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Abstract

Finite Volume Methods for the Multilayer Shallow Water Equations
with Applications to Storm Surges

Kyle T. Mandli

Chair of the Supervisory Committee:
Professor Randall J. LeVeque

Applied Mathematics

Coastal hazards related to strong storms such as hurricanes and typhoons are one of
the most frequently recurring and wide spread hazards to coastal communities. Storm
surges are among the most devastating effects of these storms, and their prediction
and mitigation is of great interest to coastal communities that need to plan for the
subsequent rise in sea level during these storms. Past efforts to model storm surge have
usually focused on the single-layer shallow water equations, due to the ease of com-
puting a simulation on the relevant scales and domains relative to three-dimensional
modeling. The drawback to this approach is that the primary generating mechanism
for storm surge is the wind-momentum transfer to the ocean. This boundary layer
phenomenon is not well-represented by the shallow water equations, especially in the
deep ocean. An alternative is to use the two-layer shallow water equations, with a
shallow upper layer driven by the wind and an abyssal layer representing the rest of
the water column.

The focus of this thesis is on the development of a finite volume method for
the multi-layer shallow water equations that is appropriate for application to storm
surges. This has been done in the context of the GeoClaw framework, a code designed
to handle the single-layer shallow water equations with adaptive mesh refinement al-
gorithms, and uses many of the capabilities available to GeoClaw that are pertinent to
storm surges. Approximations to the system are also discussed and tested along with
methods for handling dry-states and inundation. Finally, idealized storm surge test
cases comparing the single-layer and two-layer shallow water equations are explored.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

As computer technology advances, scientists continually attempt to use numerical
modeling to better predict a growing number of high-impact geophysical events. In
particular, coastal hazards have become an increasing concern as the world’s popu-
lation continues to grow and move towards the coastline, in fact 44% of the world’s
population lives within 150 km of the coast and 8 of the 10 largest cities in the world
lie in that range [2]. As a consequence, loss of life and property is becoming a larger
concern than before. One of the most recurring and wide spread hazards to many
coastal communities is the inundation of coastlines that is caused by strong storms,
one part of which is known as storm surges (see figure 1.1). A storm surge is a rise
in the sea accompanying extratropical or tropical cyclones, the strongest examples
of which are hurricanes and typhoons. Storm surges can cause massive amounts of
damage, as was demonstrated by Hurricane Katrina, where an estimated $81 billion
of damage was caused [10]. With the mounting evidence that severe storms, not only
tropical cyclones such as Katrina but also extratropical cyclones in the mid-latitudes,
may be increasingly common [1], the task of modeling these events becomes even
more important to communities along the coasts.

Modeling of storm surges was first carried out by local empirical observations.
Unfortunately, for more severe storms such as Katrina, these types of predictions can
grossly under-predict storm surge size and effect. By the 1960’s, scientists started
using computer simulations to predict storm surge but, because these simulations
were limited in resolution and size, these models also fell victim to the same short-
comings the empirically-based models had. It was not until more recent observational
evidence, effort on the underlying physics and faster computers that progress on large-
scale storm surge prediction was capable of making predictions that were within the
realm of possible use in hazard planning.

Today, the state-of-the-art numerical models rely on single-layer depth-averaged
equations for the ocean and make assumptions on the response the ocean has to a
storm passing over it. The National Weather Service utilizes a storm surge model
called the “Sea, Lake and Overland Surges from Hurricanes”, or SLOSH, which uses
local grids defined for many regions on the United States coastline to make predictions
[30]. These simulations are efficient enough that ensembles of runs can be made
quickly and for multiple different hurricane paths and intensities. Another currently
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Figure 1.1: Diagram of storm surge and other phenomenon leading to inundation [36].

used model is the Advanced Circulation Model (ADCIRC) developed by Westerink et
al who applied it to southern Louisiana in [45]. The effects currently modeled by these
numerical models include momentum transfer due to wind stress on the surface of the
water, pressure forcing due to the low pressure system associated with large storms,
wave momentum transfer, and friction effects at the bottom of the water column, the
largest effect being the wind stress transfer. As was suggested by previous researchers,
one of the primary sources of error in storm surge modeling is due to vertical structure
not being taken into account by single-layer depth averaged models [39]. This loss
of accuracy is primarily due to the assumption that the water column acts almost
completely as a single entity and no vertical variation in the momentum occurs (see
figure 1.2a for an illustration). In reality the wind forces a boundary layer that has
a limited depth in the vertical. This results in a faster top layer of water and a
reduction in the overall transfer of momentum from the air to the sea. Conversely,
the bottom-layer return currents yield a shoreward stress that can greatly increase the
resulting surge. Parametric studies have suggested that the net result of these effects
could lead to an increase in surge of up to 25%. Instead of representing the water
velocity as a constant value through the depth, a more appropriate idealization might
be to include multiple layers representing the boundary layers involved, as depicted
in figure 1.2b for the two-layer case.

Simple test cases also suggest that much of the dynamics of storm surges in the
deeper parts of the ocean may be neglected in single-layer simulations. Figure 1.4
represents a series of snapshots of a single-layer simulation with a hurricane traveling
across a shallow sea as described by figure 1.3. The shallow sea is an idealized way
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Figure 1.2: Illustration representing resulting velocities from a wind stress on the
top of a water column. Figure 1.2a represents a single-layer model with wind forcing
where the entire column of water is forced. Figure 1.2b represents a two-layer model
where most of the energy from the wind forcing is put into the upper layer.

to represent the possible effect adding a layer at the top of the ocean might have
on surge. Multiple structures exist in these simulations that could have significant
impact on the surge strength and impact. When a similar simulation is done but with
realistic depths, none of these structures exist, as seen in figure 1.5a.

Figure 1.3: Setup for the shallow sea storm surge calculation shown in figure 1.4.

1.2 Objectives

The central goal of this thesis is to study the viability of using a two-layer depth
averaged model for storm surge prediction in lieu of a full three dimensional model
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Figure 1.4: Simulation of a hurricane moving over a shallow sea. The figures on the
left show the surface deviation from sea level. The figures on the right represent the
magnitudes of the speed of the water. The boxes are adaptive mesh refinement grids
that have been used to refine areas of interest in the simulation. The red diamond
indicates the eye of the storm.
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(a) (b)

Figure 1.5: In figure 1.5a a simulation identical to the one shown in figure 1.4 is shown
except that the sea it is traveling over is now 3000 meters deep, a typical ocean basin
depth in areas of interest, such as the Gulf of Mexico. Figure 1.5b shows an idealized
setup for a two-layer storm surge simulation with the abyssal layer depth going to
zero at the continental shelf rather than near the shore line.

or the commonly used single-layer model. The two-layer approach has advantages
over the single-layer models for reasons explained in section 1.1 and could be the
most computationally tractable way to account for the depth varying effects. A
three dimensional model could also accomplish this to greater precision, but the main
drawback to using a three dimensional model is the time needed to compute at relevant
temporal and spatial scales as operational prediction relies on ensemble predictions
to mitigate uncertainties in storm track and intensity.

Multi-layer depth averaged models have been of recent interest for many different
applications. The reason why multi-layer models have not been more widely used
however is due to the difficulty in computing numerical solutions to these equations.
One of these difficulties is the complexity of the underlying Riemann problems and
more specifically the wave speeds needed to compute these solutions. Approxima-
tions exist to overcome this problem such as more diffusive solvers [22], relaxation
approaches [3], and decoupling schemes that still obey entropy laws [11]. Another
difficulty is the loss of hyperbolicity commonly associated with the physical mecha-
nism of Kelvin-Helmholtz instabilities that appear in the equations. Work has also
been done to mitigate this effect by applying physically motivated momentum transfer
to stabilize the system [15].

Fortunately, when applying the multi-layer equations to storm surges, many of
the challenges that exist in general for these equations are either not applicable or
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are only seen in extreme cases. In terms of the solution of the system, since most
of the ocean is assumed to be at a steady state, linearization is an effective way
to compute the otherwise difficult Riemann problems associated with the system.
Another difficulty arises when considering dry states of the system. In constructing
the two-layer problem for storm surges, requiring the bottom layer to become dry away
from the top layer, and therefore the coast, simplifies this problem and the number of
dry state cases that must be handled. In figure 1.5b for instance, the bottom layer has
zero depth somewhere along the continental slope. The last difficulty mentioned above
is loss of hyperbolicity. For storm surges, as will be shown, the loss of hyperbolicity
does not generally occur, although the mechanisms described in [15] may be useful in
providing a more accurate portrayal of the mixed layer under a storm.

The objective of this work is to provide a numerical scheme for the multi-layer
depth-averaged equations in the context of storm surges. This scheme must be able
to handle the complex Riemann problems associated with the multi-layer equations
and still be efficient enough to use in an ensemble predictive capacity. The scheme
must also handle dry states as is pertinent in the case of storm surges. Lastly, the
conclusion of whether a multi-layer approach to storm surge modeling is worthwhile
will be discussed via comparison to similar single-layer numerical models.

1.3 Overview

The first part of this thesis provides a general overview of hyperbolic partial dif-
ferential equation theory, of which both the single and multi-layer depth-averaged
equations are a part. In chapter 2 the theory of hyperbolic partial differential equa-
tions, including the basic approach to solving Riemann problems and classification of
the solution and equations, is reviewed. Chapter 3 introduces finite volume methods
and a related approach called wave-propagation algorithms that will be used to solve
the systems in question.

The theory of depth-averaged equations for both single and multi-layer equations
is presented in the second part of this thesis. In chapter 4 the single-layer equations are
derived with details regarding what assumptions go into the derivation, what possible
extensions are available, and a framework to adapt existing single-layer numerical
methods for storm surges. This chapter also contains the basic Riemann solvers for the
single-layer equations, a discussion of how dry states are handled, and other pertinent
theoretical aspects of the single-layer equations. Chapter 5 contains derivations of the
multi-layer equations and a discussion of the question of how to solve the Riemann
problem and in particular, how to find a method for finding the wave speeds for the
Riemann problem that respects dry states. Finally, in chapter 6 numerical methods
are presented for the multi-layer depth-averaged equations including some test cases
for the method used to determine the eigenspace and convergence tests in one and
two dimensions.
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The last part of this thesis illustrates how the methods developed apply to storm
surges. In chapter 7, the numerical approach used for the forcing terms as well
as the idealized model for the storm are discussed and implemented. Results are
then given and compared for single-layer and two-layer simulations of an idealized
historical hurricane approaching an idealized bathymetry and coastline at multiple
different angles. Finally, chapter 8 contains a summary of the findings of this thesis,
a discussion of whether the multi-layer depth averaged equations are a fruitful avenue
of research for storm surge modeling, and possible future directions of research.
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Chapter 2

HYPERBOLIC CONSERVATION AND BALANCE LAWS

Conservation and balance laws comprise a large class of fundamental governing
equations in the physical world. This chapter contains brief introductions to many of
the relevant concepts that will be used in analyzing depth-averaged fluid flow. First,
a review of the general theory of hyperbolic conservation laws and the fundamental
solutions to Riemann problems is given. Second, extensions of this basic theory
to balance laws is considered. Finally, the shallow water equations will be used to
demonstrate and explore many of the definitions, properties, and solution techniques
laid out in this chapter. Later chapters will extend the shallow water equations and
use the analysis here as a basis.

It should be noted that this chapter is primarily meant as an overview and intended
as a means of establishing notation for later chapters. If the reader would like further
information about all of the topics discussed here, refer to [32, 42, 20] and other
references contained there.

2.1 Hyperbolic Conservation Laws

Consider the class of partial differential equations (PDEs) represented by

∂

∂t
q(x, t) +

n∑
j=1

∂

∂xj
fj(q) = 0, x = (x1, . . . , xn)T ∈ Rn (2.1)

where q ∈ Rn represent a set of m conserved quantities and fj(q) ∈ Rm the fluxes
of these quantities. The reason why (2.1) is called a conservation law is that given
an arbitrary domain Ω ∈ Rn and an outward unit normal ω = (ω1, . . . , ωn) to the
boundary ∂Ω of Ω, from (2.1) and the divergence theorem, we can derive the relation

d

dt

∫
Ω

qdx+
n∑
j=1

∫
∂Ω

fj(q)ωjdS = 0. (2.2)

This equation states that the time variation of the conserved quantities q only varies
due to the value of the flux functions fj at the boundary ∂Ω.

An important subset of the systems described by (2.1) are called hyperbolic if the
flux functions fj satisfy certain properties.
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Definition 2.1.1 (Hyperbolicity). For j = 1, . . . , n, let

[Aj(q)]ip =
∂(fj)i
∂qp

(2.3)

be the ipth entry of the Jacobian matrix of fj(q). the system (2.1) is called hyperbolic
if for any q ∈ Ω and ω = (ωq, . . . , ωn)T ∈ Rn, |ω| = 1, the matrix

A(q, ω) =
n∑
j=1

ωjAj(q) (2.4)

has m real eigenvalues λ1(q, ω) ≤ λ2(q, ω) ≤ . . . ≤ λm(q, ω) and m linearly indepen-
dent corresponding eigenvectors r1(q, ω), . . . , rm(q, ω), that is

A(q, ω)rp(q, ω) = λp(q, ω)rp(q, ω), 1 ≤ p ≤ m. (2.5)

If, in addition, the eigenvalues λp(q, ω) are all distinct, then the system (2.1) is called
strictly hyperbolic.

Since the direction ω is arbitrary, the hyperbolicity of the system in question is
independent of direction. Note that if the system (2.1) is hyperbolic then by definition
the integral form (2.2) is also hyperbolic. It is important to also note that although we
have defined hyperbolicity of the PDE, often the more fundamental governing relation
is the integral form of the hyperbolic conservation law (2.2), which has important
consequences that are laid out in the next section.

2.1.1 Weak Solutions

Conservation laws written in the form of (2.1) are known as the strong form of the
PDE where as conservation laws written in the form of (2.2) are known as weak forms
of the PDE. This naming convention belies a deeper connection to the type of solution
each form of the PDE can exhibit. Both the strong and weak form of the equations
will admit differentiable solutions to the PDE. The weak form of the equations can
also admit solutions that contain discontinuities which can be interpreted as weak
solutions to the PDE in the distribution sense (see [23] for more on this connection
and distribution theory in general). It is also important to note that non-linear
hyperbolic conservation laws can develop discontinuous solutions in finite time even
for smooth initial conditions.

If we now consider a function q that is piece-wise continuous that satisfies the
strong form of the PDE (2.1) within the smooth regions and the weak form of the
PDE (2.2) near the discontinuities. If we apply the weak form (2.2) in a region around
the jump discontinuity, we can derive the Rankine-Hugoniot jump conditions which
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in one dimension take the form

s(q+ − q−) = (f(q+)− f(q−)) (2.6)

where s represents the speed of the traveling discontinuity and q+ and q− the limiting
value of the conserved quantities to either side of the jump.

2.2 Riemann Problems

The Riemann problem consists of the hyperbolic equations along with piece-wise
constant initial data

q0(x) =

{
q` if x < 0,

qr if x > 0,
(2.7)

on −∞ < x < ∞. The solution to these problems are similarity solutions, i.e.
q(x, t) = q̃(x/t), and are composed of set of waves connecting constant states deter-
mined by the initial condition q0(x). Our goal then is to determine how these constant
states are connected and how these connections behave.

2.2.1 Linear Hyperbolic Equations

The linear, one-dimensional, hyperbolic conservation law takes the general form

qt + Aqx = 0 (2.8)

where A is a constant matrix and we have used the notation ∂f
∂x
≡ fx. Due to the

definition of hyperbolicity, A is diagonalizable and can be decomposed as A = RΛR−1

where R is the right eigenvector matrix and Λ is the matrix with the eigenvalues on
the diagonal. By replacing A with the decomposition in the hyperbolic equation and
multiplying by R−1, we can rewrite (2.8) as

wt + Λwx = 0 (2.9)

where w are now the characteristic variables defined by w = R−1q. Since this trans-
formation decouples the system into a set of scalar advection equations, the solution
to the system is then a series of discontinuities determined by the representation of
the initial condition in characteristic variables and propagating at the corresponding
speed determined by the eigenvalue. In the x− t plane the path of the discontinuities
are constant slope characteristics. Each of these discontinuities obeys the principle of
superposition and the solution can be written as

q(x, t) =
m∑
p=1

wp0(x− λpt) (2.10)
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where w0(x) is the initial condition transformed into characteristic variables.
For the Riemann problem we can write the solution in a particularly useful way

by decomposing the discontinuity as

q` =
m∑
p=1

wp` r
p and qr =

m∑
p=1

wprr
p. (2.11)

The initial condition can then be transformed into the characteristic variables of the
problem directly and the solution can be written as

q(x, t) =
∑

p:λp<x/t

wprr
p +

∑
p:λp>x/t

wp` r
p. (2.12)

We can also interpret the discontinuities themselves as waves traveling through
the domain. If we project the jump in qr − q` onto the eigenvectors

qr − q` =
m∑
p=1

αprp (2.13)

and define
Wp = αprp (2.14)

as the pth wave traveling at λp, the solution then becomes

q(x, t) = q` +
∑

p:λp<x/t

Wp = qr −
∑

p:λ>x/t

Wp. (2.15)

Note that each wave satisfies the Rankine-Hugoniot conditions (2.6) with s ≡ λp.

2.2.2 Nonlinear Hyperbolic Equations

The general one-dimensional hyperbolic conservation law

qt + f(q)x = 0. (2.16)

and the associated Riemann problem is much more difficult to solve as the waves in
each characteristic family are non-constant and may interact. For that reason it is
useful to study the individual waves in isolation and piece together the full solution
once each of the waves have been determined. The first step in classifying waves is to
determine whether the field it is a part of is genuinely nonlinear.

Definition 2.2.1. The pth characteristic field is genuinely nonlinear if

∇λp(q) · rp(q) 6= 0 ∀q ∈ Ω. (2.17)
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Alternatively, the pth characteristic field is linearly degenerate if

∇λp(q) · rp(q) ≡ 0 ∀q ∈ Ω. (2.18)

Examples of waves in genuinely nonlinear fields are shocks and rarefactions. Lin-
early degenerate fields contain waves that act similar to waves in a constant-coefficient
problem and cannot develop shocks by themselves. In the rest of this section we will
discuss the salient features of each of these types of waves and discuss how to deter-
mine which type of wave is appropriate for each family based on a set of physically
motivated conditions.

Shock Waves

A shock is a wave in a genuinely nonlinear characteristic field representing a collision
of characteristics in the appropriate family. This is represented as a traveling dis-
continuity in the solution q and consequently is governed by the Rankine-Hugoniot
condition (2.6) for that family. An important property of shock waves unlike the
other waves we will discuss is that the characteristic speeds on either side of the
discontinuity are not equal, in other words λp(q`) 6= λp(qr) and the resulting shock
speed s cannot be determined from these values alone but must be obtained from
the Rankine-Hugoniot condition. For a scalar conservation law this may not be dif-
ficult if all the quantities are well defined but for systems of conservation laws this
may involve simultaneously solving a system of nonlinear equations assuming that
the states connecting either side of the shock are known. If this is not the case the
problem becomes more complicated and the analytical solution may be unobtainable
by direct means.

It is important to recognize that for nonlinear conservation laws, even though a
discontinuity is not present in the initial conditions, one may form in finite time. A
simple example of this is the solution to Burger’s equation

ut +

(
1

2
u2

)
x

= 0

whose initial condition may be smooth but lead to a shock in finite time.

Centered Rarefactions

The second type of wave that can be present in a genuinely nonlinear characteristic
field is a rarefaction, a smooth, differentiable variation in the function q connecting two
states. In a Riemann problem these waves are called centered rarefactions since they
are similarity solutions to the equations. Rarefactions in general are characterized by
integral curves associated with the particular characteristic family. Since we expect
the solution to the Riemann problem in this case to be a similarity solution q̃(x/t),
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and if we parameterize the integral curve with χ, then for an integral curve associated
with the pth characteristic family, we know

q̃′(χ) = α(χ)rp(χ), (2.19)

where α is a factor dependent on the parameterization χ chosen. As we connect
the left and right states, we must travel on one integral curve associated with the
particular characteristic field. This fact can then be leveraged by calculating the
Riemann invariant, a constant common to any state on a given integral curve, and
finding the admissible states connecting to the original state.

Contact Discontinuities

This is the final type of wave we expect to have to deal with when the wave is
isolated to a single characteristic field. In Riemann problems these waves act as
linear traveling discontinuities whose speed obeys the Rankine-Hugoniot condition
but whose characteristic speeds are continuous: s = λp(q`) = λp(qr). These waves
often appear with advected quantities and transverse momenta in multi-dimensional
conservation laws.

Entropy Conditions

For nonlinear problems with genuinely nonlinear characteristic fields a non-uniqueness
now presents itself. Up until now we have found multiple weak solutions to the
conservation law involving combinations of shocks and rarefactions in each genuinely
nonlinear field but not all of these solutions may be permissible. We therefore must
enforce another condition on the solution in order to pick out the correct physical
solution from among the weak solutions. One such condition is the Lax Entropy
Condition which can be shown to be correct for strictly hyperbolic conservation laws
in which each field is genuinely nonlinear.

Definition 2.2.2 (Lax Entropy Condition). A discontinuity separating states q` and
qr, propagating at speed s, satisfies the Lax entropy condition if there is an index p
such that

λp(q`) > s > λp(qr) (2.20)

so that p-characteristics are impinging on the discontinuity, while the other charac-
teristics are crossing the discontinuity,

λj(q`) < s and λj(qr) < s for j < p, (2.21)

λj(q`) > s and λj(qr) > s for j > p, (2.22)

where, in this definition, the eigenvalues are ordered so that λ1 < λ2 < . . . < λm in
each state.
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Another method for establishing the correct solution is to use an entropy function
η(x, t) of the accompanying physical system and enforce the condition that entropy
is conserved when q is smooth and must decrease (or increase depending on the form
of the entropy function) across shocks. This form of entropy conditions often requires
the evaluation of η and the entropy conservation equation

η(q)t + φ(q)x = 0,

where φ(q) represents the entropy flux, must hold for smooth solutions. Once the
appropriate entropy condition is established, we can then check which weak solution
obeys the entropy conditions and identify it as the physically admissible solution.

2.3 Balance Laws and Source Terms

The systems we have previously considered are sometimes called homogeneous con-
servation laws in order to differentiate them from equations with a right hand side
forcing function, often called a source term. These related systems are called either
inhomogenous conservation laws or balance laws. In general, balance laws take the
form

∂

∂t
q(x, t) +

n∑
j=1

∂

∂xj
fj(q) = ψ(q, x), (2.23)

where ψ(q, x) may include derivatives of q or other functions. Source terms physically
represent sources or sinks of the state variables q. Physically, balance laws behave
differently than homogenous conservation laws in the way the evolution of q occurs.
For a conservation law, given a domain Ω, the time evolution of q is based solely on
the flux through the boundary ∂Ω. For balance laws, the time evolution of q is also
determined by the sources or sinks of the quantity q located in the interior of Ω.

