of methods of

arbitrary spatial order. Riemann problems are solved at each interface to compute the

interface fluxes needed in the algorithm. Figure 3.2 illustrates a polynomial discretization

of the solution within each cell. Just like the wave propagation method, the conserved

variable is allowed to be discontinuous at each cell interface, but the flux is continuous

across the interface. In general very simple approximate solvers can be used. In contrast,

35

the wave propagation method needs a much more accurate Riemann solver.

Figure 3.2: The conserved variables are allowed to be discontinuous at each cell interface
while the flux through the interface is continuous.

An overview of the development of discontinuous Galerkin (DG) methods is provided

by Cockburn, Karniadakis and Shu in Ref.[22]. DG methods were originally developed in

the framework of neutron transport equations by Reed and Hill[23] for solving linear hy-

perbolic equations. The DG method was then applied to non-linear advection-dominated

hyperbolic systems by Cockburn and Shu[24] who used the high-order total variation di-

minishing (TVD) Runge-Kutta time integration that was developed by Shu[25] with DG

and developed local projection slope-limiters to balance the spurious oscillations in regions

of sharp gradients. This was extended to higher spatial orders and multiple dimensions for

applications to non-linear systems such as the Euler equations. Next came the evolution

of the DG method for applications to advection-diffusion equation systems[26], such as the

Navier-Stokes equations. One method to incorporate the second-order diffusion terms was

implemented by Bassi and Rebay[27]. The diffusion terms cannot be directly applied to

the weak formulation in the DG method without introducing inconsistencies, so auxiliary

variables are introduced to represent the gradients of the conserved variables that appear

in the diffusion term. These auxiliary variables are coupled to the hyperbolic system and

are solved using the DG method without a time advance. Oden, Babuŝka and Baumann[28]

provide an alternative approach to solve convection-diffusion problems that overcomes the

disadvantage of introducing auxiliary variables and extra equations by using a method that

resembles hybrid and interior penalty methods. This DG method involves defining discon-

36

tinuous approximations in partitions of the domain where both solution values and fluxes

are discontinuous across the interfaces. This method is free of the penalty parameter used

by Percell and Wheeler[29] that was introduced to extend the global element method[30, 31]

to solve time-dependent diffusion problems where the choice of the penalty parameter could

lead to bad conditioning of matrices or loss of conservation.

The DG method has also been applied to Maxwell’s equations[32, 33] where the electro-

magnetic oscillations need to be appropriately resolved and to single-fluid MHD equations[34]

where the plasma waves need to be appropriately resolved. The application of DG methods

to nonlinear dispersive equations, specifically the Korteweg-de Vries equation, is explored

in Ref.[35] where DG methods are shown to be advantageous in the presence of rapid oscil-

lations and are capable of simultaneously capturing oscillations and discontinuous fronts in

the solution. Zhang and Shu have compared the discontinuous Galerkin method to spectral

finite volume methods in Ref.[36] for linear one-dimensional hyperbolic equations and state

that the spectral finite volume method has larger errors than the DG method on the same

mesh.

A 3rd order total variation diminishing Runge-Kutta method is used for the time inte-

gration as discussed in Refs.[26]. This makes the RKDG method an explicit finite element

method. The time step is restricted for numerical stability, CFL≤ 1/(2p−1), where p is the

spatial order that is determined based on the selection of the polynomial basis. The DG

method presented and used in this dissertation is a modal DG scheme instead of a nodal

DG scheme.

3.2.1 The Base Scheme

The discontinuous Galerkin (DG) scheme uses basis functions to represent the conserved

quantities, so it assumes that the solution in each cell is a piecewise-polynomial. The basis-

functions, vr, for r = 0, 1, . . . are locally defined within each cell. Any function can be

represented with the polynomial basis functions, and applying this idea to the conserved

37

quantities within each cell, it is seen that

Q =
∞∑

r=0

Qrvr, (3.23)

where Qr are the expansion coefficients. The number of terms that are retained in this

expansion is a representation of the spatial order of the solution. Orthogonal basis functions

are selected,

∫
Ii

vrvmdV = ∆V Crδrm, (3.24)

where ∆V is the volume of the cell (in 1-dimension it is ∆x), Cr are normalization constants

and δrm is the Kronecker-delta symbol. Using this orthogonality equation described by

Eq. (3.24), and multiplying the orthogonal basis functions, vm, with Eq. (3.23) gives,

Qr =
1

Cr∆V

∫
Ii

QvrdV, (3.25)

which are the expansion coefficients that are used to project any function onto the basis

function. Now applying this to the balance law described in Chapter 1, the equation is

multiplied by vr and integrated over the cell to get

∂

∂t

∫
Ii

vrQdV +
∫

Ii

vr∇ · FdV =
∫

Ii

vrSdV. (3.26)

Use integration by parts on the second term to get

∫
Ii

vr∇ · FdV =
∫

∂Ii

vrF · ndS −
∫

Ii

F · ∇vrdV. (3.27)

The conserved variables are then expanded into basis functions using Eq. (3.23) to get

Cr
dQr

dt
+

1
∆V

∫
∂Ii

vrF · ndS −
1

∆V

∫
Ii

F · ∇vrdV =
1

∆V

∫
Ii

vrSdV. (3.28)

for r = 0, 1, . . ., where the second term on the left-hand-side of Eq. (3.28) represents the

interface fluxes that are used to solve the Riemann problem at every cell interface. Rear-

38

ranging the time-dependent and spatially-dependent variables, Eq. (3.28) is written as

dQr

dt
= Lr(Q) (3.29)

for r = 0, 1, . . ., where Lr(Q) is the operator containing all the spatially dependent terms

of the equations (flux and source computations),

Lr(Q) = − 1
∆V

∫
∂Ii

vrF · ndS +
1

∆V

∫
Ii

F · ∇vrdV +
1

∆V

∫
Ii

vrSdV. (3.30)

After computing Lr(Q), the ODE described by Eq. (3.29) needs to be solved for the ex-

pansion coefficients, Qr using any standard ODE solver. The TVD Runge-Kutta time

integration scheme is used here (second and third orders) which makes this DG method

specifically a Runge-Kutta Discontinuous Galerkin (RKDG) scheme.

3.2.2 Runge-Kutta Time Integration

The 2nd order total variation bounded (TVB) Runge Kutta method used in this dissertation

is described by

Q1 = Qn + ∆tLr(Qn) (3.31)

Qn+1 =
1
2
Q1 +

1
2
Qn +

1
2
∆tLr(Q1). (3.32)

The TVD 3rd order Runge-Kutta time integration[26] is described by

Q1 = Qn + ∆tLr(Qn) (3.33)

Q2 =
3
4
Qn +

1
4
(Q1 + ∆tLr(Q1)) (3.34)

Qn+1 =
1
3
Qn +

2
3
(Q2 + ∆tLr(Q2). (3.35)

For the majority of applications in this dissertation the standard two-step 2nd order Runge-

Kutta scheme provides accurate solutions with computational efficiency.

Strong stability preserving Runge-Kutta (SSPRK) methods have been explored in recent

39

years and optimal SSP methods have been shown to provide higher temporal accuracy for

linear and nonlinear problems with the ability to use larger time steps[37, 38]. While SSP

time integration schemes could be easily extended for use with the DG method used in this

dissertation, there is no benefit gained by using the higher temporal accuracy for the plasma

problems explored here because of the relatively smooth temporal evolution. This is verified

by exploring the two-fluid model with the 2-dimensional axisymmetric Z-pinch in following

chapters using SSPRK methods to show no qualitative differences from the 3rd order TVD

RK scheme or even the 2nd order TVB RK scheme. A 2nd order TVB or a 3rd order TVD

Runge-Kutta method is well suited for time integration for the problems explored in this

dissertation in terms of both accuracy and computational effort.

3.2.3 Selection of Basis Functions

The Legendre polynomials are commonly selected as basis functions for this algorithm be-

cause they are orthogonal. In 1-dimension, the basis functions would be

vr(x) = Pr(η(x)), (3.36)

where the interval, Ii, needs to be mapped to lie within the interval, [−1, 1], because the

Legendre polynomials are only defined within this interval. This mapping is done using

η(x) ≡ x− xi

∆x/2
(3.37)

for xi and ∆x as described previously. The first few Legendre polynomials are

{vr} = {v0, vx, vy} (3.38)

= {1, x− xi

∆x/2
,
y − yi

∆y/2
} (3.39)

40

for second order spatial accuracy. For third order spatial accuracy,

vr = {v0, vx, vy, vxy, vx2 , vy2 , vx2y, vxy2 , vx2y2} (3.40)

= {1, vx, vy, vxvy, v
2
x −

1
3
, v2

y −
1
3
,

(
v2
x −

1
3

)
vy,

(
v2
y −

1
3

)
vx,

(
v2
x −

1
3

) (
v2
y −

1
3

)
}

(3.41)

The Legendre polynomials have a convenient property that makes them useful for the RKDG

algorithm, they are orthogonal. They satisfy the property,

∫ 1

−1
Pn(x)Pm(x)dx =

2
2m+ 1

δmn, (3.42)

where the coefficients Cr are found to be Cr = 1/(2r+1). Following the mapping, the value

of the basis functions can be obtained at the cell interfaces,

vr(xi±1/2) = Pr(±1) = (±1)r. (3.43)

To handle the second and third terms on the right-hand-side of Eq. (3.30), the Legendre-

Gauss quadrature (also known as Gaussian quadrature) is used so that these integrals can

be numerically evaluated. Applying this to a 1-dimensional function, Q(x), over interval Ii

gives

∫
Ii

Q(x)dx =
1
2

∫ 1

−1
Q(x(η))dη =

1
2

∑
j

wjQ̄(ηj), (3.44)

where x(η) = η∆x/2 + xi, Q̄(η) ≡ Q(x(η)) and wj and ηj are weights and abscissa of the

chosen Gaussian quadrature scheme. The choice of the Gaussian quadrature depends on

the order of the basis polynomial used, i.e., it depends on the highest value of r selected in

Eq. (3.23).

Using the Legendre polynomial basis functions in Eq. (3.30) for a 1-dimensional system,

41

Lr is now written as

Lr(Q) = −
Fi+1/2 − (−1)rFi−1/2

∆x
+

1
∆x

∫ 1

−1

dPr(η)
dη

F̄dη +
1
2

∫ 1

−1
PrS̄dη, (3.45)

where F̄(η) ≡ F(Q(x(η), t)) and S̄(η) ≡ S(Q(x(η), t)). The interface fluxes are computed

using the same method as the wave propagation method and the integrals in Eq. (3.45) are

computed using Gaussian quadrature. This is easily extended to multiple dimensions.

3.2.4 General Implementation Details

A fully 3-dimensional RKDG method has been implemented in WARPX. The 3-dimensional

implementation is a trivial extension of the 2-dimensional implementation using the appro-

priate number of polynomial basis function coefficients. The polynomial order chosen for

the basis functions determines the spatial accuracy of the scheme and this corresponds to pd

coefficients for each variable where p is the polynomial order chosen and d is the dimensions.

Lax-Friedrich fluxes are used for the DG algorithm in order to provide additional dis-

sipation to the dispersive numerical method. A Riemann flux can implemented in suitable

situations, but this however, can be dispersive for a number of problems leading to negative

density and negative pressure errors. Lax-Friedrich fluxes prove to be more robust and

also preserve divergence better for Maxwell’s equations. The Lax-Friedrich flux at each cell

interface for a 1-dimensional scheme is calculated as

F · n =
1
2
(F+

i − F
−
i+1) · n−

1
2
|λ|(Q+

i −Q
−
i+1) · n (3.46)

where |λ| is the maximum characteristic speed (eigenvalue) in the equation system based on

the average terms of the conserved variables at the cell centers i and i+ 1. Superscripts +

and − represent values in the upper and lower edges of each cell. The higher spatial order

of RKDG method makes it suitable for equation systems containing disparate speeds such

as the two-fluid plasma model. Using Lax-Friedrich fluxes with such disparate speeds still

provides a robust solution and a higher order accuracy than the wave propagation method

for the same resolution as will be shown in later chapters of this dissertation.

42

An effective resolution, R, is defined for the DG method such that R = hpd, h being

the grid resolution, p being the spatial order specified based on the polynomial basis, and

d being the number of dimensions. The effective resolution is specified for the DG method

and not for the high-resolution wave propagation method because the degrees of freedom of

the DG method are higher. In other words, the high-resolution wave propagation method

solves n equations per grid cell, where n is the number of unknowns in the equation system.

For the DG method however, npd equations are solved within each grid cell. Therefore, the

degrees of freedom of the DG method are npd per grid cell or nhpd over the entire domain.

The DG method implemented in this dissertation is formally higher order accurate than

the polynomial basis chosen. For example, the 2nd order wave propagation method is

actually less than 2nd order accurate whereas the 2nd order RKDG method often provides

formally greater than 2nd order accuracy. This is explored with benchmark applications in

Chapter 4. The reason for higher accuracy of the DG algorithm is explained by elaborating

on the expansion coefficients defined in Eq. (3.23). In 2-dimensions, a 2nd order accurate

expansion is described by

Q(x, y) = Q0v0 +Qxvx +Qyvy +Qxyvxvy, (3.47)

instead of

Q(x, y) = Q0v0 +Qxvx +Qyvy. (3.48)

The bilinear term in Eq. (3.47) is responsible for providing higher than 2nd order accuracy.

This principle is extended to all spatial orders and all dimensions to provide higher than the

predicted accuracy. This is also a major difference between the RKDG method implemented

in this dissertation and the one implemented by Loverich in Ref.[2].

3.2.5 Boundary Conditions

Ghost cells are used to specify the boundary conditions for both the wave propagation and

the RKDG methods. Using ghost cells allows for the application of Dirichlet boundary

43

conditions where the variables carry a fixed edge value and Neumann boundary condition

where the gradient at the boundary is specified.

For axisymmetric problems, the axis boundary condition is implemented at r = 0. Ap-

propriate boundary conditions at the axis are found by assuming the variables are analytical

about the axis and performing a series expansion about r = 0. Radial and azimuthal vector

components are set to 0 at the axis. Scalar variables and axial vector components have no

gradient at the axis. To implement the axis boundary condition using ghost cells, the scalar

variables and axial vector components are copied into the ghost cells while the radial and

azimuthal vector components are copied over to the ghost cells with a negative sign.

For problems with conducting wall boundary conditions, the normal velocity, the normal

magnetic field, and the tangential electric fields go to 0 at a conducting wall. To implement

this boundary condition using ghost cells, all variables are copied from the adjacent domain

cells to the ghost cells while reversing the signs of the normal velocity, normal magnetic field

and tangential electric fields. The remaining variables are extrapolated from the domain.

The coefficients of the RKDG method must be treated appropriately at the boundaries.

The physical boundary conditions are implemented with consideration to the polynomial

basis functions of the RKDG method. Specifically, to implement a 0 value at a boundary,

the coefficients of all even basis functions in the ghost cells are set to the negative of the

adjacent domain cells, and the coefficients of all odd basis functions in the ghost cells are set

to the same values as the adjacent domain cells. The implementation of the zero gradient

at the boundary uses the same procedure with opposite signs for the coefficients of the even

and odd basis functions.

0 value at boundary:

Q(ghost cell) = −Q(boundary) for even order coefficients 0,2,4,... (3.49)

Q(ghost cell) = Q(boundary) for odd order coefficients 1,3,5,... (3.50)

0 gradient at boundary:

Q(ghost cell) = Q(boundary) for even order coefficients 0,2,4,... (3.51)

Q(ghost cell) = −Q(boundary) for odd order coefficients 1,3,5,... (3.52)

44

For the error correction potentials of the perfectly hyperbolic Maxwell’s equations, spe-

cial care needs to be taken for each of the boundary conditions. For the axis boundary

condition, the gradient of both the error correction potentials is assumed zero across the

axis. For the conducting wall boundary condition, the ∇ · E correction potential, Φ, has

0 value at the boundary while the ∇ · B correction potential, Ψ, has 0 gradient at the

boundary. For an outflow (copy-out) boundary condition where the gradient of all variables

is assumed 0 at the boundary, the error correction potentials are treated such that their

value is 0 at the boundary (negated in the ghost cells). This is done to ensure that the error

leaves the domain and is not reflected back. A similar implementation is needed for peri-

odic boundary conditions where all the variables enter the domain from the opposite sides,

however, the value of the error correction potentials should be set to 0 at the boundary so

that they exit the domain without being re-introduced. Depending on whether the value

or the gradient of the correction potentials is 0 at the boundary, Eq. (3.49-3.51) is used to

appropriately treat the higher order coefficients of the error correction potentials.

3.2.6 Limiters

The DG scheme can produce large oscillations in the solution with the presence of sharp

gradients. Like with the case of the Wave Propagation algorithm, limiters can be applied

to the DG method as well around regions of discontinuities. For the wave propagation

method, the limiters are applied to the waves, for the DG method however, they are applied

to either the conserved variables or the characteristic variables depending on the limiter

used. Conserved variables refer to the quantity Q that is being solved for. Characteristic

variables refer to the strength of each wave. For a given expression,

Q =
m∑

p=1

ωprp (3.53)

ωp refers to the characteristic variables and is constant along any p-characteristic. Here,

rp refers to the right eigenvectors and ωp = lpQ where lp refers to the left eigenvectors.

There are two types of limiters that are investigated with this algorithm. The first is the

characteristics-based limiter according to which the conserved variables are transformed

45

to characteristic variables. For Qi
r defined as the expansion coefficients of the conserved

variable in cell i, ap ≡ lpQi
1, a

p
+ ≡ lp(Qi+1

0 − Qi
0) and ap

− ≡ lp(Qi
0 − Qi−1

0). A modified

minmod limiter is used here where the linear terms are checked for oscillations through a

comparison with the forward and backward differences of the average term and the high

order terms are set to zero if the linear terms need to be limited[39]. The coefficient of the

linear term is modified using the minmod limiter as

Qi
1 =

∑
p

rp mm(ap, ap
+, a

p
−) (3.54)

where rp and lp are the right and left eigenvectors of the flux Jacobian computed from cell

averages. mm(a, b, c) is a modified min-mod function defined as

mm(a, b, c) = a if |a| < M∆x2 (3.55)

= m(a, b, c) otherwise, (3.56)

where M is a constant and the function, m(a, b, c) is defined by

m(a, b, c) = max(a, b, c) ifsgn(a) = sgn(b) = sgn(c) = + (3.57)

= min(a, b, c) ifsgn(a) = sgn(b) = sgn(c) = − (3.58)

= 0 otherwise. (3.59)

Once the limiting is done, the solution of the characteristic variables is transformed back to

that of the conserved variables. Just as with the wave propagation algorithm, the limiter

limits the order of the algorithm to a lower one in regions where it is applied.

Component-based limiters can also be applied to the DG algorithm. These are faster

than characteristic-based limiters because they do not require computing the Jacobian and

performing an eigen-decomposition. They involve directly applying the limiters to the con-

served variables without transforming them. However, they are not TVDM so oscillations

can develop.

Developing high-order limiters is a challenging research problem for the DG method.

46

One prospective high-order limiter explored here is described by Krivodonova in Ref.[40].

The high-order limiter described by Krivodonova starts limiting from the highest coefficient

and stops when the first coefficient that does not need to be limited is encountered. This

allows the maximum possible order to be retained in the solution within each cell. The

high-order limiter can be applied with either component-based or characteristic-based lim-

iting. This dissertation employs both component-based and characteristic-based high-order

limiters which are useful for problems that do not have a large number of shocks. When

a large number of shocks are present the solution is reduced to 1st order in regions around

shocks eliminating the advantages of using a high-order scheme. The implementation of the

high-order limiters is described here using either component-based or characteristic-based

limiting. This is a slight variation of the high-order limiting presented in Ref.[40] because

the limiting performed here is dimension-by-dimension limiting highest to lowest orders in

the x-, y-, and z-directions respectively instead of simultaneously limiting the expansion co-

efficients in all dimensions. An example for a 3-dimensional high-order limiting is presented

here for 2nd order. WARPX implements such limiting in a general way allowing arbitrary

spatial order. Here Qabc refers to the expansion coefficients for each of the directions a being

x-direction coefficient, b being y-direction coefficient and c being z-direction coefficient.

• Step 1: First limit in x-direction only (compare with backward and forward difference

for cells adjacent in the x-direction)

– limit Q222, if not changed, goto y-direction

– limit Q122, if not changed, goto y-direction

– limit Q022, if not changed, goto y-direction

– limit Q112 and Q121, if not changed, goto y-direction

– limit Q012 and Q021, if not changed, goto y-direction

– limit Q002 and Q020, if not changed, goto y-direction

– limit Q111, if not changed, goto y-direction

– limit Q011, if not changed, goto y-direction

47

– limit Q001 and Q010, if not changed, goto y-direction

• Step 2: Next limit in y-direction only (compare with backward and forward difference

for cells adjacent in the y-direction)

– limit Q222, if not changed, goto z-direction

– limit Q212, if not changed, goto z-direction

– limit Q202, if not changed, goto z-direction

– limit Q112 and Q211, if not changed, goto z-direction

– limit Q102 and Q201, if not changed, goto z-direction

– limit Q002 and Q200, if not changed, goto z-direction

– limit Q111, if not changed, goto z-direction

– limit Q101, if not changed, goto z-direction

– limit Q100 and Q001, if not changed, goto z-direction

• Step 3: Next limit in z-direction only (compare with backward and forward difference

for cells adjacent in the z-direction)

– limit Q222, if not changed, stop

– limit Q221, if not changed, stop

– limit Q220, if not changed, stop

– limit Q211 and Q121, if not changed, stop

– limit Q201 and Q210, if not changed, stop

– limit Q200 and Q020, if not changed, stop

– limit Q111, if not changed, stop

– limit Q110, if not changed, stop

– limit Q100 and Q010, if not changed, stop

48

3.2.7 Axisymmteric Problems

The numerical method and WARPX have been developed for a Cartesian mesh and can be

manipulated for axisymmetric problems without changing the infrastructure significantly.

An axisymmetric problem can be formulated in the same manner as a problem in a regular

Cartesian geometry. However, in evaluating the advection terms of the hyperbolic equations

containing the divergence of the fluxes, additional terms need to be accounted from the

divergence theorem for cylindrical coordinates. Axisymmetric problems can be applied in

1-dimension with radial derivatives of the fluxes or in 2-dimensions with radial and axial

derivatives of the fluxes. The divergence theorem states that for a vector,

∇ ·A =
1
r

∂

∂r
(rAr) +

1
r

∂AΦ

∂Φ
+
∂Az

∂z
. (3.60)

Here the azimuthal derivative is neglected and the radial derivative term is written as

1
r

∂

∂r
(rAr) =

∂Ar

∂r
+
Ar

r
(3.61)

where the second term on the right-hand-side needs to be included as a geometric source term

to provide a solution of an axisymmetric problem in Cartesian geometry. Likewise, ignoring

all azimuthal derivatives, such a term also appears in the curl operator for cylindrical

geometry

(∇×A)z =
1
r

∂

∂r
(rAΦ) (3.62)

which can be written as

1
r

∂

∂r
(rAΦ) =

∂AΦ

∂r
+
AΦ

r
(3.63)

with the second term on the right-hand-side being the geometric source term for the curl

operator. Additionally, the geometric source terms of the tensor fields in the fluxes also

49

need to be taken into account

(∇ ·T)r =
1
r

∂

∂r
(rTrr) +

1
r

∂TΦr

∂Φ
+
∂Tzr

∂z
+
TΦΦ

r
(3.64)

(∇ ·T)Φ =
1
r

∂

∂r
(rTrΦ) +

1
r

∂TΦΦ

∂Φ
+
∂TzΦ

∂z
+
TΦr

r
(3.65)

(∇ ·T)z =
1
r

∂

∂r
(rTrz) +

1
r

∂TΦz

∂Φ
+
∂Tzz

∂z
. (3.66)

Such terms appear in the momentum equation fluxes for the two-fluid plasma model. To

include the geometric source terms, the balance law described in Eq. (1.1) is formulated as

∂Q
∂t

+∇ · F = S + SG (3.67)

for any numerical method, with SG containing the geometric sources. This implementation

for axisymmetric problems is also applied to the wave propagation method.

3.2.8 Auxiliary Variables

Auxiliary variables are introduced to allow an arbitrary number of variables and equations

to be added to the system. This allows the inclusion of non-conservative or non-hyperbolic

variables that can be written in a flux-source form as

Qaux +∇ · F = S (3.68)

without a time-derivative term. In doing this, an arbitrary spatial order discontinuous

Galerkin method is used for the auxiliary variables. Most often the spatial order chosen

for the auxiliary variables is the same as the conserved variables. In WARPX, auxiliary

variables have flux, source and Riemann solver functions just like the conserved variables.

For the conserved equations, auxiliary variables are passed from the input file and are

included in all routines as qaux. When an auxiliary equation system is called to compute

or update the auxiliary variables, it is passed into the right-hand-side (flux-source) solver

of the discontinuous Galerkin method as if it were a conserved variable. The discontinuous

50

Galerkin method is then solved using the same method described in Sec. 3.2.1

∫
Ii

vrQauxdV +
∫

Ii

vr∇ · FdV =
∫

Ii

vrSdV (3.69)

where the spatially-dependent flux and source terms are multiplied with basis functions and

integrated over each cell. In doing so, Qaux has the same number of higher order coefficients

as Q.

For the auxiliary equation solvers, the conserved variables are passed using qaux as if

they were auxiliary variables to allow their use in the auxiliary equations. This again is

specified in the input files, examples of which are provided in Appendix C. This allows

the use of the same base class in WARPX to compute the right-hand-side of conserved

and auxiliary equations. In addition, writing it in this manner allows for a choice of any

time-integration scheme to solve the ODE in Eq. (3.29) for updating the conserved variables

while allowing the option of no time-integration for Eq. (3.68) to compute auxiliary vari-

ables. wxdgrhscalc1dbase and wxdgrhscalc1dbasegengeom are examples of discontinuous

Galerkin right-hand-side base classes in 1-D for a Cartesian mesh and a structured, general

geometry mesh. When using conserved variables the derived class used is wxdgrhscalc1d for

a Cartesian mesh and wxdgrhscalc1dgengeom for general geometry, and auxiliary variables

use the derived class, wxdgauxsolver1d. Similar classes exist in 2-D and 3-D.

3.2.9 Implementation Details for Hall-MHD

The Hall-MHD equation system in Sec. 2.3.3 is not completely described by the balance law

form in Eq. (1.1). The equation system is no longer purely hyperbolic with source terms

and the numerical method needs to be modified to account for the second order derivatives

in Faraday’s law, Eq. (2.10), that result from the generalized Ohm’s law, Eq. (2.20), and

the reduced Ampere’s law, Eq. (2.21). Auxiliary variables are introduced namely electron

current, Je, and electric field, E, that are treated differently from the conserved variables

as they do not require any time integration. Two methods for the treatment of auxiliary

variables are explored. The first method involves a simple central differencing to compute

the auxiliary variables from the conserved variables using Eq. (2.20) and Eq. (2.21) at the

51

beginning of each time step. These auxiliary variables are then used in the fluxes and

sources to update the conserved variables.

A more accurate implementation of the auxiliary variables is performed using a full dis-

continuous Galerkin polynomial basis function expansion of the auxiliary variables just like

with the conserved variables. The fluxes and sources of the auxiliary variables are treated in

the same manner as the conserved variables by solving a Riemann problem at each interface

and the only difference lies in the time integration. The auxiliary variables are calculated

from the conserved variables at each time step and do not require any time integration

scheme, while the conserved variables are updated using a Runge-Kutta time integration.

The advantage of this full DG implementation over the central difference implementation for

the auxiliary variables is the presence of higher order coefficients in the auxiliary variables

consistent with the higher order DG coefficients for conserved variables. Additionally, for

improved accuracy, the auxiliary variables are updated between each Runge-Kutta stage of

the conserved variable update. The Hall-MHD auxiliary variables are written in flux-source

form as

∫
Ii

vrJedV −
∫

Ii

vr
1
µ0

(∇×B)dV = −
∫

Ii

vrJidV (3.70)∫
Ii

vrneqeEdV −
∫

Ii

vr(∇ · peI)dV = −
∫

Ii

vr(Je ×B)dV (3.71)

where the equations are multiplied with basis functions and integrated over each cell using

the discontinuous Galerkin algorithm in the same manner as the conserved equations.

If using hyper-resistivity to eliminate the grid scale dependence of the whistler wave,

additional auxiliary variables are introduced. Eq. (2.34) describes a hyper-resistivity that is

used in this dissertation. The additional auxiliary variable is

∫
Ii

vrHrdV −
∫

Ii

vr(∇J)dV = 0 (3.72)

such that J is the total current. The hyper-resistivity auxiliary variable, Hr, then appears

52

as a flux in the generalized Ohm’s law

∫
Ii

vrneqeEdV −
∫

Ii

vr(∇ · peI)dV −
∫

Ii

vr(ν∇ ·Hr)dV = −
∫

Ii

vr(Je ×B)dV. (3.73)

The boundary condition implementation for the auxiliary variables for Hall-MHD is

similar to the conserved variable boundary condition implementation. For conducting wall

and axis boundary conditions, the method described in Sec. 3.2.5 is used when the full DG

expansion is used for the auxiliary variables. When using hyper-resistivity, the 9 additional

variables introduced by taking the gradient of J are treated such that they have 0 value at

the boundaries. This approximation can be implemented in a more sophisticated manner

as needed for future applications.

For problems with large dynamics in the form of sharp gradients and discontinuous

solutions, limiters are applied to the auxiliary variables the same way they are to the

conserved variables. Only the component-based limiting is used for the auxiliary variables

because the flux Jacobian is not specified for the auxiliary system the same way that it is

specified for the conserved system.

3.2.10 Implementation Details for Braginskii Transport Terms

A central differencing implementation of the Braginskii[17] transport terms described in

Sec. 2.5 has been previously implemented in WARPX to work with the finite volume method.

As a part of this dissertation, the transport terms are implemented to use auxiliary variables

with the discontinuous Galerkin method allowing solutions of higher order accuracy by using

the finite element framework. Refer to Appendix A for a more detailed description of the

transport coefficients. The 10 auxiliary variables and equations introduced for transport

53

include

gTe −∇Te = 0, gTi −∇Ti = 0

gue −∇ue = 0, gui −∇ui = 0

due −∇ · ue = 0, dui −∇ · ui = 0

(3.74)

←→
Π e = η0

(
gue + guT

e −
2
3
dueI

)
(3.75)

←→
Π i = η0

(
gui + guT

i −
2
3
duiI

)
(3.76)

qe = qe
U + qe

T = f(ue,ui,B, Te, ne, gTe) (3.77)

qi = qi
T = f(B, Ti, ni, gTi). (3.78)

Each of the auxiliary variables in Eq. (3.74) has an associated flux term as shown. For

Eqs.(3.75-3.78), the auxiliary variables of electron and ion viscosity, and electron and ion

heat flux are written such that they use source terms only and have no flux terms. These

auxiliary variables are multiplied with basis functions and integrated over each cell as de-

scribed in Sec. 3.2.8 and are solved using the discontinuous Galerkin method described.

Here gu and
←→
Π have 9 auxiliary variables each and are tensors represented by

gu =


guxx guxy guxz

guyx guyy guyz

guzx guzy guzz

 , ←→
Π =


Πxx Πxy Πxz

Πyx Πyy Πyz

Πzx Πzy Πzz

 . (3.79)

Once the auxiliary variables are computed, they are sent in to update the conserved

variables with the transport terms. The transport equations defined in Sec. 2.5 use ∇ · qe,

∇ ·qi, ∇ ·
←→
Π e, and ∇ ·

←→
Π i as additional flux terms for the conserved equation system. The

momentum transfer term, Rei, the electron and ion thermal equilibration terms, Qe and

Qi, and the viscous heating terms,
←→
Π e : ∇ue and

←→
Π i : ∇ui, are included as source terms

for the conserved equations.

For axisymmetric problems, auxiliary variable fluxes ∇ · ue and ∇ · ui, and conserved

variable transport fluxes ∇·qe, ∇·qi, ∇·
←→
Π e, and ∇·

←→
Π i will have geometric source terms

that need to be accounted for in the manner described in Sec. 3.2.7.

54

Boundary conditions for the auxiliary transport variables need to be defined. Periodic

and outflow boundary conditions are applied in the same manner as the conserved variables.

For axis boundary conditions when solving axisymmetric problems, if a value has 0 gradient

at the axis, then its derivative (which may be an auxiliary variable) is negated across the

axis in the ghost cell. For 0 value and 0 gradient of auxiliary variable at axis, the boundary

conditions are implemented as described in Eq. (3.49) and Eq. (3.51). At the axis, the

boundary conditions are defined in Table 3.1, where qx, qy, and qz are the heat flux in the

x, y and z directions respectively.

∂T
∂x = 0 ∂T

∂y = 0 ∂T
∂z = 0 gradient

guxx = 0 gradient guyy = 0 gradient guzz = 0 gradient
guxy = 0 guyx = 0 guxz = 0
guzx = 0 guyz = 0 guzy = 0
du = 0 gradient
Πxx = 0 gradient Πyy = 0 gradient Πzz = 0 gradient
Πxy = 0 Πyx = 0 Πxz = 0
Πzx = 0 Πyz = 0 Πzy = 0
qx = 0 qy = 0 qz = 0 gradient

Table 3.1: Axis boundary conditions for auxiliary variables introduced to include the trans-
port coefficients defined by Braginskii for the two-fluid plasma model. These boundary
conditions are applied to each of the electron and ion fluids.

For a conducting wall, the auxiliary variable boundary conditions are the same as the

axis boundary conditions with the exception of ∂T
∂y = 0 gradient and qy = 0 gradient. In

addition, the presence of viscosity requires a no-slip boundary condition at the wall, so the

normal and tangential fluid velocities are 0 at the wall.

The Braginskii transport terms require a few additional specifications in WARPX to

maintain numerical stability and prevent the transport terms from growing without bound

in the limit that the applications are collisionless. Basically, if νe and νi appear in the

denominator of any of the transport terms, examples of which are the viscosity coefficients,

parallel thermal conductivities, etc., small values of νe and νi can make the transport co-

efficients become unreasonably large. To overcome this, an asymptote is set such that

55

if ν � (ωp, ωc) for each of the species, it is replaced by the next smallest frequency in

computing the transport coefficients. An additional asymptote is specified for the ther-

mal conductivities to ensure that the perpendicular and cross thermal conductivities never

exceed the parallel thermal conductivity.

3.3 Implicit Discontinuous Galerkin Method

Implicit time integration is explored for the discontinuous Galerkin method for several

reasons. Firstly, it does not require a stringent CFL-stability limit like the case of explicit

methods. Secondly, for the two-fluid plasma model, the time step does not need to be

restricted by the speed of light or the electron plasma frequency for the algorithm to be

stable. Accuracy considerations alone can be used to determine the maximum time step

used. This also becomes significant in problems where divergence error correction is used

and the error correction speeds could exceed the speed of light.

Implicit DG schemes have been explored by Wang in Refs.[41] and [42] for the unsteady

Euler equations. These can be extended to the two-fluid plasma model. Wang describes

first- and second-order backwards differencing schemes (BDF1 and BDF2) and an implicit

fourth-order Runge-Kutta scheme (IRK4). In this dissertation, BDF1, BDF2, and Crank-

Nicolson (CN2) schemes are implemented in WARPX. Separating the time-dependent and

spatial-dependent parts, the hyperbolic equation can be written as

M
∂Q
∂t

+ Rp(Q) = 0 (3.80)

with M being the mass matrix. The implicit formulation for the ODE described is

M

∆t
(θQn+1

h − θQn
h) + Rp(Qn+1

h) = Re(Qn+1
h) (3.81)

where θ = 1 corresponds to BDF1, and θ = 0.5 corresponds to CN2. The formulation for

BDF2 is given by

M

∆t
(
3
2
Qn+1

h − 2Qn
h −

1
2
Qn−1

h) + Rp(Qn+1
h) = Re(Qn+1

h) (3.82)

56

where

Qh =
r∑

r=1

Qr(t)vr(x) (3.83)

and Re(Qn+1
h) is the unsteady residual.

A numerical Jacobian is computed that allows for a Newton-type iteration scheme for

the implicit advance. This numerical Jacobian is described by J ′(Qk) such that

• Qk+1 = Qk − J ′(Qk)−1J(Qk), k = 0, 1, 2, ...

• Approximately solve: J ′(Qk)∆Qk = −J(Qk)

• Update Qk+1 = Qk + ∆Qk

• Jacobian matrix, J ′(Qk), approximated with finite differences

In order to set up the implicit DG implementation, the time-dependent and spatial-

dependent contributions are written in ODE form similar to the RKDG method. The

difference lies in the need to invert the mass matrix for the implicit scheme. The mass

matrix is precomputed and stored ahead of time since it remains unchanged. The inversion

of a large mass matrix can be computationally expensive especially for large domain sizes

in multiple dimensions. The implicit time advance requires large matrix inversions but is

stable for large time steps.

3.3.1 Implicit-DG Implementation Details

After exploring several standard solvers and preconditioners in the PETSc (Portable Ex-

tension Toolkit for Scientific Computation) package[11], an incomplete LU (ILU) left pre-

conditioner is chosen with the GMRES linear solver to perform a cubic back-tracking line

search technique for the non-linear solve. PETSc’s Scalable Nonlinear Equations Solvers

(SNES) are used for the implicit advance. This choice of solvers is motivated by the de-

sire for accurate solutions with minimum computational effort and ease of implementation.

Of the standard PETSc preconditioners, the ILU preconditioner is most effective for the

57

non-symmetric, block tridiagonal Jacobian matrix of the 1-D two-fluid plasma model and

provides greater than a 60% speed-up compared to using no preconditioner. The ILU pre-

conditioner employs Cholesky-like formulas to ensure that the preconditioning matrix only

has nonzero values in locations where the Jacobian matrix has nonzero values.

A numerical Jacobian is computed using sparse matrix methods. The memory for the

numerical Jacobian is allocated once in the beginning of the simulation using

MatCreateMPIAIJ(comm.getMpiComm(), numUnknowns, numUnknowns,
totNumUnknowns, totNumUnknowns, nr, PETSC_NULL,
nr_off, PETSC_NULL, &jacobian);

where numUnknowns is the product of the number of cells and the block size for the grid of

the local processor. totNumUnknowns is the product of the number of cells and the block size

of the entire global domain. The block size is mep
d where me is the number of equations,

p is the spatial order of the scheme and d is the number of dimensions. nr is the number

of non-zeros per row that is specified as 3 × block size in 1-dimension, 5 × block size in

2-dimensions, and 7×block size in 3-dimensions. nr off is the number of off-diagonal non-

zeros per row which is 0 in 1-dimension, 2× block size in 2-dimensions, and 4× block size

in 3-dimensions. It is important to pre-allocate the memory for maximum computational

efficiency or else the simulation takes a very long time with dynamic allocation.

