Headwater Stream Chemistry in Western Washington: 20 years of study

Headwater streams

Small in size, large in coverage (50% of stream mileage)

Headwater Streams 101

- •Transition Zone Between Terrestrial and Aquatic Systems
- Large reactive surface
- •Source of Organic and Inorganic Nutrients to Drainage Network
- Sharp Gradients Physical and Chemical
- •Regulate Physical Conditions -Temperature and Coarse Wood Inputs
- Diverse Biotic Assemblages and High Species Richness

Many stream chemistry studies have focused on nitrogen (N) because it is a limiting nutrient and in excess it is a pollutant.

Studying N cycling gives an understanding of natural ecosystems functioning and the influence of management practices such as clearcut harvesting

Stream N forms
DIN – Dissolved inorganic N (NO₃ and NH₄)
DON – Dissolved organic N
Particulate N

Effects of excess N inputs (Fenn et al. 2003) AQUATIC

Elevated stream NO3-N, lowered pH, increased algal growth, eutrophication, negative effects on fish and salamanders

TERRESTRIAL

N fertilization of plants, altered C cycle, increased denitrification, decreased mycorrhizae, enhanced invasives growth, lichen changes, effects on threatened and endangered species

Salamanders - Sensitive to nitrate-N concs of 1 mg/L Drinking water standard - 10 mg/L

Watershed 2 –harvested 1966

Harvested and herbicided

Small watershed studies at Hubbard Brook New Hampshire

Four studies - 20 years

Hoh River

- 1. Long-term studies in old-growth temperate rain forest
- 2. Influence of riparian vegetation red alder

Skokomish

3. Effects of salmon carcass placement in riparian areas

Capitol Forest

4. Recovery from clearcut harvesting and influence of riparian buffers on harvested headwater streams

Study 1 Long-term monitoring of stream chemistry in pristine old-growth forests in the Hoh River Valley

Effects of Air Pollution, Acid Rain and Excess Nitrogen

Ted Thomas, Roger Blew, Georgia Murray, Stephanie McAfee

Hoh River Valley

Nitrate ion wet deposition, 2000

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Bulk precipitation collectors

Hoh Ranger Station NADP site

Wet-only precipitation collector

Bulk Precipitation

West Twin Creek

West Twin Creek water samples

POSSIBLE SOURCES/REASONS FOR INCREASED INPUTS IN 1993-95

- 1. Trans-Pacific -Asia/ Europe
- 2. Local
- 3. Seattle, Vancouver, Victoria
- 4. El ninos/PDO
- 5. Oceanic sources

Study 2
Influence of red alder in riparian zones
in the Hoh River Valley
Conifer vs alder - Carol Volk

Hoh River Valley

NO₃-N in alder and conifer streams Carol Volk

Study 3 Influence of salmon carcass placement in riparian areas (Brown and LeBar Creeks Skokomish River drainage)

Kerri Mikkelsen

Permanent Alder Plots

PermanentConiferPlots

Water
Collection
Sites

Chum salmon from hatcheries – up to 60 kg N/ha added in riparian areas

Study 4 - Capitol Forest

Recovery from clearcut harvesting and effects of riparian buffers in harvested headwater streams

Garrett Liles, Dan Vogt, Jessie Taylor Richard Bigley (DNR)

Graphic Representation of Riparian Zones

Washington Stream Classification and Buffer Regulation					
Type		Channel		Buffer	
		width (m)		Yes/NO	Width (m)
S	1	> 23		Y	~ 20-50
${f F}$	2	< 23		Y	~ 20-50
F	3	> 1.5		Y	~ 20-50
NP	4	> 0.6		N	variable
NS	5	< 0.6		N	none

S-Shorelines of the State, F-Fish Habitat, NP-Non-Fish Perennial, NS-Non-Fish Seasonal

Jeff Grizzel, WA DNR

Considerable harvesting continues in lowland Douglas-fir forests in western Washington (0-3000 ft ASL) that contain headwater streams (types 4 - Np and 5 - Ns)

5-7 year Open Canopy Stands

15-18 Year Closed Canopy Stands

70-80 Year Maturing Stands

Figure 1 – Waddell Creek Watershed. Red – 5-7 year stream basins, Blue – 15-18 year stream basins, Green – Control Basins and White – Waddell Creek.

Small weirs placed on each steam with pressure transducers for measuring stage height and stream discharge

Nutrient Hypotheses (Vitousek and Reiners 1975)

Stream monitoring is now being conducted in recently harvested watersheds and streams with riparian buffers.

Stream Nitrate-N Concentrations

Conclusions

Nitrate terribly important

Support **Funding** USFS- Forestry Sciences Lab Olympia Washington State DNR

- Olympic Natural Resource Center
- •The UW Water Center
- •UW PRISM
- USGS
- National Park Service