2.3.1 Riemann Problems With Source Terms

Unlike the previous solutions we found to the Riemann problem, balance laws may
not admit a similarity solution, even in the linear case, as the characteristic families
no longer depend only on the flux functions. Take for example the linear hyperbolic
PDE

qt + Aqx = ψ (2.24)

and diagonalize and transform the equation into characteristic variables

wt + Λwx = R−1ψ. (2.25)

The equations are no longer fully decoupled as the source term may still depend on
combinations of the characteristic variables. In general, defining the characteristic
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path with X(t) = x0 + λpt, we must solve a system of ordinary differential equations
(ODEs) defined by

d

dt
(wp(X(t), t)) = (R−1ψ)p. (2.26)

In the case of a nonlinear system, the source term’s effect on the system can
be considerably more complicated. One way to leverage our previous knowledge of
homogeneous conservation laws is to idealize the source term as being applied at a
single point, ψ(q, x) = Ψδ(x̂) where Ψ is an appropriately chosen constant and δ is
the delta function. It can be shown that in a vanishingly small neighborhood around
the point source, the flux must satisfy [32]

f(q(x̂+, t))− f(q(x̂−, t)) = Ψ. (2.27)

Since the source term is only applied at the jump location x̂, everywhere else the
equations are homogeneous and what we have developed above applies. It should
be noted that the exact definition of Ψ above is not straight forward as we need to
evaluate ψ at a discontinuity in q where ψ may not be well-defined.

2.4 Example System: The Shallow Water Equations

We will now analyze many of the concepts introduced in this chapter in the context
of the one dimensional shallow water equations. The one dimensional equations can
be written as

ht + (hu)x = 0 and

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0
(2.28)

where h represents the depth of the fluid and u the velocity. This system can be
written in terms of the vector q and flux function f(q) as

q = [h, hu]T and f(q) = [q2, (q2)2/q1 + 1/2g(q1)2]T .

Calculating the flux Jacobian (2.28) leads to

f ′(q) =

[
0 1

gh2 − u2 2u

]
whose eigenvalues are λp = u±√gh with accompanying eigenvectors [1, λp] for each
characteristic field.
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In two dimensions the system becomes

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + 1/2gh2)x + (huv)y = 0, and

(hv)t + (huv)x + (hv2 + 1/2gh2)y = 0.

q =

 hhu
hv

 , f1(q) =

 hu
hu2 + 1

2
gh2

huv

 , f2(q) =

 hv
huv

hv2 + 1
2
gh2

 , and

Calculating the Jacobians of both fluxes

f ′1(q) =

 0 1 0
gh− u2 2u 0
−uv v u

 and f ′2(q) =

 0 0 1
−uv v u

gh− v2 0 2v


leads us to the eigenpairs

λ1(q) = u−
√
gh with r1(q) = [1, λ1, v]T ,

λ2(q) = u with r2(q) = [0, 0, 1]T , and

λ3(q) = u+
√
gh with r3(q) = [1, λ3, v]T

for f1 and

λ1(q) = v −
√
gh with r1(q) = [1, u, λ1]T ,

λ2(q) = v with r2(q) = [0, 1, 0]T , and

λ3(q) = v +
√
gh with r3(q) = [1, u, λ3]T

for f2.

Hyperbolicity

Checking the hyperbolicity of (2.28) we can see that the eigenvalues remain distinct
if h > 0 which is also the expected physically relevant region in phase space. This is
also true for the two dimensional equations. The case where h = 0 is a special case
and will be discussed in greater detail in chapter 4.

Riemann Solution

The Riemann problem for the shallow water equations is in general nonlinear and the
characteristic fields in the one dimensional case are both genuinely nonlinear. Our
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goal is to connect states q` to q∗ to qr (see figure 2.1a). For each wave we can connect
q` and qr to q∗ with either a rarefaction or a shock. Each type of wave has a different
set of conditions and these give curves in the phase plane representing valid middle
state q∗ that can be connected over that wave. For shocks, these conditions are the
Rankine-Hugoniot conditions

λ(h+ − h−) = h+u+ − h−u−, and

λ(h+u+ − h−u−) = h+u
2
+ − h−u2

− + 1/2g(h2
+ − h2

−),

where h+ and u+ should be replaced by the appropriate right state and h− and u−
with the appropriate left state. These conditions trace out a curve of valid connecting
states in the phase plane satisfying

u± = u∗ ±
√
g

2

(
h∗
h±
− h±
h∗

)
(h∗ − h±),

often referred to as Hugoniot loci for two states q± and q∗ which are both constant.
An all shock solution to a shallow water Riemann problem is shown in figure 2.2
where the left state and right state are connected through the middle state q∗. If the
Lax entropy conditions are evaluated in this case, if q` is connected over a 1-shock to
q∗ then h` < h∗. Similarly the right state qr can only be connected through a 2-shock
if hr < h∗. Since the second of these conditions does not hold, we know that the state
depicted cannot be the correct entropy satisfying solution for the Riemann problem.

(a) One dimensional case (b) Two dimensional case

Figure 2.1: Representative diagrams of the x − t plane with states in a Riemann
problem. The arrows represent either shocks, rarefactions, or contact discontinuities
in the two dimensional case.
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Figure 2.2: In the left figure the Hugoniot loci are shown through the states q` and qr
with possible middle state q∗. On the right are integral curves for the 1-wave family
with one passing through the q` state representing which states could be connected
over a rarefaction in the 1-wave family.

Rarefactions can be connected to any other state on the same integral curve. We
can then use the Riemann invariants of the known state to find the correct integral
curve and look for the correct state on that integral curve. For the shallow water
equations, the Riemann invariants are

w1(q) = u+ 2
√
gh and w2(q) = u− 2

√
gh

for the first and second characteristic families respectively. Figure 2.2 shows a set
of integral curves for the 1-wave family with the state q` from earlier marked. The
integral curve passing through this point denotes the states q∗ which can connect to
q` through a 1-wave rarefaction.

Finally, we must look for the intersections of the Hugoniot loci and integral
curves for each wave and determine the possible connecting middle states. The non-
uniqueness of this process is a representation of the task of picking out the physically
relevant or entropy satisfying solution via either the Lax entropy condition (2.2.2)
or the entropy function for the shallow water equations. In either case, we find that
portions of our Hugoniot loci are not entropy satisfying or our integral curves would
allow a multi-valued solution and only one valid intersection exists between the four
different possibilities.

In the case of the two dimensional shallow water equations, there is an additional
characteristic family that is linearly degenerate and will produce contact discontinu-
ities. As these waves behave essentially linearly, it is important to note what quantity
will jump across the discontinuity. In the case of the shallow water equations, the
jump will be proportional to the corresponding eigenvector, which is either [0, 0, 1]T
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Figure 2.3: The full solution of the Riemann problem where two possible middle states
have been marked with all integral curves and Hugoniot loci drawn. The final choice
of middle state will be chosen by the entropy condition and single-valued requirement.



20

or [0, 1, 0]T depending on which dimension we are considering. Figure 2.1b contains
an example Riemann solution for f1(q) containing a contact discontinuity and the
other two genuinely nonlinear waves.

Bathymetry Source Term

An important aspect of the shallow water equations for real world applications is the
inclusion of the bottom boundary source term as in

ht + (hu)x = 0 and

(hu)t +

(
hu2 +

1

2
gh2

)
x

= −ghbx.

For the shallow water equations, this term can be handled in multiple ways but it is
important to recognize that it contains a derivative of a function that is not one of
the conserved quantities. Because of this, a lot of different approaches can be used to
include the source term into the Riemann solution directly.

One such approach is to treat the function b as one of the conserved quantities
(satisfying bt = 0, when the bathymetry is stationary) where the equations now can
only be written in a quasilinear form

qt +

 0 1 0
gh− u2 2u gh

0 0 0

 qx = 0

where q = [h, hu, b]T . Note that we have effectively added a third equation where
bt = 0. The Riemann solution of this new system has a stationary contact disconti-
nuity representing the jump in b and possibly the depth h. For more discussion on
how to handle this source term see for instance [24] and for a similar approach see
section 3.5.2.
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Chapter 3

FINITE VOLUME METHODS

This chapter introduces the basics of a class of methods for hyperbolic conservation
laws known as finite volume methods. These methods center around an approach that
discretizes space into finite-sized cells and evolves the average value of the quantities
of interest in time. This is in contrast to finite difference approximations which take
a point-wise approach to approximating the unknown quantities in space and time.
In this chapter the mathematical framework underlying finite volume methods will
be introduced and extensions to more general algorithms and applications will be
explored.

3.1 Derivation of a Flux-Differencing Scheme

The central idea of a finite volume scheme is the partitioning of the domain Ω ∈ Rn

into grid cells C and evolving the average value of q(x, t) in each grid cell. In one
dimension1, grid cells are intervals of the real line such that Ci = [xi−1/2, xi+1/2] and
are each of length ∆xi = xi+1/2 − xi−1/2. The centers of each grid cell are defined as
xi = x0 + i∆xi and therefore the grid cell boundaries as xi±1/2 = xi ± 1/2∆xi. We
can then integrate the function q(x, t) over each grid cell Ci to find the average value
of q(x, t) defined as

Qn
i ≡

1

∆xi

∫
Ci
q(x, tn)dx. (3.1)

Often it is advantageous to map the physical grid with varying grid cell size to a com-
putational grid with a uniform distribution of grid cells through a mapping function.
For the rest of this discussion we will have assumed that we are working on a uniform
grid or that we have already used a suitable mapping function and are working on
the computational grid.

Turning now to the time evolution of the cell averages, we look back at the ho-
mogeneous conservation law (2.16) we considered earlier. Integrating in space over a

1We only consider one dimension here for clarity and address multiple dimensions in section 3.6.
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grid cell and using the fundamental theorem of calculus leads to∫
Ci
q(x, t)tdx+

∫
Ci
f(q(x, t))xdx = 0⇒ (3.2)∫

Ci
q(x, t)tdx+ f(q(xi+1/2, t))− f(q(xi−1/2, t)) = 0. (3.3)

Moving the flux terms to the right hand side of the equation, moving the time deriva-
tive on q outside the integral, integrating in time from tn to tn+1 and multiplying by
1/∆x allows us to write the equations as

1

∆x

∫
Ci
q(x, tn+1)dx− 1

∆x

∫
Ci
q(x, tn)dx = − 1

∆x

∫ tn+1

tn

[
f(q(xi+1/2, t))− f(q(xi−1/2, t))

]
dt.

(3.4)
Replacing the averages of q over the grid cell Ci we can then write

Qn+1
i = Qn

i −
1

∆x

∫ tn+1

tn

[
f(q(xi+1/2, t))− f(q(xi−1/2, t))

]
dt. (3.5)

Now defining

F n
i±1/2 ≡

1

∆t

∫ tn+1

tn
f(q(xi±1/2, t))dt (3.6)

we can write the original conservation law as an explicit flux-differencing scheme

Qn+1
i = Qn

i −
∆t

∆x
[F n
i+1/2 − F n

i−1/2]. (3.7)

Since we have not made any approximations so far when deriving (3.7), the update
to Qn+1

i is exact. It is only when we use numerical approximations to F n
i±1/2 that a

numerical error may become important. The crux of a finite volume scheme then
is the determination of the approximate evaluation of F n

i±1/2 such that a convergent
scheme is obtained. It is also important to note that in this form, if the grid cell Ci
and Ci+1 use the same approximation to F n

i+1/2, conservation is maintained modulo
the boundaries of the domain.

3.2 Godunov-Type Methods

One way to approximate the flux integral F n
i±1/2 was introduced by Godunov [27].

It is a first-order upwind-type scheme that uses Riemann solutions as the primary
building block of the numerical scheme. The algorithm is often referred to as an REA
algorithm due to the three primary steps involved:

1. Reconstruction - The reconstruction step’s goal is to reconstruct a piece-wise
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defined function q̃n(x, tn) in each grid cell based on the current grid cell average
Qn
i . In the case of Godunov’s method, these are piece-wise constant functions

based on the cell averages such that

q̃n(x, tn) = Qn
i for all x ∈ Ci. (3.8)

For higher order schemes one can imagine reconstructing higher order polynomi-
als to approximate the true solution inside of the grid cell. In fact, in section 3.3,
we will construct higher order approximations this way.

2. Evolution - The evolution step requires the update of the reconstructed func-
tion q̃n(x, tn) to the next time q̃n(x, tn+1) at time ∆t in the future. This con-
struction naturally leads to a Riemann problem defined by the difference at
each grid cell interface xi+1/2 between subsequent reconstruction in each grid
cell. This also leads to an ideal restriction on the size of time step to limit the
interaction of the waves coming from each Riemann problem solution.

3. Averaging - The averaging step takes the evolved solution q̃n+1(x, tn+1) and
averages the new solution back into cell averages as in

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1)dx. (3.9)

The effective numerical flux function F n
i±1/2 for Godunov’s method is found by

replacing the exact function q(x, t) in the definition for F n
i±1/2 (3.6) with the piece-

wise constant evolved function q̃n(x, tn+1). Since this function is constant over the
time step ∆t, we can easily integrate along the edge of the cell boundary. Denoting
the value along the grid cell edge in time as q′(Qn

i , Q
n
i−1) we can write

F n
i−1/2 =

1

∆t

∫ tn+1

tn
f(q′(Qn

i , Q
n
i−1))dt = f(q′(Qn

i , Q
n
i−1)). (3.10)

3.2.1 Wave-Propagation Form of Godunov’s Method

We can also extend Godunov’s method to the wave-propagation forms introduced in
section 2.2.1. If we again consider projecting the jump in q at each grid cell and
project this jump onto the eigenspace of the hyperbolic equations

Qi −Qi−1 =
m∑
p=1

αpi−1/2r
p ≡

m∑
p=1

Wi−1/2, (3.11)



24

we can form the solution to the Riemann problem in terms of waves. The final task is
to average the effect of each wave on the grid cell into which they have traveled. Take
for instance the situation in figure 3.1 where there are three waves in the Riemann
solution. The fraction of the grid cell length that the waves have traveled through in
time ∆t is spi−1/2∆t/∆x for the i− 1/2th grid cell boundary. The effect that the pth

wave Wp
i−1/2 will have on the ith grid cell is then

−
spi−1/2∆t

∆x
Wp

i−1/2. (3.12)

This assumes that spi−1/2 > 0, otherwise the wave would be entering the Ci−1 grid cell
and it should be averaged there. We can then add up all the effects of the waves to
produce an update to the average in the ith cell as

Qn+1
i = Qn

i −
∆t

∆x

[
m∑
p=1

(spi−1/2)+Wp
i−1/2 −

m∑
p=1

(spi+1/2)−Wp
i+1/2

]
(3.13)

where the (sp)+ ≡ max(0, sp) and (sp)− ≡ min(0, sp). Following the notation in
[32] we can write the total fluctuations entering the ith grid cell from the right as
A+∆Qi−1/2 and from the left as A−∆Qi+1/2 which allows us to write the update in
the ith grid cell as simply

Qn+1
i = Qn

i −
∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
. (3.14)

3.3 High-Resolution Methods

Hyperbolic PDE solutions, as we have seen, can exhibit both solutions that have
smooth regions (such as through rarefactions) and shocks. Godunov’s method was
constructed with the purpose of handling discontinuous solutions to hyperbolic PDEs,
but in the case of linear constant-coefficient problems is only first-order accurate.
The Lax-Wendroff method is a second-order accurate method derived via a Taylor-
series approximation to terms up to second-order, but can be numerically dispersive
near steep gradients and discontinuities. We would like to construct a hybrid of
both Godunov’s method and the Lax-Wendroff method that will be sensitive to the
solution’s local behavior and apply the correction terms from Lax-Wendroff only in
smooth regions of the solution and use Godunov’s method near steep gradients in
the solution. Methods that exhibit this type of behavior are commonly known as
high-resolution methods.

In general, high-resolution methods can be formulated as corrections to the stan-
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Figure 3.1: Diagram of the resulting waves from the boundaries of the ith grid cell. In
this case, the Riemann problem resulted in three wave families with speeds denoted
by λp. The waves that will be averaged in the the ith grid cell here would be W2

i−1/2,

W3
i−1/2, and W1

i+1/2.

dard flux-differencing scheme (3.7)

Qn+1
i = Qn

i −
∆t

∆x

[
A+∆Qi−1/2 +A−∆Qi+1/2

]
+

∆t

∆x

[
F̃i+1/2 − F̃i−1/2

]
(3.15)

where F̃i±1/2 are limited second-order correction fluxes defined as

F̃i−1/2 =
1

2

m∑
p=1

∣∣∣spi−1/2

∣∣∣ (1− ∆t

∆x

∣∣∣spi−1/2

∣∣∣) W̃p
i−1/2

where W̃p
i−1/2 =Wp

i−1/2φ(θpi−1/2), a limited version of the original wave Wp
i−1/2. Since

we already calculate Wp
i−1/2 and spi−1/2 in the Riemann problem, the corrections can

be applied without any additional work besides the calculation of the limited waves.
In order to calculate the limited wave, a limiter function must be applied to two
quantities. We then only need to prescribe the limiter φ(θpi−1/2) to complete the
high-resolution scheme.

3.3.1 Limiters

The purpose of a limiter in a high-resolution scheme is to provide a means to switch on
the correction terms that give second order accuracy if applied in a smooth region of
the solution and to switch the correction terms off when in a region where the solution
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contains a steep gradient or a discontinuity. A limiter does this by comparing the local
variations in the solution, such as the ratio of the jumps in Qn

i . For scalar hyperbolic
problems, defining I such that it represents the interface on the upwind side of xi−1/2

I =

{
i− 1 if si−1/2 > 0, or

i+ 1 if si−1/2 < 0
(3.16)

we can define a measure of the smoothness of the local solution with

θni−1/2 =
∆Qn

I−1/2

∆Qn
i−1/2

. (3.17)

With this definition, if θni−1/2 ≈ 1, the solution is relatively smooth (except at ex-

trema) and if θni−1/2 ≈ 0 that the solution contains a steep gradient or discontinuity.
Therefore, if we would like to switch on the high-order correction terms in smooth
parts of the solution, our limiter function φ(θ) should work as

φ(θ) =

{
1 if θ ≈ 1 and

0 if θ ≈ 0.
(3.18)

Another approach to understanding the role of limiters in a high-resolution method
is to consider the main failing of the Lax-Wendroff method, production of oscillatory
solutions. One way to measure oscillations in a method is to define the total variation
of a grid functions as

TV(Q) =
∞∑

i=−∞

|Qi −Qi−1|

and require that for subsequent time steps the method should require

TV(Qn+1) < TV(Qn),

also known as the total variation diminishing (TVD) property. A consequence of
this is a theorem due to Harten that provides conditions on limiters for the resulting
method to be TVD,

Theorem 3.3.1. Consider a general method of the form

Qn+1
i = Qn

i − Cn
i−1(Qn

i −Qn
i−1) +Dn

i (Qn
i+1 −Qn

i )

over one time step, where the coefficients Cn
i−1 and Dn

i are arbitrary values (which
may depend on Qn

i leading to a nonlinear limiter). Then

TV(Qn+1) ≤ TV(Qn)
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provided the following conditions are met:

Cn
i−1 ≥ 0 ∀i, Dn

i ≥ 0 ∀i, and Cn
i +Dn

i ≤ 1 ∀i.

Applying this theorem to the flux-limiter method introduced in (3.15) to the ad-
vection problem qt + uqx = 0 the Harten TVD theorem reduces to the condition

0 ≤ φ(θ) ≤ minmod(2, 2θ)

where the minmod limiter is defined as

minmod(a, b) =


a if |a| < |b| and ab > 0,

b if |a| > |b| and ab > 0, and

0 if ab ≤ 0.

. (3.19)

From here multiple limiters can be derived that obey this condition and some are
summarized in table 3.1.

Limiter Method φ(θ)

Linear

upwind 0
Lax-Wendroff 1

Beam-Warming θ
Fromm 1

2
(1 + θ)

Nonlinear

minmod minmod(1, θ)
superbee max(0,min(1, 2θ),min(2, θ))

MC max(0,min(1/2(1 + θ)), 2, 2θ)

van Leer θ+|θ|
1+|θ|

Table 3.1: List of some common limiters. The minmod function is defined by equation
(3.19).

Since we would like to solve nonlinear systems of hyperbolic equations, we must
define a suitable measure beyond the one given in (3.17). One suitable choice involves
comparing the length of the projection of the upwind wave in the appropriate family
Wp

I−1/2 onto the wave being limited Wp
i−1/2 to the length of that same wave,

θpi−1/2 =
Wp

I−1/2 · W
p
i−1/2

|Wp
i−1/2|2

(3.20)
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where we can redefine the upwind index as

I =

{
i− 1 if spi−1/2 > 0, or

i+ 1 if spi−1/2 < 0.
(3.21)

3.4 Approximate Riemann Solvers

In general, finding the full solution to a Riemann problem can be quite expensive.
This is particularly true for nonlinear problems where a set of nonlinear equations
needs to be solved to find the correct entropy satisfying waves connecting the different
states. We would like to develop fast approximate Riemann solvers that still maintain
many of the properties that the true solution to the Riemann problem would have
provided.

One straight forward way to build an approximate Riemann solver is to define a
locally defined, linearized version of the nonlinear equation,

q̂t + Âi−1/2q̂x = 0, (3.22)

where Âi−1/2 and q̂ are locally valid approximations to f ′(q) and q respectively. In

order for this approximation to be useful, we need to require that Âi−1/2 is diagonal-
izable with real eigenvalues and that the resulting approximation is consistent with
the original problem in the following sense

Âi−1/2 → f ′(q) as Qi, Qi−1 → q. (3.23)

By calculating the eigenvectors r̂pi−1/2 and eigenspeeds λ̂pi−1/2 of the matrix Âi−1/2 we
can construct a wave-propagation method with

Qi −Qi−1 =
m∑
p=1

α̂pi−1/2r̂
p
i−1/2 =

m∑
p=1

Wp
i−1/2 (3.24)

and proceed as we would for a linear problem.

A simple way to define the matrix Âi−1/2 is to evaluate the flux Jacobian at an

average Q̂i−1/2 that is determined by local grid cell averages Qi and Qi−1. Another
obvious way to linearize is to let

Âi−1/2 =
1

2
[f ′(Qi) + f ′(Qi−1)]. (3.25)

Note that these averages do not guarantee any of the properties that we have required
of Âi−1/2. In particular, if we would also like the resulting numerical scheme to
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continue to preserve conservation, we also must require that

f(Qi)− f(Qi−1) =
m∑
p=1

λ̂pi−1/2W
p
i−1/2. (3.26)

3.4.1 Failure of Linearized Solvers

Linearized Riemann solvers are often very successful in representing the nonlinear
Riemann problem with much less effort, however there are times when they can fail
and it is important to realize when this may occur. The linearized solvers essentially
assume that all of the waves in the Riemann solution are discontinuities and that
the jumps across these waves are proportional to the approximate eigenvectors r̂pi−1/2.

This view is nearly correct if the jump ||Qi−Qi−1|| = O(∆x), since the flux Jacobian
matrix is nearly constant, f ′(Qi) ≈ f ′(Qi−1). This happens in relatively smooth
sections of the solution.

Near discontinuities in the solution we do not expect that ||Qi−Qi−1|| will be small
and from section 2.2.2 we know that for a genuinely nonlinear characteristic family
that λp(Qi) 6= λp(Qi−1). This can lead to unphysical solutions such as negative depth
or densities in many common linearized solvers.

The other failure that can occur in linearized Riemann solvers involves the as-
sumption of the basic structure of the solution. As was mentioned in section 2.2.2,
a physical solution to the weak form of the hyperbolic equations must obey an en-
tropy condition. If the structure of the Riemann solution is always assumed to be
comprised of discontinuities, violation of entropy conditions can happen. In general
this is only a problem when the true solution contains a transonic rarefaction in
which f ′(Qi−1) < 0 < f ′(Qi). For some solvers, it can easily be checked if a tran-
sonic rarefaction exists in the solution and appropriate steps to can be taken to avoid
generating an entropy violating solution.

