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The discovery that the magnetorotational instability (MRI) is likely the mechanism of angu-

lar momentum transport and accretion has led to rapid progress in the theory of black hole

accretion. General relativistic MHD (GRMHD) simulations currently provide the most

realistic physical description of black hole accretion flows, but neglect radiation and are

currently only applicable to low luminosity systems, where the radiation can be added in

post-processing. To connect simulations with observations, we have developed codes for the

semi-analytic computation of Kerr photon orbits (geokerr) and for the calculation of time-

dependent, general relativistic radiative transfer via ray tracing (grtrans). The Galactic

center black hole candidate, Sgr A*, provides an ideal first problem for study using GRMHD

and these radiative transfer methods. Recent very long baseline interferometry (VLBI) ob-

servations detected the structure of its accretion flow on event horizon scales, allowing a

direct comparison between accretion disk theory and observation. We compare millimeter

wavelength images and light curves from a set of three-dimensional GRMHD simulations

to VLBI and spectral observations of Sgr A* using general relativistic radiative transfer.

The GRMHD models provide an excellent fit to current observations. Magnetic turbulence

driven by the MRI naturally explains the observed millimeter variability. Fitting models

to observations allows estimates of the inclination and position angles of the black hole,

as well as of the median electron temperature in the millimeter emission region and the





accretion rate onto the black hole. The black hole shadow, a signature of the event horizon,

is unobscured in all models and may be detectable with VLBI experiments in the next 5-10

years. We also consider “tilted” accretion disk models, where the angular momentum axis

of the accretion flow is misaligned from the black hole spin axis. The additional degree of

freedom in these models allows a wide range of viable possibilities for Sgr A*. Additional

observations both of visibility amplitudes and closure phases will constrain the models fur-

ther. We also study generic observational consequences of tilt in black hole accretion disks,

and find that the radiation edge of these systems is independent of black hole spin; in stark

contrast to the untilted disks where it decreases with increasing spin, roughly tracking the

marginally stable orbit. Line profiles based on gravitational redshifts and Doppler shifts of

these simulations vary strongly with observer azimuth. Coupled with precession, this may

lead to strongly time-varying emission lines from tilted, geometrically thick disks. Finally,

radiative models of M87 are constructed in a similar fashion to Sgr A*. The M87 spectrum

can be fit by either a jet or a jet/disk model. The geometry in M87 can be reasonably con-

strained by observations of the extended jet emission, and the resulting millimeter images

are fairly robust despite considerable model uncertainties. The Gaussian FWHM inferred

from mm-VLBI on current telescopes should be 36-41 µas. Jet images are more compact

than disk images, and in either case the shadow in M87 should be accessible to future VLBI

observations.





TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Astrophysical Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Millimeter Very Long Baseline Interferometry . . . . . . . . . . . . . . . . . . 3
1.3 Black Hole Accretion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Relativistic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Tilted Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 The MRI and GRMHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Summary Of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 2: Ray Tracing and Relativistic Radiation Transport . . . . . . . . . . . . 19
2.1 Transport Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Backwards Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Examples and Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 GRTrans: Relativistic Radiative Transfer via Ray Tracing . . . . . . . . . . . 36

Chapter 3: Observational Properties of Tilted Black Hole Accretion Disks . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Physical Cause of Disk Truncation . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4: Radiative Models of Sagittarius A*: Model Fitting and Parameter
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

i



4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Fitting Models to Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Tilted Disk Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 5: Radiative Models of Sagittarius A*: Properties of Best Fit Models . . 90
5.1 Image Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Prospects for Future Observations . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Variability and Millimeter Flares . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Emission Region Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 6: Radiative Models of M87 . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 M87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Radiative Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Fiducial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4 Image Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 7: Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . 141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix A: geokerr: Fast and Accurate Photon Orbits in Kerr Spacetime . . . . . 162
A.1 Geodesic Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2 Reduction to Carlson Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.3 Solution for uf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.4 Code checks and speed tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Appendix B: General Relativistic Polarized Radiative Transfer . . . . . . . . . . . . 184
B.1 Parallel Transport of the Polarization Basis . . . . . . . . . . . . . . . . . . . 185
B.2 Transformation to the Orthonormal Fluid Frame . . . . . . . . . . . . . . . . 186
B.3 Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

ii



Appendix C: Polarized Synchrotron Emission and Absorption Coefficients for Ther-
mal and Power Law Particle Distributions . . . . . . . . . . . . . . . . 189

C.1 Ultrarelativistic Thermal Distribution . . . . . . . . . . . . . . . . . . . . . . 190
C.2 Power Law Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

iii



LIST OF FIGURES

Figure Number Page

1.1 Azimuthally-averaged structure of a single timestep from a GRMHD simula-
tion of a black hole accretion flow [129] shown in the logarithm of the fluid
mass density (colors increasing from black to blue to green to red with a
dynamic range of ! 105) and in the asymptotic Lorentz factor (white con-
tours denoting intervals of 0.1 increasing outward from 1.1). The disk body,
centered on the equatorial plane, contains the bulk of the mass which ac-
cretes onto the black hole inside of the pressure maximum of the initial torus
(r = 12M in this case). The magnetic field is sub-equipartition in the disk
body, but is stronger in the tenuous corona surrounding the disk and domi-
nant in the polar jet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Image of a near extreme (a = 0.998) Kerr black hole viewed from the equato-
rial plane. Images intensities are taken to be the affine parameter evaluated
upon termination at the black hole or after returning to the starting radius.
Intensities are scaled linearly from the minimum value outside the shadow to
the maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Projection of a uniform Cartesian grid in the image plane to the equatorial
plane of the black hole for µ0 = 1 (top) and µ0 = 0.5 (bottom). Black hole
spin is a = 0 (left) and a = 0.95 (right), and the area inside the horizon is
removed from each image. Compare to Fig. 2 of Schnittman & Bertschinger
(2004) [171]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Image of an optically thick standard relativistic accretion disk around a near
extremal black hole (a=0.998). The disk has outer radius rout = 18, and the
observer’s inclination is 85◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Normalized spectra of line emission from a thin accretion disk at an incli-
nation of 30◦ for various black hole spins. The emissivity is taken to be
proportional to u2

f between the marginally stable orbit and Rout = 15. Com-
pare to Schnittman & Bertschinger (2004) Figure 3 [171]. . . . . . . . . . . . 25

2.5 Spectrogram of a circular hot spot of radius Rspot = 0.5 at the marginally
stable orbit of a Schwarzschild black hole. The observer is inclined at θ0 =
60◦. Compare to Figure 4 of Schnittman & Bertschinger (2004) [171]. . . . . 27

iv



2.6 Light curves of the hot spot described in Figure 2.5 for various inclination
angles. Intensities are normalized individually to the integrated intensity
over each orbit and scaled to the maximum intensity from all inclinations.
Compare to Figure 6 of Schnittman & Bertschinger (2004) [171]. . . . . . . . 28

2.7 The spectrum of synchrotron radiation from optically thin spherical accretion
onto a stellar mass black hole. The solid line is the ray tracing result, and
the plotted points are the analytic results. The two curves agree to within
5% at low frequencies, where the radiation originates at larger radii and the
bending of light should be unimportant. . . . . . . . . . . . . . . . . . . . . . 29

2.8 Spectrum of synchrotron radiation from spherical accretion onto a stellar
mass black hole. The solid line is the ray tracing result including absorption.
The spectrum is heavily attenuated at ν0 ! 1011 Hz, and in this region follows
the optically thick approximation of thermal emission from the τ = 1 surface.
The spectrum agrees well with the emission only model for ν0 " 1012 Hz . . . 30

2.9 Image of a spherically accreting Schwarzschild black hole at ν = 1012 Hz as
a contour plot and a 1-d profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Sample plots of the intensity integrand (left panel), optical depth (middle
panel) and cumulative intensity (right panel) along a ray for the case where
the accretion flow is optically thin, defined as maximum optical depth ! 3. . 35

2.11 As in Figure 2.10, but for the optically thick case where the first point sampled
has an optical depth " 10 The solid points are from the initial sampling, while
the open diamonds are from refining the region near the photosphere (τ ∼ 1). 37

2.12 As in Figures 2.10 and 2.11, but for the marginally optically thick case where
the first point sampled has an optical depth ! 10 but the total optical depth
" 3. The solid points are from the initial sampling, while the open diamonds
are from refining the region where the cumulative intensity changes rapidly. . 40

2.13 Fractional difference in intensity versus sampling used relative to our fidu-
cial sampling of ! 400 points per ray. The differences found by averaging
many random re-samplings of the fiducial data. Convergence to within a few
percent is obtained when the rate reaches ! 0.5 (! 200 points per ray). . . . 42

2.14 Emissivity jν along a ray found by interpolating geodesic coordinates, finding
new fluid variables and re-calculating the emissivity (solid line) compared
to directly interpolating the logarithm of the emission coefficients from the
original ray (open diamonds). While we use the former method, in practice
the latter would likely be sufficiently accurate. . . . . . . . . . . . . . . . . . 42

v



2.15 Sample image of Sgr A* with 300x300 resolution (left panel), 150x150 reso-
lution (middle panel, re-sampled to 300x300) and the difference between the
two (right panel). The largest residuals are ! 10% of the maximum image
intensities. Although minor features are poorly resolved in the 150x150 im-
age, the integrated image intensities agree to within ! 0.01%. The images
are taken from the MBD simulation (see Section 4.3), and the parameters
are ν0 = 230GHz, i = 50◦ and Ti/Te = 3. . . . . . . . . . . . . . . . . . . . . . 43

3.1 Sample images of the thermal emission model for the 90h (left) and 915h
(right) simulations at 60◦ inclination. The observed photon energy is E0 =
10keV for a 10M" black hole, and each panel is 54M across. The color scale
is linear, increasing from blue to red to yellow to white. . . . . . . . . . . . . 47

3.2 Comparison of relative intensities for all simulations using the thin line emis-
sivity. The flux from grids of images over observer time, inclination and
azimuth for each simulation have been averaged to create these curves. . . . . 50

3.3 Radiation edge as a function of spin for untilted (open) and tilted (solid)
simulations for the thin line emissivity. The error bars show the one stan-
dard deviation time variability in the radiation edge, averaged over other
parameters. The solid line is the marginally stable orbit. . . . . . . . . . . . . 50

3.4 Comparison of relative intensities for all simulations using the thermal emis-
sivity at E0 = 1 keV. The flux from grids of images over observer time,
inclination and azimuth for each simulation have been averaged to create
these curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Radiation edge as a function of spin for untilted (open) and tilted (solid)
simulations for the thermal emissivity at E0 = 1keV. The error bars show
the one standard deviation time variability in the radiation edge, averaged
over other parameters. The solid line is the marginally stable orbit. . . . . . . 51

3.6 Emission line profiles for simulations with a=0.9. The emissivity is j ∝ ρr−3

and the observer inclination is 60◦ in all cases. The dotted lines show the 1σ
range, taken from the time variability. . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Minimum line energy vs. spin for all simulations. The tilted (untilted) sim-
ulations are denoted by solid (open) circles, and four observer azimuths are
plotted for the tilted simulations. The open diamonds are from a thin disk
in the equatorial plane with an emissivity j ∝ r−3 similar to that used in
Schnittman & Bertschinger (2004) [171] and in Section 2.4.2. The minimum
line energy is defined as the lowest energy contained in the set of intensities
comprising 99% of the total line intensity. The 1σ errors are taken from the
time variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 As in Figure 3.7, but for the maximum line energy. . . . . . . . . . . . . . . . 54

vi



3.9 Sample light curve and linear fit (left), light curve with linear fit subtracted
(middle) and power spectrum (right). The units are scaled to a 10 solar mass
black hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Median power spectra for i = 30◦, 60◦, 90◦ from the 90h and 915h simulations.
The errors are estimated from the standard deviations of the set of power
spectra at observed photon energies of 1, 3, 10 keV at four observer azimuths.
All power spectra are well described by the broken power law model, with
break frequencies around 100Hz. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Difference in the logarithms of median 90h and 915h power spectra, normal-
ized to their combined standard deviations for i = 30◦, 60◦, 90◦. The median
90h power spectra are shifted to account for their lower mean power. . . . . . 58

3.12 Sample power spectrum (solid), best fit broken power law model (dot-dashed)
and upper and lower 99% (dotted) and 99.9% (dashed) significance contours. 58

3.13 Fractional difference in shell-averaged angular momentum between tilted and
untilted simulations with similar spins. The untilted simulations are nearly
geodesic, while the tilted simulations are increasingly sub-geodesic with de-
creasing radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.14 Shell-averaged entropy distributions for all simulations. Excess entropy inside
r ∼ 10M is generated by non-axisymmetric standing shocks in the tilted
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 Vertically integrated contour plots of specific angular momentum (top) and
entropy (bottom) for snapshots of the 90h (left) and 915h (right) simulations.
The color scale is linear, increasing from blue to red to yellow to white. The
non-axisymmetric shocks in 915h correspond to regions with deficit (excess)
angular momentum (entropy). . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.16 Shell-averaged orbital eccentricities for all tilted simulations, estimated at one
scale-height in the disk. The increasing eccentricity of orbits toward smaller
radii leads to a crowding of orbits at their apocenters, which, in turn, can
generate standing shocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Grid of best fit reduced effective χ2 values vs. inclination and sky orientation
ξ. The scale is from χ2 = 1 (white) to 2.5 and greater (black). We find
excellent fits at low inclinations, which are roughly independent of sky orien-
tation. At high inclinations, our results show a similar shape to that found by
Broderick et al. [29]. Overplotted is the probability density vs. inclination,
marginalized over observer time, accretion rate and sky orientation. . . . . . . 77

vii



4.2 Best fit visibility profiles for low and high inclinations from the 90h simu-
lation, plotted along the line in the UV plane corresponding to the average
location of the long baseline measurements from the first mm-VLBI measure-
ments [61]. The visibilities naturally divide into two types. At low inclina-
tions, the nearly circular shadow leads to a minimum in the visibility profile,
similar to the ring model in Doeleman et al. At inclinations " 30◦, the pro-
files monotonically decrease with baseline length. A detection in place of the
current upper limit (open circle with arrow) should favor one set of profiles. . 78

4.3 Normalized probability density as a function of black hole spin, marginalized
over inclination angle and Ti/Te. Triangles denote the first three entries in
Table 4.1, from Fragile et al. [80, 81]. Diamonds represent the last two entries
in Table 4.1 from McKinney & Blandford [129]. . . . . . . . . . . . . . . . . . 79

4.4 Normalized probability densities for all untilted simulations using all VLBI
data (colored curves) and just the Doeleman et al. (2008) data (grayscale
curves) as functions of observer inclination and sky orientation (top left and
right), electron temperature (bottom left) and average mass accretion rate
(bottom right). The geometric distributions are marginalized over Ti/Te and
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Chapter 1

INTRODUCTION

Black holes are the simplest macroscopic objects. In general relativity, they are exactly

described by only three parameters: mass, spin and charge. Oppenheimer & Snyder [150]

first showed that for sufficiently massive stars, the final outcome of stellar evolution is con-

tinual collapse until the gravitational force becomes so strong that light can no longer escape.

The resulting black hole, initially called a “frozen star,” remained a theoretical curiosity

until the discovery of active galactic nuclei (AGN) and bright X-ray sources associated with

stellar mass binary systems (black hole binaries; BHBs).

1.1 Astrophysical Black Holes

These astronomical sources were first postulated to be associated with black holes due to

their extraordinary luminosities (AGN, [121, 12, 161]) or large inferred masses (BHBs, e.g.,

Cygnus X-1, [24, 198]). These two arguments are addressed in turn.

Although black holes themselves produce negligible electromagnetic radiation, the pro-

cess of ambient matter falling into black holes (accretion) can be remarkably efficient at

converting rest mass into photons. Net angular momentum either due to accretion from

a binary companion (BHBs) or from a nearly plunging orbit originating at a large radius

(AGN) causes infalling material to circularize into an accretion disk around the black hole.

Stresses cause angular momentum to be transported outwards, allowing the inner material

to accrete. The resulting infall can be very slow compared to the orbital time, and as long

as the disk is massive enough (accretion rate, Ṁ , is large enough), it cools efficiently and

remains geometrically thin and optically thick (opaque) [176]. Under the assumption that

all dissipated energy is radiated locally, the energy release is just the binding energy of the

inner radius of the disk.

For a black hole, this inner radius is historically assumed to be the innermost stable
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circular orbit (ISCO), inside of which all bound particle trajectories pass through the event

horizon. Then the radiative efficiency, η ≡ L/Ṁc2, depends only on black hole spin, in-

creasing from η ! 0.06 − 0.4 for a = 0.0 − 0.998, where 0.998 is the theoretical maximum

in standard thin accretion disk theory [192], defined as the point where the specific angular

momentum of material falling onto the black hole is equal to its spin angular momentum.

The energy release from thin disk black hole accretion is about 10 − 50 times larger than

that from nuclear fusion, so that accretion onto supermassive black holes (106−9M") in the

center of galaxies can explain the enormous luminosities of AGN. Dynamical measures of

stellar velocities from our own and other nearby galaxies imply central point masses in this

range, further evidence that not only are AGN likely associated with black hole accretion,

but that massive black holes are likely present in the center of most, if not all, galaxies.

Most of these black holes are not “active” (in the AGN phase) most of the time.

Dynamical measurements from some stellar binaries imply companion masses around

10M", called stellar mass black holes since no known stellar objects can prevent gravitational

collapse at those masses. Many of these BHBs are also bright X-ray sources with large

radiative efficiencies. Thin disk accretion onto black holes is actually less efficient than

onto neutron stars, since energy can be lost to the event horizon in the black hole case.

Powerful evidence for the existence of event horizons comes from the observed divide in

efficiency between low (neutron star) and high (black hole) mass X-ray binaries, matching

the theoretical expectation [137].

Stellar mass black holes form through the gravitational collapse of massive stars, but

the formation of massive black holes is poorly understood. The two possible scenarios are

growth of a stellar mass or massive seed (∼ 1000M", [116, 19]) from accreting gas and

subsequently merging with other black holes over the history of the Universe. The presence

of supermassive black holes at relatively high cosmological redshift [71] is challenging to

explain with growth from stellar mass seeds [180, 196], while there are problems with all

formation scenarios for massive seed black holes.

In either scenario, there should also be a large number of black holes with masses in

between the stellar and massive black hole ranges (intermediate mass black holes, 103−6M").

Presently, there is some tentative evidence for the existence of these objects in ultraluminous
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X-ray sources [50].

All evidence for the existence of black holes is indirect. No other known object can

explain observations of AGN and BHBs, but there is still no direct evidence for the existence

of a black hole event horizon.

1.2 Millimeter Very Long Baseline Interferometry

The best studied massive black hole candidate is the compact radio source in the center of

the Milky Way, discovered by Balick & Brown in 1974 (Sagittarius A*, abbreviated Sgr A*;

[11]). The orbits of several young stars within tens of AU of the center of the Galaxy imply

a point mass of ! 4×106M". Astrometric measurements of the change in centroid position

of Sgr A* with time imply a mass of at least 4 × 105M" [163] in the very long baseline

interferometry (VLBI) size of ! 1AU [115, 187, 61]. This is about 2 orders of magnitude

above the size of the event horizon for that mass, the most stringent limit on any black hole

candidate. There is also compelling evidence for the lack of a hard surface (presence of an

event horizon) in Sgr A* from its tiny size and small millimeter/infrared luminosity [34].

The VLBI observations provide a unique opportunity for the study of precision black hole

astrophysics in the Galactic center, and for finding the first direct evidence for the existence

of a black hole event horizon. Despite its relatively small mass, Sgr A* is one of the two

largest black holes in angular size. (M87, a factor of ! 2000 more massive and more distant,

is the other main target for mm-VLBI.) The expected event horizons of these systems still

only span about 10µas on the sky, and resolving such a scale is an enormous observational

challenge. The observations must be done at millimeter (mm) wavelengths on earth-sized

baselines (∼ 103km). The coherence time of the atmosphere at 1.3mm, the shortest wave-

length used so far, is only about 10s on average [59]. There are few available mm telescopes

with the necessary sensitivity and equipment (correlators and precise clocks) for use in the

VLBI array. So far, Sgr A* has been detected at two separate epochs using telescopes

between Arizona (Submillimeter Telescope Observatory, SMTO) and Hawaii (James Clerk

Maxwell Telescope, JCMT) and once between Hawaii and California (Combined Array for

Research in Millimeter-wave Astronomy, CARMA) [61, 74]. Interferometry experiments

sample the Fourier transform (complex “visibility”) of the spatial brightness distribution
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(“image”) of the source at spatial frequencies corresponding to the lengths and orientations

of the baselines (position vectors between telescopes, denoted u and v for spatial frequen-

cies kx and ky with x and y the spatial position vectors corresponding to East-West and

North-South, respectively) projected onto the plane of the sky. Reconstructing the image

requires sufficient sampling of the spatial frequencies of the Fourier transform (“uv-plane”),

both from many telescopes (n(n− 1)/2 baseline pairs for n telescopes) and from long-term

monitoring of a source since the projections of each baseline onto the sky change as the

earth rotates (this technique for filling in the uv-plane is called “earth aperture synthesis”).

Earth aperture synthesis may not be possible in Sgr A*, since it is variable at the

! 40 − 50% level on hour timescales, comparable to the timescale for baselines to change

from the rotation of the Earth. The scarcity of available mm-VLBI telescopes and the

short timescale variability of Sgr A* require that analysis be done in Fourier space and that

interpretation of the data is necessarily model-dependent. Making use of the unparalleled

extremely high-resolution data then requires accurate models of the brightness distribution

of the source, which can be Fourier transformed and compared to the observations.

The observational data have been analyzed with two geometric models for the surface

brightness: a symmetric Gaussian or a “ring” (annulus of constant brightness). The source

FWHM when fit with a Gaussian brightness distribution is 37µas, smaller than the ! 50µas

size of the circular photon orbit associated with the black hole shadow. However, the claim

by Doeleman et al. that, “...a size of 37+16
−10 microarcseconds is less than the expected

apparent size of the event horizon of the presumed black hole, suggesting that the bulk of

Sgr A* emission may not be centred on the black hole...” is false although the conclusion

turns out to be likely correct (see Chapter 5). The size they report is from assuming a

Gaussian surface brightness distribution, while their own ring model shows that a model

“larger” than the apparent size of the event horizon is viable. These difficulties demonstrate

the necessity of properly fitting models to data rather than drawing conclusions from model-

dependent parameters such as “size.”

The ideal theoretical model of Sgr A* for comparison with the mm-VLBI observations

should be general relativistic, since the millimeter emission is concentrated close to the black

hole in all models. It should be time-dependent, since Sgr A* is significantly variable at
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mm wavelengths. In this thesis, we will argue that sophisticated numerical models of black

hole accretion flows are uniquely suited to this problem.

The other source of interest for extremely high resolution mm-VLBI is M87, whose

angular size is roughly the same as that of Sgr A*. M87 is similar to Sgr A*, except that it

powers a Mpc-scale, ultrarelativistic jet. Depending on the emission model, the collimation

region of this jet may be accessible to VLBI observations.

Before describing the spectral properties of Sgr A* and M87, the theory of black hole

accretion flows is briefly summarized, with particular emphasis on models of low-luminosity

accretion flows appropriate for these sources.

1.3 Black Hole Accretion Theory

Accretion is of profound importance in astrophysics, with applications ranging from star

formation to supernovae. Black hole accretion flows are unique in that there is no “hard

surface,” so that internal energy stored in the accreting material can be lost through the

event horizon of the black hole. This leads to a wide range of possible behaviors in black

hole accretion flows, some of which are summarized below.

All of the following simplified models make common assumptions: the accreting material

is assumed to act as a collisional, one-component fluid. Even when the flow is tenuous, a

weak (sub-equipartition) magnetic field couples the particles, effectively creating collisions.

The mean free path is then reduced to the Larmor radius, which for protons is smaller than

the radius, r.1 Although it was recognized early on that magnetic fields could be important

to the physics of accretion [176], they are left out of the standard theory altogether.

1.3.1 Spherical Accretion

The simplest possible case is the accretion of material with no angular momentum. Then

there is no preferred direction, all quantities depend only on the radius, r, and vr is the

only non-vanishing component of the fluid velocity. This was the first type of accretion flow

1The mean free path is only short perpendicular to the field lines and unchanged along them. Thus
collisions are effectively created only when the field is incoherent or tangled on scales smaller than the
mean free path.
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studied [25], and is known as spherical or “Bondi” accretion.2

The equations of spherical accretion, from conservation of mass and momentum, are:

r2ρv = C1, (1.1)
v2

2
+
∫ p

p0

dp

ρ
− GM

r
= C2, (1.2)

where v = vr in spherical coordinates, p0 is the ambient pressure and C1,2 are constants.

These equations can be easily generalized to relativity [133]. The infall timescale is short,

with the velocity nearing the speed of light in the general relativistic case. The particle

density increases to the event horizon, and the temperature of the infalling gas is nearly

virial, reaching ! 1012K at the event horizon. Radiative properties of this solution are dis-

cussed in Section 2.4.3. Spherical accretion flows emit little light since the infall timescale

time is so short. The particle densities are low enough that synchrotron radiation domi-

nates the emission, and the bulk of the radiation is released at millimeter and far infrared

wavelengths.

The assumption of zero angular momentum in spherical accretion is likely poor. In

binary systems, where matter is stripped from the stellar companion, the accreting material

will have net angular momentum. Even in sources accreting from the interstellar medium,

material falls in from the black hole sphere of influence, rinf = GM/σ2, where σ is the local

velocity dispersion. This is a ratio c2
s/σ

2 larger than even the Bondi radius, where cs is the

speed of sound, so that pure plunging orbits are highly unlikely.3 In both cases, the infalling

material will circularize and lose its excess angular momentum before accreting. This leads

to the formation of an accretion disk around the black hole.

2In the case where the black hole moves through an ambient medium at rest, it is known as “Bondi-Hoyle”
accretion [26].

3As discussed in Chapter 4, the accretion rate onto the Galactic center black hole determined by several
independent methods is ∼ 10−9 − 10−7M"yr−1, a factor of 103−4 smaller than the estimate from Bondi
accretion.
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1.3.2 Thin Disk Accretion

This is the situation for luminous sources such as AGN and BHBs in the “thermal” state

[164]. The theory describing these systems, still the standard theory of accretion today,

was developed in the early 1970’s and is known as thin disk accretion or the “alpha” model

[176, 148]. The thin disk solution is elegant: from conservation laws and the assumptions

mentioned above (local radiation of dissipated energy and truncation at the ISCO), this

one-zone (vertically-averaged), steady-state solution predicts the luminosity of black hole

accretion flows without any reference to the physical cause of angular momentum transport

and accretion. It successfully explains the large luminosities of AGN, and the fact that

AGN spectra peak in the ultraviolet while BHB thermal state spectra peak in X-rays.

The accretion flow is now assumed to be geometrically thin, such that quantities only

depend on the cylindrical radius, R, and the equations are vertically integrated for tractabil-

ity. The vertical structure remains unconstrained. The non-relativistic fluid equations then

can be written as equations for conservation of mass, angular momentum, and energy [22]:

Ṁ = 4πRHρv, (1.3)

Ṁ
d,

dR
=

d

dR

(
4πR2HτRφ

)
, (1.4)

−4πR2HτRφ
dΩ
dR

= 2πR(2F−), (1.5)

where Ω (v) is the orbital (radial) velocity and H is the disk height. ρ is the density, Ṁ is

the (constant) accretion rate, τRφ is the torque between disk annuli and F− is the emergent

flux leaving the disk vertically. In the thin disk context, the equation for conservation of

radial momentum gives Ω2 = GM/R3 so that the angular momentum profile is Keplerian.

Assuming the dissipation from torques in the disk all leaves immediately (the disk cools

efficiently), the flux as a function of radius can be written as,

F− =
3GMṀ

8πR3

[
1 −

(
Rin

R

)1/2
]

, (1.6)

where Rin is the inner boundary of the disk usually associated with the ISCO and we have

made the standard (but controversial) assumption that the torque vanishes at the ISCO.
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Integrating over the top and bottom of the disk, the total luminosity is then,

L =
∫ ∞

Rin

dR2πR(2F−) =
GMṀ

2Rin
, (1.7)

which is simply the binding energy of the inner disk radius. The radiative efficiency is then,

η =
GM

2RISCOc2
(1.8)

depending only on the spin a of the black hole. Relativistic effects alter the binding energy

of the inner disk radius, leading to small corrections in the above formula and η ! 0.05−0.4

for a = 0.0 − 0.998. The peak effective temperatures from L(r) = σbT 4
eff are then ∼ 104K

for AGN and ∼ 107K for BHBs, whose blackbody peaks are located in the UV and X-ray,

respectively.

Thin disk spectra, neglecting atmospheric radiative transfer effects, are multi-temperature

blackbodies, with an effective temperature at each radius set by L(r). The flux is propor-

tional to M−1 for a fixed relative accretion rate (Ṁ ∝ M , r ∝ M), so that Teff ∝ M−1/4.

This model works particularly well in fitting certain BHB spectra, but provides a marginal

fit at best in the AGN case. Regardless of its limited ability to explain spectral and other

measurements of AGN, thin disk theory is still commonly used to interpret observations.

A prescription for angular momentum transport is necessary to go further. Molecular

viscosity is far too weak to produce appreciable accretion. The famous “alpha” prescription,

τRφ = αP, (1.9)

where the stress is proportional to the vertically integrated pressure, allows a solution known

as the “alpha” model. Although the physical cause of angular momentum transport and

accretion is completely ignored in this prescription, the resulting solution is predictive: most

of the results for the structure of the disk are highly insensitive to the value of α.

The lack of a physical mechanism for accretion is one of many theoretical shortcomings

of the alpha model. The vertical structure of the disk is left completely unconstrained.

The model predicts that radiation pressure supports the disk in AGN and at small radius

in BHBs, but is thermally and viscously unstable when this is the case [177, 114]. Other
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parameterizations have been used instead of Equation 1.9, with no physical motivation other

than to avoid these instabilities.

1.3.3 Advection-Dominated Accretion

Most black holes, including those in nearby galaxies, are much less bright than AGN. Some,

but not nearly all, of this discrepancy can be attributed to the gas supply at the center

of the host galaxy. Still, most of these sources, including Sgr A* and M87, as well as the

so-called low/hard state of BHBs, cannot be fit by the thin disk model even at low accretion

rates. In other words, the accretion process in these sources is physically distinct. In the

mid-1990s, the advection-dominated accretion flow solution was found to apply to these

sources (ADAF, [139, 140]). At low accretion rates, coulomb collisions between ions and

electrons become inefficient. Internal energy remains trapped in the ions and the accretion

flow cannot cool efficiently by radiating away its energy and instead remains hot, carrying

the bulk of the internal energy through the event horizon and into the black hole. The

accretion flow is then hot and geometrically thick, and its weak luminosity means it is

transparent (optically thin). These solutions typically have much lower electron than ion

temperatures, since the electrons still cool via synchrotron radiation.

As in thin disk theory, the equations are vertically averaged.4 The assumption from thin

disk theory that all gravitational binding energy is immediately released locally as radiation

is relaxed, and instead the flow is allowed to heat up. The fraction of the binding energy

converted to radiation, f , is a free parameter in the model. For particular accretion rates,

steady-state solutions at a given radius only exist for certain values of f . In the limits of

f → 0 and f → 1, the solution can be shown to reproduce Bondi and thin disk accretion

[139]. Thus, advection-dominated theory encompasses the other simplified solutions and

predicts what type of flow should exist in different physical scenarios. With increasing f , the

flow becomes increasingly geometrically thick and optically thin. The angular momentum

profile becomes increasingly sub-Keplerian, and the infall time becomes shorter due to the

lower centrifugal barrier.

4This assumption is much worse here, since the accretion flow is actually geometrically thick for a wide
range of parameters.
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Advection-dominated accretion flow solutions are also consistent with the presence of

large-scale outflows associated with many black holes. The significant internal energy stored

in the infalling gas can allow some of it to escape to infinity, given some mechanism for

reversing its radial velocity [139]. Proposed mechanisms include convection [159, 138],

strong (relative to equipartition) magnetic fields [130] and conduction [183, 184].

These are a few of the many theoretical variants on the ADAF theme, motivated by the

presence of a convective instability in the ADAF solution, its inconsistency with observations

of Sgr A* [3, 158] and by the need for a physical mechanism to explain the outflows associated

with accretion disks. The contemporary term encompassing many of these solutions is the

radiatively-inefficient accretion flow (RIAF), in contrast to the extremely high radiative

efficiencies of thin accretion disks without reference to the specific cause of the inefficiency.

These solutions have much smaller accretion rates and particle densities than the original

ADAF solutions, but the concept remains unchanged [202].