Once the memory is allocated for the numerical Jacobian, a matrix coloring is per-

formed in order to efficiently use sparse matrix methods. A 1-dimensional matrix coloring

is performed using

for (unsigned i=ilr; i<iup; ++i) {
for (unsigned k=0; k<blockSize; ++k) {
unsigned jr = i*blockSize + k;
unsigned imin = (i > 0) ? i-1 : 0;
unsigned imax = (i < imx-1) ? i+1 : imx-1;
// set non-zero elements to 1.0
for (unsigned jc = imin*blockSize; jc < (imax+1)*blockSize; ++jc) {
MatSetValue(color, jr, jc, 1.0, INSERT_VALUES);

}
}

}

58

MatAssemblyBegin(color, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(color, MAT_FINAL_ASSEMBLY);

where ilr is the lower index of the local processor domain, iup is the upper index of the

local processor domain, and imx is the upper index of the global domain. The matrix color

is the same size as the Jacobian matrix. This assigns a value of 1 in regions where the

Jacobian contains a value and 0 in all other regions. In 1-dimension, this is a block tri-

diagonal matrix as is seen from the left-hand-side plot of Figure 3.3. In 2-dimensions, the

matrix coloring is described by

for (unsigned j=ilry; j<iupy; ++j) {
for (unsigned i=ilrx; i<iupx; ++i) {
for (unsigned k=0; k<blockSize; ++k) {
unsigned i2d = i+j*imaxx;
unsigned jr = i2d*blockSize + k;
unsigned imin = (i > 0) ? i2d-1 : 0+j*imaxx;
unsigned imax = (i < imaxx-1) ? i2d+1 : (imaxx-1)+j*imaxx;
// set non-zero elements to 1.0
for (unsigned jc = imin*blockSize;

jc < (imax+1)*blockSize;
++jc) {

MatSetValue(color, jr, jc, 1.0, INSERT_VALUES);
}
// terms to the left of the tri-diagonal part
if (i2d > imaxx-1)
for (unsigned jc = (i2d-imaxx)*blockSize;

jc < (i2d-imaxx)*blockSize+blockSize;
++jc)

MatSetValue(color, jr, jc, 1.0, INSERT_VALUES);

// terms to the right of the tri-diagonal part
if (i2d < (imaxx*imaxy)-imaxx)
for (unsigned jc = (i2d+imaxx)*blockSize;

jc < (i2d+imaxx)*blockSize+blockSize;
++jc)

MatSetValue(color, jr, jc, 1.0, INSERT_VALUES);
}

}
}
MatAssemblyBegin(color, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(color, MAT_FINAL_ASSEMBLY);

59

Figure 3.3: Matrix coloring plots for advection equation with DG spatial order 2. Left plot
shows matrix coloring for Implicit-DG in 1-D for a grid of 10 × 10 cells. Right plot shows
matrix coloring for 2-D Implicit-DG for a grid of 3× 3 cells.

which forms a block tri-diagonal coloring matrix with 2 additional bands on either side

of the tri-diagonal bands as is seen from the right-hand side plot of Figure 3.3. This

implementation can be extended accordingly for 3-dimensions.

Following a matrix coloring, the numerical Jacobian is computed using

SNESSetJacobian(solver, jacobian, jacobian,
SNESDefaultComputeJacobianColor, matFDColoring);

which computes a default PETSc numerical Jacobian, where the 2nd jacobian in the func-

tion call can be substituted with a user-specified pre-conditioner if necessary. The non-linear

solver PETSc function used is

SNESSolve(solver, PETSC_NULL, solVector);

where solVector is the Q solution vector. This calls

evaluateFunction(SNES snes, Vec x, Vec f)

60

to compute the right-hand-side for the discontinuous Galerkin method using an iterative

Newton scheme to compute a Qiter. A tolerance of 10−6 is specified for most of the iterative

problems in this dissertation. This function takes in arguments that allow the user to choose

between BDF1, BDF2, and CN2 from the input file.

The choice of SNES solvers and pre-conditioners can be specified from the command-line

during runtime using the commands

-ksp_type SOLVER
-pc_type PC

where SOLVER and PC can be one of the numerous options available within PETSc or

they could be external packages that can be linked to PETSc, or they can be user spec-

ified custom routines. To make the semi-implicit two-fluid solvers efficient, physics-based

preconditioners[43], p-multigrid methods[44], and similar optimization schemes can be ex-

plored. A brief description of the solvers and preconditioners tested with the two-fluid

model is presented in Chapter 6 to explain the choice of the GMRES solver and the ILU

preconditioner specifically for the two-fluid plasma model. For two-fluid simulations using

parallel processing with PETSc, a benefit is only seen if there are at least 20, 000 unknowns

per processor.

3.4 General Geometry with Discontinuous Galerkin Method

A 3-dimensional implementation of a structured general geometry discontinuous Galerkin

method is detailed here. Similar to Eqs.(3.23-3.29), in 3-D the discontinuous Galerkin

method is written as,

∂

∂t

∫
Ii

vrstQdV +
∫

Ii

vrst
∂F
∂x

dV +
∫

Ii

vrst
∂G
∂y

dV +
∫

Ii

vrst
∂H
∂z

dV =
∫

Ii

vrstSdV

(3.84)

A B C D E.

where the hyperbolic balance law is multiplied with basis function vrst and integrated over

each cell. Term A results in a mass matrix. Terms B, C, and D apply integration by parts

61

to obtain a volume and a surface integral term as described in Eq. (3.27),

∫
Ii

vrst
∂F
∂x

dV =
∫

∂Ii

FvrstdS −
∫

Ii

F
∂vrst

∂x
dV (3.85)

B B1 B2∫
Ii

vrst
∂G
∂y

dV =
∫

∂Ii

GvrstdS −
∫

Ii

G
∂vrst

∂y
dV (3.86)

C C1 C2∫
Ii

vrst
∂H
∂z

dV =
∫

∂Ii

HvrstdS −
∫

Ii

H
∂vrst

∂z
dV (3.87)

D D1 D2.

General geometry algorithm assumptions include planar hexahedral faces to avoid deal-

ing with the complications of volumes and surface areas for curved faces. This maps an

arbitrary hexahedral (not including triangular dipyramids and pentagonal pyramids) in

physical space to a logical cube in computational space. Figure 3.4 shows an example of

such a mapping in 3-D. Likewise, for the 2-D implementation, all edges are assumed to be

straight, mapping between an arbitrary quadrilateral in physical space and a logical rectan-

gle in computational space. A physical (x,y,z) is mapped to a computational (η,ξ,ζ) local

Figure 3.4: An example of the mapping for a 3-D case is displayed here where an arbitrary
hexahedral with straight faces in physical space is mapped to a logical cube in computational
space. General geometry is implemented for structured grids only.

coordinate within each cell such that the lowest (x,y,z) vertex in each cell determines the

62

(η,ξ,ζ) direction mapping for that cell based on the edges adjacent to that vertex. For each

cell, η, ξ, and ζ are each defined between [−1, 1] such that the lowest vertex in the cell has

coordinates (−1,−1,−1) and the highest vertex has coordinates (1,1,1) in logical space.

An explanation of each of the volume and surface integrals along with a derivation of

the grid metrics is summarized in the following sections.

3.4.1 Linear Mapping of Elements for 3-D General Geometry

A linear mapping is used in 3-D based on Figure 3.4. The linear mapping is defined using

x = a1 + a2η + a3ξ + a4ζ + a5ηξ + a6ξζ + a7ηζ + a8ηξζ (3.88)

y = b1 + b2η + b3ξ + b4ζ + b5ηξ + b6ξζ + b7ηζ + b8ηξζ (3.89)

z = c1 + c2η + c3ξ + c4ζ + c5ηξ + c6ξζ + c7ηζ + c8ηξζ. (3.90)

Substituting [−1, 1] for η, ξ, and ζ in Eqs.(3.88-3.90) for each of the 8 vertices of the

hexahedral element, x = Aa, y = Bb, z = Cc, the following matrix is obtained

A = B = C =



1 −1 −1 −1 1 1 1 −1

1 1 −1 −1 −1 1 −1 1

1 1 1 −1 1 −1 −1 −1

1 −1 1 −1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1

1 1 −1 1 −1 −1 1 −1

1 1 1 1 1 1 1 1

1 −1 1 1 −1 1 −1 −1



(3.91)

which is inverted to obtain each of the coefficients a = A−1x, b = B−1y, and c = C−1z.

Once the coefficients are computed, the grid metrics derivatives, ∂x
∂η , ∂x

∂ξ , ∂x
∂ζ , ∂y

∂η , etc. are

calculated from the mappings in Eqs.(3.88-3.90). These are computed at each quadrature

point based on the values of η, ξ,and ζ. To obtain the derivatives ∂η
∂x , ∂η

∂y , ∂η
∂z , ∂ξ

∂x , etc. the

63

following matrix is constructed


dx

dy

dz

 =


xη xξ xζ

yη yξ yζ

zη zξ zζ



dη

dξ

dζ

 (3.92)

where, xη = ∂x
∂η , xξ = ∂x

∂ξ , etc. This matrix is inverted to obtain


dη

dξ

dζ

 =


ηx ηy ηz

ξx ξy ξz

ζx ζy ζz



dx

dy

dz

 (3.93)

where ηx = ∂η
∂x , ηy = ∂η

∂y , etc.

3.4.2 3-D Volume and Volume Jacobian

The volume of each cell is computed using an efficient method[45] part of which is depicted

in Figure 3.5. This method involves the sum of three 3 × 3 determinants to compute the

Figure 3.5: This figure is borrowed and modified from Ref.[45] to show one of the three
3× 3 determinants leading to an efficient hexahedral volume computation.

64

volume using the formula

6V = |(x7 − x1), (x2 − x1), (x3 − x6)| (3.94)

+ |(x7 − x1), (x5 − x1), (x6 − x8)| (3.95)

+ |(x7 − x1), (x4 − x1), (x8 − x3)| (3.96)

where V is the volume of the cell and xn refers to the (x,y,z) vector at vertex n from

Figure 3.5.

In the finite volume method, this volume is used in the computation for the integration.

For the discontinuous Galerkin method, this volume is only used to determine the time

step as a volume/area ratio. The volume integrals are computed using Jacobians that take

the grid metrics into account since quadrature points are used in the interior and surface

locations of each cell. The volume integral terms have dV = dxdydz = Jdηdξdζ, where J

is the volume Jacobian containing the grid mapping information.

δx =
∂x

∂η
δη +

∂x

∂ξ
δξ +

∂x

∂ζ
δζ (3.97)

δy =
∂y

∂η
δη +

∂y

∂ξ
δξ +

∂y

∂ζ
δζ (3.98)

δz =
∂z

∂η
δη +

∂z

∂ξ
δξ +

∂z

∂ζ
δζ (3.99)

leads to

dV =

∣∣∣∣∣∣∣∣∣
xηdη xξdξ xζdζ

yηdη yξdξ yζdζ

zηdη zξdξ zζdζ

∣∣∣∣∣∣∣∣∣ = |J |dηdξdζ (3.100)

where |J | = xηyξzζ − xηyζzξ + xξyζzη − xξyηzζ + xζyηzξ − xζyξzζ .

3.4.3 3-D Surface Areas and Surface Jacobians

The surface areas of each cell are computed using standard vector manipulations. There

are 3 surface areas belonging to each cell and these are specified in WARPX as left for the

65

YZ face at η = −1, back for the XZ face at ξ = −1 and bottom for XY face at ζ = −1. Each

cell owns its lower surface areas in WARPX. For each face, the surface area is computed

using 0.5|d1 × d2| where d1 and d2 are the diagonals for that face.

The surface Jacobians of each cell are computed to calculate surface integrals that result

from an integration by parts for each of the flux integrals. Figure 3.6 shows the faces that

are owned by a given cell. For face 1, δη = 0; for face 2, δξ = 0, and for face 3, δζ = 0.

The same principle applies to compute surface Jacobians as surface areas. For the YZ face

Figure 3.6: A given cell owns the faces adjacent to its lowest vertex, i.e. vertex 1 from
Figure 3.5. The surface Jacobians of each cell are computed based on this depiction.

at η = −1, δη = 0,

δx =
∂x

∂ξ
δξ +

∂x

∂ζ
δζ (3.101)

δy =
∂y

∂ξ
δξ +

∂y

∂ζ
δζ (3.102)

δz =
∂z

∂ξ
δξ +

∂z

∂ζ
δζ. (3.103)

This gives a left Jacobian, JS1

dS1 = |(xξdξêx + yξdξêy + zξdξêz)× (xζdζêx + yζdζêy + zζdζêz)| (3.104)

=
√

(yξzζ − zξyζ)2 + (zξxζ − xξzζ)2 + (xξyζ − yξxζ)2dξdζ (3.105)

= JS1dξdζ (3.106)

A similar implementation is performed to obtain the back Jacobian, JS2, for the XZ face at

66

ξ = −1 where δξ = 0 and to obtain the bottom Jacobian, JS3, for the XY face at ζ = −1

where δζ = 0.

3.4.4 3-D General Geometry Mass Matrix

Expansion coefficients are applied to term A in Eq. (3.84) like in Eq. (3.23) using basis

functions vmnp to obtain

∂

∂t

∫
Ii

vrstQdV =
d

dt

∫
Ii

vrst

∑
mnp

QmnpvmnpdV (3.107)

=
∑
mnp

∫
Ii

vrstvmnpdV
dQmnp

dt
(3.108)

where vrst = vrst(x(η, ξ, ζ), y(η, ξ, ζ), z(η, ξ, ζ)) and likewise for vmnp. This gives

∂

∂t

∫
Ii

vrstQdV =
∑
mnp

dQmnp

dt

∫ 1

−1

∫ 1

−1

∫ 1

−1
Pr(η)Ps(ξ)Pt(ζ)Pm(η)Pn(ξ)Pp(ζ)Jdηdξdζ

(3.109)

= M
dQ
dt

(3.110)

where J is the volume Jacobian defined in Sec. 3.4.2, P refers to the basis functions which

are Legendre polynomials in this implementation, and M is the mass matrix that is inverted

for each cell. Applying Gaussian quadrature, the mass matrix is defined as

M =
∑

j

wη
j

∑
k

wξ
k

∑
l

wζ
l Pr(ηj)Ps(ξk)Pt(ζl)Pm(ηj)Pn(ξk)Pp(ζl)J(ηj , ξk, ζl) (3.111)

where the size of the mass matrix is R×R, R = mep
d, me is number of conserved variables,

p is the spatial order of the scheme, and d is the dimensions. The mass matrix is defined

for each cell in the domain and its inverse is computed using LAPACK matrix inversion

routines. All grid metrics are only computed once at the beginning of the simulation.

In the process of making the mass matrix general for arbitrary spatial order, the indexing

in WARPX is slightly complicated. The mass matrix is defined using an indexer of type

ind such that a row index and a column index are defined as a function of the Legendre

67

polynomial indices m,n,p,r,s,t, where ind is an indexer defined in the specified range,

WxIndexer<> ind = WxIndexer<>(WxRange(0,_spatialOrder,
0,_spatialOrder, 0,_spatialOrder));

rowInd = ind.index(m,n,p);
colInd = ind.index(r,s,t);

Once the sum is computed over the basis functions and integrals defined in Eq. (3.111), a

mass matrix indexer, indMass, is used defined in the specified range to store the given sum

in the appropriate location within the symmetric mass matrix.

WxIndexer<> indMass = WxIndexer<>(WxRange
(0, _spatialOrder*_spatialOrder*_spatialOrder,
0,_spatialOrder*_spatialOrder*_spatialOrder));

massItr[indMass.index(rowInd,colInd)] = sum;

Any quantity can be projected onto basis functions using the mass matrix. The initial

condition is applied using such a projection

Qmnp =

∫
Ii
Pm(η)Pn(ξ)Pp(ζ)J(η, ξ, ζ)Qdηdξdζ

M
. (3.112)

3.4.5 3-D General Geometry Rotation Matrix

Similar to the surface area computation, the unit normal vectors for each face are obtained

using a cross product of the two diagonals, such that

n̂ =
d1 × d2

|d1 × d2|
(3.113)

and they are defined for the same faces of a given cell that the surface areas are defined for.

Care is taken to ensure that the right-hand rule is maintained in determining the directions

of the unit normals when performing the cross product. For face 1 in Figure 3.6, the unit

normal is in the η direction and the tangents are in ξ and ζ directions respectively. For

face 2, the unit normal is in the ξ direction and the tangents are in η and ζ directions

respectively and for face 3 the unit normal is in the ζ direction and the tangents are in η

and ξ directions respectively. Unit tangent vectors are computed using the edges adjacent

68

to the vertex owned by the cell (vertex 1 in Figure 3.5), while maintaining the right-hand

rule.

To rotate the data from physical coordinates to the local coordinates, the rotation matrix

used is

R =


nx ny nz

t1x t1y t1z

t2x t2y t2z

 (3.114)

where n is the unit normal vector and t1 and t2 are unit tangent vectors in each of the

other 2 directions defined within each cell using the lowest vertex and its adjacent edges.

A rotation from local to physical coordinates is performed using an inverse of the above

matrix, where the inverse and transpose are the same.

3.4.6 3-D General Geometry Surface Integrals

To compute the surface integrals, terms B1, C1, and D1, in Eqs.(3.85-3.87), a Gaussian

quadrature is used for each surface such that

B1 + C1 +D1 =
∑

k

wξ
k

∑
l

wζ
l

([
F · nvrstJS1

]
η

ix+1
2

,ξ,ζ
−

[
F · nvrstJS1

]
η

ix− 1
2

,ξ,ζ

)
+

∑
j

wη
j

∑
l

wζ
l

([
G · nvrstJS2

]
η,ξ

iy+1
2

,ζ
−

[
G · nvrstJS2

]
η,ξ

iy− 1
2

,ζ

)

+
∑

j

wη
j

∑
k

wξ
k

([
H · nvrstJS3

]
η,ξ,ζ

iz+1
2

−
[
H · nvrstJS3

]
η,ξ,ζ

iz− 1
2

)

using the appropriate surface Jacobians for a given direction. The conserved variables are

expanded to determine their value at surface quadrature locations of each cell. These surface

conserved quantities are then rotated to the local coordinate system. If using auxiliary

variables, these are also rotated to the local system. The edge fluxes are computed in the

local coordinate system. This gives the normal and tangential fluxes in each local direction.

WARPX uses an edge flux routine for general geometry which computes the left and right

surface fluxes in the local coordinate system.

69

_eqnSet.edgefluxgengeom(0, xm, &qlLocal[0], &qauxlLocal[0], &flLocal[0]);
_eqnSet.edgefluxgengeom(0, xm, &qrLocal[0], &qauxrLocal[0], &frLocal[0]);

This function is independent of the local direction, since the local fluxes are specified as

normals and tangents for each direction being solved. The Riemann problem is then solved

in the local coordinate system. The edge fluxes and fluctuations at each surface quadrature

location are then rotated back to the physical coordinate system and use the appropriate

surface Jacobians to update the solution of conserved variables.

3.4.7 3-D General Geometry Volume Integrals

Terms B2, C2, and D2 in Eqs.(3.85-3.87) constitute the volume integrals of the fluxes and

term E in Eq. (3.84) is a volume integral of the sources. Gaussian quadrature is used to

approximate these volume integrals in much the same way as the surface integrals, for

quadrature locations at (ηj ,ξk,ζl). The derivatives of the basis functions are written as

∂vrst

∂x
=
∂vrst

∂η

∂η

∂x
+
∂vrst

∂ξ

∂ξ

∂x
+
∂vrst

∂ζ

∂ζ

∂x
(3.115)

∂vrst

∂η
=
dPr(η)
dη

Ps(ξ)Pt(ζ) (3.116)

∂vrst

∂ξ
= Pr

dPs(ξ)
dξ

Pt(ζ) (3.117)

∂vrst

∂ζ
= Pr(η)Ps(ξ)

Pt(ζ)
dζ

. (3.118)

∂vrst
∂y and ∂vrst

∂z can be written in a similar manner. Using the grid metric derivatives ∂η
∂x ,

∂η
∂y , ∂η

∂z , etc., defined in Sec. 3.4.1, the volume integrals of the fluxes are computed at the

quadrature locations using the volume Jacobians and these update the conserved variables.

For the volume integrals of the fluxes, no rotation needs to be performed and the conserved

variables in physical coordinates are used to compute the flux terms in physical coordinates

using a separate flux calculation function in WARPX where the directions (0,1,2) need to

be specified so that the fluxes are computed in the actual x-, y-, and z-directions.

_eqnSet.flux(0, xm, _ql, _qauxl, _fl); // X-flux
_eqnSet.flux(1, xm, _ql, _qauxl, _fr); // Y-flux
_eqnSet.flux(2, xm, _ql, _qauxl, _df); // Z-flux

70

For the sources, Gaussian quadrature is used to multiply the set of basis functions and

the volume Jacobian with the source term computed at the quadrature location. This is

then used to update the values of the conserved variables with the source terms. Again, no

rotation needs to be performed for inclusion of the source terms as long as the conserved

variables used are in the physical coordinate system.

Separating the spatial- and temporal-dependent terms, the formulation obtained based

on Eqs.(3.84-3.87) is

dQ
dt

= M−1Lr(Q) (3.119)

Lr(Q) = −(B1 + C1 +D1) +B2 + C2 +D2 + E (3.120)

which can be used with any time integration scheme for the discontinuous Galerkin method.

3.4.8 General Geometry Test Cases

A number of test cases are performed using Euler and Maxwell’s equations in skewed grids,

star-shaped grids and circular grids in 2-dimensions. For the Euler equations, a pulse is

initialized such that it uses the initial condition shown in Fig. 3.7. This initial condition is

applied to fluid density and pressure while all momenta are initialized to zero. The same

initial condition is used for all the general geometry configurations presented in Figs. 3.8 to

3.12 where the benchmark solution is for a rectangular Cartesian grid shown in Fig. 3.8. All

simulations for the general geometry test cases are performed at a grid resolution of 20×20

cells. Periodic boundary conditions are used.

Figure 3.9 shows a solution of the density pulse in a skewed grid after it has propagated

1/4 of a period. The skewness in the grid is described using

vx = x+ α∆x cosπb1(x− c1) sin 2πb2(y − c2) (3.121)

vy = y + α∆y sin 2πb1(x− c1) cosπb2(y − c2) (3.122)

where (vx, vy) represent the vertices, (x, y) represent logical cell values that span the domain

size [XL, XU] × [YL, YU]. b1 = 1/(XU − XL), b2 = 1/(YU − YL), c1 = (XU + XL)/2,

71

c2 = (YU + YL)/2, and α is the skewness coefficient.

The star-shaped grid in Fig. 3.10 defines the vertices using the following routine

r = if(x*x+y*y>1.e-10, sqrt(x*x+y*y), 1.e-10)
d = if(sqrt(x*x)>sqrt(y*y),sqrt(x*x),sqrt(y*y))
x1 = r1*d*x/r
y1 = r1*d*y/r
x1_eff = if(sqrt(x1*x1)>1.e-10, x1, 1.e-10)
theta = atan(sqrt(y1*y1) / x1_eff)
r2 = 1 + 0.2*cos(6*theta)
x2 = x1*r2
y2 = y1*r2
w = d*d
v_x = w*x2 + (1.0-w)*x/sqrt(2.0)
v_y = w*y2 + (1.0-w)*y/sqrt(2.0)

The circular grid[46] in Fig. 3.11 defines the vertices using the following routine

r = rad
s = r/sqrt(2.0)
ymax = s*sqrt(2.0-x*x)
fr = 1.0001
ystretch = s*(y-y0)
xmax = s*sqrt(2.0-y*y)
xstretch = s*(x-x0)
ycirc = if(x*y>0,(y-x)/(fr-abs(x))*(ymax-s*abs(x))+s*x,

(y+x)/(fr-abs(x))*(ymax-s*abs(x))-s*x)
xcirc = if(x*y>0,(x-y)/(fr-abs(y))*(xmax-s*abs(y))+s*y,

(x+y)/(fr-abs(y))*(xmax-s*abs(y))-s*y)
v_x = if(1.0>=abs(x/y), xstretch, xcirc)
v_y = if(1.0>=abs(x/y), ycirc, ystretch)

where rad is the user-specified radius of the circular grid.

The circular grid in Fig. 3.12 defines the vertices using the following routine

x1 = 2.0*abs(x-0.5)
y1 = 2.0*abs(y-0.5)
d1 = sqrt((1.0+1.0/tan(0.5*pi*x1))^2 - cos(0.25*pi*x1)^2) - sin(0.25*pi*x1)
d2 = sqrt((1.0+1.0/tan(0.5*pi*y1))^2 - cos(0.25*pi*y1)^2) - sin(0.25*pi*y1)
f1 = -(cos(0.5*pi*x1)+ sqrt((1.0+sin(pi*x1))/(cos(.25*pi*x1))^2

- (sin(0.5*pi*x1))^2))

72

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 3.7: Euler pulse initial condition to
test propagation using several general geom-
etry configurations.

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

1.005

1.020

1.035

1.050

1.065

1.080

1.095

1.110

1.125

Figure 3.8: Euler pulse plot of fluid den-
sity after 0.25 transit times for rectangular
Cartesian grid.

f2 = -(cos(0.5*pi*y1)+ sqrt((1.0+sin(pi*y1))/(cos(.25*pi*y1))^2
- (sin(0.5*pi*y1))^2))

xp = if(x1==1.0, cos(0.25*pi*y1),
if(y1==1.0, sin(0.25*pi*x1),

if(x1==0.0 and y1==0.0, 0.0,
if(x1==0.0, 0.0,

if(y1==0.0, (1.0+1.0/tan(0.5*pi*x1))-d1,
(sqrt(4.*d1^2*(1.0-f1/d1^2-f2/d2^2)
- (f1-f2)^2/d2^2)-(2.0*d1+d1/d2^2*(f1-f2)))/
(2.0*(1.0+d1^2/d2^2)))))))

yp = if(x1==1.0, sin(0.25*pi*y1),
if(y1==1.0, cos(0.25*pi*x1),

if(x1==0.0 and y1==0.0, 0.0,
if(x1==0.0, (1.0+1.0/tan(0.5*pi*y1))-d2,

if(y1==0.0, 0.0, xp*d1/d2 + 0.5*(f1-f2)/d2)))))
v_x = xp*sign(x-0.5)
v_y = yp*sign(y-0.5)

All test cases show that the Euler pulse propagation is captured appropriately. Fig-

ure 3.11 has relatively uniform sized cells throughout the domain, but the diagonal elements

can become heavily skewed. Figure 3.12 has highly deformed cells near the boundary, so

this makes the solution less accurate as it approaches the boundary. Similar test cases are

performed for Maxwell’s equations to ensure that the curl operators obey the right-hand-

73

-0.5 0.0 0.5

-0.5

0.0

0.5

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

1.005

1.020

1.035

1.050

1.065

1.080

1.095

1.110

1.125

Figure 3.9: Left plot shows the skewed grid. Right plot shows the Euler pulse fluid density
after 0.25 transit times for skewed grid with α = 3.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y

1.005

1.020

1.035

1.050

1.065

1.080

1.095

1.110

1.125

Figure 3.10: Left plot shows the star-shaped grid. Right plot shows the Euler pulse fluid
density after 0.25 transit times for star-shaped grid.

74

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

1.005

1.020

1.035

1.050

1.065

1.080

1.095

1.110

1.125

Figure 3.11: Left plot shows the circular grid. Right plot shows the Euler pulse fluid density
after 0.25 transit times for circular grid.

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

1.005

1.020

1.035

1.050

1.065

1.080

1.095

1.110

1.125

Figure 3.12: Left plot shows another circular grid. Right plot shows the Euler pulse fluid
density after 0.25 transit times for circular grid 2.

75

rule for the general geometry algorithm. Following the 2-dimensional general geometry test

cases, 3-dimensional Euler and Maxwell pulses are initiated in a cylindrical domain and are

tested for the same initial conditions. The cylindrical grid is rotated in all 3 orientations to

ensure that the propagation in all directions is correct. A single-block cylindrical grid that is

used to model some 3-dimensional two-fluid plasma configurations is described in Fig. 3.13

where the physical coordinates are mapped to the computational domain using a functional

mapping. In the computational domain, the domain and cells are logical cubes. The heavily

skewed cells on each of the diagonals as seen in Fig. 3.13 could pose a problem in produc-

ing grid effects within the solution or could make implementation of limiters challenging.

Yet another 3-D grid is described in Fig. 3.14 where the heavily skewed elements near the

boundaries could pose a challenge if the solution reaches or interacts with the boundary.

76

Figure 3.13: A single-block 3-dimensional cylindrical grid that is used for 3-D two-fluid
plasma configurations in this dissertation. This grid is mapped to a logical cube in compu-
tational space. Note distorted cells along diagonals.

77

Figure 3.14: A single-block 3-dimensional cylindrical grid that is used for 3-D two-fluid
plasma configurations in this dissertation. This grid is mapped to a logical cube in compu-
tational space. Note distorted near boundaries.

78

Chapter 4

COMPARISONS BETWEEN RKDG AND WAVE PROPAGATION
METHODS

The plasma fluid equations studied in this dissertation differ from previously published

work due to the presence of dispersive source terms in the non-linear balance laws. The ap-

propriate treatment of advection and dispersion terms and the complications that arise from

the presence of significant dispersion in plasma models provide a unique set of comparisons

between the wave propagation and the RKDG methods. There is very little literature re-

garding the numerical solution of hyperbolic equation systems that contain dispersive source

terms without the presence of any explicit dissipation[1, 2]. Hakim, Loverich and Shumlak[1]

implement the high resolution wave propagation method for the two-fluid plasma model

studied in this paper. Loverich and Shumlak[2] implement the Runge-Kutta discontinuous

Galerkin method for the two-fluid plasma model. Neither of these references address the ef-

fect of the physical dispersive source terms of the two-fluid plasma model on the accuracy of

the numerical methods. A comparison of the wave propagation and discontinuous Galerkin

methods to determine which of the two algorithms provides more accurate solutions of the

two-fluid plasma model is the main focus of this paper.

The high-resolution wave propagation method and the RKDG method are compared for

benchmark applications of the linear advection equation, Euler equations, and Maxwell’s

equations. The Euler and Maxwell’s equations are then combined into the two-fluid plasma

model and are compared for two-fluid applications. Details of these comparisons are pre-

sented in Ref.[47] while this chapter presents a summary of the comparisons. The two-fluid

model has dispersive source terms which makes it unique compared to traditional fluid

models that often have diffusive source terms.

79

4.1 Linear Advection Equation

The linear advection of a one-dimensional Gaussian pulse q(x, 0) = e−10(x−1.5)2 is used to

compare the spatial order and computational effort for the wave propagation and RKDG

methods. This benchmark problem does not contain any source terms and is only included

to provide a reference to compare other applications that may not have the dispersive sources

of the two-fluid plasma model. The linear advection equation is

∂q

∂t
+
∂q

∂x
= 0. (4.1)

Periodic boundary conditions on a domain 1 < x < 5 are used. After propagating the pulse

one period though the domain the l2 norm of the error is computed by comparing to the

exact solution. The effective order of the method is computed by measuring the dependence

of the l2-norm on the grid spacing. In this test the time-step is kept constant. The l2-norm

is calculated by

||∆q||2 =

√√√√ 1
n

n∑
x=1

(q − q̃)2, (4.2)

where q is the numerical solution, q̃ is the analytical solution. The summation occurs over

every grid or quadrature point.

Figure 4.1 shows the measured l2-norms of the solutions obtained for different grid

resolutions with a time step that is lower than that of the 8th order RKDG method with

500 cells (∆t = 0.0003 is used). The slopes measured from the linear regions of the plot

are as shown in the second column of Table 4.1. The 8th order RKDG solution converges

to the analytical solution rapidly so the linear behavior is only noted at lower resolutions.

The table shows that the computed order of convergence exceeds the formal order of the

methods for this linear problem with a fixed ∆t. The fixed time step isolates the effect of

the spatial order. Figure 4.2 shows the l2-norms of the solutions obtained for different grid

resolutions with a variable time step that is chosen based on the maximum allowable CFL

number for the methods at each resolution. The slopes measured from the linear regions of

80

Method Order Order
(fixed ∆t) (maximum ∆t)

WAVE 1.9 1.9
RKDG 2nd order 2.7 2.0
RKDG 3rd order 3.4 3.2
RKDG 4th order 4.2 3.0
RKDG 8th order 8.0 3.1

Table 4.1: Slopes of l2-norm vs ∆x to determine spatial order of accuracy of the methods
for the linear advection equation.

the plot are as shown in the third column of Table 4.1. The table shows that the computed

order of convergence for the higher-order RKDG methods is restricted to approximately 3.5

for variable ∆t. This restriction is due to the temporal order of 3 chosen for all solutions

of the RKDG method. Figure 4.3 shows the computational effort of the two methods for

this problem. As expected, the wave propagation method requires the least computational

effort and higher-order RKDG methods require more computational effort. The effort is

linear with the number of grid points.

4.2 Euler Equations with Dispersive Source Terms

Due to the complexity of the full two-fluid plasma system it is difficult to investigate the

effects of dispersion on the full non-linear physics. In this section a simpler model is in-

troduced that allows for dispersion to be included with the Euler equations in the form

of dispersive source terms. This models the quasineutral ion cyclotron waves, which are

dispersive waves, in a uniform plasma with a magnetic field that is constant in space and

time. The momentum equation includes the force from a uniform transverse magnetic field,

which produces dispersive effects.

ρ

(
∂u
∂t

+ u
∂

∂x
u
)

+
∂p

∂x
= nqu×B (4.3)

= ρωcu× b̂ (4.4)

81

10-2 10-1

x∆

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2
m
r
o
n

−
l

wave
rkdg2

rkdg3

rkdg4

rkdg8

Figure 4.1: Log-log plots of l2-norms of solution as a function of ∆x for the linear advection
problem using the same time step to isolate the effect of the spatial order for all the numerical
methods - the wave propagation method, 2nd, 3rd, 4th, and 8th order RKDG. The slopes of
the lines are tabulated in Table 4.1 which shows that the numerical order for this problem
exceeds the formal order of the methods. The RKDG methods are also seen to be much
more accurate for the same cell spacing than the wave propagation method.

82

10-2 10-1

x∆

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2
m
r
o
n

−
l

wave
rkdg2

rkdg3

rkdg4

rkdg8

Figure 4.2: Log-log plots of l2-norms of solution as a function of ∆x for the linear advection
problem using the maximum allowable CFL number to set the time step for each of the
numerical methods - the wave propagation method, 2nd order RKDG, 3rd order RKDG,
4th order RKDG, and 8th order RKDG. The slopes of the lines are tabulated in Table 4.1
which shows that the numerical order of convergence for the higher order RKDG methods
is restricted by the temporal order of 3 that is chosen for all the RKDG solutions.

83

10-2 10-1

x∆

10-2

10-1

100

101

e
mit

−
U
P
C

wave
rkdg2

rkdg3

rkdg4

rkdg8

Figure 4.3: Log-log plots of computational time (sec) as a function of ∆x for the linear
advection problem solved by various numerical methods - the wave propagation method,
2nd, 3rd, 4th and 8th order RKDG. The wave propagation method takes less computational
effort than RKDG methods for the same grid resolution.

84

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.0

0.5

1.0

u

x1e-8

Figure 4.4: Initial condition with N = 9 that is used to approximate the step function. This
initial condition is used for all the results obtained in this section.

where ρ is the mass density, u = (u, v) is the fluid velocity, p is the pressure, B is a uniform

magnetic field, b̂ is the unit vector of B and ωc is the cyclotron frequency. The eigenvalues

of the source Jacobian are 0,0, and ±iωc. The non-zero imaginary eigenvalues indicates that

the system has undamped, nonpropagating oscillations which combined with the sound wave

leads to dispersive waves

ωn = ±
(
k2

nc
2
s + ω2

c

)1/2 (4.5)

where cs ≡
√
γp0/ρ0 is the speed of sound and kn is the wave number.

To initialize the simulation the fluid is perturbed with a velocity

u1(x) = u0
1

N∑
n=0

i

2n+ 1
eiknx (4.6)

with kn = 2π(2n + 1) and ωn computed from Eq. (4.5) and u0
1 is a constant. As N → ∞,

Eq. (4.6) represents a step function for the interval [0, 1]. With the perturbation of Eq. (4.6)

the exact solution for the linearized velocity u(x, t) is given by

ũ(x, t) = −
∞∑

n=0

u0
1

2n+ 1
sin(knx+ ωnt). (4.7)

The test problem is initialized using the exact solution for all perturbed variables with the

velocity given by Eq. (4.7). Figure 4.4 shows the initial condition for u0
1 = 10−8, N = 9

85

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u

x1e-8

Analytical
wave_100

rkdg2_50

rkdg3_33

0.30 0.36 0.42 0.48
x

0.0

0.3

0.6

0.9

1.2

1.5

u

x1e-8

Figure 4.5: Velocity at t = 3 for an effective resolution of 100 cells for the wave propagation
and RKDG methods, i.e., 100 cells for wave propagation, 50 for 2nd order RKDG and 33
for 3rd order RKDG. cs =

√
2 and ωc = 10. The bottom plot has an expanded scale to show

the details of the solution.

using γ = 2, ωc = 10, ρ0 = p0 = 1 and ωc = 10. For these values the sound speed is given by

cs =
√

2. Periodic boundary conditions are applied on a domain 0 < x < 1. A CFL number

of 1 is used for the wave propagation method and 1/(2p−1) is used for the RKDG method.

The temporal order of the RKDG method is 3rd order for this problem. Limiters are not

applied in either method and the solutions at t = 3 are compared to the exact solution.

Figures 4.5 and 4.6 compare the analytical solution to the wave propagation method

and to the RKDG method. The number of grid elements, h, is adjusted with the spatial

order, p, of the RKDG method so the effective resolution, hp, remains constant. Accuracy

is measured by taking an l2-norm. These figures along with Table 4.2 show that the wave

propagation method is more accurate than the 2nd, 3rd and 5th order RKDG methods while

all methods have the same effective resolution. The 8th order RKDG solution with only 12

cells, however, is more accurate than the wave propagation method.