3.4.2 Examples of Approximate Riemann Solvers

Roe Linearization

The Roe linearization adds additional requirements to the matrix Âi−1/2 based on the
observation that even where ||Qi − Qi−1|| 6= O(∆x), this is usually only the case in
one of the wave families. We can then require that if Qi and Qi−1 are connected by a
single waveWp = Qi−Qi−1 in the true Riemann solution, thenWp should also be an
eigenvector of Âi−1/2. This condition comes down to requiring that the linearization
satisfies

Âi−1/2(Qi −Qi−1) = f(Qi)− f(Qi−1), (3.27)

which is identical to the condition for conservation (3.26). The goal of the linearization
is then to find a path through phase space such that (3.27) holds.
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In 1981, Roe found a method to construct a path through state space such that
(3.27) holds for the Euler equations effectively calculating the correct averaging func-
tions Q̂i−1/2 [40]. This can also be done for the shallow water equations whose Roe
averages are

h =
1

2
(hi + hi−1) (3.28)

û =

√
hiui +

√
hi−1ui−1√

hi +
√
hi−1

(3.29)

resulting in the linearized matrix

Âi−1/2 =

[
0 1

−û2 + gh 2û

]
. (3.30)

HLLE Solvers

Another approach to finding an approximate Riemann solver that does not use a
linearization approach was introduced by Harten, Lax, and van Leer [28] and extended
by Einfeldt [21]. The solver uses only two waves to represent the Riemann solution
regardless of the true number of waves. This assumption implies that there is one
unknown state Q̂i−1/2 connecting Qi and Qi−1 and adding to this the assumption that
these states are connected via discontinuities implies

W1
i−1/2 = Q̂i−1/2 −Qi−1 and W2

i−1/2 = Qi − Q̂i−1/2. (3.31)

If we also require that the approximate solution be conservative, which by (3.26)
requires

s1
i−1/2(Q̂i−1/2 −Qi−1) + s2

i−1/2(Qi − Q̂i−1/2) = f(Qi)− f(Qi−1), (3.32)

we can solve for the middle state Q̂i−1/2 as

Q̂i−1/2 =
f(Qi)− f(Qi−1)− s2

i−1/2Qi + s1
i−1/2Qi−1

s1
i−1/2 − s2

i−1/2

. (3.33)

The final specification is of the wave speeds spi−1/2 which in can be taken to be

s1
i−1/2 = min

p
(min(λpi , λ̂

p
i−1/2)) and (3.34)

s2
i−1/2 = max

p
(max(λpi+1, λ̂

p
i−1/2)), (3.35)
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where λ̂pi−1/2 are the eigenvalues associated with the Roe averaging approximation.
This particular set of speeds picks out the leading edge of any rarefaction wave and
reduces to the Roe approximation of the shock speeds if the wave is a shock.

3.4.3 F-Wave Propagation Methods

There is an alternative way to specify an approximate Riemann solver that utilizes a
different type of wave-propagation. Instead of the jumps in q being split into waves,
we split the jump in f(q) into f-waves via

f(Qi)− f(Qi−1) =
m∑
p=1

Zpi−1/2

which move at the same speeds spi−1/2. In section 3.5 the advantages of this approach
will be discussed in the context of handling source terms. There are also a number
of other advantages to using f-waves, including relaxation solvers [33]. Here we will
concentrate on their usefulness in creating approximate Riemann solvers and how
they change the wave-propagation methods we have already developed.

If we use a linearized Riemann solver, we can project f(Qi) − f(Qi−1) onto the
eigenspace of Âi−1/2 such that

f(Qi)− f(Qi−1) =
m∑
p=1

βpi−1/2r̂
p
i−1/2 (3.36)

therefore identifying the f-waves as

Zpi−1/2 ≡ βpi−1/2r̂
p
i−1/2. (3.37)

We can also identify the relationship between Wp
i−1/2 and Zpi−1/2 in the linear case or

under special conditions where spi−1/2 6= 0, as

Wp
i−1/2 =

Zpi−1/2

spi−1/2

. (3.38)

Using this splitting approach guarantees that we will arrive at a conservative scheme
as the condition (3.26) is satisfied regardless of the average state Q̂i−1/2 that is used.

Wave-propagation methods can also be written in terms of f-waves by equating

A−∆Qi−1/2 =
∑

p:sp
i−1/2

<0

Zpi−1/2 and A+∆Qi−1/2 =
∑

p:sp
i−1/2

>0

Zpi−1/2.

Furthermore, second order corrections can be written in terms of f-waves where now
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the correction flux is

F̃i−1/2 =
1

2

m∑
p=1

sign(spi−1/2)

(
1− ∆t

∆x
|spi−1/2|

)
Zpi−1/2.

3.5 Handling Source Terms

The methods that have been discussed so far treat homogeneous conservation laws
only. In order to extend them to more general inhomogenous conservation laws ap-
proaches have been developed that allow the application of the methods already pre-
sented along side methods for solving the inhomogenous forcing terms. We will discuss
the most common method for solving source terms and which we will use later for
storm surge source terms, and a method which incorporates the source terms directly
into the Riemann solver which has advantages when the source terms and flux may
be nearly in balance.

3.5.1 Fractional Step Methods

Fractional step methods utilize a splitting of the solution operators in order to update
the solution in two separate steps. In the case of inhomogenous conservation laws this
splitting entails separately solving

qt + f(q)x = 0

and
qt = ψ(q).

and applying the updates to the solution q in alternating steps. The order of these
steps determines the accuracy of the splitting method and is based on the commutator
of the solution operators being applied. In practice the first order method, known
as Godunov splitting, is sufficient. The main difficulty with these methods is the
prescription of mid-step boundary conditions. For a discussion of these issues and
their derivation please refer to [32].

The popularity of this approach is due to the ease at which they can be applied
and their relative success in many cases. The error due to the splitting approach is
often smaller than what is predicted and can be advantageous for equations that have
terms that are different in character and therefore require different solution methods.

In the case of the bathymetry source term in the shallow water equations intro-
duced in section 2.4, fractional step approaches generally do not work since the update
due to the bathymetry source term nearly negates the update from the homogeneous
conservation law. The splitting error in this case can cause spurious waves to form
near bathymetry jumps and can quickly dominate the solution in practical problems.
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An alternative approach that incorporates the update from the bathymetry directly
into the solver for homogenous conservation law is advantageous and is discussed in
section 3.5.2.

3.5.2 F-Wave Methods and Source Terms

F-wave methods were introduced in section 3.4.3 as an alternative to wave-propagation
methods that split the jump in the flux rather than the jump in the conserved quan-
tities. This approach has an added advantage that we can incorporate source terms
directly into the Riemann solver by including the source term into the projection onto
the eigenspace by extending (3.36) to

f(Qi)− f(Qi−1)−∆xΨi−1/2 =
m∑
p=1

βpi−1/2r̂
p
i−1/2

where

∆xΨi−1/2 ≈
∫
ψ(q, x)dx. (3.39)

In the case of the shallow water equations with a bathymetry source term, the
projection becomes [

[hu]

[hu2 + g/2h2]− gh[b]

]
=

m∑
p=1

βpi−1/2r̂
p
i−1/2

where the form of Ψ is motivated by path-conservative jump conditions. This causes
the flux and the source term to cancel one another out directly rather than through
a source term splitting method. In general if a suitable approximation to (3.39) can
be found, it is often advantageous to use this method over fractional step approaches
for cases where the source term and fluxes are expected to be nearly in steady state,
in other words cancel each other.

3.6 Multiple Dimensions

Wave propagation methods can be extended to multidimensional hyperbolic problems
in one of two ways. The first involves a technique similar to fractional stepping that
was introduced in section 3.5.1 but now for each dimension. The second involves
solving an extra set of transverse Riemann problems representing the direction waves
travel parallel (or transverse) to the cell interfaces. For clarity, we will only consider
two dimensional hyperbolic equations of the form

qt + f(q)x + g(q)y = 0 (3.40)
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but this can easily be extended to three and higher dimensions.

3.6.1 Dimensional Splitting

In dimensional splitting we use the same tactic as in section 3.5.1 where now we
alternately solve

qt + f(q)x = 0

and
qt + g(q)y = 0.

This amounts to sweeping over a grid in alternating directions solving the Riemann
problems at the grid cell interfaces in each direction. The accuracy of this approach
follows what would be expected of a fractionally split approach in general. This is
again a popular approach as a one dimensional method can easily be extended to more
dimensions with this approach and in practice can be sufficient for many problems.

3.6.2 Un-Split Methods

The alternative to dimensional splitting is to solve the Riemann problem taking into
account the multi-dimensional nature of the problem. In an un-split method, sweeps
in each direction are still performed across the grid except that for each single Riemann
problem that was solved in the dimensionally split approach, an additional transverse
Riemann problem is solved. This is motivated by the corner-transport method which
for advection in two dimensions allows an advected quantity moving at an angle to
the grid to flow into a corner grid cell as in figure 3.2.

Figure 3.2: Example of an advection problem where the direction of flow is 45◦ to
the grid. The corner transport method allows the quantity to correctly flow into the
corner cell as well as the cell adjacent to the grid cell.
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The method for a single grid cell proceeds as follows for a grid cell edge at xi−1/2:

1. Solve a Riemann problem normal to the grid cell interface and find the fluctu-
ations A±∆Q (left figure in 3.3).

2. Solve a Riemann problem transverse to the normal direction breaking up the
fluctuations A±∆Q into components B±A±∆Q (middle figure in 3.3).

3. Use the fluctuations found to update the appropriate cells. In particular, the
grid cells directly bordering the grid cell interface under consideration are up-
dated by A±∆Q and then the grid cells in the transverse direction are updated
by B±A±∆Q along with a correction to the grid cells directly bordering the grid
cell boundary (right figure in 3.3).

Figure 3.3: Diagram of the steps in an un-split method. First a normal Riemann
problem is solved and the fluctuationsA±∆Q are found (left figure). Next a transverse
solver finds the fluctuations that would be going transverse to the grid cell edge that
is under consideration (middle figure). Last the fluctuations are used to effectively
allow a wave to move at across multiple grid cells (right figure).

These methods in practice can be very successful and are dependent on formulating
a transverse Riemann problem. These methods are also more expensive than the
dimensionally split approach and for the same accuracy can be more efficient.
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Chapter 4

SINGLE-LAYER DEPTH AVERAGED EQUATIONS

Many relevant flows in geophysical contexts cover a vast number of spatial and
temporal scales that a direct numerical simulation cannot resolve with the comput-
ing technology we have available today. In order to address pertinent problems in
geophysics we must rely on approximations that can reduce the complexity or di-
mensionality of the flows of interest. One of these techniques is averaging through
the depth of the flow, thereby reducing the dimensionality of the overall flow. In this
chapter we will study how depth averaged equations are obtained largely following [43]
and describe one method of numerical solving the equations in geophysical contexts.

4.1 Derivation of Depth Averaged Models

We start our discussion with the construction of a depth averaged model using the
three dimensional, inviscid Navier-Stokes equations,{

ρt +∇ · uρ = 0

(ρu)t +∇ · (ρuu) = −∇P +∇ · τ − ρgẑ (4.1)

where u ≡ (u, v, w) are the velocities in the x, y, and z direction respectively, P is the
pressure, g is the acceleration due to gravity, and τ is the stress tensor. The boundary
conditions we will consider are

w = ηt + uηx + vηy and P = PA(x, y, t) at z = η,

τsx = −τxxηx − τxyηy + τxz at z = η,

τsy = −τyxηx − τyyηy + τyz at z = η,

τbx = τxxbx + τxyby − τxz at z = η,

τby = τxybx + τyyby − τyz at z = η,

w = ubx + vby at z = b

representing a wide range of permissible geophysical flows with a top free surface
η subject to stresses τs∗ and an impermeable bottom boundary whose elevation is
determined from a given function b(x, y, t) and subject to stresses τb∗. In addition to
the stresses at the top surface, we also will assume that an atmospheric pressure at the
top surface PA(x, y, t) is also given. If we make also make the simplifying assumption
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that ρ is constant the advection of density in (4.1) simplifies to

∇ · u = 0. (4.2)

This also allows us rewrite the momentum conservation equations as

ut +∇ · (uu) =
1

ρ

[
−∇P +∇ · τ

]
− gẑ.

In this section we will make various assumptions about the pressure field and varia-
tions of the fluid velocities through the depth which are not necessarily accurate but
lead to the shallow water equations. For a more complete discussion and derivation
where these issues are further developed, see appendix A.

4.1.1 Integration

Integrating the continuity equation through the depth leads to∫ η

b

(ux + vy + wz)dz =
∂

∂x

∫ η

b

udz +
∂

∂y

∫ η

b

vdz + (w − uηx − vηy)|z=η
− (w − ubx − vby)|z=b

= (hu)x + (hv)y + ηt ⇒
= ht + (hu)x + (hv)y.

where we have defined

f ≡ 1

h

∫ η

b

fdz

representing the average of the quantity f through the depth. For the momentum
equations, the advective terms in the x-direction are∫ η

b

[ut + (u2)x+(uv)y + (uw)z]dz =

∂

∂t

∫ η

b

udz +
∂

∂x

∫ η

b

u2dz +
∂

∂y

∫ η

b

uvdz

+ [u(w − uηx − vηy − ηt)]z=η − [u(w − ubx − vby)]z=b
= (hu)t + (hu2)x + (huv)y,
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for the y-direction∫ η

b

[vt + (uv)x+(v2)y + (vw)z]dz

=
∂

∂t

∫ η

b

vdz +
∂

∂x

∫ η

b

uvdz +
∂

∂y

∫ η

b

v2dz

+ [v(w − uηx − vηy − ηt)]z=η − [v(w − ubx − vby)]z=b
= (hv)t + (huv)x + (hv2)y.

and finally for the z-momentum advective terms∫ η

b

[wt + (uw)x+(vw)y + (w2)z]dz

=
∂

∂t

∫ η

b

wdz +
∂

∂x

∫ η

b

uwdz +
∂

∂y

∫ η

b

vwdz

+ [w(w − uηx − vηy − ηt)]z=η − [w(w − ubx − vby)]z=b
= (hw)t + (huw)x + (hvw)y.

Turning to the right side of the momentum conservation equations,

1

ρ

[
−∇P +∇ · τ

]
.

let us first consider the pressure term P . Assume that P is of the form

P (x, y, z, t) = PA(x, y, t) + ρg(η − z) + p(x, y, z, t),

where again PA is the pressure at the surface of the flow, the second term is due to
the hydrostatic pressure, and p is the deviation from hydrostatic pressure. Inserting
these into the gradient leads to

∇P =

(PA)x + ρgηx
(PA)y + ρgηy
−ρg

+∇p.

Integrating ∇P through the depth then gives

∫ η

b

∇Pdz = h

(PA)x + ρgηx
(PA)y + ρgηy
−ρg

+

∫ η

b

∇pdz.

The stress tensor τ can also be integrated in each direction where in the x-direction
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we have∫ η

b

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
dz

=
∂

∂x

∫ η

b

τxxdz +
∂

∂y

∫ η

b

τxydz − (ηxτxx + ηyτxy − τxz)

+ (bxτxx + byτxy − τxz)

=
∂

∂x

∫ η

b

τxxdz +
∂

∂y

∫ η

b

τxydz + τsx + τbx,

and in the y-direction we have∫ η

b

(
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
dz

=
∂

∂x

∫ η

b

τyxdz +
∂

∂y

∫ η

b

τyydz − (ηxτyx + ηyτyy − τyz)

+ (bxτyx + byτyy − τyz)

=
∂

∂x

∫ η

b

τyxdz +
∂

∂y

∫ η

b

τyydz + τsy + τby, and

in the z-direction we have∫ η

b

(
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

)
dz

=
∂

∂x

∫ η

b

τzxdz +
∂

∂y

∫ η

b

τzydz − (ηxτzx + ηyτzy − τzz)z=η
+ (bxτzx + byτzy − τzz)z=b

= (hτzx)x + (hτzy)y − (ηxτzx + ηyτzy − τzz)z=η
+ (bxτzx + byτzy − τzz)z=b

where τsx,τsy,τbx, and τby are the stress boundary conditions.

Taking all of these expressions together we can write the integrated momentum
equations as

(hu)t +

(
hu2 +

1

2
gh2 − h

ρ
τxx

)
x

+

(
huv − h

ρ
τxy

)
y

= −ghbx −
h

ρ
(PA)x −

1

ρ

∫ η

b

pxdz +
1

ρ
[τsx + τbx] ,
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(hu)t +

(
huv − h

ρ
τyx

)
x

+

(
hv2 +

1

2
gh2 − h

ρ
τyy

)
y

= −ghby −
h

ρ
(PA)y −

1

ρ

∫ η

b

pydz +
1

ρ
[τsy + τby],

and

(hw)t + (huw)x + (hvw)y

= −1

ρ
p|z=b +

1

ρ
[(hτzx)x + (hτzy)y − (ηxτzx + ηyτzy − τzz)z=η

+(bxτzx + byτzy − τzz)z=b] .

Assuming that p is insignificant compared to the other terms and assuming that
the lateral stress averages τxx, τxy, and τyy are small simplifies the momentum equa-
tions and allows us to ignore the vertical momentum equation. The pertinent equa-
tions are then

ht + (hu)x + (hv)y = 0

(hu)t +

(
hu2 +

1

2
gh2

)
x

+ (huv)y = −ghbx −
h

ρ
(PA)x +

1

ρ
[τsx + τbx] and

(hu)t + (huv)x +

(
hv2 +

1

2
gh2

)
y

= −ghby −
h

ρ
(PA)y +

1

ρ
[τsy + τby].

(4.3)

The system is then closed by appropriate specifications of the terms PA, b, τsx, τsy,
τbx, and τby dependent on the problem in question. For further discussion about
alternatives to the hydrostatic assumption see appendix A.

4.2 Numerical Methods for the Single-Layer Shallow Water Equations

In this section we will review the numerical methods employed to solve the single-
layer shallow water equations including appropriate approximate Riemann solvers, dry
state solvers, and a description of the adaptive mesh refinement framework. These
are all implemented in the GeoClaw framework which will also be described.

4.2.1 Approximate Riemann Solvers

The general approach uses the f-wave algorithm described in section 3.4.3 and a solver
with more waves than equations. This approach is described in [33] and in the case
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of the homogenous shallow water equations takes the form hi − hi−1

(hu)i − (hu)i − 1
ϕi − ϕi−1

 =
3∑
p=1

αpi−1/2

[
rPi−1/2

zpi−1/2

]

where ϕ is the flux function of the momentum and the waves are defined as αpi−1/2r
p
i−1/2 =

Wp
i−1/2 and αpi−1/2z

p
i−1/2 = Zpi−1/2. Note that the reason there is only 3 elements of

the vector is due to the redundancy of the momentum equation. This formulation
now includes an additional wave over the Roe shallow water solver which can be used
to provide an entropy correction as described in [25]. Additionally, with appropriate
choices of wave speeds and strengths, it can shown that this approach can preserve
positivity of the depth and steady states with non-trivial bathymetry.

4.2.2 Dry State Handling

The primary difficulty in the single-layer shallow water equations is the positivity of
the depth and the strong rarefactions that can be present at the shoreline. The solver
in GeoClaw first distinguishes two different dry states, a wall dry state in which the
adjacent cell will not become wet and an inundation problem where the adjacent cell
will become wet. After this is determined, appropriate ghost cell values are set in
the dry cell in the case of the wall dry state or speeds are directly calculated for the
inundation problem related to the inundation front speed. The solver above is then
applied directly.

4.2.3 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) algorithms are designed to solve hyperbolic systems
on a hierarchical set of logically rectangular grids. A single coarse grid covers the entire
domain and contains multiple nested grids that are of higher resolution. These patches
are determined dynamically based on the state of the solution. GeoClaw implements
these algorithms following [8, 7] and described in detail in [34] for tsunami modeling.
The primary difference between using AMR for tsunami modeling and storm surge is
the use of the flagging routine. This routine marks which cells should be collected into
a finer nested grid in the regridding algorithm. In the case of tsunamis this flagging
routine primarily uses the gradient of the surface η. In single-layer storm surge AMR,
the momentum is used as the primary flagging criterion. A set of nested grids also
surrounds the storm in order to provide adequate resolution of the storm eye.

4.2.4 GeoClaw

GeoClaw is a software package that was originally developed to model tsunamis but
has been expanded to include debris flow, dam breaks, and now storm surges. It
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utilizes the algorithms described here and includes functionality to include multiple
complex bathymetry specifications, tools for region refinement, and simulated tide
gauges. GeoClaw can be downloaded at http://www.clawpack.org/geoclaw.

http://www.clawpack.org/geoclaw
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Chapter 5

MULTILAYER DEPTH AVERAGED EQUATIONS

In this chapter a multi-layer version of the shallow water equations is derived and
analyzed. The motivation for some of the approximations are due to storm surge
modeling which is discussed in chapter 7.

5.1 Derivation

The multi-layer shallow water equations are derived from the integration of the same
equations as the single-layer shallow water equations, the inviscid Navier-Stokes equa-
tions, which consist of equations for

incompressibility ux + wz = 0,

mass conservation ρt + (uρ)x + (wρ)z = 0,

x-momentum conservation (ρu)t + (ρu2)x + (ρuw)z = −Px, and

z-momentum conservation (ρw)t + (ρuw)x + (ρw2)z = −Pz − ρg

in one-dimension. In the multi-layer case the velocity u and density ρ are allowed to
be piece-wise defined through the depth where η defines the interface between each
layer (see figure 5.1 for a two-layer example). We now proceed to integrate through
each layer.

Integration of the incompressibility condition gives the familiar equation for the
depth dynamics,∫ η1

η2

(ux + wz)dz =
∂

∂x

∫ η1

η2

udz − (η1)xu|η1 + (η2)xu|η2 + w|η1 − w|η2

= (h1u1)x + (η1 − η2)t

= (h1)t + (h1u1)x = 0.

Integration of the mass conservation can be done using the conservative form ρt +
(uρ)x+(wρ)z = 0 or via the equation above. Whichever version is used, the integration
yields

(ρ1h1)t + (ρ1h1u1)x = 0

which can be used instead of the continuity equation above. This can also be modified



44

Figure 5.1: Coordinates for a one-dimensional system with two-layers and varying
bathymetry.

such that the derivatives only exist on ρ1 as in

(ρ1)t + u1(ρ1)x = 0.

Integration through the bottom layer gives∫ η2

b

(ux + wz)dz =
∂

∂x

∫ η2

b

udz − (η2)xu|η2 + bxu|b + w|η2 − w|b
= (h2u2)x + (η2)t

= (h2)t + (h2u2)x = 0.

and as before

(ρ2h2)t + (ρ2h2u2)x = 0 and

(ρ2)t + u2(ρ2)x = 0.