The RIAF solution is appropriate for Sgr A*, M87, low-luminosity AGN, quiescent

BHBs and possibly also the low/hard state of BHBs. These are the sources considered in

the remainder of this thesis, both due to their interest for mm-VLBI (Sgr A* and M87)

and because no realistic, 3D numerical models of luminous systems are computationally

feasible yet. The emergent spectrum from RIAF models is in many ways similar to that

from spherical accretion: synchrotron emission is the dominant source of radiation, and

most of the energy is radiated at sub-millimeter wavelengths. The sub-millimeter “bump”

in Sgr A* arises from synchrotron emission from thermal electrons in accretion disk models

[202].

All observed black hole candidates radiate over huge frequency ranges, while the emission

from thermal electrons in all cases is relatively narrow. The low-energy radio and high-

energy X-ray emission seen in Sgr A*, M87 and BHBs in the low/hard state is attributed

to non-thermal emission either from the accretion flow itself, a hot optically thin “corona”

(analogous to the region that produces solar flares), or a relativistic jet. While a huge

amount of dust prevents optical observations of the Galactic center, the optical emission

from M87 arises from a spectacular, ultrarelativistic, galaxy-scale jet. In all cases, the

emission mechanism is either synchrotron radiation from non-thermal electrons, or inverse
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Compton scattering of disk photons by hot electrons.

Sources modeled with thin accretion disks also show broadband spectra. Many AGN

show substantial radio emission (“radio loud”), and many (“radio galaxies”) also have spec-

tacular, bipolar jets that can produce huge radio “lobes” where the jet material interacts

with the intergalactic medium. AGN also typically emit in the X-ray, which is also assumed

to come from a corona.

1.4 Relativistic Effects

The semi-analytic solutions for accretion disk structure can be readily extended to general

relativity appropriate for the description of material in the vicinity of spinning black holes.

The thin disk results remain unchanged, but with multiplicative factors corresponding ap-

proximately to corrections to the radial and vertical gravitational “forces” [152]. The most

important assumption for thin disks in general relativity is that the disk should truncate

cleanly at the innermost stable circular orbit. In the Kerr metric, this location is [107],

rISCO = M
{

3 + Z2 ± [(3 − Z1)(3 + Z1 + 2Z2)]1/2
}

, (1.10)

Z1 = 1 +
(

1 − a2

M2

)1/3 [(
1 +

a

M

)1/3
+
(
1 − a

M

)1/3
]

, (1.11)

Z2 =
(

3
a2

M2
+ Z2

1

)1/2

, (1.12)

which varies from M (9M) for maximal spin and prograde (retrograde) motion to 6M for

zero spin.5 The assumption that thin disks truncate at rISCO is still made in methods to

estimate black hole spin from BHBs in the thermal state [174], despite ongoing controversy

about its validity [109, 146].

Low-luminosity systems do not truncate cleanly at the ISCO. The RIAF solutions can

also be extended to general relativity [203], although not as neatly as thin disk solutions.

5For much of this thesis, we use units with G = c = 1.
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1.4.1 Observational Consequences

There are important observational consequences from the strong gravity in the vicinity of

black hole accretion disks. First, the orbital velocities in both thin disk and ADAF/RIAF

solutions are large near the black hole where the bulk of the radiation is produced. For

systems viewed at any inclination (not face on), this leads to substantial Doppler boosting

of light, causing the disk to appear asymmetric with a bright (dim) approaching (receding)

side. For nearly edge-on viewing, this effect can dominate the appearance of the accretion

disk.

Secondly, some photons emitted from the back of the disk are bent around the black

hole to the observer. This causes the back of the disk to appear warped above the black

hole.

Finally, photons have an equivalent to the ISCO for massive particles, known as the cir-

cular photon orbit. This is the boundary between light that is bound and unbound to the

black hole. Inside of the circular photon orbit, only particles from the front side of the ac-

cretion flow can emit photons that reach the observer. Unless the flow is completely opaque,

so that the photosphere everywhere is in front of the black hole, this leads to a “shadow”

at the circular photon orbit, where the regions of the image outside of the projection of

the circular photon orbit at infinity are brighter than those inside it. The combination of

maximum path lengths at the circular photon orbit coupled with emission often peaking

close to the black hole can lead to bright rings in images at this location, leading to maximal

contrast with the shadow inside of it. The black hole shadow, a consequence of the presence

of the circular photon orbit, is a prediction of black hole spacetimes and general relativity.

Observing this feature would then provide the first direct evidence for the existence of a

black hole event horizon.

1.5 Tilted Disks

In all accreting sources, the direction of net angular momentum of infalling material is

unlikely to be aligned with the black hole spin axis. This misalignment leads to relativistic

torques on the disk material. In the thin disk context, the torque tends to align the inner part
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of the disk with the black hole spin axis, a phenomenon known as the Bardeen-Petterson

effect [14]. The result is likely to be a warped disk, with a transition at a radius with

considerable theoretical uncertainty.

In low-luminosity systems where the accretion flow is geometrically thick, torques due

to misalignment will instead cause bending waves to propagate through the disk and cause

precession in the disk body [153, 117]. Using the alpha prescription, the transition between

this “wave-like” regime and the Bardeen-Petterson, or “dissipative” regime is α ∼ h/r.

Since α ! 1 (and significantly smaller on average in many simulations), the inner regions of

geometrically thick accretion flows are not expected to align with the black hole spin axis.

The resulting warped, twisted, precessing disk will be known as a “tilted” (or “misaligned”)

disk for the rest of this thesis. Although theoretical work using the alpha prescription has

been done for the Bardeen-Petterson case, tilted disks remain poorly understood.

1.6 The MRI and GRMHD

Neither thin disk accretion theory nor advection-dominated accretion flow theory include

the physics of angular momentum transport in the disk that allows material to fall into

the black hole. The stress, τRφ, coupling orbital and plunging motions is assumed to be

proportional to the pressure in these theories, τRφ = αP , where P is the total pressure

(gas+radiation) and α is an unknown parameter hiding the physics of stress in accretion

flows. Molecular viscosity is much too weak to cause the accretion rates required by AGN,

and the physical cause of accretion was unknown for decades.

The answer now appears to be that turbulent magnetic stresses transport angular mo-

mentum out through the disk, allowing accretion to proceed. Rotating magnetized fluids

are unstable when dΩ/dR < 0 [194, 44], and the realization that this is likely the mechanism

for angular momentum transport in accretion disks was made by Balbus & Hawley in 1991

[10]. The instability is now known as the magnetorotational instability (MRI). Calculations

including the MRI must be done numerically, as the non-linear instability drives turbulence

in the accretion flow which can only be sustained in three spatial dimensions due to the

anti-dynamo theorem. The discovery of the MRI and advances in numerical calculations

have led to dramatic progress in the theoretical understanding of black hole accretion flows
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Figure 1.1 Azimuthally-averaged structure of a single timestep from a GRMHD simulation
of a black hole accretion flow [129] shown in the logarithm of the fluid mass density (colors
increasing from black to blue to green to red with a dynamic range of ! 105) and in the
asymptotic Lorentz factor (white contours denoting intervals of 0.1 increasing outward from
1.1). The disk body, centered on the equatorial plane, contains the bulk of the mass which
accretes onto the black hole inside of the pressure maximum of the initial torus (r = 12M
in this case). The magnetic field is sub-equipartition in the disk body, but is stronger in
the tenuous corona surrounding the disk and dominant in the polar jet.
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in the past 15 − 20 years.

Numerical calculations have been extensively studied both for entire accretion disks

(“global” simulations) and for small patches of the disk (“local” or “shearing box” simula-

tions). The local simulations can use much higher resolution and incorporate more physics

than the much more computationally expensive global ones, but many of their properties de-

pend on the assumed aspect ratio, spatial extent, or magnetic field configuration of the box.

Both types of simulations must be done in three spatial dimensions to sustain MRI-driven

turbulence.

The current state of the art are global, fully general relativistic, 3D magnetohydrody-

namic (GRMHD) simulations. Starting from a torus of fluid in hydrostatic equilibrium

seeded with a weak magnetic field in the Kerr metric, the MRI drives the fluid turbulent.

The resulting magnetic stresses cause angular momentum transport outwards and allow

accretion onto the central black hole, which occurs self-consistently in the simulations. The

magnetic field strength saturates at roughly 1−50% of equipartition in the disk body. These

simulations evolve the whole inner accretion disk (out to r = 10 − 25M depending on the

simulation) can be run for ∼ 104M, about 10 − 20 orbits at the pressure maximum of the

initial torus or several hundred at the event horizon.

An example of such a solution is shown in Figure 1.1. It contains a disk body centered

on the equatorial plane, where the mass density is high and the velocity profile is nearly

Keplerian, surrounded by a tenuous region of hot gas (“corona”). In the polar regions,

some form of a jet develops depending on the initial magnetic field configuration of the

simulation [52, 17, 129]. This region is shown in the Figure for the dipolar simulation in

McKinney & Blandford (2009) [129] as contours of Lorentz factor observed at infinity. The

disk scale height depends on the method used for energy evolution and whether any cooling

is included. The simulation shown is thick (H/R ! 0.3), since it conserves energy and so is

heated from numerical magnetic reconnection at the grid scale. Simulations which neglect

this heating are somewhat thinner (H/R ! 0.1 − 0.2), while those that include artificial

cooling can be quite thin (H/R ! 0.02 − 0.05, [145, 154]).

The existence of 3D GRMHD simulations has also allowed the study of tilted disks in

the context of the MRI [80, 79, 81]. These simulations are consistent with the results of
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“warped” disks based on the alpha prescription, but have only been done in the geomet-

rically thick “wave-like” regime where the Bardeen-Petterson configuration does not form.

The limited spatial extent of the simulations leads to a nearly solid body precession. The

orbital eccentricity from general relativistic gravitational torques leads to the formation of

non-axisymmetric shocks. These shocks increase the effectiveness of outward angular mo-

mentum transport and cause the disk to truncate outside of the ISCO in a fashion roughly

independent of spin [77] (see also Chapter 3).

Combined, MRI-based simulations represent a dramatic advance in the theoretical un-

derstanding of black hole accretion flows. Until recently, the bulk of research effort has

been directed to understanding the physical properties of the simulations and in compar-

ing them to thin disk and ADAF accretion theory. Ultimately, however, simulations must

be confronted with observations, both in order to test their ability to explain and predict

accretion phenomena as well as to infer the properties of astrophysical black hole accretion

disks (spin, mass, accretion rate).

This is a difficult task. Current global simulations either neglect radiative cooling al-

together and evolve hot, geometrically thick accretion flows [51, 85, 80, 129] or include

artificial optically thin cooling functions [175, 144]. Local (shearing box) simulations can

include simplified radiation dynamics in the form of flux-limited diffusion [193, 97, 98] but

cannot be used to interpret observations.

1.7 Summary Of This Work

The goal of this thesis is to study the observational properties of global, 3D GRMHD sim-

ulations and to use them to construct detailed and physically realistic radiative models of

individual sources. The simulations that neglect radiative cooling are appropriate for our

sources of interest, where the emission is concentrated close to the black hole so that the

simulation is spatially large enough and where the cooling is (thermo)dynamically unim-

portant. Then the radiation can be added in after the fact (in “post-processing”) without

compromising the physical validity of the solution. This post-processing requires a radia-

tion transfer calculation to compute the appearance of the accretion disk as viewed by a

distant observer. The ray tracing and general relativistic radiation transport calculation
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and the numerical codes developed for this task are described in Chapter 2 and Appendix

A. Previous codes to calculate null geodesics in the Kerr metric for ray tracing applications

have numerically integrated the geodesic equations [119, 72, 102, 171, 147, 62]. Rauch &

Blandford (1994) [160] treated the problem semi-analytically, with numerical integrations

for the t and φ coordinates. This method was also used by Agol (1997) [2]. Our code

extends these techniques to a semi-analytic treatment of all coordinates, and is published

as Dexter & Agol (2009) [53].

The millimeter emission in Sgr A* is an excellent source for comparing simulations with

observations. It has a tiny luminosity so that the radiation should be dynamically negligible.

The emission mechanism is known, and the source size is small enough to be contained in

simulations. Radiative models of Sgr A* have been constructed from non-relativistic 3D

simulations [149, 90, 99, 43] or from axisymmetric GRMHD simulations [147, 136, 96, 186].

Our models based on GRMHD simulations are the first to include time-dependence, and

to make physical predictions for the morphology of 3D black hole accretion flows. These

time-dependent images are fit to mm-VLBI observations in Chapter 4. The radiative models

calculated from GRMHD simulations provide excellent fits to the data, and combined with

spectral index measurements allow us to constrain the parameters of the Galactic center

black hole and its accretion flow. The “best fit” models, with the highest probability of

describing current observations, are studied further in Chapter 5. We study their variability,

compare their structure to expectations from RIAF theory and make predictions for future

observations with mm-VLBI and other instruments. The portions of these chapters con-

cerned with standard aligned (untilted) simulations are based on work published in Dexter

et al. (2009, 2010) [54, 55].

The situation in low-luminosity AGN (including M87) and the low/hard state of BHBs

is somewhat more uncertain. The geometry and emission mechanisms are unknown for

the peak of the spectrum. In low-luminosity AGN with clear jets, like M87, the jet is the

source of the high-frequency emission (optical/X-ray). Radio emission in the low/hard state

arises in a jet, but the X-ray emission is either produced in a thin disk, possibly truncated

and transitioning to an ADAF inside some radius, and/or in a Compton scattering corona

(which may or may not be due to the ADAF).
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Jet spectra are typically well described by power laws in the observed frequency, Fν ∝

ν−α, where α is the spectral index. This spectrum can be produced by synchrotron emission

from a power law electron distribution, N(E) ∝ E−p, where α = (p − 1)/2 (see [168] and

Appendix C for more details). We calculate jet emission from M87 in Chapter 6. These are

the first radiative disc/jet models based on simulations of a jet forming from an accretion

flow.

Our models of the low/hard state in Chapter 3 are necessarily simplified since we ne-

glect Compton scattering throughout this thesis, and since the emission mechanisms and

geometry are so uncertain. The goal in that case is to compare and contrast the observed

properties of tilted and untilted geometrically thick accretion flows rather than to construct

detailed models of the low/hard state, and the simplistic emission models used are sufficient

for that purpose. This work is published as Dexter & Fragile (2011) [56], and builds on

previous work to measure the inner edge of simulated disks [108, 18, 77] as well as to study

the generic observational properties of GRMHD simulations [173].
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Chapter 2

RAY TRACING AND RELATIVISTIC RADIATION TRANSPORT

2.1 Transport Methods

The radiative transfer problem of interest in this work is to calculate the appearance of a

black hole accretion flow for a particular set of “camera” coordinates corresponding to a

distant observer. In Newtonian physics, photon trajectories are trivial in the absence of

scattering. In general relativity, this is no longer the case and three methods are commonly

used to calculate observables at infinity.

The first method used is to solve the “emitter-observer” problem, that is to solve for the

constants of motion describing a photon that reaches an observer from a particular location

near the black hole [48, 195, 16]. This approach was initially popular due to the small

spatial extent of the sources considered (orbiting stars or thin disks), so that only a small

set of photon properties need to be calculated and the efficiency of shooting rays outward

from the black hole or inward from infinity is small.

When scattering is important, multiple trajectories are traversed by each photon and

shooting “packets” of photons outward from a grid of points in the source to infinity is

the natural method [62, 172]. The scattering is handled using Monte Carlo methods, the

same way as frequently done in Newtonian calculations [118], except that the photon energy

changes due to gravitational redshift as well as Compton scattering.

For simplicity, the effects of electron scattering are ignored throughout this thesis and

we restrict our analysis to sources and wavelengths of interest where it is insignificant.1 The

sources considered are also extended, in which case tracing photon trajectories backwards

from infinity to the black hole is the method of choice [119]. The result of this ray tracing

method is a theoretical image of the source, which in the case of Sagittarius A* is itself an

1The study of generic observational properties of tilted disks in Chapter 3 uses simplified emissivities
instead of models for the Compton scattering corona in the low/hard state of BHBs.
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observable. This is a significant advantage over ray tracing from the disk outwards, where

calculating an image requires enough photons to populate cameras at infinity over the entire

solid angle with adequate resolution.

2.2 Backwards Ray Tracing

Backwards ray tracing separates into two distinct steps [171]. First, the desired set of

photon trajectories corresponding to a grid of “camera” coordinates must be computed.

Second, for each of these trajectories the relativistic radiative transfer equation is solved for

the desired dynamical and emission model. The first step is done by placing the camera

at a large, finite distance from the black hole, chosen such that light bending is negligible

from that location to infinity.2 These camera coordinates have impact parameters α and

β perpendicular and parallel to the black hole spin axis respectively, which can in turn be

related to the constants of motion describing photons in the Kerr metric [48]:

l = −α(1 − µ2
0)

1/2, (2.1)

q2 = β2 + µ2
0(α

2 − ã2), (2.2)

so that each point on the observer’s camera corresponds to a unique geodesic. The conserved

quantities l and q2 are the dimensionless z-component of the orbital angular momentum

and Carter constant [42], l ≡ Lz/E and q2 = Q/E, and E is the photon energy [160]. These

constants of motion, as well as the initial direction of photon propagation, completely specify

the desired rays. The trajectories are calculated semi-analytically, exploiting the existence

of the Carter constant which allows the separation of the Hamilton-Jacobi equation for null

geodesics in the Kerr metric (see Appendix A for details of the geodesic calculation and

implementation).

2.3 Radiative Transfer Equation

The unpolarized, non-relativistic radiative transfer equation in the absence of scattering is,

2Typically we take 1/u0 = 100max(α2 + β2).
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dIν
ds

= jν − ανIν , (2.3)

where jν and αν are the emission and absorption coefficients, and Iν is the observed intensity.

This equation can be generalized to covariant form as [84],

dI
dλ

= J −AI, (2.4)

where the invariant intensity, emission and absorption coefficients are I ≡ Iν/ν3, J ≡ jν/ν2,

A ≡ ναν . This clearly reduces to the standard non-relativistic form when the observed and

emitted frequencies are equal.3 The formal solution in the absence of polarization and

scattering is,

Iν0(λ) = g3Iν(λs)e−τν(λs) +
∫ λ

λs

e−(τν(λ′)−τν(λs))g2jν dλ′, (2.5)

where ν0 and ν are the observed and emitted frequencies, g ≡ ν0/ν is the gravitational

redshift, τν ≡
∫
αν/gdλ is the optical depth and λ is the affine parameter. Taking the

initial point λs = 0 outside of the source so that Iν(λs) = τν(λs) = 0 and solving for Iν0 ,

Eq. 2.5 simplifies to:

Iν0 =
∫ λ

0
e−τν(λ′)g2jν dλ′, (2.6)

where λ is now the maximum relevant value of the affine parameter, either where the

geodesic leaves the source or where the optical depth becomes large enough that negligible

emission reaches the observer from further along the ray. The form in Eq. 2.6 is mixed

frame: the fluid-frame emission and absorption coefficients are integrated to calculate the

observed intensity. Neglecting polarization, the combined effects of gravitational redshift

and Doppler shifts are entirely accounted for by g. When polarization is included, the

transfer equations can be written as a set of four linear differential equations for the Stokes

parameters. It is more convenient to numerically integrate these equations than to use the

equivalent formal solution to (2.5), which is formidable in the polarized case [110].

3For the polarized case, see B.
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Figure 2.1 Image of a near extreme (a = 0.998) Kerr black hole viewed from the equatorial
plane. Images intensities are taken to be the affine parameter evaluated upon termination
at the black hole or after returning to the starting radius. Intensities are scaled linearly
from the minimum value outside the shadow to the maximum.

2.4 Examples and Code Validation

We next describe a couple of relatively simple applications of our geodesic code geokerr

to ray tracing problems as further validation and as examples of its utility. The first is the

simplest illustration of the black hole shadow, which tests the determination of the roots

of U(u) and qualitatively parts of the time integral. Next are examples from the standard

model of thin disk accretion. The disk image and simple spectrum from line emission test the

routine that solves for uf . The projection of a uniform grid at infinity onto the equatorial

plane of the black hole also tests the calculation of φ, and hot spot emission provides a

time-dependent test. Finally, spectra and images of synchrotron radiation from spherical

accretion quantitatively test our radiative transfer routines.

In addition to these tests, the photon trajectories have been verified using the numerical

integration code described in Dolence et al. (Figure 1 of Dolence et al. (2009) [62]).
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Figure 2.2 Projection of a uniform Cartesian grid in the image plane to the equatorial plane
of the black hole for µ0 = 1 (top) and µ0 = 0.5 (bottom). Black hole spin is a = 0 (left)
and a = 0.95 (right), and the area inside the horizon is removed from each image. Compare
to Fig. 2 of Schnittman & Bertschinger (2004) [171].
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Figure 2.3 Image of an optically thick standard relativistic accretion disk around a near
extremal black hole (a=0.998). The disk has outer radius rout = 18, and the observer’s
inclination is 85◦.

2.4.1 Image in Affine Parameter

As a first application of ray tracing, we can determine the appearance of the simplest possible

black hole shadow. The image “intensities” are taken to be the affine parameter evaluated

at the termination of the geodesic–either when it terminates at the black hole or reaches

a turning point and re-emerges to the starting radius. Affine parameter is a proxy for the

emission in this case, since it is qualitatively similar to the path length along a geodesic.

The dimensionless affine parameter, λ′, is given by (A.49). The equatorial plane result for

a Kerr black hole with a = 0.998, to be compared to Bardeen (1973) Figure 6 [13], is shown

in Figure 2.1. The image shown here is 400 × 400.

2.4.2 Thin Disk Accretion

The next set of applications imagine the emitting source as an infinitesimally thin disk in

the equatorial plane of the black hole (e.g., 152, 176).

Grid Projection

The first check of the code for this case is in visualizing the projection of a uniform grid

at infinity onto the equatorial plane of the black hole. This is done by solving for the final
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Figure 2.4 Normalized spectra of line emission from a thin accretion disk at an inclination
of 30◦ for various black hole spins. The emissivity is taken to be proportional to u2

f between
the marginally stable orbit and Rout = 15. Compare to Schnittman & Bertschinger (2004)
Figure 3 [171].

radius, uf , and azimuth where the geodesic intersects µf = 0. Then, the new grid points

are calculated using pseudo-Cartesian coordinates [171]:

x =
√

r2 + a2 cosφ, y =
√

r2 + a2 sinφ. (2.7)

The result of this projection for two different initial observer inclinations and black hole

spins is shown in Figure 2.2, and agrees with Figure 2 of Schnittman & Bertschinger (2004)

[171]. The gravitational lensing effect can be seen in the Figures with µ0 = 0.5 as the

bunching of grid points behind the black hole, while frame dragging is evident in those with

a = 0.95

Thermal Disk Images

As a next step, we can use the standard thin disk results for the radial temperature profile

(e.g., [107]) to produce images of the disk at various inclinations assuming it is optically thick
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everywhere, so that the intensity is that of a blackbody. Finding the radii of emission from

a grid in impact parameters and calculating the intensity at each of these points produces

an image of the disk as seen by a distant observer. The result for an inclination of 85◦ and

black hole spin a = 0.998 is shown in Figure 2.3. The image shows the effects of relativistic

beaming of the emission from gas moving towards the observer versus the redshift of that

moving away, as well as the bending of the light from gas behind the black hole.

Line Emission

Next, following Schnittman & Bertschinger (2004) [171] and Bromley et. al. (1997) [35]

we consider monochromatic emission from the disk, and give it an inner (outer) radius,

Rin = Rms (Rout = 15), where Rms is the location of the marginally stable circular orbit

(e.g., 152). The emissivity is weighted by u2
f , physically motivated by the fact that we

expect the temperature of gas in the disk to increase with decreasing radius. The observed

intensity is computed by exploiting the invariance of Iν/ν3 [134],4

Iν0 = g3Iν . (2.8)

The combined effects of redshift and Doppler beaming encompassed in g are calculated

using Equations 17 and 19 of Viergutz (1993) [195], taking advantage of a particular useful

orthonormal frame in the Kerr metric known as the locally non-rotating frame (LNRF,

[15]).

To see the effect of black hole spin on the emission in this case, we calculate Iν0 as a

function of g for several values of a by calculating the intensity of rays at a location with

redshift in a certain range of g, and integrating them over the photographic plate. The

result is plotted in Figure 2.4, and is in excellent agreement with Figure 3 of Schnittman

& Bertschinger (2004) [171]. At higher black hole spin, the marginally stable orbit is much

closer to the black hole where the redshift is much stronger, leading to a higher relative

magnitude and broadening of the low frequency peak (“red wing”).

4This is the limit of (2.6) where jν = Iνδ($ − $0), and d$ = g−1dλ is the proper length.
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Figure 2.5 Spectrogram of a circular hot spot of radius Rspot = 0.5 at the marginally stable
orbit of a Schwarzschild black hole. The observer is inclined at θ0 = 60◦. Compare to Figure
4 of Schnittman & Bertschinger (2004) [171].
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Figure 2.6 Light curves of the hot spot described in Figure 2.5 for various inclination angles.
Intensities are normalized individually to the integrated intensity over each orbit and scaled
to the maximum intensity from all inclinations. Compare to Figure 6 of Schnittman &
Bertschinger (2004) [171].

Rotating Hot Spot

Finally, to test the time-dependence of the code, consider a circular hot spot of finite radius

Rspot = 0.5 orbiting in the equatorial plane of a Schwarzschild black hole at its marginally

stable radius (Rms = 6). The emissivity of the spot is taken to be Gaussian in the locally

flat space near the hot spot (for details, see 170),

j(x) ∝ exp

[
− |x − xspot(t)|2

2R2
spot

]
, (2.9)

where j is the monochromatic emissivity. For some observer coordinate time, t, the time

delay and azimuthal position from the observer to points on the disk are used to determine

where on the photographic plate the separation between geodesic and hotspot are less than

4Rspot. For these points, the Gaussian emissivity and observed frequency (redshift) are

tabulated. Repeating this procedure over a period of the motion gives a time-dependent

spectrum, which is shown in Figure 2.5 for an observer inclination of 60◦ (µ0 = 0.5). This
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Figure 2.7 The spectrum of synchrotron radiation from optically thin spherical accretion
onto a stellar mass black hole. The solid line is the ray tracing result, and the plotted points
are the analytic results. The two curves agree to within 5% at low frequencies, where the
radiation originates at larger radii and the bending of light should be unimportant.

figure is in good agreement with Figure 4 of Schnittman & Bertschinger (2004) [171].

Integrating over frequency (redshift), or equivalently over the impact parameters, gives

the light curve. Figure 2.6 shows the light curves of the hotspot for several inclination angles.

As the observer approaches edge-on viewing, the light curve becomes sharply peaked by a

combination of the Doppler beaming of the spot as it moves toward the observer and the

large gravitational lensing of the spot as it goes behind the black hole. The plot here is in

excellent agreement with Schnittman & Bertschinger (2004) [171].

2.4.3 Synchrotron Radiation from Spherical Accretion

The geodesics code in conjunction with grtrans, our implementation of the ray tracing

radiative transfer along rays described above (see below), is now applied to the particularly

simple case of a stellar mass black hole at rest with respect to the interstellar medium with a

temperature at infinity of 104 K and a density at infinity of 1cm−3. Ionized hydrogen accretes

onto the black hole, and the magnetic field threading the gas effectively creates collisions, so
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Figure 2.8 Spectrum of synchrotron radiation from spherical accretion onto a stellar mass
black hole. The solid line is the ray tracing result including absorption. The spectrum is
heavily attenuated at ν0 ! 1011 Hz, and in this region follows the optically thick approx-
imation of thermal emission from the τ = 1 surface. The spectrum agrees well with the
emission only model for ν0 " 1012 Hz
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Figure 2.9 Image of a spherically accreting Schwarzschild black hole at ν = 1012 Hz as a
contour plot and a 1-d profile.
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that the accreting gas can be considered a perfect fluid. In the model, magnetic turbulence

establishes an equipartition of magnetic and gravitational energy [206]. Then

B2

8π
=

GMρ

r
, (2.10)

and cgs units are most convenient in this calculation. We assume an adiabatic equation of

state with a piecewise adiabatic index [181],

γ =
5
3
,

3
2

mp

me
T ≤ 1

=
13
9

,
3
2

mp

me
T > 1, (2.11)

where mp, me are the proton and electron mass and T is the temperature in units of proton

rest energy. Then the fluid equations are non-linear, and can be solved numerically [133] to

find the temperature and fluid velocity as functions of coordinate radius.

The dominant form of radiation produced is synchrotron radiation from the inner part

of the accreting sphere, where the electrons are ultrarelativistic [179]. In this case, the emis-

sivity can be well approximated analytically. Shapiro (1973) [178] performed the relativistic

radiative transfer by approximating the photons as traveling on null geodesics in Minkowski

spacetime, and calculating gravitational redshifts as well as the photon Doppler shifts along

these paths.

Shapiro’s formula for the radiated spectrum is

Lν0 = 8π2
∫ r∗

2m
dr r2 ×

∫ cosΘc

−1
d(cosΘ′) jν

1 − v2

(1 − v cosΘ′)2
(2.12)

ν0 = ν

√
(1 − v2)(1 − 2m/r)

1 − v cosΘ′ ,

where v(r) is the proper velocity seen by a stationary observer and

| cosΘc| =

[
27
4

(
2m

r

)2 (2m

r
− 1

)
+ 1

]1/2

(2.13)
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is the critical angle at which the light is recaptured by the black hole.

The synchrotron emissivity for thermal, ultrarelativistic electrons averaged over polar-

ization and solid angle assuming isotropic emission in the rest frame is given by [151],

jν(T ) = ν
ne2

2
√

3c

(
mec2

kT

)2

I
( xM

sin θ

)
, (2.14)

I(x) ≡ 1
4π

∫
dΩ

1
x

∫ ∞

0
dz z2 exp(−z)F

( x

z2

)
, (2.15)

with xM = ν
νc

,

νc =
(

3eB

4πmec

)(
kT

mec2

)2

, (2.16)

and where

F (x) ≡ x

∫ ∞

x
K5/3(y)dy (2.17)

is the synchrotron function. Mahadevan et al. (1996) [122] have approximated I(x) above

analytically by matching the asymptotic forms for large and small x. They find

I
( xM

sin θ

)
! 4.0505

x1/6
M

(
1 +

0.40

x1/4
M

+
0.5316

x1/2
M

)
exp(−1.8899x1/3

M ). (2.18)

Note that this function is denoted I ′(x) by Mahadevan et al. (1996) [122], and has a

maximum error of ≈ 2.7%. The spectrum is calculated by integrating (2.12) numerically.

To compare with these results, the ray tracing code is used to create an image of the

synchrotron radiation from the infalling gas in the same way as done previously with affine

parameter. To create an image, one specifies a grid of points in α, β and calculates q2 and

l. This fully specifies the geodesic, and we can calculate the spacetime coordinates at which

it intersects the accreting gas. The intensity along each geodesic represents a point in the

image, which is why it is so important to be able to calculate geodesics rapidly.

For this problem, the flow is spherically symmetric and

g =
(
γe−η[1 − eµ1+ηvrρ−2rsgn

√
R]
)−1

, (2.19)
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with

e2η ≡ ∆ρ2Σ−1, e2µ1 = ρ2∆−1, γ = (1 − vr2)−1/2, (2.20)

and vr is the radial component of the four-velocity. Written in terms of u ≡ 1/r in the

Schwarzschild metric, this simplifies to

g =
√

1 − 2u

γ[1 + su(−1)Nuvu
√

U ]
. (2.21)

When the u-component of the four-velocity, vu, vanishes, this reproduces the standard

gravitational redshift [91].

We first ignore absorption and compare radiated spectra with the analytic calculation.

The result is in Figure 2.7. Shapiro (1973) [179] points out that the synchrotron radiation

is dominated by a thin spherical shell of gas with ν ! νc. Then the first part of the

spectrum, where Lν0 ∼ ν1/3, originates from the outer part of the sphere. The bending of

light should be negligible in that region and the ray tracing should agree with the analytic

result, which it does to within ! 5%. At higher frequencies, the radiation is originating in

the innermost radii, and the bending of light becomes significant. The difference is ! 15%

at high frequencies.

Next, absorption is included. Figure 2.8 compares the spectra calculated with and with-

out absorption. The radiation is heavily attenuated at frequencies ! 1011 Hz. At these

frequencies, the luminosity is dominated by the innermost optically thin radius, which we

take to be the radius where τ = 1. Blackbody emission at the temperature of gas at this

radius, converted to a luminosity by integrating over impact parameter, is labeled ‘Thermal’

in Figure 2.8 and is a decent approximation to the full spectrum when the fluid is optically

thick.

From ν0 ! 108 Hz to ν0 ! 1010 Hz, the gas is optically thick everywhere. Then only

thermal emission from the outermost radius is seen, and the spectrum follows a Rayleigh-

Jeans curve with Lν0 ∼ ν2
0 . From ν0 ! 1010 Hz to ν0 ! 1012, the innermost optically thin

radius is changing, and the luminosity begins to turn over. Starting at ν0 ! 1012 Hz, the gas

is optically thin to the synchrotron radiation, and the spectrum reduces to that of emission



35

Figure 2.10 Sample plots of the intensity integrand (left panel), optical depth (middle panel)
and cumulative intensity (right panel) along a ray for the case where the accretion flow is
optically thin, defined as maximum optical depth ! 3.

only (labeled ‘Emission’ in Figure 2.8). This result agrees reasonably well with the assertion

made by Shapiro (1973) [179] that absorption is negligible when ν " 1011 Hz.