The computational time required to advance the solution from t = 0 to t = 1 for each

86

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
u

x1e-8

Analytical
wave_100

rkdg5_20

rkdg8_12

0.30 0.36 0.42 0.48
x

0.0

0.3

0.6

0.9

1.2

1.5

u

x1e-8

Figure 4.6: Velocity at t = 3 with 100 cells for wave propagation, 20 for 5th order RKDG
and 12 for 8th order RKDG. cs =

√
2 and ωc = 10. The bottom plot has an expanded scale

to show the details of the solution.

Method l2-norm Computational time
to t = 1s

WAVE 100 2.6× 10−9 0.02
RKDG2 50 2.2× 10−8 0.03
RKDG3 33 1.2× 10−8 0.04
RKDG5 20 6.9× 10−9 0.07
RKDG8 12 2.3× 10−9 0.19

Table 4.2: l2-norm of velocity to quantify accuracy for each method, and computational
time required to advance the solution to t = 1s to quantify computational effort for the
dispersive Euler system using ωc = 10.

87

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u

x1e-8
Analytical
wave_100

rkdg3_33

0.500 0.525 0.550 0.575
x

0.50

0.75

1.00

1.25

1.50

u

x1e-8

Figure 4.7: Velocity at t = 3 with 100 cells for wave propagation and 33 for 3rd order
RKDG. These are for cs =

√
2 and ωc = 50. Using a larger ωc leads to phase errors for

the wave propagation method while the lower order RKDG method for the same effective
resolution is diffusive but has no phase error. The bottom plot has an expanded scale.

method is presented in Table 4.2. Each method has a different CFL stability limit, and each

is operated at its maximum CFL value. The solution of the wave propagation method is

more accurate as compared to the RKDG solutions while using less computational effort for

low ωc. However, when ωc is increased, the wave propagation method exhibits phase errors

in the solution. Figure 4.7 shows that the 3rd order RKDG solution using 33 cells is more

diffusive than the wave propagation solution at 100 cells, but the RKDG solutions do not

have phase errors even at lower orders. Figure 4.8 displays results for the wave propagation

method with 100 cells, the 8th order RKDG with 12 cells and the 16th order RKDG with

6 cells. Increasing the grid resolution of the wave propagation method from 100 cells to

500 cells reduces the phase error, as shown in Fig. 4.9, and going to even higher resolution

eliminates it.

The computational time required to advance the solution from t = 0 to t = 1 for each

method for ωc = 50 is presented in Table 4.3. Table 4.3 shows that the 16th order RKDG

88

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u

x1e-8

Analytical
wave_100

rkdg8_12

rkdg16_6

0.500 0.525 0.550 0.575
x

0.50

0.75

1.00

1.25

1.50

u

x1e-8

Figure 4.8: Velocity at t = 3 with 100 cells for wave propagation, 12 for 8th order RKDG
and 6 for 16th order RKDG. These are for cs =

√
2 and ωc = 50. Using a larger ωc leads to

phase errors for the wave propagation method. The bottom plot has an expanded scale.

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u

x1e-8
Analytical
wave_100

wave_500

0.500 0.525 0.550 0.575
x

0.50

0.75

1.00

1.25

1.50

u

x1e-8

Figure 4.9: Velocity at t = 3 with 100 cells as compared to 500 cells for the wave propagation
method. These are for cs =

√
2 and ωc = 50. The bottom plot has an expanded scale to

highlight the small phase error that is present even with 500 cells with large ωc.

89

Method l2-norm Computational time
to t = 1s

WAVE 100 2.2× 10−8 0.02
WAVE 500 2.2× 10−9 0.30
RKDG3 33 1.3× 10−8 0.04
RKDG8 12 2.3× 10−9 0.19
RKDG16 6 6.6× 10−10 0.30

Table 4.3: l2-norm of velocity to quantify accuracy for each method, and computational
time required to advance the solution to t = 1s to quantify computational effort for the
dispersive Euler system using ωc = 50.

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.0

0.5

1.0

u

x1e-8

Analytical
wave_100

wave_500

dg10_10

0.00 0.04 0.08 0.12 0.16 0.20
x

-0.8

-0.4

0.0

0.4

0.8

u

x1e-8

Figure 4.10: Velocity at t = 3 with 100 cells and 500 cells for the wave propagation method
as compared to 10 cells for the 10th order RKDG method. These are for cs =

√
2 and

ωc = 100. The bottom plot has an expanded scale to highlight the phase error that is
present even with 500 cells when a higher cyclotron frequency is used.

90

Method l2-norm Computational time
to t = 1

WAVE 100 2.7× 10−9 0.1
WAVE 500 1.0× 10−9 0.4
RKDG10 10 3.5× 10−10 0.18

Table 4.4: l2-norm of velocity to quantify accuracy for each method, and computational
time required to advance the solution to t = 1 to quantify computational effort for the
dispersive Euler system using ωc = 100.

solution with only 6 cells is more accurate than the 500 cell wave propagation method. The

16th order RKDG method with only 6 cells uses the same computational effort as the wave

propagation method with 500 cells. Table 4.3 also shows that the wave propagation method

converges to order 1.9 which is consistent with the algorithm’s ability to provide up to a

2nd order accuracy. For large ωc, the RKDG method provides a more accurate solution

even when it is run at a lower effective resolution using high spatial order. For comparable

accuracy with large ωc, the RKDG method uses less computational effort as compared to the

wave propagation method. The phase errors in the wave propagation method are caused by

the large source terms compared to the advection terms that result from increasing ωc. This

hypothesis is supported by measuring larger phase errors when the source term is increased

by setting ωc = 100 as compared to the ωc = 50 solution in Fig. 4.9. The ωc = 100 results

are shown in Fig. 4.10 and Table 4.4. In particular, the error for the 500 cell solution is

larger for the ωc = 100 solution than for the ωc = 50 solution. When the magnitude of the

source term becomes large compared to the advection terms in the equation system, the

wave propagation method produces phase errors. Increasing the source term strength for

a given resolution increases the error. Table 4.4 shows that a 10th order RKDG method

with 10 cells has higher accuracy and uses less computational effort than a 500 cell wave

propagation method when ωc = 100. Hence, the proper handling of source terms becomes

critical.

The wave propagation method uses the source term splitting described in Sec. 3.1, and

this splitting leads to the phase errors. The characteristic oscillation period caused by

91

0.0 0.2 0.4 0.6 0.8 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

u

x1e-8

Analytical
wave_100
wave_100_implicit

Figure 4.11: Velocity at t = 3 with 100 cells for the wave propagation method using source
splitting versus using an unsplit implicit source term update. These are for cs =

√
2 and

ωc = 50. The implicit source update is included to prove that source splitting is responsible
for the phase errors. However, the implicit solution is subject to severe diffusion.

the source terms is τc = 2π/ωc for the solution. The characteristic time for information

to propagate is τs = ∆x/cs. For the oscillation to be well resolved, τc must be sufficiently

larger than τs. For the case of the wave propagation method with 100 cells, this requirement

is violated because τc = 0.126 while τs = 0.071, which is not sufficient to resolve τs. The lack

of proper sampling leads to the phase error seen in Figs. 4.8 and 4.10. The characteristic

frequency of the sources introduces ω−1
c time-scales that must be resolved in addition to the

other time-scales in the system. The explicit time-step must be sufficiently small for proper

sampling of the source frequency such that ∆t < ω−1
c . To further support that the source

splitting causes the phase errors, an unsplit implicit source term update is implemented

for the wave propagation method using 100 cells with ωc = 50. The implicit source term

update is described by

Q(t+ ∆t) =
(
I− ∆t

2
JS

)−1 [
Q(t)−∆tL(Q(t)) +

∆t
2

JSQ(t)
]

(4.8)

where L represents the flux update. Figure 4.11 shows that while the implicit source term

solution is more diffusive, the phase errors are eliminated. Exploring unsplit source term

handling for the wave propagation method for equation systems with purely dispersive

source terms, without the diffusive nature of an implicit source term update, could make

the wave propagation method more robust to such phase error problems.

92

A von Neumann analysis is performed to specifically quantify the stability condition for

the source term update for the wave propagation method. It is noted that as long as the

condition

∆t ≤ 2
√

2
ωc

(4.9)

is satisfied, the wave propagation method with a Runge-Kutta source advance is stable in

the presence of large ωc. If a ∆t is chosen such that the stability condition in Eq. (4.9) is

satisfied, and the time-step accounts for the additional ω−1
c time-scale, the wave propagation

solution with 100 cells becomes diffusive. The wave propagation method generally becomes

diffusive with CFL numbers less than 1. This presents a numerical difficulty in resolving the

physical dispersions accurately while minimizing diffusive errors and requires a higher grid

resolution for the wave propagation method. Using higher order spatial representations with

the RKDG method solves this problem with less computational effort and greater accuracy

in the presence of large source terms.

4.3 Maxwell’s Equations

Maxwell’s equations are used to compare the wave propagation method to the discontinuous

Galerkin method in two dimensions. The reason for using this equation system for the

comparisons is because these equations form a part of the two-fluid plasma model that

described in Chapter 2. To satisfy the ∇ ·E and ∇ ·B divergence constraints, a hyperbolic

form of Maxwell’s equations is used[1, 14].

There are no source terms for this equation system. The problem involves initializing

a two-dimensional circular pulse in a rectangular domain with conducting wall boundary

conditions on all four boundaries. The pulse is initialized only in the magnetic field profile,

Bz while all other quantities are initialized to zero. The initial condition is set using a

Gaussian profile and is offset from the center of the domain to allow for asymmetries in the

solution. The initial condition is shown in Fig. 4.12.

A converged wave propagation solution at a resolution of 1000 × 1000 cells is used

for comparisons with several spatial orders for the RKDG method and for several grid

93

-0.4 -0.2 0.0 0.2 0.4
x

-0.4

-0.2

0.0

0.2

0.4

y

-0.4 -0.2 0.0 0.2 0.4
x

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

z
)
0.0

=
y,

x(
B

Figure 4.12: Initial conditions for out-of-plane magnetic field, Bz, used for Maxwell’s equa-
tions circular pulse.

resolutions for both the RKDG and the wave propagation methods. The cross-section of

the magnetic field, Bz, along the x-direction for y = 0 is compared among the methods

and with the highly resolved solution to determine accuracy. Figure 4.13 shows the wave

propagation solution compared at several grid resolutions. Figures 4.14 and 4.15 show

the wave propagation solution with 100 cells compared to solutions obtained using several

spatial orders with RKDG. Simulations are run to t = 0.8 where time is normalized by the

speed of light transit time across the domain.

The wave propagation solution with 100×100 cells differs significantly from the converged

solution. Therefore, a higher resolution is needed for the wave propagation method. With

300 × 300 cells the wave propagation method takes more computational effort than all

the RKDG solutions explored in Figs. 4.14 and 4.15. In Fig. 4.14 all solutions have the

same effective grid resolution. In Fig. 4.15, the RKDG solutions have lower effective grid

resolution than the 100×100 cells wave propagation method and still provide a more accurate

solution. The computational time required to advance the solution from t = 0 to t = 0.2

94

-0.4 -0.2 0.0 0.2 0.4
x

-0.05

0.00

0.05

0.10

0.15
z

)
0.0

=
y,

x(
B

Converged

wave_100x100

wave_300x300

Figure 4.13: Cross-section of the magnetic field at time, t = 0.8 with c = 1, for the
Maxwell’s equations circular pulse using the wave propagation method with 100× 100 cells
and 300× 300 cells.

-0.4 -0.2 0.0 0.2 0.4
x

-0.05

0.00

0.05

0.10

0.15

z
)
0.0

=
y,

x(
B

Converged
wave_100x100

rkdg2_50x50

rkdg4_25x25

0.1 0.2 0.3 0.4 0.5
x

0.02

0.04

0.06

0.08

0.10

z
)
0.0

=
y,

x(
B

Figure 4.14: Cross-section of the magnetic field at time, t = 0.8 with c = 1 for the Maxwell’s
equations circular pulse. The bottom plot has an expanded scale to show the details of the
solution. The wave propagation solution has a resolution of 100 × 100 cells, the 2nd order
RKDG uses 50× 50 cells and the 4th order RKDG uses 25× 25 cells.

95

-0.4 -0.2 0.0 0.2 0.4
x

-0.05

0.00

0.05

0.10

0.15

z
)
0.0

=
y,

x(
B

Converged
wave_100x100

rkdg9_5x5

rkdg16_2x2

0.1 0.2 0.3 0.4 0.5
x

0.02

0.04

0.06

0.08

0.10

z
)
0.0

=
y,

x(
B

Figure 4.15: Cross-section of the magnetic field at time, t=0.8 with c = 1 for the Maxwell’s
equations circular pulse. The bottom plot has an expanded scale to show the details of the
solution. The wave propagation solution has a resolution of 100 × 100 cells, the 9th order
RKDG uses 5× 5 cells and the 16th order RKDG uses 2× 2 cells.

Method l2-norm Computational time
to t = 0.2s

WAVE 100x100 7.7× 10−2 0.74
WAVE 300x300 1.3× 10−2 23.8
RKDG2 50x50 1.6× 10−2 2.9
RKDG4 25x25 8.6× 10−3 6.9
RKDG9 5x5 8.2× 10−3 8.2
RKDG16 2x2 8.9× 10−3 24.2

Table 4.5: l2-norm of Bz to quantify accuracy for each method, and computational time
required to advance the solution to t = 0.2s to quantify computational effort for Maxwell’s
equation circular pulse.

96

for each method is presented in Table 4.5. Table 4.5 shows that the RKDG method is more

accurate for this problem when using the same effective resolution as the wave propagation

method as well as when using a lower effective resolution compared to the wave propagation

method.

Since the 300 × 300 cell wave propagation solution provides a more accurate result

than the 100 × 100 cell wave propagation solution, the 300 × 300 cell result is used to

compare the computational effort of the two methods. Each method in Table 4.5 has a

different CFL stability limit, and each is operated at its maximum CFL value. The wave

propagation method, with a grid resolution of 300×300 cells in Fig. 4.13 takes 8 times more

computational effort than the 2nd order RKDG solution with 50× 50 cells in Fig. 4.14, 3.5

times more computational effort than the 4th order RKDG solution with 25 × 25 cells in

Fig. 4.14, 3 times more computational effort than the 9th order RKDG solution with only

5× 5 cells in Fig. 4.15, and approximately the same computational effort as the 16th order

RKDG solution with only 2× 2 cells in Fig. 4.15 to get a solution that is less accurate than

the higher-order RKDG solutions. Even at a very low grid resolution of only 2×2 cells, the

16th order RKDG solution provides a more accurate solution than the 100 × 100 and the

300× 300 cell results for the wave propagation method. It is more computationally efficient

to use the RKDG method for this problem.

4.4 Full Two-Fluid Plasma Model

Using the equations described in Chapter 2, comparisons of the two-fluid plasma model

are presented here for a 1-dimensional axisymmetric pulse, and a 1- and 2-dimensional

axisymmetric Z-pinch.

For axisymmetric problems, the divergence and curl operators in cylindrical coordinates

have terms proportional to 1/r. These additional terms are incorporated into the source

terms as geometric sources as described in Sec. 3.2.7. The boundary conditions are treated

in the manner described in Sec. 3.2.5.

97

0 2 4 6 8 10 12

x

0.8

1.0

1.2

1.4

1.6

1.8

2.0

i
ρ

Figure 4.16: Initial ion mass density for the two-fluid plasma soliton. Ion pressure, electron
mass density, and electron pressure have the same profile.

Method l2-norm Computational time
to t = 40

WAVE 512 1.0× 10−2 19.6
WAVE 1024 3.6× 10−3 43.2
RKDG2 256 4.5× 10−3 20.8
RKDG3 171 8.3× 10−4 9.96
RKDG4 128 4.6× 10−4 19.5
RKDG5 100 3.5× 10−4 10.3

Table 4.6: l2-norm of ion mass density to quantify accuracy for each method and computa-
tional time required to advance the solution to t = 40 to quantify computational effort for
the two-fluid soliton.

4.4.1 Two-Fluid Plasma Soliton in 1-Dimension

The two-fluid plasma model, is applied to one-dimensional soliton propagation[48] where

a pulse is initialized in the ion and electron densities and pressures as shown in Fig. 4.16.

The fluid pressures are initialized using fluid temperatures such that Ti = Te = 0.01 and

Bz = 1. All other fluid and field variables are initialized to zero. The ion-to-electron mass

ratio is 25. The ratio of the speed of light to the electron sound speed, c/cse = 2, and the

ratio of the speed of light to the ion sound speed, c/csi = 10. The speed of light is chosen

such that it is the fastest speed in the system. Periodic boundary conditions are used.

98

0 2 4 6 8 10 12
x

1.0

1.2

1.4

1.6

1.8

i
ρ

Converged
wave_512

rkdg2_256

rkdg4_128

0.5 1.0 1.5 2.0 2.5
x

0.96

0.98

1.00

1.02

1.04

i
ρ

Figure 4.17: The ion mass density, ρi, is compared for the two-fluid plasma soliton using
wave propagation and RKDG methods. The solution is shown at t = 40 with c = 1. The
wave propagation method uses 512 cells, RKDG 2nd order uses 256 cells, and RKDG 4th

order uses 128 cells so all methods have the same effective resolution. The bottom plot has
an expanded scale to show the details of the solution. The wave propagation method has
the largest phase errors.

99

0 2 4 6 8 10 12
x

1.0

1.2

1.4

1.6

1.8

i
ρ

Converged
wave_1024

rkdg3_171

rkdg5_100

0.5 1.0 1.5 2.0 2.5
x

0.96

0.98

1.00

1.02

1.04

i
ρ

Figure 4.18: The ion mass density, ρi, is compared for the two-fluid plasma soliton using
wave propagation and RKDG methods. The solution is shown at t = 40 with c = 1. The
RKDG 3rd order solution with 171 cells and the RKDG 5th order solution with 100 cells
provide a more accurate solution than the 1024 cell wave propagation method at double
the effective resolution. The bottom plot has an expanded scale to show the details of the
solution.

100

The wave propagation solution at a resolution of 5000 cells is chosen as the converged

solution and is used to compare the wave propagation method to the RKDG method. This

converged solution is compared to the 3rd order RKDG using 1000 cells to verify that

both methods converge to the same solution. Simulations are run to t = 40 where time

is normalized by the speed of light transit time across the domain. One full period of the

ion soliton occurs at t = 100. Figure 4.17 and Table 4.6 show that for the same effective

resolution of 512 cells, i.e. wave propagation with 512 cells, 2nd order RKDG with 256 cells

and 4th order RKDG with 128 cells, the RKDG method provides a more accurate solution

than the wave propagation method. Figure 4.18 shows that even when the resolution of the

wave propagation method is doubled to 1024 cells, the solution is less accurate than the

approximate effective resolution of 512 cells using 3rd, 4th, and 5th order RKDG methods.

Phase errors in the wave propagation method solution are evident in the expanded scale

plots of Figs. 4.17 and 4.18. These phase errors occur in the waves that are propagating

away from the initial pulse and result from source splitting just as with the quasineutral

ion cyclotron waves explored in Sec. 4.2.

The computational time required to advance the solution from t = 0 to t = 40 for each

method is presented in Table 4.6. Each method has different CFL stability limit, and each is

operated at its maximum CFL value. When using 1024 cells, the wave propagation method

takes 2 times the computational effort as compared to the 4th order RKDG method using

128 cells, and 4 times the computational effort as compared to the 5th order RKDG method

using 100 cells. There does not seem to be an obvious trend in the CPU times for the RKDG

method. This nonmonotonic variability in the CPU times is attributed to the stability

condition for the RKDG methods described in Ref.[26]. CFL≤ 1/(2p−1) is valid for spatial

order, p, as long as the temporal order is p + 1. For all DG spatial orders presented here,

a 3rd order Runge-Kutta time integration scheme is used because 2nd order Runge-Kutta

time integration is unstable for DG when p > 2. In order to use 3rd order Runge-Kutta

time integration with p > 2, the maximum allowable CFL number is more restrictive as

described in Ref.[26]. For this problem, the RKDG method provides a more efficient solution

when computational effort is taken into account as shown in Table 4.6. While increasing

the grid resolution eliminates the phase errors in the wave propagation method, the RKDG

101

0.0 0.1 0.2 0.3 0.4 0.5

r

-1.0

-0.5

0.0

0.5

1.0

1.5

z
B

Figure 4.19: Initial condition for axial magnetic field for the axisymmetric two-fluid pulse.

method is more computationally efficient for this problem. Two-dimensional applications

of a two-fluid soliton produce similar results.

4.4.2 Axisymmetric Two-Fluid Plasma Pulse in 1-Dimension

The two-fluid equations are applied to an axisymmetric one-dimensional problem where a

pulse is initialized in the axial magnetic field, Bz, as shown in Fig. 4.19. The electron and

ion densities and pressures are initially constant throughout the domain with all other fluid

and electromagnetic terms initialized to 0. The ion-to-electron mass ratio is 2.5 to minimize

negative pressure errors and allow for faster evolution. The ratio of the speed of light to

the electron sound speed, c/cse = 35, and the ratio of the speed of light to the ion sound

speed, c/csi = 55. Axis boundary conditions are used on the left edge of the domain while

conducting wall boundary conditions are used on the right edge.

The wave propagation solution at a resolution of 10, 000 cells is chosen as the converged

solution and is used to compare the wave propagation method to the RKDG method. This

converged solution is compared to the 3rd order RKDG using 1000 cells and it is verified

that both methods converge to the same solution. The fluid azimuthal velocity, vφ, shows

the largest variation among the methods. For this reason, the electron azimuthal velocity

is chosen for the comparisons. Simulations are run to t = 0.8 where time is normalized

102

Figure 4.20: The electron fluid azimuthal velocity, vφ, is compared for the axisymmetric
two-fluid pulse using wave propagation and RKDG methods. The solution is shown at
t = 0.8 with c = 1. The wave propagation method uses 100 cells, RKDG 3rd order uses 33
cells and RKDG 5th order uses 20 cells so all methods have approximately the same effective
resolution. The bottom plot has an expanded scale to show the details of the solution. At
the same effective resolution, the wave propagation method performs poorest.

103

Figure 4.21: The electron fluid azimuthal velocity, vφ, is compared for the axisymmetric
two-fluid pulse using wave propagation and RKDG methods. The solution is shown at
t = 0.8 with c = 1. The RKDG 5th order solution uses 10 cells with an effective resolution
that is 1/4 that of the wave propagation method which uses 200 cells. The bottom plot
has an expanded scale to show the details of the solution. Even with a lower effective grid
resolution that is 1/4 the resolution of the wave propagation method, the RKDG method
provides a more accurate solution than the wave propagation method.

104

Method l2-norm Computational time
to t = 0.4s

WAVE 100 3.3× 10−3 0.04
WAVE 200 1.7× 10−3 0.14
RKDG3 33 4.2× 10−5 0.07
RKDG5 20 3.6× 10−5 0.09
RKDG5 10 9.9× 10−5 0.03

Table 4.7: l2-norm of electron azimuthal velocity to quantify accuracy for each method, and
computational time required to advance the solution to t = 0.4s to quantify computational
effort for the two-fluid pulse.

by the speed of light transit time across the domain. Figure 4.20 and Table 4.7 show that

for the same effective resolution of 100 cells, i.e. wave propagation with 100 cells, 3rd order

RKDG with 33 cells and 5th order RKDG with 20 cells, the RKDG method provides a

more accurate solution than the wave propagation method. Figure 4.21 shows that even

when the resolution of the wave propagation method is doubled to 200 cells, the solution

is less accurate than the effective resolution of 100 cells using 3rd and 5th order RKDG

methods. Even the 5th order RKDG method using only 10 cells, i.e. 1/4 the effective

resolution of the 200 cell wave propagation method, provides a more accurate solution than

the wave propagation method with 200 cells as is seen from Table 4.7. The computational

time required to advance the solution from t = 0 to t = 0.4 for each method is presented

in Table 4.7. Each method has different CFL stability limit, and each is operated at its

maximum CFL value. When using 200 cells, the wave propagation method takes 2 times

the computational effort as compared to the 3rd order RKDG method using 33 cells, and 1.6

times the computational effort as compared to the 5th order RKDG method using 20 cells.

The 5th order RKDG method using only 10 cells uses approximately 1/5 the computational

effort of the 200 cell wave propagation method and still provides a more accurate solution.

For this problem, the RKDG method provides a more efficient solution when computa-

tional effort is taken into account as shown in Table 4.7. It is seen that the wave propagation

solutions are slightly diffusive for the fluid variables. This can be attributed to the two-fluid

plasma model containing disparate wave speeds in the system, namely the fluid speeds of

105

sound and the speed of light. As a result, information propagating at slower characteristic

speeds in the system can be diffused. Such diffusion is not seen in the RKDG solutions be-

cause the higher spatial and temporal order of the RKDG method provides more accurate

solutions even at lower grid resolutions.

4.4.3 Axisymmetric Z-Pinch Equilibrium in 1-Dimension

The two numerical methods are compared for a steady-state application of the two-fluid

plasma model - the one-dimensional, axisymmetric Z-pinch equilibrium problem. The sim-

ulation is initialized using

p0 =
J2

0

1− α

(
1
4
R2

p − 12R4
p +

4
3
128R6

p

)
(4.10)

Jzi = 0 (4.11)

Jze =

 J0

(
1− 64r2

)
if r < Rp

0 otherwise
(4.12)

Bφ =

 J0

(
1
2r − 16r3

)
if r < Rp

J0

(
1
2Rp − 16R3

p

) Rp

r otherwise
(4.13)

p =

 p0 − J2
0

(
1
4r

2 − 12r4 + 4
3128r6

)
if r < Rp

p0 − J2
0

(
1
4R

2
p − 12R4

p + 4
3128R6

p

)
otherwise

(4.14)

where Rp is the pinch radius, ρi = (mi/me)ρe = mip/p0 and pi = pe = 1
2p. In these

simulations, Rp = 1
8 , α = 1

10 and J0 = 1
10 . The ion-to-electron mass ratio is 25. All

remaining variables are initialized to 0. The electron and ion density profiles shift radially

a small amount to produce a radial electric field as the initialization adjusts to find an

equilibrium.

Axis boundary conditions are used on the left edge of the domain, and conducting wall

boundary conditions are used on the right edge.

The wave propagation method is compared to the 2nd, 3rd, 5th and 8th order RKDG

methods. The methods are compared for their abilities to maintain equilibrium. The

results shown in Fig. 4.22 are at a characteristic transit time of 50 on a domain r = 0

106

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

e
n

Analytical
wave_128

rkdg2_64

rkdg3_40

0.00 0.02 0.04
r

0.80

0.85

0.90

0.95

1.00

e
n

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

φ
B

Analytical
wave_128

rkdg2_64

rkdg3_40

0.06 0.08 0.10 0.12 0.14
r

0.90

0.93

0.96

0.99

φ
B

Figure 4.22: Electron number density and azimuthal magnetic field as functions of radius
after 50 characteristic transit times are shown for the two-fluid axisymmetric Z-pinch equi-
librium. The wave propagation method uses 128 cells, RKDG 2nd order uses 64 cells and
RKDG 3rd order uses 40 cells so all methods have approximately the same effective resolu-
tion. The solution of the wave propagation method is diffusive compared to the 3rd order
RKDG and the 2nd order RKDG is even more diffusive. All values normalized to the initial
peak values. Lower plots have an expanded scale to show the details of the solution.

to r = 1 = 16rLi with a conducting wall on the right boundary where rLi is the ion

Larmor radius. The parameters used here are γ = 5/3, speed of light c = 1.0, ion and

electron charge-to-mass ratios of qi/mi = 10, qe/me = 250, ion-to-electron mass ratio of

mi/me = 25, ion Larmor radius-to-domain length of rLi/x0 = 1/16, and ion skin depth-to-

domain length of δi/x0 = 1/10. At a characteristic transit time of 20, the 2nd order RKDG

and wave propagation solutions are diffusive while the 3rd order RKDG solution maintains

equilibrium. The higher-order RKDG solutions, i.e. solutions greater than 2nd order, hold

equilibrium better than the wave propagation method for the same effective resolution.

When the grid resolution of the wave propagation method is doubled from 128 cells to

256 cells, it requires more computational effort than the 3rd order RKDG method with 40

cells while still being more diffusive than the 3rd order RKDG solution. Investigating this

107

0.0 0.2 0.4 0.6 0.8 1.0
r

0.0

0.2

0.4

0.6

0.8

1.0

e
n

Analytical
wave-256
rkdg5-15
rkdg8-8

0.00 0.02 0.04
r

0.80

0.85

0.90

0.95

1.00

e
n

0.0 0.2 0.4 0.6 0.8 1.0
r

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

φ
B

Analytical
wave-256
rkdg5-15
rkdg8-8

0.06 0.08 0.10 0.12 0.14
r

0.90

0.93

0.96

0.99

φ
B

Figure 4.23: Electron number density and azimuthal magnetic field as functions of radius
after 50 characteristic transit times are shown for the two-fluid axisymmetric Z-pinch equi-
librium. The wave propagation method uses 256 cells, RKDG 5th order uses 15 cells and
RKDG 8th order uses 8 cells so the effective resolutions of the RKDG solutions are about
1/3 and 1/4 that of the wave propagation solution. The low resolution, high spatial order
RKDG solution holds equilibrium better than the wave propagation at 256 cells. All values
normalized to the initial peak values. Lower plots have an expanded scale to show the
details of the solution.

further in Fig. 4.23 with 5th order RKDG using only 15 cells and 8th order RKDG using

only 8 cells it is seen that even at a resolution of 256 cells, the wave propagation method

is diffusive as compared to the higher-order RKDG solutions with 1/3 and 1/4 the effective

grid resolution. The RKDG method at higher spatial orders holds equilibrium better than

the wave propagation method. It is seen from Table 4.8 that the 3rd order RKDG solution

provides the most accurate solution for the same effective grid resolution as the 128 cell

wave propagation method. The computational time required to advance the solution for 50

characteristic transit times for each method is presented in Table 4.8. Each method has a

different CFL stability limit, and each is operated at its maximum CFL value.

The full two-fluid plasma model has imaginary eigenvalues for the source terms. Per-

forming a source splitting for the wave propagation method causes the equilibrium decay.

108

Method l2-norm Computational time
to t = 50s

WAVE 128 8.8× 10−2 3.7
WAVE 256 2.4× 10−2 13.8
RKDG2 64 1.5× 10−1 3.8
RKDG3 40 4.8× 10−3 5.4
RKDG5 15 1.5× 10−2 6.7
RKDG8 8 1.6× 10−2 5.7

Table 4.8: l2-norm of electron number density to quantify accuracy for each method, and
computational time required to advance the solution to 50 characteristic transit times to
quantify computational effort for the two-fluid 1-dimensional Z-pinch.

Bale et al.[18] discuss this problem and the treatment of the source terms. They determine

that the source term handling through the process of splitting applied to the wave propaga-

tion method might not work well for solutions close to a steady-state. At equilibrium, the

variation in fluxes must balance the source terms exactly and using split methods when the

fluxes and sources are significant can introduce errors in the solution. Bale et al. suggest an

alternate solution which involves only splitting the deviation from steady-state into waves.

This is done by a process of distribution of the eigen-decomposition of the source terms into

the neighboring cells based on the sign of the corresponding eigenvalues. This, however,

is not applicable to the case of the two-fluid plasma model. The source Jacobian for this

equation system has all imaginary eigenvalues, so this unsplit method is not suitable here.

4.4.4 Axisymmetric Z-Pinch Equilibrium in 2-Dimensions

A two-dimensional Z-pinch problem is investigated using the two-fluid plasma model. A

perturbation is specified and evolved in time to see the resulting evolution of a two-fluid

drift-turbulence instability. The wave propagation and RKDG methods are compared for

their abilities to capture the physics appropriately. The computational expense is also

compared for the two methods.

The axisymmetric Z-pinch simulations use the same initial conditions and perturbations

109

Figure 4.24: Initial conditions for ion density for a two-fluid Z-pinch equilibrium in 2-
dimensions.

as in Ref.[3].

Jzi = 0 (4.15)

Jze =

 J0 if r < Rp

0 otherwise
(4.16)

Bφ =

 1
2rµ0J0 [1 + ε sin(2πkz)] if r < Rp

1
2

R2
p

r µ0J0 [1 + ε sin(2πkz)] otherwise
(4.17)

p =

 p0 − 1
4µ0J

2
0 r

2 if r < Rp

αµ0J
2
0R

2
p otherwise

(4.18)

where Rp is the pinch radius, p0 = 1
4(1 + α)µ0J

2
0R

2
p, ρi = (mi/me)ρe = p/p0 and pi = pe =

1
2p. In these simulations, Rp = 1

4 , α = 1
10 , J0 = 1, ε = 1/100 and k denotes the wave

number. The ion-to-electron mass ratio is 25. In two-dimensions, the initial ion density

profile is shown in Fig. 4.24.

Axis boundary conditions are implemented on the left edge and conducting wall bound-

ary conditions are implemented on the right edge, just like the one-dimensional case. For

the RKDG method, the axis and conducting wall boundary conditions are treated in the

manner described in Sec. 3.2.5. Periodic boundary conditions are implemented on the top

110

Figure 4.25: Ion density after 2 Alfvén transit times for the two-fluid axisymmetric Z-pinch
in 2-dimensions using the wave propagation method with a grid resolution of 1000 × 1000
cells. This high resolution solution is used as a benchmark.

and bottom edges.

A sinusoidal perturbation as shown in Eq. (4.17) with k = 8 is applied to the azimuthal

magnetic field, Bφ. The solution is then allowed to evolve to 2 Alfvèn transit times. A high

resolution solution using a 1000×1000 cell wave propagation method is shown in Fig. 4.25 as

a benchmark for the wave propagation and RKDG solutions. The high resolution solution

is considered the converged solution for this problem and it is compared to a 500× 500 cell

RKDG solution, 1000× 1000 cell RKDG solution, and a 2000× 2000 cell wave propagation

solution to ensure that both methods converge to the same solution. As the grid resolution

is increased beyond the 1000 × 1000 cell wave propagation solution, the evolution of the

instability does not change. The evolution for the wave propagation method with resolutions

of 128 × 128 and 256 × 256 is shown in Fig. 4.26. This is compared to a 2nd order RKDG

solution with resolutions of 64 × 64 and 128 × 128 and a 3rd order RKDG solution with a

resolution of 128 × 128 as shown in Fig. 4.27. The plots shown are after 2 Alfvén transit

times.

The drift parameter for this system is ve/vsi ≈ 8, where ve is the electron drift velocity

and vsi is the ion sound speed. The ratio of the pinch radius to the ion Larmor radius,

rp/rLi, is approximately 3. Comparing Figs. 4.26 and 4.27 it is seen that both the wave

111

Figure 4.26: Ion density after 2 Alfvén transit times for the two-fluid axisymmetric Z-pinch
in 2-dimensions using the wave propagation method with a grid resolution of 128×128 (top
plot) and 256× 256 (bottom plot).

112

Figure 4.27: Ion density after 2 Alfvén transit times for the two-fluid axisymmetric Z-pinch
in 2-dimensions using the 2nd order RKDG method with a grid resolution of 64 × 64 (top
plot), 2nd order RKDG with 128 × 128 cells (middle plot), and 3rd order RKDG with
128 × 128 cells (bottom plot). It is seen that the 3rd order RKDG solution is very similar
to the 2nd order solution with 128 × 128 cells and is slightly closer to the high resolution
solution.

113

0 1 2 3 4 5

aτ/

10-4

10-3

10-2

rg
γ

wave_128

wave_256

rkdg2_64

rkdg2_128

wave_1000

Figure 4.28: Growth rates for the perturbation in the magnetic field as a function of the
time, t/τa, where τa is the Alfvén transit time. It is observed that increasing the resolution
makes the instability growth rates approach that of the high resolution solution.

114

propagation method and the RKDG method (at 2nd and 3rd order) capture 8 wavelengths

of the short-wavelength instability. This is better seen from the instability growth rates

of Fig. 4.28 where the perturbation in magnetic field is measured against an unperturbed

solution[3]. The growth rate of the instability is computed using

γgr =
∫∫
|∆B| 2πrdrdz (4.19)

where ∆B refers to the difference in magnetic field between the solutions of a perturbed equi-

librium and an unperturbed equilibrium. The unperturbed equilibrium solution is needed to

account for oscillations that occur in the system since the equilibrium is not a true two-fluid

equilibrium initially.

Figure 4.28 shows that increasing the resolution causes the instability to set in sooner

in time and have a greater slope. An increase in the resolution shows convergence towards

the high resolution solution. The growth rates show that the 64 × 64 cell RKDG solution

has the largest variation from the high resolution solution, while the 128× 128 cell RKDG

solution has the least. The instability is least to best resolved in the following order -

64× 64 cell 2nd order RKDG solution, 128× 128 cell wave propagation solution, 256× 256

cell wave propagation solution, 128 × 128 cell 2nd order RKDG solution, 128 × 128 cell

3rd order RKDG solution. For the same effective resolution of 256 × 256, the 2nd order

RKDG method takes about 1.3 times the computational effort of the wave propagation

method. The wave propagation solution at a resolution of 256 × 256 takes about 9 times

the computational effort of the 128 × 128 cell wave propagation solution. The 2nd order

RKDG solution at a resolution of 128× 128 takes about 7 times the computational effort of

the 64× 64 cell RKDG solution. At the same effective resolution of 256× 256, the growth

rates of the RKDG and wave propagation solutions are comparable. The short wavelength

instability is better resolved at higher grid resolutions.

Comparing the 2nd and 3rd order RKDG solutions at a resolution of 128×128 in Fig. 4.27,

it is seen that the 3rd order solution is very similar to the 2nd order solution while only being

slightly closer to the high resolution solution even though the 3rd order solution uses the

high-order limiters from Ref.[40]. The computational effort of the 3rd order solution is about

115

10 times that of the 2nd order solution for this resolution. Doubling the grid resolution while

using 2nd order for the RKDG method provides a more converged solution and only uses

about 7 times greater computational effort. There might not be an advantage of going to

higher-order RKDG solutions for this problem because the application of limiters locally

reduces the solution to 1st order when sharp gradients are present. The solutions clearly

have sharp gradients throughout the domain.

116

Chapter 5

BENCHMARKING COLLISIONLESS AND COLLISIONAL
TWO-FLUID PLASMA MODEL

5.1 Introduction

The full two-fluid plasma model is benchmarked to previously published results in this

chapter following which it is used to obtain two-fluid results that are not captured by

reduced fluid models.