In order to integrate the horizontal-momentum equations, we first need to find
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the pressure as a function of depth. Looking at the vertical-momentum equation,
integrating in depth from the top surface η1 to a intermediate surface coordinate ξ
and making the assumption that the advective terms for w are negligible we have∫ η1

ξ

Pzdz =

∫ η1

ξ

ρgdz. (5.1)

Integrating the left hand side we have∫ η1

ξ

Pzdz = P (x, η1, t)− P (x, ξ, t) = PA(x, t)− P (x, ξ, t),

where PA(x, t) is the surface pressure at η1. The right hand side of (5.1) gives a
different result depending on where ξ is in relation to the internal surface η2.∫ η1

ξ

ρgdz =

{
ρ1(x, t)g(η1 − ξ) η2 < ξ < η1

ρ1(x, t)gh1(x, t) + ρ2(x, t)g(η2 − ξ) b < ξ < η2

Integrating the horizontal-momentum equation through the top layer leads to∫ η1

η2

[
(ρu)t + (ρu2)x + (ρuw)z

]
dz =

∂

∂t

∫ η1

η2

ρudz − (η1)tρu|η1 + (η2)tρu|η2

+
∂

∂x

∫ η1

η2

ρu2dz − (η1)xρu
2|η1 + (η2)xρu

2|η2

+ ρuw|η1 + ρuw|η2
= (ρ1u1)t + (ρ1h1u

2
1)x

for the left hand side. Integration of the pressure gradient leads to

−
∫ η1

η2

Pxdz = − ∂

∂x

∫ η1

η2

Pdz + (η1)xP |η1 − (η2)xP |η2

= − ∂

∂x

(
1

2
gρ1(η1 − η2)2

)
− (h2 + b)xρ1g(η1 − η2)

= −
(

1

2
ρ1gh

2
1

)
x

− ρ1gh1(h2 + b)x

where we have used one sided evaluations of the density in the top layer where nec-
essary. This leads to the integrated x-momentum equation for the top layer of

(ρ1h1u1)t +

(
ρ1h1u

2
1 +

1

2
ρ1gh

2
1

)
= −ρ1gh1(h2 + b)x.
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For the second layer, the integration of the left hand side is identical but the
pressure integration is more complicated as we have contributions from the layer on
top which also may be varying. Integrating the pressure leads to

−
∫ η2

b

Pxdz = − ∂

∂x

∫ η2

b

Pdz + (η2)xP |η2 − bxP |b (5.2)

whose terms we must now evaluated. First the pressure integrated through the depth
gives

− ∂

∂x

∫ η2

b

Pdz = − ∂

∂x

∫ η2

b

(gρ1h1 + gρ2(η2 − z))dz

= − ∂

∂x

(
gρ1h1h2 +

1

2
gρ2(η2 − b)2

)
= − ∂

∂x

(
gρ1h1h2 +

1

2
gρ2h

2
2

)
.

Evaluating the pressure gives

(η2)xP |η2 = ρ1gh1(h2 + b)x

and
bxP |b = (ρ1gh1 + ρ2gh2)bx

which gives us the following form for the pressure integral through the second layer:

−
∫ η2

b

Pxdz = − ∂

∂x

(
gρ1h1h2 +

1

2
gρ2h

2
2

)
+ ρ1gh1(h2 + b)x − (ρ1gh1 + ρ2gh2)bx.

Finally putting this integration with the left hand side integration for the bottom
layer we have the following depth integrated conservation law for the bottom layer,

(ρ2h2u2)t + (ρ2h2u
2
2 + 1/2ρ2gh

2
2)x = −gh2(ρ1h1)x − gρ2h2bx. (5.3)

The new system of equations for one dimensional, two-layer, depth-integrated flow
with variable horizontal density is

(h1)t + (h1u1)x = 0 for continuity

(ρ1h1)t + (h1u1ρ1)x = 0 for mass conservation, and

(ρ1h1u1)t +

(
ρ1h1u

2
1 +

1

2
ρ1gh

2
1

)
x

= −ρ1gh1(h2 + b)x for momentum conservation
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in the top layer and
(h2)t + (h2u2)x = 0 for continuity

(ρ2h2)t + (h2u2ρ2)x = 0 for mass conservation, and

(ρ2h2u2)t +

(
ρ2h2u

2
2 +

1

2
ρ2gh

2
2

)
x

= −gh2(ρ1h1)x − gρ2h2bx for momentum conservation

in the bottom layer.

A common approximation used for the multi-layer shallow water equations is to
assume that the density is constant inside of each of the layers. This leads to a system
of four equations in one dimension that are commonly written as

(h1)t + (h1u1)x = 0,

(h1u1)t + (h1u
2
1 + 1/2gh2

1)x = −gh1(h2 + b)x,

(h2)t + (h2u2)x = 0, and

(h2u2)t + (h2u
2
2 + 1/2gh2

2)x = −rgh2(h1)x − gh2bx

(5.4)

where r = ρ1/ρ2 < 1 and r ≈ 1. Another equivalent way to write these same
equations involves integrating the momentum transfer terms on the right hand side
of the momentum equations to cause them to become symmetric which we will see
has advantages. Using this form, the equations can be rewritten as

(ρ1h1)t + (ρ1h1u1)x = 0,

(ρ1h1u1)t +

(
ρ1h1u

2
1 +

1

2
gρ1h

2
1

)
x

= −gρ1h1(h2)x − gρ1h1bx,

(ρ2h2)t + (ρ2h2u2)x = 0, and

(ρ2h2u2)t +

(
ρ2h2u

2
2 +

1

2
gρ2h

2
2 + gρ1h2h1

)
x

= ρ1gh1(h2)x − ρ2gh2bx.

(5.5)

5.1.1 Quasi-Linear Coefficient Matrices

We can write the equations (5.4) in a quasi-linear coefficient matrix by first defining

q =


h1

h1u1

h2

h2u2

 , f(q) =


q2

(q2)2

q1
+ 1

2
g(q1)2

q4

(q4)2

q3
+ 1

2
g(q3)2

 , and S(q) =


0

−gh1(h2 + b)x
0

−rgh2(h1)x − gh2bx


which allow us to write the original equations as

qt + f(q)x = S(q). (5.6)
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If we write the source term S(q) as

S(q) =


0 0 0 0
0 0 −gh1 0
0 0 0 0

−rgh2 0 0 0

 qx +


0

−gρ1h1bx
0

−gρ2h2bx


and calculating the flux Jacobian

f ′(q) =


0 1 0 0

−u2
1 + gh1 2u1 0 0

0 0 0 1
0 0 −u2

2 + gh2 2u2


we can rewrite the original equation form (5.6) as

qt + A(q)qx = S̃(q). (5.7)

where

A(q) =


0 1 0 0

gh1 − u2
1 2u1 gh1 0

0 0 0 1
rgh2 0 gh2 − u2

2 2u2

 and S̃(q) =


0

−gh1bx
0

−gh2bx


We can also do this for the modified equations (5.5), with the same result but now
with

q = [ρ1h1, ρ1h1u1, ρ2h2, ρ2h2u2]T

and

A(q) =


0 1 0 0

gh1 − u2
1 2u1 rgh1 0

0 0 0 1
gh2 0 gh2 − u2

2 2u2

 and S̃(q) =


0

−gρ1h1bx
0

−gρ2h2bx

 .
With this form of the equations we can incorporate the momentum transfer between
layers directly into the eigenspace calculation. This is an important step since without
this, the eigenspace would reduce to that of two decoupled single-layer fluids. This
becomes important to stability of the numerical method and will be discussed in
chapter 6.
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5.1.2 Two Dimensional Multi-Layer Shallow Water Equations

We can also derive the two dimensional multi-layer shallow water equations from the
three dimensional inviscid Navier-Stokes equations as a straight forward extension
of the derivation above. Assuming that density is again constant and writing the
equations in a similar form to equations (5.5) leads to

(ρ1h1)t + (ρ1h1u1)x + (ρ1h1v1)y = 0,

(ρ1h1u1)t +

(
ρ1h1u

2
1 +

1

2
gρ1h

2
1

)
x

+ (ρ1h1u1v1)y = −gρ1h1(h2)x − gρ1h1bx,

(ρ1h1v1)t + (ρ1h1u1v1)x +

(
ρ1h1v

2
1 +

1

2
gρ1h

2
1

)
y

= −gρ1h1(h2)y − gρ1h1by,

(ρ2h2)t + (ρ2h2u2)x + (ρ2h2v2)y = 0,

(ρ2h2u2)t +

(
ρ2h2u

2
2 +

1

2
gρ2h

2
2 + gρ1h2h1

)
x

+ (ρ2h2u2v2)y = ρ1gh1(h2)x − ρ2gh2bx,

(ρ2h2u2)t + (ρ2h2u2v2)x +

(
ρ2h2v

2
2 +

1

2
gρ2h

2
2 + gρ1h2h1

)
y

= ρ1gh1(h2)y − ρ2gh2by

(5.8)
where we have jumped directly to a form similar to the modified equations in one
dimension (5.5).

The corresponding quasi-linear coefficient matrices of the two dimensional equa-
tions can be found in a similar manner as in section 5.1.1. First, defining the quantities

q =


ρ1h1

ρ1h1u1

ρ1h1v1

ρ2h2

ρ2h2u2

ρ2h2v2

 , S(q) =


0

−ρ1gh1(h2)x − gρ1h1bx
−ρ1gh1(h2)y − gρ1h1by

0
ρ1gh1(h2)x − gρ2h2bx
ρ1gh1(h2)y − gρ2h2by

 ,

f(q) =


ρ1h1u1

ρ1h1u
2
1 + 1

2
gρ1h

2
1

ρ1h1u1v1

ρ2h2u2

ρ2h2u
2
2 + 1

2
gρ2h

2
2 + gρ1h2h1

ρ2h2u2v2

 =


q2

(q2)2/q1 + 1
2
g(q1)2/ρ1

q2q3/q1

q5

(q5)2/q4 + 1
2
g(q4)2/ρ2 + gq1q4/ρ2

q5q6/q4

 , and
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g(q) =


ρ1h1v1

ρ1h1u1v1

ρ1h1v
2
1 + 1

2
gρ1h

2
1

ρ2h2v2

ρ2h2u2v2

ρ2h2v
2
2 + 1

2
gρ2h

2
2 + gρ1h2h1

 =


q3

q2q3/q1

(q3)2/q1 + 1
2
g(q1)2/ρ1

q6

q5q6/q4

(q6)2/q4 + 1
2
g(q4)2/ρ2 + gq1q4/ρ2

 ,

we can calculate the flux Jacobians of f(q) as

f ′(q) =



0 1 0 0 0 0

−
(
q2

q1

)2

+ gq1/ρ1 2 q
2

q1
0 0 0 0

− q2q3

(q1)2
q3/q1 q2/q1 0 0 0

0 0 0 0 1 0

gq4/ρ2 0 0 −
(
q5

q1

)2

+ gq4/ρ2 + gq1/ρ2 2q5/q4 0

0 0 0 −q5q6/(q4)2 q6/q4 q5/q4



=


0 1 0 0 0 0

−u2
1 + gh1 2u1 0 0 0 0
−u1v1 v1 u1 0 0 0

0 0 0 0 1 0
gh2 0 0 −u2

2 + gh2 + grh1 2u2 0
0 0 0 −u2v2 v2 u2


and g(q) as

g′(q) =



0 0 1 0 0 0

− q2q3

(q1)2
q3/q1 q2/q1 0 0 0

−
(
q3

q1

)2

+ gq1/ρ1 0 2q3/q1 0 0 0

0 0 0 0 0 1

0 0 0 − q5q6

(q4)2
q6/q4 q5/q4

gq4/ρ2 0 0 −
(
q6

q4

)2

+ gq4/ρ2 + gq1/ρ2 0 2q6/q4



=


0 0 1 0 0 0

−u1v1 v1 u1 0 0 0
−v2

1 + gh1 0 2v1 0 0 0
0 0 0 0 0 1
0 0 0 −u2v2 v2 u2

gh2 0 0 −v2
2 + gh2 + grh1 0 2v2

 .
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Again, writing the source term as

S(q) =


0 0 0 0 0 0
0 0 0 −rgh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 rgh1 0 0
0 0 0 0 0 0


∂q

∂x
+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −rgh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 rgh1 0 0


∂q

∂y
+


0

−gq1bx
−gq1by

0
−gq2bx
−gq2by

 ,

we can write the quasi-linear coefficient matrices of the original equations (5.8) as

qt + A(q)qx +B(q)qy = S̃(q) (5.9)

where

A(q) =


0 1 0 0 0 0

−u2
1 + gh1 2u1 0 rgh1 0 0
−u1v1 v1 u1 0 0 0

0 0 0 0 1 0
gh2 0 0 −u2

2 + gh2 2u2 0
0 0 0 −u2v2 v2 u2

 , (5.10)

B(q) =


0 0 1 0 0 0

−u1v1 v1 u1 0 0 0
−v2

1 + gh1 0 2v1 rgh1 0 0
0 0 0 0 0 1
0 0 0 −u2v2 v2 u2

gh2 0 0 −v2
2 + gh2 0 2v2

 , (5.11)

and
S̃(q) = [0,−gρ1h1bx,−gρ1h1by, 0,−gρ2h2bx,−gρ2h2by]

T .

5.2 Calculating the Eigenspace

One of the primary building blocks to solving the multi-layer shallow water equations
is the calculation of the systems’ eigenspace. In general the system has two sets
of eigenvalues and eigenvectors, those corresponding to slightly perturbed classical
shallow water gravity waves and those corresponding to an internal wave traveling at
a much lower speed. The speeds of these waves, depending on the ratio of the densities
of the layers r = ρ1/ρ2, determines how different these speeds are. For realistic
situations in the ocean, this ratio is nearly one and the external waves corresponding
to the shallow water gravity wave are nearly the same as shallow water and internal
waves are much slower.
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The characteristic polynomial of the quasi-linear coefficient matrix (5.7) in one
dimension is

((λ− u1)2 − gh1)((λ− u2)2 − gh2)− rg2h1h2 = 0 (5.12)

and in two dimensions is a sixth degree polynomial. Since the additional eigenvalues in
two dimensions are simple to factor out and therefore to determine, we will concentrate
on solving the fourth degree characteristic polynomial. Since we know that there is
an expression for the roots of a fourth degree polynomial, it is conceivable that we
could evaluate the eigenvalues of the system directly. This is prohibitively expensive
and numerically difficult to do with precision in practice. Instead, approximations are
commonly used to represent the key aspects of the system in question. In this section
we will explore a number of different approximations and discuss their limitations with
both analytical results and numerical experiments, often compared to a simulation
where the eigenvalues are calculated using a numerical eigensolver package such as
LAPACK [4].

5.2.1 Velocity Difference Expansions

One general approach to calculating the eigenspeeds is to expand about differences
in the layer speeds u1 − u2. Using this approximation to first order we can calculate
the external eigenspeeds to be

λ±ext ≈
h1u1 + h2u2

h1 + h2

±
√
g(h1 + h2)

and the internal wave speeds as

λ±int ≈
h1u2 + h2u1

h1 + h2

±
√
g′

h1h2

h1 + h2

[
1− (u1 − u2)2

g′(h1 + h2)

]
where g′ ≡ (1 − r)g. This approximation has the nice property that it has a similar
form to the eigenvalues of the single-layer equations for the external speeds and the
clear result that the internal wave speeds are small compared to the external speeds
when 1− r � 1, i.e. when ρ1 ≈ ρ2.

Assuming that we have accurately calculated the eigenvalues λp, we can then solve
for the eigenvectors by solving

0 1 0 0
gh1 − u2

1 2u1 rgh1 0
0 0 0 1
gh2 0 gh2 − u2

2 2u2

 ·


1
α1

α2

α3

 =


λ
α1λ
α2λ
α3λ


which immediately implies that α1 = λ and α3 = λα2. We then have two equations
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for one unknown α2 which should satisfy both equations simultaneously. Solving each
of the equations separately we have

α2,p =


(λp − u1)2 − gh1

gh1

, and

rgh2

(λp − u2)2 − gh2

.

(5.13)

Setting these two equations equal to one another we obtain the characteristic poly-
nomial of the system (5.12). We therefore can use either form of α2,p in (5.13) for
the eigenvectors. The final form of the eigenvectors using one of the expressions from
(5.13) is

[1, λp, αp, λpαp]
T (5.14)

where we have simplified the notation of α2,p to αp.

5.2.2 Linearized Eigenspace

Another useful approximation for calculating the eigenspeeds of (5.7) is to linearize
the original equations. Since we will eventually want to consider an ocean primarily
at rest, we will linearize about a steady state where û1 and û2 are zero and the sea
surface η̂1 and internal surface η̂2 are constant. We then define the perturbation from
the steady state as η̃1, η̃2, ũ1, and ũ2 (see figure 5.2). We can then define the following
conservative variables

h1 = η̂1 − η̂2 + η̃1(x, t)− η̃2(x, t) = ĥ1 + h̃1(x, t)

h2 = η̂2 − b(x) + η̃2(x, t) = ĥ2(x) + h̃2(x, t)

µ1 = h1u1 = (η̂1 − η̂2 + η̃1 − η̃2)ũ1 = ĥ1ũ1(x, t) + h̃1(x, t)ũ1(x, t)

µ2 = h2u2 = (η̂2 − b+ η̃2)ũ2 = ĥ2(x)ũ2(x, t) + h̃2(x, t)ũ2(x, t)

where we have defined ĥ1 = η̂1 − η̂2 and h̃1 = η̃1 − η̃2 for convenience. Putting these
expressions into the constant density layered equations (5.4) we arrive at

(h1)t + (µ1)x = 0

(h̃1)t + (µ̃1)x = 0

for the upper layer continuity equation,

(µ1)t + (µ2
1/h1 + 1/2gh2

1)x + gh1(h2 + b)x = 0

(µ̃1)t + (µ̃1
2/(ĥ1 + h̃1) + 1/2g(ĥ1 + h̃1)2)x + g(ĥ1 + h̃1)(η̂2 + η̃2)x = 0

(µ̃1)t + gĥ1(h̃1 + h̃2)x = 0
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Figure 5.2: Coordinate system for linearized equations with b(x) 6= 0.
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for the upper layer momentum equation,

(h2)t + (µ2)x = 0

(h̃2)t + (µ̃2)x = 0

for the lower layer continuity equation, and

(µ2)t + (µ2
2/h2 + 1/2gh2

2)x + gh2(rh1 + b)x = 0

(µ̃2)t + (µ̃2
2/(ĥ2 + h̃2) + 1/2g(ĥ2 + h̃2)2)x + g(ĥ2 + h̃2)(r(ĥ1 + h̃1) + b)x = 0

(µ̃2)t + g(ĥ2 + h̃2)(ĥ2 + h̃2)x + g(ĥ2 + h̃2)(r(h̃1)x + bx) = 0

(µ̃2)t + g(ĥ2 + h̃2)(h̃2 − b)x + grĥ2(h̃1)x + gĥ2bx + gh̃2bx = 0

(µ̃2)t + g
[
ĥ2(h̃2)x − ĥ2bx − h̃2bx + rĥ2(h̃1)x + ĥ2bx + h̃2bx

]
= 0

(µ̃2)t + gĥ2

[
(h̃2)x + r(h̃1)x

]
= 0

for the lower layer momentum equation. Here we have redefined µ̃n = ĥnũn as the
second term is of higher order. The final system becomes

(h̃1)t + (µ̃1)x = 0,

(µ̃1)t + gĥ1(h̃1 + h̃2)x = 0,

(h̃2)t + (µ̃2)x = 0, and

(µ̃2)t + gĥ2

[
(h̃2)x + r(h̃1)x

]
= 0.

(5.15)

With these equations, we can also write the system in the form q̃t+A(q̂)q̃x = 0 where

q̂ =


ĥ1

0

ĥ2

0

 , q̃ =


h̃1

ĥ1ũ1

h̃2

ĥ2ũ2

 , and A(q̂) =


0 1 0 0

gĥ1 0 gĥ1 0
0 0 0 1

rgĥ2 0 gĥ2 0

 .

Turning to the eigenspace of the linearized system, the characteristic polynomial
is now

(λ2 − gĥ1)(λ2 − gĥ2)− rg2ĥ1ĥ2 = 0

and if we assume that the eigenvectors have the form v = [1, λ, α, αλ]T , the relevant
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equations for the unknowns α and λ from Av − λv = 0 are

gĥ1 + gĥ1α = λ2 and

rgĥ2 + gĥ2α = λ2α.

We can eliminate λ from both equations and find that α must satisfy

rĥ2 + ĥ2α

ĥ1 + ĥ1α
= α.

Dropping the hat notation, we find a quadratic equation for α,

α2 + α

(
1− h2

h1

)
− rh2

h1

= 0

leading to
2α = −(1− γ)±

√
(1− γ)2 + 4rγ

where γ = h2/h1. As γ approaches 0, or as the bottom layer depth goes to 0,

α = {−1, 0}

depending on the wave family in question. In another pertinent case, if γ = 1, or that
the top and bottom layer steady states have equal depth, α = ±√r.

As for the form for λ, we can find λ in terms of either the top layer or bottom
layer,

λ =

{
±
√
gh1

√
1 + α and

±
√
gh2

√
α(r + α).

Since α also takes on two values, these are the correct number of eigenvalues and
do satisfy the characteristic polynomial. To find which values correspond to which
wave-family, consider the dry-state case where the bottom layer goes to zero and take
the eigenvalues dependent on the top layer only. Taking the + value of α with γ leads
to the eigenvalues ±√gh1 which are what we expect the external waves to correspond
to in the limiting case implying that taking the + value for α leads to the external
eigenvalues in both directions. For the case when γ = 1, or when both layers are
the same depth, α = ±√r and λ = ±

√
gh1(1± r) where the case where r > 1 is

eliminated as this represents a situation where the top layer has a higher density then
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the bottom. In summary, we have

λ1,ext = −
√
gh1(1 + α+)

λ2,int = −
√
gh1(1 + α−)

λ3,int =
√
gh1(1 + α−)

λ4,ext =
√
gh1(1 + α+)

(5.16)

where

α± =
1

2

[
γ − 1±

√
(γ − 1)2 + 4rγ

]
.

These values then lead to the following eigenvectors

R =


1 1 1 1

−
√
gh1(1 + α+) −

√
gh1(1 + α−)

√
gh1(1 + α−)

√
gh1(1 + α+)

α+ α− α− α+

−α+

√
gh1(1 + α+) −α−

√
gh1(1 + α−) α−

√
gh1(1 + α−) α+

√
gh1(1 + α+)

 .
Note that the eigenspace that we have calculated is valid for both the original system
we derived (5.4) and the modified system (5.5).

5.2.3 Loss of Hyperbolicity

An interesting consequence of the form of the approximate eigenvalues given by the
velocity difference expansion from section 5.2.1 is that we can observe that if

κ ≡ (u1 − u2)2

g(1− r)(h1 + h2)
≤ 1, (5.17)

the approximate eigenvalues will be real. The condition is nearly the inverse to the
definition of the Richardson number in stratified flow, defined as

Ri ≡ ρ2g(1− r)(h1 + h2)

ρ0(u1 − u2)2
,

where an additional background density ρ0 is defined, and indicates the presence
of Kelvin-Helmholtz instabilities in realistic flow conditions usually for Ri < 1/4
[18]. In work done by Le Sommer et al [31] it was shown that by assuming a rigid
lid approximation, the shear instability corresponding to complex eigenvalues is in
fact Kelvin-Helmholtz instability. For the free surface case, Chumakova et al [16]
showed that the shear instability corresponding to complex eigenvalues is indicative
of a Miles-Howard type of instability. Further work identifying if the elliptic region
is analytically attainable has been done by Milewski et al [35] who showed that the
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elliptic domain of the PDE is attainable given non-smooth initial data. Unfortunately,
as shown by Abgrall and Karni [3], this condition is neither sufficient nor necessary
to ensure hyperbolicity as was defined in section 2.1.

We can also plot the expected region of hyperbolicity via the κ approximation to
find, given a particular r, the region we expect to remain hyperbolic, an example of
which is plotted in figure 5.3.
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Figure 5.3: Plot of the predicted hyperbolic region from (5.17) for r = 0.98. For the
storm surge application we expect that the total depth will be greater than 100 meters
as the bottom layer will become dry away from the top layer going dry. The velocities
present also will be on the order of about 5 m/s. This implies that we should not
have to worry about the approximate hyperbolicity condition κ except possibly near
the dry state of the bottom layer.