Also of interest is the black hole shadow produced by various accretion models [70].

Figure 2.9 shows the shadow of the spherically accreting Schwarzschild black hole as a 2-d

contour plot and a 1-d profile. The shadow is produced at α2 + β2 = 27, and is caused by

the difference in path length between geodesics which intersect the horizon and return to

infinity, as well as the blueshift of radiation from infalling gas behind the black hole relative

to the red shift of that nearest the observer. The asymmetry in Figure 2.1 is not seen here

due to the spherical symmetry of the Schwarzschild metric.

Thus far, we have employed simple dynamical models to verify our ray tracing and

geodesic implementations.. The goal of this thesis is to connect state of the art simu-

lations of black hole accretion flows with observations. The techniques described above

allow the calculation of observables from some emission model, i.e. with knowledge of the

emission/absorption coefficients and redshifts (which depend on the fluid position and four-

velocity). For the numerical models of interest, these quantities are specified on a grid in the

Kerr metric with some coordinate system. We now describe the process of using simulation

data in conjunction with the ray tracing radiative transfer method, rather than the simple

dynamical models used in the examples above.
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2.5 GRTrans: Relativistic Radiative Transfer via Ray Tracing

We have written the code grtrans to calculate the time-dependent image of a source at

infinity in general relativity. In this thesis, the source will always be a black hole accretion

flow and the spacetime will always be the Kerr metric. In general, extensions to other

spacetimes or sources are straightforward. The necessary components describing the model

are:

• A dynamical model specifying the fluid four-velocity and state variables at all points

in space.

• A radiative model for converting the fluid state variables into variables used for com-

puting emission and transfer coefficients (electron number density, temperature and

magnetic field strength in the case of synchrotron emission for a thermal particle

distribution).

• An emissivity for computing emission and transfer coefficients from radiative variables.

In this brief summary of the code, we discuss the implementation of the ray tracing

procedure; the method for interpolating zone-based simulation quantities to points on rays;

the loading, storage and updating of simulation data required for the interpolation; and the

integration technique of the resulting emission model.

2.5.1 Implementation of Ray Tracing

The specification of the camera (viewing angle, grid size and shape) and calculation of

geodesics is done using geokerr [53]. However, grtrans has capabilities for loading geodesic

coordinates from a file as well as for computing them on the fly with geokerr, so that files

for a given viewing angle, grid size and black hole spin may be re-used with many timesteps

of simulation data or with different simulations or other models of the same black hole spin.

This also makes the extension to other spacetimes (with different geodesics) straightforward.

Ray tracing using numerical data in three spatial dimensions is memory intensive. A typ-

ical calculation uses a camera of 150x150 pixels, with ! 200-400 points per pixel (geodesic),
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Figure 2.11 As in Figure 2.10, but for the optically thick case where the first point sampled
has an optical depth " 10 The solid points are from the initial sampling, while the open
diamonds are from refining the region near the photosphere (τ ∼ 1).

while a typical GRMHD simulation uses ∼ 1283 zones per timestep. Storing the entirety

of the geodesic and fluid information simultaneous is computationally prohibitive, so that

one must be read on the fly while the other is kept in memory. We choose to load each

geodesic and compute its intensity for the given model before moving on to the next. The

alternative choice has been made as well,5 and there is no obvious clear advantage to either

method.

For a given geodesic, the fluid variables are found as discussed below and then intensities

are calculated over a grid of observed frequency, mass unit (or accretion rate; see below),

emissivity or other parameter. The code is extremely flexible, and scales well with the

addition of parameters since the geodesic calculation and fluid variable finding are typically

more computationally expensive than the emissivity calculation for the problems of interest

here.6

2.5.2 Data Loading and Updating

The radiative transfer calculation accounts for all relativistic effects, including the time

delay between photons emitted at different locations in the accretion flow. The image is

5Josh Dolence, private communication.

6In particular, for synchrotron emission from thermal particles as modeled here. The non-thermal power
law synchrotron emissivity is slower, as would be any model adding a non-thermal tail to the thermal case.
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taken at a particular observer time, which corresponds to a relatively wide range (! 100M)

of simulation time. Many timesteps of fluid data are then required to construct a single

image. This is done by loading simulation data from the entire desired range of timesteps

into memory (up to ! 2GB in the most memory intensive cases) at the beginning of the

calculation.

Due to the large number of timesteps often held in memory, it is typically most efficient

to compute images from many observer times sequentially. Then instead of loading another

large set of simulation data, only the number of steps corresponding to the observed time

step need to be replaced. The data arrays for each fluid variable begin with data from every

zone from the future-most timestep of simulation data and go backwards in time further

into the array. To move to the next timestep, the data are shifted backwards into the array

by the desired observed time step (always taken to be an integer multiple of the simulation

time step). The earliest timesteps, now at the front of the data arrays, are then replaced

with new data completing the observed time step.

2.5.3 Zone Finding and Interpolation

The fluid variables at each point on a geodesic, in “code” units (G = c = M = 1; see

below), are calculated by interpolating the large data arrays described above. Before the

interpolation can be done, the correct zone indices corresponding to the geodesic coordinates

must be found. This step needs to be rapid for the scheme to work, and manually searching

the array of zone centers for the correct coordinate locations is too slow. The simulations

used here are performed on a regular (evenly spaced) grid in some coordinates which are

not the Boyer-Lindquist coordinates used for the geodesic calculation. To find the zones

corresponding to geodesic points, the geodesic coordinates are transformed to simulation

coordinates to find the two nearest neighbors in simulation coordinates in each dimension.

These nearest neighbors are then used to find the indices corresponding to the eight nearest

neighbors in the data arrays. This step is trivial when there is no static mesh refinement, as

in HARM type simulations [85, 129], but fairly complicated when there is, as is often used

in Cosmos++ [80]. An equivalent procedure is then used in the time dimension, which is
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always straightforward.

The fluid quantities from these 16 nearest neighbors are then linearly interpolated in

each dimension to find the fluid variables along the geodesic. (The interpolation is usually

done in Boyer-Lindquist or Kerr-Schild coordinates, but the results are nearly identical with

simulation coordinates). As discussed later (see Section 5.3.2 and Figure 5.15), interpolating

in the time direction for simulations with relatively widely spaced timesteps (δt " 4M)

can suppress the magnetic field strength and the resulting synchrotron emissivity. We

usually use the nearest neighbor in the time direction and interpolate in the three spatial

dimensions. Alternatively, if some other model is to be used for computing emission and

transfer coefficients, they can be loaded directly into data arrays. Then the fluid variable

finding and conversion to cgs units (see below) are dummy routines, and the emissivity

simply does the interpolation in frequency.

The routines for loading and updating data, zone finding and interpolation are simulation

specific. This maintains flexibility for adapting the code to new simulations, grids and/or

coordinates.

2.5.4 Conversion to cgs Units

As discussed earlier, current numerical simulations of black hole accretion flows typically

ignore radiation [85, 51] or in some cases use an artificial, optically thin cooling function

[175, 144]. Then the problem is scale free, and G = c = M = 1 units are used (“code”

units). To compute radiative transfer coefficients, these scales must be fixed [173]. Setting

the black hole mass fixes the length and time scales. The mass of the accretion flow is

negligible compared to that of the black hole and is scaled separately. Fixing the code mass

unit is equivalent to choosing the accretion rate onto the black hole. The conversions are

given as follows, where the desired accretion rate, Ṁcgs, can either be specified directly or

chosen as a fraction of the Eddington accretion rate, Ledd/c2 = 4πGMmp

σT c , where σT is the

Thompson cross section and mp is the proton mass:
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Figure 2.12 As in Figures 2.10 and 2.11, but for the marginally optically thick case where
the first point sampled has an optical depth ! 10 but the total optical depth " 3. The solid
points are from the initial sampling, while the open diamonds are from refining the region
where the cumulative intensity changes rapidly.

ρcgs

ρcu
=

Ṁcgs

Ṁcu

tcgs

l3cgs
, (2.22)

pcgs

pcu
=

ρcgs

ρcu
c2, (2.23)

bcgs

bcu
=

√
ρcgs

ρcu
c. (2.24)

The subscript cgs (cu) indicates quantities in cgs (code) units.

2.5.5 Integration procedure

Given the emission and absorption coefficients, we can integrate the radiative transfer equa-

tion ((2.6)). This needs to be done with some care, however, since the integration is only

trivial when the optical depth, τ , is small. We treat three regimes separately:7

• Optically thin: When the maximum value of τ along the geodesic is less than some

critical value, usually ! 3, the radiative transfer equation is done as a quadrature using

the trapezoid rule for the numerically tabulated geodesic points. A sample intensity

integrand, optical depth and cumulative intensity along a ray are shown in Figure

2.10.

7All of the examples in this section are for synchrotron radiation, which is by far the most sharply peaked
emissivity used in this thesis.
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• Optically thick: When the value of τ jumps above ! 10 in the first few points on the

geodesic, we analytically estimate the location of the τ = 1 surface and generate many

points between the beginning of the geodesic and that location. Then the procedure

for finding emission and absorption coefficients is repeated for these new points, and

the new maximum optical depth is found. If it is still too large or has become too

small, the terminal affine parameter value is changed and the procedure is repeated

until it’s about right, and finally the trapezoid rule is used to compute the intensity.

Note that whenever this case is used, the intensity is completely dependent on the

location of the outer cutoff radius. In this sense, it is more intended to prevent code

failure and to produce correct images than to obtain physical results which should

be independent of the chosen outer cutoff radius. In practice, it is only used for low

frequency synchrotron spectra where we do not expect agreement between models and

data. A sample intensity integrand, optical depth and cumulative intensity along a

ray, with and without this refinement, are shown in Figure 2.11.

• Mildly optically thick: When the maximum value of τ is larger than the critical

value but that value is not reached in the first few points of the geodesic, we make

sure not to miss the interesting portion of the ray by locating the points where the

largest contributions to the intensity are generated (usually close to the photosphere).

New points are generated in this region, and the radiative transfer equation is then

integrated for the entire ray including the new higher resolution points near the region

of interest. A sample intensity integrand, optical depth and cumulative intensity along

a ray, with and without this refinement, are shown in Figure 2.12.

The code has been tested in all of these limits and typically converges with around

100− 200 points per geodesic. Usually 200− 400 are used instead to ensure convergence to

within a few percent (see Figure 2.13). Although in the optically thick cases we refine the

geodesic points and re-calculate fluid variables and emission and absorption coefficients, in

practice to our working accuracy it would be sufficient to simply interpolate the logarithm

of the coefficients themselves. An example is shown in Figure 2.14. Since the sources of



42

Figure 2.13 Fractional difference in intensity versus sampling used relative to our fiducial
sampling of ! 400 points per ray. The differences found by averaging many random re-
samplings of the fiducial data. Convergence to within a few percent is obtained when the
rate reaches ! 0.5 (! 200 points per ray).

Figure 2.14 Emissivity jν along a ray found by interpolating geodesic coordinates, finding
new fluid variables and re-calculating the emissivity (solid line) compared to directly inter-
polating the logarithm of the emission coefficients from the original ray (open diamonds).
While we use the former method, in practice the latter would likely be sufficiently accurate.
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Figure 2.15 Sample image of Sgr A* with 300x300 resolution (left panel), 150x150 resolution
(middle panel, re-sampled to 300x300) and the difference between the two (right panel). The
largest residuals are ! 10% of the maximum image intensities. Although minor features
are poorly resolved in the 150x150 image, the integrated image intensities agree to within
! 0.01%. The images are taken from the MBD simulation (see Section 4.3), and the
parameters are ν0 = 230GHz, i = 50◦ and Ti/Te = 3.

interest are usually optically thin at the desired observed frequencies, the iterative proce-

dures are not a large part of the computational expense of the code. Usually these are

the interpolation of simulation data to geodesic points, which can involve transcendental

coordinate transformations and root finding; and the emissivity calculations, which unlike

the interpolation must be repeated at every desired output frequency and mass accretion

rate.

A converged image consists of high enough pixel resolution and a large enough “camera,”

as measured in impact parameters at infinity. The camera size can be estimated as the

projected size of the emission region. In practice, this is made slightly larger than necessary

so that the same stored pixel coordinates can be re-used for many images. Visual inspection

of images is often sufficient to ensure convergence, as underresolved regions of an image

usually consist of sharp spikes in intensity between neighboring pixels. We find that an

evenly-spaced, 150x150 pixel rectangular grid is sufficient for the purposes of this thesis and

that is used except in the labor-intensive calculations for the “radiation edge” in Section

3.3.1, where simple emissivities are used and convergence in total flux can be achieved with

a much coarser grid. Figure 2.15 shows a typical case in a model of Sgr A*. The left panel
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is 300x300, the same image at our fiducial resolution of 150x150 is in the middle panel and

the right panel shows the residuals. The total flux in this case converges to ! 0.01%. We

always find that 150x150 pixels is sufficient for ! 1% convergence in the total flux. Actual

cameras do not sample the intensity along a single ray, but rather average over a finite pixel

area. We can approximate this by taking each ray to be a vertex of the camera and average

sets of four rays to form pixels. This procedure differs negligibly from the simple one ray

per pixel scheme used throughout this thesis.

The ray tracing method for relativistic radiative transfer calculations described in this

chapter as implemented in the code grtrans is used for the remainder of this thesis to com-

pute images, spectra and light curves from general relativistic MHD (GRMHD) simulations

of black hole accretion flows. Simplified models of stellar mass black holes in the hard state

or low-luminosity active galactic nuclei (AGN) are discussed in Chapter 3. Chapters 4 and

5 describe detailed radiative models of Sagittarius A*, and the model is extended to include

jet emission to construct a model of M87 in Chapter 6.
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Chapter 3

OBSERVATIONAL PROPERTIES OF TILTED BLACK HOLE
ACCRETION DISKS

This chapter is devoted to the study of generic observational properties of tilted accretion

disks, where the angular momentum axis of the accreting material is misaligned from the

black hole spin axis. We discuss their relevance to observations of black hole x-ray binaries

and signatures of the presence of tilt that can be studied in future observations. This work is

also relevant to discussions of models of Sagittarius A* from tilted simulations in Chapters

4 and 5.

3.1 Introduction

In standard thin disk accretion theory [176, 148], the angular momentum axis of the accre-

tion flow is assumed to be aligned with the black hole spin axis. Bardeen & Petterson [14]

found that even if the initial angular momentum axis of the accretion flow is misaligned from

the black hole spin axis, the inner part of the disk will still align on the viscous timescale.

However, this so-called “viscous” regime only operates when H/R ! α, where H/R is the

scale height of the accretion disk, and α is the parameterized viscosity [153]. This is appli-

cable in active galactic nuclei (AGN) and the high/soft or thermal state of black hole X-ray

binaries. On the other hand, advection-dominated accretion flows (ADAFs) are expected

in the low/hard state of black hole X-ray binaries [140, 65] and in low-luminosity AGN.

ADAFs are unable to cool through efficient radiation, and are geometrically thick. It is

likely that the accretion flow in many of these sources is misaligned, or “tilted.”

Contemporary general relativistic MHD simulations [GRMHD, 51, 85] currently pro-

vide the most physically realistic description of the inner portion of accretion flows around

spinning black holes. Radiation can be calculated from these simulations in post-processing

by assuming that it is dynamically and thermodynamically negligible. This method has

been used to look for high frequency quasi-periodic oscillations (HFQPOs) in simulated
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data [173] and to create radiative models of Sagittarius A* ([147, 136] and Chapters 4 and

5) and M87 (Chapter 6).

All prior work assumed alignment between the angular momentum axis of the accretion

flow and the black hole spin axis. Fragile et al. [80, 81, 77] were the first to do GRMHD

simulations of disks with a tilt between these two axes. These new simulations yielded

a number of unexpected features. First, the main body of the disk remained tilted with

respect to the symmetry plane of the black hole; thus there was no indication of a Bardeen-

Petterson effect in the disk at large. The torque of the black hole instead principally

caused a global precession of the main disk body [78, 80]. The time-steady structure of the

disk was also warped, with latitude-dependent radial epicyclic motion driven by pressure

gradients attributable to the warp [79]. The tilted disks also truncated at a larger radius

than expected for an untilted disk. In fact, based on dynamical measures, the inner edge of

these tilted disks was found to be independent of black hole spin [77], in sharp contrast to

the expectation that accretion flows truncate at the marginally stable orbit of the black hole.

Finally, Henisey et al. (2009) [95] found evidence for trapped inertial waves in a simulation

with a black spin a = 0.9, producing excess power at a frequency 118(M/10M")−1 Hz.

In this work we use the relativistic ray tracing technique described in Chapter 2 to

produce images and light curves of some of these numerically simulated tilted and untilted

black-hole accretion disks. Our goal in this chapter is to discuss observable differences

between the two types of accretion flows, and to identify observational signatures of tilted

black hole accretion disks.

3.2 Methods

3.2.1 Simulation Data

The simulations used here are from Fragile et al. [80, 81, 77]. The parameters are given in

Table 3.1. All of the simulations used the Cosmos++ GRMHD code [6], with an effective

resolution of 1283 for the spherical-polar grid (except near the poles where the grid was

purposefully underresolved) and 128×64×64×6 for the cubed-sphere grid. The simulations

were initialized with an analytically solvable, time-steady, axisymmetric gas torus [51],
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Figure 3.1 Sample images of the thermal emission model for the 90h (left) and 915h (right)
simulations at 60◦ inclination. The observed photon energy is E0 = 10keV for a 10M" black
hole, and each panel is 54M across. The color scale is linear, increasing from blue to red to
yellow to white.

threaded with a weak, purely poloidal magnetic field that follows the isodensity contours

and has a minimum Pgas/Pmag = 10 initially. The magnetorotational instability (MRI)

arose naturally from the initial conditions, and the disk quickly became fully turbulent.

The simulations were all evolved for ∼8000M, or ∼40 orbits at r = 10M in units with

G = c = 1. Only data from the final 2/3 of the simulation are used in this analysis, once

the disks are fully turbulent as measured by a peak in the accretion rate and in the mass

inside of r = 10M. This is chosen to utilize as much of the simulation data as possible, and

none of our results depend on which time interval in the simulation is used.

These simulations all evolved an internal energy equation, and injected entropy at shocks.

Such a formulation does not conserve energy, and produces a more slender, cooler torus than

conservative formulations which capture the heat from numerical reconnection of magnetic

fields [82]. The scale height spanned the range H/R ∼ 0.05− 0.1 in these simulations, with

larger scale heights for higher spin simulations.
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Table 3.1. Simulation Parameters

Simulation a/M Tilt Grid

Angle

0Ha 0 ... Spherical-polar

315Hb 0.3 15◦ Spherical-polar

50Ha 0.5 0◦ Cubed-sphere

515Ha 0.5 15◦ Spherical-polar

715Hb 0.7 15◦ Spherical-polar

90Hc 0.9 0◦ Spherical-polar

915Hc 0.9 15◦ Spherical-polar

aFragile et al. (2009) [81]

bFragile (2009) [77]

cFragile et al. (2007) [80]

3.2.2 Ray Tracing

Relativistic radiative transfer is computed from simulation data via ray tracing. Start-

ing from an observer’s camera, rays are traced backwards in time assuming they are null

geodesics (geometric optics approximation), using the public code geokerr described in

Appendix A. In the region where rays intersect the accretion flow, the radiative transfer

equation is solved along the geodesic [28] in the form given in Fuerst & Wu (2004) [84],

which then represents a pixel of the image. This procedure is repeated for many rays to

produce an image, and at many time steps of the simulation to produce time-dependent

images (movies). Light curves are computed by integrating over the individual images.

Sample images of two simulations are given in Figure 3.1. Doppler beaming causes asym-

metry in the intensity from approaching (left) and receding (right) fluid. Photons emitted

from the far side of the accretion flow are deflected toward the observer, causing them to

appear above the black hole. The thick, central ring is due to gravitational lensing from

material passing under the black hole, while the underresolved circular ring is caused by

photons that orbit the black hole one or more times before escaping. These ring features
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are in excellent agreement with the predictions made by Viergutz (1993) [195].

To calculate fluid properties at each point on a ray, the spacetime coordinates of the

geodesic are transformed from Boyer-Lindquist to the Kerr-Schild coordinates used in the

simulation. Since the accretion flow is dynamic, light travel time delays along the geodesic

are taken into account. Data from the sixteen nearest zone centers (eight on the simulation

grid over two time steps) are interpolated to each point on the geodesic. Between levels of

resolution near the poles on the spherical-polar grid, data from the higher resolution layer

are averaged to create synthetic lower resolution points, which are then interpolated. Very

little emission originates in the underresolved regions of the simulation.

The simulations provide mass density, pressure, velocity and magnetic field in code units.

These are converted into cgs units following the procedure described in Schnittman et al.

(2006) [173] and Chapter 2. The length- and time-scales are set by the black hole mass,

taken to be 10M" throughout.

We consider two emission models. The thin line emissivity from Schnittman et al. is a

toy model that traces the mass density in the accretion flow. Their thermal emission model

uses free-free emission and absorption coefficients, and is used as a model for the high/soft

state. Although we do not expect tilted disks to accurately represent the high/soft state, this

model may be appropriate for sources radiating at an appreciable fraction of Eddington,

where the infall time is shorter than the radiative diffusion time and the accretion flow

becomes geometrically “slim.” When taking the temperature from the ideal gas law rather

than the radiation-dominated equation of state used in Schnittman et al., this model may be

qualitatively appropriate for modeling the low/hard state in X-ray binaries or low-luminosity

AGN.

In §3.3.1, we consider emission from inside of r = 15M, while in §3.3.2 and 3.3.3 fluid

inside of r = 25M is used for the ray tracing. For all results here, we take the temperature

from the ideal gas law rather than assuming a radiation-dominated equation of state. All of

our results are qualitatively identical when using the radiation-dominated equation of state

to calculate the temperature.
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Figure 3.2 Comparison of relative intensities for all simulations using the thin line emissivity.
The flux from grids of images over observer time, inclination and azimuth for each simulation
have been averaged to create these curves.

Figure 3.3 Radiation edge as a function of spin for untilted (open) and tilted (solid) sim-
ulations for the thin line emissivity. The error bars show the one standard deviation time
variability in the radiation edge, averaged over other parameters. The solid line is the
marginally stable orbit.
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Figure 3.4 Comparison of relative intensities for all simulations using the thermal emissivity
at E0 = 1 keV. The flux from grids of images over observer time, inclination and azimuth
for each simulation have been averaged to create these curves.

Figure 3.5 Radiation edge as a function of spin for untilted (open) and tilted (solid) sim-
ulations for the thermal emissivity at E0 = 1keV. The error bars show the one standard
deviation time variability in the radiation edge, averaged over other parameters. The solid
line is the marginally stable orbit.
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3.3 Results

3.3.1 Radiation Edge

Inferring the inner edge of accretion flows is important for attempts to measure spin from

broad iron lines [e.g. 200] or continuum fitting [e.g. 174, 49]. Such measurements assume

that the disk has a sharp cutoff at the innermost stable circular orbit, which depends on

spin [15]. Fragile (2009) [77] used four different dynamical measures [108] to compare the

inner edges of simulated tilted and untilted accretion disks. Here we use the ray traced

models to locate the “radiation edge,” the radius inside of which the contribution to the

total flux is negligible.

For each emission model, images are calculated for all simulations over a grid of observer

inclination, observer time, and observer azimuth (for the tilted simulations). We then

compute images cutting out fluid inside of successive values of the radius rin. The radiation

edge is functionally defined as the radius where the ratio of intensities, F (rin)/F (0), drops

below an arbitrary fraction f , chosen so that the untilted radiation edge agrees as well as

possible with rms, the marginally stable orbit.

Figure 3.2 shows a plot of F (rin)/F (0) as a function of rin averaged over observer time,

azimuth and inclination for the thin line emissivity. From these curves we extract values

of the radiation edge, redge. Results are shown in Figure 3.3, where the error bars are

computed from the standard deviation of redge as a function of time, averaged over the

other parameters. This result agrees well with the dynamical measures from Fragile (2009)

[77]. While the radiation edge moves in towards the black hole with increasing spin for

untilted simulations, there is no such trend in the tilted simulations. Instead, the radiation

edge appears to be independent of spin.

Figures 3.4 and 3.5 show the same plots for the thermal emission model with observed

photon energy E0 = 1 keV. The conclusions are identical with this emission model. The

untilted simulations have radiation edges which agree quite well with rms, while the tilted

simulations show no correlation between spin and redge. Again, these results are consistent

with Fragile (2009) [77], although we find no trend of increasing radiation edge with spin, as

was found for a couple of the dynamical measures used by Fragile. Plots from other observed
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Figure 3.6 Emission line profiles for simulations with a=0.9. The emissivity is j ∝ ρr−3 and
the observer inclination is 60◦ in all cases. The dotted lines show the 1σ range, taken from
the time variability.

photon energies are not shown; although the relative flux falls off much more quickly with

increasing rin at higher photon energies, the results for the radiation edge remain completely

unchanged.

3.3.2 Emission Line Profiles

Spectra from AGN and X-ray binaries typically include strong emission and absorption

features. As the observed line shapes are sensitive to both the velocity of the emit-

ting/absorbing fluid, and also to the local gravitational redshift, they can provide infor-

mation about the dynamics of the accretion flow [66, 111].

Untilted accretion flows have nearly Keplerian velocity distributions outside the marginally

stable orbit, where the velocities smoothly transition to plunging. Simulated tilted accretion

disks, on the other hand, show three major differences. The Keplerian velocity structure is

now tilted.

Secondly, the warped structure of the tilted disks leads to epicyclic motions with ve-

locity magnitudes comparable to the local geodesic orbital velocity [79]. Finally, the larger

radiation edge values of the tilted disks identified in §3.3.1 means that the transition to

plunging orbits occurs at larger radius than in untilted disks.

These effects indicate that we should expect a number of differences in line profiles from

tilted accretion flows [83]. The maximum blueshift should be larger for tilted accretion
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Figure 3.7 Minimum line energy vs. spin for all simulations. The tilted (untilted) simulations
are denoted by solid (open) circles, and four observer azimuths are plotted for the tilted
simulations. The open diamonds are from a thin disk in the equatorial plane with an
emissivity j ∝ r−3 similar to that used in Schnittman & Bertschinger (2004) [171] and in
Section 2.4.2. The minimum line energy is defined as the lowest energy contained in the set
of intensities comprising 99% of the total line intensity. The 1σ errors are taken from the
time variability.

Figure 3.8 As in Figure 3.7, but for the maximum line energy.
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disks, except for edge-on viewing. For i < 90◦ − β, where i is the observer’s inclination

angle and β is the initial tilt angle, both relative to the black hole spin axis, the tilted

accretion flow should mimic an untilted one with a larger inclination. In contrast, the red

wing should be less pronounced in the tilted disks due to their larger truncation radii. On

the redshifted side, tilted disks behave similar to lower spin, untilted disks.

Producing a detailed reflection spectrum would require a significant number of assump-

tions to model the metallicity, ionization levels, and incident X-ray flux throughout the

accretion flow. For simplicity, we instead use toy model emissivities of the form j ∝ ρr−s,

where ρ is the fluid mass density, j is the photon-energy integrated emissivity and s = 2,3.

The two values correspond to assuming the emitted line flux is proportional to the incident

flux from an irradiating source on the spin axis and to local dissipation of heat, respectively

[e.g., 83]. This simple form allows us to focus on general features to be expected from

emission lines from tilted black hole accretion disks.

Figure 3.6 shows sample line profiles for an inclination of i = 60◦ for four observer

azimuths, φ0, from the 915h simulation. Only a single observer azimuth from the 90h

simulation is shown, since the time-averaged emission line is independent of observer azimuth

for untilted simulations. In all cases, the lines consist of a strong peak near the rest energy

of the line (g ≡ E0/Eem = 1), a smaller peak at lower energy and a “red wing,” whose

extent and strength depends on the amount of emission arising very close to the black hole

(small g). The location of the “blue” peak (large g) depends on the maximum velocity along

the line of sight in the accretion flow. For an untilted disk, this corresponds directly to the

observer’s inclination angle, since all fluid velocities are essentially in the equatorial plane.

For the tilted model shown in Figure 3.6, the location and strength of the blue peak

changes significantly with observer azimuth. When the angular momentum axis of the

accretion flow is in the plane of the sky (−π/2 ! φ0 ! −π/4, depending on the simulation

time), its fluid velocities are maximally aligned with the observer’s line of sight, leading to

the largest blueshifts. This is the same condition as an untilted disk being viewed edge-on.

For other orientations, the blue tail can extend to significantly higher photon energies in

the tilted simulations because the largest effective inclination is approximately ieff = i + β.

When the accretion flow is not edge-on, there will exist orientations where ieff > i, and
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Figure 3.9 Sample light curve and linear fit (left), light curve with linear fit subtracted
(middle) and power spectrum (right). The units are scaled to a 10 solar mass black hole.

the blue peak for a tilted simulation will occur at higher energy than possible for untilted

accretion flows. The red wing, on the other hand, remains largely unchanged with observer

azimuth, since it is caused by gravitational redshifts rather than Doppler boosts. Since the

radiation edge for the 915h simulation was found to occur at significantly larger radius than

that of 90h, it is expected that the red wing should extend further in the 90h simulation.

The effect is subtle, but identifiable in Figure 3.6.

To quantify these trends, for all simulations we compute the extent of the line profile, as

well as the strengths and locations of their red and blue peaks. Most clear are the results for

the line extents, shown for i = 60◦ in Figures 3.7 and 3.8. As expected, the red wing extends

to lower photon energies at higher spins for untilted simulations, while there is no similar

trend for the tilted models. Also as expected, the blue wing extends to systematically higher

photon energies in the tilted simulations because of the difference between ieff and i noted

above and the epicyclic motion in the tilted simulations.

Perhaps the most striking feature of the line profiles is the variation with observer

azimuth seen in all tilted simulations. These changes in line shape between different observer

azimuths are typically larger than the full range of changes seen between different spins for

untilted simulations. This suggests that the most powerful means of recognizing a tilted

accretion disk may be to measure changes in an emission line profile over time as the disk

precesses.



57

Figure 3.10 Median power spectra for i = 30◦, 60◦, 90◦ from the 90h and 915h simulations.
The errors are estimated from the standard deviations of the set of power spectra at observed
photon energies of 1, 3, 10 keV at four observer azimuths. All power spectra are well
described by the broken power law model, with break frequencies around 100Hz.
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Figure 3.11 Difference in the logarithms of median 90h and 915h power spectra, normalized
to their combined standard deviations for i = 30◦, 60◦, 90◦. The median 90h power spectra
are shifted to account for their lower mean power.

Figure 3.12 Sample power spectrum (solid), best fit broken power law model (dot-dashed)
and upper and lower 99% (dotted) and 99.9% (dashed) significance contours.
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3.3.3 Variability

X-ray timing of black hole binaries has allowed the characterization of power spectra and

the detection of transient QPOs [for a review, see 164]. High-frequency QPOs are seen in

the steep power law state (SPL), while low-frequency QPOs have been observed in both

the hard state and the SPL. The geometry of the accretion flow in both these states is

uncertain, and there is no reason to assume complete alignment between the accretion flow

angular momentum and black hole spin axes in these states. Given the time-dependent

nature of the ray tracing, we can analyze the variability of the simulated accretion flows for

the simplistic emission models used here to analyze the shape of their power spectra and to

look for possible QPOs.

The best time sampling of the simulations is in 90h and 915h, which are used here at 8

observer azimuths, 3 inclinations and 3 observed photon energies using the thermal emission

model. Each light curve captures roughly 6 (20) orbits at r = 25M (10M), corresponding

to a total observer time, ∆tobs = 0.23M10 s, where M10 is the black hole mass in units of

10M". This duration is about 1/8 of the total precession period for the torus in the 915h

simulation.

Figure 3.9 shows sample light curves and power spectra from the thermal emission model

at 10keV for an observer inclination of i = 60◦. The secular trend is removed by subtracting

the linear best fit from the light curve before computing the power spectrum.

All power spectra are well fit by broken power law models of the form:

P (ν) = Aν−γ1 ν ≤ νb

= Aνb
γ2−γ1ν−γ2 ν > νb, (3.1)

where γ1, γ2 are power law indices and the break frequency, νb, lies near 100Hz M−1
10 in

both simulations. The tilted disk power spectra tend to flatten out at the highest sampled

frequencies, ∼1000Hz M−1
10 . Figure 3.10 shows median power spectra for the three different

inclination angles from each simulation. The error bars are estimated from the standard

deviation in log Power over observer azimuths and photon energies. At higher inclinations,

the peaks in the power around 100Hz grow, especially for the tilted simulations. This would
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be expected from a source of excess power in the inner radii, where the larger Doppler shifts

at higher inclination would enhance the signal.