Divergence errors are a common problem in plasma models and have been studied to a

large extent for the MHD equations[49, 50]. Some of the methods previously explored in-

clude the 8-wave formulation for the MHD equations[51] where an eighth wave accounts for

the divergence of the magnetic field. In problems with strong shocks, this scheme can pro-

duce incorrect jump conditions and consequently can lead to incorrect results demonstrated

in Ref.[49]. Yet another scheme commonly used in MHD is the constrained transport[52],

and central difference schemes which require a finite difference discretization on a staggered

grid that maintains the∇·B constraint. Additional methods include projection schemes[53],

which may introduce errors in the presence of discontinuities in the solution, and mixed po-

tential formulations of Maxwell’s equations, which require proper treatment of the Lorentz

gauge condition.

Divergence errors in MHD can be large in regions of shocks. However, for most applica-

tions of the two-fluid plasma model, shocks occur in the ion fluid and not in the magnetic

field, and only occasionally in the electron fluid. The charge separation that results in

the presence of shocks could lead to numerical errors due to the solution of the Riemann

problem at cell interfaces and the application of limiters to reduce the order in the vicinity

of the shocks. This could introduce numerical errors in the electric field that can affect

the remaining variables. Therefore, the ∇ ·B constraint is usually not problematic around

shocks. The ∇ · E constraint however, can be rather large in regions of shocks. The ∇ ·B

117

constraint becomes problematic in regions of strong magnetic field dynamics such as fast

reconnection.

The divergence constraints are satisfied initially for all the problems investigated in

this dissertation, but the numerical methods could introduce small errors in the divergence

constraints that could grow with time. This could result from insufficient grid resolution,

or insufficient spatial order potentially brought about by the use of limiters to truncate

the order of the numerical method in regions of shocks. Two problems are investigated for

divergence errors and the effect of the divergence corrections using the described perfectly

hyperbolic technique. The first is the application of the full two-fluid plasma model to an

electromagnetic plasma shock to explore the effect of ∇ ·E errors in the presence of shocks.

For the electromagnetic plasma shock, higher spatial orders of the discontinuous Galerkin

method are not necessarily advantageous since the limiters reduce the order of the solution

to 1 in regions of sharp gradients. Therefore, a spatial order of 2 is most suitable for this

problem. The second application uses the full two-fluid plasma model and Hall-MHD to

simulate magnetic reconnection where the tearing and reconnecting magnetic field lines can

lead to ∇ ·B errors even if the divergence constraints are maintained initially.

Following a study of divergence errors of the two-fluid plasma model, the differences

between the ideal and non-ideal two-fluid model using the magnetic reconnection problem

and axisymmetric Z-pinch are explored.

5.2 Ideal Two-Fluid Electromagnetic Shock and Divergence Errors

An electromagnetic shock is initialized using the conditions described in Eq. (5.1) on the left

half and right half of the domain. A realistic ion-to-electron mass ratio of 1836 is chosen

for the simulations. The simulations are run using a grid resolution of 2000 cells for a grid

from [0, 1] where the shock is initialized at x = 0.5. The normalized speed of light is 1 such

that the ratio of the light speed to the ion sound speed is c/csi = 155, the light speed to

the electron sound speed is c/csi = 3.6, and the ratio of the light speed to the Alfvén speed

is c/vA = 80. Simulations are run to 10 light transit times. The initial conditions are the

118

same as Ref.[54].



ne

ue

ve

we

Pe

ni

ui

vi

wi

Pi

Ex

Ey

Ez

Bx

By

Bz

Φ

Ψ



= left of shock:



1

0

0

0

0.5× 10−4

1

0

0

0

0.5× 10−4

0

0

0

0.75× 10−2

0

1× 10−2

0

0



, right of shock:



0.125

0

0

0

0.05× 10−4

0.125

0

0

0

0.05× 10−4

0

0

0

0.75× 10−2

0

−1× 10−2

0

0



. (5.1)

∇ · B does not produce divergence errors for this problem since it is always 0 for the

1-dimensional case. However, in the presence of shocks, ∇ ·E errors become significant and

need to be treated appropriately. For Hall-MHD, the charge neutrality condition minimizes

the effect of numerical ∇ ·E errors so this divergence constraint usually only poses an issue

for the full two-fluid plasma model in the presence of shocks.

Figure 5.1 shows the evolution of the ion and electron number densities after 0.125

Alfvén transit times (τa) for solutions without any divergence error corrections, with er-

ror correction coefficients of γ=χ=1 (such that the error correction speeds are γc=χc=c)

and with error correction coefficients of γ=χ=2 (such that the error correction speeds are

119

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

e
n

0=χ

1=χ

2=χ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

i
n

Figure 5.1: Electron (upper) and ion (lower) densities for the electromagnetic shock after
0.125τa using ∇ · E error correction coefficients χ = 0,1, and 2. The ∇ · E error is not
obvious from the fluid solution.

120

0.0 0.2 0.4 0.6 0.8 1.0
x

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

x
E

0=χ

1=χ

2=χ

0.505 0.510 0.515 0.520 0.525
x

-0.00050

-0.00045

-0.00040

-0.00035

-0.00030

-0.00025

-0.00020

-0.00015

x
E

Figure 5.2: Electric field in the x-direction for the electromagnetic shock after 0.125τa using
∇ ·E error correction coefficients χ = 0,1, and 2. The bottom plot is at an expanded scale.
Note χ > 0 clearly decreases the numerical ∇ ·E errors that are seen in the χ = 0 solution
(blue line) and improves the solution by advecting the error out of the domain at a speed
of χc.

121

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

At/t

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

l2
n
o
rm

 d
iv

_
E
 e

rr
o
r

RKDG

0=χ

1=χ

2=χ

01=χ

02=χ

Figure 5.3: L2-norm of ∇ ·E errors for RKDG method using values of χ = 0,1,2,10,and 20.
Note, χ = 1 decreases the error, but χ > 1 provides no additional benefit.

γc=χc=2c). Figure 5.2 shows the x-direction electric field along with an expanded scale of

the plot to demonstrate the improvement in the solution when using ∇·E correction speed,

χc. There is an improvement in going from χ = 0 to χ = 1 as is seen from the electric

field after 0.125τa, but there is not much gained in going to higher values of χ with the DG

algorithm.

An asymptotic analysis of the divergence errors by varying χ is performed in Fig. 5.3 for

the RKDG method and in Fig. 5.4 for the wave propagation method. Fig 5.4 shows that

the wave propagation method continues to correct for ∇ ·E errors when higher values of χ

are used since higher values of χ produce lower l2-norms. For the RKDG method, Fig 5.3

shows that the l2-norm decreases when going from χ = 0 to χ = 1 but higher values of χ

do not decrease the l2-norm further. For the RKDG method, not much benefit is gained in

using χ > 1 for the two-fluid electromagnetic shock problem. Doing an asymptotic analysis

of the grid resolution for the RKDG method in Fig. 5.5 shows that the ∇·E errors decrease

with increasing grid resolution of the RKDG method. Overall, when no error corrections

are used, the RKDG method has lower errors than the wave propagation method.

122

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

At/t

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

l2
n
o
rm

 d
iv

_
E
 e

rr
o
r

WAVE

0=χ

2=χ

01=χ

Figure 5.4: L2-norm of ∇ · E errors for wave propagation method using values of χ = 0,2,
and 10. Note, χ = 1 decreases the error, and χ = 10 decreases the error even further.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

At/t

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

l2
n
o
rm

 d
iv

_
E
 e

rr
o
r

RKDG resolution

n=2000
n=4000
n=6000
n=8000
n=10000

Figure 5.5: L2-norm of ∇·E errors for different grid resolutions of the RKDG method using
χ = 0. Note, the error decreases with increasing grid resolution.

123

5.3 Ideal Two-Fluid Magnetic Reconnection Benchmark

The Geospace Environmental Modeling (GEM) reconnection challenge[55] is an effort to

use various models to understand the mechanism of collisionless magnetic reconnection.

Specifically the interest lies in exploring fast magnetic reconnection which is observed to

occur in collisionless plasmas. This plays an important role in understanding space plasma

physics phenomena such as solar flares, geomagnetic substorms, etc. Collisionless magnetic

reconnection is observed using a number of plasma models for benchmarking and compar-

ison purposes. The various models used include Hall-MHD with anisotropic pressure[56],

resistive- and Hall-MHD[57, 58, 59], full particle[60, 61], and hybrid[62] models.

GEM challenge magnetic reconnection is simulated using the initial conditions similar

to that described in Ref.[55]. The only difference in the initial conditions is the choice of

a smaller value of B0 to ensure that the normalized speed of light is the fastest speed in

the system. The initial conditions are as follows for a domain ranging from [−12.8, 12.8]×

[−6.4, 6.4],

Bx = B0 tanh
y

λ
− ψ0

π

ly
cos

(
2π

x

lx

)
sin

(
π
y

ly

)
(5.2)

By = ψ0
2π
lx

sin
(

2π
x

lx

)
cos

(
π
y

ly

)
(5.3)

jz =
B0

µ0λ
sech2 y

λ
(5.4)

ρe = n0me

(
sech2 y

λ
+

1
5

)
(5.5)

ρi = n0mi

(
sech2 y

λ
+

1
5

)
(5.6)

Pe =
1
12
B2

0

µ0

ρe

men0(γ − 1)
(5.7)

Pi =
5
12
B2

0

µ0

ρi

min0(γ − 1)
(5.8)

(5.9)

where a perturbation, ψ0 = 0.1B0, is applied in Bx and By. Other parameters include

n0 = 1, B0 = 0.1, lx = 25.6, ly = 12.8, mi/me = 25, and current sheet thickness, λ = 0.5.

124

Figure 5.6 shows the evolution of the ion density, the out-of-plane current, and the magnetic

field vectors at t = 0, 15ωci, and 25ωci using a grid resolution of 128× 64. Figure 5.7 shows

the evolution at a grid resolution of 256 × 128 and Fig. 5.7 shows the evolution at a grid

resolution of 512 × 256. Note formation of an island in the 512 × 256 cell solution that is

not seen in the lower resolution cases. The island formation could result from the magnetic

field lines tearing and reconnecting and trapping some plasma in the center of the domain.

If there were no asymmetries in the grid and the solution, the smaller island in the center

of the domain would reach an equilibrium at the center of the domain. But the presence of

even the slightest asymmetries makes the island move to one side or the other and merge

with the larger magnetic islands. Such asymmetries could be brought about by grid effects,

numerical error in approximating edge flux calculations, or the application of limiters to

name a few.

For a benchmark case, several grid resolutions of the reconnection problem are used to

compute the reconnected flux to confirm convergence. The reconnected flux is a measure of

the net y-direction magnetic field and is computed using

φ(t) =
1
2

∑
x

|By(x, y = 0, t)|∆x (5.10)

and is normalized to be in the same scale as previous publications. These results are

presented in Fig. 5.9. All resolutions, produce reconnection rates (slope of the reconnected

flux vs time) that are in agreement with each other and with previously published results

[55, 58]. The total amount of reconnected flux after 40/ωci is the same for all resolutions.

The high resolution solution at 512 × 256 starts to reconnect earlier in time. The slopes

of the lines, i.e. the reconnection rates, do not vary significantly among the different grid

resolutions.

A survey of the effect of mass ratio on magnetic reconnection rate shows that varying

the ion-to-electron mass ratio to use M = 25, 50, and 100, does not affect the amount of

reconnected flux or the reconnection rate as seen from Fig. 5.10. For this simulation realistic

space plasma parameters are used to ensure that, for all mass ratios, the fluid speeds are

significantly smaller than the light speed. This realistic problem is run to the same number

125

Figure 5.6: Solutions of GEM challenge magnetic reconnection at t = 0, 15/ωci, 25/ωci from
top to bottom using a grid resolution of 128×64. Left plots are of ion density with magnetic
field vectors, and right plots are of total out-of-plane current.

126

Figure 5.7: Solutions of GEM challenge magnetic reconnection at t = 0, 15/ωci, 25/ωci from
top to bottom using a grid resolution of 256×128. Left plots are of ion density with magnetic
field vectors, and right plots are of total out-of-plane current.

127

Figure 5.8: Solutions of GEM challenge magnetic reconnection at t = 0, 15/ωci, 25/ωci from
top to bottom using a grid resolution of 512× 256. Left plots are ion density with magnetic
field vectors, and right plots are total out-of-plane current. Note island formation in the
higher resolution case that moves and merges to the left.

128

Figure 5.9: Left plot shows solutions of GEM challenge reconnected flux as a function of
the ion cyclotron times ω−1

ci for several grid resolutions. These results agree well with the
right-hand-side plot GEM challenge results previously published in Ref.[55, 58].

Figure 5.10: Solutions of realistic parameter regime magnetic reconnection problem re-
connected flux as a function of the ion cyclotron times ω−1

ci for several mass ratios,
M = 25, 50, 100 using a larger perturbation for reduced computational cost.

of light transit times as the GEM challenge problem which results in 400/ωci. For this study,

a higher magnetic field perturbation is used to trigger the reconnection process earlier in

time to reduce computational cost. This problem differs from the artificial benchmark GEM

challenge problem.

Shocks propagate in the ion fluid and several shocks in the ion fluid interact with each

other while traveling in opposite directions. There are large turbulent flows that result in

the ion momentum that appear as the islands form. The gradients in the electron fluid

and the electromagnetic fields are not as strong. This system has no explicit dissipation

added in the form of collisional effects so the only form of dissipation present is introduced

129

by the application of limiters in regions of sharp gradients. Fast, collisionless reconnection

occurs when the fluids are able to break the frozen-in flux condition allowing the field

line to tear and diffuse into the current layer. This is often done with the inclusion of

resistivity in single-fluid MHD but that is an absolute minimum as single-fluid MHD does

not capture fast magnetic reconnection accurately. The full two-fluid plasma model has the

Hall term and the diamagnetic drift terms that allow the ion fluid to break the frozen-in flux

condition similar to Hall-MHD. No artificial or physical dissipation terms are required for

fast, collisionless reconnection to occur with the two-fluid plasma model. Additionally, the

inclusion of electron mass and non-neutral effects through the displacement current allow

the electron fluid to also break the frozen-in flux condition, a feature that is missed in most

Hall-MHD models. The following section studies the magnetic reconnection solutions in

the presence of collisional and transport effects with explicit dissipation using the equations

described in Sec. 2.5.

A study of divergence error corrections, specifically ∇ ·B errors, for the GEM challenge

magnetic reconnection problem is performed in Chapter 7 for the full two-fluid plasma model

and for Hall-MHD.

5.4 Non-Ideal Two-Fluid Magnetic Reconnection

In order to explore magnetic reconnection with the inclusion of Braginskii’s transport terms

for the two-fluid plasma model, realistic astrophysical plasma parameters are used. The

GEM challenge magnetic reconnection problem is an artificial problem that is primarily in

the collisionless regime. Arbitrarily adding numerical resistivities, viscosities, and hyper-

resistivities for purposes of numerical ease of computation may not be physically mean-

ingful to this problem. In order to model fast reconnection with transport, simulations

are performed using a realistic space plasma density of n0 = 1 × 106m−3, a magnetic field

of B0 = 1 × 10−8T, and other parameters are computed from these based on the initial

conditions described in Sec. 5.3. The speed of light is artificially reduced to minimize com-

putational cost while ensuring that it is the fastest speed in the system and the magnetic

field perturbation is increased to trigger reconnection earlier in time. M = 25, c/cse = 9,

c/csi = 19, c/VA = 19, ve/csi ≈ 1.3, lx = 80δi, and ly = 40δi. The collision frequency

130

is over 10 orders of magnitude smaller than the plasma and cyclotron frequencies thus,

the problem is primarily in the collisionless regime and the transport terms are computed

self-consistently using Braginskii’s transport terms described in Sec. 2.5. This allows phys-

ically relevant thermal and friction forces, viscosities, resistivities, heat fluxes, and thermal

equilibration terms to be included in the model as they become relevant depending on the

collision frequencies at any given time-step.

The Lundquist number for this regime is S = µ0lyvA

η ∼ 1019, where η is the resistivity

computed from the conserved variables. This is typical for astrophysical plasmas that often

have S > 1010[63]. In a number of reconnection simulations performed with Hall-MHD

and single-fluid MHD, numerical resistivities and hyper-resistivities are chosen such that

S ∼ 106−108. Such lower Lundquist numbers are relevant for laboratory plasmas but these

would be non-physical for most space plasmas in reconnection.

Figures 5.11 and 5.12 show solutions of ion density after 100/ωci and 400/ωci for the ideal

and the non-ideal two-fluid plasma model. The densities appear to be very similar in both

cases with subtle differences seen in the 400/ωci solutions where at the same color-scale, the

non-ideal solution looks smoother than the ideal solution. There are more significant differ-

ences observed in the out-of-plane currents in Fig. 5.13 where the ideal solution collapses

to an X-point while the non-ideal solution has enough resistivity even in the low, relatively

collisionless regime to allow for 2 Y-point solutions. The current sheet in the center of the

domain for the non-ideal solution collapses to approximately the electron skin depth, δe

which is in agreement with previous publications[64]. This is measured by computing the

full-width half-maximum of the total current at the center of the domain. Also seen from

Fig. 5.13 are smoother gradients with the non-ideal case as compared to the ideal solution.

The smoother gradients result from the physical dissipative terms present through viscosity,

resistivity, and heat flux which damp out some of the highly turbulent motions in the ion

fluid.

A survey of the fluid and electromagnetic energies with the ideal and non-ideal two-

fluid model in Fig. 5.14 shows that the magnetic energy is converted to fluid energy as the

magnetic fields reconnect and reach the lowest energy state. There is not too much of a

difference between the ideal and non-ideal cases, the ion fluid gains most of the energy that

131

Figure 5.11: Left plot shows solutions of ion density magnetic reconnection after 100/ωci.
Right plot shows solutions of ion density magnetic reconnection after 400/ωci. These are
plots of the ideal two-fluid plasma model using realistic astrophysical plasma parameters of
n0 = 1× 106 and B0 = 1× 10−8.

Figure 5.12: Left plot shows solutions of ion density magnetic reconnection after 100/ωci.
Right plot shows solutions of ion density magnetic reconnection after 400/ωci. These are
plots of the non-ideal two-fluid plasma model with Braginskii’s transport coefficients using
realistic astrophysical plasma parameters of n0 = 1× 106 and B0 = 1× 10−8.

132

Figure 5.13: Left plot shows solutions of out-of-plane current for magnetic reconnection after
400/ωci using the ideal two-fluid plasma model. Right plot shows solutions of out-of-plane
current for the non-ideal two-fluid plasma model after 400/ωci.

is lost by the magnetic field. The electron fluid gains a little energy from the magnetic field.

The electric field energy is very small in these cases.

Additional simulations are performed by varying the size of the current sheet, λ, with

respect to the ion and electron skin depths, δi and δe. Magnetic reconnection is explored

for several regimes using the two-fluid plasma model that has the capability to span the

entire range from the single-fluid MHD limit to the full two-fluid limit. For λ > δi, as

studied previously in Figs. 5.11-5.13, both ions and electrons are magnetized and the MHD

model could be sufficient if resistivity is included to break the frozen-in flux condition as

long as λ � δi. Hall-MHD is also applicable in this regime as is the full two-fluid plasma

model. For the regime where δi > λ > δe, the ions are unmagnetized while the electrons

are magnetized. In this regime, Hall-MHD is required as a minimum and can sufficiently

capture reconnection. However, if δe scales become significant as is the case if the electrons

become unmagnetized, then a resistivity is necessary for Hall-MHD to accurately capture

reconnection. Using the two-fluid plasma model for δi > λ > δe, the solutions obtained

do not significantly differ from the λ > δi regime. These regimes are explored to identify

how the current layer collapses if the current sheet thickness is changed and to see how

133

0 5 10 15 20 25 30 35

ic tω

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E

Energies no transport

Ion E
Elc E
E-field E
B-field E

0 5 10 15 20 25 30 35

ic tω

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E

Energies with transport

Ion E
Elc E
E-field E
B-field E

Figure 5.14: Realistic reconnection solutions of normalized total ion, total electron, electric
field and magnetic field energies for the ideal and non-ideal two-fluid model. The total ion
and electron energies are the sum of the internal and kinetic energies of each of the species.
The electric field energy is very small. The ion fluid gains most of the energy and the
electron fluid gains some energy from the magnetic field.

134

reconnection progresses as the regime is changed from magnetized ions and electrons to

unmagnetized ions and electrons.

For λ < δe, Hall-MHD requires the inclusion of resistivity to allow the electrons to

become unmagnetized. The ideal full two-fluid plasma model self-consistently simulates

reconnection when the electrons are unmagnetized. For simulations in this regime, the

domain is reduced to keep the same ratio of current sheet thickness to domain size. For

λ < δe, the island in the ideal two-fluid solution starts to develop a velocity at around 250/ωci

following which the island accelerates to the right of the domain as seen in Fig. 5.15. This

acceleration is not present when transport coefficients are included in the two-fluid plasma

model as seen in Fig. 5.16 where it appears to reach a steady-state. Figure 5.17 shows a

comparison of the electron density for the ideal and collisional cases at several ion cyclotron

times which better shows the acceleration. Higher resolution simulations using 256×128 cells

and 512×256 cells are performed for the ideal model to study whether this acceleration is an

artifact of insufficient resolution and numerical errors. Figure 5.18 shows that this behavior

is present even at higher resolutions, the main difference being the direction in which the

island propagates. In fact, it appears that the 256×128 resolution solution and the 512×256

resolution solution have the same solution after 350/ωci with the same preferred direction

of acceleration of the island. This behavior is attributed to random turbulence in the fluids

due to the absence of dissipative terms in the ideal model.

For λ ∼ δe, the non-ideal solution of the current layer does not collapse to δe anymore

since the current sheet was initialized to be smaller than δe. The acceleration of the ideal

solution is attributed to currents and magnetic fields that develop leading to a J×B force

that pushes the solution to the right. Figures 5.19 and 5.20 show that the Jy and Bz that

develop in the ideal solution, are an order of magnitude larger than the non-ideal solution.

The larger magnitude of the Jy current and Bz field at the center of the magnetic island

produces a force to the right for the ideal solution. This force acts on the center of the island

and imparts momentum to both fluids at the center of the island. The fluid at the trailing

edge tries to catch up due to the pressure differential that develops from the accelerating

fluid at the center. Eventually the resulting low pressure in the trailing edge becomes

so small that negative pressure errors result in the algorithm and the simulation crashes.

135

Figure 5.15: Solutions of realistic magnetic reconnection for δe > λ at t = 0, 250/ωci, 350/ωci

from top to bottom using a grid resolution of 128× 64 with the ideal two-fluid model. Left
column is ion density with magnetic field vectors and right column is total out-of-plane
current. Note the magnetic island accelerates to the right of the domain.

136

Figure 5.16: Solutions of realistic magnetic reconnection for δe > λ at t = 0, 250/ωci, 350/ωci

from top to bottom using a grid resolution of 128× 64 with the non-ideal two-fluid model.
Left column is ion density with magnetic field vectors and right column is total out-of-plane
current. Note the solution reaches steady-state.

137

Figure 5.17: Solutions of realistic magnetic reconnection for δe > λ from left to right at
t = 250/ωci, 350/ωci. Top plot is for the ideal solution of ρe using a grid resolution of 128×64.
Bottom plot is for a non-ideal solution of ρe using a grid resolution of 128 × 64. Note the
acceleration in the ideal solutions while the non-ideal solution reaches a steady-state.

138

Figure 5.18: Solutions of realistic magnetic reconnection for δe > λ from left to right at
t = 250/ωci, 350/ωci. Top plot is for the ideal solution of ρe using a grid resolution of
256 × 128. Bottom plot is for an ideal solution of ρe using a grid resolution of 512 × 128.
Note the acceleration in the ideal solutions with a different preferred direction compared to
the lower resolution solution in Fig. 5.17. Even the high resolution results show that the
ideal solution gains acceleration and eventually becomes unstable.

139

Figure 5.19: Solutions realistic magnetic reconnection for the ideal two-fluid plasma model.
Left plot shows solutions of Jy and right plot shows solutions of Bz after 350/ωci.

The collisional case can better distribute the momentum and energy to reduce the sharp

gradients that develop in the currents and magnetic fields. In this regime, both the electron

and ion fluids have shocks that propagate through the domain. The presence of dissipative

transport terms in the form of viscosity, resistivity, and heat flux better distributes such

gradients in the domain and maintains the force balance that allows the solution to reach

a steady-state. For the collisionless solution, the absence of explicit dissipation makes it

unstable as there is no mechanism to dissipate the magnetic energy after the linear stage of

the reconnection process. This is an important problem that requires full two-fluid physics

to accurately capture the behavior in regimes where λ ∼ δe because finite electron inertia

needs to be present to resolve the physics accurately.

Large gradients are observed in the out-of-plane electric field and the out-of-plane current

early in time. Figure 5.21 presents results of the out-of-plane currents, Jz, that shows

turbulent behavior in the ideal solution very early in time at 50/ωci. The non-ideal solution

does a better job of dissipating momentum and energy such that large gradients do not

develop. Going to higher grid resolution will show the turbulence features more clearly

and this can be done to study turbulence scales. The very thin current-sheet and spatial

140

Figure 5.20: Solutions of realistic magnetic reconnection for the non-ideal two-fluid plasma
model. Left plot shows solutions of Jy and right plot shows solutions of Bz after 350/ωci.

scales involved are synonymous to Kolmogorov micro-scales in fluid mechanics. Kolmogorov

micro-scales are the smallest scale in turbulent flow beyond which there is only viscous

dissipation of energy. While the ideal two-fluid model does not have viscosity or any explicit

dissipation for that matter, the solution does change as the grid resolution is increased and

smaller phenomena are resolved. The changes involve resolution of additional turbulent

structures in the fluid. In fluid dynamics, the energy cascade describes the transfer of

kinetic energy to smaller and smaller scales until it reaches the Kolmogorov scale[65]. This

energy transfer occurs through inviscid processes. Hence, this description can explain the

turbulent phenomena that are observed for the ideal two-fluid solution at such small spatial

scales that eventually drives the solution unstable. While the Kolmogorov scales may not

be the turbulent scales of the ideal two-fluid model due to absence of viscosity, the scales

observed may lie somewhere on the energy cascade. In the non-ideal case, viscous dissipation

occurs through all time and this damps out the large gradients that may develop and drive

the turbulent behavior.

Figure 5.22 shows the out-of-plane electric field, Ez, after 100/ωci. The large gradients

in the ideal two-fluid solution are observed in the electric fields and currents early in time

141

Figure 5.21: Solutions of realistic magnetic reconnection for δe > λ after only 50/ωci. Top
plot is for the ideal solution of Jz. Bottom plot is for a non-ideal solution of Jz. Note the
turbulence structures that develop in the ideal solution.

142

Figure 5.22: Solutions of realistic magnetic reconnection for δe > λ after 100/ωci. Top
plot is for the ideal solution of Ez. Bottom plot is for a non-ideal solution of Ez. Note
the gradients that develop in the ideal solution are an order of magnitude larger than the
non-ideal solution.

143

and these eventually affect other variables and drive the solution unstable. Since there is

no explicit dissipation, the gradients are allowed to grow to significantly larger values than

they would with dissipation. The non-ideal Ez in Figure 5.22 has magnitudes and gradients

that are an order of magnitude smaller than the ideal solution.

5.5 Non-ideal Two-Fluid Axisymmetric Z-pinch

The axisymmetric Z-pinch described in Chapter 4 is explored using Braginskii’s transport

terms with real experimental parameters based on the ZaP Flow Z-pinch experiment at the

University of Washington. These parameters include n0 = 1022m−3 such that ρ = n0p/p0,

current I0 = 50kA such that J0 = I0/(πR2
p), and Rp = 0.01m. This results in a magnetic

field of B0 = 1T at Rp. The parameter regime uses an artificial mass ratio of M = 25,

c/csi ≈ 20, c/cse ≈ 4, c/vA ≈ 20, ve/vthi ≈ 0.9, and RP /rLi ≈ 4. The collision frequencies

are about 5 orders of magnitude smaller than the plasma and cyclotron frequencies initially.

The Lundquist number for this regime is initially about 104. The initial condition for ion

density, ion energy, azimuthal magnetic field, and axial current is presented in Fig. 5.23 and

is the same for the ideal and non-ideal solutions of the two-fluid plasma model.

Figure 5.24 shows solutions of the ion density after 2.5τa using the ideal and non-ideal

two-fluid plasma model. It is seen that the solutions are very similar and the non-ideal

solution serves to damp out some of the sharper gradients producing an overall smooth

solution while still capturing the small-wavelength two-fluid drift-turbulence instability. The

differences are better seen in Fig. 5.25 where the radial electric field is compared for the ideal

and non-ideal two-fluid model. There are larger gradients in the ideal two-fluid solution as

compared to the non-ideal two-fluid solution. The larger gradients are a consequence of

larger charge separation in the ideal model that allows the development of larger local

electric fields through the displacement currents in Ampere’s law. The non-ideal two-fluid

model has dissipative terms in the form of resistivity and viscosity that serve to smooth out

the gradients and the local charge separation. Consequently, the local electric fields have

smaller gradients. The collisionless case does not have an explicit mechanism to dissipate

the electric and magnetic energies that develop in the system.

144

Figure 5.23: Initial condition for realistic Z-pinch simulations to compare the ideal and
non-ideal two-fluid models. Top plots are ion density (left) and ion energy (right). Bottom
plots are azimuthal magnetic field (left) and axial current (right).

145

Figure 5.24: Left plot shows solutions of ion density for the axisymmetric Z-pinch after
2.5τa using the ideal two-fluid plasma model. Right plot shows solutions of ion density for
the axisymmetric Z-pinch after 2.5τa using the non-ideal two-fluid plasma model.

Figure 5.25: Left plot shows solutions of radial electric field for the axisymmetric Z-pinch
after 2.5τa using the ideal two-fluid plasma model. Right plot shows solutions of radial
electric field for the axisymmetric Z-pinch after 2.5τa using the ideal two-fluid plasma model.
Note larger gradients in the ideal solution.

146

Chapter 6

A SEMI-IMPLICIT, IDEAL, FULL TWO-FLUID PLASMA MODEL

6.1 Motivation for a Semi-Implicit Method

The characteristic speeds of the two-fluid plasma model include the fluid speeds of sound and

the speed of light. Characteristic frequencies include the ion and electron plasma frequencies,

and the ion and electron cyclotron frequencies. There are high frequency and low frequency

phenomena in plasma dynamics. For the high frequency phenomena, explicit schemes can

have a restrictive time-step, which provides the motivation for implicit or semi-implicit

schemes. For low frequency phenomena, explicit schemes perform better because implicit

schemes can have a large system size with stiff equations. The two-fluid plasma model is

suitable for capturing high and low frequency phenomena. This provides the motivation

to introduce a semi-implicit two-fluid plasma model where the electron Euler equations

and Maxwell’s equations are solved implicitly, consequently removing the restrictions of the

high frequency phenomena. The ion Euler equations are updated explicitly since physics

considerations often require the ion fluid time-scales to be resolved.

Semi-implicit solvers have been implemented for Hall-MHD with special treatment for

just the Hall term such that the remaining MHD terms are advanced at the single fluid time-

scales. Examples of these are the implicit treatment of the Hall term in Ref.[66] and explicit

sub-cycling of just the Hall term using smaller time-steps in Ref.[67] with explicit treatment

of the remaining MHD terms at single-fluid time-scales. A semi-implicit Hall-MHD scheme

with adaptive mesh refinement is presented in Ref.[68]. A robust, fully implicit Hall-MHD

scheme is proposed in Ref.[69] which has the advantage of avoiding the splitting errors that

occur in semi-implicit schemes. There are no previous publications describing an implicit

or a semi-implicit full two-fluid plasma model.

A 2nd order Runge-Kutta discontinuous Galerkin method[24] is used for the explicit time-

advance of the ion Euler equations. An iterative Newton-based, Crank-Nicolson scheme

147

is used with the discontinuous Galerkin method[42] for the implicit time-advance of the

electron Euler and Maxwell’s equations. The semi-implicit scheme uses a splitting method

that is described as follows.

Qn+1
i = f1(Qn

e , Q
n
EM , Q

n
i) (6.1)

is solved explicitly to advance the ion equations, Eq. (2.2-2.4), over a time-step of ∆t. Here

Q represents the conserved variables, subscripts i, e, and EM represent the ions, electrons,

and electromagnetic equations respectively. Following the ion update,

(Qn+1
e , Qn+1

EM) = f2(Qn
e , Q

n
EM , Q

n+1
i) (6.2)

is solved implicitly to advance the electron equations and Maxwell’s equations, Eq. (2.2-

2.13), over a time-step of ∆t. The order of advance for the ions may not be so important

because their dynamics are primarily determined by the electromagnetic fields. A 2nd order

splitting method[21] provides no benefit for this implementation. To perform a second order

splitting, the implicit update for the electron Euler and Maxwell’s equations would be done

over ∆t/2 following which the ion Euler equations would be advanced over ∆t. Then the

electron Euler and Maxwell’s equations would be updated over another ∆t/2 using the

updated ion variables. Second order splitting is better suited for implementations such as

a source term splitting where all conserved variables in the equation system are split in

time in the same manner[6]. For the semi-implicit two-fluid plasma model, the splitting

method described by Eqs.(6.1) and (6.2) provides the same accuracy as a Strang splitting

implementation since the ion conserved variables are treated separately from the electron

and electromagnetic conserved variables. A true leap-frog scheme might provide better

accuracy, but not if the ∆t is varied throughout the simulation. For all simulations presented

in this dissertation, the ∆t is computed from the characteristic speeds and frequencies for

every time-step. While an efficient leap-frog scheme can be implemented for simulations

requiring a fixed time-step or for equilibrium problems, problems with large dynamics such

as moving shocks, rarefaction waves, contact discontinuities, etc. need to account for varying

148

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
ρ

Figure 6.1: Total mass density initial condition for the two-fluid electromagnetic shock using
the two-fluid plasma model with a grid resolution of 100 cells.

time-steps. A leap-frog implementation could be problematic if the ∆t changes between the

explicit and implicit updates. A GMRES solver is used with the ILU preconditioner from

the PETSc package[11] as described in Sec. 3.3.1.

6.2 Iterative Solvers and Pre-conditioners for Two-Fluid Plasma model

PETSc’s SNES solvers and pre-conditioners are explored for applications of a 1-dimensional

electromagnetic plasma shock using the semi-implicit, ideal, full two-fluid plasma model

described. A spatial order of 2 is chosen for all simulations presented here. The initial

conditions used are the same as Ref.[54] for a normalized ion Larmor radius of 1 where a

shock is initialized in electron and ion densities, electron and ion pressures, and the magnetic

field. The initial conditions for total density are described by Figure 6.1.

Solving the two-fluid electromagnetic shock problem using 100 cells, the line search

Newton method that employs cubic backtracking (SNES LS) and trust region method

(SNES TR) give the same results using the same amount of computational effort. Table 6.1

149

Method CPU time (s)

GMRES 15.24
Conjugate Residual 15.41
Transpose-Free Quasi-Minimal Residual (1) 15.57
Richardson 15.59
Conjugate Gradient Squared 15.60
BiConjugate Gradient STAB 15.75
BiConjugate Gradient 16.21
Transpose-Free Quasi-Minimal Residual (2) 16.21
Conjugate Gradient 19.24
Chebychev 110.54
Least Squares Method > 1000

Table 6.1: Comparing the computational effort for various PETSc iterative solvers in CPU
time (s) for a 1-D two-fluid electromagnetic plasma shock from t=0 to 10 light transit times
using a resolution of 100 cells. GMRES is the fastest iterative solver for this problem.

shows the computational effort of each of the PETSc KSP solvers that are used iteratively

for non-linear convergence. The CPU time shown here is the time taken to evolve the

electromagnetic shock from t=0 to 10 where the shock structure is fully developed. It is

seen that the GMRES method is the most computationally efficient for the semi-implicit

two-fluid plasma model.

A similar comparison is performed for the various preconditioners offered by PETSc.

To test the preconditioners, the non-linear solver chosen is GMRES. Table 6.2 shows the

computational effort of each of the preconditioners tested. There are many additional

preconditioners that can be added on as external packages such as Hypre[70], Euclid[71],

etc. that constitute future work. A brief overview of each of the preconditioners tested is

presented to justify the choice of the ILU preconditioners.

• ILU: A Gaussian elimination or Cholesky factorization is often used for matrix A =

R×R where R is not sparse. Incomplete LU preconditioner uses Cholesky-like formu-

las so that the Jacobian matrix M = R̃×R̃ where R̃ only has non-zeros where matrix

A has non-zeros. It works best for sparse, non-symmetric matrices like the block-

diagonal matrices of the two-fluid plasma model using the discontinuous Galerkin

150

method.

• Block Jacobi: This is a generalization of the Jacobi preconditioner to block Jacobi form

and is appropriate for block-diagonal matrices. Local effects to certain components

are considered in this method, while connections to other components are ignored to

improve efficiency.

• Successive Over-Relaxation: This is a classical iterative method that often just uses

one step, i.e. only one sequential matrix.

Qk
i = Qk−1

i + w
rii
aii

(6.3)

Over-relaxation methods are when w > 1. This method is best suited for linear

systems that occur in partial differential equations.

• Additive Schwarz Method: This uses a domain decomposition algorithm. An ap-

proximate solution x is chosen for system Ax = b. Then two or more overlapping

sub-domains are considered and the approximate solutions in the sub-domains are

recomputed until the desired precision is achieved.

• KSP: This uses an approximate linear solver as a preconditioner (e.g. GMRES, Con-

jugate Gradient, Chebychev, Richardson, BiConjugate Gradient, etc.).

• LU: This uses a direct solver LU factorization for the linear system in order to obtain

a preconditioner.

• Jacobi: For a system of Ax = b, a small sub-matrix of A is diagonalized, and this

is repeated until convergence is achieved. For a non-singular matrix, preconditioner

M =diagonal(A).

• Incomplete Cholesky: This is appropriate for spare matrices and uses Cholesky-like

formulas. The reason it is not applicable here is because it requires symmetric matrices

in addition to requiring A to be positive definite and Hermitian.

151

Method CPU time (s)

ILU 15.24
Block Jacobi 15.34
Successive Over-Relaxation (SOR) 15.35
Additive Schwarz Method 16.18
Linear Solver (KSP) 19.14
LU 20.80
Jacobi 24.44
No preconditioner 40.59
Incomplete Cholesky > 200
Cholesky > 200

Table 6.2: Comparing the computational effort for various PETSc preconditioners in CPU
time (s) for a 1-D two-fluid electromagnetic plasma shock from t=0 to 10 light transit times
using a resolution of 100 cells. GMRES solvers are used for all the preconditioners listed.
ILU is the fastest preconditioner for this problem.

• Cholesky: This requires only half of the matrix to be represented explicitly. A

Cholesky factorization is computed and separate lower-triangular and upper-triangular

systems are solved. This relies on symmetry for fastest convergence as a result of

which it is not an efficient preconditioner for the two-fluid plasma model using the

discontinuous Galerkin method.