As an example of a situation where hyperbolicity is lost, consider the following
situation. A two-layer system contained with wall boundary conditions is forced via
an oscillatory wind field. The initial condition at rest with ρ1 = 1025 and ρ2 = 1045
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for each of the layers leading to an effective r = 0.98 and ρair = 1.15. The wind field,
shown at t = 2 in figure 5.4, forces the top layer and is prescribed by

W (t) = A sin
(nπx
L

)
· sin

(
2πω

T
t

)
where A = 5, n = 2, ω = 2, L = 1 and T = 10. The momentum imparted into the
layer is discussed in section 7.2. It should be noted that shocks similar to the one
observed in figure 5.5 that form on the internal surface have been observed in nature
at the Straight of Gibraltar [14].

Figure 5.4: The prescribed wind field in the middle of the test.

5.2.4 Eigenspace in Two Dimensions

The calculation of the two dimensional eigenspace is a straightforward extension of
the one dimensional space. If we first consider the quasi-linear coefficient matrix in
the x-direction (5.10), we can factor the characteristic polynomial of the quasi-linear
coefficient matrix as

(λ− u1)(λ− u2)[((λ− u1)2 − gh1)((λ− u2)2 − gh2)− rg2h1h2] = 0.

This polynomial contains the same roots as the one dimensional characteristic poly-
nomial (5.12) with the addition of λ = u1 and u2. We can therefore apply the ap-
proximations we have developed for the one dimensional case to the two dimensional
case. We will subsequently use the notational convention that eigenvalues λ1, λ2,λ3,
and λ4 refer to the eigenvalues solving the one-dimensional eigenvalues as before and
λ5 = u1 and λ6 = u2 refer to the eigenvalues due to the transverse momentum.



60

Figure 5.5: Snapshots of the solution computed by the LAPACK eigensolver for
the oscillatory wind field problem. The last time shown is approximately where the
method produced complex eigenvalues.
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In a similar way, the eigenvectors of the two dimensional case include two extra
vectors corresponding to the transverse momenta in each direction. The vectors are
dependent on the eigenvalues and a value α that can be determined as described
above again. The eigenvectors are then

1 1 0 0 1 1
λ1 λ2 0 0 λ3 λ4

v1 v1 1 0 v1 v1

α1 α2 0 0 α3 α4

α1λ1 α2λ2 0 0 α3λ3 α4λ4

α1v2 α2v2 0 1 α3v2 α4v2


where we have kept the same definition of the eigenvalues as before.

The y-direction eigenspace calculated from the quasi-linear coefficient matrix (5.11)
is nearly identical to the x-direction. The eigenvalues corresponding to the one di-
mensional equations are λ1, λ2, λ3, and λ4 and obey

((λ− v1)2 − gh1)((λ− v2)2 − gh2)− rg2h1h2 = 0

while λ5 = v1 and λ6 = v2. The eigenvectors are
1 1 0 0 1 1
u1 u1 1 0 u1 u1

λ1 λ2 0 0 λ3 λ4

α1 α2 0 0 α3 α4

α1u2 α2u2 0 1 α3u2 α4u2

α1λ
1 α2λ

2 0 0 α3λ
3 α4λ

4



5.3 Solving the Riemann Problem

In general we would like to solve the Riemann problem defined by the quasi-linear
coefficient matrix (5.7) in conjunction with the bathymetry source terms. In order
to treat the bathymetry terms, we can add an additional conserved quantity b and
rewrite the system again with the addition of q5 = b, [f(q)]5 = 0, and [S(q)]5 = 0 and
rewriting quasi-linear coefficient matrix as

A(q) =


0 1 0 0 0

gh1 − u2
1 2u1 −gh1 0 −gh1

0 0 0 1 0
−rgh2 0 gh2 − u2

2 2u2 −gh2

0 0 0 0 0

 .
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This allows us to treat the basic problem analytically in its entirety in the Riemann
solver. To identify the type of behavior we expect, first we must identify the genuinely
non-linear fields as was defined in definition (2.2.1). As we do not have explicit
forms for the eigenvalues, this is rather difficult although the approximations we have
indicate that all of the fields are genuinely nonlinear. This implies that in order to
solve the Riemann problem, we must find the appropriate jump conditions for these
equations, either the Riemann invariants or integral curves for the rarefactions, and
a suitable entropy condition to choose between the two. We will also address the
practical consideration of what to do if the bottom layer reaches a dry state.

5.3.1 Path Conservative Jump Conditions

In order to derive a set of shock or jump conditions for the system it is useful to
consider the more general conditions of a path conservative scheme, which dictates
that

s(qr − q`) =

∫ 1

0

Ã(q(s))q′(s)ds (5.18)

where Ã(q) is the quasi-linear coefficient matrix and can be related to the original
flux jacobian A by

Ã = A+ Â.

In the case of a homogenous system, this condition simplifies to the Rankine-Hugoniot
conditions (2.6). For a particular wave then we can define the jump in the conserved
quantities using this equation. We will use this later to find jump conditions across
all of the waves in the system but first we will evaluate the integral here so that we
can later use it as an approximation as in∫ 1

0

Ã(q(s))q′(s)ds ≈ f(qr)− f(q`) + ψ. (5.19)

We can begin by expanding the integral out into its components as∫ 1

0

Ã(q(s))q′(s)ds =

∫ 1

0

A(q(s))q′(s)ds+

∫ 1

0

Â(q(s))q′(s)ds

=

∫ 1

0

f ′(q(s))ds+

∫ 1

0

Â(q(s))q′(s)ds = f(qr)− f(q`) +

∫ 1

0

Â(q(s))q′(s)ds.
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Assuming a linearly parameterized path through state space defined by

q(s) =


(h1r − h1`)s+ h1`

((hu)1r − (hu)1`)s+ (hu)1`

(h2r − h2`)s+ h2`

((hu)2r − (hu)2`)s+ (hu)2`

(br − b`)s+ b`

 ,
and its derivative

q′(s) =


h1r − h1`

hu1r − hu1`

h2r − h2`

hu2r − hu2`

br − b`

 =


[h1]

[h1u1]
[h2]

[h2u2]
[b]

 ,
the integral can be calculated as

∫ 1

0

Â(q(s))q′(s)ds =

∫ 1

0


0 0 0 0 0
0 0 −gh1(s) 0 −gh1(s)
0 0 0 0 0

−rgh2(s) 0 0 0 −gh2(s)
0 0 0 0 0

 ·


[h1]
[h1u1]
[h2]

[h2u2]
[b]

 ds

=


0∫ 1

0
(−gh1(s)[h2]− gh1(s)[b])ds

0∫ 1

0
(−rgh2(s)[h1]− gh2(s)[b])ds

0

 =


0

−g([h2] + [b])
∫ 1

0
h1(s)ds

0

−g(r[h1] + [b])
∫ 1

0
h2(s)ds

0

 .

The integrals left to evaluate are simply∫ 1

0

h1(s)ds =

∫ 1

0

((h1r − h1`)s+ h1`)ds =
h1r − h1`

2
+ h1` =

h1r + h1`

2
= h1 and∫ 1

0

h2(s)ds =

∫ 1

0

((h2r − h2`)s+ h2`)ds =
h2r − h2`

2
+ h2` =

h2r + h2`

2
= h2

and the final integrals are

∫ 1

0

Â(q(s))q′(s)ds =


0

−g([h2] + [b])h1

0

−g(r[h1] + [b])h2

0

 . (5.20)
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The jump conditions resulting from the choice of a linear path through state space is
then

s(qr − q`) = f(qr)− f(q`)− g


0

([h2] + [b])h1

0

(r[h1] + [b])h2

0

 . (5.21)

This defines a set of four non-linear equations for connecting across a single shock
moving at speed s with left and right states q` and qr respectively.

5.3.2 Rarefaction Solutions

Due to the complexity of the system, deriving the Riemann invariants directly for
the multi-layer equations is intractable currently. A set of approximate Riemann
invariants may be possible based on the Riemann invariants found in the single-layer
shallow water equations (which is in fact what we will do when evaluating dry state
problems for the bottom layer).

5.3.3 Entropy Condition

As with the shallow water equations, the multi-layer shallow water equations admit
a global convex entropy motivated by physics, the energy. According to Bouchut and
Morales de Luna [11], admissible weak solutions of the equations should then satisfy
the inequality

E(q)t +G(q)x ≤ 0 (5.22)

where the energy can be written as

E(q) = ρ1

(
h1
u2

1

2
+ g

h2
1

2

)
+ ρ2

(
h2
u2

2

2
+ g

h2
2

2

)
+ ρ1gh1h2 + ρ1gh1b+ ρ2gh2b

and the energy flux

G(q) = ρ1

(
h1
u2

1

2
+ gh2

1

)
u1+ρ2

(
h2
u2

2

2
+ gh2

2

)
u2+ρ1gh1h2(u1+u2)+ρ1gh1u1b+ρ2gh2u2b.

In the context of numerically computing solutions to the multi-layer equations, Bouchut
and Morales de Luna discuss using a splitting method that inherently obeys the dis-
crete version of the entropy conditions.

In principle, we could use these to ensure that we choose the correct entropy
satisfying solutions. However, since we do not have explicit relationships for the simple
wave case as discussed in section 5.3.2, these equations only provide an estimate as
to whether we have found a valid physical solution to the problem.
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5.3.4 Wall Dry States

The focus of this section is to solve the Riemann problem when a dry state exists
for the bottom layer. Consider the Riemann problem illustrated in figure 5.6a where
h2` > 0, h2r = 0, and h2` + b` < br. We would expect that a wave on the internal
interface to reflect off of the bathymetry and the associated Riemann solution to
have a structure similar to figure 5.6b. The assumption will also be made that the
momentum h2`u2` is not large enough to overcome the bathymetry jump. The states
for this Riemann problem are

qr =


h1r

(hu)1r

0
0

 , q∗r =


h∗1r

(hu)∗1r
0
0

 , and q∗∗` =


h∗∗1`

(hu)∗∗1`
h∗∗2`
0

 . (5.23)

We can then connect the right state qr to q∗r over the 4th wave family, which gives
the relation

λ4


h1r − h∗1r

(hu)1r − (hu)∗1r
0
0

 =


(hu)1r − (hu)∗1r
ϕ1r − ϕ∗1r

0
0

 . (5.24)

This is the usual Rankine-Hugoniot condition s(qr − q`) = f(qr)− f(q`), but only for
the top surface, revealing that this wave should act just as the rightward going wave
of single layer shallow water would. Using the above equations gives us the following
parameterized Hugoniot locus for the valid connecting states from qr to q∗r

(hu)∗1r = (hu)1r + γ

[
u1r +

√
gh1r

(
1 +

γ

h1r

)(
1 +

γ

2h1r

)]
(5.25)

where γ acts to parameterize the movement along the Hugoniot locus via h∗1r = h1r+γ.
Note that in general there is a choice of sign that would determine which wave this
is. Since we are interested in what would be the 2-wave in shallow water, the positive
sign is the correct choice corresponding to λ4 = u1r +

√
gh1r.

We now turn to the formulation of a family of states that can connect one state to
another, similar to what has been done for the single-layer shallow water equations.
Consider a fixed state q∗ and the set of states that lie on the same Hugoniot locus q.
The Rankine-Hugoniot condition for the two-layer shallow water system (2.6) then
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(a) Dry state problem setup. (b) Riemann solution structure.

Figure 5.6: Sample dry state Riemann problem for the two-layer shallow water equa-
tions. In this case, the dry state exists for the right side and the states q∗∗` and q∗r
have specific values that will enforce the dry state.

prescribes a set of 4 equations for connecting q to q∗

λ(h1∗ − h1) = h1∗u1∗ − h1u1 (5.26)

λ(h1∗u1∗ − h1u1) = h1∗u
2
1∗ − h1u

2
1 +

1

2
g(h2

1∗ − h2
1 − (h2∗ − h2)(h1∗ + h1)) (5.27)

λ(h2∗ − h2) = h2∗u2∗ − h2u2 (5.28)

λ(h2∗u2∗ − h2u2) = h2∗u
2
2∗ − h2u

2
2 +

1

2
g(h2

2∗ − h2
2 − gr(h1∗ − h1)(h2∗ + h2)) (5.29)

Here we will ignore the jump in bathymetry for the time being until we connect across
the 3-wave, which propagates with speed 0. Dividing equation (5.26) by equation
(5.28) leads to a relationship between the jumps in depth and momentum between
the layers

h1∗ − h1

h2∗ − h2

=
h1∗u1∗ − h1u1

h2∗u2∗ − h2u2

or
∆h1

∆h2

=
∆hu1

∆hu2

.

Turning to the relationship for the momentum of the top-layer (5.27) we can perform
the following manipulations

(h1∗u1∗ − h1u1)2 = (h1∗ − h1)
[
h1∗u

2
1∗ − h1u

2
1 + 1/2g(h2

1∗ − h2
1 − (h2∗ − h2)(h1∗ + h1)

]
,

(h1∗u1∗)
2 − 2h1∗u1∗h1u1 + (h1u1)2

= (h1∗ − h1)
[
h1∗u

2
1∗ − h1u

2
1 + 1/2g(h2

1∗ − h2
1 − h2∗h1∗ − h2∗h1 + h2h1∗ + h2h1)

]
,

(h1∗u1∗)
2 − 2h1∗u1∗h1u1 + (h1u1)2

= h1∗
[
h1∗u

2
1∗ − h1u

2
1 + 1/2g(h2

1∗ − h2
1 − h2∗h1∗ − h2∗h1 + h2h1∗ + h2h1)

]
− h1

[
h1∗u

2
1∗ − h1u

2
1 + 1/2g(h2

1∗ − h2
1 − h2∗h1∗ − h2∗h1 + h2h1∗ + h2h1)

]
.

Unfortunately, there is no clear way to proceed in the analysis at this point. One would
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have to solve a system of non-linear equations in order to find the valid connecting
states.

Another approach is to use the linearized form of the equations found earlier in
section 5.2.2. Again consider the dry state problem defined in figure 5.6b. In order to
solve the Riemann problem in the linear case, we must project the initial condition

q(x, 0) = q0 + εrpH(x) (5.30)

where q0 is a background state with a perturbation of size ε in one of the eigenfamilies
p and H(x) is the Heaviside function, onto the eigenspace. Note that we are assum-
ing that the wave contains values from the left steady state but with appropriate
directions. The α value for the steady state with a dry state on the left is

α±` =
1

2

[
γ` − 1±

√
(γ` − 1)2 + 4rγ`

]
and for the right

α±r =
1

2
(−1± 1)

since γ = 0 for the right state. The corresponding eigenvalues are then

λ1 = −
√
gh1`(1 + α1),

λ2 = −
√
gh1`(1 + α2),

λ3 =
√
gh1r(1 + 1/2(−1− 1)) = 0,

λ4 =
√
gh1r(1 + 1/2(−1 + 1)) =

√
gh1r.

This leads to the eigenspace

R =


1 1 1 1
λ1 λ2 0 λ4

α1 α2 −1 0
λ1α1 λ2α2 0 0

 . (5.31)

Projecting q(x, 0) onto the eigenspace (5.31) leads to the following system of equa-
tions

β1 + β2 + β3 + β4 = ∆1,

λ1β1 + λ2β2 + λ4β4 = ∆2,

α1β1 + α2β2 − β3 = ∆,

λ1α1β1 + λ2α2β2 = ∆4.
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Solving these equations leads to expressions for

β2 =
∆4 − λ1α1β1

λ2α2

,

β3 = α1β1 + α2β2 −∆3,

β4 =
∆2 − λ1β1 − λ2β2

λ4

.

Using a computational algebra system, β1 can be found to be

β1 =
λ4 {∆4 + α2 [∆4 + λ2(∆1 + ∆3)]}+ λ2(∆2α2 −∆4)

λ4 {λ1α1 + α2 [α1(λ1 − λ2)− λ2]}+ λ1λ2(α2 − α1)
.

Looking at some simple cases, consider the case where γ` is also zero, reducing
the equations to the single layer shallow water equations everywhere (including the
initial condition). This leads to

R =


1 1 1 1

−√gh1` 0 0
√
gh1r

0 −1 −1 0
0 0 0 0

 .
This is the linearized single layer shallow water eigenspace and our results agree with
what is expected.

Now consider the case where γ` = 1, in other words the two layers on the left have
equal steady state depth. The eigenvectors then become

R =


1 1 1 1

−
√
gh1`(1 +

√
r) −

√
gh1`(1−

√
r) 0

√
gh1r√

r −√r −1 0

−
√
rgh1`(1 +

√
r) −

√
rgh1`(1−

√
r) 0 0

 .
Solving this system leads to

β3 = (β1 − β2 − ε)
√
r

β4 =
(ε+ β1)

√
gh1`(1 +

√
r) +

√
gh1`(1−

√
r)β2√

gh1r

β2 =
−
√
gh1`(1 +

√
r)(β1 + ε)

−
√
gh1`(1−

√
r)

Finally, using an approximate solver described in chapter 6, figures 5.7 shows an
idealized simulation in the 3rd wave family with the initial conditions prescribed by
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(5.30). Figures 5.8 and 5.9 shows a similar simulation in the 4th wave family. The
initial condition used was based on calculating the eigenvector of the initial state at
rest and adding it to the background steady state q̂(x, 0) = [ρ1h1, 0, ρ2h2, 0]T such
that

q(x, 0) =

{
rpε+ q̂(x, 0) if x < x0 and

q̂(x, 0) if x ≥ x0.
.

5.3.5 Inundation

Inundation of the bottom layer occurs either if the momentum of the wet state is
large enough to overcome the bathymetry jump or the wet state surface is greater
than the bathymetry jump. For the single-layer equations methods have been reliably
developed in order to solve the inundation of just the top surface but unfortunately the
same methods do not apply reliably to the multi-layer equations due to interactions
between the layers. Various approximations may be possible and Bouchut and Morales
de Luna in [11] have proposed a method that does not require the use of explicitly
treating this problem separately from the single layer case by satisfying a discrete
form of the entropy condition (5.22).

For simplicity, consider the case when the left state is wet and inundation will
occur due to h2` + b` > br as in figure 5.10. We expect a rarefaction to wet the
dry cells moving at high speed relative to the speeds of the local eigenvalue problem.
For the cases of interest here, we will assume that s3 < s4. In general this is not
guaranteed but it allows us to consider only one situation where the states in the
Riemann problem sketched in figure 5.10 are defined as

q` =


h1`

µ1`

h2`

µ2`

 , q∗` =


h∗1`
µ∗1`
h∗2`
µ∗2`

 , q∗∗` =


h∗∗1`
µ∗∗1`
h∗∗2`
µ∗∗2`

 ,

q∗∗r =


h∗∗1r
µ∗∗1r
h∗2r
µ∗2r

 , q∗r =


h∗1r
µ∗1r
0
0

 , and qr =


h1r

µ1r

0
0

 .
(5.32)

As is suggested, wave Z4 carries only a jump in the top layer and for the case when
h∗1r > h1r the states are connected via a shock. The states satisfy the relationship

u∗1r − h∗1r

√
g

2

(
1

h∗1r
+

1

h1r

)
= u1r − h1r

√
g

2

(
1

h∗1r
+

1

h1r

)
which is derived from the Rankine-Hugoniot condtion (2.6) for the single-layer equa-
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Figure 5.7: Simulation showing a wave in the 3rd wave-family at a wall dry state
problem. The values used for the simulation were r = 0.95 and ε = 0.1.
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Figure 5.8: Initial perturbation on a steady state in the 4th wave-family.
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Figure 5.9: Simulation showing a wave in the 4th wave-family at a wall dry state
problem. The values used for the simulation were r = 0.95 and ε = 0.04
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Figure 5.10: On the right is a representation of the states being considered in the
inundation problem. In particular, h2` + b` > br and so we expect the right cell to
become wet in the bottom layer. On the right is a diagram of the Riemann solution
waves and the labels of the states in between each state.

tions. If h∗1r < h1r then a rarefaction connects the states, with the Riemann invariant

u∗1r − 2
√
gh∗1r = u1r − 2

√
gh1r.

The wave Z3 contains the jump from wet to dry in the bottom layer. In terms of
the states in (5.32), Z3 can be written as

Z3 =


h∗1ru

∗
1r − h∗∗1ru∗∗1r

h∗1r(u
∗
1r)

2 − h∗∗1r(u∗∗1r)2 + 1
2
g ((h∗1r)

2 − (h∗∗1r)
2)− 1

2
rg(h∗1r + h∗∗1r)h

∗
2r

−h∗2ru∗2r
−h∗2r(u∗2r)2 − 1

2
g (h∗2r)

2 + 1
2
rg (h∗1r − h∗∗1r)h∗2r

 .
The jump conditions that were derived in section 5.3.1 also relate the speeds of the
waves and the jump in conserved quantities to the waves such that

Zp = sp(qr − q`) (5.33)

for the appropriate connecting states qr and q`. For the 3rd wave, this relationship
implies

h∗1ru
∗
1r − h∗∗1ru∗∗1r

h∗1r(u
∗
1r)

2 − h∗∗1r(u∗∗1r)2 + 1
2
g ((h∗1r)

2 − (h∗∗1r)
2)− 1

2
rg(h∗1r + h∗∗1r)h

∗
2r

−h∗2ru∗2r
−h∗2r(u∗2r)2 − 1

2
g (h∗2r)

2 + 1
2
rg (h∗1r − h∗∗1r)h∗2r

 = s3


h∗1r − h∗∗1r

h∗1ru
∗
1r − h∗∗1ru∗∗1r
−h∗2r
−h∗2ru∗2r

 .
For the stationary wave Z0 at the jump in bathymetry, we assume that the fluxes

are continuous over the wave, implying that f(q∗∗r ) = f(q∗∗` ). This relation then
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implies
h∗∗1ru

∗∗
1r = h∗∗1`u

∗∗
1` ,

h∗∗1r(u
∗∗
1r)

2 +
1

2
g(h∗∗1r)

2 = h∗∗1`(u
∗∗
1`)

2 +
1

2
(h∗∗1`)

2,

h∗2ru
∗
2r = h∗∗2`u

∗∗
2` , and

h∗2r(u
∗
2r)

2 +
1

2
g(h∗2r)

2 = h∗∗2`(u
∗∗
2`)

2 +
1

2
g(h∗∗2`)

2.

(5.34)

Similarly we can write the expected waves Z1 and Z2 as

Z1 =



h∗1`u
∗
1` − h1`u1`

h∗1`(u
∗
1`)

2 − h1`(u1`)
2 +

1

2
g
(
(h∗1`)

2 − (h1`)
2
)
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1

2
rg(h∗1` + h1`)(h
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h∗2`u
∗
2` − h2`u2`

h∗2`(u
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2`)

2 − h2`(u2`)
2 +

1

2
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2 − (h2`)
2
)

←↩
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1

2
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∗
2` − h2`)


and

Z2 =



h∗∗1`u
∗∗
1` − h∗1`u∗1`

h∗∗1`(u
∗∗
1`)

2 − h∗1`(u∗1`)2 +
1

2
g
(
(h∗∗1`)

2 − (h∗1`)
2
)

+
1

2
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1

2
g
(
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+ rg(h∗∗1`h
∗∗
2` − h∗1`h∗2`)−

1

2
rg(h∗∗1` + h∗1`)(h

∗∗
2` − h∗2`)


.