To quantitatively compare the power spectra between the two simulations, the ratio be-

tween median power spectra in untilted and tilted simulations is plotted for each inclination

in Figure 3.11. The values are normalized to the combined uncertainties at each frequency.

The overall plots are shifted according to the mean ratio between power spectra.

At almost all frequencies, these ratios are within ±2σ, and are unlikely to be observed as

significant features. However, there are a few noteworthy features near 100M−1
10 Hz. These

are particularly interesting given the finding by Henisey et al. (2009) [95] that the tilted

simulation 915h contains excess power due to trapped inertial waves at 118M−1
10 Hz.

To assess the significance of possible features in the PSDs, the power spectrum is fit with

a broken power law model. The parameters from the best fit are used to simulate many

random light curves with the same parameters, and which contain no significant features.

The significance is determined by comparing the values for the power at each frequency for

each model power spectrum with the distribution of random ones. An example is shown in

Figure 3.12, where a single power spectrum from the 915h simulation is shown, as well as

the best fit broken power law model and upper and lower 99.9% confidence intervals from

simulating random light curves.

No obvious QPO features show up in this analysis. In several of the 915h light curves,

the feature near 50M−1
10 Hz shows up as 99.9% significant. It appears at high significance in

more of the light curves at high inclinations. In the 90h simulations, almost all significant

features are found at very high frequencies ∼1000M−1
10 Hz. These are spurious, caused by

slight errors in the fit to the post-break slope incurred by ignoring all frequencies larger

than 800M−1
10 Hz. Including the highest frequencies in the fit can favor models with break

frequencies ∼500 M−1
10 Hz, steep initial slopes and shallow post-break slopes. This occurs

due to the denser sampling of the PSD at high frequencies. Simply ignoring the highest

frequencies gives better results than a variety of more complicated weighting schemes. The

features near 100M−1
10 Hz from Figure 3.12 never show up at more than 99% significance. In

general, while the feature near 50M−1
10 Hz in the tilted simulations is more convincing than

anything from the untilted simulations, it does not appear at high enough significance at
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Table 3.2. Broken Power Law Fit Parameters

90h 915h

30◦ 60◦ 90◦ 30◦ 60◦ 90◦

γ1 1.6 ± 0.6 0.7 ± 0.3 0.4 ± 0.7 1.2 ± 0.3 0.9 ± 0.3 0.7 ± 0.9

γ2 3.3 ± 0.6 3.8 ± 0.3 4.0 ± 0.7 3.4 ± 0.8 3.2 ± 1.0 3.7 ± 0.8

νb 80 ± 20 90 ± 5 100 ± 20 90 ± 10 90 ± 20 100 ± 30

enough observer frequencies and azimuths to be identified as a QPO.

Finally, fitting the sets of power spectra provides a general idea for the range of best

fit values of the broken power law parameters. The median parameters found from the

tilted and untilted simulation are listed in Table 3.2, where the quoted uncertainties are

the standard deviations from light curves with different observer azimuths and frequencies.

Break frequencies have the units M−1
10 Hz. The break in slope becomes more pronounced at

higher inclination as the initial slope becomes shallower while the post-break slope becomes

steeper. The post-break slope is slightly shallower in the tilted simulations, while the initial

slope is more strongly dependent on inclination in the untilted case.

3.4 Physical Cause of Disk Truncation

The observable signatures of tilted disks discussed so far are, for the most part, due to

two main differences between tilted and untilted disks: tilted disks precess, and they are

truncated outside rms. Fragile et al. (2007) [80] discussed why the simulated accretion flows

precess. It is our interest to better understand the physical cause for the large truncation

radius.

The first thing to note is that rapidly rotating black holes allow stable circular orbits at

smaller radius than slowly rotating black holes. Therefore, the angular momentum extrac-

tion mechanism at play in the tilted disks must be more effective at higher spin to cause

material to plunge from the same location. This is confirmed in Figure 3.13, where we plot

the difference in density-weighted, shell-averaged specific angular momentum for tilted and
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Figure 3.13 Fractional difference in shell-averaged angular momentum between tilted and
untilted simulations with similar spins. The untilted simulations are nearly geodesic, while
the tilted simulations are increasingly sub-geodesic with decreasing radius.

Figure 3.14 Shell-averaged entropy distributions for all simulations. Excess entropy inside
r ∼ 10M is generated by non-axisymmetric standing shocks in the tilted simulations.
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untilted simulations of comparable spin. The angular momentum is defined as , = −uφ/ut,

where uµ is the fluid four-velocity and the shell-average of a quantity x is given by,

〈x〉 =
1
A

∫ ∫
dΩ

√
−g x, (3.2)

where Ω is the coordinate solid angle, g is the metric determinant and A =
∫ ∫

dΩ
√
−g.

The density-weighted shell-average of x is defined as 〈ρx〉/〈ρ〉. The angular momentum

profiles for the untilted simulations are nearly geodesic outside of r ∼ 5M. Inside of r ∼ 10M,

the tilted simulations become increasingly sub-geodesic, with the higher spin cases deviating

more than the lower spin ones. The same trend holds when comparing the tilted simulations

to the analytic result for the angular momentum profile of material on geodesic orbits in an

equatorial disk inclined 15◦ to the black hole spin axis.

Fragile & Blaes (2008) [79] suggested that the non-axisymmetric standing shocks that

occur in the inner radii above and below the midplane of the disk may enhance the outward

transport of angular momentum, causing fluid to plunge from outside the marginally stable

orbit. To connect the enhanced angular momentum loss of the tilted disks with the standing

shocks, we next look at a plot of the density-weighted, shell-averaged entropy profiles in

Figure 3.14. Since these simulations conserve entropy except across shocks, the excess inside

of r ∼ 7M in the tilted simulations signifies the presence of extra shocks. The steepness of

the entropy gradient gives some measure of the strength of these shocks. Again, we see that

the effect is greatest in the simulations with the fastest spinning black holes.

Further evidence linking the sub-geodesic angular momentum profiles of the tilted sim-

ulations with the standing shocks can be found from looking at the time-dependence of the

shell-averaged angular momentum. While the untilted simulation remains nearly geodesic,

the tilted simulations are continuously transporting angular momentum outward from r ∼

10M for the first ∼ 5000M before reaching a steady state, as would be expected from a

dynamical mechanism. Finally, vertically integrated contour plots such as Figure 3.15 show

that the angular momentum in the tilted simulations is non-axisymmetrically distributed.

The regions of depleted angular momentum correspond to the standing shocks, which appear

as regions of excess entropy in the bottom panels of Figure 3.15.
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Following Fragile & Blaes, we postulate that the standing shocks are caused by deviations

from circular orbits near the black hole. Figure 3.16 shows the shell-averaged eccentricities

of the orbits in each simulation, estimated at one scale-height in the disk using

e = − r

6M

∂(β sin γ)
∂r

, (3.3)

where β is the tilt and γ is the precession of each orbital shell.1 All quantities are calculated

from fitting the shell-averaged disk tilt and twist (Eqs. 32 and 41 of 80) with power laws,

and using the resulting expressions in Equation (3.3). The increase in eccentricity toward

smaller radii leads to a crowding of orbits near their apocenters [101], which leads to the

formation of the standing shocks. The eccentricity is larger for higher black hole spin,

except inside the plunging region where the fits become poor and the eccentricity is ill-

defined. Equation (3.3) may indicate how these results depend on the initial tilt of the

simulations. If we assume that the strongest dependence of e on tilt is through β and that

∂β/∂r and ∂γ/∂r remain unchanged for different tilts, then equation (3.3) suggests that

the eccentricity of the orbits should vary roughly linearly with the initial tilt, at least for

small angles. This prediction is tentatively confirmed by a simulation we have done that

started with an initial tilt of 10◦.

3.5 Discussion

Tilted accretion flows will inevitably be present in a significant fraction of black hole sources

with L/Ledd ! 0.05 and possibly L/Ledd " 0.3 (thick or slim disks). Using relativistic ray

tracing and a set of simple emissivities, we have compared the radiation edge, emission

line profiles and power spectra of simulated black hole accretion flows with a tilt of 15◦ to

their untilted counterparts. We find the radiation edge is independent of black hole spin,

while the untilted simulations agreed with the expected qualitative trend of decreasing inner

radius with increasing spin. These results for the radiation edge confirm the work of Fragile

(2009) [77], who used dynamical measures to locate the inner edge. The marginally stable

orbit itself does move outwards for orientations outside the equatorial plane at non-zero

1This definition of e differs from that used by Ivanov & Illarionov (1997) [101] by a phase factor of π/2
in γ. Fragile & Blaes used the formula from Ivanov & Illarionov without modification.
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Figure 3.15 Vertically integrated contour plots of specific angular momentum (top) and
entropy (bottom) for snapshots of the 90h (left) and 915h (right) simulations. The color
scale is linear, increasing from blue to red to yellow to white. The non-axisymmetric shocks
in 915h correspond to regions with deficit (excess) angular momentum (entropy).
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Figure 3.16 Shell-averaged orbital eccentricities for all tilted simulations, estimated at one
scale-height in the disk. The increasing eccentricity of orbits toward smaller radii leads to
a crowding of orbits at their apocenters, which, in turn, can generate standing shocks.

spin. For example at a 90◦ tilt, rms is equal to its a = 0 value at all spins. However, the

effect is negligible for the 15◦ tilt angle considered here (see Fragile et al. (2007) [80] Figure

5) and the difference in radiation edge between tilted and untilted simulations is entirely

due to the accretion physics.

Due to the independence of inner edge on spin, the red wing of tilted accretion flow

emission line profiles is also fairly independent of spin. This introduces a possible compli-

cation for attempts to measure black hole spin from sources which may be geometrically

thick. In general, measurements of small spin (large inner radius) may be unreliable unless

the disk is known to be untilted. A reliable estimate of a large black hole spin (small inner

radius), in contrast, could rule out the presence of a tilted disk. The tilt angle may also be

constrained or measured using X-ray polarization measurements, as precession may cause

its degree and position angle to exhibit time-dependence.

The blue wing can be much broader for tilted accretion flows, and the tilted-disk line

profiles depend strongly on the observer azimuth as well as inclination. Since a tilted disk
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is expected to precess [80], highly variable emission line profiles could signify the presence

of a tilted accretion flow, as has been pointed out in the context of warped thin disks [92].

Since many LLAGN and X-ray binaries in the low/hard state should be tilted, time-variable

emission lines should be quite common, and this effect is unlikely to significantly depend on

accurate reflection spectrum modeling. Although the simulations can only be run for a short

time compared to the precession time scale, precession is a possible source of low frequency

quasi-periodic oscillations when the accretion flow is optically thin due to the modulation of

Doppler shifts as the velocities in the accretion flow align and misalign with the observer’s

line of sight [see 100, for more discussion of QPOs from precessing tilted disks]. The typical

amplitude of the oscillation for emission models used here is ! 20%, about the same as the

intrinsic variability. This means that the feature will have to be found by looking at the

power spectrum, since there may be less intrinsic variability on long timescales.

Finally, we have studied power spectra for our simple models. We find broken power law

spectra with break frequencies around 100M−1
10 Hz and power law indices in the range 0-2 (3-

4) pre- (post-) break for both tilted and untilted simulations. Previous studies [7, 143] found

single power laws with index ∼2. Armitage & Reynolds (2003) [7] found that power spectra

from individual annuli are well described by broken power laws where the break frequency

is close to the local orbital frequency – the averaging of many annuli with an emissivity that

falls with radius smooths the power spectrum into a single power law. We see the same

behavior in our simulations; the break frequencies from power spectra of individual radial

shells agree with the local orbital frequency for both simulations 90h and 915h. A break

frequency 100M−1
10 Hz then implies a radius of r ≈ 16M. Our broken power law spectra are

therefore likely due to the fact that our emissivity peaks relatively near the outer radius

used for the ray tracing, r = 25M. A larger radial domain would likely shift the break to

smaller frequencies.

Observed break frequencies in the low/hard state are typically νb ∼ 0.1 − 1Hz, which

may be caused by the transition from a thin disk to a thicker, ADAF flow [65]. That would

imply a transition radius rt ! 200−1000M2/3
10 M . Our results for pre- and post-break slopes

from both tilted and untilted simulations agree with those found in Cygnus X-1 [166] for an

inclination i = 30◦. In GRO J1655-40 [165] our pre-break slopes agree for all inclinations.
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However, the PSD for that source is well described by a single power law.

There is no clear evidence in our work for high frequency QPOs due to the trapped

inertial waves identified by Henisey et al. (2009) [95], although there are more features

in power spectra from the 915h simulation at higher significance than in 90h. Even when

computing PSDs for sets of spherical shells from the simulations, there are no clear features

in the tilted power spectra that are not also present in the untilted case. It is possible

that this result could depend on the chosen emissivity. Alternatively, the excess power in

trapped inertial waves could be insufficient to rise above the red noise continuum.

The independence of the inner radius of the tilted simulations on black hole spin is

attributable to the extra angular momentum transport provided by the asymmetric standing

shocks. These shocks are only present in the tilted simulations. Their strength scales with

black hole spin, which is a necessary condition for countering the greater centrifugal support

at higher spins. The standing shocks, in turn, appear to be attributable to epicyclic motion

within the disk driven by pressure gradients associated with the warped structure. Again,

this effect scales with the spin of the black hole, which contributes to the stronger shocks.

For small tilt angles, the orbital eccentricity scales as e ∼ β. This suggests that signifi-

cant deviations between the spin-dependence of the radiation edge and the marginally stable

orbit should be present even at modest tilt angles β " 5◦. At larger tilts, it is unclear if the

increasing eccentricity will lead to an inner edge that increases with spin. This is both due

to the uncertainty in the radial tilt and twist profiles β(r) and γ(r) at larger tilts, and to the

lack of a quantitative connection between inner disk edge and eccentricity. The dynamical

measures from Fragile (2009) [77] place the location of the inner edge in a simulation with

a = 0.9M and β = 10◦ closer to the location of 915h than 90h. This data point supports

the idea that a noticeable departure between redge and rms should exist between tilted and

untilted disks even for β " 5◦. It also suggests that at larger tilt angles, redge is likely to

increase with spin unless the effect saturates at β ≈ 15◦. Simulations with larger tilt angles

will be able to address this question with certainty. Future simulations should also be done

with a total energy conserving algorithm to verify that the precession and non-axisymmetric

shocks are independent of numerical code used. Simulations with a range of tilt angles and

scale heights will be necessary to build up a numerical understanding of the physics of tilted
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disks in the limits of low-spin at non-zero tilt and in low disk thickness where the torus

should align with the black hole. In the latter case, the value of the transition radius is

uncertain and may also be measured by future simulations.
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Chapter 4

RADIATIVE MODELS OF SAGITTARIUS A*: MODEL FITTING
AND PARAMETER CONSTRAINTS

4.1 Introduction

Due to its large angular size, the Galactic supermassive black hole candidate Sagittarius

A* (Sgr A*) is a promising laboratory for precision black hole astrophysics using very

long baseline interferometry (VLBI) at millimeter wavelengths. Previous measurements

[187, 60, 106] at 7 and 3.5mm found a small instrinsic source size for Sgr A* (100–200 µas

FWHM), but at those wavelengths interstellar scattering is the dominant contribution to

the observed size and blurs the image into an elliptical Gaussian. Recent measurements at

1.3mm are the first at short enough wavelengths to avoid contamination due to interstellar

scattering and at long enough baselines to achieve event horizon scale resolution [61, 74].

Future measurements may detect the black hole shadow, providing the first direct evidence

of an event horizon [13, 70].

Sgr A* is moderately variable in the radio and millimeter [207, 63, 125, 113, 204] with

order of magnitude flares in the IR and X-ray [8, 86, 87]. Its spectral energy distribution

(SED) rises from the radio to a millimeter peak (“submillimeter bump”). Baganoff et al.

(2003) [9] detected a much lower quiescent luminosity in the X-ray, while a quiescent infrared

state has not been definitively detected. The submillimeter bump is thought to arise from

relativistic, thermal electrons in the innermost portion of a hot, thick, advection-dominated

accretion flow (ADAF; [141]). Polarization measurements have shown that the peak electron

number density and mass accretion rate must be much smaller than in the original ADAF

model [3, 158], and contemporary variants are known collectively as radiatively inefficient

accretion flow (RIAF, [202]) models. The radio spectrum can be explained either by a small

amount of the internal energy being injected into nonthermal electrons in the accretion

flow [202] or by a short, mildly relativistic, optically thick jet [68]. The quiescent X-ray
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emission is a combination of Compton scattering from submillimeter or IR seed photons,

and bremsstrahlung from cooler electrons further from the black hole, near the Bondi radius.

Broderick & Loeb (2006) [32] modeled the infrared flaring as being due to orbiting

inhomogeneities (“hot spots”) in the inner radii of the accretion flow. Recently, correlated

multiwavelength flares have instead favored an adiabatically expanding blob model [204],

which can explain the observed time lags between the infrared, X-ray and millimeter flares.

The jet emission model can explain the time lags between flaring events in the radio and

millimeter [69]. The RIAF, jet, hotspot and expanding blob models for Sgr A* emission

provide a variety of competing pictures of the accretion flow. These models are either

completely non-relativistic or modified later to be consistent with relativity. They neglect

the magnetic fields responsible for outward angular momentum transport and accretion via

the magnetorotational instability (MRI, 194, 44, 10). None can self-consistently account

for quiescent and flaring behavior.

Magnetohydrodynamic (MHD) simulations can provide a more physical description of

the accretion flow. They have been used to model the synchrotron emission from Sgr

A*, either in three spatial dimensions with a pseudo-Newtonian potential [149, 90, 99, 43]

or in two dimensions in full general relativity [147, 136, 96]. Non-relativistic simulations

are especially inappropriate for modeling the millimeter emission, which originates in the

innermost portion of the accretion flow where relativistic effects are strongest. Axisymmetric

simulations cannot sustain the MRI, and cannot accurately model variability.

The submillimeter bump is of particular interest. This is the frequency range where

VLBI can both resolve the black hole event horizon, and where the measurements are no

longer dominated by interstellar scattering. Unlike the radio, IR, and X-ray emission the

dominant emission mechanism and electron distribution function is known in the millimeter.

Broderick et al. (2009) [29] fit a non-relativistic, semi-analytic RIAF model to spectral and

mm-VLBI data.

In this Chapter, we fit time-dependent images of millimeter synchrotron emission from

three-dimension GRMHD simulations to millimeter (mm) observations of Sgr A*. Simu-

lations in the sample both conserve energy [129] and evolve the internal energy, injecting

entropy at shocks [80, 81]. Images are fit to the spectral index measurements from Marrone
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(2006) [124] as well as the mm-VLBI data [61, 74], and two-temperature models of the

accretion flow are considered.

The fitting procedure in this chapter both demonstrates that radiative models based

on contemporary simulations of black hole accretion flows provide excellent descriptions of

current millimeter observations, and allows estimates of the parameters of the black hole and

its accretion flow. In the next chapter, the “best fit” models with the highest probability

of describing the data are studied in more detail to learn about the physical properties

of the millimeter emission region and the synchrotron variability mechanism, and to make

predictions for future observations.

4.2 Methods

Relativistic synchrotron radiation is computed from the simulations by tracing rays back-

wards from an observer’s camera at infinity through the accretion flow as implemented in

grtrans (Section 2.5). Each ray constitutes a pixel of the image, which are spaced uni-

formly on a rectangular grid. The points along each ray are assumed to be null geodesics

of the Kerr spacetime, and their trajectories are computed using the public code geokerr

(Appendix A). The code computes all coordinates of the geodesics, and the ray tracing

procedure is fully time-dependent. Tracing rays backwards is ideal for Sgr A*, where the

images themselves are observables.

We find that an image resolution of 150x150 pixels (rays), with maximum spacing of

.2M in impact parameter at infinity is sufficient for total flux convergence to ! 1% relative

to 300x300 or 600x600. The largest single pixel errors are ! 5−10%, concentrated near the

circular photon orbit. We find ∼ 400 points on each geodesic to be adequate for all models.

These points are spaced evenly in 1/r, except near radial turning points, where geokerr

uses the polar angle as the independent variable for better resolution.

The unpolarized synchrotron emission coefficient is computed from Leung et al. (2011;

accepted) by linearly interpolating simulation fluid variables to the points along each ray.

For reasons discussed below, we often use data from the nearest time step rather than inter-

polating in the time direction. The absorption coefficient is obtained from Kirchoff’s Law.

The gas pressure, magnetic field and particle density are taken from the simulations and
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scaled to physical units with a single free parameter representing the total torus mass. This

parameter fixes the mass accretion rate. Only emission from fluid within r = 25M is used for

computing images, and only the last ∼ 60% of the simulation data is used, after transients

from the onset of turbulence have died down (see Table 4.1). The millimeter emission in

the models considered is always concentrated well within both our radial boundary and the

initial pressure maximum for all simulations.

The simulations evolve the total gas pressure of electrons and ions, while only the electron

temperature is used in calculating the emergent radiation. We follow previous work [90, 136]

and generate images using two-temperature models with constant ratios of Ti/Te, which is

then another free parameter.

The models are fit to both the VLBI observations at 1.3mm [61, 74] and the spectral

index measurements between .4mm and 1.3mm [124]. This gives the probability of observing

the measured values from a particular model. Following Broderick et al. (2009) [29], this

distribution is converted to the probability distribution as a function of our parameters given

the observations using Bayes’ theorem. The result is two separate probability distributions:

pv(Ṁv, tv, ξ, Ti/Te, a) and ps(Ṁs, ts, Ti/Te, a), where t is the observer time, Ṁ is the time-

averaged accretion rate, ξ is the orientation of the black hole spin axis projected on the

sky, Ti/Te is the ion electron temperature ratio, and a is the spin value of the simulation

used. The subscripts v and s refer to the VLBI and spectral fits respectively, and the

simulations differ in more respects than just the value of the black hole spin. To produce

parameter estimates, we average over observer time and marginalize over accretion rate and

multiply the resulting distributions. To estimate the value of a single parameter, we then

marginalize the combined probability distributions over the other parameters. To estimate

the accretion rate, we average over observer time, combine the resulting distributions, and

then marginalize over all other parameters.

For each simulation, images are produced over a grid of the above parameters at .4mm

and 1.3mm. VLBI fits are done as follows. Visibility amplitudes are calculated by taking the

absolute value of the Fourier transform of the 1.3mm image averaged over 10 minute intervals

to match the observations. The visibility is then rotated to the desired sky orientation, and

multiplied by an elliptical Gaussian to account for interstellar scattering as done in Fish et
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al. (2009) [73] using the fits from Bower et al. (2006) [27]. The rotated, scatter-broadened

visibility amplitude is then interpolated to the baseline locations of the VLBI measurements,

and fit to their measured values.

The total fluxes at .4mm and 1.3mm are time-averaged over 2.5hr intervals to mimic

the observations. Since the individual measurement errors from Marrone (2006) [124] are

smaller than the flux differences between the measurements, the data provide information

about source variability as well as a time-averaged value. To account for this, we fit to each

measurement separately. Our light curves have also been analyzed using averaged 1.3mm

fluxes and spectral indices between 0.4mm and 1.3mm. Using the former method provides

tighter constraints for individual models, but the parameter estimates and best fit models

discussed in the following chapter are identical between the two methods. Note that the

1.3mm flux during these observations was ∼ 20% higher on average than that from VLBI

measurements [74]. Image intensities are converted to fluxes using a black hole mass of

4 × 106M" and a distance of 8kpc.

4.3 Simulation Data

Relativistic, three dimensional simulations are necessary to produce a physical, realistic de-

scription of the time-dependent accretion flow structure. Axisymmetric simulations cannot

sustain turbulence and exaggerate variability. Previous studies using 2D simulations have

time-averaged the fluid structure, but even then the statistical steady state is not correct

due to the decay of the MRI on the local orbital time. The ideal approach would be to

use a single code to run a grid of 3D simulations over black hole spin, initial magnetic field

configuration and initial torus location and geometry. However, given the formidable com-

putational expense of such a project, we instead leverage a subset of existing 3D GRMHD

simulations from two different groups. The simulations and their parameters are listed in

Table 4.1. All tilted simulations have names ending in “15h’,” while the others assume

alignment between the angular momentum axis of the initial torus and the black hole spin

axis.

The two sets of standard, aligned simulations from different groups use different initial

conditions and energy evolution equations. Simulations from Fragile et al. [80, 81] evolve
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internal energy and use the initial torus configuration from De Villiers et al. (2003) [51],

whereas those from McKinney & Blandford [129] conserve total energy and use an initial

torus placed much closer to the black hole [85]. The two simulations from McKinney &

Blandford [129] differ slightly in black hole spin, as well as in initial magnetic field configu-

ration. The simulation labeled MBD uses a standard, small-scale dipolar loop. The MBQ

simulation has a large-scale quadrupolar field, which leads to a stronger MRI, slightly higher

magnetic pressures and a larger accretion rate.

Total energy conserving simulations are probably more appropriate for modeling Sgr A*,

since its inferred radiative efficiency is relatively low (ε ∼ .001 − .01). We have computed

a radiative efficiency from numerical energy losses of ε ∼ 0.1 for the 90h simulation, and a

bolometric “luminosity” exceeding that of Sgr A* by a factor of a few. However, few energy

conserving three dimensional GRMHD simulations have been run to date [175, 144, 143, 129,

145]. Only McKinney & Blandford [129] simulated a thick, advection-dominated accretion

flow. The simulations used here do not include radiative cooling, which is likely a good

approximation for an ADAF. Non-conservative simulations, where a significant amount of

energy is lost to artificial numerical cooling, are still advection-dominated.

For comparison, we have also run a set of axisymmetric simulations using the publicly

available HARM code [85, 142] at black hole spins a/M = 0.00, 0.50, 0.75, 0.90, 0.92, and

0.94 (G = c = 1 is used throughout this paper). They are not used for fitting to observations

due to the problems with axisymmetric simulations described above. Instead, they give a

sense of the spin dependence of total energy conserving simulations, which helps to break

the degeneracies between black hole spin and initial conditions in our 3D simulations. They

also provide an opportunity for direct comparison with results from previous work using

similar simulations.

4.4 Fitting Models to Observations

The model of the millimeter emission from Sgr A* as realized in the simulations is of a

compact, hot, magnetized accretion flow in the vicinity of a black hole. The spectrum

peaks at millimeter wavelengths, where the majority of the radiation is produced. The

emission comes from thermal electrons near the midplane of the disk in the inner radii, with
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Figure 4.1 Grid of best fit reduced effective χ2 values vs. inclination and sky orientation
ξ. The scale is from χ2 = 1 (white) to 2.5 and greater (black). We find excellent fits at
low inclinations, which are roughly independent of sky orientation. At high inclinations,
our results show a similar shape to that found by Broderick et al. [29]. Overplotted is the
probability density vs. inclination, marginalized over observer time, accretion rate and sky
orientation.
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Figure 4.2 Best fit visibility profiles for low and high inclinations from the 90h simulation,
plotted along the line in the UV plane corresponding to the average location of the long
baseline measurements from the first mm-VLBI measurements [61]. The visibilities naturally
divide into two types. At low inclinations, the nearly circular shadow leads to a minimum
in the visibility profile, similar to the ring model in Doeleman et al. At inclinations " 30◦,
the profiles monotonically decrease with baseline length. A detection in place of the current
upper limit (open circle with arrow) should favor one set of profiles.
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Figure 4.3 Normalized probability density as a function of black hole spin, marginalized
over inclination angle and Ti/Te. Triangles denote the first three entries in Table 4.1, from
Fragile et al. [80, 81]. Diamonds represent the last two entries in Table 4.1 from McKinney
& Blandford [129].

typical values of n ∼ 5× 107cm−3, B ∼ 50G, and Te ∼ 5× 1010K. These typical values have

been found by a number of modelers [202, 90, 136].

As a first example, we consider a model from the 90h simulation with Ti = Te. Visibilities

were interpolated to the detections in Doeleman et al. (2008) [61], and an effective χ2 was

computed as defined in Broderick et al. (2009) [29]. Grids of minimum effective, reduced

χ2 are shown in Fig. 4.1 over inclination angle and sky orientation for the 90h simulation.

The orientation is well constrained at high inclinations, since the general image shape is

nearly static and asymmetric, and the long baseline VLBI measurements pick out a specific

orientation for the visibility ellipse. The two distinct bands of good fits are due to the

(approximate) up-down symmetry of the image. The model from 90h provides good fits

(reduced χ2 ! 1.2) at all inclinations. This is especially evident from the curve of p(i) vs. i

overplotted in Fig. 4.1. Inclinations i ! 20◦ are less probable due to the sin i prior and large

variation of probability density with observer time. Although the best fit χ2 is roughly the

same for low inclinations at all ξ, at any given observer time good fits are restricted to less
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Figure 4.4 Normalized probability densities for all untilted simulations using all VLBI data
(colored curves) and just the Doeleman et al. (2008) data (grayscale curves) as functions
of observer inclination and sky orientation (top left and right), electron temperature (bot-
tom left) and average mass accretion rate (bottom right). The geometric distributions are
marginalized over Ti/Te and Ṁ , and plotted for each simulation separately and marginal-
ized over simulation (black hole spin). The 0h simulation isn’t included due to its negligible
contribution to the overall curve. The electron temperature probability distribution is cre-
ated by binning the median electron temperature in the region of largest emissivity and
summing the probability densities of the models in each bin. The mass accretion rate prob-
ability distribution is created by marginalizing over orientation and inclination angles and
simulation, and multiplying the separate distributions from the VLBI and spectral fits. In
both cases, the dotted histogram is the result of assigning equal probability to each model
sampled.
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than half the range of sky orientations.

Visibility profiles from the best fits at many inclinations are shown in Fig. 4.2. The

profiles represent the 2D visibility plotted along the line representing the average angle in

the UV plane of the long baseline measurements from Doeleman et al. [61]. Also plotted are

the data from that work. At low inclinations, the profile reaches a minimum as described

above, whereas at i ≥ 30◦, the profile decreases monotonically with baseline length. Our

best fit face-on visibility profile is almost identical to that of the ring model from Doeleman

et al. The local minimum in the visibility profile of ring type models is a signature of the

black hole shadow, and its detection would constitute direct evidence for a black hole event

horizon.

Our low inclination images are strongly peaked at the circular photon orbit, as can

be seen in Fig. 3.1. In addition to the ring model, a delta function intensity profile at

the circular photon orbit roughly matches the observations, as does the spherical accretion

model from Chapter 2 scaled to the mass of Sgr A*. In fact, any model sharply peaked at

the circular photon orbit should approximately match the visibility data. This is because

the ratio of the zeroth to first maximum in the visibility for such a model is roughly the

same as that of the zeroth order Bessel function, and agrees with the ratio of the visibility

amplitude at ∼ 3500Mλ to the total flux. These low inclination models are theoretically

appealing, but are strongly disfavored by spectral index measurements, since they are too

optically thin at 1.3mm, and by the additional mm-VLBI data from Fish et al. (2011) [74].

Thus, the black hole shadow is unlikely to be detected with current mm-VLBI telescopes

(see Chapter 5 for shadow predictions with future telescopes).

Two-temperature models from all of the GRMHD simulations also provide excellent fits

to the observed millimeter emission from Sgr A* (reduced χ2 ≤ 1.5 frequently for all simula-

tions). This is still true when we incorporate spectral index information as described above.

The inclusion of that observational constraint and the rest of the aligned simulations (see

below for the tilted simulations) allow us to strongly disfavor the low inclination models

discussed above and to estimate some parameters of the accretion flow. Single parameter

probability distributions are found by marginalizing the combined spectral and VLBI prob-

ability distributions over the others. To estimate confidence intervals, we use the technique
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described in Broderick et al. (2009) [29]. The probability distribution is integrated from

its maximum value, pmax, down to a cutoff value pmin so that the cumulative probability

enclosed between pmin and pmax is equal to the desired confidence interval. Then the es-

timated value, lower and upper bounds of the parameter x are x(pmax), min[x(p ≥ pmin)],

and max[x(p ≥ pmin)] respectively.

4.4.1 Parameter Constraints

We estimate the electron temperature in the millimeter emission region, the accretion rate

onto the black hole, the inclination angle of the accretion flow relative to the observer

and the projection of the black hole spin axis on the sky. Unfortunately, our use of existing

simulations precludes us from determining a constraint on the black hole spin. A plot of p(a)

is shown in Fig. 4.3. The large peak at high spin is deceptive, and is due to the differences

between the simulations rather than black hole spin. While it appears we might be able to

rule out low spin simulations, the 0h simulation is probably a special case. Low electron

temperatures in that simulation cause it to have a large photosphere (r ∼ 10M) even when

Ti = Te, and therefore it fits the observations poorly. The axisymmetric HARM simulations,

which are more similar to a 3D conservative simulation like MBD/MBQ, have larger electron

temperatures at all spins and are optically thin for Ti = Te. So although the 0h model is

ruled out, low spin conservative simulations should have larger electron temperatures and

provide better fits. We do not consider the 0h simulation for the remainder of the paper

due to its negligible influence on the overall probability distributions.