6.3 Application to 1-D Electromagnetic Plasma Shock

Results of a 1-dimensional electromagnetic plasma shock using the semi-implicit two-fluid

plasma model are presented and benchmarked to Ref.[54]. In the results presented here,

a realistic ion-to-electron mass ratio of 1836 and a realistic normalized speed of light-to-

Alfvén speed ratio of 10, 000 are chosen. Often, simulations are performed using artificial

mass ratios and artificial speed of light-to-Alfvén speed ratios to reduce computational

effort. Such artificial parameters could alter the physics that is observed and this provides

the motivation to explore realistic regimes and an implicit implementation.

For the realistic parameter regime, solutions of the fully explicit and semi-implicit two-

fluid plasma model are presented in Figure 6.2 after 0.125 Alfvén transit times (tA). A

152

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ

Explicit

Semi-implicit

Figure 6.2: Total mass density after 0.125 Alfvén transit times with the explicit and semi-
implicit two-fluid plasma model. Both time-integration schemes are able to capture the
two-fluid physics described in Ref.[54], but use realistic normalized speed of light for the
same grid resolution of 500 cells.

153

grid resolution of 500 cells is used with 2nd spatial order for explicit and semi-implicit

results. The time step of the explicit scheme is 6 × 10−6 s while the implicit time-step is

9.5× 10−4 s. At a time of 0.125τa, the shock structure is completely developed. The CPU

time to advance from t=0τa to 0.0125τa (1/10 of the simulation time) for the implicit scheme

(610 s) is approximately 0.6 the CPU time of the explicit scheme (1010 s) since the implicit

time-step is over 2 orders of magnitude larger than the explicit time-step. While the fully

explicit two-fluid plasma model uses less computational effort than the semi-implicit scheme

for artificial parameter regimes, the large computational effort makes the fully explicit two-

fluid model impractical for realistic parameter regimes. Implicit time-stepping schemes

are better suited to overcome the restrictive time-step of the electromagnetic equations

and electron equations for realistic parameters. The semi-implicit algorithm described here

solves the full two-fluid plasma model while eliminating the disadvantages of the restrictive

time-step. In order to capture the two-fluid physics, accuracy and physics considerations

indicate that the simulations be run at ion time-scales as a minimum. Hence, solving the

ion equations explicitly when running at ion time-scales provides a more computationally

efficient solution as the Jacobian matrix size is significantly reduced as compared to a fully

implicit two-fluid plasma model.

6.4 Application to 2-D Magnetic Reconnection

Some scaling studies are performed for the 2-dimensional GEM challenge magnetic recon-

nection problem using the semi-implicit two-fluid plasma model. Fig. 6.3 shows results of

the scaling studies for the 2-D problem using the semi-implicit scheme. The scaling studies

here include the advance time to go from t = 0 to t = 1 and for fairness, do not take into

account the matrix coloring times. The work per processor is roughly 256 cells with 13× 4

degrees of freedom per cell. This gives a total of 13, 312 variables per processor. In order

to have an efficient parallel PETSC implementation, 10, 000+ unknowns per processor are

required as a minimum[11]. Ideally, 20, 000+ unknowns per processor provide most efficient

use of the algorithm and solvers. The explicit algorithm in WARPX is embarrassingly par-

allel and scales very well, but as expected, implicit algorithms do not usually scale as well

as explicit algorithms. While the parallel semi-implicit implementation scales reasonably

154

100 101 102

Procs

100

101

102

C
P
U

 t
im

e

actual vs expected CPU times

100 101 102

Procs

100

101

102

103

104

C
P
U

 t
im

e

same work per processor

Figure 6.3: Left plot shows the ideal and actual scaling for a grid resolution of 128 × 64
as the number of processors are increased. Right plot shows the scaling when the problem
size per processor is held constant. It is seen that the semi-implicit implementation scales
reasonably well after it reaches about 16 processors.

well, the semi-implicit implementation for the artificial parameters of the GEM challenge

problem takes 500 times longer than the explicit implementation to produce a comparable

solution. However, for realistic parameter regimes where c/vA ∼ 1000 and M = 1836, the

explicit method requires very small time-steps and this is where the semi-implicit imple-

mentation is expected to hold a strong advantage. In order to implement and test realistic

parameter regimes using the semi-implicit two-fluid model, some future work is required to

make the algorithm robust, and to find efficient ways to separate the linear and non-linear

parts of the solution such that the implicit part of algorithm does not have to deal with

solving a strongly nonlinear problem. The use of realistic parameters makes the equation

system stiff and as a result, the Jacobian matrix becomes ill-conditioned.

Solutions are obtained for an ideal two-fluid plasma model without the need for numeri-

cal resistivity or viscosity but this semi-implicit implementation can be extended to include

additional physics in the form of resistivity, viscosity, and heat conduction. The semi-

implicit implementation of the full two-fluid plasma model with the discontinuous Galerkin

method has been implemented in 2-dimensions as a part of this dissertation. The results

have been benchmarked to explicit solutions for applications of magnetic reconnection GEM

155

challenge. However, the computational effort is at least an order of magnitude larger when

using a semi-implicit scheme over an explicit scheme with realistic parameters. PETSc’s

SNES solvers may not continue to be as efficient as the solution becomes heavily nonlin-

ear. Also, going from 1-D to 2-D drastically increases the matrix size. In addition to having

more grid points and more dimensions to account for, the number of coefficients per cell also

increases depending on the spatial order chosen. With such a large system size, the algo-

rithm needs improvement in order to have an efficient semi-implicit scheme for the two-fluid

plasma model. This can be improved in several ways and constitutes a major part of future

work. Firstly, an approximate analytical Jacobian computation could significantly speed

up the process especially when the problem is heavily nonlinear. This could allow fewer

iterations prior to convergence. Secondly, more robust preconditioners can be explored

to make the semi-implicit two-fluid solvers efficient. Some candidates are physics-based

preconditioners[43], p-multigrid methods[44], and similar optimization schemes. An initial

step towards exploring preconditioners could include using a lower spatial order discontin-

uous Galerkin solution as a preconditioning matrix and increasing the order as necessary.

The electromagnetic shock is not an easy problem to simulate using an implicit time-

stepping scheme. In the presence of shocks, the solution is nonlinear and the application

of limiters often makes the solution so strongly nonlinear that it is unable to converge.

This results because a derivative of the solution is required to compute the Jacobian for

the Newton iteration. In the presence of shocks in the solution, the Jacobian becomes very

large and oscillatory in the location of the shocks and increases the condition number of

the matrix often making it ill-conditioned. The discontinuous Galerkin method requires

continuity in the fluxes although the conserved variables are allowed to be discontinuous.

Application of limiters in shocks or regions of sharp gradients often represents a discontinuity

in the flux leading to an undefined or at least a strongly nonlinear Jacobian. The heavily

nonlinear nature of the system is one of the main reasons why a fully implicit two-fluid

plasma model is rather difficult to solve in this manner. Even the semi-implicit two-fluid

model is not as effective as may be expected for these reasons. The algorithm can be

improved with knowledge of the problem and the physics to make it more linear. One

potential method is the solution of the ion fluid using an explicit discontinuous Galerkin

156

method as described here while the electron fluid and electromagnetic fields can be solved

using an implicit continuous finite element or finite volume method. This could potentially

work for problems that have strong shocks in the ion fluid but not necessarily in the electron

fluid and electromagnetic fields.

157

Chapter 7

COMPARISONS OF THE TWO-FLUID PLASMA MODEL WITH
HALL-MHD

The full two-fluid plasma model and Hall-MHD described in Chapter 2 are compared for

applications of the 1-dimensional electromagnetic plasma shock, the 2-dimensional Geospace

Environment Modeling magnetic reconnection (GEM challenge), the 2-dimensional axisym-

metric Z-pinch instabilities and the 2-dimensional Hill’s vortex FRC. No explicit resistivity

or viscosity is included in either of these fluid models. Some of these comparisons have

been done in Ref.[72]. For all problems presented here unless otherwise stated, the electron

energy equation is included in the Hall-MHD model[67] and the full discontinuous Galerkin

polynomial expansion is used for all conserved and auxiliary variables with component-based

limiting. The discontinuous Galerkin implementation for Hall-MHD’s auxiliary variables,

although slightly more accurate than the central differencing implementation, is more nu-

merically challenging. This is because of the high-order coefficients that could lead to

oscillations in the cell interfaces leading to negative density/pressure errors. Floor values

are used in the 2-D simulations to maintain a numerically stable Hall-MHD simulation. Any

time the value of the density or pressure falls below this minimum floor value, it is reset to

the floor and this reduces the negative density/pressure errors. The two-fluid model does

not require floor values for most problems, however, the DG implementation of Hall-MHD

does. To provide a physical context, c ∼ 103 − 104vA and vW ∼ 10vA in astrophysical

plasmas, where vW is the whistler wave speed. In a number of Hall-MHD simulations, the

whistler wave speed is unphysically larger than the Alfvén speed due to the nature of the

Hall-MHD dispersion relation where the whistler wave grows quadratically without bound

as the wave number is increased.

158

7.1 1D Electromagnetic Plasma Shock

An electromagnetic plasma shock is initialized with a gradient in electron and ion densities,

pressures and the z-direction magnetic field for the two-fluid plasma model. The initial

conditions used are the same as described in Chapter 5. For Hall-MHD, the ion fluid,

electron pressure and magnetic fields are initialized the same way as the two-fluid case. The

simulations are performed using a Runge-Kutta discontinuous Galerkin method with 2nd

order in space and time using 256 cells. The MHD limit for this problem is at rLi = 0.

0.0 0.2 0.4 0.6 0.8 1.0

x
0.0

0.2

0.4

0.6

0.8

1.0

1.2

i
ρ

2fluid_M1836

2fluid_M200

2fluid_M100

HallMHD

Figure 7.1: The two-fluid plasma model is compared to Hall-MHD after 0.2 Alfvén transit
times for rLi = 7× 10−1. The two-fluid plasma model solution with several ion-to-electron
mass ratios agrees well with the Hall-MHD solution.

Figures 7.1 and 7.2 show the two-fluid model and Hall-MHD solutions for different ion

Larmor radii and different ion-to-electron mass ratios, M , of the two-fluid model. At an ion

Larmor radius of 7 × 10−1 in Fig. 7.1, the two-fluid model using a realistic ion-to-electron

mass ratio of M = 1836 agrees well with the Hall-MHD model that assumes massless

electrons. Even at M = 100 the solutions agree well in regions of the rarefaction, contact

discontinuity and the shock with differences arising in the whistler wave propagation on

159

0.0 0.2 0.4 0.6 0.8 1.0

x
0.0

0.2

0.4

0.6

0.8

1.0

1.2

i
ρ

2fluid_M200

2fluid_M100

2fluid_M25

HallMHD

Figure 7.2: The two-fluid plasma model is compared to Hall-MHD after 0.2 Alfvén transit
times for rLi = 7× 10−2. The Hall-MHD solution is similar to the two-fluid plasma model
solution with ion-to-electron mass ratio, mi/me = 183.6. With realistic ion-to-electron mass
ratio at this Larmor radius, the problem becomes stiff for the two-fluid model.

the left of the domain. At an ion Larmor radius of 7 × 10−2 in Fig. 7.2, the two-fluid

model becomes stiff if the realistic ion-to-electron mass ratio is used because the electron

plasma frequency needs to be resolved and can be more restrictive than the speed of light

for setting the time step. However, artificially decreasing the ion-to-electron mass ratio of

the two-fluid model still provides a comparable solution to Hall-MHD for rLi = 7 × 10−2.

Further decreasing the ion Larmor radius such that rLi = 7 × 10−4 provides two-fluid and

Hall-MHD solutions that approach the ideal-MHD solution consistent with theory. This is

seen from Fig. 7.3. In this regime the two-fluid model is very stiff and Hall-MHD takes less

computational effort.

The time step for the two-fluid model is restricted by the speed of light which is assumed

to be 100vA for this problem. Since the speed of light is assumed infinite in Hall-MHD,

the whistler wave speed restricts the time step using the cutoff wave number described

previously. Both the two-fluid model and Hall-MHD solutions have the same effective grid

160

0.0 0.2 0.4 0.6 0.8 1.0

x

0.2

0.4

0.6

0.8

1.0
i
ρ

2fluid_M50

2fluid_M25

2fluid_M10

HallMHD
idealMHD

Figure 7.3: The Hall-MHD model is compared to ideal-MHD after 0.2 Alfvén transit times
for rLi = 7×10−4. At this Larmor radius the two-fluid model becomes too stiff and requires
large computational effort to get a solution similar to that of Hall-MHD. The Hall-MHD
solution here is compared to the ideal-MHD solution. The solutions have similar qualities
but the characteristic speeds seem to vary. It is seen that decreasing the Larmor radius
approaches the ideal-MHD limit.

resolution. The time step used for the two-fluid model with real ion-to-electron mass ratio

for the rLi = 7 × 10−1 case is approximately 100 times larger than the time step used for

Hall-MHD leading to 135 times more computational effort to obtain a Hall-MHD solution

as compared to the two-fluid model. For the rLi = 7× 10−2 case, Hall-MHD takes 14 times

more computational effort than the two-fluid model to produce comparable results. Hall-

MHD is extremely computationally intensive even though it provides results comparable to

the two-fluid model when rLi becomes significant. Hall-MHD is also able to provide results

comparable to ideal-MHD when rLi becomes very small with less computational effort than

the two-fluid model which becomes stiff in this regime. However, in regimes where small

spatial and temporal scales are of interest, the two-fluid model uses much less computational

effort for this problem compared to Hall-MHD and provides comparable solutions even after

artificially decreasing the ion-to-electron mass ratio and the speed of light.

161

Figure 7.4: Initial condition of ion density
for the magnetic reconnection GEM chal-
lenge problem.

Figure 7.5: Initial condition of x-direction
magnetic field for the magnetic reconnection
GEM challenge problem.

7.2 2D GEM Challenge Collisionless Magnetic Reconnection

Magnetic reconnection has been explored using a number of fluid and particle codes due

to its role in magnetosphere dynamics, space plasmas and laboratory plasmas. Shay et

al.[58] determine that the inclusion of the Hall term is necessary to produce physically

correct reconnection rates and Hall-MHD remains the minimum physical model needed to

accurately capture magnetic reconnection.

A current sheet is initialized with a density profile of sech2(y) and an x-direction in-

plane magnetic field profile of tanh(y). A small initial perturbation is applied to the in-

plane magnetic fields in the x- and y-directions. The electron momentum in the z-direction

is initialized for the two-fluid model such that it follows the density profile. The initial

conditions are the same as described in Ref.[55] and are shown for the ion density and

x-direction magnetic field in Fig 7.4 and 7.5. For Hall-MHD, the electron currents are

calculated from the Hall current and the ion fluid velocity. The Hall current is obtained

from the curl of the magnetic fields. All results are for a resolution of 128 × 64 cells using

the 2nd order RKDG method with periodic boundary conditions in the x-direction and

conducting wall boundaries in the y-direction.

162

Figure 7.6: Solution of ion density for the
two-fluid model is presented for the mag-
netic reconnection problem at ωcit = 20.
An island forms in the center of the domain
that moves to the right and merges with the
plasma. This solution does not use any ∇·B
correction.

Figure 7.7: Solution of ion density for Hall-
MHD is presented for the magnetic recon-
nection problem at ωcit = 20. There is no
noticeable island formation at the center of
the domain but an island of small magni-
tude appears at high resolution. This solu-
tion does not use any ∇ ·B correction.

Figure 7.8: Solution of ion density for the
two-fluid model is presented for the mag-
netic reconnection problem at ωcit = 20 us-
ing ∇·B correction. Two islands form in the
center of the domain that move in either di-
rection and merge with the plasma.

Figure 7.9: Solution of ion density for Hall-
MHD is presented for the magnetic recon-
nection problem at ωcit = 20 using ∇ · B
correction. There are noticeable islands that
form at the center of the domain that move
and merge with the plasma.

163

Figure 7.10: Reconnected magnetic flux is shown as a function of time, ωcit, for the two-fluid
model (dashed lines) and Hall-MHD (solid lines) with and without divergence corrections.
The solid red line is the Hall-MHD solution without ∇·B correction, and the solid blue line
is the Hall-MHD solution with ∇ ·B correction. The dashed black line is the full two-fluid
solution without ∇·B correction and the dashed cyan line is the full two-fluid solution with
∇·B correction. The reconnection rates match well with previous literature[58]. Hall-MHD
reconnects more flux than the two-fluid model before saturating when divergence corrections
are not employed.

For the two-fluid model, M = 25 and c ≈ 10 vA. Figures 7.6 and 7.7 show the ion density

for reconnection at a time of ωcit = 20 for the two-fluid model and Hall-MHD without

divergence corrections. Figures 7.8 and 7.9 show the reconnection at a time of ωcit = 20

for the two-fluid model and Hall-MHD with ∇ ·B corrections. Divergence corrections more

accurately capture the islands that form and merge with the rest of the plasma, and provide

better agreement between the full two-fluid and Hall-MHD models. These islands eventually

move to either side of the domain and begin to merge with the plasma at a time of about

ωcit = 33.

The reconnected magnetic flux for the two-fluid model and Hall-MHD are shown in

Fig. 7.10. The magnetic flux reconnection rates from this plot agree well with previously

published results[58]. The Hall-MHD solution reconnects more flux than the two-fluid model

before it saturates without∇·B corrections. The reconnected flux and the reconnection rate

of the two-fluid model does not change significantly with and without divergence corrections

for this problem. However, the impact for Hall-MHD is more significant. The reconnection

164

begins later in time (ωcit = 25) when ∇ · B corrections are included for Hall-MHD as

compared to ωcit = 15 without Hall-MHD∇·B corrections. Furthermore, with the inclusion

of ∇·B corrections less flux is reconnected and the reconnection rate agrees better with the

two-fluid plasma model since the errors in the magnetic field are reduced.

A study of divergence corrections is performed for the Hall-MHD and two-fluid plasma

models to quantify the amount of error present and the correction applied. The values of

the error correction coefficients were chosen such that the error correction speeds were the

same as the speed of light. This ensured that the time-step was not affected in advecting the

divergence errors out of the domain. Figures 7.11 and 7.12 quantify the ∇·B and∇·E errors

for the full two-fluid and Hall-MHD models for this problem. It is seen that the ∇·B errors

are significantly reduced for both fluid models when using perfectly hyperbolic Maxwell’s

equations divergence corrections and this has a greater impact on the reconnection rates for

Hall-MHD. The perfectly hyperbolic Maxwell’s equations provide sufficient corrections for

∇·B errors. Also, for the two-fluid plasma model, higher grid resolutions without divergence

corrections do not seem to significantly increase or decrease the ∇ ·B error as is seen from

Fig. 7.11 but using the divergence corrections significantly reduces this error even at lower

resolutions.

The ∇·E errors are not an issue for Hall-MHD due to the charge neutrality assumption.

For the two-fluid plasma model, however, the DG method provides much lower ∇ ·E errors

than the wave propagation method and increasing the grid resolution significantly reduces

this error as is seen from Fig. 7.12. The perfectly hyperbolic Maxwell’s equations do not yet

work as effectively to correct for the ∇·E errors of the two-fluid plasma model as compared

to the ∇ ·B errors for this problem.

For this problem, the very restrictive time step of Hall-MHD makes it require 15 times

the computational effort of the two-fluid model for the same grid resolution and the same

initial conditions. Since the reconnection rates of both models match previously published

results, the two-fluid model provides the more computationally effective solution. No explicit

resistivity or dissipation is added to these models. Therefore, reconnection could either be

triggered by the inherent diffusion in the grid or from the use of flux limiters. However, it

is also possible that the presence of the Hall term, diamagnetic term and electron inertia

165

0 10 20 30 40 50 60

ic tω

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

n
o
rm

 d
iv

_
B

TF
TF_divB

Hall
Hall_divB

Figure 7.11: Quantifying the ∇·B errors for
the full two-fluid plasma model and for Hall-
MHD with and without ∇ · B corrections.
It is seen that the errors are significantly re-
duced for both fluid models when using the
perfectly hyperbolic Maxwell’s equations for
divergence corrections.

0 10 20 30 40 50 60

ic tω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

l2
n
o
rm

 d
iv

_
E
 e

rr
o
r

TF_128x64

TF_256x128

TF_512x256

HallMHD

Figure 7.12: Quantifying the ∇ · E errors
for the full two-fluid plasma model and for
Hall-MHD for different grid resolutions of
the two-fluid plasma model without using
any divergence corrections. Going to higher
resolution significantly reduces ∇ ·E errors.

play a role to break the frozen-in flux condition.

7.3 2D Axisymmetric Z-pinch

The axisymmetric Z-pinch small-wavelength drift-turbulence instability presented here uses

the same initial and boundary conditions that were simulated in Sec. 4.4.4 but with a single

wavelength perturbation for all fluid models. Hall-MHD solutions are compared to the two-

fluid solutions using a discontinuous Galerkin method with 2nd order in space and time on

a grid of 128× 128 cells. For both models, the ratio of the pinch radius to the ion Larmor

radius, rp/rLi, is approximately 3. The two-fluid model uses an ion-to-electron mass ratio

of 25 and the speed of light is c ≈ 16vA.

Figure 7.13 shows the formation of the short-wavelength drift-turbulence instability in

the two-fluid plasma model and in Hall-MHD. The Hall-MHD solution has a much greater

growth rate at this grid resolution compared to the two-fluid plasma model. At 1.5 Alfvén

transit times, the solution for Hall-MHD is already in the non-linear regime as seen from

166

Figure 7.13: Ion density after 1.5 Alfvén transit times for the two-fluid axisymmetric Z-pinch
(top plot), Hall-MHD solution (middle plot), and ideal-MHD solution (bottom plot). It is
seen that the drift-turbulence instability grows for the two-fluid and Hall-MHD solutions
with the small-scale instabilities that form. The ideal-MHD solution just forms a sausage
instability.

167

0 1 2 3 4 5

aτ/

10-4

10-3

10-2

10-1

)
B

∆(gol

2fluid_M25

Hall-MHD
Ideal-MHD

Figure 7.14: Growth rates for the perturbation in the magnetic field as a function of the
time, t/τa, where τa is the Alfvén transit time for the two-fluid model, Hall-MHD and ideal-
MHD. It is observed that the growth rates of Hall-MHD and two-fluid plasma model are
larger than the ideal-MHD growth rate.

Fig. 7.14. Ideal-MHD does not capture this drift-turbulence instability and forms a sausage

instability based on the initial perturbation. The growth rate of the drift-turbulence insta-

bility seen in the two-fluid model and Hall-MHD are larger than the growth rates predicted

by ideal-MHD. The instability growth rate for the Hall-MHD model is higher than that

for the two-fluid model and sets in earlier in time. This could be because no explicit dis-

sipation or resistivity is present in the Hall-MHD model implemented here. As a result of

this, increasing the grid resolution resolves waves of smaller and smaller wavelength due

to the need to resolve the whistler wave. Adding a resistivity or a hyper-resistivity to the

Hall-MHD equations might provide sufficient dissipation to allow the instability to set in at

approximately the same time scales as the two-fluid model. The addition of a resistivity or

a hyper-resistivity will be investigated as future work towards the subsequent dissertation.

Hall-MHD requires 35 times the computational effort of the two-fluid model for this

problem. One difficulty in using the Hall-MHD model is the need for floor values in density

and pressure without which the simulation results in negative density/pressure errors early

in time. For this problem, the two-fluid model does not require such floor values. This

could potentially be overcome by introducing dissipation in the form of resistivity or hyper-

168

Figure 7.15: Ion density after 1.5 Alfvén transit times for Hall-MHD solution using hyper-
resistivity ν = 6 × 10−5. It is seen that the drift-turbulence instability looks closer to the
full two-fluid solution with respect to the approximate number of modes.

resistivity in the Hall-MHD model.

7.3.1 Using Hyper-Resistivity

Simulations of the 2-D Z-pinch are performed using hyper-resistivity for Hall-MHD as de-

scribed in Sec.2.3.3 and 3.2.9. The hyper-resistivity coefficient, ν, is chosen based on the

scales of the desired instability wavelength. What this means is that when ν = 0, the

Hall-MHD model resolves waves of smaller and smaller wavelengths as the grid resolution is

increased since the grid scales determined the resolution of the modes. Hyper-resistivity is

applied using ν = 1/k2 where the wavenumber k is specified by the user and is maintained

for all grid resolutions. The Z-pinch solution for ion density using ν = 6× 10−5 is shown in

Fig. 7.15.

The instability growth rates are studied for several values of the hyper-resistivity coef-

ficient. When using only a single wavelength perturbation for the Z-pinch, the small-scale

instability still evolves and grows on top of the single wavelength perturbation. The growth

rate of this instability is shown in Fig. 7.16 for several values of ν. In order to trigger the

fastest growing mode in the simulation, an 8 wavelength perturbation is applied and the

resulting growth rate of the instability is shown in Fig. 7.17 for several values of ν.

169

0.0 0.5 1.0 1.5 2.0

aτ/

10-3

10-2

)
B

∆(gol

2fluid_M25

Hall-MHD_nu0

Hall-MHD_nu6e-5

Hall-MHD_nu2e-6

Hall-MHD_nu4e-7

Hall-MHD_nu2e-9

Figure 7.16: Growth rates for the perturbation in the magnetic field as a function of the
time, t/τa, where τa is the Alfvén transit time for the two-fluid model when using a single
wavelength perturbation. Notice that using ν for Hall-MHD approaches the two-fluid growth
rate and convergence is seen for the Hall-MHD model for several values of ν.

0.0 0.5 1.0 1.5 2.0

aτ/

10-3

10-2

)
B

∆(gol

2fluid_M25

Hall-MHD_nu0

Hall-MHD-hyperres_nu2e-4

Hall-MHD-hyperres_nu6e-5

Hall-MHD-hyperres_nu2e-6

Hall-MHD-hyperres_nu4e-7

Figure 7.17: Growth rates for the perturbation in the magnetic field as a function of the
time, t/τa, where τa is the Alfvén transit time for the two-fluid model when using an 8
wavelength perturbation. Using several values of ν for Hall-MHD shows convergence but
this growth rate does not quite capture the fastest growing mode that is captured by the
full two-fluid growth rate.

170

7.4 2D Hill’s Vortex Field Reversed Configuration

A 2-dimensional Hill’s vortex FRC is simulated using an approximate MHD initial condition

shown in the top plot of Fig. 7.18 which uses Eqs.(7.1-7.9). A Hill’s vortex profile is used

to initialize the FRC following which it is allowed to relax to a two-fluid FRC equilibrium.

The pseudocolor represents the ion mass density and the streamlines represent the magnetic

fields. While the density, pressure, currents, and magnetic fields inside the separatrix are

initially specified using the Hill’s vortex FRC profile, the external field is approximated

differently. There is a background density and pressure applied outside the separatrix with

no current. In the two-fluid plasma model, the current would be initialized by specifying

an ion and/or electron momentum. In the FRC initial conditions applied here, the ion and

electron momenta are 0 and are allowed to evolve from the magnetic fields that appear as

sources in the momentum equation. The external magnetic field is in the axial direction

with a magnitude chosen such that the profile is in radial force balance at z = 0. The initial

external magnetic field is zero in the region at r < a and outside of the separatrix, a being

the separatrix radius. Thus, there is a discontinuity both at the separatrix and along the

line defined by r = a.

It is non-trivial to compute an external magnetic field profile that is in a true two-

fluid equilibrium and does not have flux penetrating the boundaries. This would have to

be done numerically by solving the Grad-Shafranov equation to describe a flux conserver

MHD equilibrium and allow a two-fluid equilibrium to develop. If flux were to penetrate

into the boundary, divergence of B errors could occur since conducting walls are assumed at

the r = 0.06 boundary. If the ∇ ·B constraint is not satisfied initially, then it may produce

large errors over the course of the simulation. Hence a simple radial equilibrium (at z = 0)

profile is chosen such that only a z-direction magnetic field is specified initially outside the

separatrix between the separatrix radius and the flux conserver boundary. This maintains

∇ ·B everywhere and allows an external radial field to develop as the solution evolves into

a two-fluid equilibrium. There is a discontinuity initially in the external magnetic field

since no external field is specified when r < a where a is the separatrix radius, in this case

0.04. The algorithm is able to handle this discontinuity without any difficulty. Since there

171

is no axial equilibrium, large dynamics are expected to develop. The solution is expected

to expand axially with some plasma leaving the separatrix as the external magnetic field

lines evolve to have a radial component to confine the plasma both radially and axially.

The first plot in Fig. 7.18 shows the initial condition where b = 0.1 is the separatrix length

measured axially in each direction from z = 0. The two-fluid and Hall-MHD solutions use

the same initial conditions for ρi, Pi, Pe, Br, and Bz. Jφ is self-consistently computed from

the reduced Ampere’s law. The initial condition is described by

rs = a

√
1.0− z2

b2
for− b < z < b (7.1)

xs =
rs
rc

(7.2)

Be =
B0(

1− a2

r2
c

) (7.3)

Pi = Pe = 0.5
B2

0

2µ0

(
r2

a2

) (
4 +

a2

b2

) (
1− r2

a2
− z2

b2

)
(7.4)

ρi = mi
Pi

kTi
(7.5)

ρe = me
Pe

kTe
(7.6)

Jφ =

 −B0
µ0
r
(

4
a2 + 1

b2

)
if r2

a2 + z2

b2
< 1

0 otherwise
(7.7)

Br =

 −B0rz
b2

if r2

a2 + z2

b2
< 1

0 otherwise
(7.8)

Bz =


−B0

(
1− 2 r2

a2 − z2

b2

)
if r2

a2 + z2

b2
< 1

Be if r > a

0 otherwise

(7.9)

where rc = 0.06 is the flux conserver radius and B0 = 0.5.

The initial peak number density is chosen to be approximately 3× 1021/m3, with Ti =

Te = 100 eV, deuterium ion mass, and the kinetic parameter, s ≈ 4. For the two-fluid plasma

model, c ≈ 22vA and ion-to-electron mass ratios of 25, 50 and 100 are explored. Realistic

mass ratio makes the simulation fail with a negative density/pressure error as it becomes

172

very stiff. For M = 100, the results do not significantly differ from the M = 25 case so it is

sufficient to assume M = 25. For large mass ratios, the electron plasma frequency can be

more restrictive than the light speed for setting a time step. For Hall-MHD, vW ≈ 125vA.

The boundary conditions include an axis boundary at r = 0, a conducting wall at r = 0.06,

and periodic boundaries in the axial direction.

Figures 7.18 and 7.19 show the magnetic field profile and the ion density using an approx-

imate MHD equilibrium to initialize the two-fluid and Hall-MHD models which is initially

only in radial equilibrium at the mid-plane and settles to a new two-fluid equilibrium. The

solutions of the two-fluid model and Hall-MHD after 0.5τa show that both models undergo

an expansion in the axial direction as expected. As the external magnetic field lines evolve

towards an equilibrium profile, the separatrix expands axially until an axial force-balance is

achieved. After 2.5τa, and 5τa the two-fluid and Hall-MHD profiles appear to reach an equi-

librium. An asymptotic study is performed for the two-fluid plasma model using M = 50

and M = 100 to ensure that the two-fluid FRC equilibrium that is reached is not affected

by the ion-to-electron mass ratio. These results are presented in Fig. 7.20. It is noted that

changing the mass ratio does not significantly affect the FRC equilibrium solution of the

two-fluid plasma model.

Figure 7.21 shows the conserved flux in the FRC between the null point and the axis

for the two-fluid model with M = 25 and the Hall-MHD model. This closed flux integral is

approximated by the summation

φ =
∑

r

Bz(r, z = 0)rdr (7.10)

where the flux is computed at the midplane in the axial direction. The conserved flux from

each of these models appears to be consistent and remains relatively constant over time.

There is no explicit dissipation added to either of the fluid models. The total flux at each

time is normalized using the total initial flux. The normalized flux for the two-fluid model

deviates by about 2.5% over 5τa. As seen in Figs. 7.18 and 7.19, the FRC experiences

motions in the radial direction and undergoes some axial asymmetries. Considering all

these distortions of the FRC profile over 5τa, a deviation of only 2.5% for the closed flux

173

Figure 7.18: FRC evolution of ion mass density and magnetic field streamlines for the two-
fluid model. Top plot is the initial condition which is in radial equilibrium with no radial
magnetic field specified outside the separatrix. Second plot is the ion density and magnetic
field after 0.5τa. Third plot is the ion density and magnetic field after 2.5τa. Last plot is
the ion density and magnetic field after 5τa.

174

Figure 7.19: FRC evolution for Hall-MHD. Top plot is the initial condition for ion mass
density and magnetic field streamlines which is in radial equilibrium with no radial magnetic
field specified outside the separatrix. Second plot is the ion density and magnetic field after
0.5τa. Third plot is the ion density and magnetic field after 2.5τa. Last plot is the ion
density and magnetic field after 5τa.

175

Figure 7.20: FRC evolution for several mass ratios using the two-fluid model. Top plot is
the ion density and magnetic field after 5τa using M = 50. Bottom plot is the ion density
and magnetic field after 5τa using M = 100.

176

0 1 2 3 4 5

aτ/

0.90

0.95

1.00

1.05

1.10

mro
n
φ

2fluid_M25

HallMHD

Figure 7.21: FRC Hill’s Vortex conserved flux between the null-point and the axis for the
two-fluid M = 25 and Hall-MHD models. Note that the closed flux is mostly constant
except for a deviation of approximately 2.5% for the two-fluid closed flux over 5τa.

demonstrates that the algorithm is relatively stable and is capable of handling dynamics in

the solution effectively. The presence of a discontinuity in the initial condition in Bz and

the small variation in the closed flux confirm the robust nature of the numerical methods

used.

For this problem, Hall-MHD requires 8-30 times the computational effort of the two-fluid

model depending on the density/pressure floor value that is selected. For some problems,

Hall-MHD requires a higher density/pressure floor. A higher density floor value leads to

lower speeds i.e. Alfvén, sound, whistler and magnetosonic speeds. This results in higher

time steps thus taking less computational effort. The two-fluid model appears to take less

computational effort to provide comparable solutions to Hall-MHD for all the problems

explored above that lie in the two-fluid regime when solved explicitly.

In addition to relaxing to a two-fluid equilibrium from the approximate MHD equilibrium

profile initially specified, the solution develops a toroidal magnetic field. It is not uncommon

to see toroidal fields and poloidal currents develop in such a profile even though it was

initialized with 0 toroidal field. The development of a toroidal field in an FRC is strictly a

two-fluid effect and cannot be captured by single fluid MHD. While the large toroidal fields

177

Figure 7.22: FRC profile of toroidal magnetic field after 2.5τa in the two-fluid plasma model
(top plot) and the Hall-MHD model (bottom plot).

observed here could be the result of the discontinuous initial condition leading to large

dynamics, FRC experiments have observed the development of a toroidal magnetic field.

Toroidal fields develop in both the two-fluid and Hall-MHD models. The toroidal magnetic

field that develops is less than half the poloidal magnetic field at any given time during

the evolution, often being an order of magnitude smaller than the poloidal magnetic field.

Figure 7.22 shows the toroidal magnetic field in the two-fluid and Hall-MHD solutions after

2.5τa. The solutions are to the same scale, however, the two-fluid model develops a larger

toroidal magnetic field than Hall-MHD after 2.5τa. The toroidal magnetic field plots show

that the toroidal field within the separatrix is out-of-plane on one side and in-plane on the

other side. Ref.[73] examines the generation of the substantial toroidal magnetic field inside

the separatrix and states that this is due to stretching of the poloidal field by a sheared

toroidal electron flow. It is interesting to note that after 5τa, the toroidal field for both

the two-fluid model and the Hall-MHD model appears to reverse polarity and decreases

in magnitude as compared to the solution at 2.5τa. Such toroidal field reversal has been

178

Figure 7.23: FRC profile of toroidal magnetic field after 5τa in the two-fluid plasma model
(top plot) and the Hall-MHD model (bottom plot).

seen in experiments such as the Translation, Confinement, Sustainment (TCS) device at

the Redmond Plasma Physics Laboratory (RPPL)[74]. This is seen from Fig. 7.23 at which

point the solution has reached a stable equilibrium.

179

Chapter 8

TWO-FLUID INSTABILITIES

The two-fluid drift-turbulence instability (DTI) is investigated in this chapter for ap-

plications of the Z-pinch and the Hill’s vortex FRC. A large number of publications are

available describing the lower hybrid drift instability (LHDI)[75, 76], evolution of LHDI in

current sheet equilibria[77, 78], LHDI in Z-pinches[3], LHDI in field-reversed plasmas[79]

and correlations between LHDI and anomalous resistivity[80, 4]. Ref.[81] analyzes LHDI in

a thin current sheet using kinetic simulations. The nonlinear small-wavelength instability

observed in two-fluid simulations of the Z-pinch and the FRC are studied in this chapter

to determine if these are LHDI. Ref.[77] presents an analysis of LHDI and the evolution

of LHDI-like modes from drift kink and drift sausage modes (DKI and DSI). This resem-

bles the instability that is being observed here; the initial sausage and kink perturbations

in the Z-pinch drive smaller-wavelength modes in the two-fluid regime. Refs.[75] and [82]

mention that the fastest growing LHDI wavelength is governed by krLe ∼ 1 and that LHDI

is observed to develop in regions of strong density gradients. Additionally, LHDI requires

k ·B = 0. While the instability being observed here appears to correspond with the LHDI,

the wavelength of the instability appears to be on the order of krLi ∼ 1. The follow-

ing sections present an analysis of the two-fluid instability with respect to fastest growing

modes and growth rates. Due to the wavelength of the instability not being on the order

of krLe ∼ 1, this drift-turbulence instability is not LHDI. Refs.[3] and [4] incorrectly refer

to this instability as LHDI. All simulations in this chapter use the collisionless two-fluid

model.

8.1 Axisymmetric Z-pinch Small-Wavelength Instability

The small-wavelength instability is investigated using the axisymmetric Z-pinch. The initial

conditions and parameters used are the same as Sec. 5.5 except c is chosen to be an order of

180

Figure 8.1: Two-fluid drift turbulence instability ion density for the axisymmetric Z-pinch
after 2.5τa (left plot) and 5τa (right plot). The top plots are of ion density and the bottom
plots are of the azimuthal magnetic field. The wavelengths of the instability are on the
order of the ion Larmor radius.

magnitude higher. M = 25, c/csi ≈ 200, c/cse ≈ 40, c/vA ≈ 195, vd/vthi = 0.9, Rp/rLi ≈ 4

where Rp = 0.25L and L is the domain length. Figure 8.1 shows the ion density and

azimuthal magnetic field after 2.5τa and 5τa. It is observed that the small wavelength

modes that develop in the axisymmetric Z-pinch are on the order of the ion Larmor radius

even though only a single wavelength sausage mode perturbation was initialized in the

magnetic field.