With the relation (5.33) we in principle could solve for the connecting states q∗` ,
q∗∗` , q∗∗r , and q∗r . This would involve solving 12 nonlinear equations due to the Rankine-
Hugoniot condition and 4 nonlinear equations due to the flux continuity requirement
over the stationary wave Z0. Unfortunately this is again an intractable problem and
an approximation method must be employed. One way to accomplish this would be
to solve using a Newton solver. In the next chapter another way of approximating
the solution to this problem is presented which is a fraction of the cost of computing
a Newton iteration.
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Chapter 6

FINITE VOLUME METHODS FOR MULTI-LAYER
SHALLOW WATER EQUATIONS

The goal of this chapter is to establish a fast, accurate solver for the multi-layer
shallow water equations in two dimensions (5.8) in an oceanic scale setting. The
main assumption made is that dry states only exist in two cases, either at shore
where the only layer present is the top, or away from the shore so that both will not
become dry at the same time. The robust treatment of these dry states are one of
the primary challenges in designing a robust solver. First the basic algorithm will
be described for a one dimensional solver with the relevant cases described in detail.
Then a description of the issues that appear in two dimensions will be described.
Finally both solvers will be evaluated using idealized test cases designed to stress the
handling of dry states and the disparate wave speeds present in the system.

6.1 One Dimensional Riemann Solvers

The goal here is to describe an algorithm for solving the one dimensional modified
multilayer shallow water equations (5.5). The primary strategy of the solver uses an
F-wave wave-propagation approach which necessitates the reconstruction of a locally
approximate eigenspace with corresponding eigenvalues and the prescription of a way
to evaluate the flux vector jump at the grid cell boundaries. The basic algorithm then
has the following steps:

1. State evaluation - The states relevant to the Riemann problem must be extracted
from the vectors Q` and Qr handed to the routine. Also, the determination of
the type of dry state problem, if one exists, is handled here.

2. Find the eigenvalues sp and eigenvectors R.

3. Compute the jump in the fluxes F (Qr)− F (Q`)−∆xΨ = δ.

4. Project the jump in the fluxes onto the eigenspace solving Rβ = δ.

5. Determine F-waves Zp and the fluctuations A±∆Q.

The approach to some of these steps is also dependent on whether a bottom layer
dry state exists and what kind of dry state it is. We will first describe the case



76

where no dry state exists and proceed with describing the algorithm and explain any
modifications to the fully wet problem in the last part of this section.

6.1.1 State Evaluation

The states that are relevant to the multi-layer Riemann problem are the depths h of
each layer, the momentum hu in each layer, and the speeds u of each layer. Since
the depth and momentum are easily obtained from the state vectors Qr and Q` these
values do not pose a significant challenge. However the velocity of each layer needs
to be handled carefully since it is obtained by dividing the momentum by the depth.
A simple limiting procedure is therefore used with a dry tolerance Cdry to determine
whether to treat the cell as wet or as dry, in which case the velocity is set to zero:

u1,2 =


hu1,2

h1,2

if h1,2 ≥ Cdry and

0 if h1,2 < Cdry.

. (6.1)

It is important to note that this procedure does not modify the state vectors them-
selves but only the quantities that will be used to determine the Riemann problem’s
solution.

The other benefit of using the limiting procedure is that the dry states of each layer
can be detected at the same time. With the addition of the bathymetry states br and
b` the type of dry state can be detected and the rest of the steps in the algorithm can
proceed accordingly. Since the methods used in this solver do not provide estimates
for the middle states, the two cases are solely determined based on the initial states
present. If a dry state exists for both sides of the grid cell interface, the problem is
treated solely as a single-layer problem and an appropriate solver is used, including
dry states for the single-layer if necessary as was discussed in section 6.2.2. Since the
assumption is that the bottom layer will become dry before the top, the single-layer
solver can handle all instances when the top layer becomes dry. If one side of the grid
cell interface becomes dry, either a wall dry state exists or an inundation problem
exists. Since the middle states are not being evaluated, the difference between these
two problems is

hwet + bwet > bdry. (6.2)

If this occurs than the wet cell will flow into the dry cell causing the dry cell to become
wet. If this is not true, a wall dry state problem must be solved. Ignoring the middle
states is equivalent to ignoring the case where (6.2) is not true but the wet cell has
enough momentum to overcome the jump in bathymetry. In this case the cell will
have a jump in layer depth greater than the dry cell’s bathymetry level and in the
subsequent time step, an inundation problem will be solved.
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6.1.2 Eigenspace Solvers

In section 5.2 two approximate eigenspace solvers were discussed, one based on the
difference in velocities of the two layers and one based on a linearization of the equa-
tions. Numerically both of these solvers are straight forward to implement except for
dry states.

In the case of the eigenvalues prescribed by the velocity difference, the states used
to evaluate the eigenvalues are

λ−ext,int = λ−ext,int(Q`) and

λ+
ext,int = λ+

ext,int(Qr).

This approach generally works for systems where the middle states are not expected
to differ significantly from the right and left states. If this were not the case, the
estimated speeds are greater than what would be obtained using the true middle
states. This approach is similar to how Roe averages are taken except that in the case
of F-waves, the Roe condition (3.27) is automatically satisfied. Once the eigenvalues
are found, the eigenvectors can be evaluated using the same technique, evaluating the
eigenvectors corresponding to the left going waves with the left states and similarly
with the right states, with the forms found in (5.14), which are exact representations
as far as the eigenvalues are concerned.

The linearized eigensolver uses the same state evaluation as above. With the
linearization presented in section 5.2.2 the eigenspace is completely determined by
the initial condition, however, and does not change in time since the states used are
the steady state values ĥ and µ̂. An alternative to this is to use the full values of
the states h = ĥ+ h̃ and µ = µ̂+ µ̃ so that the computed eigenspace evolves in time
and is sensitive to changes in the states. It is important to note that this eigensolver
can handle a dry bottom layer but neither of the dry state situations are handled
fully and care must be taken to account for this. The eigenvectors are evaluated as
prescribed by the linearized eigenvectors at the appropriate states as before.

Another approach to solving for the eigenspace is to use a computational eigen-
solver such those provided by LAPACK. In order to do this, the quasi-linear coefficient
matrix found in section 5.1.1 is evaluated at the arithmetic average of the states Qr

and Q`. This approach works only for Riemann problems without any dry states, so
one of the approximate eigensolvers above must be used in these cases.

For ease of later reference, the eigensolvers presented here are summarized in
table 6.1.

The final issue to resolve in calculating the eigenspace is how to handle dry states.
For the wall dry state, the modified wall boundary condition state discussed in sec-
tion 6.1.3 is used to evaluate the eigenspace for all of the approaches mentioned thus
far. In the inundation case for the bottom layer, the eigenspace is evaluated via the
true states in the problem with two possible approaches. In both cases, the expec-
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Method Solver Description
1 Static Linearized Eigenvalues are calculated by using the eigenvalues

from the linearized system as in section 5.2.2. The
initial steady state is used for all time so that the
speeds do not change in time.

2 Dynamic Linearized The same as the static linearized method except
that we use the current local states in the evalua-
tion of the linearized eigenvalue equations.

3 Velocity Difference Eigenvalues are calculated via the expansion about
the difference in the layer velocities u1−u2 detailed
in section 5.2.1.

4 LAPACK The LAPACK eigensolver is used to find all eigen-
values and eigenvectors of the matrix A(1/2(Q` +
Qr)).

Table 6.1: Summary of the eigensolvers used for the multi-layer equations.

tation is that the internal wave will carry the jump in depth in the bottom layer,
the external wave moving in the same direction as the dry state is identical to a
single-layer shallow water wave for which the eigenspace is known. The approaches
for evaluating the wave carrying the wetting state differ in what value is used for the
dry cell’s depth. If the dry cell’s bottom layer depth is set identically to zero, the
eigensolver will compute a zero wave speed and the eigenvector will be incorrect. An
estimate to the internal wave is then used based on a single-layer inundation wave,
and

s2 = u2r − 2
√
g(1− r)h2r

for the case where the left state is dry and

s3 = u2` + 2
√
g(1− r)h2`

for the case where the right state is dry. The eigenvectors are then evaluated using
the exact forms (5.14) while evaluating with the originally wet state. The second
approach uses non-zero depth for the dry cell’s depth to calculate the eigenspace.
In this case it is assumed that the eigenspace is accurately portrayed by a fully wet
problem with a small depth, in practice taken to be the dry state cutoff Cdry used
earlier.

Currently both approaches to inundation appear to produce an entropy violating
transonic rarefaction in the simple case illustrated in figure 6.1. A possible course
would be to modify the the appropriate eigenvector that is near x = 0 by splitting it
in to two waves.
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Figure 6.1: Inundation problem with a potentially entropy violating solution. The
bottom figure is a zoomed in version of the top right figure where the grid cell averages
have been marked. The entropy violation is occurring at x = 0.5.
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6.1.3 Computation of the Jump in Fluxes

In the case that no dry states exist, the vector δ can be computed simply by evaluating

f(qr)− f(q`)−∆xΨn
i−1/2

where in the case of the multi-layer shallow water equations, the resulting differences
are

δ =


[ρ1h1u1]

[ρ1h1u
2
1 + 1/2gρ1h

2
1] + gρ1h1[h2 + b]

[ρ2h2u2]

[ρ2h2u
2
2 + 1/2gρ2h

2
2 + ρ1h1h2]− ρ1h1[h2] + gρ2h2[b]

 . (6.3)

Note that we have used averages for the depths as motivated by the path-conservative
jump conditions we found in section (5.3.1). We expect that if the state presented
to the Riemann solver should be in steady state, then by including the source terms
directly into the flux difference the possibly small differences will be canceled out.

The wall dry state problem is an important case to compute correctly as it may
be an important component of differences between the single-layer equations and
the multi-layer equations for the targeted problem. Consider the case illustrated in
figure 6.2, where from the discussion in section 5.3.4 we know some of the states and
waves of the solution. The approximate eigenspace solvers described above take this
into account and the primary concern now is evaluating the jump in the fluxes. It is
also worth pointing out that the reason the Riemann solver described here has been
developed using the modified equations (5.5) instead of the original equations (5.4) is
to handle the wall dry state problem.

Figure 6.2: Illustrations of the dry state method presented. The left most figure
represents the general state we are interested in solving. In the middle figure the red
line is what the top layer “sees” when solving the dry state problem. The right most
figure is the wall boundary problem solved for the bottom layer.

Handling the wall dry state problem is similar to solving the wall dry state problem
for the single-layer with some care taken in what states are reflected across the dry
state. Consider the dry-state case illustrated in figure 6.2, the goal is to calculate
the vector δ from equation (6.3) such that the expected Riemann problem solution is
achieved. In this case, the correct flux jump can be achieved by setting the dry cell’s
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state to one representing a wall boundary condition with

h2r = h2` and µ2r = −µ2r.

With this state, δ2 becomes

δ2 = ρ1[h1u
2
1] + 1/2gρ1[h2

1] + gρ1h1(h2` − h2` + br − bl)

which is an incorrect flux. Looking back at the original modified equations, the
top layer is affected by the bottom layer through the momentum exchange term
−gρ1h1(h2)x and combining this with the bathymetry source term −gρ1h1bx, the full
source term can be rewritten as

−gρ1h1(h2 + b)x = −gρ1h1(η2)x.

This implies that the top layer responds to the surface η2 only and is insensitive to
whether that surface is the bathymetry or the bottom layer. This allows us to treat
the source term by calculating η2 with the understanding that if h2 = 0 then η2 ≡ b
as illustrated in figure 6.2. Instead of using the wall boundary condition value of h2r,
the value of η2 is calculated since h2 + b = η2. For this case then the jump can be
calculated as

[h2 + b] = br − h2` − b`
and δ2 is given by

δ2 = ρ1[h1u
2
1] + 1/2gρ1[h2

1] + gρ1h1(br − h2` − bl).

Turning to the momentum flux of the bottom layer, δ4 becomes

δ4 = ρ2[h2u
2
2] + 1/2gρ2[h2

2] + ρ1[h1h2]− ρ1h1[h2] + gρ2h2[b]

= gρ2h2`(br − b`)

Since the bathymetry’s effect has been simulated by the wall boundary condition,
[b] = 0 and δ4 ≡ 0. This is the expected result as there is no flux through the wall.

Insuring that in the wall dry state problem that no fluctuations are allowed to wet
the bottom layer in the dry grid cell is extremely important. Small errors that may
be well below the dry tolerance Cdry will accumulate and for long time simulations
this may lead to unphysical wetting of dry states. It also may be necessary to control
the high-order correction terms near large jumps in bathymetry as this can introduce
small errors in the flux as well.
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6.1.4 Projection of the Jump in Fluxes onto the Eigenspace

The projection of the flux difference onto the eigenspace can be obtained by Rβ =
δ where R is the right eigenvector matrix, β the resulting projection coefficients,
and δ the flux difference in each field. The primary difficulty in solving this linear
system is ensuring that the solution exists and is unique. This may not be true
numerically if the Riemann problem presented is nearly dry in the bottom layer. It is
important then to identify dry states and treat them appropriately before performing
the projection. Since each of the dry state problems is handled either by a different
method all together, as is the case with the completely dry bottom layer, or by
modified systems as in the case of the wall and inundation dry state problems, it
is a numerical consequence that a solution cannot be found. Dry state limiting as
described in section 6.1.1 can handle this but more robust systems may be necessary
depending on the problem being solved.

6.1.5 Loss of Hyperbolicity

The question of hyperbolicity as raised in section 5.2.1 is important to monitor in
many of these cases. If the solution should cause Kelvin-Helmholtz types of instabili-
ties, the solver should either take steps to correct the situation or stop the calculation.
Calculating the value of κ from 5.17 can provide at least warnings as to whether the
simulation should be stopped. In practice, κ is only computed as an estimate of sta-
bility and is not used further than an indication that the computed solution may be
suspect.

6.2 Two Dimensional Riemann Solvers

The two dimensional Riemann solver is based on the un-split method described in
section 3.6. The normal and transverse solvers are based on the one dimensional
Riemann solver explained in the previous section with the addition of a modified
eigensolver and care in detecting and handling dry state problems.

6.2.1 Eigenspace Evaluation in Two Dimensions

The two dimensional modified equations (5.8) contain two additional waves carrying
the transverse momentum as an advected quantity. The eigenvectors were given
in section 5.2.4 and only require the evaluation of the transverse velocity at the
appropriate left or right state depending on which wave is being evaluated. The
wave speeds are taken to be the arithmetic average of the normal velocities in the
appropriate layer. These additional waves do not need special treatment due to dry
states.
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The transverse Riemann solver projects the presented fluctuation A∗∆Q onto the
transverse flux matrix’s eigenspace. Since the state where this split is being done is
not over a jump in states, the values of the appropriate cell are used to calculate the
eigenspace. As the example in figure 6.3 shows, the states used would be those in the
grid cell to the right of the original Riemann problem.

6.2.2 Dry State Handling

Adding an additional dimension requires attention to the additional dry states that
may be important to the problem at hand. The normal Riemann solver can treat dry
states as was done in the one dimensional case and in general no modification needs
to be made. Since the transverse solver splits up the difference in A∗∆Q care must
be taken to make sure that the transverse waves are not allowed to enter a dry cell if
no inundation is expected. Figure 6.3 illustrates the normal solver case, in particular
note that the cells that need to be checked for dry states are simply the cells to either
side of the Riemann problem in question. If the bottom layer is determined to be dry,
then the fluxes are modified accordingly. If both the sides of the Riemann problem
have dry bottom layers then the solver reverts to an appropriate single-layer solver.
Inundation is not handled in the case that it could occur in the transverse solver.

6.3 Results and Comparisons

6.3.1 One Dimensional Test Cases

Idealized Ocean Shelf

As a test of the solver in a context similar to what we will be doing for storm surges, we
will look at a test originally proposed in [34] for the single-layer equations. It involves
a large domain size with a step discontinuity representing an idealized continental shelf
and a wall boundary condition at the left boundary representing a coast. An ocean
at rest is used as the background initial condition with a perturbation approximately
0.4 m in amplitude and affects both the top and bottom layers. The densities of the
layers are ρ1 = 1025 kg/m3 and ρ2 = 1028 kg/m3, similar to that found in the ocean.

An interesting feature of this solution are the high amplitude and short wave
length internal waves being generated as the waves are coming off of the shelf. This
is due to the bottom layer reacting to the additional water being loaded on top of
it but because the internal wave speeds are much smaller than the shallow water
gravity speeds from the shelf, the waves have much shorter wave lengths. Simulations
were also performed at multiple grid resolutions and for multiple eigenspace solvers
which all indicated that these high amplitude and short wave length internal waves
are present and not a numerical instability.

Finally, a plot of showing the convergence rates of the method is shown in fig-
ures 6.8 and 6.9 for each field. A solution was computed at a resolution of N = 51200



84

Figure 6.3: The left figure is an illustration of the normal Riemann solve in a x-
direction sweep. The fluctuations A±∆Q are calculated in this step and if a dry state
exists in one direction, the appropriate fluctuation is checked to make sure an invalid
flux is not going into a dry cell. The right figure is a fluctuation A+∆Q being split
into up and down going fluctuations. As in the normal Riemann solver case, the cells
that the fluctuations are going into must be checked to see if a dry state exists and
calculated accordingly.

in space and all lower resolutions compared to it. In figure 6.8 the solution was
compared through time at a single spatial location 100 km from the wall boundary
condition in two-layers of water. We see that for all the fields, convergence eventually
drops off as at least a first order method. This convergence result is unsurprising
given that the bathymetry is discontinuous. In figure 6.9 solutions are compared at
a single instance of time and compared throughout the spatial domain. Here again
we see at least first order convergence but the error increases in the depth fields for
subsequently higher resolutions and only begins to converge after N = 1200. This
may be due to the high amplitude waves that are generated on the internal interface
which the lower resolutions cannot represent and may be due to the averaging method
for comparing the error. For reference, figure 6.10 shows the convergence results for
a single spatial location in time for the simulation shown in figure 5.7 where we see
consistent first order convergence for a simpler case.

Ocean Shelf with Continental Slope

This test is nearly identical to the test above except that the continental slope is
represented by a linear function rather than a jump in the bathymetry. This is
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Figure 6.4: Problem setup for the idealized ocean shelf problem.

meant to demonstrate the solver’s ability to handle inundation dry states like that
which would be found in a storm surge simulation. The bathymetry used is shown
in figure 6.11 and the results of the simulation are shown in figures 6.12 and 6.13. A
contour plot of the top and internal surfaces is shown in figure 6.14.

In this test the high amplitude internal waves do not appear as the loading on
the bottom layer is more gradual. We also see the effect that a linear change in
bathymetry has on all the waves. This simulation also demonstrates the ability of the
solver to handle the source terms of the equations correctly as well as the inundation
version of the dry state of the bottom layer.
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Figure 6.5: Time snapshots from an idealized ocean shelf test using the dynamic
linearized eigensolver.
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Figure 6.6: Time snapshots from an idealized ocean shelf test using the dynamic
linearized eigensolver.
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Figure 6.7: Contour plots of the top and internal surface height through time. The
top surface has 30 contour levels from -0.4 to 0.4 and bottom surface has 30 contour
levels from -0.5 to 0.5 where red contours indicate positive displacement and blue
dashed lines negative displacement
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Figure 6.8: Convergence plots of the idealized ocean shelf simulations looking at a
point at x = 100 km in time. Each resolution is compared with a fine resolution run
N = 51200. The black line represents the L2 norm of the error at each resolution
compared, red first order convergence and blue second order convergence.
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Figure 6.9: Convergence plots of the idealized ocean shelf simulations looking at a
point at the entire domain at t = 2832 seconds. Each resolution is compared with
a fine resolution run N = 51200. The black line represents the L2 norm of the
error at each resolution compared, red first order convergence and blue second order
convergence.



91

100 300 600 1200 3200 12800
N

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

Top Layer Depths

100 300 600 1200 3200 12800
N

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

Top Layer Velocities

100 300 600 1200 3200 12800
N

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

Bottom Layer Depths

100 300 600 1200 3200 12800
N

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

Bottom Layer Velocities

Figure 6.10: Convergence plots of the simulation of figure 5.7 looking at a point at
x = 0.4 km in time. Each resolution is compared with a fine resolution run N = 51200.
The black line represents the L2 norm of the error at each resolution compared, red
first order convergence and blue second order convergence.
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Figure 6.11: Bathymetry and steady state for the ocean shelf with a continental shelf
test.
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Figure 6.12: Time snapshots from an idealized ocean test with a continental slope
using the dynamic linearized eigensolver. The left figures show surface profiles and
right contain velocities and the hyperbolicity parameter κ. The dashed lines represent
the limits of the continental slope.
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Figure 6.13: Time snapshots from an idealized ocean test with a continental slope
using the dynamic linearized eigensolver. The left figures show surface profiles and
right contain velocities and the hyperbolicity parameter κ. The dashed lines represent
the limits of the continental slope.
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Figure 6.14: Contour plots of the top and internal surface height through time. The
top surface has 30 contour levels from -0.4 to 0.4 and bottom surface has 30 contour
levels from -0.5 to 0.5 where red contours indicate positive displacement and blue
dashed lines negative displacement.
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6.3.2 Two Dimensional Test Cases

Hump of Water

This test is meant to demonstrate both the ability of the solver to handle two di-
mensions robustly and symmetrically but also that waves can reflect off of a jump
discontinuity in bathymetry in two dimensions as well. The initial condition involves
a gaussian hump of water described by

h1 = εe−(
x−x0
σ

)2e−(
y−y0
σ

)2

where ε = 0.4, x0 and y0 describe the center of the hump, and σ = 0.08 the width
as is shown in figure 6.15. As the wave moves out symmetrically it eventually runs
into the jump discontinuity and the top layer continues to propagate a wave to the
right and out of the domain while the internal layer wave is reflected and continues
towards the right. We can see in this example also that the solver behaves stably and
symmetrically in this test case.

Plane Wave Incident on a Bathymetry Jump

This simulation is designed to test whether the two dimensional code can handle
waves and coastlines that are not aligned with the grid in a robust manner. A set of
three simulations was performed where the wave and bathymetry jump are rotated
relative to one another, one where the bathymetry is aligned with the grid, the other
with the wave aligned with the grid. In order to minimize boundary effects, the
simulation domain is [−1.5, 1.5]× [−1.5, 1.5] and the domain for comparison is taken
as [−0.5, 0.5] × [−0.5, 0.5]. Numerical tide gauges are placed at the same locations
relative to the rotated coordinate systems.

These simulations are meant to demonstrate again the ability of the solver to
handle changes in bathymetry. More importantly they also demonstrate the possible
disadvantage of using a structured grid to represent complex coastlines. Each sim-
ulation is effectively run twice with different orientations to the grid and compared.
Any discrepancies between each orientation is due to the aliasing of the initial condi-
tion and bathymetry onto the grid. Overall it is apparent that the solutions are very
similar but the aliasing of the initial condition and bathymetry does have an impact.
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Figure 6.15: Time snap shots of the hump of water test case depicting the surfaces
and velocities of each layer.
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Figure 6.16: Time snapshots from a perpendicular incidence wave in the case where
everything is aligned with the grid and off by 45◦.
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Figure 6.17: Simulated tidal gauges 0,1 and 2 comparing for each orientation for a
perpendicular incident wave.
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Figure 6.18: Simulated tidal gauges 3 and 4 comparing for each orientation for a
perpendicular incident wave.
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Figure 6.19: Time snapshots from an incidence wave at a 45◦ angle to the bathymetry
jump.
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Figure 6.20: Simulated tidal gauges 0, 1 and 2 comparing each orientation for a wave
at a 45◦ angle to the bathymetry jump.
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Figure 6.21: Simulated tidal gauges 3 and 4 comparing each orientation for a wave
at a 45◦ angle to the bathymetry jump. Note that for gauge 3 the discrepancy in
magnitude and not wave form is due to the representation of the bathymetry being
aliased across the grid. This causes the depth of the 3rd gauge which is located very
close to the jump to be represented differently in the two configurations.
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Figure 6.22: Time snapshots from an incidence wave at a 22.5◦ angle to the
bathymetry jump.
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Figure 6.23: Simulated tidal gauges 0, 1 and 2 comparing each orientation for a wave
at a 22.5◦ angle to the bathymetry jump.
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Figure 6.24: Simulated tidal gauges 3 and 4 comparing each orientation for a wave at
a 22.5◦ angle to the bathymetry jump.