All best fit models have similar probability distributions in inclination angle. These are

shown in the top left panel of Figure 4.4, along with the combined probability distribution

after marginalizing over all other parameters. From this we estimate the inclination angle

from the first epoch of VLBI data as i = 50◦+35◦
−15◦ with 90% confidence. This interval may

change with more complete sampling of the spin and initial conditions parameter space;

however the similarity of the curves from different simulations suggests that such changes

will be minor. The face-on, black hole shadow fits at i ! 20◦ found above from the single

temperature 90h model are now ruled out to 3σ confidence as discussed above. The VLBI
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measurements also depend on the sky orientation, ξ, the position of the black hole spin axis

projected on the sky measured E of N. A plot of p(ξ) is shown in the top right panel of

Figure 4.4. The distribution is quite broad, and we estimate a value from the first epoch

of VLBI data of ξ = −23◦+97◦
−22◦ with 90% confidence. Both the estimated values and the

probability distributions shown here are in excellent agreement with Broderick et al. (2009)

(c.f. [29] Fig. 7).

For all simulations, the probability distribution over Ti/Te has a peak value between 1

and 10. The best fit Ti/Te rises with MHD temperature, so that roughly the same electron

temperature fits best across all simulations. The probability distribution of emissivity av-

eraged electron temperature is plotted in the bottom left Figure 4.4. The dotted histogram

shows the result of assigning equal probability density to each model. With better sampling,

the distribution would likely be much more smooth. The electron temperature from the first

epoch of VLBI data is estimated to be (5.4 ± 3.0) × 1010K with 90% confidence. As dis-

cussed below, our simulated light curves are consistent with an isothermal emission region.

This electron temperature is consistent with electron temperatures found in previous work

[202, 90, 182, 136].

Similarly, the accretion rate can be constrained from the joint fits despite the different

ranges found for best fit parameters for each simulation (see Table 5.1). The probability

distribution over accretion rate is shown in the bottom right panel of Figure 4.4, and we

estimate its value from the first epoch of VLBI data to be Ṁ = 5+15
−2 ×10−9M"yr−1 with 90%

confidence. The probability distributions from the two observational constraints have been

combined to produce the plot, despite the fact that the total flux is ∼ 50% higher during

the spectral index measurements. This procedure favors models with substantial variability.

However, probability distributions from the two constraints separately are similar to the one

in Figure 4.4, with slightly broader ranges of allowed accretion rates and estimated values

in agreement with that of the joint fit.

Including the most recent mm-VLBI data [74] significantly improves the parameter con-

straints, particularly on the inclination and orientation angles (red curves in Figure 4.4).

The numerical values to 90% confidence, including all mm-VLBI data, are i = 60 ± 15◦,

ξ = −70◦+86◦
−15◦ , Te = 6 ± 2 × 1010K and Ṁ = 3+7

−1 × 10−9M"yr−1. These parameters are in
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excellent agreement with those from the first epoch of data alone, and remain in agreement

with those from RIAF data [30]. They are also in agreement with parameters from spectral

and polarization fits using time- and azimuthally-averaged GRMHD data [186].

In the context of these aligned GRMHD (and RIAF) models, the millimeter emission

region in Sgr A* has a well constrained geometry and parameter values. Additional ob-

servations, at least at the existing baseline orientations, have thus far only confirmed this

picture and lowered the errors in the various parameters. The major exception is the black

hole spin, perhaps the most interesting parameter, which is poorly constrained by obser-

vations in RIAF models [30]. Tighter constraints may be obtained by including millimeter

polarization data [186]. It is also unclear whether the mm-VLBI data constrain the black

hole spin in the context of GRMHD models, since a set of appropriate simulations spanning

various initial conditions and spin has not yet been run.

4.5 Tilted Disk Models

Perhaps the most important assumption made thus far is that of alignment between the

angular momentum axis of the accretion flow and the black hole spin axis. As discussed

in Chapter 3, this is unlikely to be the case in low luminosity systems and has significant

implications for the physical structure and dynamics of the accretion flow. Sgr A* is an ex-

treme example in this respect, and there is no reason to assume alignment. Using additional

simulations from Fragile et al. [80, 77, 81] (simulations ending with “15h” in Table 4.1), we

have repeated the above analysis for the case of a 15◦ misalignment (“tilt”) between these

two axes. The grid of images is produced exactly as before, but with one additional free

parameter: φ0, the azimuthal viewing angle. Tilted simulations are non-axisymmetric, and

we can no longer exploit the azimuthal symmetry of the accretion flow on timescales longer

than the orbital time.

The consistent picture above for reasonably well constrained parameters in agreement

between individual simulations does not hold up in the tilted case. Figure 4.5 shows the

probability distributions over inclination and orientation angles, accretion rate and electron

temperature for the tilted simulations. No clear picture emerges from the set of simulations,

and we do not attempt to estimate parameter values. Even within individual simulations
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Figure 4.5 As in Figure 4.4, but for the models from tilted simulations. The full VLBI
dataset is used in all panels.
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there are viable models at different inclinations, orientations, Ti/Te and Ṁ . As found in

Chapter 3, large changes in the images occur with the azimuthal viewing angle. That extra

degree of freedom appears to make the difference between the fairly concrete picture of the

aligned simulations (additional observations lead to tighter parameter constraints) and the

murky picture of the tilted simulations. It may turn out that the extra degree of freedom

means that proportionally more observations are required to form a clear picture. The

315h simulation in particular is unique, in that it provides excellent fits with small electron

temperatures (Ti/Te = 5 from a relatively cold simulation), which in turn requires large

accretion rates and leads to the bimodal distributions seen in the bottom two panels of

Figure 4.5.

4.6 Discussion

The submillimeter bump in Sgr A* provides a unique laboratory for connecting observations

with theoretical models of black hole accretion flows. We have performed radiative transfer

as a post-processor on the output from existing three dimensional GRMHD simulations

and fit them to VLBI and spectral index observations of the Galactic center black hole.

The simulations provide excellent fits to the existing millimeter observations, and allow

us to estimate the roughly constant temperature of the millimeter emission region and

the inclination and sky orientation angles of the black hole. These are found to be i =

60 ± 15◦, ξ = −70◦+86◦
−15◦ , Te = 6 ± 2 × 1010K and Ṁ = 3+7

−1 × 10−9M"yr−1 confidence when

all VLBI data are included. The estimates for inclination and orientation angles are in

excellent agreement with those found by Broderick et al. for RIAF models [29, 30], despite

significant differences between the dynamical models used. Our accretion rate constraint of

Ṁ = 3+7
−1 × 10−9M"yr−1 is consistent with but independent of estimates from the observed

linear polarization and Faraday rotation measures [3, 158, 126].

Face-on models, which provide excellent fits in the 90h simulation to the first epoch of

mm-VLBI data, are ruled out to 3σ due to the spectral index constraint for 90h, and the

paucity of good VLBI and spectral fits at low inclinations in the other simulations when

including all of the mm-VLBI data. For this reason, it may not be possible to detect the

shadow of the black hole from visibility measurements using current mm-VLBI telescopes.
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There are many uncertainties in the analysis presented in this chapter. While GRMHD

allows for a self-consistent solution of the primitive variables, it is unknown whether the

MHD approximation is valid for the low densities at the Galactic center. In addition, there

are a range of possible solutions, depending on the energy prescription and initial condi-

tions used. Current simulations also neglect the interplay between ions and electrons, which

should be handled self-consistently. Finally, it is likely that the global GRMHD simulations

used in this analysis are significantly underresolved for some measures of convergence [93]

and may underestimate the relative strength of the magnetic field. A stronger magnetic

field could lead to smaller best fit images and lower inclination angles, electron tempera-

tures and/or accretion rates. Qualitatively, the results of this analysis should still hold,

particularly that each of the diverse sample of simulations gives comparable results for Sgr

A*.

If Sgr A* is radiatively inefficient, simulations which conserve total energy (MBD, MBQ)

are probably more appropriate. We estimate the time-averaged energy dissipation rate

from numerical losses in the 90h simulation as ∼ 1037 ergs s−1 for an accretion rate of

1.6 × 10−9M"yr−1. This is larger than the bolometric luminosity of Sgr A*, and gives an

effective radiative efficiency of ∼ 0.1. The accretion flow is advection dominated, in that an

order of magnitude more energy is lost to the black hole than to numerical reconnection.

The sample of simulations used does not span the parameter space of black hole spin,

initial torus geometry and initial magnetic field configuration even ignoring differences in

the energy evolution. This incompleteness prevents an estimate of the black hole spin, and

may affect our other parameter estimates. However, the universality of the images, light

curves, probability distributions and emission region characteristics from all viable simula-

tions considered here suggests that the changes will probably be minor (see Chapter 5). The

disk thickness is especially important, since the emission region scale height mimics that of

the disk. A thicker disk will also have larger MHD temperatures, and thus larger values

of Ti/Te will be necessary to fit the observations. If the disk thickness can be constrained

by VLBI observations, a constraint on Ti/Te follows. This parameter would constrain the

strength of ion-electron coupling in collisionless plasmas.

We find that the high spin simulations provide significantly better fits, but have not
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used any low spin simulations that conserve energy. Other work fitting to spectral and

polarization measurements disfavors low spin (a ! 0.5) energy conserving simulations even

without constraints from VLBI data [186]. Simulations with misaligned angular momentum

and black hole spin axes [80, 79, 81] are also of interest, since they produce standing shocks

which lead to considerably different image morphologies. These models with a tilt angle of

15◦ also provide excellent fits to current data, but the parameters are poorly constrained.

Additional measurements will be necessary to break the degeneracies in geometry as well

as black hole spin and tilt angle.

Broderick et al. also estimated the parameters of Sgr A* from VLBI and spectral

constraints by fitting semi-analytic RIAF models. The structure of p(i) and p(ξ) in their

Figure 7 (middle and right panels) are in excellent agreement with ours in Figure 4.4.

Further, we find that future observations on baselines of similar length but orthogonal

orientation to the existing Hawaii-Arizona baseline have the best chance of discriminating

between our best fit models. This conclusion is in agreement with Fish et al. (2009) [73],

who point out that ideal baselines for such measurements would be between Chile and one

or more of California, Arizona or Mexico. A simultaneous measurement of the 345 or 690

GHz flux during future 230 GHz VLBI observations would provide a significant additional

constraint.

A grid of time-averaged images and spectra over black hole spin, inclination and Ti/Te

from axisymmetric, total energy conserving GRMHD simulations were compared to mil-

limeter observations by Mos̀cibrodzka et al. (2009) [136]. Their finding that Ti/Te = 1

models are inconsistent with observations agrees with our results here for MBD and MBQ.

As we have shown, for simulations with lower MHD temperatures, smaller values of Ti/Te

will be necessary to reach the required electron temperature in the millimeter emission re-

gion. This is why the non-conservative simulations considered here (0h, 50, 90h) are all

best fit by small values of Ti/Te. It also suggests that such models are only appropriate

for modeling Sgr A* when they produce large enough MHD temperatures that the electron

temperature lies within the range estimated here. At low spin, this seems to require either

a hotter initial condition or a total energy conserving simulation.

For the 315h simulation, with a = 0.3 and a tilt of 15◦, the models provide excellent
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fits to VLBI data even at Ti/Te = 5, where the fluid is cold. This exception is due to a

combination of an unusually low β ≡ pgas/pmag and a radial density profile that peaks at

very small radius. Thus, the accretion flow can generate the observed Sgr A* millimeter

flux even at low temperatures with large accretion rates without becoming optically thick.

In all the other simulations, low electron temperatures and high accretion rates lead to an

extended photosphere, which is inconsistent with the VLBI observations. The properties of

the emission regions of both the tilted and untilted Sgr A* models are discussed more in

the next chapter.

In all but the “best-bet” model from Mos̀cibrodzka et al., Ti/Te = 10 is required for

consistency with multiwavelength spectral observations. Millimeter spectral index results

from our own HARM simulations modeled in the same fashion are for the most part in

good agreement with theirs, indicating that the results of these studies are probably robust

to the ray tracing code and interpolation scheme employed. However, Ti/Te = 10 models

for the various HARM models, MBD and MBQ are all too large to fit the VLBI data due

to their extended photospheres. In addition, we find good fits at Ti/Te = 3 for MBD and

MBQ at moderate to edge-on inclinations. We have not computed IR or X-ray emission,

and therefore do not fit to the quiescent X-ray luminosity from Baganoff et al. (2003)

[9], or to the upper limits to the IR emission. These limits are violated in Mos̀cibrodzka

et al. for nearly edge-on inclinations and at high spin. Including them could disfavor high

inclinations, but is unlikely to change our best fit models. This could especially be a problem

in the tilted models, where the spectra extend to higher energies as shown in the following

chapter.
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Chapter 5

RADIATIVE MODELS OF SAGITTARIUS A*: PROPERTIES OF
BEST FIT MODELS

In the previous chapter, radiative models of Sgr A* were constructed from 3D GRMHD

simulations with simplifying assumptions made for the electron distribution function, left

unconstrained by the simulations. The models were fit to mm-VLBI and spectral obser-

vations to constrain the geometry and physical properties of the accretion flow. Overall,

the models are extremely successful at reproducing observations. This is the case both for

aligned simulations, and those where the angular momentum axis of the initial accreting

torus is misaligned (tilted) from the black hole spin axis. Here, the properties of the best

fitting aligned and misaligned models are discussed in more detail.

5.1 Image Morphology

5.1.1 Best Fit Models

Table 5.1 lists the parameters for best fit untilted models from the viable simulations (ex-

cluding 0h), as determined by the joint spectral index and VLBI fits. Images and visibilities

from these models at 1.3mm and .87mm are shown in Fig. 5.1, at the time of best fit to the

1.3mm VLBI observations. The emission from the portion of the accretion disk receding

from the observer is negligible compared to that from the approaching side, but the front

Table 5.1 Best Fit Model Parameters
Name Spin (M) Ṁ(10−9M"yr−1) i Ti/Te

50h 0.50 50 − 60 60◦ 1

90h 0.90 3 − 5 60◦ 1

MBD 0.92 3 − 10 60◦ 3

MBQ 0.94 9 − 12 50◦ 5
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Figure 5.1 Images and visibility amplitudes at 1.3mm (first two rows) and .87mm (bottom
two rows) for the best fit models. The first and third rows are images, while the second
and fourth are the corresponding visibility amplitudes. All are rotated to their best fit
positions. The uv-plane locations of the baselines used in the 1.3mm VLBI observations
are over-plotted on the visibilities. The panel size is 150µas, and 12 Gλ for the visibilities.
The columns are labeled by simulation, and each panel is scaled to its maximum value.
At 1.3mm, the maximums are always ! 2.4Jy. However, the total flux can vary between
simulations at .87mm. Since the images and visibilities form a Fourier transform pair, in
general a larger image corresponds to a smaller visibility and vice versa.
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Figure 5.2 One dimensional visibility profiles along the line of the average long baseline
location from Doeleman et al. (2008) [61]. All of these profiles decrease monotonically with
baseline length.
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Table 5.2 Best Fit Tilted Model Parameters
Name Spin (M) Ṁ(10−9M"yr−1) i Ti/Te

315h 0.3 100 − 200 80◦ 3

515h 0.5 9 − 15 40◦ 1

715h 0.7 10 − 15 90◦ 1

915h 0.9 9 − 12 80◦ 1

and back (bottom and top of image, respectively) still contribute significantly. This com-

bination causes all best fit images to be essentially crescents, one due to this combination

of Doppler beaming of gas approaching the observer and gravitational lensing warping the

back of the accretion disk to appear at the top of the image. A second crescent is also visi-

ble, and is due to the circular photon orbit. This feature is basically fixed in size regardless

of the “size” of the accretion flow, depending only on the mass of and distance to the black

hole, nearly independent of its spin. It should appear as either a ring (low inclination) or

crescent (high inclination) as long as the accretion flow is optically thin.

The shadow of the black hole, caused by the transition between bound and unbound

photons at the circular photon orbit, is prominent along the vertical axis as a local minimum

in the visibility amplitude due to the contrast between it and the emission from the front

and back of the accretion flow. One dimensional visibility profiles, plotted along the line of

the average location of the long baseline measurements from Doeleman et al. (2008) [61],

are shown in Fig. 5.2. In all models, the visibility profile decreases monotonically with

baseline length along this axis.

The crescent geometry present in all our viable models of Sgr A* is a sort of intermediate

between a Gaussian and a ring, the two model-independent geometries used to fit the images

[61, 74]. The orientation probed by the baselines currently available with mm-VLBI is the

Gaussian axis, while the ring axis is rotated away from us. As discussed below, depending

on the model and the orientation, the ring axis may be accessible to observations in the

near future. This would allow the first detection of a black hole shadow, direct evidence for

the existence of an event horizon.
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Figure 5.3 Images and visibility amplitudes at 1.3mm (first two rows) and .87mm (bottom
two rows) for the best fit models from the tilted simulations as in Figure 5.1. The image
morphologies are more complex and varied than in untilted simulations, but are still basically
crescents due to Doppler beaming and gravitational lensing.
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5.1.2 Tilted Disk Image Morphology

The “best fit” models for the simulations with misaligned angular momentum and black

hole spin axes (“tilted” simulations) described previously are much less certain, since the

parameters are so poorly constrained and a variety of viable models exist for each simulation.

Despite this uncertainty, it is possible to get a feel for the similarities and differences between

the aligned models and these tilted ones by simply choosing the inclination, orientation,

observer azimuth and mass normalization (time-averaged accretion rate) with the lowest χ2

value in analogous fashion to the well-defined best fit models for the aligned simulations..

The parameters of these models are listed in Table 5.2.

Figure 5.3 shows the same grid of images and visibilities as in Figure 5.1, but for the

best fit tilted models. Typically the image morphologies for misaligned models are more

complex than the simple crescent from Doppler beaming and gravitational lensing found

before. However, those elements are still present in all images. Overall, the images are

dominated by narrow rings or crescents near the circular photon orbit. The disk body is no

longer clearly visible in the images, however.

The image morphology changes considerably depending on the observer’s azimuth. That

angle is completely unconstrained for Sgr A*, which explains much of the variety present

in the tilted models and hence the lack of clear parameter constraints from current data.

The situation is similar to the dependence of line profiles on observer azimuth for models

of stellar mass black holes in Section 3.3.2 (see Figure 3.6), and is one of the most striking

observable consequences of tilted black hole accretion disks.

5.2 Prospects for Future Observations

The presence of the black hole shadow in an image causes a local minimum in the corre-

sponding visibility profile. The amplitude of the local minimum is set by the image contrast

across the circular photon orbit. The shadow is detectable from the two dimensional visi-

bilities at baselines of similar length and roughly orthogonal orientation to those used by

Doeleman et al. [61] in all tilted or untilted best fit models. At .87mm, the resolution of the

array improves, but the images are also smaller. Depending how optically thin the model is
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Figure 5.4 Visibility amplitude as a function of baseline length for best fit models at 1.3mm.
The telescopes considered are in Arizona (SMTO), California (CARMA), Mexico (LMT)
and Chile (APEX/ASTE/ALMA). The black hole shadow appears as a minimum in the 1D
profile.
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Figure 5.5 Closure phase as a function of observer time and sky orientation for best
fit models on triangles of baselines between Arizona/California/Hawaii (top) and Ari-
zona/Mexico/Chile (bottom).

Figure 5.6 Standard deviations of the best fit visibility amplitudes at 1.3mm and .87mm.
The uv-plane locations of the VLBI observations at 1.3mm are over-plotted as triangles.
Future baselines between Chile/Mexico/California/Arizona are over-plotted as solid lines.
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(how large and negative the spectral index is), the image can be extremely small as is the

case for MBQ. For a spectral index similar to that observed by Marrone (2006) [124], the

image will still be large at .87mm, and the shadow should be observable from the visibility.

To demonstrate this explicitly, visibility amplitude as a function of baseline length

is plotted in Fig. 5.4 for the best fit models, considering baselines made up of combi-

nations of telescopes used in ongoing observations in California (CARMA) and Arizona

(SMTO), and those that should be added in the near future in Mexico (LMT) and Chile

(APEX/ASTE/ALMA). The shadow is detectable for the best fit MBD and MBQ models on

the Chile–Mexico and Chile-Arizona baselines. The differences in the predictions from the

models in Fig. 5.4 are almost exclusively caused by their different best fit sky orientations.

Since Sgr A* varies significantly on timescales short compared to its mutual visibility

between current and future VLBI telescopes, the profiles shown in Fig. 5.4 will necessarily

include source variability. In addition, the short coherence time of the atmosphere and

varying signal/noise between telescopes in the arrays may prevent proper calibration of the

visibilities [58]. In these cases, the closure phase [167], the sum of the phases measured

along a triangle of baselines, may be used as a non-imaging observable. It is independent

of calibration errors, and probes the source structure in the uv-plane. Doeleman et al.

(2009) [58] used a RIAF+hotspot model to compute predicted closure phases for future

VLBI experiments. We make predictions for the best fit models discussed here, whose

time-dependent structure comes directly out of the turbulence driven by the MRI.

Fig. 5.5 shows the closure phase maps vs. observer time and source sky orientation

for the current Arizona/California/Hawaii triangle and a future one consisting of Ari-

zona/Mexico/Chile. Due to the moderate inclination favored by the VLBI and spectral

observations, the closure phase is relatively robust over time, except over a narrow range

of sky orientations. At these positions, one of the baselines in the triangle is sampling the

black hole shadow, which causes a sudden rotation of the phase when the real part of the

visibility switches sign. The earth’s rotation moves the baseline positions, slowly changing

the sky orientations at which this effect is visible. For large phase rotations, the visibility

amplitude is usually quite small (! 0.1Jy) and will be difficult to detect. However, it could

be observed as a transition in phase over a short timescale, where Sgr A* is detected at one
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fairly stable closure phase, goes to an undetectable amplitude, and reappears at a different

stable closure phase. The most recent VLBI data constrain the closure phase between ex-

isting telescopes to be ±40◦ [74], providing another independent constraint on the models.

This value is consistent with our results from the best fit models for the viable ranges of

sky orientation from Figure 4.4. The best fit models generically predict a closure phase of

! −30◦ − 0◦ depending on the simulation and sky orientation.

If the sky orientation of Sgr A* is ∼ −50−0◦, this shadow signature would be detectable

using the Arizona/Mexico/Chile triangle. The best fit images for MBD, MBQ and 90h in

Fig. 5.4 are in this range. Note that the exact value of the phase rotation and how often

it occurs in time are model-dependent – in Fig. 5.5 it is usually ∼ π/2 and occurs at 1 − 3

observer times. Regardless of the value of the position angle, the black hole shadow can

be detected from closure phase measurements on some triangle of baselines in this way.

Closure phases from a larger set of baselines will constrain the structure of the accretion

flow in a similar fashion to the current measurements of the visibility amplitude. For

simplicity, the closure phases shown here are for almost co-linear baseline trios. Much more

complex and time-dependent closure phase signatures are found on nearly triangular baseline

arrangements, such as those including Hawaii, Chile and California/Arizona/Mexico.

We calculate the standard deviation of the small sample of best fit visibilities, as done

for a large ensemble of RIAF images by Fish et al. (2009) [73]. The result from the best fit

3D GRMHD models, shown in Fig. 5.6, is in relatively good agreement with their Figure 2.

The best baselines for constraining the accretion flow are of similar to slightly shorter length

as the existing measurements (∼ 2000 − 4000km), but at roughly orthogonal orientation.

The peak values of the variance are larger at .87mm. This is expected since we fit to existing

measurements at 1.3mm, while at .87mm only the total flux is somewhat constrained by

the spectral index between .4mm and 1.3mm from Marrone (2006) [124].

Interpolating the best fit visibilities to the locations of future VLBI baselines (Figure

5.7) provides a similar picture as in the aligned models: the shadow of the black hole should

appear on baselines of future interest in a significant fraction of the models. The predicted

closure phases for viable sky orientations in Figure 5.8 are consistent with the constraint of

±40◦ from the most recent VLBI observations, and these models predict the actual value
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Figure 5.7 Visibility amplitude as a function of baseline length for best fit tilted models at
1.3mm. The telescopes considered are the same as in Figure 5.4. As in the untilted models,
a significant fraction of viable tilted models predict the appearance of the black hole shadow
(local minimum in the visibility profile) on baselines from Mexico/Chile and the US.
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Figure 5.8 Closure phase as a function of observer time and sky orientation for best fit
tilted models on triangles of baselines between Arizona/California/Hawaii (top) and Ari-
zona/Mexico/Chile (bottom). The predicted closure phase signatures are similar to those
from untilted models.

Figure 5.9 Standard deviations of the best fit visibility amplitudes considering all mod-
els (right) and just the best fit from each simulation (left). The uv-plane loca-
tions of the VLBI observations are over-plotted as triangles. Future baselines between
Chile/Mexico/California/Arizona are over-plotted as solid lines.
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should be ! −30 − 0◦, exactly the same as for the untilted models.

Due to the lack of a coherent picture of the viable tilted models, future measurements

will easily be able to constrain their properties further. Perhaps with a complementary

orientation, a clearer picture of these models will emerge. This is shown explicitly at 1.3mm

in Figure 5.9 (compare to Figure 5.6 for untilted models). Viable tilted disk models span a

large range of possibilities, so that future measurements on almost all baselines will provide

useful further constraints.

5.3 Variability and Millimeter Flares

A major advantage of using GRMHD simulations in place of semi-analytic models is the

ability to study variability from the same dynamical model used to produce spectra and

visibilities. Previous work has used hotspots [31, 58] to study variability, but this introduces

extra free parameters, complicating attempts to extract black hole parameters. Two sample

light curves from the 90h simulation are shown in Figure 5.10 for inclinations i = 10◦, 70◦.

The variability on short timescales is slightly more noticeable for the i = 70◦ case, while the

longer time scale flaring behavior is more pronounced in the i = 10◦ light curve due to the

lower optical depth along the line of sight at lower inclination. The power spectra are well

described by red noise spectra with power law index Γ = 2.4, 1.7 for i = 10◦, 70◦. These are

both steeper than the observed power law index of Γ = 1 in Mauerhan et al. (2005) [127]

at 3mm wavelength. These general statements hold for light curves from all simulations

considered in this thesis for all viable model parameters.

Twin flares occur simultaneously in both light curvesin Figure 5.10, rising over half

an hour with 2–3.5 hour durations. The flux modulation is 50% (40%) at i = 10◦ (70◦),

measured from the peak of the flare to the average of the light curve immediately preceding

it. All of these features are consistent with mm flare observations of Sgr A* [63, 125, 207,

113]. Since the flares are seen at low inclinations, they are not caused by Doppler shifts

from hotspots. The peak intensity is attenuated at large inclination due to rising optical

depth. The flares are caused by a rise in magnetic field strength near the midplane in the

inner radii (r ∼ 2–6M). They are not due to heat from magnetic dissipation since this is

not possible in the simulation used here. Thus heating from magnetic reconnection is not
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Figure 5.10 Light curves for best fit parameters (see Table 5.1) from each simulation at
1.3mm (solid) and .4mm (dotted). The vertical arrow denotes the time of best fit to the
VLBI measurements, while the horizontal arrows denote the averaged interval corresponding
to the best fit to the spectral index observations. The accretion rate used for the plots is
not necessarily the best fit, since that value can differ between the two constraints. The
McKinney & Blandford (2009) [129] simulations were run for shorter times since the torus
was initially placed at smaller radius.
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Figure 5.11 Light curves of the last 2/3 of the 90h simulation from Fragile et al. (2007)
at inclinations of 10◦ (top) and 70◦ (bottom) for Ti/Te = 1. The i = 70◦ light curve has
been shifted downwards by 1.5 Jy for clarity. Both light curves exhibit consecutive flares
starting at t ∼ 2 hours, which are consistent with those observed from Sgr A* at mm
wavelengths. They are more prominent at i = 10◦ due to higher optical depth between
the observer and the flaring region at high inclinations. The arrows denote the 10 minute
intervals corresponding to the best fit images shown in Fig. 3.1.

necessary to produce the mm flares of Sgr A*.

Light curves at 1.3mm (230 GHz) and .4mm (690 GHz) for best fit parameters from all

viable simulations (excluding 0h) are shown in Fig. 5.10. All light curves show millimeter

flares that are consistent with the observations, and with the behavior described above

for the 90h simulation. The spectral index rises during the flares, often above zero, due to

stronger variability at 690 GHz where the flow is completely optically thin. Only 1−2 flares

occur in each theoretical light curve, which is consistent with their observed frequency.

The flares are caused by increased magnetic field strength in the inner radii of the

accretion flow where the synchrotron emissivity is highest. This is the case even in total

energy conserving simulations, where the gas can be heated from reconnecting magnetic

fields. Reconnection events, while present, do not seem related to the millimeter variability.

Likewise, the variability is not produced by local inhomogeneities (hotspots), but rather
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Figure 5.12 Light curve at .4mm (solid) and accretion rate at the inner boundary of the
MBQ simulation (dotted) with best fit parameters (see Table 5.1). Both quantities are
scaled to their maximum value.

Figure 5.13 Last half of the 1.3mm light curve of MBQ with Ti/Te = 3, i = 10◦ (Fν)
compared to the volume integrated synchrotron emissivity (jν) and approximate volume
integrated emissivities, nB and nB2 where n is the electron density and B is the magnetic
field strength. The emissivities are normalized to their maximum values, while the light
curve is scaled so that it matches the synchrotron emissivity at ∼ 11 hours.
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Figure 5.14 Light curves of MBQ at i = 10 and 70 degrees for n = 1, 75 where n is the
number of simulation time steps used to compute the intensity at a single observer time.
n = 1 neglects the effects of finite light travel time through the fluid.

Figure 5.15 Light curves of MBQ at 10 degrees using simulation time steps separated by
∆t = 2, 8, 20 and 50M, where 2M is the value used for other MBD and MBQ light curves,
while ∆t = 4M for the 50h and 90h simulations.
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Figure 5.16 Light curves for best fit parameters from tilted simulations (see Table 5.2) at
1.3mm (solid) and .4mm (dotted) as in Figure 5.10. The variability is slightly stronger in
tilted simulations, but the flaring behavior remains consistent with observations of Sgr A*.
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by relatively global increases in the magnetic field strength in the inner radii. The light

curves at .4mm are strongly correlated with variability in the accretion rate, as shown for

simulation MBQ in Fig. 5.12. There are no robust lags found between the variability in

the millimeter light curves and the accretion rate, and we cannot definitively determine the

cause and effect.

Since only the millimeter emission is modeled here, it is unclear if the flares produced

are consistent with the observed x-ray, IR and millimeter flares [63, 125, 57, 204]. At

1.3mm, the flares are weaker at higher inclination, where they are attenuated by higher

optical depth between the observer and the emission region. Due to the presence of a

significant photosphere, the correlations with accretion rate variability are much weaker at

longer wavelengths as well.

5.3.1 Simple Variability Model

The 1.3mm light curve shapes are closely reproduced by assuming the optically thin syn-

chrotron emission comes from an isothermal region with a magnetic field satisfying ν/νc ∼

1−20, where νc = 6.27×1018B(kT )2 (cgs) is the critical frequency for synchrotron emission.

Then the emissivity is jν ∼ nBα, with 1 ≤ α ≤ 2. The light curve from simulation MBD

is compared to the integrated synchrotron emissivity as well as these simplified isothermal

models in Fig. 5.13. A low inclination light curve is used to lessen the impacts of Doppler

beaming and optical depth. The flaring behavior is captured without any temperature fluc-

tuations, and the variations are caused by those in the magnetic field strength and particle

density. In models with significant photospheres, including most at high inclination, these

simple formulas still work to describe the integrated synchrotron emissivity, but tend to be

more variable than the light curves which include self-absorption.

5.3.2 Effect of Light Travel Time Delays

Including the time delays along geodesics means that many different time steps of simulation

data are used to compute the intensity along each geodesic. Fig. 5.14 shows a comparison

of light curves with and without accounting for time delays. The light curves are virtually
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identical at both low and high inclinations, except for a systematic shift in observer time,

indicating the constant time lag between r = 25M , where we begin following geodesics, to

the emission region.

This is surprising, especially given the results of Noble & Krolik (2009) [143]. They found

significantly steeper power spectra at high frequencies when accounting for time delays.

However, the simulation from that work used an artificial emissivity, lower time resolution

(∆t = 20M) and only a π/2 wedge in φ. We’ve tried matching their π/2 wedge in φ and

sampling with the same time resolution. In all cases, we find no systematic differences when

accounting for light travel time through the accretion flow, and the errors due to neglecting

time delays are at the 10% level (Fig. 5.14), comparable to the overall uncertainty in the

interpolation scheme or emissivity used. The largest errors occur at high inclination, where

the light travel time to different parts of the emission region is largest. When using both

the limited domain in φ and ∆t = 20M , the slope of the power spectrum is slightly steeper

when using time delays. However the deviation is considerably smaller than that reported

by Noble & Krolik, possibly due to the differing emissivities or disk scale heights. They also

included cooling self-consistently in the simulation.