Figure 8.2 shows plots of fluid kinetic and thermal energies after 4τa. Note that the

thermal energies of both fluids are many orders of magnitude larger than the kinetic energies.

181

The higher ion kinetic energy is due to larger ion mass compared to the electrons. The

thermal energies of the fluids appear to peak at the same locations and it seems that the ions

and electrons share the same regions of high thermal energy. However, in the temperature

plots in Fig. 8.3 the ion temperatures appear to be the inverse of the electron temperatures,

i.e. hot ions exist in regions of cold electrons and vice versa. While the magnetic field heats

the magnetized electrons, the ions are unmagnetized. Since a collisionless two-fluid model

is used here, there are no transport terms that drive the fluid temperatures together.

Figure 8.3 shows additional interesting features in the fluid temperatures after 4τa. It

appears that high electron temperatures correspond to high magnetic fields. Since the

electrons are magnetized in this regime, the high magnetic field confines the electrons and

causes them to heat up. The hot regions of electrons correspond generally to regions of

lower electron kinetic energy in Fig. 8.2. Looking at both fluid temperatures, it is observed

that both fluids undergo adiabatic heating in the regions where shocks occur in the ion fluid.

Interestingly, The ions have high kinetic energy in regions of low ion temperature. Thus,

the ions lose thermal energy to gain kinetic energy.

Furthermore, the velocity profiles of each of the fluids show the development of shear.

Figure 8.4 shows the evolution of the ion axial velocity, the electron axial velocity, the axial

electric field, the ion radial velocity, the electron radial velocity, and the radial electric field

after 2τa and Fig. 8.5 shows the evolution after 4τa. Initially the electrons carry all the

current and the ion velocity is 0. Also, the initial electron velocity is only in the axial

direction and the initial radial velocities of both fluids are 0. Figures 8.4 and 8.5 show that

the magnitudes of the radial velocities that result from the evolution of the drift-turbulence

instability are approximately the same order of magnitude as the axial velocities and all

velocities peak in the region of the pinch radius where there is maximum density gradient. As

the simulation progresses, it is observed that the ions and electrons develop a velocity shear

that creates a similar profile in the radial electric field. The axial electric field also develops a

profile that is consistent with the axial ion and electron velocities. The highly dynamic axial

ion velocity in the region of the pinch radius results from a charge separation that occurs as

the short-wavelength modes grow. The separation between positive and negative ion axial

velocity corresponds to the wavelength of the instability. With the presence of velocity

182

Figure 8.2: Two-fluid drift-turbulence instability for ion (left) and electron (right) kinetic
energy in the top plots, and ion (left) and electron (right) thermal energy in the bottom
plots after 4τa. Note fluid thermal energies are much larger than the kinetic energies. Also,
both ions and electrons appear to share regions of high thermal energy.

183

Figure 8.3: Two-fluid drift-turbulence instability for ion (left) and electron (right) temper-
atures in the top plots, ion number density (left) and azimuthal magnetic field (right) in
the bottom plots after 4τa. Note hot ions in regions of cold electrons and vice versa. Also,
hot electrons correspond to regions of large magnetic field.

184

Figure 8.4: Two-fluid drift-turbulence instability for velocity profiles. Left: Ion axial velocity
(top), electron axial velocity (middle), axial electric field (bottom) after 2τa. Right: Ion
radial velocity (top), electron radial velocity (middle), radial electric field (bottom) after
2τa. Note the shear profile that develops in the ion radial velocity which was initialized to
0. This is also seen from the radial electric field.

185

Figure 8.5: Two-fluid drift-turbulence instability for velocity profiles. Left: Ion axial velocity
(top), electron axial velocity (middle), axial electric field (bottom) after 2τa. Right: Ion
radial velocity (top), electron radial velocity (middle), radial electric field (bottom) after 4τa.
Note the strong shear profile that develops in the ion radial velocity which was initialized
to 0.

186

shear as seen from the radial velocity and electric field profiles, the instability develops a

secondary Kelvin-Helmholtz type fluid instability (KHI) where vortices and shocks form in

the ion fluids driving it turbulent and eventually unstable. KHI has been investigated using

ideal- and Hall-MHD[83].

The simulation is in the appropriate regime for LHDI with unmagnetized ions and mag-

netized electrons, Te ∼ Ti, and k · B = 0 so it is possible that LHDI initially triggers the

instability. Also, the instability observed appears to grow from the region of maximum gra-

dient in density which is consistent with the evolution of LHDI[82]. For the fastest growing

LHDI modes, krLe ∼ 1, but there are longer LHDI modes on the order of k
√
rLerLi ∼ 1[81].

The wavelength of the instabilities observed in the two-fluid Z-pinch, krLi ∼ 1, are clearly

larger than even the long-wavelength regime of LHDI. Ref.[84] investigates an instability

that has a wavelength that is transverse to the magnetic field and is of the order or smaller

than the ion Larmor radius. However, the perturbations in Ref.[84] are along the magnetic

field unlike the Z-pinch results presented in this dissertation where the perturbations are

perpendicular to the magnetic field. In order to observe LHDI modes (krLe ∼ 1) in the

present parameter regime, the grid resolution needs to be sufficiently high such that rLe is

resolved.

Ref.[85] discusses a drift kink instability where the instability wavelengths are krLi ∼ 1

but the drift kink instability growth rate becomes weak as the ion-to-electron mass ratio is

increased. The drift-kink instability plays a significant role in the solution in the presence

of large, finite electron mass. Section 8.2 explores the effect of increasing mass ratios on the

two-fluid drift-turbulence instability that is observed. There appears to be no significant

impact of large ion-to-electron mass ratio on the development of the instability. The two-

fluid drift turbulence instability observed here resembles what Refs.[86] and [87] refer to as

LHDI. These modes are not on the order of krLe ∼ 1 and are of longer wavelength, therefore

the term LHDI is used loosely to describe the instability observed in these references. How-

ever, Ref.[87] presents an analysis to describe the instability modes observed as a coupling

between the ion acoustic wave and the whistler wave. In Ref.[86], an obliquely propagating

electromagnetic drift instability is analyzed and it is found that when the drift parameter

is large, the backward propagating fast whistler wave reacts with the forward propagating

187

0.0 0.2 0.4 0.6 0.8 1.0

ω x1e+9

10-8

10-7

10-6

10-5

10-4

T
F
F

0.0 0.2 0.4 0.6 0.8 1.0

ω x1e+9

10-8

10-7

10-6

10-5

10-4

T
F
F

Figure 8.6: FFT-frequency plots for the axisymmetric Z-pinch instability. Left plot is for
a resolution of 128 × 128 cells and right plot is for a resolution of 256 × 256 cells with a
temporal resolution of 100 frames. ωLH ≈ 2× 108

slow ion sound wave leading to a drift-turbulence instability. This instability resembles

the two-fluid drift-turbulence instability observed in the Z-pinch and could account for the

anomalous resistivity observed in experiments.

A fast Fourier transform (FFT) is performed on the solution to identify the fastest

growing modes. First, the location of the maximum initial gradient in density is determined.

The value of the density at this location is obtained for all time and an FFT is done to

obtain a plot of wave number versus frequency. In doing this, the dominant frequencies are

obtained for the given spatial and temporal resolution. This is done for a grid resolution of

128× 128 cells and 256× 256 cells using 100 outputs in time. Figure 8.6 shows plots of the

FFT-frequency for each of the resolutions. The lower-hybrid frequency ωLH =
√
ωciωce ≈

2× 108. It is seen that frequencies on the order of the lower-hybrid frequency are non-zero

in the simulation but the lower-hybrid frequency does not appear to be dominant for the

temporal resolution that is shown. Higher temporal resolution may show this frequency to

be dominant. Additionally, it is possible to look at the growth rates of individual modes

by doing an FFT as shown in Fig. 8.7. The location of the maximum gradient in the radial

direction is chosen by looking at the initial ion density. Since the modes that develop are

kz modes, an FFT is performed for all points in z at the location of maximum gradient in

the radial direction. Mode 1 corresponds to the initial sausage mode perturbation that is

188

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
ω x1e+8

10-13

10-12

10-11

10-10

T
F
F

mode1
mode2
mode3
mode4
mode5
mode6
mode7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
ω x1e+8

10-13

10-12

10-11

10-10

T
F
F

mode8
mode9
mode10
mode11
mode12
mode13
mode14

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
ω x1e+8

10-13

10-12

10-11

10-10

T
F
F

mode15
mode16
mode17
mode18
mode19
mode20
mode21

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
ω x1e+8

10-13

10-12

10-11

10-10

T
F
F

mode22
mode23
mode24
mode25
mode26
mode27
mode28

Figure 8.7: FFT plots for the axisymmetric Z-pinch instability showing growth rates of
individual modes ranging from 1 to 28. A resolution of 128 × 128 cells is used. Mode 1
corresponds to the initial sausage mode perturbation. Modes 8-12 correspond to the fastest
growing modes in the system.

applied. The FFT of modes 1-28 are plotted where the slope of each line corresponds to the

growth rate of the mode. Modes 8-12 appear to have the largest slope indicating the largest

growth rate. Specifically, modes 10 and 12 have the largest growth rates prior to nonlinear

saturation.

The Mach number and the drift parameter at 2τa and 4τa are investigated in Figure 8.8.

The ion Mach number at 2τa shows that the ions are subsonic throughout and the drift

parameter at this time has values of upto 3. After 4τa the ions eventually become supersonic

in some regions and the drift parameter reaches values of 4.

Refs.[88] and [75] study the evolution of LHDI in low drift velocity regimes (vd/vthi << 1)

but also acknowledge that substantial resistivity and plasma heating can occur for large

drift velocity regimes as well as small drift velocity regimes. The drift-turbulence instability

189

Figure 8.8: The ion Mach number (left) and the drift parameter (right) are computed at
2τa (top plots) and 4τa (bottom plots). The initial conditions have 0 ion velocity.

190

0 1 2 3 4 5 6

aτ/

10-7

10-6

10-5

10-4

η

Figure 8.9: Two-fluid small-wavelength instability results in an anomalous resistivity even
though a collisionless model is used. The blue line shows the anomalous resistivity as a
function of the Alfvén transit time and the dashed red line shows the classical Spitzer
resistivity for this regime. Note the anomalous resistivity is substantially higher than the
classical resistivity.

presented here spans a large range of drift velocities from subsonic to supersonic over 5τa.

Figure 8.9 shows the effective resistivity that is computed using

η =
∫∫

E · J
J · J

drdz. (8.1)

This anomalous resistivity is observed even though a collisionless two-fluid model is used

without any explicit resistivity or viscosity. The presence of two-fluid effects by including

electron mass and displacement currents brings about additional physics. The electron mass

allows regimes where the electrons can be unmagnetized. The displacement currents allow

local non-neutral effects to be captured. Figure 8.9 shows that the anomalous resistivity

calculated is at least an order of magnitude larger than the classical Spitzer resistivity for this

regime. This anomalous resistivity results from the two-fluid small-wavelength instability

that evolves from the single wavelength perturbation. Similar anomalous resistivity has

been observed in the Translation, Confinement, Sustainment-Upgrade (TCSU) device at

191

the Redmond Plasma Physics Laboratory (RPPL)[89, 4].

8.2 Asymptotic Studies of Mass Ratio on Small-Wavelength Instability

Asymptotic studies of mass ratio are conducted to determine whether the artificially large

electron mass affects the two-fluid small-wavelength instability. The initial conditions are

the same as described in Sec. 5.5 except for the speed of light which is chosen to be an order

of magnitude higher so that decreasing the electron mass does not make the electron sound

speed relativistic. For an ion-to-electron mass ratio of M = 25, c/csi ≈ 145, c/cse ≈ 30,

c/vA ≈ 195. All other parameters remain the same. For M = 50, c/cse ≈ 20, and the

electron plasma and cyclotron frequencies change accordingly, but all other parameters

remain the same. Likewise, for M = 100, c/cse ≈ 14. The Z-pinch is initialized using a

single wavelength perturbation and the evolution of the ion density is observed for each of

the mass ratios after 2τa and 4τa in Fig. 8.10. It is noted that changing the mass ratio does

not substantially affect the evolution of the instability.

Furthermore, to better understand the behavior of the instability, the growth rates for

each of the mass ratios are plotted in Fig. 8.11. It is seen that the instability growth rates

are in agreement for the various mass ratios where the fastest growing mode dominates

the growth rate. The following sections will present a more detailed analysis on the fastest

growing modes of the instability.

8.3 Asymptotic Studies of Drift Parameter on Small-Wavelength Instability

The drift parameter, vd/vthi, plays a critical role in the evolution of the small-wavelength

drift-turbulence instability. The axisymmetric Z-pinch is investigated for several drift pa-

rameters to study the modes that result. The same initializations are used in Sec. 8.1 but a

higher drift parameter regime is chosen, vd/vthi = 2.7 which results in c/csi ≈ 13, c/cse ≈ 65,

c/vA ≈ 60, and Rp/rLi ≈ 1.3. Figure 8.12 shows ion density and azimuthal magnetic field

after 1τa and 2τa. Notice the formation of the instability in the ion fluid that is on the order

of the ion Larmor radius.

Performing an FFT analysis similar to the vd/vthi = 0.9 case presented in Sec. 8.1,

Fig. 8.13 shows the FFT versus frequency of each mode ranging from 1-14. Mode 1, which

192

Figure 8.10: Solutions of ion density for an axisymmetric Z-pinch using ion-to-electron mass
ratios of M = 50 (top plots), and M = 100 (bottom plots) at t = 2τa and t = 4τa from
left to right. All plots are on the same scale and match the scale of the M = 25 plot in
Fig. 8.1. Changing the mass ratio does not substantially affect the evolution of the two-fluid
instability.

193

0 1 2 3 4 5

aτ/

10-6

10-5

)
B

∆(gol

M_25

M_50

M_100

Figure 8.11: Two-fluid instability growth rates for an axisymmetric Z-pinch using ion-to-
electron mass ratios of M = 25, 50, and 100.

is the single-wavelength mode, is the initialized perturbation. Mode 2 refers to two wave-

lengths, etc. For this problem, mode 4 is the fastest growing mode in the system whose

wavelength corresponds to rLi.

Just as with the vd/vthi = 0.9 solution, the drift parameter gets very large as the solution

evolves and approaches values close to 10 near the pinch radius as is seen from Fig. 8.14

after 1τa. The ion velocity was initialized to 0 and the ion Mach number approaches sonic

speeds after 1τa. After 2τa, the ion velocity is supersonic and the drift parameter approaches

15 near the axis. At 2τa, the instability is fully developed and has destroyed pinch. The

ion fluid experiences shocks in the system and becomes supersonic as the solution evolves.

Heating occurs at locations of the shock just as with the vd/vthi = 0.9 solution. Also, for

vd/vthi = 2.7 the instability clearly evolves to be of order krLi ∼ 1.

Ref.[90] presents an analysis to show that LHDI arises from drifts across fields in the

presence of radial inhomogeneities in the plasma density. This instability is shown to arise in

the presence of strongly magnetized electrons and unmagnetized ions and occurs at ω ∼ ωLH

when k ·B = 0. While all these criteria match the regime being explored for the two-fluid

instability, the two-fluid instability observed here is not LHDI. The primary reason for this

194

Figure 8.12: Two-fluid drift-turbulence instability ion density for the axisymmetric Z-pinch
after 1τa (left plot) and 2τa (right plot). The top plots are of ion density and the bottom
plots are of the azimuthal magnetic field. The wavelengths of the instability are on the
order of the ion Larmor radius.

195

0.0 0.2 0.4 0.6 0.8 1.0
ω x1e+8

10-13

10-12

10-11

T
F
F

mode1
mode2
mode3
mode4
mode5
mode6
mode7

0.0 0.2 0.4 0.6 0.8 1.0
ω x1e+8

10-13

10-12

10-11

T
F
F

mode8
mode9
mode10
mode11
mode12
mode13
mode14

Figure 8.13: FFT plots for the axisymmetric Z-pinch instability showing growth rates of
individual modes ranging from 1 to 14 for vd/vthi = 2.7. A resolution of 128 × 128 cells is
used. Mode 1 corresponds to the initial sausage mode perturbation. Mode 4 is the fastest
growing mode in the system.

discrepancy is because the wavelength of the instability is not on the order of the electron

Larmor radius and is consistently and clearly on the order of the ion Larmor radius.

Exploring a low drift parameter regime such that vd/vthi = 0.27 which results in c/csi ≈

650, c/cse ≈ 130, c/vA ≈ 610, andRp/rLi ≈ 13, Fig. 8.15 shows that only a single wavelength

perturbed sausage mode develops and grows faster than any other mode in the system. This

solution is similar to the single-fluid MHD case where the ion Larmor radius is small enough

such that the ion fluid is also magnetized. Ions need to be unmagnetized for the two-fluid

instability to exist.

8.4 3-D Z-Pinch

Simulations of a fully 3-dimensional Z-pinch are done using the two-fluid plasma model in

a Cartesian mesh as well as a cylindrical single-block general geometry grid described in

Sec. 3.4.8. The initializations for this problem are similar to the normalized 2-dimensional

Z-pinch initializations detailed in Sec. 4.4.4. The ion-to-electron mass ratio is 25 and the

parameter regime is identical to the 2-dimensional case with the drift parameter ve/vthi ≈ 8,

where ve is the electron drift velocity and vthi is the ion thermal speed. The ratio of the

pinch radius to the ion Larmor radius, Rp/rLi ≈ 3 such that Rp = 0.5L where L is the

domain length and c ∼ 16vA. 3-dimensional sausage and kink perturbations are initialized

196

Figure 8.14: Top plots: The ion Mach number (left) and the drift parameter (right) are
computed after 1τa. Bottom plots: The ion Mach number (left) and the drift parameter
(right) are computed after 2τa. The initial condition has 0 ion velocity. Note the develop-
ment of very large drift parameters of 10 near the pinch radius after only 1τa. After 2τa,
the ions are supersonic and the drift parameter at the axis reaches values of 15.

197

Figure 8.15: Two-fluid drift-turbulence instability ion density for the axisymmetric Z-pinch
after 2.5τa (left plot) and 5τa (right plot). The top plots are of ion density and the bottom
plots are of the azimuthal magnetic field. No short-wavelength instabilities are observed in
this solution.

198

Figure 8.16: Electron density in a 3-D Z-pinch using the two-fluid plasma model. Left
plot is the initial condition for electron density. Middle plot is the electron density after 4
Alfvén transit times. Right plot is the electron density after 5 Alfvén transit times. Notice
the formation of the short-wavelength instabilities on top of the single wavelength sausage
instability.

in an equilibrium Z-pinch using single wavelength perturbations.

The evolution of the macro- and micro-instabilities is observed. Figures 8.16 and 8.17

present a Cartesian geometry solution of the the short-wavelength lower-hybrid drift in-

stability that forms on top of the single-wavelength sausage and kink instabilities. The

solutions shown for the sausage and the kink instabilities are after 4 and 5 Alfvén transit

times. The wavelength of the two-fluid instability observed is on the order of the ion Larmor

radius as with the 2-D cases explored previously.

8.5 3-D Astrophysical Jets

The 3-D Z-pinch application can be extended to include the solution of astrophysical jets

using WARPX. To simulate astrophysical phenomena, the regime is appropriately chosen

such that RP /rLi ≈ 10 with other initial conditions remaining the same as the Z-pinch. A

kink mode perturbation of 3 wavelengths is initialized and the 3 wavelength mode remains

the fastest growing mode in the system as seen in Fig. 8.18. This application shows that

199

Figure 8.17: Electron density in a 3-D Z-pinch using the two-fluid plasma model. Left
plot is the initial condition for electron density. Middle plot is the electron density after 4
Alfvén transit times. Right plot is the electron density after 5 Alfvén transit times. Notice
the formation of the short-wavelength instabilities on top of the single wavelength kink
instability.

Figure 8.18: Electron density for a 3-D astrophysical jet using the two-fluid plasma model.
Top plot is the initial condition for electron density. Middle plot is the electron density after
15 Alfvén transit times. Bottom plot is the electron density after 25 Alfvén transit times.

200

Figure 8.19: Initial condition of ion density for a 3-D Hill’s vortex FRC using the two-fluid
plasma model. Left plot is a cross-section in the x-z plane for the midplane in y. Right plot
is a cross-section for the x-y plane for the midplane in z.

WARPX and the two-fluid plasma model can be applied to a number of plasma problems

spanning a wide range of parameter regimes from the single-fluid MHD regime to a full

two-fluid regime where electrons are also unmagnetized.

8.6 3-D Hill’s Vortex FRC

A 3-D Hill’s vortex FRC is simulated using the same initial conditions and parameters

described in Sec. 7.4 with the domain radius, rc = 0.06, the separatrix radius rs = 0.04,

n0 ≈ 1022/m−3, Ti = Te = 100eV, s ≈ 4, M = 25, c/vA ≈ 22. Figure 8.19 shows the

initial condition of the ion density. The FRC is initialized with the parameters described

in Sec. 7.4. Following this relaxation, it is allowed to run until instabilities set in. No

perturbation is applied so numerical errors and grid effects are expected to eventually drive

an instability.

Figure 8.20 shows the evolution of the ion density after 2.5τa and 5τa. A two-fluid

instability very similar to that observed in the Z-pinch forms in the FRC. This instability is

on the order of the ion Larmor radius as with the Z-pinch results. Later in time, local grid

effects set in and distort the instability as seen in the solution after 5τa. The drift parameter

for this calculation is about 1.1 at the separatrix radius. Figure 8.20 shows that the solution

201

Figure 8.20: Initial condition of ion density for a 3-D Hill’s vortex FRC using the two-fluid
plasma model. Left plot is a cross-section of the ion density after 2.5τa in the x-y plane for
the midplane in z. Right plot is a cross-section of the ion density after 5τa in the x-y plane
for the midplane in z. Note formation of the small wavelength instability

appears to be affected by the rectangular boundaries as it becomes more rectangular with

time.

A general geometry solution is used to investigate the effect of using a cylindrical grid to

capture the cylindrical geometry. This is done to study whether the rectangular boundary

has an impact on the evolution of the solution. Figure 8.21 shows results from a simulation

with this grid after 2.5τa based on the geometry described in Fig. 3.13. It is seen that the

heavily distorted elements along the diagonals skew the solution. To investigate this further,

the grid from Fig. 3.14 is explored with the same initial conditions and the solution after

2.5τa is shown in Fig. 8.22.

Figure 8.22 shows that after 2.5τa the solution appears to be stable and no two-fluid

instability is observed. Being cylindrical, this grid eliminates effects of having rectangular

boundaries on the solution. Also, the most distorted elements are near the conducting

wall boundaries and do not affect the solution like the cylindrical grid in Fig. 8.21. In

fact, even after 4τa, the solution looks stable without the development of the two-fluid drift-

turbulence instability. For this problem, the two-fluid drift turbulence instability needs to be

triggered by altering the parameter regime such that the kinetic parameter is smaller. In the

202

Figure 8.21: ρi for a 3-D Hill’s vortex FRC using the two-fluid plasma model with cylindrical
grid. Left plot is a cross-section of the ion density after 2.5τa in the x-y plane for the
midplane in z. Right plot is a 3-D contour plot of ρi at 2.5τa.

203

Figure 8.22: ρi for a 3-D Hill’s vortex FRC using the two-fluid plasma model with cylindrical
grid. Left plot is a cross-section of the ion density after 2.5τa in the x-y plane for the
midplane in z. Right plot is a 3-D contour plot of ρi at 2.5τa. This grid does not show the
development of the two-fluid instability. It also does not display the grid effect seen in the
Cartesian geometry.

204

Figure 8.23: ρi for a 3-D Hill’s vortex FRC using the two-fluid plasma model with cylindrical
grid. Left plot is a cross-section of the ion density after 4τa in the x-y plane for the midplane
in z. Right plot is a 3-D contour plot of ρi at 4τa.

205

Cartesian geometry, the grid provided sufficient perturbation to trigger the instability. The

grid effect in the Cartesian geometry coupled with a rectangular conducting wall boundary

for the cylindrical geometry of the FRC could be responsible for the instability. However,

in the cylindrical grid general geometry solution, a larger perturbation may be needed. It is

possible that the regime explored is close to a stability boundary and a higher drift parameter

or kinetic parameter could push the FRC to go unstable for the cylindrical geometry as well.

Another way to approach this problem is to run it in a regime such that there is a large

density gradient across a region containing a small kinetic parameter. The two-fluid drift-

turbulence instability is only observed in the presence of sufficiently large Larmor radii and

sufficiently large density gradients as investigated with the axisymmetric Z-pinch instability

for different drift parameters and Larmor radii. Driving the 3-D FRC problem to a regime

such that there is a large density gradient across a small kinetic parameter will most likely

trigger the two-fluid drift turbulence instability in the FRC.

206

Chapter 9

CONCLUSIONS

9.1 Contributions

9.1.1 Analytical Study of Two-Fluid Plasma Model and Asymptotic Approximations

The two-fluid plasma model is studied and compared to reduced fluid models. An analytical

study of dispersion diagrams in Chapter 2 shows that while the two-fluid plasma model has

disparate speeds and frequencies, namely the speed of light, the fluid speeds of sound, the

ion and electron plasma frequencies, and the ion and electron cyclotron frequencies, all

the waves in the system reach an asymptote and can be resolved with explicit time-steps.

For Hall-MHD, however, the Whistler wave grows without bound and requires a cut-off

frequency or an artificial hyper-resistivity to truncate the high frequency modes. The time-

step restriction of the two-fluid model can be overcome by implementing an implicit time-

integration scheme that utilizes advanced features such as physics-based preconditioning,

spectral multi-grid, and Newton Krylov iterative methods. An important feature of the ideal

two-fluid plasma model is that it contains purely dispersive source terms and no explicit

dissipation exists in the system. These source terms account for the wide variety of plasma

waves in the system.

9.1.2 Implementation of Non-ideal Two-Fluid Plasma Model

A non-ideal two-fluid plasma model is implemented to include transport through terms such

as momentum transfer, viscosity, resistivity, and heat flux as derived by Braginskii. Gyro-

viscosity is neglected in this dissertation for simplicity, therefore, an absence of magnetic

field is assumed for computing the viscous stress tensor. The inclusion of transport allows

a physically relevant two-fluid model to be applied to self-consistently include dissipative

effects. Chapter 2 describes the non-ideal terms, and their applications are presented in

Chapter 5.

207

9.1.3 Implementation of 3-D Generalized Geometry DG Method

The numerical methods explored in this dissertation include a high resolution wave prop-

agation method, a finite volume method, and a discontinuous Galerkin (DG) method, a

finite element method. These are described in Chapter 3. The implementation details of

each of the numerical algorithms in WARPX are provided in detail here. The DG method

implemented in this dissertation is generalized for any spatial order and is implemented

in 3 dimensions in WARPX. Also, to minimize grid effects in non-rectangular geometries,

a general geometry implementation using the DG algorithm is included in WARPX in 3-

dimensions as a part of this dissertation and all the implementation details are provided in

Chapter 3. For now, a single block general geometry implementation is included. Multi-

block and unstructured grids constitute future work. Implementation details for general

geometry, Hall-MHD, and the non-ideal two-fluid plasma model are provided in Chapter 3.

9.1.4 Implementation of Explicit and Implicit-DG

The DG algorithm is implemented with explicit 2nd and 3rd order Runge-Kutta time-

integration schemes, and with 1st and 2nd order implicit backward differencing and 2nd

order Crank-Nicholson schemes. Chapter 6 compares the implicit- and explicit-DG imple-

mentations for a 1-D electromagnetic plasma shock. The implicit-DG algorithm is actually

a semi-implicit scheme for better computational cost and accuracy. Since the ion time-scales

must be resolved as a minimum to capture two-fluid physics, the ions are evolved explicitly

in time using a Runge-Kutta time integration with the DG method. The electron Euler

equations and Maxwell’s equations are solved implicitly using a Crank-Nicholson scheme.

Solving a strong shock problem using an implicit algorithm is non-trivial due to highly

non-linear evolution that can make convergence difficult. However, it is demonstrated that

the implicit-DG algorithm is best suited for solving the MHD-shock problem when realistic

parameters are used such that a real ion-to-electron mass ratio and a real light speed-to-

sound speed ratio is used. This makes the explicit algorithm very restrictive since the

speed of light and the electron plasma frequency become very large driving the time step

to very small values. Additionally, if high divergence correction speeds are chosen for the

208

perfectly hyperbolic Maxwell’s equations, an implicit algorithm may be suitable. For a 2-D

implementation, further work is required to make the implicit algorithm more robust.

9.1.5 Comparing Finite Volume and Finite Element Methods for the Two-Fluid Plasma

Model

Prior to selecting the DG algorithm for simulations performed in this dissertation, compar-

isons are performed between the high-resolution wave propagation algorithm and the DG

algorithm specifically for applications to equation systems with purely dispersive source

terms. Chapter 4 presents these results. It is noted that the wave propagation method

provides very accurate and computationally efficient solutions when the source terms are

small compared to the hyperbolic components. For small source terms, the wave propaga-

tion method provides an exact solution when run with CFL= 1 as long as the speeds in

the system are not disparate. This is explored using a model equation system, a disper-

sive Euler equation system, to simulate quasi-neutral ion cyclotron waves. This system has

purely dispersive source terms and the characteristic speeds of the system are not disparate.

When the source terms become large, phase errors are noted in the solutions using the wave-

propagation method which can be overcome by going to higher grid resolution. When the

equation system has disparate speeds like the two-fluid equation system, the wave propa-

gation method experiences diffusive errors since the slower speeds in the fluids are damped

out by the time-step that is set based on the fastest speeds and frequencies in the system.

Comparisons in Chapter 4 show that the RKDG method is more computationally efficient

and provides more accurate solutions for the two-fluid plasma model even at lower grid

resolutions particularly when it is run with higher spatial orders.

9.1.6 Benchmark Problems using Two-Fluid Plasma Model

The two-fluid plasma model is benchmarked to previously published results in Chapter 5. A

1-D electromagnetic shock problem is studied for divergence of electric field errors to deter-

mine if the solution changes. ∇ ·E errors can be problematic in regions near shocks. A 2-D

GEM (Geospace Environment Modeling) challenge magnetic reconnection problem is sim-

209

ulated and benchmarked to previously published results using the two-fluid plasma model.

Following this, a realistic parameter regime is used to simulate magnetic reconnection for a

space plasma to compare the ideal two-fluid plasma model to the non-ideal two-fluid model

that includes transport coefficients that were derived by Braginskii. This is done to ensure

that the regime chosen does not have artificial unphysical resistivity, viscosity, and heat

flux. The transport terms are self-consistently computed from the conserved variables at

any given time-step. The two-fluid model differs from the Hall-MHD model in allowing

electron de-magnetization by including electron inertia and in allowing local non-neutral

effects to be captured by including displacement currents. In order to study the regime the

fully two-fluid regime, magnetic reconnection is simulated for a current sheet that is initially

thinner than the electron skin depth. It is seen that large local electric fields develop in the

ideal two-fluid solution in this regime that eventually drive the solution unstable. It is also

observed that early in time, the fluids become turbulent and this could result in the large

gradients that develop in the electric fields that drive the solution unstable. The inclusion

of transport dissipates such terms and allows the solution to remain in a steady-state.

9.1.7 Implementation of Hall-MHD in WARPX and Comparing to Two-Fluid Plasma

Model

The two-fluid plasma model is compared to Hall-MHD for an explicit scheme to study the

differences in the physics captured and computational effort in Chapter 7. This compari-

son is performed for a 1-D electromagnetic plasma shock, a 2-D GEM challenge magnetic

reconnection, a 2-D axisymmetric Z-pinch two-fluid instability, and for a 2-D axisymmetric

Hill’s vortex FRC equilibrium. The plasma shock and magnetic reconnection applications

benchmark the Hall-MHD implementation in WARPX to previously published results. The

Z-pinch small-wavelength instability is captured by both fluid models, however some differ-

ences are seen. The Hall-MHD model resolves smaller wavelengths as the grid resolution

is increased because it has an unbounded Whistler wave that needs to have a cut-off wave

number and often collapses to the grid scale. Inclusion of hyper-resistivity in the ideal

Hall-MHD model produces a result similar to the ideal two-fluid model solution. However,

210

the explicit Hall-MHD model requires at least an order of magnitude larger computational

cost and it is more efficient and accurate to use the full two-fluid plasma model. It is un-

clear whether even an efficient implicit solver for Hall-MHD can out-perform an efficient,

implicit or explicit solver for the full two-fluid plasma model. Using artificial ion-to-electron

mass ratios and artificial light speed-to-fluid sound speed ratios for the full two-fluid plasma

model provides a comparable two-fluid solution that is both accurate and computationally

efficient.

9.1.8 Study of Two-Fluid Instabilities in 3-D Z-pinch and 3-D FRC

Two-fluid instabilities are studied in an axisymmetric Z-pinch, a fully 3-D Z-pinch and a

3-D FRC with an initial Hill’s vortex profile. The development of the small-wavelength

two-fluid instability is studied when only a single wavelength perturbation is applied to the

Z-pinch and no perturbation is applied to the FRC. It is noted that the small-wavelength

instability grows on top of the single wavelength perturbation. This instability is in the

appropriate regime for the lower-hybrid drift instability (LHDI), i.e. k · B = 0, strong

density gradients in the solution, unmagnetized ions with strongly magnetized electrons,

and Te ∼ Ti. The fastest growing modes for LHDI are ∼ krLe and the longer wavelength

modes are ∼ k
√
rLerLi. However, for the instability observed here, the instability modes

are ∼ krLi. This raises the question as to whether these instabilities are actually LHDI or a

low frequency drift instability that manifests itself in a similar parameter regime. Analysis

presented in this dissertation suggests that this instability is not LHDI although LHDI

could be responsible for initially triggering the instability. The two-fluid drift-turbulence

instability observed corresponds to previously published analysis of a similar instability that

occurs as a result of reactive coupling between backward propagating fast whistler waves

and forward propagating slow ion sound waves[86].

9.1.9 Development of WARPX

The code, WARPX, has been developed to include explicit and implicit methods linking

to PETSc for implicit solvers and preconditioners using the DG method. Additionally, it

211

is now a general geometry code for both the finite volume method and the finite element

method in 3-dimensions. The DG algorithm implemented in WARPX as a part of this

dissertation uses a generalized implementation for any desired spatial order and produces

formally higher order spatial accuracy by accounting for additional coefficients as compared

to Ref.[2]. Auxiliary variable implementation using the DG method is included in WARPX

to allow arbitrary spatial orders for an arbitrary number of auxiliary variables included with

any given equation system. This allows both auxiliary and conserved variables to achieve

the same accuracy. Higher order limiters are implemented for DG that are advantageous for

problems that do not have strong shocks. WARPX has been generalized and significantly

expanded in the course of this dissertation. While it certainly requires further development

to become and remain competitive with new computing architectures, WARPX has been

developed to a point where it can simulate simple experimental configurations.

9.2 Suggested Future Work

The research presented in this dissertation is certainly not complete and lays the path

for future work with the two-fluid plasma model. Future work remains in improving the

numerical methods, in including additional physics in the two-fluid plasma model, and in

the code development of WARPX.

The axisymmetric and 3-D FRC can be investigated using a numerical Grad-Shafranov

MHD solver to provide a more accurate equilibrium initially. Ideally, a true two-fluid FRC

equilibrium computed numerically would provide the best results. Once this is done, the

two-fluid evolution can be investigated and the development of a toroidal magnetic field

can be studied and compared to Hall-MHD. With a better initial equilibrium profile, the

development and evolution of the two-fluid drift-turbulence instability can be investigated

using a sharper density gradient with a smaller kinetic parameter.

A study of advanced implicit time-integration schemes for strongly non-linear systems

is a first step towards improving the present numerical methods. Physics-based precondi-

tioning and p-multigrid methods are some examples of preconditioners that can be used to

make the implicit solvers more efficient. Some knowledge of the problem and parameters

is necessary in order to fully utilize the advantages of a physics-based preconditioner. The

212

preconditioner as described in Ref.[43] assumes that the fluid velocities are small. Depend-

ing on the problem, the velocities may not be small, but the magnetic fields or electric fields

may be small. Since the number of such approximations is limited, several approximations

can be hard-coded into WARPX and the choice of the approximation and preconditioner

can be specified directly in the input file depending on the problem parameters. This would

allow a general implicit implementation with sufficient flexibility to choose the appropriate

approximation for the preconditioner depending on the problem being solved.

A number of problems have shocks in the ion fluid but the gradients are relatively

smooth in the electron fluid and electric and magnetic fields. Hence, solving a continuous

finite element method for the electron fluid and the fields with an implicit implementation

might make the solution more linear and this is expected to be easier on the implicit Newton

solvers. The ions can be still be solved with an explicit-DG scheme since they contain most of

the shocks in the system. A robust implicit implementation will make the two-fluid plasma

model very competitive with other fluid models due to its ability to capture additional

physics without the time-step restriction brought about by the displacement currents and

electron inertia.

Additional improvements in the numerical methods include the development of more

robust limiters for DG. Limiters have been a topic of research for DG methods for many

years and the development of improved limiters is critical to obtaining accurate solutions

especially when using general geometry. Additionally, the implementation of multiple-block

grids and unstructured grids constitute major future work and can significantly improve the

application of WARPX to real experiments.

In terms of physics, the inclusion of gyro-viscosity with the two-fluid plasma model will

make the non-ideal implementation more complete. Gyro-viscosity couples the magnetic

field to the fluid sheared flow, and it is expected to include the effects of a magnetic drag in

some sense. Gyro-viscosity is expected to make the transport of longitudinal and transverse

momentum more accurate.

A 10-moment and better yet, a 13-moment plasma model constitutes future work with

the inclusion of anisotropic pressure tensor. This will provide a more complete description

of the plasma. This is applicable for problems such as an FRC where the ions are kinetic,

213

so the ions could be modeled using a 13-moment model while the electrons could still use a

5-moment model. This would be reversed in a plasma sheath where the electrons are highly

kinetic. This is presently being investigated by the computational plasma dynamics group

at the University of Washington.

WARPX, while a useful fluid plasma code, can use significant improvements to make it

competitive with other fluid codes. In addition to improved numerical methods and inclusion

of additional physics, the code infrastructure can be modified to use current computing

architectures. This is presently being investigated by the computational plasma dynamics

group to include OpenCL and expand the platform that WARPX runs on to include, CPUs,

GPUs, and other processors. Additionally, a useful feature would be to allow WARPX to

internally choose the fluid model appropriate for the regime of interest based on the mean-

free-path and the parameters of a given problem.