107

Chapter 7

STORM SURGE SIMULATION

This chapter is primarily concerned with the application of methods that have
been presented and developed in the previous chapters to the numerical modeling
of storm surges. First we will establish what the form of the model equations for
both the single-layer and two-layer equations are that we will attempt to solve. This
includes the specification of the source terms and the storm forcing to be used. Second,
methods for including these source terms that were not addressed in earlier discussions
are laid out. Finally simulations of storm surges in idealized cases will be carried out
in both the single and two-layer cases.

7.1 Model Equations

The fundamental governing equations of the ocean involve the Navier-Stokes equa-
tions (4.1) from which both the single-layer and multi-layer equations were derived.
With this as our base, we must now prescribe the forcing terms particular to storm
surge calculations which include a specification of the storm including the wind and
pressure fields, a Coriolis term, bottom friction stresses, top surface wind stresses,
and atmospheric pressure forcing.

7.1.1 Source Terms

Bottom Friction

The forcing terms due to the bottom, τbx, τby, and b are all due to physics not directly
taken into account via the physics already considered. The bathymetry b affects the
momentum via a gradient and is assumed to be an input into the simulation and
possibly time varying. Theoretically one could also use a time dependent bathymetry
to model sediment transport. The bottom stresses τbx and τby are due to bottom
friction and are a function of the flow. There are many different ways to calculate the
friction but we will use a Manning’s-n law

τbx = hu
gn2

h7/3

√
u2 + v2

τby = hv
gn2

h7/3

√
u2 + v2
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where n is the Manning coefficient of roughness. For other similar flows, this friction
often is small in comparison to the actual momentum and is often neglected except in
shallow areas. For storm surge the friction is of the same order as the primary forcing
functions and as such needs to be taken into account for all depths.

Storm Forcing

The forcing terms on the surface PA, τsx, and τsy are due to the storm itself and are
functions of the location and strength of the storm. The pressure field PA is assumed
to be given and its gradient is the important quantity. Note that this implies that it
is only the deviation from the far field atmospheric pressure that is important in this
case. The relevant source terms we have already seen derived and take the form

−h∇PA(x, y, t).

The stresses at the top surface τsx and τsy are primarily due to wind stress from
the storm. The wind stress is calculated by the empirical formula

τsx = ρaircf (|W |)|W |W · x̂ and

τsy = ρaircf (|W |)|W |W · ŷ

where x̂ and ŷ are the unit vectors in the x and y directions, that assumes a value for
the wind W as being valid 10 meters above the surface of the ocean. The effective
momentum transfer is determined by an empirically defined coefficient cf calculated
as

cf = 10−3 ×


1.2 if |W | ≤ 11,

0.49 + 0.065 |W | if 11 < |W | ≤ 25, and

0.49 + 0.065 · 25 if 25 < |W |.
taken from [44].

Coriolis Effect

The Coriolis effect is the apparent force or motion of an object on the Earth due to
the Earth’s rotation. For many geophysical flows the Coriolis effect can be important
depending on the scales associated with the flow. The Rossby number, defined as

Ro ≡ U

Lf

1Another source of surface stress is due to wave stress from the wave action, but for this study
these effects are ignored.
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where U is a characteristic velocity, L is a characteristic length scale, and f the
Coriolis parameter, compares the inertial terms in the equations to the Coriolis terms
and can be a useful measure of how much impact we can expect the Coriolis terms to
have on the solution. If we ignore all other forces on the ocean, the effective equations
due to the Coriolis effect are

ut = fv and vt = −fu

where the Coriolis parameter is defined as

f = 2Ω sinφ

where Ω is the angular speed of the earth and φ the given latitude.

For storm surges, if we assume a characteristic velocity 1 < U < 5 m/s, a char-
acteristic length scale in the range 10 ≤ L ≤ 250 km and a Coriolis parameter at
φ = 30◦, the Rossby number will be in the range 0.05 ≤ Ro ≤ 7.0 (see figure 7.1)
which indicates that Coriolis may be an important component of the dynamics of the
flow. An alternative to this definition uses the fact that for much of the domain, the
wave involved act nearly linearly. In this case, the Rossby number defined as

Row =
ω

f
(7.1)

where ω is the wave frequency, may be more appropriate. For shallow water waves,
taking

ω =

√
g

h

implies that Row ≈ 800 assuming a h = 3000 m, g = 9.8m/s2, and φ = 30◦. This
is well outside the range where Coriolis should have an effect on the flow. This also

holds true for internal waves with the assumption that ω =
√

(1−r)g
h

with the same

values as before and r = 0.98. These two conflicting results lead to the conclusion
that for different aspects of the flow, Coriolis may or may not be important. Later
in this chapter we will see that Coriolis effects appear to have little impact on the
simulations which implied that the definition of the Rossby number in (7.1) may be
the correct one to use here.

7.1.2 Idealized Storm Model

The storm is modeled via an empirical formula for the pressure and wind profiles
derived by Holland in [29]. The profile for pressure is

PA = Pc + (Pn − Pc)e−A/r
B
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Figure 7.1: A plot of the Rossby number at different characteristic speeds versus
different length scales characterizing the size of the storm to the size of the domain.

where Pc is the central pressure, Pn is the ambient pressure, and A and B are scaling
parameters determined by the particular storm. The profile for the wind magnitude
is

|W | =
√
AB(Pn − Pc)e−A/rB

ρairrB
+
r2f 2

4
− rf

2

where the same parameters are present as in the pressure profile with the addition of
ρair which represents the density of air and the Coriolis parameter f . These profiles
are the assumed to be angularly symmetric for the pressure and wind magnitude.
The direction of the wind field is assumed to be along the θ̂ direction moving counter-
clockwise so that

W =
−|W |y
r

x̂+
|W |x
r

ŷ
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where the coordinates x and y are distances from the eye of the storm in the appropri-
ate directions and r =

√
x2 + y2. The storm is also assumed to move with constant

speed such that at any point in time, the storm’s location is given by

reye = Vstormt+ reye,0

where Vstorm is a velocity vector, t is the time and reye,0 is the position of the storm
at t = 0.
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Figure 7.2: Wind and pressure profiles of a storm whose center is located at x = 0
with parameters A = 23.0, B = 1.5, Pn = 1005 mb and Pc = 950 mb which are fits
for Hurricane Tracy from 1974.

7.1.3 Single-Layer Storm Surge Equations

From the single-layer equations we derived (4.3) and the addition of the Coriolis terms
and specification of the boundary stresses, the equations we will use to model storm
surges are

ht + (hu)x + (hv)y = 0,

(hu)t +

(
hu2 +

1

2
gh2

)
x

+ (huv)y = fhv − ghbx −
h

ρ
(PA)x +

1

ρ
τsx −

1

ρ
τbx, and

(hv)t + (huv)x +

(
hv2 +

1

2
hv2

)
y

= −fhu− ghby −
h

ρ
(PA)y +

1

ρ
τsy −

1

ρ
τby.

7.1.4 Two-Layer Storm Surge Equations

The two-layer equations we will use are based on (5.8) with the appropriate source
terms added. The source terms affect the appropriate layer depending on the location
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of the forcing source. For the wind stress, the top layer is only affected. The bottom
friction only effects the bottom layer when it is wet and otherwise is applied to the
top layer. The pressure gradient and Coriolis terms affect the entire water column
and they are applied to both layers.

(ρ1h1)t + (ρ1h1u1)x + (ρ1h1v1)y = 0,

(ρ1h1u1)t +

(
ρ1h1u

2
1 +

1

2
gρ1h

2
1

)
x

+ (ρ1h1u1v1)y = −gρ1h1(h2 + b)x + fρ1h1v1

− h1(PA)x + τsx + τbx,

(ρ1h1v1)t + (ρ1h1u1v1)x +

(
ρ1h1v

2
1 +

1

2
gρ1h

2
1

)
y

= −gρ1h1(h2 + b)y

− h1(PA)y − fρ1h1u1 + τwx + τbx,

(ρ2h2)t + (ρ2h2u2)x + (ρ2h2v2)x = 0,

(ρ2h2u2)t +

(
ρ2h2u

2
2 +

1

2
gρ2h

2
2 + gρ1h1h2

)
x

+ (ρ2h2u2v2)y = gρ1h1(h2)x − gρ2h2bx

− h2(PA)x + fρ2h2v2 + τbx, and

(ρ2h2v2)t + (ρ2h2u2v2)x +

(
ρ2h2v

2
2 +

1

2
gρ2h

2
2 + gρ1h1h2

)
y

= gρ1h1(h2)y − gρ2h2by

− h2(PA)y − fρ2h2u2 + τby.

7.2 Numerical Approaches

In order to include all of the source terms that were added beyond the original nu-
merical methods discussed earlier, we will employ an operator splitting method. This
allows us to separate out the pieces of the numerics that are being handled already in
the Riemann solver from the terms above. In the case of the single-layer equations,
the PDEs we need to solve for the source terms are

ht = 0

(hu)t = fhv − h

ρ
(PA)x +

1

ρ
τsx −

1

ρ
τbx and

(hv)t = −fhu− h

ρ
(PA)y +

1

ρ
τsy −

1

ρ
τby.
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For the two-layer equations the PDEs are

(ρ1h1)t = 0,

(ρ1h1u1)t = fρ1h1v1 − h1(PA)x + τsx + τbx,

(ρ1h1v1)t = −h1(PA)y − fρ1h1u1 + τwx + τbx,

(ρ2h2)t = 0,

(ρ2h2u2)t = −h2(PA)x + fρ2h2v2 + τbx, and

(ρ2h2v2)t = −h2(PA)y − fρ2h2u2 + τby.

Another approach is to include all of the source terms in the Riemann solver as we
have done for the bathymetry and the layer momentum transfer terms in the multi-
layer case. This would allow a more direct numerical computation of some of the
source terms and may be especially advantageous for the wind and bottom friction
as these source terms are physically expected to be of the same order.

Bottom Friction

For the bottom friction terms, τbx and τby take the form

τbx = Dhvτby = Dhv

in the single-layer case and are multiplied by the appropriate density in the multi-
layer case. The friction coefficient is defined as D = gn2

h7/3

√
u2 + v2. If we assume that

D can be evaluated using the current time tn’s states, we can exactly integrate the
equations and form the update

(hu)n+1
ij = (hu)nije

−Dnij∆t and

(hv)n+1
ij = (hv)nije

−Dnij∆t.

For the single-layer system, this update can be applied directly with

Dn
ij = n2g(hnij)

−7/3
√

(unij)
2 + (vnij)

2.

In the case of the multi-layer system, the update is evaluated such that

(h2u2)n+1
ij = (h2u2)nije

−Dnij∆t and

(h2v2)n+1
ij = (h2v2)nije

−Dnij∆t
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where now D is evaluated as

Dn
ij = n2g

(
2∑

m=1

hnm,ij

)−7/3√
(un2,ij)

2 + (vn2,ij)
2.

If the bottom layer becomes dry, the source term reverts back to the single layer case
source term.

Coriolis Effect

The first step in evaluating the Coriolis terms is to calculate the coefficient f . This
can be done by either using a β-plane approach which uses a Taylor-expansion of
the Coriolis term up to first order about a particular latitude, or evaluate the term
directly if the grid is in latitude-longitude coordinates. The β-plane approach uses a
tangent plane approximation to the earth so that a quadrilateral grid can be used by
converting the coordinate representing the north-south direction into radians via

θ =
yπ

20 000km

assuming that the half circumference of the earth is roughly 20,000 km. We then
evaluate

f = 2ω(sin θ0 + (θ − θ0) cos θ0)

for some ideal latitude θ0 and the y location on the grid. The second step is to find the
update to the conserved quantities. In the single layer case, this amounts to solving

wt = Afw (7.2)

where w = [u, v]t and

A =

[
0 1
−1 0

]
.

We can integrate this exactly and find the solution to the ODE (7.2) over a time
interval of length ∆t as

w = w0e
fA∆t

leaving us only to evaluate the matrix exponential. This can be done to any order
one wishes but for practical purposes we will only evaluate it to fourth order. The
two-layer equations use the exact same procedure to update each layer’s momentum.

Storm Forcing

The wind stress terms do not depend on the solution at all in the form given above and
are therefore straight forward to calculate. A more accurate wind friction coefficient
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should take into account the velocity of the water it is moving over the common
practice is to ignore that effect.

The pressure gradient terms are evaluated by taking the second order centered
difference of the pressure field PA such that

(PA)x =
[PA]i+1,j − [PA]i−1,j

2∆x
and (PA)y =

[PA]i,j+1 − [PA]i,j−1

2∆y
.

In any number of layers, the source term PDEs state that the depth does not change
in time during the source term evaluations which means that the pressure gradient
source term does not depend on the unknown function and similar to the wind stress
can be simply evaluated.

7.3 Storm Surge Simulation Results

A number of simulations using the numerical methods found in this and previous
chapters were used to simulate a number of idealized storm surge events. Each of
the simulations included wind, pressure, Coriolis, and friction source terms. For each
simulation a number of simulated tide gauges were also used located as shown in
figure 7.3. The bathymetry used has the cross section indicated in figure 7.3 where
the initial surfaces have been indicated as well. Each simulation shown also has been
run for 12 hours before t = 0 so that the hurricane forcing can be ramped up smoothly
to the maximum value. It was demonstrated recently for Hurricane Ike that a storms
direction relative to the continental shelf can have a large impact on surge height
[19]. In order to address the potential differences in surge behavior depending on
storm track, the storms in each of the simulations varied their direction and speed of
travel. Table 7.1 has a summary of all the simulation results including which figures
correspond to which event.

The single-layer test cases are using the AMR available in GeoClaw utilizing a
momentum based criteria in addition to the surface gradient condition used in Geo-
Claw. The storm is also refined around the eye of the storm. The coarse grid cells
have a resolution of ∆x = 10 km with a refinement factor of two between each level
(drawn as black rectangles in the single-layer figures). The two-layer cases are not
using AMR and have a resolution ∆x = 31/3 km.

It is clear from these simulations that there are significant differences between the
single-layer and two-layer simulations. As is expected, the top layer velocities are
much higher than in the single-layer case as the wind transfers the same amount of
momentum to smaller parcel of water. One consequence of this is that the momentum
imparted to the water is located in the upper part of the ocean and as the surge reaches
the continental shelf, a small amount of momentum can cause a large surge to form
and much of the momentum from the top-layer to be transmitted onto the continental
shelf (similar to what figure 5.9 shows). Another consequence of this is that the loss
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Velocity Direction Figures Gauge Figures
5.0 m/s 0◦ 7.4,7.5,7.6, 7.7 7.8
5.0 m/s 45◦ 7.9,7.10,7.11,7.12 7.13
5.0 m/s −45◦ 7.14,7.15,7.16,7.17 7.18
5.0 m/s 90◦ 7.19,7.20,7.21,7.22 7.23
5.0 m/s −90◦ 7.24,7.25,7.26,7.27 7.28
25.0 m/s 0◦ 7.29,7.30,7.31,7.32 7.33

Table 7.1: Simulations of storm surge results with various hurricane directions and
speeds.

of momentum due to friction, which in the single-layer case nearly negates the flux
of momentum due to the wind in deep water, is largely decoupled and has much less
of an effect on the velocities of the top layer. Finally, although we have neglected
wave-stress as a source, current storm surge models include source terms to account
for shorter wave-length waves. It is believed that these waves can have a significant
impact on overall surge height and capturing them is important for forecast accuracy.
As the two-layer model can better represent the two inputs to the wave-stress models
currently available, momentum and wave height, the two-layer model should provide
a better representation for the wave-stresses and consequently better storm surge
predictions.

The hurricane tracks also have an impact on both the single and two-layer simu-
lations. The direction of travel and the location of the simulated tidal gauges show
that the variation in storm track can be an important aspect to consider. This again
emphasizes the importance of a fast solver so that ensembles of hurricane tracks can
be taken into account for storm surge forecasting. The hurricane speeds also appear
to have a large impact on the form and severity of the storm surge. As was the case
with the storm moving at 25 m/s, momentum was not transferred to the top layer as
effectively and overall wave height and speed was reduced.
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Figure 7.3: The left figure marks the location of the simulated tide gauges as well as
the entirety of the domain. The right figure shows a cross section of the bathymetry
in the x-direction with the initial sea surfaces shown in relation to the bathymetry.
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Figure 7.4: Comparison at t = 0 of single and two-layer simulations with a hurricane
moving perpendicular to the shelf at 5 m/s. The top two figures show the single-layer
results of the sea surface on the left and the currents on the right. The bottom two
rows are from the two-layer simulation again with the values of the top and internal
surfaces on the left and the currents in the top and bottom layers on the right.
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Figure 7.5: Comparison at t = 10 hours of single and two-layer simulations with a
hurricane moving perpendicular to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.6: Comparison at t = 20 hours of single and two-layer simulations with a
hurricane moving perpendicular to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.



121

Figure 7.7: Comparison at t = 30 hours of single and two-layer simulations with a
hurricane moving perpendicular to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.8: Simulated tide gauge data for both the single and two-layer simulations
with a hurricane moving perpendicular to the shelf at 5 m/s. The blue line represents
the single-layer and the red line the two-layer results.
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Figure 7.9: Comparison at t = 0 of single and two-layer simulations with a hurricane
moving at a 45◦ angle to the shelf at 5 m/s. The top two figures show the single-layer
results of the sea surface on the left and the currents on the right. The bottom two
rows are from the two-layer simulation again with the values of the top and internal
surfaces on the left and the currents in the top and bottom layers on the right.
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Figure 7.10: Comparison at t = 10 hours of single and two-layer simulations with a
hurricane moving at a 45◦ angle to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.11: Comparison at t = 20 hours of single and two-layer simulations with a
hurricane moving at a 45◦ angle to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.12: Comparison at t = 30 hours of single and two-layer simulations with a
hurricane moving at a 45◦ angle to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.13: Simulated tide gauge data for both the single and two-layer simulations
with a hurricane moving at a 45◦ angle to the shelf at 5 m/s. The blue line represents
the single-layer and the red line the two-layer results.
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Figure 7.14: Comparison at t = 0 of single and two-layer simulations with a hurricane
moving at a −45◦ angle to the shelf at 5 m/s. The top two figures show the single-layer
results of the sea surface on the left and the currents on the right. The bottom two
rows are from the two-layer simulation again with the values of the top and internal
surfaces on the left and the currents in the top and bottom layers on the right.
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Figure 7.15: Comparison at t = 10 hours of single and two-layer simulations with a
hurricane moving at a −45◦ angle to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.16: Comparison at t = 20 hours of single and two-layer simulations with a
hurricane moving at a −45◦ angle to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.



131

Figure 7.17: Comparison at t = 30 hours of single and two-layer simulations with a
hurricane moving at a −45◦ angle to the shelf at 5 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.18: Simulated tide gauge data for both the single and two-layer simulations
with a hurricane moving at a −45◦ angle to the shelf at 5 m/s. The blue line represents
the single-layer and the red line the two-layer results.
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Figure 7.19: Comparison at t = 0 of single and two-layer simulations with a hurricane
moving parallel in a northerly direction to the shelf at 5 m/s. The top two figures
show the single-layer results of the sea surface on the left and the currents on the
right. The bottom two rows are from the two-layer simulation again with the values
of the top and internal surfaces on the left and the currents in the top and bottom
layers on the right.
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Figure 7.20: Comparison at t = 10 hours of single and two-layer simulations with a
hurricane moving parallel in a northerly direction to the shelf at 5 m/s. The top two
figures show the single-layer results of the sea surface on the left and the currents
on the right. The bottom two rows are from the two-layer simulation again with the
values of the top and internal surfaces on the left and the currents in the top and
bottom layers on the right.
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Figure 7.21: Comparison at t = 20 hours of single and two-layer simulations with a
hurricane moving parallel in a northerly direction to the shelf at 5 m/s. The top two
figures show the single-layer results of the sea surface on the left and the currents
on the right. The bottom two rows are from the two-layer simulation again with the
values of the top and internal surfaces on the left and the currents in the top and
bottom layers on the right. Note that at this point the single-layer simulation has
become unstable.
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Figure 7.22: Comparison at t = 30 hours of single and two-layer simulations with a
hurricane moving parallel in a northerly direction to the shelf at 5 m/s. The top two
figures show the single-layer results of the sea surface on the left and the currents
on the right. The bottom two rows are from the two-layer simulation again with the
values of the top and internal surfaces on the left and the currents in the top and
bottom layers on the right. Note that at this point the single-layer simulation has
become unstable.
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Figure 7.23: Simulated tide gauge data for both the single and two-layer simulations
with a hurricane moving parallel in a northerly direction to the shelf at 5 m/s. The
blue line represents the single-layer and the red line the two-layer results.
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Figure 7.24: Comparison at t = 0 of single and two-layer simulations with a hurricane
moving parallel in a southernly direction to the shelf at 5 m/s. The top two figures
show the single-layer results of the sea surface on the left and the currents on the
right. The bottom two rows are from the two-layer simulation again with the values
of the top and internal surfaces on the left and the currents in the top and bottom
layers on the right.
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Figure 7.25: Comparison at t = 10 hours of single and two-layer simulations with a
hurricane moving parallel in a southernly direction to the shelf at 5 m/s. The top
two figures show the single-layer results of the sea surface on the left and the currents
on the right. The bottom two rows are from the two-layer simulation again with the
values of the top and internal surfaces on the left and the currents in the top and
bottom layers on the right.
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Figure 7.26: Comparison at t = 20 hours of single and two-layer simulations with a
hurricane moving parallel in a southernly direction to the shelf at 5 m/s. The top
two figures show the single-layer results of the sea surface on the left and the currents
on the right. The bottom two rows are from the two-layer simulation again with the
values of the top and internal surfaces on the left and the currents in the top and
bottom layers on the right.
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Figure 7.27: Comparison at t = 30 hours of single and two-layer simulations with a
hurricane moving parallel in a southernly direction to the shelf at 5 m/s. The top
two figures show the single-layer results of the sea surface on the left and the currents
on the right. The bottom two rows are from the two-layer simulation again with the
values of the top and internal surfaces on the left and the currents in the top and
bottom layers on the right.
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Figure 7.28: Simulated tide gauge data for both the single and two-layer simulations
with a hurricane moving parallel in a southernly direction to the shelf at 5 m/s. The
blue line represents the single-layer and the red line the two-layer results.
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Figure 7.29: Comparison at t = 0 of single and two-layer simulations with a hurricane
moving perpendicular to the shelf at 25 m/s. The top two figures show the single-layer
results of the sea surface on the left and the currents on the right. The bottom two
rows are from the two-layer simulation again with the values of the top and internal
surfaces on the left and the currents in the top and bottom layers on the right.
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Figure 7.30: Comparison at t = 10 hours of single and two-layer simulations with a
hurricane moving perpendicular to the shelf at 25 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.31: Comparison at t = 20 hours of single and two-layer simulations with a
hurricane moving perpendicular to the shelf at 25 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.32: Comparison at t = 30 hours of single and two-layer simulations with a
hurricane moving perpendicular to the shelf at 25 m/s. The top two figures show the
single-layer results of the sea surface on the left and the currents on the right. The
bottom two rows are from the two-layer simulation again with the values of the top
and internal surfaces on the left and the currents in the top and bottom layers on the
right.
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Figure 7.33: Simulated tide gauge data for both the single and two-layer simulations
with a hurricane moving perpendicular to the shelf at 25 m/s. The blue line represents
the single-layer and the red line the two-layer results.
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Chapter 8

CONCLUSIONS AND FUTURE DIRECTIONS

The central goals of this thesis were to develop a numerical method for the multi-
layer shallow water equations and to study whether this approach could provide a
more suitable model for storm surge inundation relative to the more widely used
single-layer shallow water equations or a three dimensional simulation. To this end,
analysis was carried out on the essential properties of the multi-layer equations and
a family of numerical methods was developed to solve these problems. The storm
surge problem itself also required development of numerical approaches for including
the unique terms that arise from storm forcing. In this last chapter a summary of
the development of the methods and some final remarks on whether the multi-layer
shallow water equations may be a more suitable choice for storm surge inundation is
given along with directions for future work in this area.