Their use of a π/2 wedge in φ is predicated on the assumption that the dominant

azimuthal spatial structure is in modes with m ! 4 and higher [173]. We test this by

expanding fluid variables in spherical harmonics for different simulations and time slices. In

all cases, we find that the m = 1, 2 power is larger than at higher orders, as found previously

by Henisey et al. (2009) [95] for a tilted simulation. This suggests that the use of restricted

φ domains incorrectly approximates the spatial structure of a fully global simulation. In

particular, we find that the power law index of the power spectrum is significantly steeper

when using the full 2π, indicating that using a limited wedge in φ introduces spurious

variability on shorter timescales. Studying variability using simulations probably requires

using the full φ domain.

We also caution that interpolating magnetic field vectors between time steps with in-

sufficient time resolution results in systematic suppression of the total flux. This occurs

when magnetic timescales are significantly shorter than the time step between simulation

data dumps, causing interpolation between uncorrelated magnetic field vectors. For the
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MBD and MBQ simulations, 2 − 8M time resolution is sufficient, as shown in Fig. 5.15.

However, when interpolating magnetic fields between time steps in the 90h simulation, the

flux is systematically ∼ 10% lower with a time spacing of 4M. Our radiative transfer code

uses time steps equal to an integer multiple of the simulation time step so that these errors

cannot cause spurious features in the light curves. Regardless, we use data from the nearest

time step rather than interpolating magnetic fields when the time steps are too large.

5.3.3 Variability in Tilted Disk Models

The variability properties discussed above apply just as well to tilted as to the untilted

simulations discussed above. Figure 5.16 shows the best fit light curves in the same fashion

as in Figure 5.11. The millimeter variability properties are almost identically between the

two sets of simulations, although the amplitudes are slightly higher in tilted simulations.

The correlation with accretion rate is just as strong as that shown in Figure 5.12, and the

variability in the tilted simulations is still well described by the simple isothermal model

based on variations in the magnetic field and electron density.

5.3.4 Time-dependent Spectra and Centroid Position

The radio spectra from all models are shown in Fig. 5.17. The shaded gray regions show

the extent of the variability at each frequency. Below ∼ 1011Hz, a substantial portion of

the emission is produced outside r = 25M, and so is not included here. In addition, we do

not model emission from nonthermal electrons, and so do not expect to be able to fit the

observations outside of the millimeter peak. The variability increases with frequency, due

to the decreasing optical depth. The 50h simulation produces a large amount of variability,

which may be inconsistent with the range observed from Sgr A*.

In addition to VLBI observations, there are constraints on the time-dependent structure

of the accretion flow from astrometry. The centroid wander of Sgr A* at 7mm was con-

strained by Reid et al. (2008) [162] to be ! 100µas on timescales of a few hours. Fig. 5.18

shows x and y centroid positions as functions of time for the best fit models at 345GHz.

The position wander for all models considered here is ! 30µas at millimeter frequencies on
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Figure 5.17 Millimeter spectra for the best fit models. The solid curves are the median
values at each frequency, while the dark gray envelope shows the range reached during the
simulations. Data points are from Falcke et al. [67] (open circles), An et al. [5] (filled
diamonds) and Marrone [124] (filled squares). The models are fit to the Marrone [124] data,
while at lower frequencies the emission is dominated by emission outside of the simulation
domain, and nonthermal emission from electrons either in the accretion flow [202] or in a
short jet [68].
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Figure 5.18 X (solid) and Y (dotted) centroid positions vs. observer time for the best fit
models from tilted simulations at 345GHz. The position wander is similar for all frequencies
in Fig. 5.17, although the average centroid position changes with frequency.
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Figure 5.19 Millimeter spectra for the tilted best fit models as in Figure 5.17.
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Figure 5.20 X (solid) and Y (dotted) centroid positions vs. observer time for the tilted best
fit models at 345GHz as in Figure 5.18.
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all timescales, well within the observed upper limit. A prediction of the simulations is that

the millimeter position wander shouldn’t exceed that level, even during flares. This is due

to the robustness of the time-dependent image structure at all inclinations, and a result of

the fact that the variability is produced globally in the inner radii, rather than by small,

orbiting inhomogeneities (hotspots).

The instrument GRAVITY at the Very Large Telescope (VLT) will provide ! 15µas

precision astrometry of Sgr A* in the infrared (IR). If the IR flaring is due to a relatively

global process such as Compton scattering from millimeter seed photons, centroid mea-

surements from thermal synchrotron emission in the IR may be similar to those during

the flares. Since the position wander from our models rarely exceeds the detection limit

of GRAVITY at any frequency, it should be easy to distinguish such IR flare mechanisms

from nonthermal events involving hotspots or expanding blobs, which would lead to larger

centroid movements [205].

The spectra from best fit tilted disk models (Figure 5.19) extend to higher frequencies

than their untilted counterparts (Figure 5.17). This is partially due to the higher inclinations

of the best fit models for 315h, 715h and 915h but is also due to higher temperatures in

portions of the tilted models (not in the underresolved poles). The stronger variability in

the tilted models is also evident. Finally, Figure 5.20 shows the (x,y) centroid locations as

functions of time for the best fit tilted models. Although the position wander is larger here

than for the untilted simulations (Figure 5.18), if the position wander is similar in the IR

it will only be at the detection limit for the future VLT instrument GRAVITY.

5.4 Emission Region Properties

The millimeter emission region is in the innermost radii of the accretion flow, peaked in the

midplane. The emission is dominated by synchrotron emission from thermal electrons [202].

The saturated magnetic field strengths are typically ∼ 0.01 − 0.1 of equipartition (plasma

β ! 10− 100), and both the particle density and magnetic pressure are proportional to the

accretion rate. These quantities, then, are scaled together to produce the observed total

flux from Sgr A*. For these reasons, the quantities that differ most between simulations

are the electron temperature and the radial density profile. The radial distribution of
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particle density and the electron temperature in large part determine the image structure

and viability of the model.

As expected for accretion disks with aligned angular momentum and black hole spin

axes, the effective inner radius of the disk in all simulations moves closer to the black hole

with increasing spin. However, the density at the event horizon is usually only a factor ∼ 5

lower than at the peak. There is no sharp inner boundary to the accretion flow.

Optical Depth Effects

For best fit parameter combinations, the 1.3mm photosphere is quite compact and the flow is

mostly optically thin, especially at low inclination. In the 0h and 50h simulations, however,

as well as for Ti/Te = 10 in all models, the photosphere at 1.3mm extends well outside

of the region of peak emissivity, at r ∼ 5M. In general, the photosphere gets smaller at

higher electron temperatures, since those models require lower accretion rates to match the

observed flux from Sgr A*. Optical depth effects are also more important at high inclination.

This is because Doppler beaming increases the absorption along rays between the observer

and the approaching gas.

Single temperature conservative models (MBD, MBQ) have no noticeable photosphere.

This leads to a small image size, and low accretion rates. Since the Marrone (2006) [124]

observations find that the turnover in the synchrotron spectrum occurs between 1.3mm and

.4mm, they are inconsistent with models that are completely optically thin at 1.3mm. The

VLBI observations also disfavor such models due to their small image sizes. For Ti/Te = 10,

we have the opposite situation. VLBI rules out these models due to their large photospheres

and hence image sizes, while they are generally also optically thick enough that the syn-

chrotron turnover occurs shortward of .4mm. For all simulations, the best fit Ti/Te occurs

when there is a photosphere inside of r ∼ 5M.

Comparison to RIAF Models

There are significant differences between the simulated and semi-analytical RIAF accretion

disks. In the RIAF model, the disk is assumed to have a constant scale height H/R =
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1, whereas for all simulations considered here H/R ∼ 0.1 − 0.3 in the regions of peak

millimeter synchrotron emissivity, as measured by fitting a Gaussian to the particle density

at the median radius of peak synchrotron emissivity. The Gaussian fits describe the vertical

particle density distribution, and their parameters are stable over time. The emissivity has

the same vertical profile.

Thinner disks have higher particle density, stronger magnetic fields and smaller tem-

peratures. These effects are largely mitigated in the Sgr A* models, since the electron

temperature scaling is a free parameter, and the magnetic pressure and density scale with

accretion rate. The parameter β = Pg/Pm is independent of accretion rate and electron tem-

perature. In regions of peak synchrotron emissivity, it has a median value around ∼ 3− 10

for the high spin simulations 90h, MBD and MBQ. The lower spin, non-conservative sim-

ulations 0h and 50h have median β ∼ 10 − 20. In RIAF models, β is assumed to be a

constant, usually around ∼ 10. The trend of increasing β with decreasing spin is also seen

in the axisymmetric HARM simulations. Although β varies spatially in the simulations,

the emission region is small enough that these variations aren’t larger than an order of

magnitude, so that constant β is likely a good approximation.

We have also fit radial profiles of density, temperature and magnetic field strength to

compare the simulations to the RIAF models. In general, simple power laws r−α describe the

radial distribution of temperature and magnetic field strength within the millimeter emission

region. The power law indices for the temperature distribution are around α ∼ 0.7, which

is quite close to the RIAF value of 0.84. The conservative MBD and MBQ simulations have

magnetic field indices of α ∼ 1.1 − 1.2, while the 0h, 50h and 90h simulations range from

α ∼ 0.3 − 0.7. The RIAF value is 1.05. In the 50h, 90h and 2D HARM simulations, the

magnetic field power law index increases with spin.

Other than the disk thickness, the main discrepancy between RIAF models and GRMHD

simulations is in the radial particle density profile. The simulations find flat or decreasing

density profiles towards the horizon from a point at ∼ 2rms, where rms is the marginally

stable orbit. In RIAF models, the density increases up until the horizon as a fixed power

law. This is especially inaccurate at low spin, where the 0h, 50h, and HARM simulations

find peaks in the radial density profile at r ∼ 10− 15M, depending on the value of the spin.
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Finally, running the axisymmetric HARM simulations also allows a direct comparison to

the spectral index values found in Mos̀cibrodzka et al. (2009) [136] for different ray tracing

codes and interpolation schemes. Values of the spectral index, time-averaged as discussed

in that work, are in good agreement with their results in most cases. This is even true when

we use the angle-averaged emissivity from Mahadevan et al. (1996) [122]. The emissivity

from Leung et al. (2010; submitted) takes into account the angle θ between the ray and the

magnetic field. The largest differences between the emissivities are at extreme inclinations,

where a factor of sin θ in νc causes the spectrum to peak at larger (smaller) frequencies

at low (high) inclinations. Individual images and spectra can significantly differ between

emissivities. However, all parameter estimates, probability distributions, light curves and

best fit models presented here are robust to the choice of emissivity.

5.4.1 Tilted Disk Emission Region

Tilted simulations are geometrically thicker than untilted simulations run with the same

code (Cosmos++), and the emission region moves to slightly larger radius with increasing

spin. This was found for some dynamical measures of the inner radius by Fragile (2009) [77],

while the calculations in Chapter 3 found that the radiation edge is roughly independent of

spin. The tilted Sgr A* models all produce the bulk of their emission at r ! 3−7M, similar

to the 90h untilted simulation. All tilted models have significantly stronger magnetic fields

relative to equipartition than their untilted counterparts, with the median plasma beta in

the synchrotron emission region ! 2−10, increasing with increasing spin, again the opposite

as found in untilted simulations.

The compact emission region and large magnetic field strength at low spin in tilted

simulations makes 315h a particularly likely model for Sgr A*. It can produce the observed

millimeter flux without becoming optically thick even at much smaller electron temperatures

than the other simulations, and in large part prevents parameter estimates from the tilted

simulations as a group. The fact that in many ways low spin tilted simulations resemble

high spin untilted ones suggests that the limit a → 0 at finite tilt should be interesting for

further study, as presumably the accretion flow must smoothly transition from effectively
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high spin to zero spin without a significant change in the actual spin parameter.

5.4.2 Precession

All of the GRMHD simulations only evolve the inner portion of an accretion disk. Since

the initial condition is a torus in hydrostatic equilibrium, the outward angular momentum

transport driven by the MRI causes some of the torus material to move outwards. Thus,

the actual accretion disk only forms inside of some radius smaller than the location of the

initial torus. In the simulations considered here, that location is r ! 15−25M, much smaller

than the expected “size” of the accretion flow in Sgr A*. The simulated, tilted disks precess

essentially as solid bodies once an initial radial tilt and warp profile is established [80, 79].

The timescale for this precession is sensitive to the outer boundary of the accretion flow,

where infalling material couples to the rest of the disk.

Since the physics of this transition in a thick, tenuous, magnetized flow like that in Sgr

A* is uncertain, this timescale is essentially unconstrained. If the flow only begins to precess

at a reasonably small radius r ∼ 100 − 1000M, then the timescale could be on the order of

days-years, accessible to observations. Then the strong dependence of image morphology

on observer azimuth would cause the characteristics of Sgr A* as measured by mm-VLBI

to vary with observational epoch, much in the same way as described for line profiles in

Section 3.3.2. The variation of inferred parameters from this fitting process with time would

then be a signature of a tilted accretion flow. Current observations are insufficient to test

for this effect.

5.5 Discussion

Radiative models from all simulations provide excellent fits to the current mm data (VLBI

and spectral). The observational constraints provide a generic picture of the accretion flow

onto Sgr A*. The observed flux is due to synchrotron emission from thermal electrons at

r ! 3 − 10M near the midplane of the flow. In the case where the black hole spin axis

and torus angular momentum axis are aligned, the electron temperature, accretion rate

and viewing geometry are also well constrained. In the misaligned case (with 15◦ tilt), the

additional free parameter leaves a much larger range in the viable models. The resulting
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black hole images as viewed at infinity are essentially a superposition of two crescents in all

cases: one from the combined effects of gravitational lensing of the back of the disk to the

top of the image and Doppler beaming causing approaching (receding) material to appear

brighter (dimmer), and the other from the same Doppler beaming but of the emission from

the immediate vicinity of the circular photon orbit.

The detectability of the black hole shadow, caused by the contrast between the tran-

sition between bound and unbound photon orbits at the strongly lensed circular photon

orbit, depends on the degree of Doppler beaming and in turn on the inclination angle.

For the aligned models, the inclination is moderate so that the black hole shadow should

be detectable over a range of orientations that are inaccessible to current telescopes. The

high spin simulations used here predict that the shadow should be detectable on baselines

between Chile or Mexico and California or Arizona. The shadow appears both in measure-

ments of the visibility amplitude obtained to date, or through observations of the closure

phase. These same baselines are also the most promising for further constraining black hole

parameters, and testing accretion flow models. The misaligned simulations also predict the

shadow should be detectable for some range of orientations a significant fraction of the time,

but again the picture from these models is much less clear.

In addition to detecting the shadow, it has been suggested [103] that the no-hair theorem

in the Kerr metric could be tested through testing its size and position relative to the black

hole. This is appealing because as shown here, the feature (crescent or ring) from the

circular photon orbit has a size independent of the details of the accretion flow. However,

our models indicate that this procedure will be extremely difficult. Detecting the shadow

at all will require relatively complete baseline coverage both in terms of many telescopes

and long observation periods. Highly sensitive measurements will also be required to detect

a local minimum in the visibility amplitude and/or a sudden change in the closure phase.

Since the images are superpositions of two crescents (see Figure 5.1), and since the size of

the shadow in most models depends critically on the details of the accretion physics rather

than just the properties of the Kerr metric, inferring the size and location of the circular

photon orbit will require disentangling it from the accretion flow portion of the image. Even

if the observations eventually provide a fairly sensitive image of the accretion flow, this will
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require detailed understanding of the physics of the accretion flow.

Radiative models based on 3D GRMHD simulations are inherently time-dependent, and

the variability of the synchrotron emission in the accretion flow provides another test of its

validity. Millimeter light curves from all best fit models from both aligned and tilted simu-

lations show flaring events with ∼ 50% amplitudes and few hour durations at a frequency

of 1 − 2 per day, consistent with the millimeter flaring behavior of Sgr A*. These flares

are caused by rises in magnetic field strength near the midplane of the inner radii of the

accretion flow, due to magnetic turbulence driven by the MRI. They do not appear to be

linked to heating from magnetic reconnection, and are accurately reproduced by a simple

model assuming an isothermal emission region with ν/νc ∼ 20. The variability in the light

curves for all simulations at .4mm is strongly correlated with that in the accretion rate onto

the black hole. However, there is no clear evidence for a characteristic lag between the two.

Due to the uncertainties in their emission mechanisms and electron distribution func-

tions, we do not model the radio, IR or X-ray portions of the spectrum, and so are unable to

test for the presence of correlated multiwavelength flares. Maitra et al. (2009) [123] showed

that the observed time lags between the radio and millimeter flares may be reproduced by

a jet model, where perturbations in the accretion rate near the black hole expand as they

flow outward. Since the millimeter variability is strongly correlated with the accretion rate,

that mechanism could explain the correlations between radio and millimeter flares even if

the millimeter emission is produced in an outflow rather than an accretion disk.

Additional constraints may come from the degree and orientation of linear polarization

first detected by Aitken et al. (2000) [4]. Huang et al. (2009) [99] modeled the polarization

from a pseudo-Newtonian model. It is important to use relativistic simulations for such

studies, since the degree of polarization is strongest close to the black hole. This has also

been done for 3D GRMHD data averaged in time and azimuth [186], but it’s unclear how

sensitive the polarization is to this averaging procedure. Future VLBI observations may

make use of the closure phase between triangles of baselines to probe changing structures

in the accretion flow [58]. Fish et al. (2009) [75] extended this work to include polarization.

Both of these papers used a RIAF+hotspot model. We have computed the first closure phase

signatures from more physically realistic GRMHD simulations, and find that the signature
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of the black hole shadow is present in the predicted closure phases. Detailed comparison

of observed and predicted closure phases will be able to constrain the accretion flow in the

same fashion as direct sampling of the visibility amplitude.
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Chapter 6

RADIATIVE MODELS OF M87

6.1 M87

M87 is a giant elliptical galaxy in the Virgo cluster. At a distance of 16 Mpc, it is !2000

times farther away from Earth than Sgr A*. The putative central supermassive black hole

in M87 (from this point on M87 will refer to the source coincident with the central black

hole rather than the galaxy itself) is ! 6.3× 109M", !1600 times larger than Sgr A*. The

expected angular size, δθ ∝ M/D, is then about 4/5 that of Sgr A*.

For this reason, M87 is just as if not more promising a mm-VLBI target as Sgr A*. M87

is in the northern sky, offering much longer mutual visibility with current telescopes than

Sgr A*. Its enormous black hole implies a proportionally longer dynamical time, so that

the light crossing timescale at its event horizon is ∼1 day. This means that unlike in Sgr

A*, earth aperture synthesis could be used to fill in the uv-plane, possibly (with additional

telescopes) allowing the use of imaging techniques to create an image of the source directly

instead of the model-dependent uv-space fitting techniques used in this thesis for Sgr A*.

From a physics standpoint, M87 is known for its galaxy-scale, ultrarelativistic jet. The

exquisite resolution of mm-VLBI then offers the possibility of imaging the jet launching

region, which would provide the opportunity to compare directly with physical models of

jet collimation.

The spectral properties of M87 are well known: it is an inverted radio source with a

power law tail extending from the spectral peak in the millimeter (similar to Sgr A*) all

the way to the optical. Existing VLBI images at 7mm [105, 120, 197] show extended jet

structure on milliarcsecond scales, emanating from an unresolved bright core.

Previous semi-analytic work has modeled the low-frequency radio emission as arising

from (mostly non-thermal) synchrotron radiation in a “truncated” accretion disk with con-

stant density and magnetic field strength out to some small radius, where both quantities fall
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off as power laws. The millimeter and high-frequency emission is modeled as non-thermal

synchrotron radiation as well, but with different physical parameters attributed to unknown

jet physics. These models can fit the spectrum [201, 33] and accomodate the presence of

extended jet structure at 7mm. Synthetic jet images have also been produced as predictions

for mm-VLBI from one of these semi-analytic models [33].

Jet formation has recently become accessible to global GRMHD simulations [129]. In

the simulation MBD used for modeling Sgr A* (Chapter 4, Table 4.1), an ultrarelativistic

jet is produced which propagates out to 1000M (! 1mas in M87) before it interacts with

the simulation boundary. The same ray tracing techniques discussed previously (Chapter 2)

are used in this chapter to create a time-dependent spectral model of M87 for comparison

with ongoing mm-VLBI observations.

6.2 Radiative Modeling

Unlike in Sgr A*, there is no consensus for the electron distribution or geometry responsible

for the millimeter emission in M87. The presence of an extended jet at 7mm indicates that

the jet is at least comparable in luminosity to the disk there. Given that our model consists

of a GRMHD simulation where a jet is produced from accretion onto the black hole from

a disk, we also include a disk component. We assume that synchrotron emission dominates

at all wavelengths from radio to optical, and neglect inverse Compton scattering of the

synchrotron seed photons to higher energies.

6.2.1 Jet Emission

We assume that the jet emission is entirely non-thermal, while the accretion disk component

is entirely thermal. The thermal component is computed in the same fashion as the previous

chapter for Sgr A*, including the assumption of a constant ion-electron temperature ratio.

Previous models have also included non-thermal disk emission, which could be important

for explaining the radio spectrum. The non-thermal particle distribution is taken to be a

power law in electron energy (Lorentz factor) with a constant index p between low- and

high-energy cutoffs, γmin,max. The synchrotron emission and absorption coefficients for
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Figure 6.1 Spectra from jet model used in [33] with the exact emissivity calculated from
[112] (solid) and the approximate form given by [104] (dashed). The approximate form
overestimates the emission in the vicinity of the low frequency cutoff (! 1011Hz here). The
parameters are γmin = 100, p = 3.

this distribution are taken from Equations C.22 and C.42 and the required integrals are

tabulated for the desired values of p.

It is necessary to use this form of the emissivity rather than approximate forms commonly

found in the literature that assume an observed frequency far from those corresponding to

the cutoff Lorentz factors. In M87, the low-frequency cutoff is located at ν0 ! 1010−11Hz

for the range of low-energy Lorentz factor cutoff used here, γmin = 10 − 100. This is quite

close to the frequencies of interest for mm-VLBI. Figure 6.1 shows the difference in the

spectrum between the two forms. Taking the low-frequency cutoff into account broadens

the spectrum and smoothes the turnover from optically thick to thin.

The magnetic field strength everywhere is taken directly from the simulation. For the

jet emission, we need to calculate a non-thermal particle density. In the magnetically-

dominated jet, the particle density and internal energy from energy conserving simulations

are highly inaccurate due to the artificially enforced floor values used for numerical stability.

Instead of using these compromised values, we scale the internal energy to the magnetic

energy with a constant of proportionality, η:
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unth = η
b2

8π
, (6.1)

where unth is the non-thermal internal energy density and b is the magnetic field strength

in cgs units. Then the particle density, nnth, is taken from,

nnth = η
b2

8π
p − 2
p − 1

(mec
2γmin)−1, (6.2)

which implicitly assumes that all of the internal energy is in electrons rather than protons,

or equivalently that the thermal energy in all particles is negligible and that all the protons

are thermal.

The rest energy of these non-thermal particles should still be less than the magnetic

energy density, since this procedure is unjustified outside of magnetically-dominated regions.

This leads to the condition,

η ! me

me,p

p − 1
p − 2

8πγmin, (6.3)

where me,p correspond to leptons (baryons) producing the jet. The strictest condition on η

is found by assuming a baryonic jet, in which case (for p = 3 − 3.5),

η ! .25
γmin

10
. (6.4)

This inequality is satisfied in all our models as the maximum η considered is 0.1.

6.2.2 Jet/Disk Boundary Condition

The GRMHD simulation consists of a smooth solution for a single component fluid, ne-

glecting particle acceleration or distributions. Defining a disk/jet solution for M87 then

requires choosing a condition for the boundary between the two components. There are

several possibilities.

First, the general structure of GRMHD simulations consists of a dense, thick disk with

scale height H/R ∼ 0.2−0.3 centered on the equatorial plane, surrounded by a tenuous wind

and then a polar jet. One straightforward method is then to define the jet/disk boundary

at a particular polar angle. Typically this is chosen to be ! 30◦.
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Figure 6.2 Ratio of magnetic to rest energy (left) and specific enthalpy measured at infinity
(right) for a single time step of the MBD (top) and MBQ (bottom) simulations. The
azimuthally averaged data are shown in color, while contours of b2/ρc2 = 0.1, 8π and
−hut = 1.0, 1.1 for the full range of azimuths are overplotted. Also overplotted in blue are
lines of constant polar angle, θ = 18◦, 30◦. The jet is clearly identified by either measure in
MBD, but only roughly corresponds to lines of constant θ. There is no persistent jet in the
MBQ simulation.
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Figure 6.3 Sample disk/jet spectra varying each parameter separately: γmin (top left), p
(top middle), η (top right), ṁ (bottom left) and Ti/Te (bottom right).

Secondly, the outflows in GRMHD simulations arise in magnetically-dominated regions

[52, 128]. Motivated by this, we can define the jet as anywhere that b2/ρc2 > f , where

f ! 0.1 − 8π depending how much of the “disk wind” is to be included in the jet.

Finally, the jet/disk components can be separated as the boundary between inflow/outflow.

In this case, all unbound fluid elements are taken to comprise the jet (−hut > 1, where h

is the specific enthalpy and ut is the time-component of the covariant fluid four-velocity

[52]). Any combination of these criteria can also be used instead of just one. A comparison

of the three criteria for an azimuthally-averaged single timestep of the simulation is shown

in Figure 6.2, and as expected they all lead to roughly the same definition of the jet. We

also show the same criteria applied to the MBQ simulation, where no persistent jet forms.

Little of the polar region in this simulation would qualify as a jet by our criteria that fluid

be magnetically-dominated or unbound.
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6.2.3 Model Parameters

These are the required elements to define a radiative model of M87. Unlike in Sgr A*,

the inclination of M87 is fairly well constrained from superluminal motion in the jet [94],

implying i ! 30◦. We fix i = 25◦ in this chapter. The black hole spin is also fixed at

a = 0.92, since we only consider a single simulation.

A given radiative model of M87 then has the following parameters: Ti/Te for the disk

component, Ṁ and the jet/disk boundary selection criterion for both components and

γmin,max, p, η for the jet component. We take γmax = 105 throughout, leaving five free

parameters. This is many more free parameters than in the models of Sgr A* presented

previously. Rather than fitting extensively to data, we pick two fiducial models that give a

sense for the range of viable models of M87 and the limitations of modeling with current

GRMHD simulations. Sample spectra showing the effects of independently varying the pa-

rameters are shown in Figure 6.3. The electron/ion temperature ratio Ti/Te (bottom right

panel) fixes the relative disk contribution. At Ti/Te = 10, the disk emission is negligible

at all wavelengths while at Ti/Te = 3, the best fit ratio for this simulation for Sgr A*, the

jet portion dominates except in the millimeter, where there’s a sub-millimeter bump from

thermal disk emission. The normalization and peak frequency are affected by both γmin

(for the jet portion, upper left panel) and ṁ (bottom left panel). The fraction of magnetic

energy converted into non-thermal jet particles, η, changes the normalization of the jet

spectrum (top right panel). Finally, p fixes the spectral slope between the millimeter and

high frequency IR/optical emission.

6.3 Fiducial Models

To identify viable models, we compute spectra from a single timestep of the MBD simulation

data over a grid spanning reasonable values of the various parameters: Ti/Te = (3, 5, 10),

ṁ = (1, 2.2, 4.6, 10, 22, 46, 100) × 10−7, p = (3, 3.25, 3.5, 3.75), γmin = (10, 30, 50, 100) and

η = (0.01, 0.02, 0.05, 0.10). The relative accretion rate is defined as ṁ ≡ Ṁc2/Ledd, where

Ledd is the Eddington luminosity.

The resulting spectra are fit to multi-wavelength observations. We fit to average values
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Figure 6.4 Viable spectra with Ti/Te = 10 (left), 5, (middle), 3 (right). The red symbols
are the observational data used as either upper limits (squares), data points (circles) or
waveband-averaged data points (triangles).

in the optical [188] and near infrared [155, 156] and to the measured values at 3.3mm and

1.3mm [190]. The far infrared measurements are treated as upper limits due to their possible

contamination by dust in the host galaxy [156]. The radio data are also treated as upper

limits, since as in Sgr A* the limited spatial extent of the physically realistic region of the

simulation prevents the modeling of the large-scale emission. The uncertainties are taken

as 30% in all cases irrespective of measurement errors, since we are interested in finding

qualitatively reasonable spectra rather than to quantitatively constrain parameters as done

for Sgr A* in Chapter 5.

There are many reasonable models within our grid of spectra. Many examples are

shown in Figure 6.4. The lines are all spectra for which χ2 < 0.5, split up by ion-electron

temperature ratio. The χ2 values are low because of our artificial inflation of the error bars,

and the number of observational constraints is equal to the number of free parameters in

our model. For both of these reasons we make no attempt to quantify a goodness of fit for

the model spectra.

These jet/disk models are much different from those used previously to model M87

[201, 33]. The jet and disk emission both peak in the millimeter, unlike “truncated” disk

models where the disk emission peaks in the radio. The peak frequency of the disk spectrum

and its normalization are fixed by Ti/Te and ṁ. The electron/ion temperature ratio is
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Table 6.1. Fiducial Model Parameters

Model Ti/Te ṁ(10−6) γmin p η

DJ1 3 1 50 3.25 0.05

J2 10 1 50 3.50 0.10

unlikely to exceed unity, while increasing the relative accretion rate both increases the

normalization of the spectrum and moves its peak to higher frequencies. Within these

constraints, it is not possible to produce the observed radio emission from the GRMHD

accretion flow. It could, however, be produced by thermal or nonthermal disk electrons

at large radius outside of the simulation volume. Then the truncated disk is most closely

related to our model with Ti/Te = 10, where the disk contributes negligibly.

The jet spectrum has the additional degrees of freedom η and γmin, which allow the

possibility of a spectral peak in the radio. However, this is seemingly in conflict with 7mm

VLBI observations, which find extended jet emission on a milliarcsecond scale [105]. In

our jet models and those from Broderick & Loeb (2009), the emission is extended when

optically thick to synchrotron self-absorption. Then the existing VLBI observations suggest

that the jet spectrum is still rising in the millimeter. Moving the spectral peak of the jet

component also requires extreme values of the relevant parameters, with Ṁ " 10−5, η ∼ 1

and γmin ∼ 1. For both reasons, we do not pursue these models further.

6.3.1 Viable Parameter Ranges

From the spectra providing the best fit to the chosen data, we select one with Ti/Te = 3

(DJ1) and one with Ti/Te = 10 (J2). This parameter fixes the relative contribution of the

disk, which peaks at millimeter wavelengths in a similar fashion to Sgr A*. The parameters

of the two fiducial models are listed in Table 6.1, and their spectra are plotted in Figure

6.5, showing the total spectrum as well as split up by jet and disk components.
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Figure 6.5 Total (solid), disk (dotted) and jet (dashed) spectra from the two fiducial models
along with the observational data points. The error bars shown are from the measurements,
whereas for the fitting 30% uncertainties were used. In the two models with larger electron
temperatures (left panel), the disk emission becomes important at millimeter wavelengths
and dominates the emission there. For small electron temperatures (right panel), the entire
spectrum is from the jet component.

6.3.2 Jet Only or Jet/Disk

With Ti/Te = 10, the disk emission is negligible at all wavelengths. The jet spectrum peaks

in the millimeter, with a long power law tail extending to the IR/optical. Models with larger

Ti/Te are still jet-dominated at low and high frequencies, but the thermal emission leads

to a submillimeter bump. This not only leads to significant disk emission at frequencies of

interest for mm-VLBI, but the thermal absorption can also attenuate the jet emission from

small radius. Thus, the spectrum alone cannot distinguish between jet or disk emission

dominating in the millimeter.

6.4 Image Morphology

Images of the fiducial models as well as their separate jet and disk components are shown

in Figure 6.6 at 1.3mm and 0.87mm, the two wavelengths of interest for mm-VLBI. As

expected, images of M87 dominated by thermal particles in the accretion flow (DJ1) are

nearly identical to those of Sgr A*. Doppler beaming is significant even at the low expected

inclination of M87, but weaker than for preferred inclinations of Sgr A*. The image is a
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Figure 6.6 Images from total (top row), disk (middle row) and jet (bottom row) components
for the two fiducial models (left two columns and right two columns) at 1.3mm (first and
third columns) and 0.87mm (second and fourth columns). The colors are scaled linearly
from blue to red to yellow to white, with a dynamic range of 60. The images are taken from
the same time step used for the spectra in Figure 6.5, and have been rotated 75◦ to align
with the position angle of the larger scale jet at 7mm.
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crescent from the combined effects of beaming and gravitational lensing, but with a stronger

drop in intensity inside the black hole shadow. The jet emission arises from near the pole

offset slightly above the black hole. This allows a significant portion of its emission to

appear in the shadow region.

