

- 1. A place for hatching eggs
- 2. A place for the large-scale production of weanling feeder pigs

Hatchery Definition

• The use of artificial breeding, feeding, or protection at any life-stage to enhance the abundance of a taxa

Artificial Propagation - Food

- Plant hatcheries (farming, corn, wheat)
- Mammal hatcheries (ranching, dairies, feed lots, cows, sheep)
- Reptile hatcheries (alligators, crocodiles)
- Bird hatcheries (chickens, turkeys)
- Shellfish hatcheries (shrimp, abalone)
- Fish hatcheries (tilapia, trout, catfish, salmon)

- Zoos
- Aquaria
- Pet stores (dogs, cats, reptiles, birds)
- Movies

Artificial Propagation - Conservation

- Plants (northern wormwood)
- Insects (butterflies)
- Reptiles (turtles)
- Birds (condor)
- Mammals (black-footed ferret, pygmy rabbit, rhinos)
- Fish (Dexter NFH, salmon)

• We use artificial propagation because we don't have enough plants and animals produced in the natural environments to satisfy human needs and/or desires

Difficulty

- It is relatively easy to artificially produce plants and animals for food or pets compared to producing plants and animals for contributing to conservation of species in nature
- Challenge do no harm

Focus on Salmon Hatcheries

- One of the most propagated taxa
- One of the richest propagation histories
- One of the most studied propagated taxa
- One of the most culturally important
- One of the most legally mandated and litigated
- One of the most ecologically significant

Integrated (supplementation)

Segregrated

Hatchery Spawning

Natural Spawning

Supplementation

Wild Fish as Parents

Natural Origin Children

Hatchery Origin Children

Natural

Natural Origin Grandchildren

Life Cycle of Salmon in Natural & Hatchery Environments

Critical Scientific Uncertainties

- Can integrated hatchery programs be used to increase long-term natural production?
- Can integrated hatchery programs limit genetic impacts to non-target Chinook populations?
- Can integrated hatchery programs limit ecological impacts to non-target populations?

Interactions

- Genetic (domestication)
 - Life-history
 - competition
 - predation
 - precocious maturation
 - reproductive success
- Ecological
 - carrying capacity
 - bass predation
 - bird predation
 - Non-target taxa (spc predation)

Life History Traits

Knudsen et al. 2006

- Hatchery male proportions increased from 38 to 49% (mostly jacks) but changes in natural origin fish were not detected
- Size at age of hatchery fish was smaller
- Mean spawn timing of hatchery fish was 5.1 days earlier than natural origin fish

Female Reproductive Traits

Knudsen et al. 2008

- Relative Fecundity was on average 1.3% greater in hatchery than wild females. Wild females averaged 8.8% greater Total Gamete Mass, 0.8% heavier Individual Egg Mass, 7.7% greater Fecundity, and 0.8% greater Reproductive Effort than hatchery females. After adjusting for egg size, hatchery fry were on average ~1% heavier than wild fry.
- Differences between H and W were mostly due to differences in fish size

Reproductive Success

Williamson et al. in review

- Hatchery Chinook had lower reproductive success than wild Chinook in the Wenatchee Basin
- Differences in age structure, spawning location, weight and run timing were responsible for a portion of the difference in fitness between hatchery and natural origin fish
- Spawning location within the river had a significant effect on fitness for both males and females, and for females explained much (but not all) of the reduced fitness observed for hatchery fish in this population

Precocious Male Life-History

Pearsons et al. 2009

Ecological Interactions

- Concepts
 - carrying capacity
 - bass predation
 - bird predation
 - Non-target taxa (spc predation)

Ecological Interactions Between Salmon and Other Species

Upper Yakima Redds to Fall Parr (1 year later)

Ricker Model Before vs. During Supplementation

Preliminary Findings

- Density-dependent constraints to natural parr production and size
- Reduction in natural parr productivity associated with supplementation
- Natural production is limited by an interaction between environmental and biological capacity of hatchery fish

Yakima History

- 5000 planted in the Yakima River in 1925 from an eastern state by state game protector N. E. Palmer
- Second planting in 1934 by N. E. Palmer
- "plentiful from Prosser downstream to the mouth of the Yakima" (M. H. Kershaw, Chief of Police, Kennewick, during the 1940's)

Methods - Field

Average Daily Population Consumption of Salmonids

Population Consumption

RESEARCH

Pearsons and Temple

Ecological Interactions Team

Washington Department of Fish and Wildlife

Ecological Implications (Pearsons 2008)

- We shouldn't expect that altering the abundance of a strong interactor like salmon will not have impacts to other species
- How do we facilitate the positive interactions (e.g., nutrient enhancement, predator swamping, niche partitioning) and reduce the negative ones (competition, predation, disease)?

Hatchery Reform

- The findings from the examples listed were from a program that was consistent with the recommendations of the HSRG
- Is there room for more reform (ecosystem perspective)?

- Ignores ecological feedback mechanisms
- Assumes carrying capacity is static and under-seeded
- Low consideration of impacts to other species

Temporal Variation

Hypothetical Stocking Plans

- 1. Risks to non-target taxa
- 2. Carrying capacity or density dependent impacts
- 3. Ecological feedback

- Expert based approach
- Modeling approach
- Containment monitoring approach

- Experts estimate impact probabilities to NTTOC and then the probabilities are averaged and variance estimated
- Critical assumptions are documented

Busack et al. 2005

Downloadable from the BPA website

ftp://ftp.bpa.gov/pub/efw-RAMP/

Risk containment process for one stocking cycle

Ham and Pearsons 2001. Fisheries 26(4):15-23

Ham and Pearsons 2000 CJFAS

3. Ecological feedback

- Hatchery and wild fish survival
- Predation mortality potential of animals that feed on hatchery salmon
- Pathogen mortality potential of pathogens that infect hatchery fish

Interactions will occur

Predictions

- Hatcheries will be around for a long time
- Management of hatcheries will increasingly be managed within an ecosystem perspective
- Interaction between hatcheries and climate change will be discussed relative to planning and modification of hatcheries
- Species valuations will be forced due to limited and shared resources

Predictions

- Cumulative effects in the estuary and ocean will be one of the next big issues
- Critical data mass of scientific studies will be available for many species within 5 years
- Management will not require P<0.05
 (weight-of-evidence and pulling the trigger)