8.1 Multi-Layer Analysis and Numerical Methods

In chapters 5 and 6 an understanding of the multi-layer shallow water equations
was developed and a numerical method for their solution was introduced and tested.
First the derivation of the one-dimensional two-layer equations was presented and the
appropriate approximations demonstrated. The primary goal of the rest of chapter 5
was to either compute the analytic solution to the Riemann problem or find some
suitable set of approximations that could be used in the numerical method. The
eigenvalue problem was explored and an explicit solution is possible but was found
too unwieldy to use directly in further analysis. Approximations to the eigenvalues
were therefore introduced and their properties were explored. The solution to the
general Riemann problem was then discussed and a system of non-linear equations
derived that determines the intermediate states of the Riemann solution and the type
of waves in each family. Finally the dry-state wall and inundation problems were
considered and solved using the approximations found earlier for the eigenvalues.

A finite volume F-wave propagation method was constructed and tested in chap-
ter 6. Since the goal at the outset was to construct a solver that would be robust
and efficient, the approximate eigensolvers were evaluated for accuracy and speed in
the regimes of interest. Particular care was taken to capture and preserve dry states
in both the wall and inundation cases. This primarily involved careful evaluation
of the flux and source functions and insuring that steady-states were preserved. A
two-dimensional un-split solver was also introduced and all of the properties of the



149

solver enforced from the one-dimensional case. Finally a number of tests were used
to demonstrate the robustness and efficacy of the solvers. All of this was carried out
in the GeoClaw framework so that the bathymetry handling, inundation algorithms,
and adaptive mesh refinement capabilities could be utilized. In the case of the top
layer becoming dry, the solver already implemented and tested in GeoClaw could be
used.

The goal at the outset of this thesis was to construct and evaluate a multi-
layer shallow water solver for storm surges. This requires the handling of complex
bathymetry, inundation at the coastline, the resolution of multiple scales, fast and
efficient solvers for ensemble prediction capabilities, and the correct representation
of storm surge physics. Incorporating the solvers developed in this work into the
GeoClaw framework has allowed me to leverage GeoClaw’s ability to handle complex
bathymetry and inundation. Multiple scale resolution will be handled by utilizing
adaptive mesh refinement built into the GeoClaw framework, but was not used in the
simulations presented due to incompatibilities currently in GeoClaw (see section 8.3
for further discussion). The speed and efficiency have not been explored extensively
but preliminary results suggest that two-layer simulations are approximately 30%
slower than the single-layer case. This is much faster than a comparable three dimen-
sional solver with similar horizontal resolution. The representation of storm surge
physics primarily involves the implementation of each of the primary forcing mecha-
nisms. For both the single and two-layer cases, this was discussed in chapter 7. The
final question of the suitability of the two-layer versus one-layer models is addressed
in the next section.

8.2 Suitability of Multi-Layer Storm Surge Models

In order to judge the efficacy of each model’s representation of a storm surge, a se-
ries of idealized simulations were carried varying the hurricane’s track. The primary
advantage the two-layer equations have over the single-layer representation is its in-
creased vertical representation of the water column. The evidence given in chapter 7
shows that the single and two-layer simulations are consistently different and the two-
layer simulations predict higher surge levels. This alone would suggest that pursuing
two-layer simulations further is worth while. Moreover, from ocean observations we
also expect that the two-layer model is a better representation of the ocean, especially
with strong wind forcing at the top of the water column. The decrease in compu-
tational speed over the single-layer case is small compared to the speed of a three
dimensional solver, which would be too slow for the ensemble simulations that are
required for operational storm surge prediction. It is clear that the multi-layer equa-
tions provide a possible avenue for increased physics while not appreciably increasing
the computational overhead. The next step in evaluating the multi-layer equations
will be to take the numerical methods presented and attempt to model realistic storm
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surge and compare the single-layer, multi-layer and three dimensional equations and
determine whether the multi-layer shallow water equations provide a good balance
between model efficiency and a more robust physical representation of the system.

8.3 Future Directions

There are multiple future directions in which this work can be taken. The most
immediate need is to correct the incompatibilities in the GeoClaw framework with
respect to the adaptive mesh refinement algorithms. This incompatibility is a result
of incorrect assumptions in the interpolation and extrapolation routines used to both
refine and coarsen grids. An extension has already been formulated and needs to be
implemented and tested.

Another avenue of future work is the further study of the inundation dry state
problem, in particular the entropy violation that is present in the method presented
in this thesis. Solutions may involve modifying the fluxes appropriately to allow a
higher flux through the point of inundation.

The eigenvalue problem presented was addressed by the use of an approximation
to the original eigensystem. Although comparing the eigenvalues of the linearized
method to the LAPACK solver reveals little difference, there are multiple ways to
increase the accuracy of both of these solvers via an iterative approach.

In order to truly model the mixed layer underneath a storm storm such as a hurri-
cane or typhoon, vertical mixing must be taken into account. In the method presented
this mixing is not allowed. This mixing takes two forms, one is density mixing and
the other is momentum mixing or transfer. Multiple methods for transferring density
and momentum between layers exist and the most appropriate one needs to be imple-
mented and evaluated in the context presented. In particular, the loss of hyperbolicity
would be less of a concern if momentum is allowed to transfer between layers.

Finally, as mentioned in section 8.2, running more realistic storm surge simula-
tions with more complex bathymetry and hurricanes will be necessary to make the
final evaluation on the suitability of these equations for modeling storm surge. Com-
parisons between three dimensional ocean models and the multi-layer shallow water
equations will also be needed, and careful comparisons of the speed of each approach
will be required.
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Appendix A

DERIVATION OF SINGLE LAYER DEPTH AVERAGED
MODELS

In this appendix I will discuss the process and assumptions that produce a depth
averaged model and discuss if these approximations are valid in the cases of interest.
The hydrostatic assumption is of particular interest here as it is often unclear as to its
validity in many contexts of interest. If the hydrostatic assumption is not not valid I
will also show some extensions that may increase their range of applicability.

In order to simplify the discussion, a simplified version of the Navier-Stokes equa-
tions (4.1) will be considered, namely the two dimensional version of the same equa-
tions with simplified boundary conditions written as

ux + wz = 0,

ut + (u2)x + (uw)z = −1

ρ
Px, and

wt + (uw)x + (w2)z = −1

ρ
Pz − g.

(A.1)

The full three dimensional derivation is discussed in section 4.1.

A.0.1 Non-Dimensionalization and Scaling

We first define a set of non-dimensional parameters based on the characteristic length
scales of the problem, namely the horizontal length scale λ and the vertical length
scale a. We also define a set of non-dimensional quantities

x

λ
= x̃

z

a
= z̃

t

T
= t̃

as well as the physical quantities

u

U
= ũ

w

W
= w̃

P

P0

= P̃ .

With these in hand, we now define a set of scaling parameters whose meaning we will
interpret as they come into the equations:

ε =
a

λ
U =

√
ga W = εU T =

λ

U
.
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The quantity ε is the traditional definition for the shallow water scaling parameter and
its magnitude will be the primary determining factor on which our approximations
will rest. Note also that the scalings for the velocities and time are based on the
surface gravity wave speeds determined by the characteristic depth.

Applying these scalings to the incompressibility condition (4.2) leads to

ux + wz = 0⇒
U

λ
ũx̃ +

W

a
w̃z̃ = 0⇒

ũx̃ +
εUλ

aU
w̃z̃ = 0⇒

ũx̃ + w̃z̃ = 0 (A.2)

The fact that all of these terms are of the same order is purposeful as they were
partially chosen so as to keep all the terms in the incompressibility condition of
the same order. Applying the scalings to the horizontal velocity component of the
momentum from (A.1) we obtain

ut + (u2)x + (uw)z = −1

ρ
Px ⇒

U

T
ũt̃ +

U2

λ
(ũ2)x̃ +

UW

a
(ũw̃)z̃ = −P0

ρλ
P̃x̃ ⇒

ũt̃ +
UT

λ
(ũ2)x̃ +

TW

a
(ũw̃)z̃ = −TP0

ρλU
P̃x̃ ⇒

ũt̃ + (ũ2)x̃ + (ũw̃)z̃ = − P0

ρU2
P̃x̃

By assuming again that all terms in these equations are of the same order, we are
forced to choose P0 such that P0

ρU2 = 1 and the equation becomes

ũt̃ + (ũ2)x̃ + (ũw̃)z̃ = −P̃x̃ (A.3)

Finally, inserting the scalings into the vertical momentum equation from (A.1)
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leads to

wt + (uw)x + (w2)z = −1

ρ
Pz − g ⇒

W

T
w̃t̃ +

UW

λ
(ũw̃)x̃ +

W 2

a
(w̃2)z̃ = −P0

ρa
P̃z̃ − g ⇒

w̃t̃ +
UT

λ
(ũw̃)x̃ +

WT

a
(w̃2)z̃ = − T

W

(
P0

ρa
P̃z̃ + g

)
⇒

w̃t̃ + (ũw̃)x̃ + (w̃2)z̃ = − λ

εU2

(
P0

ρa
P̃z̃ + g

)
⇒

w̃t̃ + (ũw̃)x̃ + (w̃2)z̃ = − 1

gε2

(
gP̃z̃ + g

)
⇒

ε2
(
w̃t̃ + (ũw̃)x̃ + (w̃2)z̃

)
= −P̃z̃ − g (A.4)

Performing the same operations on the boundary conditions requires the intro-
duction of two additional non-dimensional quantities, η/a = η̃ and b/a = b̃. Inserting
these into the boundary conditions leads us to the conclusion that all terms in the
boundary conditions are of the same order and leads to a mirrored non-dimensional
version of the original boundary conditions.

The final, non-dimensionalized system is

ux + wz = 0

ut + (u2)x + (uw)z = −Px
ε2
(
wt + (uw)x + (w2)z

)
= −Pz − 1

with boundary conditions in the simplest case

ε
λ

δ
w = ηt + uηx P = P ′a z = η

ε
λ

β
w = ubx z = b

where P ′a it the appropriately scaled atmospheric pressure condition and we have
dropped the ·̃ notation.

A.0.2 Depth Integration

We now turn to the primary operation required to reduce the dimensionality of the
original system, integrating from the surface η to the bottom b. First integrating the
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scaled incompressibility equation (A.2) leads to∫ η

b

(ux + wz) dz = 0⇒

∂

∂x

∫ η

b

udz − uηx|z=η + ubx|z=b + w|z=η − w|z=b = 0⇒

∂

∂x

∫ η

b

udz + [w − uηx]z=η + [ubx − w]z=b = 0⇒

∂

∂x

∫ η

b

udz + ηt = 0⇒

ht +
∂

∂x

∫ η

b

udz = 0.

In order to simplify the discussion of the non-hydrostatic pressure, we will intro-
duce a form of the pressure that explicitly takes account of the hydrostatic contribu-
tion to the pressure along with the boundary condition

P (x, z, t) = PA(x, t) + (η(x, t)− z) + p(x, z, t), (A.5)

where now p(x, z, t) represents the non-hydrostatic contribution to the pressure. This
form assumes that the density does not vary with depth as well.

Now integrating the scaled horizontal momentum equation (A.3) leads to∫ η

b

(
ut + (u2)x + (uw)z

)
dz = −

∫ η

b

(Pa + (η − z) + p)xdz ⇒

∂

∂t

∫ η

b

udz − ηtu|z=η +
∂

∂x

∫ η

b

u2dz − ηxu2|z=η + bxu
2|z=b + uw|z=η − uw|z=b = −

∫ η

b

(η + p)xdz ⇒

∂

∂t

∫ η

b

udz +
∂

∂x

∫ η

b

u2dz − [u(ηt + ηxu− w)]z=η + [u(bxu− w)]z=b

= − ∂

∂x

∫ η

b

(η + p)dz + ηxη − bx(η + p|z=b)⇒

∂

∂t

∫ η

b

udz +
∂

∂x

∫ η

b

u2dz =
∂

∂x

[
−ηh−

∫ η

b

pdz +
1

2
η2

]
− bx(η + p|z=b)⇒

∂

∂t

∫ η

b

udz +
∂

∂x

∫ η

b

u2dz =
∂

∂x

[
−
∫ η

b

pdz − h2 + hb+
1

2
(h2 + 2hb+ b2)

]
− bx(h+ b+ p|z=b)⇒

∂

∂t

∫ η

b

udz +
∂

∂x

∫ η

b

u2dz =
∂

∂x

[
−
∫ η

b

pdz − 1

2
h2

]
− bx(h+ p|z=b)⇒

∂

∂t

∫ η

b

udz +
∂

∂x

(∫ η

b

u2dz +

∫ η

b

pdz +
1

2
h2

)
= −bx(h+ p|z=b).
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Doing the same for the scaled vertical momentum equation (A.4) gives

ε2
∫ η

b

(
wt + (uw)x + (w2)z

)
dz = −

∫ η

b

(Pa + (η − z) + p)z + 1) dz ⇒

ε2
(
∂

∂t

∫ η

b

wdz − ηtw|z=η +
∂

∂x

∫ η

b

uwdz − ηxuw|z=η + bxuw|z=b + w2|z=η − w2|z=b
)

= −
∫ η

b

(−1 + pz + 1) dz ⇒

ε2
(
∂

∂t

∫ η

b

wdz +
∂

∂x

∫ η

b

uwdz − [w(ηt + uηx − w)]z=η + [w(ubx − w)]z=b

)
= p|z=b ⇒

ε2
(
∂

∂t

∫ η

b

wdz +
∂

∂x

∫ η

b

uwdz

)
= p|z=b.

The depth averaged equations we now have are

ht +
∂

∂x

∫ η

b

udz = 0

∂

∂t

∫ η

b

udz +
∂

∂x

(∫ η

b

u2dz +

∫ η

b

pdz +
1

2
h2

)
= −bx(h+ p|z=b)

ε2
(
∂

∂t

∫ η

b

wdz +
∂

∂x

∫ η

b

uwdz

)
= p|z=b.

Note that we have come to these by utilizing the boundary conditions which were
also scaled, so the resulting equations are dependent on those scalings. Last, we can
simplify notation by defining

u =
1

h

∫ η

b

udz, w =
1

h

∫ η

b

wdz,

u2 =
1

h

∫ η

b

u2dz, w2 =
1

h

∫ η

b

w2dz,

p =
1

h

∫ η

b

pdx, and uw =
1

h

∫ η

b

uwdz

as the depth averages of the specified quantities. This leads to the final one dimen-
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sional, depth averaged equations as

∂

∂t
h+

∂

∂x
(hu) = 0 (A.6)

∂

∂t
(hu) +

∂

∂x

(
hu2 + hp+

1

2
h2

)
= −(h+ p|z=b)

∂b

∂x
(A.7)

ε2
(
∂

∂t
(hw) +

∂

∂x
(uw)

)
= p|z=b. (A.8)

One last equation for the pressure will be useful as it will provide a means to cal-
culate p depending on the approximations we will make in the next section. Consider
again (A.4) and integrate from η to a vertical level b+ αh where α ∈ [0, 1]. Then we
can write

ε2
∫ η

b+αh

(
wt + (uw)x + (w2)z

)
dz = −

∫ η

b+αh

pzdz ⇒

ε2
{
∂

∂t

∫ η

b+αh

wdz − wηt|z=η + wαηt|z=b+αh +
∂

∂x

∫ η

b+αh

uwdz − uwηx|z=η

+ uw(b+ αh)x|z=b+αh + w2|z=η − w2|z=b+αh
}

= p|z=b+αh ⇒

ε2
{
∂

∂t

∫ η

b+αh

wdz +
∂

∂x

∫ η

b+αh

uwdz − [w(ηt + uηx − w)]z=η + [w(αηt + u(b+ αh)x − w)]z=b+αh

}
= p|z=b+αh ⇒

ε2
{
∂

∂t

∫ η

b+αh

wdz +
∂

∂x

∫ η

b+αh

uwdz + {w[α(ηt + uηx) + (1 + α)ubx − w]}|z=b+αh
}

= p|z=b+αh.

In order to find the expression for p we then need to take the integral over α ∈ [0, 1],

p =
ε2

h

∫ 1

0

{
∂

∂t

∫ η

b+αh

wdz +
∂

∂x

∫ η

b+αh

uwdz + {w[α(ηt + uηx) + (1 + α)ubx − w]}|z=b+αh
}
dα

=
ε2

h

{
∂

∂t

∫ 1

0

∫ η

b+αh

wdzdα +
∂

∂x

∫ 1

0

∫ η

b+αh

uwdzdα

+

∫ 1

0

{w[α(ηt + uηx) + (1 + α)ubx − w]}|z=b+αh dα
}
. (A.9)

A.0.3 Approximations

No Vertical Variation

If it is assumed that neither u or w vary in the depth, the consequence is that all the
average quantities · become identical to the functions they represent. First we must
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evaluate p as

p =
ε2

h

{
∂

∂t

(
w

∫ 1

0

∫ η

b+αh

dzdα

)
+

∂

∂x

(
uw

∫ 1

0

∫ η

b+αh

dzdα

)}
=
ε2

2h
{(hw)t + (huw)x}

=
1

2h
p|z=b.

The governing equations then become

ht + (hu)x = 0

(hu)t +

(
hu2 +

1

2
p+

1

2
h2

)
x

= −(h+ p)bx

ε2 ((hw)t + (huw)x) = p,

where we have now dropped the evaluation notation on p.

Shallow Water Equations

The shallow water equations are now easily obtained by assuming ε � 1, thereby
decoupling any affects the vertical acceleration may have on the bulk flow and the
non-hydrostatic pressure is consequently negligible. These are then

ht + (hu)x = 0, and

(hu)t +

(
hu2 +

1

2
h2

)
x

= −hbx.
(A.10)

Non-Hydrostatic Modified Equations

If it is not assumed that ε � 1 then we are left with a system of three equations
with p appearing in the horizontal momentum flux and the source terms. A modified
version of the equations isolates the pressure and produces a balance law involving
the pressure so that it can be used directly

ht + (hu)x = 0,

(hu)t +

(
hu2 +

1

2
p+

1

2
h2

)
x

= −(h+ p)bx, and

ε2 ((p)t + (up)x) = ϕ.

If we can evolve the third equation effectively with ϕ being modeled correctly, a
Riemann solver can be constructed that evolves the system. The problem then turns
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to how to calculate ϕ as a source term for non-hydrostatic pressure.

Linear Vertical Variation in the Vertical Velocity

Assume now that w varies in the vertical direction linearly. Via (A.2) we know
wz = −ux which allows us to make the following ansatz for the form of w,

w = w(x, t)− uxz.

Integrating the quantities in the average pressure equation (A.9) we find∫ 1

0

∫ η

b+αh

wdzdα =

∫ 1

0

∫ η

b+αh

(w − uxz)dzdα =

∫ 1

0

[
wz − 1

2
uxz

2

]η
b+αh

dα

=

∫ 1

0

[
(wh+ uxhb)(1− α) +

1

2
uxh

2(1− α2)

]
dα

=

∫ 1

0

[
hw + uxhb+

1

2
uxh

2 − (wh+ uxhb)α−
1

2
uxh

2α2

]
dα

=

[
(hw + uxhb+

1

2
uxh

2)α− 1

2
(wh+ uxhb)α

2 − 1

6
uxh

2α3

]1

0

=
1

2
hw +

1

2
uxhb+

1

3
uxh

2

and∫ 1

0

∫ η

b+αh

uwdzdα = u

∫ 1

0

∫ η

b+αh

(w − uxz)dzdα =
1

2
huw +

1

4
(u2)xhb+

1

6
(u2)xh

2
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for the integrals involving w and u directly. For the boundary terms, we have the
expression∫ 1

0

[w(α(ηt + uηx) + (1 + α)ubx − w)]z=b+αh dα =

∫ 1

0

[
(−w2 + uwbx + 2wuxb− (ux)

2b2 − 1

2
((ub)2)x)

+ α(−w2 + 3uxwh+ 2wbux + wubx − 2hb(ux)
2 − 1

2
((ub)2)x − (bux)

2 − hb(ux)2 − 1

2
h(u2)xbx)

+α2(uxhw − 2(uxh)2 − uxh(ub)x)
]
dα

= (−w2 + uwbx + 2wuxb− (ux)
2b2 − 1

2
((ub)2)x)

+
1

2
(−w2 + 3uxwh+ 2wbux + wubx − 2hb(ux)

2 − 1

2
((ub)2)x − (bux)

2 − hb(ux)2 − 1

2
h(u2)xbx)

+
1

3
(uxhw − 2(uxh)2 − uxh(ub)x)

= −3

2
w2 +

3

2
uwbx + 3bwux −

3

2
b2(ux)

2 − 3

4
((ub)2)x +

11

6
hwux −

3

2
hb(ux)

2 − 1

4
h(bu2)x

− 2

3
(hux)

2 − 1

3
hbx(ux)

2.

Now turning back to the expression for the depth integrated pressure (A.9), we
have

p =
ε2

h

{
∂

∂t

∫ 1

0

∫ η

b+αh

wdzdα +
∂

∂x

∫ 1

0

∫ η

b+αh

uwdzdα +

∫ 1

0

{w[α(ηt + uηx) + (1 + α)ubx − w]}|z=b+αh dα
}

=
ε2

h

{
∂

∂t

(
1

2
hw +

1

2
uxhb+

1

3
uxh

2

)
+

∂

∂x

(
1

2
huw +

1

4
(u2)xhb+

1

6
(u2)xh

2

)
− 3

2
w2 +

3

2
uwbx + 3bwux −

3

2
b2(ux)

2 − 3

4
((ub)2)x +

11

6
hwux

−3

2
hb(ux)

2 − 1

4
h(bu2)x −

2

3
(hux)

2 − 1

3
hbx(ux)

2

}
.

Turning back to the equations at hand, we must calculate the depth averaged
quantities,

w =
1

h

∫ η

b

w(x, t)− u(x, t)xzdz =
1

h

[
wz − 1

2
uxz

2

]η
b

=
1

h

[
wz − 1

2
uxz

2

]η
b

=
1

h

[
wh− 1

2
ux(h

2 + 2hb)

]
= w − ux

(
1

2
h+ b

)
.
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We can then finally write down the governing equations in this case as

ht + (hu)x = 0,

(hu)t +

(
hu2 +

1

2
h2 + hp

)
x

= −bx(h+ p|z=b), and

(hw)t + (huw)x −
[(
hux

(
1

2
h+ b

))
t

+

(
huux

(
1

2
h+ b

))
x

]
= p|z=b,

where we have omitted the expression calculated for p for clarity.
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