214

BIBLIOGRAPHY

[1] A. Hakim, J. Loverich, and U. Shumlak. A high resolution wave propagation scheme
for ideal Two-Fluid plasma equations. Journal of Computational Physics, 219:418–
442, 2006.

[2] J. Loverich and U. Shumlak. A discontinuous Galerkin method for the full two-fluid
plasma model. Computer Physics Communications, 169:251–255, 2005.

[3] J. Loverich and U. Shumlak. Nonlinear full two-fluid study of m=0 sausage instabilities
in an axisymmetric Z pinch. Physics of Plasmas, 13(082310), 2006.

[4] A. Hakim and U. Shumlak. Two-fluid physics and field-reversed configurations.
Physics of Plasmas, 14(055911), 2007.

[5] A.G. Kulikoviskii, N.V. Pogorelov, and A.Y. Semenov. Mathematical Aspects of Nu-
merical Solutions of Hyperbolic Systems. Chapman and Hall/CRC, 2001.

[6] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press, 2002.

[7] W. Gropp, E. Lusk, D. Ashton, P. Balaji, D. Buntinas, R. Butler, A. Chan, D. Goodell,
J. Krishna, G. Mercier, R. Ross, R. Thakur, and B. Toonen. MPICH2 user’s guide.
Technical Report 1.2.1, Argonne National Laboratory, 2009.

[8] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay,
P. Kambadur, B.Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham,
and T.S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
pages 97–104, September 2004.

[9] The HDF Group. HDF5 user’s guide. Technical Report 1.8.4, 2009.

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK user guide.
Technical Report 3rd Edition, Society for Industrial and Applied Mathematics, 1999.

[11] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C.
McInnes, B.F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-
95/11 - Revision 3.0.0, Argonne National Laboratory, 2008.

215

[12] S. Knight. SCons user guide. Technical Report 1.3.0, 2008.

[13] VisIt user’s manual. Technical Report 1.5, Lawrence Livermore National Laboratory,
2005.

[14] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß. Divergence
correction techniques for Maxwell solvers based on a hyperbolic model. Journal of
Computational Physics, 161(2):484–511, 2000.

[15] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg.
Hyperbolic divergence cleaning for the MHD equations. Journal of Computational
Physics, 175:645–673, 2002.

[16] R. Fitzpatrick. Scaling of forced magnetic reconnection in the Hall-
magnetohydrodynamic Taylor problem. Physics of Plasmas, 11(3):937–946, 2004.

[17] S.I. Braginskii. Transport processes in a plasma. Reviews of Plasma Physics, 1:205,
1965. Authorized translation from Russian by Herbert Lashinsky, University of Mary-
land, USA. Edited by M.A. Leontovich.

[18] D. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A wave-propagation method
for conservation laws and balance laws with spatially varying flux functions. SIAM
Journal of Scientific Computing, 24:955–978, 2002.

[19] J.O. Langseth and R.J. LeVeque. A wave propagation method for three-dimensional
hyperbolic conservation laws. Journal of Computational Physics, 165:126–166, 2000.

[20] P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43:357–372, 1981.

[21] G. Strang. On the construction and comparison of difference schemes. SIAM Journal
of Numerical Analysis, 5(3):506–517, 1968.

[22] B. Cockburn, G.E. Karniadakis, and C.-W. Shu. The Development of Discontinuous
Galerkin Methods. In: Discontinuous Galerkin Methods: Theory, Computation and
Applications. Lecture notes in Computational Science and Engineering., volume 11.
Springer, 2000.

[23] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equa-
tion. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

[24] B. Cockburn and C.-W. Shu. TVB runge-Kutta local projection discontinous Galerkin
finite element for conservation laws ii. general framework. Mathematics of Computa-
tion, 52(186):411–435, 1989.

216

[25] C.-W. Shu. Total-Variation-Diminishing time discretizations. SIAM Journal of Sci-
entific and Statistical Computing, 9(6):1073–1084, 1988.

[26] B. Cockburn and C.-W. Shu. Runge-Kutta discontinous Galerkin methods for
convection-dominated problems. Journal of Scientific Computing, 16:173–261, 2001.

[27] F. Bassi and S. Rebay. A high order accurate discontinuous finite element method
for the numerical solution of the compressible Navier-Stokes equations. Journal of
Computational Physics, 131:267–279, 1997.

[28] J.T. Oden, I. Babuŝka, and C.E. Baumann. A discontinuous hp finite element method
for diffusion problems. Journal of Computational Physics, 146:491–519, 1998.

[29] P. Percell and M.F. Wheeler. A local residual finite element procedure for elliptic
equations. SIAM Journal on Numerical Analysis, 15(4):705–714, 1978.

[30] L.M. Delves and C.A. Hall. An implicit matching principle for global element calcu-
lations. Journal of the Institute of Mathematical Applications, 23:223–234, 1979.

[31] J.A. Hendry and L.M. Delves. The global element method applied to a harmonic
mixed boundary value problem. Journal of Computational Physics, 33:33–44, 1979.

[32] B. Cockburn, F. Li, and C.-W. Shu. Locally divergence-free discontinuous Galerkin
methods for the Maxwell equations. Journal of Computational Physics, 194(2):588–
610, 2004.

[33] J.S. Hesthaven and T. Warburton. High-order nodal discontinuous Galerkin methods
for the Maxwell eigenvalue problem. Royal Society London, 362:493–524, 2004.

[34] F. Li and C.-W. Shu. Locally divergence-free discontinuous Galerkin methods for
MHD equations. Journal of Scientific Computing, 22-23:413–442, 2003.

[35] D. Levy, C.-W. Shu, and J. Yan. Local discontinuous Galerkin methods for nonlinear
dispersive equations. Journal of Computational Physics, 196:751–772, 2004.

[36] M. Zhang and C.-W. Shu. An analysis of and a comparison between the discontinuous
galerkin and the spectral finite volume methods. Computers & Fluids, 34:581–592,
2005.

[37] R. J. Spiteri and S. J. Ruuth. A new class of optimal high-order strong-stability-
preserving time discretization methods. SIAM Journal of Numerical Analysis,
40(2):469–491, 2002.

217

[38] S. Gottlieb, D.I. Ketcheson, and C-W. Shu. High order strong stability preserving
time discretizations. Journal of Scientific Computing, 38(3):251–289, 2008.

[39] B. Cockburn, S. Hou, and C.-W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws iv: the multidimensional case.
Mathematics of Computation, 54:545–581, 1990.

[40] L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of
Computational Physics, 226:879–896, 2007.

[41] L. Wang and D. J. Mavriplis. Implicit solution of the unsteady Euler equations for
high-order accurate discontinuous Gakerkin discretizations. AIAA Aerospace Sciences
Meeting and Exhibit Proceedings, AIAA 2006(109), 2006.

[42] L. Wang and D. J. Mavriplis. Implicit solution of the unsteady Euler equations for
high-order accurate discontinuous Gakerkin discretizations. Journal of Computational
Physics, 225:1994–2015, 2007.

[43] L. Chacón. An optimal, parallel, fully implicit Newton-Krylov solver for three-
dimensional viscoresistive magnetohydrodynamics. Physics of Plasmas, 15(056103),
2008.

[44] K.J. Fidowski, T.A. Oliver, J. Lu, and D.L. Darmofal. p-Multigrid solution of high-
order discontinuous Galerkin discretizations of the compressible Navier-Stokes equa-
tions. Journal of Computational Physics, 207:92–113, 2005.

[45] J. Grandy. Efficient computation of volume of hexahedral cells. Technical Report
UCRL-ID-128886, Lawrence Livermore National Laboratory, 2007.

[46] D.A. Calhoun, C. Helzel, and R.J. LeVeque. Logically rectangular grids and finite
volume methods for PDEs in circular and spherical domains. SIAM Review, 50(4):723–
752, 2008.

[47] B. Srinivasan, A. Hakim, and U. Shumlak. Numerical methods for two-fluid dispersive
fast MHD phenomena. Communications in Computational Physics, Submitted for
review 2010.

[48] S. Baboolal. Finite-difference modeling of solitons induced by a density hump in a
plasma multi-fluid. Mathematics and Computers in Simulation, 55:309–316, 2001.

[49] G. Toth. The ∇ ·B = 0 constraint in shock-capturing magnetohydrodynamics codes.
Journal of Computational Physics, 161:605–652, 2000.

218

[50] D.S. Balsara. Divergence-free adaptive mesh refinement for magnetohydrodynamics.
Journal of Computational Physics, 174:614–648, 2001.

[51] K.G. Powell. An approximate Riemann solver for magnetohydrodynamics. ICASE
Report, (94-24), 1994.

[52] C.R. Evans and J.F. Hawley. Simulation of magnetohydrodynamic flows: a con-
strained transport method. Astrophysical Journal, 332:659–677, 1988.

[53] J.U. Brackbill and D.C. Barnes. The effect of nonzero∇·B on the numerical solution of
the magnetohydrodynamic equations. Journal of Computational Physics, 35:426–430,
1980.

[54] U. Shumlak and J. Loverich. Approximate Riemann Solver for the Two Fluid Plasma
Model. Journal of Computational Physics, 187:620–638, 2003.

[55] J. Birn et al. Geospace environmental modeling (GEM) magnetic reconnection chal-
lenge. Journal of Geophysical Research, 106:3715, 2001.

[56] J. Birn and M. Hesse. Geospace environment modeling (gem) magnetic reconnec-
tion challenge: Resistive tearing, anisotropic pressure and hall effects. Journal of
Geophysical Research, 106(A3):3737, 2001.

[57] A. Otto. Geospace environment modeling (gem) magnetic reconnection challenge:
MHD and hall MHD - constant and current dependent resistivity models. Journal of
Geophysical Research, 106:3751–3757, 2001.

[58] M.A. Shay, J.F. Drake, B.N. Rogers, and R.E. Denton. Alfvénic collisionless magnetic
reconnection and the hall term. Journal of Geophysical Research, 106(A3):3759–3772,
2001.

[59] Z.W. Ma and A. Bhattacharjee. Hall magnetohydrodynamic reconnection: The
geospace environment modeling challenge. Journal of Geophysical Research,
106(A3):3773, 2001.

[60] M. Hesse, M. Kuznetsova, and J. Birn. Particle-in-cell simulations of three-dimensional
collisionless magnetic reconnection. Journal of Geophysical Research, 106:29831–
29841, 2001.

[61] P. Pritchett. Geospace environment modeling magnetic reconnection challenge: Sim-
ulations with a full particle electromagnetic code. Journal of Geophysical Research,
106:3783–3798, 2001.

219

[62] M. Kuznetsova, M. Hesse, and J. Birn. Collisionless reconnection supported by nongy-
rotropic pressure effects in hybrid and particle simulations. Journal of Geophysical
Research, 106:3799–3810, 2001.

[63] E. Priest and T. Forbes. Magnetic reconnection: MHD theory and applications. Cam-
bridge University Press, 2000.

[64] A. Zocco, L. Chacon, and A.N. Simakov. Current sheet bifurcation in electron mag-
netohydrodynamics. Physics of Plasmas, 16(110703), 2009.

[65] S. Pope. Turbulent Flows. Cambridge University Press, 2000.

[66] D.S. Harned and Z. Mikić. Accurate semi-implicit treatment of the Hall effect in
magnetohydrodynamic computations. Journal of Computational Physics, 83:1–15,
1989.

[67] J.D. Huba. ”Hall-Magnetohydrodynamics - A Tutorial” in Space Plasma Simulations.
Springer, 2003.

[68] L. Arnold, J. Dreher, and R. Grauer. A semi-implicit Hall-MHD solver using whistler
wave preconditioning. Computer Physics Communications, 178:553–557, 2008.

[69] L. Chacón and D.A. Knoll. A 2d high-β Hall MHD implicit nonlinear solver. Journal
of Computational Physics, 188:573–592, 2003.

[70] R. Falgout, A. Baker, V.E. Henson, U.M. Yang, T. Kolev, B. Lee, J. Painter, C. Tong,
and P. Vassilevski. Hypre user’s manual. Technical Report 2.0.0, Lawrence Livermore
National Laboratory, 2006.

[71] D. Hysom and A. Pothen. Euclid user manual. Technical Report 01.a, Lawrence
Livermore National Laboratory, 2001.

[72] B. Srinivasan, U. Shumlak, and A. Hakim. Comparisons and applications of two-fluid
plasma algorithms. AIAA Plasmadynamics Conference Proceedings, 2008.

[73] Y.A. Omelchenko. Physics of Plasmas, 7(5):1443–1451, 2000.

[74] H.Y. Guo, A.L. Hoffman, K.E. Miller, and L.C. Steinhauer. Flux conversion and
evidence of relaxation in a high-β plasma formed by high-speed injection into a mirror
confinement structure. Physical Review Letters, 92(24), 2004.

[75] R.C. Davidson and N.T. Gladd. Anomalous transport properties associated with the
lower-hybrid-drift instability. The Physics of Fluids, 18(10):1327–1335, 1975.

220

[76] R.C. Davidson, N.T. Gladd, C.S. Wu, and J.D. Huba. Effects of finite plasma beta
on the lower-hybrid-drift instability. The Physics of Fluids, 20(2):301–310, 1977.

[77] P. H. Yoon, A. T. Y. Lui, and M. I. Sitnov. Generalized lower-hybrid drift instabilities
in current-sheet equilibrium. Physics of Plasmas, 9(5):1526–1538, 2002.

[78] G. Lapenta and J.U. Brackbill. Nonlinear evolution of lower hybrid drift instability:
current sheet thinning and kinking. Physics of Plasmas, 9(5):1544–1554, 2002.

[79] J.D. Huba, J.F. Drake, and N.T. Gladd. Lower-hybrid-drift instability in field reversed
plasmas. The Physics of Fluids, 23(3):552–561, 1980.

[80] A. A. Galeev. ”Magnetospheric tail dynamics” in Magnetospheric Plasma Physics.
Center for Academic Publications, Japan and Reidel Publishing Company, London,
1982. Edited by A. Nishida.

[81] W. Daughton. Electromagnetic properties of the lower-hybrid drift instability in a
thin current sheet. Physics of Plasmas, 10(8):3103–3119, 2003.

[82] D. Biskamp. Magnetic Reconnection in Plasmas. Cambridge University Press, 2000.

[83] J.D. Huba. Hall dynamics of the Kelvin-Helmholtz instability. Physical Review letters,
72(13):2033–2036, 1994.

[84] A.B. Mikhailovskii and L.I. Rudakov. The stability of a spatially inhomogeneous
plasma in a magnetic field. Soviet Physics JETP, 44:912–918, 1963.

[85] W. Daughton. Journal of Geophysical Research, 104(A12):701–707, 1999.

[86] H. Ji, R. Kulsrud, W. Fox, and M. Yamada. Journal of Geophysical Research,
110(A08212), 2005.

[87] R. Kulsrud, H. Ji, W. Fox, and M. Yamada. Physics of Plasmas, 12(082301), 2005.

[88] J.P. Friedberg and R.A. Gerwin. Lower hybrid drift instability at low drift velocities.
The Physics of Fluids, 20(8):1311–1315, 1977.

[89] H.Y. Guo, A.L. Hoffman, and R.D. Milroy. Rotating magnetic field current drive of
high-temperature field reversed configurations with high ζ scaling. Physics of Plasmas,
14(112502), 2007.

[90] N.A. Krall and P.C. Liewer. Low-frequency instabilities in magnetic pulses. Physical
Review A, 4:2094–2103, 1971.

221

[91] R.C. Davidson. Methods in Nonlinear Plasma Theory. Academic Press, 1972.

[92] Jeffrey P. Friedberg. Ideal Magnetohydrodynamics. Plenum Press, 1987.

[93] P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic
equations in a variable domain. SIAM Journal on Numerical Analysis, 15:912–928,
1978.

[94] L.C. Steinhauer, H. Yamada, and A. Ishida. Two-fluid flowing equilibria of compact
plasmas. Physics of Plasmas, 8(9):4053–4061, 2001.

[95] J. Qiu and C.-W. Shu. Runge-Kutta discontinuous Galerkin method using WENO
limiters. SIAM Journal on Scientific Computing, 26:907–929, 2005.

[96] R. W. Motley and N.D’Angelo. Excitation of electrostatic plasma oscillations near
the ion cyclotron frequency. Physics of Fluids, 6(2):296–299, 1963.

[97] T.R. Fogarty and R.J. LeVeque. High-resolution finite-volume methods for acous-
tic waves in periodic or random media. Journal of Acoustical Society of America,
106(1):17–28, 1999.

[98] Y. Suzuki and B. van Leer. A discontinuous Galerkin method with Hancock-type time
integration for hyperbolic systems with stiff relaxation source terms.

[99] H. T. Huynh. An upwind moment scheme for conservation laws. ICCFD 3, Toronto,
Canada, 2004.

[100] D. Biskamp, E. Schwarz, and J.F. Drake. Ion-controlled collisionless magnetic recon-
nection. Physical Review Letters, 75:3850–3853, 1995.

[101] L. Rastätter, M. Hesse, and K. Schindler. Hall-mhd modeling of near-Earth mag-
netotail current sheet thinning and evolution. Journal of Geophysical Research,
104(A6):12301–12311, 1999.

[102] E. Ahedo, P. Mart́ınez-Cerezo, and M. Mart́ınez-Sánchez. One-dimensional model of
the plasma flow in a Hall thruster. Physics of Plasmas, 8(6):3058–3068, 2001.

[103] A. Cohen-Zur, A. Fruchtman, J. Ashkenazy, and A. Gany. Analysis of the steady-state
axial flow in a Hall thruster. Phyics of Plasmas, 9(10):4363–4374, 2002.

[104] R. Winglee, T. Ziemba, L. Giersch, J. Prager, J. Carscadden, and B.R. Roberson.
Simulation and laboratory validation of magnetic nozzle effects for the high power
helicon thruster. Phyics of Plasmas, 14(063501), 2007.

222

[105] J.D. Huba, J.G. Lyon, and A.B. Hassam. Theory and simulation of the Rayleigh-
Taylor instability in the limit of large Larmor radius. Physical Review letters,
59(26):2971–2974, 1987.

[106] E.V. Belova, R.C. Davidson, H. Ji, and M. Yamada. Kinetic effects on the stability
properties of field-reversed configurations. I. Linear stability. Physics of Plasmas,
10(6):2361–2371, 2003.

[107] A. Hakim. Extended MHD modelling with the ten-moment equations. Journal of
Fusion Energy, 27:36–43, 2008.

[108] B. Srinivasan and U. Shumlak. A semi-implicit, ideal, full two-fluid plasma model. To
be submitted. 2010.

[109] S. Baboolal and R. Bharuthram. Two-scale numerical solution of the electromagnetic
two-fluid plasma-maxwell equations: shock and soliton simulation. Mathematics and
Computers in Simulation, 76:3–7, 2007.

[110] N.A. Krall. Low-frequency stability for field reversed configuration parameters.
Physics of Fluids, 3:878–883, 1987.

223

Appendix A

BRAGINSKII’S TRANSPORT COEFFICIENTS IMPLEMENTED IN
WARPX

The non-ideal two-fluid equations[17] are

∂ρe

∂t
+∇ · (ρeue) = 0 (A.1)

∂ρeue

∂t
+∇ · (ρeueue + peI) =

ρeqe
me

(E + ue ×B)−∇ ·
←→
Π + Rei (A.2)

∂εe
∂t

+∇ · ((εe + pe)ue) =
ρeqe
me

ue ·E−∇ · qe −
←→
Π e : ∇ue +Qe (A.3)

with subscript e for electrons and

∂ρi

∂t
+∇ · (ρiui) = 0 (A.4)

∂ρiui

∂t
+∇ · (ρiuiui + piI) =

ρiqi
mi

(E + ui ×B)−∇ ·
←→
Π i −Rei (A.5)

∂εi
∂t

+∇ · ((εi + pi)ui) =
ρiqi
mi

ui ·E−∇ · qi −
←→
Π i : ∇ui +Qi (A.6)

(A.7)

with subscript i for ions. Here, Rei is the momentum transfer term,
←→
Π is the viscous

stress tensor, q is the heat flux, and Q is the thermal equilibration between the species.

The
←→
Π : ∇u term represents the heat generated due to viscosity. In this dissertation,

gyroviscosity is neglected for simplicity therefore, an absence of magnetic field is assumed

for computing the viscous stress tensor. Each of the transport terms are elaborated in the

following sections and use the same formulas and notations are detailed in Ref.[17]. All

coefficients used are for Z = 1.

224

A.1 Momentum Transfer

The momentum transfer term accounts for the inter-species transfer of friction and thermal

forces. It is given by

Rei = RU + RT (A.8)

where RU is the friction force and RT is the thermal force. The friction force is defined as

RU = −α‖u‖ − α⊥u⊥ − α∧u∧ (A.9)

where subscript ‖ refers to parallel to the B field, subscript ⊥ refers to perpendicular to

the B field, and subscript ∧ refers to the direction that is perpendicular to both the B field

and the vector quantity, in this case u. u is the relative velocity given by u = ue − ui and

its components are defined as

u‖ =
B
|B|

(
u · B
|B|

)
(A.10)

u⊥ = u− u‖ (A.11)

u∧ =
B
|B|
× u. (A.12)

The friction force coefficients, basically electrical resistivity, are described as

α‖ = ρeνeα0 (A.13)

α⊥ = ρeνe
1− α′1x2 + α′0

∆
(A.14)

α∧ = ρeνex
α′′1x

2 + α′′0
∆

(A.15)

where ρe is the electron mass density, νe is the electron collision frequency, x = ωce/νe,

∆ = x4 + δ1x
2 + δ0. The coefficients chosen for Z = 1 are α0 = 0.5129, α′1 = 6.416,

α′0 = 1.837, α′′1 = 1.704, α′′0 = 0.7796, δ0 = 3.7703, and δ1 = 14.69. The collision frequency

225

is defined as

νe =
neq

4
e lnΛ

12ε20m
1/2
e (πkTe)3/2

(A.16)

where ne is the electron number density, qe is the electron charge, Te is the electron tem-

perature in K, ln Λ = ln 12πneλ
3
D, and λD is the species Debye length. Often, a lnΛ = 10

is chosen which accounts for most plasma configurations.

The thermal force term is defined as

RT = −βUT
‖ ∇‖Te − βUT

⊥ ∇⊥Te − βUT
∧ ∇∧Te (A.17)

The thermal force coefficients are described as

βUT
‖ = neβ0 (A.18)

βUT
⊥ = ne

1− β′1x2 + β′0
∆

(A.19)

βUT
∧ = nex

β′′1x
2 + β′′0
∆

(A.20)

where the coefficients chosen for Z = 1 are β0 = 0.7110, β′1 = 5.101, β′0 = 2.681, β′′1 = 3/2,

and β′′0 = 3.053 with all others as previously defined. The ‖, ⊥, and ∧ components of ∇Te

are obtained in the same manner as Eqs.(A.10-A.12). The equation of state, Pe = nekTe is

used to obtain the electron temperature from the continuity and energy equations.

A.2 Viscous Stress Tensor

The viscous stress tensor accounts for the viscosity within each species. Ignoring gyrovis-

cosity, the viscous stress tensor used assumes an absence of magnetic field. This viscous

stress tensor is defined for the electrons as

←→
Π e = −η0

←→
We (A.21)

226

where the viscosity coefficient is η0 = 0.73Pe/νe, and

←→
We = ∇αueβ +∇βueα −

2
3
δαβ∇ · ue. (A.22)

Here the second term on the right-hand-side is basically the transpose of the first right-

hand-side term, the velocity gradient. The δαβ ensures that the divergence of the velocity

is applied only for the diagonal components of the velocity gradient tensor. The resulting

viscous stress tensor matrix is a symmetric 3 × 3 matrix. The ion viscous stress tensor is

developed in a similar manner with

←→
Π i = −η0

←→
Wi (A.23)

where the viscosity coefficient is η0 = 0.96Pi/νi, and

←→
Wi = ∇αuiβ +∇βuiα −

2
3
δαβ∇ · ui. (A.24)

The collision frequency for the ions, νi, is defined in the same manner as the electrons.

A.3 Viscous Heating

The viscous heating term in the energy equation accounts for the heat generated to due

viscosity within each species. It is given by

←→
Π e : ∇ue =

∑
m

∑
n

Πe[m][n]∇ue[n][m] (A.25)

←→
Π i : ∇ui =

∑
m

∑
n

Πi[m][n]∇ui[n][m] (A.26)

where both tensors are symmetric due to neglecting gyroviscosity.

227

A.4 Heat Flux

The electron and ion heat flux terms are included to account for thermal conduction within

each species. The electron heat flux given by

qe = qe
U + qe

T (A.27)

where qe
U results from the relative velocity due to the presence of the thermal forces. qe

T

refers to the electron heat flux due to thermal conduction. qe
U is given by

qe
U = βTU

‖ u‖ + βTU
⊥ u⊥ + βTU

∧ u∧ (A.28)

where the coefficients are defined as

βTU
‖ = βUT

‖ Te (A.29)

βTU
⊥ = βUT

⊥ Te (A.30)

βTU
∧ = βUT

∧ Te (A.31)

with u‖, u⊥, and u∧ defined in Eqs.(A.10-A.12).

The thermal conduction heat flux term is given by

qe
T = −χ‖∇‖Te − χ⊥∇⊥Te − χ∧∇∧Te (A.32)

where the thermal conductivities are defined as

χ‖ =
Pe

meνe
γ0 (A.33)

χ⊥ =
Pe

meνe

γ′1x
2 + γ′0
∆

(A.34)

χ∧ =
Pe

meνe
x
γ′′1x

2 + γ′′0
∆

(A.35)

where γ0 = 3.1616, γ′1 = 4.664, γ′0 = 11.92, γ′′1 = 5/2, and γ′′0 = 21.67.

The ion heat flux contains only the thermal conduction term because the heat flux due

228

to the relative velocity is assumed negligible for the massive ions. The ion heat flux is given

by

qi = −χ‖∇‖Ti − χ⊥∇⊥Ti + χ∧∇∧Ti (A.36)

where the thermal conductivities are defined as

χ‖ = 3.906
Pi

miνi
(A.37)

χ⊥ =
Pi

miνi

2x2 + 2.645
∆

(A.38)

χ∧ =
Pi

miνi
x

5
2x

2 + 4.65
∆

(A.39)

where x = ωci/νi, ∆ = x4 + 2.70x2 + 0.677.

A.5 Thermal Equilibration

The heat generated due to collisions of electrons with ions results in a thermal equilibration

between the two species. The thermal equilibration is defined as

Q∆ = 3
me

mi
neνek(Te − Ti). (A.40)

For ions, Qi = Q∆ and the heat due to the friction and thermal forces can be neglected

since ions are assumed to be massive. For electrons however,

Qe = −R · u−Q∆ (A.41)

= −RU · u−RT · u−Q∆ (A.42)

where RU is the friction force, RT is the thermal force, and u is the relative velocity.

229

Appendix B

CODE STRUCTURE OF WARPX

WARPX is a 3-dimensional finite volume and finite element general geometry code. It

was developed at the University of Washington and is hosted with the Plasma Science and In-

novation (PSI) Center. It can be obtained by going to http://psicenter.org/warpx/main.cgi

and requesting a copy of the code. Directions for generating an ssh key to submit with the

download request are provided in this website. Once approved, instructions for downloading

the code using subversion will be sent.

This appendix describes the general code and algorithm structure of WARPX. This

hierarchy is well suited for any numerical algorithm and any equation system that a user

desires to simulate with special emphasis for hyperbolic systems. The trunk directory in

WARPX has a folder named src which contains all the source code for WARPX. Under

src, the code is distributed as described by the flow chart in Fig. B.1. Since the SCons tool

is used to generate the object files and the executable, all .cc files must be included in the

SConscript file for the folder that they are in. The src directory contains an SConstruct

file that serves to link all the SConscript files.

The lib directory contains all the software engineering aspects of WARPX. The array

structure and parallel array structures (pararrays) are defined here. The gridrange and

gridbox are defined with splitbox splitting up the grid among the specified number of

processors. The algorithm used to divide the grid among processors tries to maintain an

equal (or close to equal) volume-to-area ratio of the grid among all processors. The calls to

MPI and HDF5 routines are performed in this directory. An indexer is defined that keeps

track of the indices of the variables within each grid cell. A sequencer is defined to loop

over the local (for each processor) or global (over the entire) domain independent of the

number of dimensions in the system. The sequencer also allows a general implementation

of boundary conditions by looping over desired layers of the domain for each local or global

230

Figure B.1: Flowchart indicating the general code structure and organization of WARPX.

231

domain. A logger is defined to display a log stream depending on user specifications in

the input file. Warnings, errors, critical messages, and non-critical messages are all passed

through the logger. The expression parser reads the input files and uses input file parsers

defined in the etc directory.

The solvers directory contains the infrastructure for the various solvers and subsolvers

implemented in WARPX. The wxsolver base class deals with initializing the object, getting

the grid, getting the variables, setting up the subsolvers, reading and writing data, getting

the time-step, and advancing the solution. In setting up the subsolvers, the solver base class

ensures that it implements start-only, per time-step, end write-only subsolvers according to

user specifications in the input file. The wxsubsolver base class deals with defining the

subsolvers that derive from solvers and contain the numerical algorithms. Examples of

subsolvers include any finite difference algorithm, initial conditions, geometry calculations,

boundary conditions, expression writers, grid writers, DG quadrature calculations, PETSc

SNES solvers, NAN detection subsolvers, etc. All hyperbolic equation solvers are also

of type subsolver but are in the hyper directory. Any subsolver that is not a hyperbolic

equation solver such as Poisson subsolvers are housed in the solvers directory. All WARPX

subsolvers need to be registered so that the user-specified options in the input file are

appropriately linked to during compilation and run-time. In the solvers directory this

registration is done under wxsubsolver_register.

The hyper directory specifically contains hyperbolic equation subsolvers. These sub-

solvers include the wave propagation algorithm, the RKDG algorithm, the Implicit-DG al-

gorithm, general geometry algorithm using DG and wave propagation, limiters for DG, and

auxiliary variable subsolvers for DG to name some major ones. The wxhyperboliceqnset

and wxhyperbolicsrcset contain the information that ties each of the numerical algo-

rithms to each of the hyperbolic applications such as Riemann problem computations, fluxes,

sources, eigensystems, etc. The hyperbolic subsolver algorithms are written in a general

manner such that they are applicable to any hyperbolic equation system. All hyperbolic

subsolvers that are created are registered so that the input file specifications appropriately

link to the code.

The hyperapps directory contains hyperbolic equation systems. Examples of these are

232

advection equation, Burger’s equation, Euler equations, Maxwell’s equations, ideal-MHD,

Hall-MHD, Two-fluid equations, Ten-moment equations, etc. For each application, an equa-

tion file is defined that contains the number of equations and waves in the system, the Rie-

mann problem computations, flux calculations, and eigensystem computations. The source

terms are defined separately to allow for flexibility to use the same equation system with

and without sources. All equation systems and sources that are created contain a regis-

tration file similar to the subsolvers to appropriately link to specifications in the input file.

Equation specific boundary conditions (or other subsolvers) such as wall boundaries or axis

boundaries are defined within the specific application folder in the hyperapps directory and

are appropriately registered. Auxiliary variables such as electron currents and electric fields

for Hall-MHD are also defined in the specific application folder using the same framework

as the hyperbolic equations and sources.

The variables directory contains array structures for serial and parallel arrays. The

geometry data for finite volume methods and finite element methods are also defined as

variables. If particles were to the added to WARPX, they would be included as variables in

this directory. The xwarpx directory contains the main xwarpx.cc file and the simulation

parameters. The buildconf directory contains all the configuration files to link the external

dependencies to WARPX. For configurations that are specific to a computer and are not

defined in buildconf, a config.py file is created and the external dependencies can be

specified there (e.g. mpi=’/usr/local/mpich2’). WARPX is then compiled using desired

flags like scons debug=no parallel=yes. A build directory is created where all the object

files and executable are stored.

The main trunk directory has a regtests directory that contains regression tests.

These tests allow any major changes in WARPX to be benchmarked to previous results.

The test input files can be included under the tests folder and they are specified under

xregtests.inp. From the regtests directory, ./scripts/xregtests.py --help provides

the options for the regression tests. A set of accepted results can be created and stored as

benchmark cases to compare results from future changes in WARPX.

Also in the trunk directory is a scripts directory that contains python scripts for pre-

processing input files and post-processing data. For input files described in Appendix C, a

233

pre-processor is required to convert the *.pin file to a WARPX compatible *.inp file. This

is done using wxinpparse.py filename.pin. For python post-processing, wxdata.py is

used to read the WARPX parallel arrays from the HDF5 data files. import wxdata is used

from within Python followed by d = wxdata.WxData(filename, frame) where filename

is specified without the extension and frame is the HDF5 data file number. For the wave

propagation method, q = d.read(’variable’) is used to read in the desired variable. For

the DG method, this reads in only the average values within each cell. In order to get

a reconstruction of the high order coefficients, q = d.readDG(’variable’,meqn) is used

where meqn is the number of variables in the equation system. A high resolution projection is

specified using q = d.readDG(’variable’,meqn,nq) where nq is the number of additional

quadrature points per cell that the user desires for higher plotting resolution. Quick 1- and

2-dimensional plots in python are generated with the wxplot.py script where wxplot.py -h

shows the options.

For 3-dimensional visualization, 2-D cross-sectional plots can be generated using the

python scripts. Additionally, VisIt has been extensively used for 3-D post-processing of

WARPX data especially using the DG algorithm as the python scripts are time-consuming

with high resolution 3-D data. To use VisIt, a write-only subsolver needs to be defined in

the input file that projects each of the variables in the equation system onto quadrature

locations from within C++ at the end of each time-step. Examples of this are provided in

Appendix C. Once this is done for the variables and the grid, the wxxdmf.py script is used

to generate XMF files for each of the HDF5 data files. wxxdmf.py -h shows the options

available for generating XMF files. For a general geometry grid, wxxdmfgg.py is used to

generate the XMF files that are then opened in VisIt.

234

Appendix C

WARPX INPUT FILES

Some sample WARPX input files are provided in this chapter. Section C.1 shows mod-

ules of a sample input file using the RKDG method with the two-fluid plasma model. Macros

are employed in writing the XML-based format input files such that modules that are re-

peated can be included using a cleaner implementation. The Hall-MHD input file using the

RKDG method with auxiliary variables implemented is very similar to the auxiliary variable

implementation of the Braginskii coefficients using the full two-fluid plasma model. Sec-

tion C.2 shows modules of a sample implicit DG input file that uses the PETSc routines for

a Newton-based iterative scheme. Section C.3 shows modules of a sample general geometry

DG input file using a functional definition for the vertices of the desired geometry.

The input files described in this appendix apply macros and require pre-processing using

the wxinpparse.py script to generate a WARPX compatible *.inp input file.

C.1 RKDG Input File for Collisional Two-Fluid Plasma Model

A sample input file is provided for a 2-D two-fluid simulation using Braginskii transport

coefficients. The "..." in the input file is used to highlight lengthy descriptions that are

truncated here. The sample input file is well-commented but a brief summary is provided

here. The simulations parameters are defined in the beginning of the file and these are read

in by the macro which is included in the input file using #include filename.pin. The

PAR_ARRAY call to the macro makes the memory allocation for all array variables that live

in each cell of the grid. The initial condition is specified using an expression subsolver. A

check frequency subsolver is used to compute the plasma and cyclotron frequencies, which

appear in the source terms, to determine the most restrictive time-step. A NAN check

subsolver is included because the simulations often run without detecting such errors if

they are not caught early in time.

235

The auxiliary variables are then computed using auxiliary equation solvers. Each of

the auxiliary variables is limited in the same manner as the conserved variables. Once the

auxiliary variables are computed, they are passed in to the DGRHS subsolver to advance the

solution in time. The order in which the auxiliary variables are specified here is important

as they are used in the auxiliary and conserved equation systems assuming a specific order.

Once the right-hand-side is computed for the conserved variables, a Runge-Kutta stage 1

time advance is performed on the conserved variables. Limiters are then applied to the

conserved intermediate variable q1. The above steps are then repeated for a Runge-Kutta

stage 2 time advance and likewise if stage 3 is used. Prior to each Runge-Kutta stage,

boundary conditions are applied to the conserved and auxiliary variables. At the end of

each time-step, the variable qnew is copied to qold. The SUBSOLVERSTEP macro determines

the list of subsolvers that are computed for a given step. The SolverSequence specifies the

start-only subsolver-steps, the per time-step list of subsolver-steps in the required order,

and the write-only or end-only list of subsolver-steps. All subsolvers, hyperbolic equations,

and hyperbolic sources specify the registered name in the Kind field. The registration is

briefly described in Appendix B.

An input file for Hall-MHD is implemented in much the same way as the two-fluid plasma

model. In the two-fluid model, Braginskii terms are included as auxiliary variables and re-

quire auxiliary equations and solvers to be specified. For Hall-MHD, the electron currents

computed from a reduced Ampere’s law and the electric fields computed from generalized

Ohm’s law are the auxiliary variables. These auxiliary variables call the appropriate aux-

iliary equation and auxiliary sources by passing in the conserved variables. Limiters and

boundary conditions are applied in the same manner described previously. The conserved

variables are then updated using the auxiliary variables and are advanced in time using

the desired Runge-Kutta order. WARPX contains a Hall-MHD implementation where the

auxiliary variables are computed using a standard finite differencing scheme. While this

implementation is easy and uses less computational effort it does not deliver the same ac-

curacy as the auxiliary equation solver due to the absence of higher order auxiliary variable

coefficients. A DG implementation of the auxiliary equations provides a better solution.