When the disk emission is negligible, the image “size” is smaller due to the smaller size of

the jet footprint relative to the thicker accretion disk. The image is still a crescent, although

the Doppler beaming is much stronger due to the helical rather than Keplerian motion in

the jet. At 1.3mm, the circular photon orbit is still ring-like enough to produce a shadow.

At 0.87mm, both images are smaller. The jet component in DJ1 is less significant, and

the J2 image is essentially just a single crescent from Doppler beaming of the jet material

moving toward the observer.

Unlike in Sgr A*, the orientation angle of the M87 black hole spin axis projected on

the plane of the sky can be reasonably assumed to align with the orientation of the 7mm

jet structure. This assumes that the jet is launched along the spin axis, and that the jet

remains coherent on parsec scales. The images in Figure 6.6 have all been rotated to this

favored orientation.

6.4.1 Predictions for mm-VLBI

The first mm-VLBI observations of M87 were conducted recently [74], but the results are

not yet available. We therefore make predictions for both current and future telescopes,

assuming a geometry (inclination and orientation) based on larger scale jet observations.

With sufficient telescopes (baselines), sensitivity and observing time it will be possible to

construct observational images in the future. However, for now the small number of available

telescopes restricts the observations to the uv-plane and we again Fourier transform the

images to visibilities, whose amplitudes are shown along with the total intensity images for

both mm-VLBI wavelengths in Figure 6.7. Possible locations of current measurements are

shown as the green lines, and the visibility amplitudes are interpolated to those locations

and plotted against baseline length in the left panel of Figure 6.8. As with the best fit models

of Sgr A*, in both fiducial models the current telescopes are at an orientation where the
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Figure 6.7 Images (first and third columns) and corresponding visibility amplitudes (second
and fourth columns) from the two fiducial models (rows) at 1.3mm (first two columns) and
0.87mm (right two columns). The baseline orientations available to current (green) and
near future (white and pink) telescopes are overplotted as lines. At this orientation, set by
the crescent image morphology and the direction of the 7mm jet, the black hole shadow is
accessible to future observations on a Hawaii-Mexico baseline.

Figure 6.8 Model visibility amplitude vs. baseline length for orientations using current
(left) and near future (right) telescopes. The visibility amplitude falls off monotonically
with baseline length for current measurements, while the local minimum corresponding to
the black hole shadow is accessible to a future baseline between Hawaii and Mexico.
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visibility amplitude decreases monotonically with baseline length. We then predict similar

results for M87 as those obtained from Sgr A* so far. Fit with a symmetric Gaussian model,

the source size is 41 (36) µas for model DJ1 (J2).

The same procedure is applied for telescopes in Chile1 and Mexico2 in the right panel

of Figure 6.8. In both cases, the black hole shadow is accessible to observations between

Mexico and Hawaii3. In the jet-dominated model, the shadow also appears on baselines

between Chile and Mexico.

6.5 Variability

The M87 models are also time variable. Light curves from the fiducial models are shown

in Figure 6.9 at 1.3mm and 0.87mm. The variability is more pronounced in the jet model,

while the disk model light curve looks similar to that for the same simulation in the Sgr

A* modeling (lower right panel of Figure 5.10). The jet model is more highly variable,

particularly at lower frequencies. For this reason, it is more consistent with the finding

that M87 varies at about 1Jy yr−1 [189]. However, since the variability in the jet model

is a result of one event, it is unclear whether this is due to a transient effect in the jet

formation/propagation or a recurrent variable activity. The image centroid in the mm is

highly stable in both models (Figure 6.10).

6.6 Discussion

In this chapter, we have created the first images, spectra and light curves from jet/disk

models of M87 based on GRMHD simulations. The jet/disk boundary is taken as a contour

in the ratio of magnetic to rest mass energy or in the particle specific enthalpy as measured

at infinity, with similar results in either case. The disk portion is modeled as described in

the previous chapters, while the internal energy in the jet region is scaled as a fixed fraction

of the magnetic energy density. The models have as many free parameters as spectral

1Atacama Pathfinder Experiment, APEX; Atacama Submillimeter Telescope Experiment, ASTE; or At-
acama Large Millimeter Array, ALMA

2Large Millimeter Telescope, LMT

3James Clerk Maxwell Telescope, JCMT or Submillimeter Array, SMA
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Figure 6.9 Light curves from the two fiducial models (left and right columns) at 1.3mm (top
row) and 0.87mm (bottom row).
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Figure 6.10 x (solid) and y (dotted) centroid position as functions of time. The centroid is
remarkably stable in both models.

constraints, so that it is possible to find two separate classes of models. In one class of

models, the disk emission is negligible at all frequencies and the jet produces the entire

spectrum. In the other, the jet produces the low- and high-frequency emission, while the

synchrotron radiation from thermal disk electrons peaks in the millimeter. In this case,

mm-VLBI of M87 would be similar to that of Sgr A*.

In general, the favored jet parameter combinations are γmin = 30 − 100 (although we

have not tried higher values which may also work), p = 3.25 − 3.5 and η = 0.02 − 0.10.

The favored average accretion rate is ṁ = 1 − 2 × 10−6, or Ṁ = 1 − 2 × 10−5M"yr−1.

For the jet portion, the parameters ṁ, η and γmin are some what degenerate. The spectral

slope, p, is fixed by the near IR and optical observations, while the ion-electron temperature

ratio Ti/Te is unconstrained. The favored value for this simulation from Sgr A* models,

Ti/Te = 3, leads to a disk-dominated image in the millimeter.

The viewing geometry of M87 is more constrained than in Sgr A*. Assuming that the

jet propagates along the black hole spin axis, the orientation angle is constrained to be

roughly 75 ± 30◦ measured E of N. The inclination has been estimated to be ! 25◦ from

the Lorentz factor of the jet [94, 21]. For these parameters, we can make predictions for

ongoing mm-VLBI observations. On the current baselines, we predict that M87 should
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appear as a compact source similar to Sgr A*. The fiducial models have FWHM sizes of 36

and 41µas when fit with symmetric Gaussian models. The black hole shadow is accessible

to future observations on baselines between Mexico and Hawaii and possibly Mexico and

Chile. Although the predicted Gaussian sizes for current telescopes are nearly identical

for both fiducial models, future observations with additional telescopes or epochs should

be able to distinguish between the two. This is because the 2D structure of the images is

significantly different and future baselines will probe orientations where the predictions are

substantially different. The variability in the jet model is stronger, so that its total flux

may also be expected to fluctuate more between observational epochs.

Both images are crescents, as in the case of Sgr A*, with the relative importance of

Doppler beaming and gravitational lensing set by the inclination and velocity profile of the

material. The sky orientation determines the portions of the image accessible to each VLBI

baseline. When this geometry is fixed and the velocities are roughly Keplerian disk motion

and helical jet motion, the resulting image is qualitatively independent of the details of the

physics in the innermost part of the accretion flow. Thus, our qualitative predictions for

event-horizon scale mm-VLBI with current and future telescopes are fairly robust as long

as the assumed geometry is reasonably accurate, despite the fact that the fiducial models

chosen here are only representative of a wide range of possibilities that could explain the

spectral properties of M87.

Nevertheless, there are many uncertainties in this analysis. The assumption that the

internal energy in non-thermal particles scales with magnetic field energy density may be

reasonable, but it is made out of necessity. Both the internal energy (pressure) and mass

density from the simulation are dominated by the artificial numerical floor required when

b2/ρc2 . 1, the region of interest for jet launching. The post-processing technique of

adding radiation after the fact is used, despite the fact that M87, while underluminous,

is ∼ 4 − 5 orders of magnitude closer to Eddington than Sgr A*. Further, it has been

found that cooling both via synchrotron radiation and Compton scattering of synchrotron

photons is dynamically important in axisymmetric GRMHD simulations of M87 [135]. It

will be possible to include those forms of cooling in future simulations, but a method for

evolving non-thermal particle density self-consistently is much more difficult. Using the
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simple prescriptions adopted in this chapter may not have any real effect on the dynamics,

since the floor values determine the mass density and internal energy in the jet. If anything,

including cooling in this case may make energy conservation in the simulations worse. The

simulation used here is the first to produce a large-scale, relativistic jet from an accretion

disk. The accretion flow solution is likely underresolved [93], and underestimates the relative

magnetic field strength of a simulation with much higher resolution. The convergence

properties of this jet solution are not understood, and the resulting magnetic field structure

should be compared to similar simulations without an accretion disk [191] and to future

simulations with a range of initial magnetic field configurations and torus geometries.

Previous semi-analytic jet/disk models of M87 have invoked a truncated disk, with a

low, constant particle density and magnetic field strength throughout the inner disk. This

configuration can produce the observed radio emission. We find that the magnetic field

strength in the simulation falls off too rapidly with radius to produce the observed flux at

small peak field strength, and instead as with Sgr A* the disk emission peaks in the millime-

ter. Both the disk and jet models used here are unlikely to be valid outside the innermost

radii. The disk emission peaks at such a small radius that this is unlikely to significantly

affect the results. However, there are so few studies of jets launched from GRMHD simula-

tions that it is unclear what the domain of validity is. For example, the cartoon jet model

from Broderick & Loeb (2009) [33], based on MHD simulations of jet propagation in the

absence of a disk, exhibits large-scale emission especially at low frequencies that does not

show up in our models. For this reason, the models presented here are not valid in the radio

and cannot match the extended jet emission seen at 7mm.
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

The goal of this thesis was to connect contemporary three-dimensional, time-dependent

simulations of black hole accretion flows based on the magnetorotational instability (MRI)

with observations. Low-luminosity objects are most suitable for this comparison, where the

radiation is dynamically unimportant and can be added after the fact via radiative transfer

calculations. To this end, we have written a public, semi-analytic code to compute photon

trajectories in the vicinity of spinning black holes and incorporated it into a framework for

time-dependent, general relativistic radiative transfer calculations from dynamical models

specified either analytically or numerically in up to three spatial dimensions. We are in the

process of generalizing the code to include polarization.

There is no reason to assume alignment between the angular momentum axis of the

accretion flow and the black hole spin axis in the low luminosity sources of interest in

this thesis. The radiation edge in these misaligned (“tilted”) disks, the innermost location

where emission is produced, is independent of black hole spin; in stark contrast to the results

from standard, untilted simulations where the radiation edge roughly tracks the innermost

stable circular orbit (ISCO) of the black hole. These ray tracing results confirm findings

based on dynamical measures. We have shown that non-axisymmetric, standing shocks in

the tilted disks transport angular momentum outwards, truncating tilted disks outside of

the ISCO. Further simulations will be necessary to determine the tilt dependence of the

radiation edge. Images and emission line profiles of tilted simulations strongly depend on

the observer azimuth. This type of tilted, radiative inefficient flow may be present in the

inner portion of low/hard state of black hole binaries. The precession of the tilted disk would

then cause significant variability in the line profiles or possibly spectra on long timescales.

There is no evidence for high-frequency quasi-periodic oscillations in power spectra of tilted

simulations for the simplistic emission models used in this thesis.
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The Galactic center black hole, Sagittarius A* (Sgr A*), at millimeter wavelengths

provides a uniquely suitable source for modeling with simulations due to its extremely low

luminosity and accessibility to very long baseline interferometry (VLBI) with event-horizon

scale resolution. Detailed radiative models of the millimeter emission from Sgr A* were

constructed from simulations by computing images and light curves over a grid of parameters

and fitting them to existing mm-VLBI and spectral data. The models provide excellent fits

to existing observations. A clear picture emerges from untilted simulations, where in all

cases at relatively high spin (a = 0.5 − 0.9), the viable models have moderate inclinations

(i ! 60◦), low accretion rates (Ṁ ! 5 × 10−9M"yr−1) and high electron temperatures

(Te ! 6 × 1010K). The emission arises from synchrotron radiation by thermal electrons

in the innermost parts of the accretion flow (r ! 5M). The range of viable models based

on simulations with a tilt angle of 15◦ is much larger, and the parameters are basically

unconstrained. This is both due to the additional free parameter of observer azimuth and

the unique properties of low spin, tilted disks which combine attributes of tilted disks

and higher spin, untilted ones. It will be interesting to see whether this unique situation

remains in simulations that conserve total energy. If so, the limit a → 0 at finite tilt

would be an interesting situation to study in future work, since the accretion flow must

transition from this unique solution to the Schwarzschild solution over a small range of

black hole spin. Both the tilted and untilted models will be further constrained by future

mm-VLBI measurements including telescopes in Mexico (Large Millimeter Telescope; LMT)

and Chile (Atacama Large Millimeter Array; ALMA) and by robust measurements of the

VLBI closure phase. Thus far, the geometric parameter constraints from radiative models

based on GRMHD simulations are nearly identical with those from semi-analytic radiatively

inefficient accretion flow solutions [29, 30].

The black hole images are all crescents with significant asymmetry from Doppler beaming

and the black hole shadow visible due to the contrast between the front and back of the

accretion flow. All GRMHD models predict a significant chance of observing the shadow,

direct evidence for a black hole event horizon, on baselines between LMT or ALMA and

existing mm-VLBI telescopes (Combined Array for Research in Millimeter-wave Astronomy,

CARMA or Sub-Millimeter Telescope Observatory, SMTO). This detection will be difficult,



143

since the shadow appears as a local minimum in the observed visibility amplitude and as a

rapid change in the closure phase. It may be seen as two detections bracketing an upper

limit in the visibility amplitude, with significantly different closure phases, all occurring

over a short period of time (∼ 1hr).

The radiative models constructed here are inherently time-dependent, and the variability

of the viable models of Sgr A* all naturally reproduce the observed millimeter flaring be-

havior with 30− 50% amplitude and few hour durations. The variability in the simulations

is caused by magnetic turbulence driven by the MRI rather than heating from magnetic

reconnection or hotspots orbiting in the disk. These radiative models do not incorporate

IR or X-ray emission, since the emission mechanism and geometry at those wavelengths is

uncertain. It may be from non-thermal electrons in a disk, corona or jet or from Compton

scattering of millimeter photons by hot electrons. A complete radiative model will have

to produce the full multiwavelength spectrum of Sgr A*, including the large simultaneous

IR/X-ray flares. Time-dependent polarization should also be included, as there are ra-

dio/millimeter polarization constraints and future mm-VLBI observations will measure the

polarized visibility. The small-scale polarization may be quite high, since the magnetic field

in the simulations is toroidal and fairly coherent, and the emission is dominated by fluid

approaching the observer.

M87 is the other major target for mm-VLBI observations, and the beginnings of its

ultrarelativistic jet may be accessible at extremely high resolution. Radiative models of

M87 were constructed in similar fashion to Sgr A*, except that the M87 models necessar-

ily include a non-thermal, jet component from a power law distribution of electrons. The

jet/disk boundary can be defined either in terms of magnetically-dominated portions of

the simulation or specific enthalpy (bound/unbound particles) with similar results. It is

important to use an emissivity that includes the effect of the low Lorentz factor cutoff in

computing millimeter emission, as it tends to move the peak of the SED to significantly

higher frequencies. The spectrum can either be described by a jet model at all frequencies,

or a jet at low- and high-frequencies with a disk dominating the millimeter emission. With

reasonable assumptions for the geometry, we predict a Gaussian source size of 36 or 41µas

on current mm-VLBI baselines. The black hole shadow is accessible to future baselines



144

between Hawaii (James Clerk Maxwell Telescope, JCMT) and Mexico (LMT) and possibly

between Mexico (LMT) and Chile (ALMA). The event-horizon scale images are again cres-

cents in both cases, dominated by the effects of gravitational lensing and Doppler beaming.

Predictions for ongoing mm-VLBI are then fairly robust on small scales, despite the large

uncertainty in the disk/jet models themselves. The jet and disk/jet models can be distin-

guished in future mm-VLBI measurements due to the much smaller jet image, dominated

by Doppler beaming particularly at 0.87mm. The jet is found to contain larger amplitude

variability than the disk, while the disk variability is similar to that in the Sgr A* models.

Future polarized VLBI observations may also be able to discriminate between disk and jet

origins for the millimeter emission.
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K. Mužić, F. Najarro, J.-U. Pott, K. F. Schuster, L. O. Sjouwerman, C. Straub-
meier, C. Thum, S. N. Vogel, H. Wiesemeyer, M. Zamaninasab, and J. A. Zensus.
Simultaneous NIR/sub-mm observation of flare emission from Sagittarius A*. A&A,
492:337–344, December 2008.
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Appendix A

GEOKERR: FAST AND ACCURATE PHOTON ORBITS IN KERR
SPACETIME

A.1 Geodesic Equations of Motion

In Boyer-Lindquist coordinates (t,r,θ,φ), the Kerr line element can be written,

ds2 = −ρ2 ∆
Σ2

dt2 +
Σ2

ρ2

(
dφ− 2ar

Σ2
dt

)2

sin2 θ +

ρ2

∆
dr2 + ρ2dθ2, (A.1)

with the definitions,

∆ = r2 − 2r + a2, ρ2 = r2 + a2 cos2 θ, (A.2)

Σ2 = (r2 + a2)2 − a2∆ sin2 θ, (A.3)

where a is the angular momentum of the black hole and in this Appendix we use units with

G = c = M = 1.

Carter (1968) [42] demonstrated the separability of the Hamilton-Jacobi equation for

geodesics,

−2
∂S

∂λ
= gµν ∂S

∂xµ

∂S

∂xν
, (A.4)

where S is Hamilton’s principal function (the classical action) and λ is an affine parameter.

The separation reduces the equations of motion to quadratures [45] relating the coordinates

r and θ:

∫ r dr√
R

=
∫ θ dθ√

Θ
, (A.5)
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where

R = [(r2 + a2)E − aLz]2 − (A.6)

∆ [Q + (Lz − aE)2 + δ1r
2]

Θ = Q− [ a2(δ1 − E2) + L2
z csc2 θ] cos2 θ; (A.7)

and the constants of the motion are the angular momentum about the black hole spin axis,

Lz, the energy, E, and Carter’s constant Q. δ1 = 0 (1) for null (timelike) geodesics.

The equations of motion for the cyclic coordinates are

t = λE + 2
∫ r

r[r2E − a(Lz − aE)]
dr

∆
√

R
(A.8)

φ = a

∫ r

[(r2 + a2)E − aLz]
dr

∆
√

R
+

∫ θ

(Lz csc2 θ − aE)
dθ√
Θ

, (A.9)

with

λ =
∫ r r2

√
R

dr + a2
∫ θ cos2 θ√

Θ
dθ. (A.10)

The signs of the integrals in r and θ are independent and arbitrary, but are fixed for a

given geodesic. It may seem odd that these equations lend themselves to the choice of r or

θ as independent variable to determine the cyclic coordinates t and φ. However, this is the

natural outcome of the separation of the Hamilton-Jacobi equation.

A.2 Reduction to Carlson Integrals

In reducing the equations of motion from the previous section, we closely follow the treat-

ment given in Appendix A of Rauch & Blandford (1994) [160]. First change variables to (t,

u, µ, φ) with µ = cos θ, u = 1/r. This set is more useful computationally, since the location

of an observer at infinity is mapped to u = 0. The domain of u is then 0 ≤ u ≤ u+ ≤ 1,

where u+ is the location of the event horizon. Similarly, −1 ≤ µ ≤ 1. Then the definitions

q2 ≡ Q/E2, l ≡ Lz/E, and γ ≡ E/m put the equations of motion in dimensionless form.

The integral equation relating u and µ is
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sµ

∫
dµ√
M(µ)

= su

∫
du√
U(u)

; (A.11)

where

M = q2 + (ã2 − q2 − l2)µ2 − ã2µ4 (A.12)

U = (1 − γ−2) + 2γ−2u + (ã2 − q2 − l2)u2 +

2[(a − l)2 + q2]u3 − a2q2u4, (A.13)

and ã2 = (1 − γ−2)a2. This Appendix only considers null geodesics, so that γ−2 = 0

throughout. The arbitrary signs have been written explicitly, and are chosen to be sx =

sign(ẋ), where a dot refers to a derivative with respect to affine parameter. This is done

so that both sides of (A.11) are always positive. The equations for the other coordinates

become

t − t0 = sµ

∫
a2µ2 dµ√

M
+

su

∫
2a(a − l)u3 + a2u2 + 1

u2(u/u+ − 1)(u/u− − 1)
du√
U

(A.14)

φ− φ0 = sµ

∫
lµ2

1 − µ2

dµ√
M

+

su

∫
2(a − l)u + l

(u/u+ − 1)(u/u− − 1)
du√
U

, (A.15)

where u± = [1 ±
√

1 − a2]−1. The limits of integration have been omitted due to complica-

tions in accounting for turning points. This is discussed in more detail below.

Given initial and final values of u and µ, we can compute t and φ. Since the µ integral

is easier to invert and this method is of more general utility, u is taken as the independent

variable and the goal is to solve for µf given µ0, u0 and uf . In certain applications it is

more convenient to choose µ as the independent variable. For example, in the case of thin

disk accretion we know the inclination angle as well as the value of µ where the geodesic

intersects the disk. Section A.3 gives solutions for uf given µ0, µf and u0 to handle these

cases.
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A.2.1 Reduction of Iu

Call the left-hand side (LHS) and right-hand side (RHS) of (A.11) Iµ and Iu respectively,

and start with the reduction of Iu:

Iu = su

∫
du√
U(u)

. (A.16)

Except in the special case with a = l, q2 = 0, U(u) is either a quartic or cubic and its roots

are denoted ui with i = 1− 3, 4, and ordered increasingly. If real, u1 < 0 and in the quartic

case, u4 > 1 or u4 < 0. They are of no physical significance. When all roots are real, the

allowed regions for the integrand are u > u3 and u < u2 so that U is positive. Thus the

roots are the turning points for null geodesics starting outside u2 and inside u3 respectively

in both the cubic and quartic cases. There can be no more than one turning point, since

the allowed region is bounded on one side either by infinity or the event horizon. When one

or both pairs of roots are complex, there is no turning point in u.

Upon encountering a turning point, the sign of u is reversed, so that the total integral is

the sum of the integral from u0 to the turning point and that from uf to the turning point.

The idea is to ensure that the integrals in u and µ monotonically increase along a geodesic.

In a sense this allows the independent variable to take the place of the affine parameter,

which cannot be used since it is a function of u and µ.

Carlson (1988, 1989) [37, 38] contain formulas for evaluation of integrals of the form,

[p] =
∫ x

y

5∏

i=1

(ai + bit)pi/2dt; (A.17)

with all quantities real, x > y, and ai + bit > 0 for y < t < x. The form of a given integral

is described by the vector [p], which contains the powers, pi, of the factored roots. Cases

with one or two pairs of complex roots are handled in Carlson (1991, 1992) [39, 40], where

they are written in terms of real quantities as

[p] =
∫ x

y
(f + gt + ht2)p2/2

∏

i=1,4,5

(ai + bit)pi/2dt (A.18)

for one pair of complex roots or
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[p] =
∫ x

y

2∏

i=1

(fi + git + hit
2)pi/2(a5 + b5t)p5/2dt (A.19)

for two. In using this form, it is assumed that each power pi of an irreducible quadratic is

written twice in the vector [p]. In other words, when one pair of roots is complex, p2 = p3.

When all roots are complex, p2 = p3 and p1 = p4.

To ensure that x > y in cases where a turning point may be present, integrals are written

in pieces involving the relevant turning point, u∗, and the number of turning points along

the portion of the geodesic being followed, Nu (either 0 or 1):

Iu = su

(∫ u∗

u0

du√
U

− (−1)Nu

∫ u∗

uf

du√
U

)
. (A.20)

The Carlson papers reduce all elliptic forms to a set of four fundamental integrals, known

as the R-functions [157], which replace Legendre’s integrals of the first, second and third

kind. They are all integrals from 0 to ∞ and hence don’t require a limit of integration to be

a turning point, greatly simplifying complex root cases where no physical turning point is

present. This is one of many advantages of Carlson’s approach. As is the case for Legendre’s

formulation, any elliptic integral can be reduced to a sum of Carlson’s R-functions. Where

Legendre integrals are used in this Appendix, they are calculated in terms of the R-functions

using the formulas in Press et al. (1992) [157]. The integrals encountered here are always of

the form p = [−1,−1,−1,−1, p5] for quartic cases and p = [−1,−1,−1, p5] for cubic cases.

Thus the form of coordinate integrals in the following will be specified by p5 alone.

To maintain as much generality as possible, all integrals are written as above in terms

of their roots. In cubic cases the roots are found from solving the cubic equation, while

for quartic cases they are found numerically using the routine zroots.f from Press et al.

(1992). Finally, instead of writing out the explicit formulas from Carlson’s papers and going

through the algebra separately in each case, we have written routines for each case. This is

much simpler and of more general utility, since numerous integrals must be done to calculate

the coordinates of a point along a geodesic.

The integral Iu has p5 = 0 and is given by Carlson (1989) [38] Eq. (2.12) for real

roots for cubic cases. Quartic cases are found in Carlson (1988) [37] Eq. (2.13) for real
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roots and Carlson (1992) [40] Eq. (2.36) for all complex roots. The quartic and cubic

cases with a single pair of complex roots are given by Carlson (1989) [38] Eq. (3.8). The

necessary arguments to the Carlson routines are listed by case in Table A.1, along with case

definitions, appropriate domains of u, and the corresponding cases in Appendix A of Rauch

& Blandford (1994) [160].

As can be seen from Table A.1, writing formulas in terms of the roots of U has the

advantage of unifying many disparate cases from previous work. Equal roots cases, which

describe orbits approaching the unstable circular photon orbits, cannot strictly speaking be

treated identically to other real roots cases as shown in the table. Here, integration to the

turning point diverges. The code flags for these cases and integrates them directly from u0

to uf , and the arguments listed in the table are still valid. In practice, however, except for

the well known Schwarzschild unstable circular orbits with q2 + l2 = 27, equal roots cases

are almost impossible to trigger. This is because the Carlson routines as written maintain

accuracy until |u2 − u3| ! 10−12, which is usually more precise than the determination of

the imaginary parts of the roots.

For one pair of complex roots, the arguments f , g and h are found by setting U(u) =

qs(u4 − u)(u− u1)(f + gu + hu2), where qs = sign(q2), and matching powers of u. When all

roots are complex, setting U(u) = (f1 + g1u + h1u2)(f2 + g2u + h2u2) yields five non-linear

equations for our six unknown coefficients. The degree of freedom is used to simplify the

equations, and a sixth degree polynomial is solved numerically for h1:

h6
1 −

c√
e
h5

1 − h4
1 +

√
e

[
2
c

e
−
(

d

e

)2
]

h3
1 − h2

1 −
c√
e
h1 + 1 = 0, (A.21)

where

c = a2 − l2 − q2, d = 2[(a − l)2 + q2], e = −a2q2. (A.22)

The only pair of real solutions to this equation correspond to the values of h1, h2.

As a full example of one of these reductions, consider case 5 from Table A.1 with u0 < uf

(su = 1). This is the Kerr case with no physical turning points. From A.18, we see that

b1 = 1, b4 = −qs, a1 = −u1, a4 = qsu4, x = uf , y = u0. The sign qs is used to keep each
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factor positive. Matching the powers of U(u) as described above gives f = −qs/(u1u4e),

g = (u4 + u1)/(u1u4)f , h = 1. Following Carlson (1991) [39], we define

Xi =
√

ai + bix, Yi =
√

ai + biy, (A.23)

ξ =
√

f + gx + hx2, η =
√

f + gy + hy2, (A.24)

cij =
√

2fbibj − g(aibj + ajbi) + 2haiaj , (A.25)

M =
(X1Y4 + Y1X4)

x − y

√
(ξ + η)2 − h(x − y)2, (A.26)

L2
± = M2 + c2

14 ± c11c44. (A.27)

Then,

Iu =
4√
|e|

RF (M2, L2
−, L2

+). (A.28)

RF is computed using the routine from Press et al. (1992). Equations for Carlson elliptic

integrals with p5 0= 0 can similarly be found in the Carlson papers listed above.

A.2.2 Inversion of Iµ

Next, the Iµ integral needs to be inverted to solve for µf . As with U(u), the roots of

the biquadratic M(µ), M±, determine the physical turning points in µ. When M− > 0,

there are four real roots and the orbit cannot cross the equatorial plane. The physical

turning points correspond to the two roots with the same sign as µ0 and are denoted

µ± = sign(µ0)
√

M±. When M− < 0, the physical turning points are µ± = ±
√

M+ and are

symmetric about the equatorial plane. We can calculate the number of times the geodesic

has crossed a µ turning point from the magnitude of the Iu integral. This is done by noting

that the maximum value of
∫ µ+

µf
is
∫ µ+

µ−
and its minimum value is zero. In this derivation

the integrand dµ/
√

M , common to all integrals, is omitted. Then, for sµ = 1,

∫ µ+

µ0

+(N − 1)
∫ µ+

µ−

≤ Iu ≤
∫ µ+

µ0

+N

∫ µ+

µ−

, (A.29)

where N is the number of turning points reached in µ, and µ± are the upper and lower

turning points in µ. The integrals are written in these pieces so that they are always positive,
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as required for use with Carlson’s integrals. This condition can be written more concisely

as

N =

⌈
Iu −

∫ µ+

µ0∫ µ+

µ−

⌉
, (A.30)

where 1 2 is the ceiling function. If sµ = −1, then the first turning point reached is µ−. The

condition can then be written

−
[∫ µ−

µ0

+(N − 1)
∫ µ−

µ+

]
≤ Iu ≤ −

[∫ µ−

µ0

+N

∫ µ−

µ+

]
. (A.31)

Using
∫ µ−
µ0

=
∫ µ+

µ0
−
∫ µ+

µ−
, we can rewrite this in terms of the same integrals used above:

−
∫ µ+

µ0

+N

∫ µ+

µ−

≤ Iu ≤ −
∫ µ+

µ0

+(N + 1)
∫ µ−

µ+

. (A.32)

Finally,

N =

⌊
Iu +

∫ µ+

µ0∫ µ+

µ−

⌋
, (A.33)

and 3 4 is the floor function. To write out the general solution for Iu = Iµ for arbitrary

number of turning points and sµ, we include coefficients for the various pieces of the Iµ

integral:

Iu = α1

∫ µ+

µ0

+α2

∫ µf

µ−

+α3

∫ µ+

µ−

. (A.34)

The coefficients are functions of sµ and N determined by writing down specific cases.

For example, α1 reflects whether the integration is positive or negative from µ0 to µf and

is easily seen to be α1 = sµ. Similarly, α2 reflects whether the last turning point reached

is µ− or µ+. Thus the coefficient is α2 = sµ(−1)N . The third coefficient is slightly more

complicated and turns out to be

α3 = 2
⌊

2N + 3 − sµ

4

⌋
− 1. (A.35)

Armed with the number of turning points and the coefficients, we solve for µf by inverting

the second integral on the RHS of (A.34):
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∫ µf

µ−

dµ√
M

=
1
α2

(
Iu − α1

∫ µ+

µ0

−α3

∫ µ+

µ−

)
. (A.36)

Calling the RHS I and writing out the square root on the LHS for the general case (a 0= 0,

q2 0= 0) gives

I =
1
|a|

∫ µf

µ−

dµ√
(M+ − µ2)(µ2 − M−)

. (A.37)

Carlson (2005) [41] contains a table for inverting integrals of the form

I =
∫ x

y

dt√
(a1 + b1t2)(a2 + b2t2)

, (A.38)

where all quantities are real, x > y, 0 ≤ y < x and either y = 0, x = ∞ or one limit is a

root of the integrand. The latter case applies here.

M− > 0

When M− > 0, all requirements are met as written, and

µf = µ−nd (J, k), J = µ+|a|I, k2 = 1 −
µ2
−

µ2
+

, (A.39)

where nd (J, k) = 1/dn(J, k) and dn is a Jacobi-Elliptic function. The µ integral terms in I

are calculated as

∫ µf

µ0

dµ√
M(µ)

=
1
A

F (x, k) (A.40)

where F (x, k) is Legendre’s integral of the first kind [1], x =
√

M+−µ2
0

M+−M−
, A = |a|µ+ and k

is the same as above. The integral between turning points is the complete elliptic integral

K(k).

M− < 0

When M− < 0, y < 0 in (A.38) so that (A.39) is no longer valid. Since the integrand is an

even function of µ, we can write
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I =
1
|a|

∫ µ+

−µf

dµ√
(µ2

+ − µ2)(µ2 − M−)
, (A.41)

which is in the correct form, except that −µf can be negative. This causes no problems. In

this case,

µf = µ−cn(J, k), J =
√

µ2
+ − M−|a|I, k2 =

µ2
+

µ2
+ − M−

, (A.42)

and we’ve used µ− = −µ+ for M− < 0. The µ terms in I are computed the same as

in (A.40), with k defined in (A.39), x =
√

1 − µ2
0

µ2
+

and A = |a|
√

M+ − M−. The integral

between the turning points here is twice the complete elliptic integral K(k).

q2 = 0

A special case is encountered when q2 = 0. M(µ) has a double root at µ = 0, causing Iµ to

diverge there, and preventing these orbits from reaching the equatorial plane. Hence, they

have at most one physical turning point. In this case Iµ is elementary, and the solution for

µf is

µf = µ+ sech
[
|aµ+|Iu − sµs1 sech−1(µ0/µ+)

]
, (A.43)

where s1 = sign(µ0).

a = 0

Finally, when a = 0 (the Schwarzschild case) the µf integral is again elementary. The

solution for µf is then,

µf = µ− cos

[
1
α2

(√
d

2
Iu − α1 cos−1

(
µ0

µ+

)
− α3 π

)]
. (A.44)

A.2.3 t and φ coordinate integrals

Given the solution for µf , equations for the coordinates t and φ can be reduced to elliptic

integrals as well. Each coordinate is expressed as a sum of integrals over u and µ. As is done
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above, the u terms are reduced to Carlson’s formulation, and the µ terms to Legendre’s.