236

-*- python -*-

specify simulation parameters e.g.

import math

PI = math.pi

MI = 2.0*1.67e-27

ME = MI/25.0

...

for macros used in this file

#include "tfmacro_braginskii_recon_separatesrc.pin"

<warpx>

##

Basic parameters

##

Simulation = recon

one of debug, info, warning, error,

critical, disabled

Verbosity = info

GlobalVerbosity = disabled

<recon>

Type = WxSolver

Kind = comboSolver

Time = [0.0, TEND] # start, end times

Out = NOUT # no of output files to write

Dt = 0.1 # initial dt to try

##

Grid defintion

##

<grid>

Type = WxGridBox

Lower = [XL, YL] # lower coordinates

Upper = [XU, YU] # upper coordinates

Cells = [XCELLS, YCELLS] # no of cells

PeriodicDirs = [0] # X is periodic

</grid>

##

Array definitions

##

<[PAR_ARRAY("qold", "grid", MEQN*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("qnew", "grid", MEQN*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("q1", "grid", MEQN*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("dq", "grid", MEQN*SP_ORDER*SP_ORDER)]>

aux var array definitions (first elc then ion)

grad Te, grad Ti, grad ue

grad ui, div ue, div ui

heat flux x,y,z, for electrons and ions

viscous stress tensor for electrons and ions

<[PAR_ARRAY("gtAux", "grid", 6*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("guAux", "grid", 18*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("duAux", "grid", 2*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("qhfAux", "grid", 6*SP_ORDER*SP_ORDER)]>

<[PAR_ARRAY("piAux", "grid", 18*SP_ORDER*SP_ORDER)]>

##

Subsolver definitions

##

Initialize qold,qnew

<initialcond>

Type = WxSubSolver

Kind = funcDGArraySetter

WriteVars = [qold, qnew]

OnGrid = grid

spatialOrder = SP_ORDER

meqn = MEQN

<func>

Type = WxFunction

Kind = exprFunc

specify parameters to be used in progn

progn = [\

"bx0 = b0*tanh(y/dlambda)", \

...

"Ei = 5.0*b0*b0*rhoi/(mi*mu0*12.*gas_gamma1*n0)"]

exprList = ["rhoe", \

...

"bx", \

"by", \

"0.0", \

"0.0", \

"0.0"]

</func>

</initialcond>

use q to see if wpe, wpi, wce, wci are resolved

<chk_freq>

Type = WxSubSolver

Kind = checkFreqTimeStep

charge = Q

ionmass = MI

elcmass = ME

epsilon0 = EPS0

isTransport = true

boltz = BOLTZ

gas_gamma = GAMMA

dx = (YU-YL)/YCELLS

OnGrid = grid

ReadVars = [qold]

</chk_freq>

Check to see if NANs exist in qold

<nancheck>

Type = WxSubSolver

Kind = isNANCheck

OnGrid = grid

237

ReadVars = [qold]

</nancheck>

use qold to get gt aux vars for elc and ion

(temp gradient vectors)

<[GTAUX("gtAux_qold", "gtAux", "qold", "gtAux")]>

apply limiter to gtAux

<[GTLIMIT("gtAux_limit", "component", "gtAux")]>

use qold to get gu aux vars for elc and ion

(velocity gradient tensors)

<[GUAUX("guAux_qold", "guAux", "qold", "guAux")]>

apply limiter to guAux

<[GULIMIT("guAux_limit", "component", "guAux")]>

use qold to get du aux vars for elc and ion

(divergence velocity scalars)

<[DUAUX("duAux_qold", "duAux", "qold", "duAux")]>

apply limiter to duAux

<[DULIMIT("duAux_limit", "component", "duAux")]>

use qold to get qhf aux vars for elc and ion

(heat flux vectors)

<[QHFAUX("qhfAux_qold", "qhfAux", "qold", "gtAux",

"qhfAux")]>

apply limiter to qhfAux

<[QHFLIMIT("qhfAux_limit", "component", "qhfAux")]>

use qold to get pi aux vars for elc and ion

(viscosity tensors)

<[PIAUX("piAux_qold", "piAux", "qold", "guAux",

"duAux", "piAux")]>

apply limiter to piAux

<[PILIMIT("piAux_limit", "component", "piAux")]>

use qold to compute dq

<[DGRHS("dgrhs_qold", "qold", "gtAux", "qhfAux",

"piAux", "guAux", "dq")]>

use dq and qold to compute q1

<rk_stage1>

Type = WxSubSolver

Kind = linearCombiner

OnGrid = grid

ReadVars = [qold, dq]

coeffs = [1.0, 1.0]

WriteVars = [q1]

</rk_stage1>

subsolver to apply limiter to q1

<[DGLIMIT("q1_limit", "characteristic", "q1")]>

use q1 to get gt aux vars for elc and ion

(temp gradient vectors)

<[GTAUX("gtAux_q1", "gtAux", "q1", "gtAux")]>

use q1 to get gu aux vars for elc and ion

(velocity gradient tensors)

<[GUAUX("guAux_q1", "guAux", "q1", "guAux")]>

use q1 to get du aux vars for elc and ion

(divergence velocity scalars)

<[DUAUX("duAux_q1", "duAux", "q1", "duAux")]>

use q1 to get qhf aux vars for elc and ion

(heat flux vectors)

<[QHFAUX("qhfAux_q1", "qhfAux", "q1", "gtAux",

"qhfAux")]>

use q1 to get pi aux vars for elc and ion

(viscosity tensors)

<[PIAUX("piAux_q1", "piAux", "q1", "guAux",

"duAux", "piAux")]>

use q1 to compute dq

<[DGRHS("dgrhs_q1", "q1", "gtAux", "qhfAux",

"piAux", "guAux", "dq")]>

use dq q1, and qold to compute qnew

<rk_stage2>

Type = WxSubSolver

Kind = linearCombiner

OnGrid = grid

ReadVars = [qold, q1, dq]

coeffs = [0.5, 0.5, 0.5]

WriteVars = [qnew]

</rk_stage2>

subsolver to apply limiter to qnew

<[DGLIMIT("qnew_limit", "characteristic", "qnew")]>

define boundary condition applicator for gtAux

<[BC("leftBC_gtAux", "bcConductingGtAuxDG2d",

"gtAux", 1, "lower")]>

<[BC("rightBC_gtAux", "bcConductingGtAuxDG2d",

"gtAux", 1, "upper")]>

define boundary condition applicator for guAux

<[BC("leftBC_guAux", "bcConductingGuAuxDG2d",

"guAux", 1, "lower")]>

<[BC("rightBC_guAux", "bcConductingGuAuxDG2d",

"guAux", 1, "upper")]>

define boundary condition applicator for duAux

<[BC("leftBC_duAux", "bcConductingDuAuxDG2d",

"duAux", 1, "lower")]>

<[BC("rightBC_duAux", "bcConductingDuAuxDG2d",

"duAux", 1, "upper")]>

define boundary condition applicator for qhfAux

<[BC("leftBC_qhfAux", "bcConductingQhfAuxDG2d",

"qhfAux", 1, "lower")]>

<[BC("rightBC_qhfAux", "bcConductingQhfAuxDG2d",

"qhfAux", 1, "upper")]>

238

define boundary condition applicator for piAux

<[BC("leftBC_piAux", "bcConductingPiAuxDG2d",

"piAux", 1, "lower")]>

<[BC("rightBC_piAux", "bcConductingPiAuxDG2d",

"piAux", 1, "upper")]>

define left boundary condition applicator for

qold

<[BC("leftBC", "bcConductingNoSlipTwoFluidDG2d",

"qold", 1, "lower")]>

<[BC("rightBC", "bcConductingNoSlipTwoFluidDG2d",

"qold", 1, "upper")]>

define left boundary condition applicator for q1

<[BC("leftBCq1", "bcConductingNoSlipTwoFluidDG2d",

"q1", 1, "lower")]>

<[BC("rightBCq1", "bcConductingNoSlipTwoFluidDG2d",

"q1", 1, "upper")]>

define left boundary condition applicator for qnew

<[BC("leftBCqnew", "bcConductingNoSlipTwoFluidDG2d",

"qnew", 1, "lower")]>

<[BC("rightBCqnew", "bcConductingNoSlipTwoFluidDG2d",

"qnew", 1, "upper")]>

Set qnew back to qold so it can be used in

hyperbolicSolve

<copier>

Type = WxSubSolver

Kind = linearCombiner

OnGrid = grid

ReadVars = [qnew]

coeffs = [1.0]

WriteVars = [qold]

</copier>

initialize the array

<[SUBSOLVERSTEP("initArrays", "initialcond",

"qnew, qold")]>

chk_freq step

<[SUBSOLVERSTEP("checkFreqDt", "chk_freq")]>

NAN check step

<[SUBSOLVERSTEP("isNAN", "nancheck")]>

compute Grad T stage 1

<[SUBSOLVERSTEP("gradT_stage1", "gtAux_qold,

gtAux_limit", "gtAux")]>

compute Grad U stage 1

<[SUBSOLVERSTEP("gradU_stage1", "guAux_qold,

guAux_limit", "guAux")]>

compute Div U stage 1

<[SUBSOLVERSTEP("divU_stage1", "duAux_qold,

duAux_limit", "duAux")]>

compute heat flux stage 1

<[SUBSOLVERSTEP("qhf_stage1", "qhfAux_qold,

qhfAux_limit", "qhfAux")]>

compute viscosity stage 1

<[SUBSOLVERSTEP("pi_stage1", "piAux_qold,

piAux_limit", "piAux")]>

compute RK stage 1

<[SUBSOLVERSTEP("rk_stage1_step", "dgrhs_qold,

rk_stage1")]>

limit q1

<[SUBSOLVERSTEP("limit_q1_step", "q1_limit"

, "q1")]>

compute Grad T stage 2

<[SUBSOLVERSTEP("gradT_stage2", "gtAux_q1,

gtAux_limit", "gtAux")]>

compute Grad U stage 2

<[SUBSOLVERSTEP("gradU_stage2", "guAux_q1,

guAux_limit", "guAux")]>

compute Div U stage 2

<[SUBSOLVERSTEP("divU_stage2", "duAux_q1,

duAux_limit", "duAux")]>

compute heat flux stage 2

<[SUBSOLVERSTEP("qhf_stage2", "qhfAux_q1,

qhfAux_limit", "qhfAux")]>

compute viscosity stage 2

<[SUBSOLVERSTEP("pi_stage2", "piAux_q1,

piAux_limit", "piAux")]>

compute RK stage 2

<[SUBSOLVERSTEP("rk_stage2_step", "dgrhs_q1,

rk_stage2")]>

limit qnew

<[SUBSOLVERSTEP("limit_qnew_step", "qnew_limit"

, "qnew")]>

apply boundary conditions for gtAux

<[SUBSOLVERSTEP("applyBCgt", "leftBC_gtAux,

rightBC_gtAux")]>

apply boundary conditions for guAux

<[SUBSOLVERSTEP("applyBCgu", "leftBC_guAux,

rightBC_guAux")]>

apply boundary conditions for duAux

<[SUBSOLVERSTEP("applyBCdu", "leftBC_duAux,

rightBC_duAux")]>

apply boundary conditions for qhfAux

<[SUBSOLVERSTEP("applyBCqhf", "leftBC_qhfAux,

rightBC_qhfAux")]>

apply boundary conditions for piAux

<[SUBSOLVERSTEP("applyBCpi", "leftBC_piAux,

rightBC_piAux")]>

apply boundary conditions for qold

<[SUBSOLVERSTEP("applyBC", "leftBC, rightBC")]>

239

apply boundary conditions for qnew

<[SUBSOLVERSTEP("applyBCqnew", "leftBCqnew,

rightBCqnew")]>

apply boundary conditions for q1

<[SUBSOLVERSTEP("applyBCq1", "leftBCq1, rightBCq1")]>

copy step

<[SUBSOLVERSTEP("copy", "copier")]>

##

Solver sequence

##

<SolverSequence>

Type = WxSolverSequence

StartOnly = [initArrays, applyBC]

PerStep = [applyBC, isNAN, checkFreqDt, \

gradT_stage1, applyBCgt, \

gradU_stage1, applyBCgu, \

divU_stage1, applyBCdu, \

qhf_stage1, applyBCqhf, \

pi_stage1, applyBCpi, \

rk_stage1_step, limit_q1_step, applyBCq1, \

gradT_stage2, applyBCgt, \

gradU_stage2, applyBCgu, \

divU_stage2, applyBCdu, \

qhf_stage2, applyBCqhf, \

pi_stage2, applyBCpi, \

rk_stage2_step, limit_qnew_step, \

copy] # apply at each step

</SolverSequence>

</recon>

</warpx>

240

The macro used in the input file by specifying #include is described here. PAR-ARRAY

allocates the memory for all parallel arrays that live in the entire grid. The auxiliary

subsolvers are specified for electron and ion temperature gradient vectors (GTAUX), velocity

gradient vectors (GUAUX), velocity divergence scalars (DUAUX), heat flux vectors (QHFAUX),

and viscous stress tensors (PIAUX). Auxiliary equation solvers act like conserved equation

solvers and accept an arbitraty number of conserved and other auxiliary variables. An

arbitrary number of auxiliary variables and each of their sizes is specified in the input file,

so the dgAuxSolver2d subsolver packs all the auxiliary variables under one variable qaux

that is used in all the flux and source calculations. After each of the auxiliary variables

are computed, limiters (GTLIMIT, GULIMIT, DULIMIT, QHFLIMIT, PILIMIT) are applied to

smooth out any large gradients that may arise in the auxiliary variables.

The right-hand-side of the hyperbolic equation, DGRHS, is then computed using a similar

implementation with the dgRhsCalc2d subsolver by specifying all the Braginskii auxiliary

variables and packing them under qaux. The source terms specified for the auxiliary and

conserved equation calculations take in input, auxiliary input, and output indices. This

allows flexibility within the input file and also restricts the source functions to only accept

the variable indices that they need. DGLIMIT defines the limiter macro for the conserved

variables.

BC allows any boundary condition to be chosen from the input file by specifying the

subsolver boundary condition (Kind), the parallel array to apply the boundary condition to

(WriteVars), the x, y, or z direction (direction of 0, 1, or 2), and the lower or upper edge

(edge).

SUBSOLVERSTEP groups a set of subsolvers that are defined as a single step at the begin-

ning of the simulation, at the end of the simulation, at any given time-step, or at the end

of each time-step. The DtFrac field allows the choice of a fraction of a time-step over which

the subsolver step is implemented; the default is 1. If a variable is specified for SyncVars,

the subsolver step syncs the variable across all processors in the domain.

241

-*- python -*-

#begin python

import string

def PAR_ARRAY(name, grid, numComponents):

txt = ’’’

<%s>

Type = WxVariable

Kind = parArray

OnGrid = %s

NumComponents = %d

GhostCells = [2, 2]

</%s>

’’’

return txt % (name, grid, numComponents, name)

def GTAUX(name, gta, q, gt):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgAuxSolver2d

ReadVars = [%s, %s]

WriteVars = [%s]

OnGrid = grid

CFL number to use

Cfl = FUDGE*0.5*0.9/(2*SP_ORDER-1.0)

maximum CFL allowed

Cflm = FUDGE*0.5/(2*SP_ORDER-1.0)

spatialOrder = SP_ORDER

auxEqnNums = [18]

Equations = [gtAuxEqn]

twofluid auxiliary equations for gradient

of Te and Ti

<gtAuxEqn>

Type = WxHyperbolicEqn

Kind = gradTempAuxEqn # kind of equations

gas_gamma = GAMMA

boltz = BOLTZ

mi = MI

me = ME

elcMinDensity = ELC_MIN_DENS

ionMinDensity = ION_MIN_DENS

elcMinPressure = ELC_MIN_PRES

ionMinPressure = ION_MIN_PRES

</gtAuxEqn>

</%s>’’’

return txt % (name, gta, q, gt, name)

def GUAUX(name, gua, q, gu):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgAuxSolver2d

ReadVars = [%s, %s]

WriteVars = [%s]

OnGrid = grid

CFL number to use

Cfl = FUDGE*0.5*0.9/(2*SP_ORDER-1.0)

maximum CFL allowed

Cflm = FUDGE*0.5/(2*SP_ORDER-1.0)

spatialOrder = SP_ORDER

auxEqnNums = [18]

Equations = [guAuxEqn]

twofluid auxiliary equations for gradient

of ue and ui

<guAuxEqn>

Type = WxHyperbolicEqn

Kind = gradVelAuxEqn # kind of equations

</guAuxEqn>

</%s>’’’

return txt % (name, gua, q, gu, name)

def DUAUX(name, dua, q, du):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgAuxSolver2d

ReadVars = [%s, %s]

WriteVars = [%s]

OnGrid = grid

CFL number to use

Cfl = FUDGE*0.5*0.9/(2*SP_ORDER-1.0)

maximum CFL allowed

Cflm = FUDGE*0.5/(2*SP_ORDER-1.0)

spatialOrder = SP_ORDER

auxEqnNums = [18]

Equations = [duAuxEqn]

twofluid auxiliary equations for divergence

of ue and ui

<duAuxEqn>

Type = WxHyperbolicEqn

Kind = divVelAuxEqn # kind of equations

</duAuxEqn>

</%s>’’’

return txt % (name, dua, q, du, name)

def QHFAUX(name, qhfa, q, gt, qhf):

242

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgAuxSolver2d

ReadVars = [%s, %s, %s]

WriteVars = [%s]

OnGrid = grid

CFL number to use

Cfl = FUDGE*0.5*0.9/(2*SP_ORDER-1.0)

maximum CFL allowed

Cflm = FUDGE*0.5/(2*SP_ORDER-1.0)

spatialOrder = SP_ORDER

auxEqnNums = [18,6]

Equations = [qhfAuxEqn]

Sources = [qhfAuxSrc]

twofluid auxiliary equations for elc and

ion heat flux

<qhfAuxEqn>

Type = WxHyperbolicEqn

Kind = bragHeatFluxAuxEqn # kind of equations

</qhfAuxEqn>

twofluid auxiliary sources for elc and

ion heat flux

<qhfAuxSrc>

Type = WxHyperbolicSrc

Kind = bragHeatFluxAuxSrc # kind of equations

charge = Q

me = ME

mi = MI

epsilon0 = EPS0

boltz = BOLTZ

gas_gamma = GAMMA

dx = (YU-YL)/YCELLS

InpRange = [0,1,2,3,4,5]

AuxInpRange = [0,1,2,3,4,5,6,7,8,9,10,11,12,

13,14,15,18,19,20,21,22,23]

OutRange = [0,1,2,3,4,5]

</qhfAuxSrc>

</%s>’’’

return txt % (name, qhfa, q, gt, qhf, name)

def PIAUX(name, pia, q, gu, du, pi):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgAuxSolver2d

ReadVars = [%s, %s, %s, %s]

WriteVars = [%s]

OnGrid = grid

CFL number to use

Cfl = FUDGE*0.5*0.9/(2*SP_ORDER-1.0)

maximum CFL allowed

Cflm = FUDGE*0.5/(2*SP_ORDER-1.0)

spatialOrder = SP_ORDER

auxEqnNums = [18,18,2]

Equations = [piAuxEqn]

Sources = [piAuxSrc]

twofluid auxiliary equations for elc and

ion viscosity

<piAuxEqn>

Type = WxHyperbolicEqn

Kind = bragViscosityAuxEqn # kind of equations

</piAuxEqn>

source for viscosity auxiliary equations

<piAuxSrc>

Type = WxHyperbolicSrc

Kind = bragViscosityAuxSrc # kind of sources

charge = Q

me = ME

mi = MI

epsilon0 = EPS0

boltz = BOLTZ

gas_gamma = GAMMA

dx = (YU-YL)/YCELLS

InpRange = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,

14,15,16,17]

AuxInpRange = [0,1,2,3,4,5,6,7,8,9, 18,19,20,

21,22,23,24,25,26, 27,28,29,30,

31,32,33,34,35, 36, 37, 13,14,15]

OutRange = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,

14,15,16,17]

</piAuxSrc>

</%s>’’’

return txt % (name, pia, q, gu, du, pi, name)

def DGRHS(name, q, gt, qhf, pi, gu, dq):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgRhsCalc2d

ReadVars = [%s, %s, %s, %s, %s]

WriteVars = [%s]

OnGrid = grid

auxEqnNums = [6,6,18,18]

CFL number to use

Cfl = FUDGE*0.5*0.9/(2*SP_ORDER-1.0)

maximum CFL allowed

243

Cflm = FUDGE*0.5/(2*SP_ORDER-1.0)

spatialOrder = SP_ORDER

Equations = [tfEqn] # equation to solve

Sources = [lorentzElc, lorentzIon, ionCurrents,

elcCurrents, ionCharge, elcCharge,

momtransport, heattransport,

qvisctransport] # source terms

two-fluid equations

<tfEqn>

Type = WxHyperbolicEqn

Kind = twoFluidBragLaxEqn

gas_gamma = GAMMA

c0 = LIGHT

gamma = DIVB_SPEED

chi = DIVE_SPEED

elcMinDensity = ELC_MIN_DENS

ionMinDensity = ION_MIN_DENS

elcMinPressure = ELC_MIN_PRES

ionMinPressure = ION_MIN_PRES

</tfEqn>

Lorentz source term for electron

<lorentzElc>

Type = WxHyperbolicSrc

Kind = lorentzForces

InpRange = [0,1,2,3, 10,11,12,13,14,15]

OutRange = [1,2,3,4]

mass = ME

charge = -Q

</lorentzElc>

Lorentz source term for ions

<lorentzIon>

Type = WxHyperbolicSrc

Kind = lorentzForces

InpRange = [5,6,7,8, 10,11,12,13,14,15]

OutRange = [6,7,8,9]

mass = MI

charge = Q

</lorentzIon>

Current sources for electric field from electrons

<elcCurrents>

Type = WxHyperbolicSrc

Kind = currents

InpRange = [1,2,3]

OutRange = [10,11,12]

mass = ME

charge = -Q

epsilon0 = EPS0

</elcCurrents>

Current sources for electric field from ions

<ionCurrents>

Type = WxHyperbolicSrc

Kind = currents

InpRange = [6,7,8]

OutRange = [10,11,12]

charge = Q

mass = MI

epsilon0 = EPS0

</ionCurrents>

Charge sources for electric field divergence

from electrons

<elcCharge>

Type = WxHyperbolicSrc

Kind = charges

InpRange = [0]

OutRange = [16]

mass = ME

charge = -Q

epsilon0 = EPS0

chi = DIVE_SPEED

</elcCharge>

Charge sources for electric field divergence

from ions

<ionCharge>

Type = WxHyperbolicSrc

Kind = charges

InpRange = [5]

OutRange = [16]

mass = MI

charge = Q

epsilon0 = EPS0

chi = DIVE_SPEED

</ionCharge>

Momentum transport = frictional force + thermal force,

based on Braginskii transport equations

<momtransport>

Type = WxHyperbolicSrc

Kind = bragFrictionThermalForce

InpRange = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

AuxInpRange = [0,1,2,3,4,5]

OutRange = [0,1,2,3,4,5,6,7,8,9]

gas_gamma = GAMMA

me = ME

mi = MI

charge = Q

epsilon0 = EPS0

boltz = BOLTZ

</momtransport>

heat acquired in collisions,

based on Braginskii transport equations

244

<heattransport>

Type = WxHyperbolicSrc

Kind = bragHeatCollision

InpRange = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

AuxInpRange = [0,1,2,3,4,5]

OutRange = [4,9]

gas_gamma = GAMMA

me = ME

mi = MI

charge = Q

epsilon0 = EPS0

boltz = BOLTZ

</heattransport>

heat due to viscosity, visc:grad(u)

based on Braginskii transport equations

<qvisctransport>

Type = WxHyperbolicSrc

Kind = bragHeatViscosity

InpRange = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

AuxInpRange = [12,13,14,15,16,17,18,19,20, 21,22,

23,24,25,26,27,28,29, 30,31,32,33,

34,35,36,37,38, 39,40,41,42,43,44,

45,46,47]

OutRange = [4,9]

gas_gamma = GAMMA

me = ME

mi = MI

charge = Q

epsilon0 = EPS0

boltz = BOLTZ

</qvisctransport>

</%s>’’’

return txt % (name, q, gt, qhf, pi, gu, dq, name)

def GTLIMIT(name, lim, q):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgLimiter2d

OnGrid = grid

WriteVars = [%s]

spatialOrder = SP_ORDER

one of characteristic, component, no-limiter

limiter = %s

Equations = [gtAuxEqn]

twofluid auxiliary equations for gradient

of Te and Ti

<gtAuxEqn>

Type = WxHyperbolicEqn

Kind = gradTempAuxEqn # kind of equations

gas_gamma = GAMMA

boltz = BOLTZ

mi = MI

me = ME

</gtAuxEqn>

</%s>

’’’

return txt % (name, q, lim, name)

def GULIMIT(name, lim, q):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgLimiter2d

OnGrid = grid

WriteVars = [%s]

spatialOrder = SP_ORDER

one of characteristic, component, no-limiter

limiter = %s

Equations = [guAuxEqn]

twofluid auxiliary equations for gradient

of ue and ui

<guAuxEqn>

Type = WxHyperbolicEqn

Kind = gradVelAuxEqn # kind of equations

</guAuxEqn>

</%s>

’’’

return txt % (name, q, lim, name)

def DULIMIT(name, lim, q):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgLimiter2d

OnGrid = grid

WriteVars = [%s]

spatialOrder = SP_ORDER

one of characteristic, component, no-limiter

limiter = %s

Equations = [duAuxEqn]

twofluid auxiliary equations for divergence

of ue and ui

<duAuxEqn>

Type = WxHyperbolicEqn

Kind = divVelAuxEqn # kind of equations

</duAuxEqn>

</%s>

’’’

return txt % (name, q, lim, name)

245

def QHFLIMIT(name, lim, q):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgLimiter2d

OnGrid = grid

WriteVars = [%s]

spatialOrder = SP_ORDER

one of characteristic, component, no-limiter

limiter = %s

Equations = [qhfAuxEqn]

twofluid auxiliary equations for elc and

ion heat flux

<qhfAuxEqn>

Type = WxHyperbolicEqn

Kind = bragHeatFluxAuxEqn # kind of equations

</qhfAuxEqn>

</%s>

’’’

return txt % (name, q, lim, name)

def PILIMIT(name, lim, q):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgLimiter2d

OnGrid = grid

WriteVars = [%s]

spatialOrder = SP_ORDER

one of characteristic, component, no-limiter

limiter = %s

Equations = [piAuxEqn]

twofluid auxiliary equations for elc

and ion viscosity

<piAuxEqn>

Type = WxHyperbolicEqn

Kind = bragViscosityAuxEqn # kind of equations

</piAuxEqn>

</%s>

’’’

return txt % (name, q, lim, name)

def DGLIMIT(name, lim, q):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgLimiter2d

OnGrid = grid

WriteVars = [%s]

spatialOrder = SP_ORDER

one of characteristic, component, no-limiter

limiter = %s

Equations = [tfEqn] # equation to limit

two-fluid equations

<tfEqn>

Type = WxHyperbolicEqn

Kind = twoFluidBragLaxEqn

gas_gamma = GAMMA

c0 = LIGHT

chi = DIVE_SPEED

gamma = DIVB_SPEED

elcMinDensity = ELC_MIN_DENS

ionMinDensity = ION_MIN_DENS

elcMinPressure = ELC_MIN_PRES

ionMinPressure = ION_MIN_PRES

for euler eigensystem for characteristic

limiting

minPressure = ELC_MIN_PRES

</tfEqn>

</%s>’’’

return txt % (name, q, lim, name)

def BC(name, kind, arr, dr, edge):

txt = string.Template(’’’

<$name>

Type = WxSubSolver

Kind = $kind

OnGrid = grid

WriteVars = [$arr]

direction = $dr

edge = $edge

</$name>

’’’)

return txt.substitute(name=name, kind=kind,

arr=arr, dr=dr, edge=edge)

def SUBSOLVERSTEP(name, ss, sv=None, dtFrac=1.0):

if sv:

s = "SyncVars = [%s]" % sv

else:

s = ""

txt = string.Template(’’’

<$name>

Type = WxSubSolverStep

SubSolvers = [$ss]

$svar

DtFrac = $dtFrac

</$name>

’’’)

return txt.substitute(name=name, ss=ss, svar=s,

dtFrac=dtFrac)

#end python

246

C.2 Implicit-DG Input File for Two-Fluid Plasma Model

A semi-implicit DG implementation for the two-fluid plasma model is performed in a similar

manner to the explicit implementation. Sections of a 1-D sample input file are presented

here. The difference being that the ions are treated in exactly the same manner as the

explicit case but the electrons and Maxwell’s equations are treated separately. Additional

parallel arrays are introduced to separate the ion Euler equations from the electron Euler

equations and Maxwell’s equations.

##

Array definitions

##

<[PAR_ARRAY("qelcmaxold", "grid", MEQNELCMAX*SP_ORDER)]>

<[PAR_ARRAY("qelcmaxnew", "grid", MEQNELCMAX*SP_ORDER)]>

<[PAR_ARRAY("qionold", "grid", MEQNION*SP_ORDER)]>

<[PAR_ARRAY("dqion", "grid", MEQNION*SP_ORDER)]>

<[PAR_ARRAY("qion1", "grid", MEQNION*SP_ORDER)]>

<[PAR_ARRAY("qionnew", "grid", MEQNION*SP_ORDER)]>

The initial conditions are applied separately for each of the qelcmaxold and qionold

variables similar to the description in Sec. C.1. The implicit advance is performed first using

the macro

Electron & Maxwell Implicit update

use implicit algo to compute qnew from qold for Electron & Maxwell

<[DGRHSIM("dgrhs_elc_max", "qelcmaxold", "qionold", "qelcmaxnew")]>

where qionold is passed as an auxiliary variable to advance the fields through source

terms. For the explicit solver only the right-hand-side is computed for DGRHS following which

the desired Runge-Kutta is implemented from the input file. However, for the implicit solver,

even though the same right-hand-side subsolvers are used within WARPX, the output of

DGRHSIM is the solution of the conserved variables after one time-step. The solution is limited

and the boundary conditions are applied for the qelcmaxnew variable. The explicit advance

for the ions is then performed in the same manner described previously where qelcmaxnew

is passed in as an auxiliary variable so the electric and magnetic fields update the ions.

247

Euler Explicit update for ions

Right-Hand-Side uses qold to compute dq for euler ion

<[DGRHSION("dgrhs_qold_ion", "qionold", "qelcmaxnew", "dqion")]>

Runge-Kutta stage 1 update follows

In this manner any desired number of Runge-Kutta stages are implemented through

the input file. The frequency check for the time-step only computes the ion plasma and

cyclotron frequencies since the electrons are updated implicitly. Limiters and boundary

conditions are applied for the ion fluid. The subsolver sequence is specified using

<SolverSequence>

Type = WxSolverSequence

StartOnly = [initArrays, applyBC_elc_max, applyBC_ion]

PerStep = [chkFreqDt, impl_step, applyBCqnew_elc_max, \

rk_stage1_step_ion, applyBCq1_ion, \

rk_stage2_step_ion, applyBCqnew_ion, \

copy] # apply at each step

</SolverSequence>

The macro for the semi-implicit implementation of the two-fluid model defines DGRHSIM

to use Kind = dgRhsCalc1dImplicit and the remaining equations and sources are defined

just for the electron Euler equations and Maxwell’s equations. qelcmaxold is the conserved

variable, q and qionold is the auxiliary variable, qion. THETA controls whether it is a

BDF1 or CN2 scheme. CFLM is the maximum user desired CFL number for the implicit

time-advance which can be more restrictive depending on the speeds and frequencies of the

ion fluid. A portion of the macro is shown here. Similar implementation is done for the

explicit ions. bcSubSolvers is specified to apply the boundary conditions between every

iteration of the Newton-based implicit scheme.

def DGRHSIM(name, q, qion, qnew):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgRhsCalc1dImplicit

ReadVars = [%s, %s]

WriteVars = [%s]

OnGrid = grid

248

auxEqnNums = [5]

theta = THETA

Cfl = CFLM

Cflm = CFLM

spatialOrder = SP_ORDER

bcSubSolvers = [leftBC_elc_max, rightBC_elc_max]

Equations = [eulerElc, maxEqn] # equation to solve

Sources = [elcCurrents, ionCurrents, elcCharge, ionCharge, lorentzElc]

...

If a BDF2 scheme is desired, then 2 auxiliary variables are passed to the implicit advance

and they are packed as one qaux in the subsolver within WARPX. The variable qolder

represents the qelcmax variable 2 time-steps prior to the current time-step which is required

for the BDF2 algorithm.

def DGRHSIM(name, q, qolder, qion, qnew):

txt = ’’’

<%s>

Type = WxSubSolver

Kind = dgRhsCalc1dImplicit

ReadVars = [%s, %s, %s]

WriteVars = [%s]

OnGrid = grid

auxEqnNums = [13,5]

theta = THETA

bdf = BDF

Cfl = CFLM

Cflm = CFLM

spatialOrder = SP_ORDER

bcSubSolvers = [leftBC_elc_max, rightBC_elc_max]

Equations = [eulerElc, maxEqn] # equation to solve

Sources = [elcCurrents, ionCurrents, elcCharge, ionCharge, lorentzElc]

...

249

C.3 RKDG Input File for Two-Fluid Plasma Model using General Geometry

The general geometry implementation presently requires the vertices locations to be specified

using a functional representation. The vertices are defined as standard parallel arrays. A

geometry variable is defined that contains all the volumes, surface areas, Jacobians, mass

matrices, and all other grid metrics that are static throughout the simulation. If using

periodic boundary conditions, care needs to be taken to define 2 separate grids; one for

the vertices and geometry and the other for the variables being advanced. This is because

a periodic boundary condition can be applied to the components of the vertices parallel

array incorrectly severely distorting the grid. Note that the geometry variable is of type

dgGeometry. A 3-D HDF5 data file using general geometry can become rather large hence,

setting writeOut = false for the geometry variable significantly reduces the file size.

<vertices>

Type = WxVariable

Kind = parArray

OnGrid = grid

NumComponents = 3 # number of components

GhostCells = [2, 3, 3] # no of ghost cells use

WriteGhostCells = [0, 1, 1] # how many ghost cells to write

these are vertices, hence offsets should be 0.0

xoffsets = [0.0, 0.0, 0.0]

yoffsets = [0.0, 0.0, 0.0]

zoffsets = [0.0, 0.0, 0.0]

</vertices>

<geometry>

Type = WxVariable

Kind = dgGeometry

OnGrid = grid

spatialOrder = SP_ORDER

GhostCells = [2, 2, 2] # no of ghost cells to use

writeOut = false # do not write geometry array to file

</geometry>

The vertices are defined using a functional representation in same manner as initial

conditions are applied with x, y, and z representing the logical grid which is used to define

the physical grid. The vertices are then used to compute volumes, surface areas, Jacobians,

and mass matrix in the DG geometry subsolver.

250

<verticesCalc>

Type = WxSubSolver

Kind = funcArraySetter

WriteVars = [vertices]

OnGrid = grid

<func>

Type = WxFunction

Kind = exprFunc # name of initial-condition function

pi = PI

list of preiliminary expressions to execute

progn = ["xg = 2*x", \

"yg = 0.2*y"]

exprList = ["xg", "yg", "z"]

</func>

</verticesCalc>

<geometryCalculator>

Type = WxSubSolver

Kind = dgGeometryCalc3d

OnGrid = grid

spatialOrder = SP_ORDER

ReadVars = [vertices]

WriteVars = [geometry]

</geometryCalculator>

initialize the array

<[SUBSOLVERSTEP("calcVertices", "verticesCalc", "vertices")]>

initialize the array

<[SUBSOLVERSTEP("calcGeometry", "geometryCalculator", "geometry")]>

The grid metrics only need to be computed once at the start of the simulation so they

are called in the StartOnly step.

##

Solver sequence

##

<SolverSequence>

Type = WxSolverSequence

StartOnly = [calcVertices, calcGeometry, initArrays]

PerStep = [applyBC, checkFreqDt, rk_stage1_step, \

applyBC_q1, rk_stage2_step, copy] # apply at each step

WriteOnly = [writer]

</SolverSequence>

The boundary conditions need to account for general geometry so the appropriate BC

251

subsolvers are included with the geometry variable sent in as a ReadVar. When general

geometry is used, the macro files only change in terms of the subsolvers that they call

and the additional geometry read variable. For the DGRHS, Kind = dgRhsCalc3dGenGeom

and for DGLIMIT, Kind = dgLimiter3dGenGeom where the geometry variable is sent to the

subsolver as an additional ReadVar. The macros for the general geometry case are very

similar to the macro included in Sec. C.1.

C.4 DG Write-Only SubSolvers for VisIt

Write-only subsolvers rewrite the data by accounting for the spatial order and project the

solution onto the grid with the quadrature points. In doing this, the data can be easily

loaded onto VisIt after running simple python scripts that create XMF files based on the

HDF5 data. The gridWriter module uses the Kind = gridWriterDGGenGeom subsolver

to project the general geometry grid onto the physical quadrature locations. A similar

implementation exists for a regular Cartesian mesh where Kind = gridWriterDG projects

the grid onto quadrature locations. Similarly, the variables can also be projected onto

the quadrature locations using the exprWriterDG subsolver described here. Any equation

system can use this projection by specifying the writeNames (variables names that are

written to the HDF5 data file at each time-step) and indVars (user-specified ReadVars

read in the order of their indices). The indVars are used to define the output variables,

writeNames as shown here.

<gridWriter>

Type = WxSubSolver

Kind = gridWriterDGGenGeom

ReadVars = [geometry]

OnGrid = grid

spatial order of scheme

spatialOrder = SP_ORDER

set to false if interpolation is not desired at Gaussian points

useGaussian = false

list of variables to write out

writeNames = ["X", "Y", "Z"]

252

</gridWriter>

define subsolver to convert twofluid data

<twofluidWriter>

Type = WxSubSolver

Kind = exprWriterDG

OnGrid = grid

ReadVars = [qnew]

spatial order of scheme

spatialOrder = SP_ORDER

number of equations

meqn = MEQN

set to false if interpolation is not desired at Gaussian points

useGaussian = false

list of variables to write out

writeNames = ["elc_density", "elc_vx", "elc_vy", "elc_vz", "elc_pressure", \

"ion_density", "ion_vx", "ion_vy", "ion_vz", "ion_pressure", \

"ex", "ey", "ez",\

"bx", "by", "bz"]

list of independent variables

indVars = ["re", "rue", "rve", "rwe", "ere",\ # electron cons. variables

"ri", "rui", "rvi", "rwi", "eri",\ # ion cons. variables

"ex", "ey", "ez",\ # electric field

"bx", "by", "bz",\ # magnetic field

"err1", "err2"]

electron density

<elc_density>

me = ME

exprList = ["re/me"]

</elc_density>

electron velocity

<elc_vx>

exprList = ["rue/re"]

</elc_vx>

...

</twofluidWriter>

This is then included in the subsolver sequence using an additional statement WriteOnly = [writer]

where writer uses the macro SUBSOLVERSTEP to call the grid and expression writers.

253

VITA

Bhuvana Srinivasan grew up in 4 cities in India and in Thailand. She earned her B.S. in

Aerospace & Mechanical Engineering from the Illinois Institute of Technology and her M.S.

and Ph.D. from the Department of Aeronautics & Astronautics at University of Washington.

She engaged in traveling, snowboarding, biking, mountaineering, and partying while in

graduate school.