The µ integral term in (A.14), which we’ll denote Tµ, can be written as a single Legendre

integral of the 2nd kind. For example, the µ0 term in the M− < 0 case is reduced as follows:

Tµ = |a|
∫ µ+

µ0

µ2dµ√
(µ2

+ − µ2)(µ2 − M−)

= |a|µ+

∫ x

0
dt

1 − t2√
(1 − t2)(1 − t2 − M−

µ2
+

)

= A

∫ x

0
dt

1 − t2 − M−
µ2

+√
(1 − t2)(1 − t2 − M−

µ2
+

)
+ a2M−Iu

= AE(x, k) + a2M−Iu, (A.45)

where E(x, k) is the Legendre integral of the second kind with arguments x and k defined

in the previous section. The substitution t =
√

1 − µ0/µ+ is made between lines one and

two, and M−/µ2
+ is added and subtracted from the numerator between lines two and three.

In the M− > 0 case, Tµ is given by the first term of the above formula, with the arguments

A, k, x for that case given with the solution for µf in Subsection A.2.2.

The µ term in the φ component formula (A.15) can be reduced to a Legendre integral

of the 3rd kind in analogous fashion. For the M− < 0 case we proceed as follows:

Φµ = −lIu +
l

|a|

∫ µ+

µ0

1
1 − µ2

dµ√
(µ+

2 − µ2)(µ2 − M−)
= −lIu +

l

|a|µ+

∫ x

0

1
1 − µ2

+ + µ+
2t2

dt√
(1 − t2)((1 − M−

µ2
+

) − t2)

= −lIu +
l

A(1 − M+)
Π(n; x, k) (A.46)

where Π(n; x, k) is the Legendre integral of the 3rd kind and n = µ2
+

1−µ2
+

. The formula for the

M− > 0 case is the same, with n = M+−M−
1−M+

and the other arguments defined in Subsection

A.2.2 above. Note that we are using the sign convention for n from [157], which is opposite

that in Abramowitz & Stegen [1].
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Tu, the u integral term in (A.14), is expanded with partial fractions, and after a little

algebra is written

Tu = suur

[(
2a(a − l) +

a2

u+
+

1
u3

+

)∫
1

(u/u+ − 1)
du√
U

−
(

2a(a − l) +
a2

u−
+

1
u3
−

)∫
1

(u/u− − 1)
du√
U

+
(

1
u2
−
− 1

u2
+

)∫
du

u
√

U
+

1
ur

∫
du

u2
√

U

]
, (A.47)

where ur ≡ u+u−
u+−u−

= −(2
√

1 − a2)−1 is negative. Three of the terms have p5 = −2 and

one has p5 = −4. When a limit of integration is at infinity (u = 0), this integral blows

up, as it should. In practice, the code picks a non-infinite starting radius large enough that

the geodesic trajectories from infinity to the starting radius differ negligibly from their flat

space counterparts.

Then,

Φu = suur

[(
l

u+
+ 2(a − l)

)∫
1

(u/u+ − 1)
du√
U

−
(

l

u−
+ 2(a − l)

)∫
1

(u/u− − 1)
du√
U

]
, (A.48)

where both integrals are already calculated as part of Tu.

Finally, the dimensionless affine parameter can also be calculated along the path from

(A.10) without any additional integrals:

λ′ = su

∫
du

u2
√

U
+ a2sµ

∫
µ2dµ√

M
. (A.49)

The first term is from Tu and the second term is Tµ.

Component integrals are calculated the same way as Iu or Iµ respectively. That is, µ

component integrals are calculated in pieces using the appropriate coefficients as described

above while u component integrals are calculated with reference to the physical turning

point, if one exists. These are all the integrals required to compute null geodesics in Kerr
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Table A.2. Solution for uf

u
a

f J
c

m1 c1 c2 c3

1 u1 + u21cd2J c1[Iµ − Iu(u0, u2)] u32
u31

√
u31d
2 ... ...

2 u1 + u31dc2J c1[Iµ + Iu(u3, u0)] u32
u31

√
u31d
2 ... ...

3 c2+u1−(c2−u1)cnJ
1+cnJ c1[Iµ + Iu(u1, u0)] 1

2 + 6u1+c3
8c2

√
2dc2

p
u1(3u1 + c3) a+l

a−l

4 ... ... ... ... ... ...

5 u4c5+qsu1c4−(qsu4c5−u1c4)cnJ
(c4−qsc5)cnJ+qsc4+c5

b

c1[Iµ + Iu(ub, u0)] qs
(c4+qsc5)2−(u4−u1)2

4c4c5

√
ec4c5 ... ...

6 c3 +
n(1+c22)scJ

1−c2scJ suc1[Iµ + Iu(c3, u0)]
“

c4−c5
c4+c5

”2 √
e

2 (c4 + c5)

r
4n2−(c4−c5)2

(c4+c5)2−4n2 m + c2n
d

7 u2−c2u3sn2J
1−c2sn2J

c1[Iµ − Iu(u0, u2)] u41u32
u42u31

√
ec3
2

u21
u31

u42u31

8 u3−c2u2sn2J
1−c2sn2J

c1[Iµ + Iu(u3, u0)] u41u32
u42u31

√
ec3
2

u43
u42

u42u31

asnJ = sn(J, m1), cnJ = cn(J, m1), scJ = sn(J, m1)/cn(J, m1) and m1 = 1 − k2 is used instead of k. uxy ≡ ux − uy .

bqs = sign(q2). If qs = 1 then ua = u4, ub = u1. Otherwise, ua = u1, ub = u4.

cIu(y, x) = su
R x

y
du√
U(u)

.

dComplex roots are written as m ± in, p ± ir and are ordered so that m > p and n > 0.

spacetime. These equations for the φ, t coordinates are written in Boyer-Lindquist coor-

dinates. For certain applications, Kerr-Schild coordinates are used instead. We note here

for completeness the analytic transformations between our Boyer-Lindquist coordinates and

these Kerr-Schild coordinates (t̃,ũ,µ̃,φ̃) [76],

t̃ = t + log∆− ur log

(
1 − u[1 +

√
1 − a2]

1 − u[1 −
√

1 − a2]

)
, (A.50)

φ̃ = φ− a ur log

(
1 − u[1 +

√
1 − a2]

1 − u[1 −
√

1 − a2]

)
, (A.51)

ũ = u, (A.52)

µ̃ = µ. (A.53)

The transformations are valid outside the event horizon, where ∆ and the numerators of

the log terms are positive.
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Table A.3 Auxillary Constants used in table A.2
c4 c5

5
p

(m − u4)2 + n2
p

(m − u1)2 + n2

6
p

(m − p)2 + (n + r)2
p

(m − p)2 + (n − r)2

A.3 Solution for uf

For some applications, it is preferable to use µ as the independent variable and solve for uf

given u0. In particular, consider geodesics connecting an observer at infinity with a thin,

equatorial accretion disk. The initial polar angle is the inclination of the observer. The final

polar angle is π/2 (µf = 0), and we solve for the radial coordinate where the ray intersects

the disk. This method, however, is of less general utility than that described above. Even

in simple geometries, the number of turning points in µ along a geodesic is not known in

advance as it must be to use µ as the independent variable. One way around this is to

calculate all geodesics connecting the observer with the disk for a fixed number of µ turning

points [48, 195].

The approach in solving for uf is the same as in solving for µf . The integral Iµ is

computed as a Legendre integral of the first kind. Given the number of turning points, Iµ

is computed in pieces as shown above using the coefficients α1,2,3.

After finding Iµ, we invert Iu. This inversion ranges from relatively straightforward

to algebraically formidable. As examples, we discuss cubic and quartic real roots cases in

detail. Table A.2 gives the solution for uf in all cases. This problem was first addressed by

Agol (1997) [2] and the solutions here are from its Table 5.2 with some modification.

For our first example, consider the first two cases of Table A.1 where there are three real

roots. The integral to invert is

Iµ = su

(∫ u+

u0

du√
U(u)

±
∫ u+

uf

du√
U(u)

)
, (A.54)

where u+ is the relevant turning point: u2 or u3. Denote the first term Iu+ , and write the

second term in terms of the roots of the integrand:
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Iµ − Iu+ = ± su√
d

∫ u+

uf

du√
(u − u1)(u − u2)(u − u3)

, (A.55)

where d = 2[(a − l)2 + q2]. This can be put in the form (A.38) with the substitution

z =
√

u − u1:

±I =
∫ √

u+−u1

√
uf−u1

dz√
[z2 + (u1 − u2)][z2 + (u1 − u3)]

, (A.56)

where

I ≡
√

d

2
(
Iµ − Iu+

)
, (A.57)

and Iu+ is determined from the same Carlson formulas as for Iu above.

Comparing (A.56) with (A.38), we see that a1 = u1 − u2, a2 = u1 − u3 and b1 = b2 = 1.

If u+ = u3, then the limits of integration must be switched, since by definition x > y. These

integrals correspond to the third row, third and fourth columns of Table 1 from Carlson

(2005) [41], and the solutions for uf are

uf = u1 + (u2 − u1) cd2(J, k), u0 ≤ u2 (A.58)

= u1 + (u3 − u1) dc2(J, k), u0 ≥ u3, (A.59)

with

J ≡
√

u3 − u1 I, k2 =
u2 − u1

u3 − u1
, (A.60)

dc(J, k) ≡ dn(J, k)
cn(J, k)

, cd(J, k) ≡ cn(J, k)
dn(J, k)

,

where cn, dn are Jacobi-Elliptic functions. Note that the result does not depend on whether

or not a turning point has been reached, since both cn and dn are even in J .

When U(u) has four real roots and u ≤ u2,

Iµ − Iu+ = ± su√
e

∫ u2

uf

du√
(u − u1)(u − u2)(u − u3)(u4 − u)

, (A.61)
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where e = |aq|. With the substitution z =
√

u2−u
u3−u , this becomes

±I =
∫

r
u2−uf
u3−uf

0

dz√
[z2 + (u1 − u2)][z2 + (u1 − u3)]

, (A.62)

where

I ≡
√

e

2
(
Iµ − Iu+

)
. (A.63)

Again comparing with (A.38) and using Carlson (2005) [41], we find

uf =
u3(u2 − u1)sn2 − u2(u3 − u1)

(u2 − u1)sn2 − (u3 − u1)
, (A.64)

where

sn = sn(J, k), J =
√

(u4 − u2)(u3 − u1)I (A.65)

k2 =
(u4 − u3)(u2 − u1)
(u4 − u2)(u3 − u1)

. (A.66)

Again the result is independent of whether or not a turning point is present. In (A.54)

above, the sign of the second term on the RHS depends on whether a turning point is

present. This allows us to determine the number of turning points in u.

When complex roots are present, the reduction to standard form (A.38) is much more

difficult. It is discussed in Erdèlyi et al. (1981) [64], and relevant formulas for the inversion

can be found there and in Byrd & Friedman (1971) [36]. In particular, our cases 3,5 are

from Byrd & Friedman equations 239.00 (p86) and 259.00, 260.00 (p133,135). Our formula

for case 6 is based on Erdèlyi et al. Table 2, p310-311. The intricacy of these reductions

demonstrates the advantage of Carlson’s method. The computation of integrals is equally

efficient with complex or real roots. Unfortunately, when inversion is required, Carlson

(2005) is only a somewhat more compact version of Legendre’s original notation and offers

no real advantage over previous work.
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A.4 Code checks and speed tests

Using the solution for µf , the equality of Iµ and Iu has been checked to machine accuracy

(at least 14 significant digits in all cases). Once found, µf can be used as an input to recover

uf . In this way, the two routines have been shown to agree in all cases. Precision in the

calculation is limited by error in the determination of the roots of U(u). An advantage of

using Carlson’s formulation is that all component integrals are computed without reference

to the complex roots, which often have less numerical precision than real ones. Formulas for

uf , discussed in Section A.3, are also written in terms of real quantities leading to higher

accuracy.

Certain special cases can be integrated analytically for all components, providing inde-

pendent checks on component integral formulas. These include µ cases with q2 = 0, u cases

with q2 = 0, l = a and u cases with equal physical real roots, corresponding to unstable cir-

cular photon orbits. In all of these cases, the component integral formulas above agree with

the analytic results to machine accuracy. The component integral formulas above also re-

duce to those derived separately for the Schwarzschild case, a = 0. All of the formulas given

here for µf agree with those in tables 1-2 of Rauch & Blandford [160]. The Schwarzschild

formulas were also tested against the approximate formulas given by Beloborodov (2002)

[20].

Further, the implementations of Carlson’s integral tables have been checked extensively

using the Mathematica NIntegrate function. The same is true of the t and φ formulas, as

well as the individual integral components Iu, Tu, and Iµ, Tµ, Φµ.

The R-function routines maintain accuracy until a ! 10−5 or q2 ! 10−10. If such

parameters are encountered, the code will give a warning and set the offending value to

zero.

The geodesic computations have been checked against calculations done by the code used

in Falcke et al. (2000) [70] and are found to be in excellent agreement. The FORTRAN

implementation of our code is found to be faster than that one by a factor of about 5, due to

the fact that our code computes the minimum number of R-functions possible, and shares

them between routines when necessary. The code from Agol (1997) [2] was found to be
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∼ 100 times faster than numerical integration in the case of tracing geodesics from infinity

to a thin disk. This is an optimal problem for an analytic code, since we can solve for the

point where µ = 0, whereas a numerical code must integrate the geodesic from infinity until

it reaches that point, and then zoom in on the intersection to find an approximate solution

to the desired accuracy. In addition, this example didn’t include the t and φ coordinates,

which are sped up by a much smaller factor than u and µ.

As a lower bound for the speed improvement of our code over numerical integration, a

routine was written to integrate the photon four momentum for all coordinates with respect

to affine parameter using the implementation of the Bulirsch-Stoer method from Press et

al. (1992) [157]. We then compared the integration of many points along a single geodesic

starting from infinity with this numerical code and our analytic one. This is the ideal case

for numerical integration, since the intermediate points calculated along the ray are no

longer wasted as in the first example. For the case considered with no turning points in u

or µ, the analytic code was found to be faster by a factor of ∼ 3.

However, our numerical code for integrating geodesics is much simpler than a complete

code would have to be. It cannot handle turning points, and requires knowledge of the affine

parameter on the ray in order to know where the region of interest in the integration is. In

practice, turning points would have to be detected and a scheme for determining the region

of interest in affine parameter implemented. Alternatively, a somewhat more complicated

scheme such as the Hamiltonian method described in Schnittman & Bertschinger (2004)

[171] could be adopted. In any case, these additions would slow down geodesic computation.

We conservatively estimate, then, that the lower bound for the speed advantage of our

analytic code over numerical integration is a factor of ∼ 5. A similar test for the case of

integrating down to the thin disk yielded a speed difference of a factor of ∼ 300, leading

to an upper bound on the speed advantage of ∼ 500, which is in good agreement with the

naive estimate of multiplying the speedup found by Agol [2] by the speedup factor between

our code and the one presented there. Then the range of speedup that can be expected

by using the analytic code described here is a factor between 5 − 500 depending mostly

on the application, but also on the specific implementation of the numerical integration

code. These estimates apply only to comparisons at equivalent accuracy – in particular,
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Figure A.1 Change in time vs. radial coordinate in the Schwarzschild metric for geodesics
near the circular photon orbit (dashed line), as described in Section A.5.

different numerical algorithms with lower accuracy thresholds may be significantly faster

than geokerr [62].

The analytic formulation is also much more flexible. It can calculate an arbitrary number

of points beginning and ending anywhere on any geodesic, provided that the constants of the

motion can be calculated. This is exploited in the thin disk toy models below, where we solve

for the point µf = 0. It could also allow, for example, a calculation of Compton scattering

by tracing rays out from every point on a geodesic, and computing the scattered intensity

into that point as a separate ray tracing computation. In any event, the flexibility inherent

to an analytic method could allow for more sophisticated calculations in the future, which

wouldn’t be possible with a numerical code. The main disadvantage of using an analytic

code is that the affine parameter cannot be used as an independent variable, which may be

desirable for adaptive integration techniques in radiative transfer applications, for example.
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A.5 Implementation

This section provides an overview of the various routines used by the code described above,

and examples of their use. The README file online covers everything in this section in

greater detail. The FORTRAN 77 source file geokerr.f contains the main program as

well as the key routines, geokerr, geomu, geor and geophitime, and supporting functions.

Inputs are given through command line prompt or a text file. Inputs from previous command

line runs may be saved for future use. These inputs include constants of motion for the

desired geodesics, initial and final u and initial µ, the number of turning points in u (ignored

if the constants do not admit physical turning points), and the sign of u̇ and µ̇. Constants

of the motion are required and may be specified either as the impact parameters at infinity

(α, β), as is most convenient in ray tracing applications, or as the dimensionless angular

momentum, l, and Carter’s constant, q2. When any other information is not provided, the

program assumes geodesics which trace out the entire domain of u, from the starting point

and back or until the event horizon is reached.

The program calls the main subroutine, geokerr, which calls geomu to fill in missing

inputs and calculate µf . Alternatively, geokerr can solve for uf using geor. Subsequently,

geophitime calculates the φ and t integrals using the Carlson routines. The program loops

over constants of the motion for a chosen initial polar angle and black hole spin. Results

are written to standard output by default, and should be redirected from the terminal to

a text file in most cases. It is also possible to input the name of the desired output file.

The subroutine geokerr encapsulates most of the code functionality, and can fairly easily

be adapted to another front end other than the program used here. See the README file

accompanying the code or online for more detail.

As an example use of the code, consider tracing rays over a rectangular grid in −4 ≤

α ≤ 8, −6 ≤ β ≤ 6 for a near extreme black hole, a = .998. The observer is at infinity in

the equatorial plane (µ0 = 0), and 20 rays will be traced over each dimension. The input

file for this situation can be found online.1

Output is arranged as follows. The constants of the motion are listed for each geodesic

1http://www.astro.washington.edu/agol/geokerr/exfiles/abgrid.in
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in the top line, followed by columns giving uf , µf , ∆t, ∆φ, λ. The format used for output

can be changed with a tiny modification to the source code. See the README file for more

details. Plotting the affine parameter evaluated at either the event horizon, or once the

geodesic returns to its initial radius, as a function of impact parameters for this data with

160, 000 geodesics produces Figure 2.1 as explained below.

For less standard batch runs, it may be necessary to generate the input file from a

simple program. Consider a set of geodesics in the Schwarzschild metric (a = 0) to study

the unstable circular photon orbits. The given parameters are chosen to be u0 = 1/30,

uf = u+ = .5, µ0 = .9, β = 0 and an array of values for α near
√

27.

The piece of code to write an appropriate input file is available online.2 Plotting the

change in time as a function of final radial coordinate produces Figure A.1.

2http://www.astro.washington.edu/agol/geokerr/exfiles/inputex.f
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Appendix B

GENERAL RELATIVISTIC POLARIZED RADIATIVE TRANSFER

The polarized radiative transfer equation can be written in the form,

d

ds





I

Q

U

V




=





jI

jQ

jU

jV




−





αI αQ αU αV

αQ αI ρV ρU

αU −ρV αI ρQ

αV −ρU −ρQ αI









I

Q

U

V




(B.1)

which is the same form as the unpolarized case (Eq. (2.3)), except that Iν and jν are now

vectors with components corresponding to the Stokes parameters (I, Q, U , V ) and the 4x4

transfer matrix, K, takes the place of the scalar absorption coefficient αν .

In the context of synchrotron radiation, the transfer equation can be simplified by align-

ing the magnetic field with Stokes U , so that jU = αU = ρU = 0. Then jQ, αQ (jV ,

αV ) correspond to the emission and absorption coefficients for linear (circular) polarization

and jI , αI correspond to jν , αν from the unpolarized case. The transfer coefficients ρQ,V

describe the effects of Faraday conversion and rotation respectively.

The radiative transfer coefficients are computed in the fluid rest frame, where ν is the

emitted frequency, related to the observed frequency at infinity through the redshift, g =

ν0/ν. Then the transfer equation is recast into general relativistic form by using the invariant

forms for the intensity, emissivity and transfer matrix. The required invariants are the

photon occupation numbers, I = I/ν3 the invariant emissivity, J = j/ν2 and the invariant

transfer matrix K = νK, where I, j and K are the intensity and emissivity vectors and the

transfer matrix from Eq. B.1.

The polarization at infinity is measured with respect to the local horizontal and vertical

axes defining the camera (Chapter 2). After transforming this basis to the fluid frame, the

transfer equation can be rotated from the basis aligned with the magnetic field to that as
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observed at infinity. There are then two steps: to relate the Stokes basis at infinity with

that at points in the accretion flow, and to find the angle between the transported basis

and the projected magnetic field.

B.1 Parallel Transport of the Polarization Basis

The basis vectors relating the local polarization to that at infinity are everywhere perpen-

dicular to the wave four-vector, and can be related between different points on a geodesic

via parallel transport. The time components of these basis vectors can be assumed to van-

ish without any loss of generality [47, 45]. In the case of the Kerr metric, this procedure

is simplified by the existence of a complex constant called the Walker-Penrose constant,

which can be calculated from kµ and a vector perpendicular to it, aµ, in Boyer-Lindquist

coordinates as [46, 47, 45]:

K1 − iK2 = (r − ia cos θ)((ktar − krat) + a sin2 θ(kraφ − kφar)

−i[(r2 + a2)(kφaθ − aφkθ) − a(ktaθ − kθat)] sin θ) (B.2)

where a is the dimensionless black hole spin (not to be confused with the basis four-vector

aµ). The real and imaginary parts of the constant, K1 and K2, provide two constraints

on the transported basis vectors, while the orthogonality condition kµaµ = 0 provides

a third. Since the basis vectors are already only defined up to a multiple of the wave

vector, these constraints suffice to calculate their coordinates anywhere along the ray. The

orthonormality condition aµaµ = 1 can be used to check the result. Taking at = 0 leaves

three linear equations for the three remaining components of aµ:

K1 = δ1a
r + δ2a

θ + δ3a
φ (B.3)

K2 = γ1a
r + γ2a

θ + γ3a
φ (B.4)

kµaµ = 0 (B.5)

with
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δ1 = rkt − ra sin2 θkφ (B.6)

δ2 = a2 sin θ cos θkt − a cos θ sin θ(r2 + a2)kφ (B.7)

δ3 = ra sin2 θkr + a cos θ sin θ(r2 + a2)kθ (B.8)

γ1 = a cos θkt − a2 cos θ sin2 θkφ (B.9)

γ2 = r(r2 + a2) sin θkφ − ar sin θkt (B.10)

γ3 = a2 cos θ sin2 θkr − r(r2 + a2) sin θkθ. (B.11)

The components of aµ can then be calculated as:

ar =
K1 + δ̃2/γ̃2K2

δ̃1 + γ̃1/γ̃2δ̃2

(B.12)

aθ =
1
γ̃2

(K2 − γ̃1a
r) (B.13)

aφ = −g11arkr + g22fθkθ

g33kφ + g03kt
. (B.14)

where

γ̃i, δ̃i = γi, δi − γ3, δ3
giiki

g33kφ + g03kt
(B.15)

gµν are the covariant metric components and i = 1, 2.

Transforming the polarization basis vectors at infinity then requires knowledge of K1

and K2. These can be found from the asymptotic form of B.2. In the case of transporting

the unit vectors θ̂, φ̂ at infinity, they are given by K1 = β, K2 = γ and K1 = γ, K2 = −β

respectively, where γ = −α− a sin θ.

B.2 Transformation to the Orthonormal Fluid Frame

The final step is to relate the emission coefficients and the transfer matrix computed in

the fluid frame aligned with the magnetic field to the transported polarization basis. This

requires finding the angle between the transported polarization basis vectors and the mag-

netic field vector projected into the polarization plane. A straightforward method for this
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is to use the fluid four-velocity to transform into the orthonormal frame comoving with the

fluid where the four-velocity is ûµ = (1, 0, 0, 0). The basis four-vectors of the transformation

are [18, 185, 109]:

eµ
(t) = uµ, (B.16)

eµ
(r) = (uru

t,−(utu
t + uφu

φ), 0, uru
φ)/Nr, (B.17)

eµ
(θ) = (uθut, uθu

r, 1 + uθu
θ, uθu

φ)/Nθ, (B.18)

eµ
(φ) = (uφ, 0, 0,−ut)/Nφ, (B.19)

where the upper (lower) indices are lowered (raised) with the Kerr (Minkowski) metric and,

N2
r = −grr(utu

t + uφu
φ)(1 + uθu

θ), (B.20)

N2
θ = gθθ(1 + uθu

θ), (B.21)

N2
φ = −(utu

t + uφu
φ)∆ sin2 θ, (B.22)

∆ = r2 − 2r + a2. (B.23)

Four-vectors in the coordinate frame are transformed as,

A(α) = eµ
(α)Aµ. (B.24)

The projected magnetic field is then found in the orthonormal, comoving basis as

B̂⊥ = B̂ − k̂(B̂ · k̂)/k2, (B.25)

where bolded quantities are three-vectors and hats denote quantities in the comoving, or-

thonormal frame. The angle χ between the projected magnetic field and the polarization

basis is,

sinχ = (â · B̂⊥)/|B̂⊥|, (B.26)

cosχ = −(b̂ · B̂⊥)/|B̂⊥|. (B.27)
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This procedure can be used to check the methods used previously to compute the redshift

and the angle between the magnetic field and wave four-vectors, since k̂t = 1/g and θB =

arccos
(

k̂·B̂
|k̂||B̂|

)
.

B.3 Transfer Equation

With χ in hand, the polarized radiative transfer equation can be written as,

dI
dλ

= J − K̂I (B.28)

where λ is an affine parameter, K̂ = g−1R(χ)KR(−χ) and,

R(χ) =





1 0 0 0

0 cos 2χ − sin 2χ 0

0 sin 2χ cos 2χ 0

0 0 0 1




, (B.29)

is a rotation matrix mixing the Q and U Stokes parameters due to the transformation

from the magnetic to the polarization basis and to the parallel transport of the polarization

four-vector along the ray.

Equation B.28 includes all relativistic effects. The bending of light is accounted for

by the calculation of null geodesics (Appendix A), the gravitational redshifts and Doppler

shifts due to fluid motions are included in g, computed either via the locally non-rotating

or the comoving (fluid) orthonormal frame. The parallel transport of the polarization basis

provides a straightforward means to include the parallel transport of the polarization four-

vector along the ray.
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Appendix C

POLARIZED SYNCHROTRON EMISSION AND ABSORPTION
COEFFICIENTS FOR THERMAL AND POWER LAW PARTICLE

DISTRIBUTIONS

The subject of radiation from gyrating electrons in a magnetic field has been extensively

studied, especially in the relativistic “synchrotron” limit where the electron energy γ " 1

[199, 88, 89, 112, 169, 23, 131, 104, 168]. However, a consistent treatment of the derivation

of the polarized emission and absorption coefficients for the two most commonly used par-

ticle distributions (thermal and power law) is still lacking. This appendix gives examples of

deriving the various coefficients from integrating the single particle polarized synchrotron

emissivity over distributions of particles and provides approximate formulae for their eval-

uation. The results are compared to emissivities found in the literature and in some cases

to numerical integration.

The Stokes basis in the emitting frame has B = (0, 0, 1), e1 = (− cos θ, 0, sin θ) and

e2 = (0, 1, 0) where θ is the angle between B and the wave-vector k and e1, e2 are aligned

with Stokes Q and U and the projection of B onto the Stokes basis is entirely along e2.

Then the vacuum emissivity can be written as a rank-2 tensor [e.g. 132]:

ηαβ =
√

3e2

8πc
νb sin θHαβ(ν, θ), (C.1)

where e is the electron charge, c is the speed of light, νb = eB
2πmc , and

H11 = F

(
ν

γ2νc

)
− G

(
ν

γ2νc

)
, (C.2)

H22 = F

(
ν

γ2νc

)
+ G

(
ν

γ2νc

)
, (C.3)

H12 = −H21 =
4i cot θ

3γ
H

(
ν

γ2νc

)
, (C.4)

where ν is the emitted frequency, γ is the electron Lorentz factor, νc = 3/2νb sin θ and
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F (x) = x

∫ ∞

x
dyK5/3(y), (C.5)

G(x) = xK2/3(x), (C.6)

H(x) =
∫ ∞

x
dyK1/3(y) + xK1/3(x), (C.7)

are the synchrotron functions for total, linearly and circularly polarized emission respectively

and Kα(z) is the modified Bessel function.

To compute the emissivity from a distribution of electrons, these formulae are integrated

over the particle distribution:

jαβ =
∫ ∞

0
dγN(γ)ηαβ . (C.8)

The Stokes emissivities are then given as jI = j22 + j11, jQ = j22 − j11, jU = j12 + j12, and

jV = i(j12 − j21). For this Stokes basis, jU vanishes.

The two most commonly used particle distributions for astrophysical sources are the

relativistic thermal (Maxwell) distribution,

N(γ) =
nγ2β exp (−γ/θe)

θeK2(1/θe)
(C.9)

where n is the electron number density and θe = kT/mc2 is the dimensionless electron

temperature; and the power law distribution,

N(γ) =





n(p − 1)(γ1−p

1 − γ1−p
2 )−1γ−p γ1 < γ < γ2

0 otherwise

where γ1,2 are the low- and high-energy cutoffs of the distribution.

We consider these two cases in turn and derive approximate formulae for their evaluation.

C.1 Ultrarelativistic Thermal Distribution

For the thermal distribution, substituting Eq. C.9 into Eq. C.8 with β ! 1 and θe . 1

gives,
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jαβ =
√

3ne2νb sin θ

8πθe(2θ2
e)

∫ ∞

0
dγγ2 exp (−γ/θe)Hαβ(ν, θ), (C.10)

where the approximate form of the modified bessel function for small argument K2(z) → 2z2

was used. First substitute z ≡ γ/θe so that,

jαβ =
√

3ne2νb sin θθ2
e

8πc(2θ2
e)

∫ ∞

0
dzz2 exp (−z)Hαβ(ν, θ). (C.11)

Finally, we substitute γ for z in the synchrotron functions and use the relations between

jαβ and jI,Q,V to find:

jI(ν, θ) =
ne2ν

2
√

3cθ2
e

II(x), (C.12)

jQ(ν, θ) =
ne2ν

2
√

3cθ2
e

IQ(x), (C.13)

jV (ν, θ) =
2ne2ν cot θ

3
√

3cθ3
e

IV (x), (C.14)

where x ≡ ν/(θ2
eνc), and the thermal synchrotron integrals are,

II(x) =
1
x

∫ ∞

0
dzz2 exp (−z)F

( x

z2

)
, (C.15)

IQ(x) =
1
x

∫ ∞

0
dzz2 exp (−z)G

( x

z2

)
, (C.16)

IV (x) =
1
x

∫ ∞

0
dzz exp (−z)H

( x

z2

)
. (C.17)

This result agrees with the formulae from previous work [169, 122, 99]. The integrals

can be approximated analytically with high accuracy by matching the asymptotic behavior

for small and large arguments and fitting polynomials in the transition region [122]. We

find the following approximate forms,

II(x) = 2.5651(1 + 1.92x−1/3 + 0.9977x−2/3) exp (−1.8899x1/3), (C.18)

IQ(x) = 2.5651(1 + 0.932x−1/3 + 0.4998x−2/3) exp (−1.8899x1/3), (C.19)

IV (x) = (1.8138x−1 + 3.423x−2/3 + 0.02955x−1/2 + 2.0377x−1/3) exp (−1.8899x1/3),(C.20)
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Figure C.1 Total emission (blue) and absorption (green) coefficients from this work and
Legg & Westfold (solid), Melrose (dashed) and Jones & Odell (diamonds).

all agree with numerical integration to within ! 1% for all x. The function II(x) here

corresponds to I(xM ) from Mahadevan et al.

The absorption coefficients can be computed from the emission coefficients assuming

local thermodynamic equilibrium so that Kirchoff’s Law, jν = ανBν , holds with Bν the

blackbody function [e.g. 168].

C.2 Power Law Distribution

In this case, x ≡ ν/(γ2νc) is used to change the variable of integration to x after plugging

in the distribution (Eq. C):

jαβ =
(p − 1)ne2νc

4
√

3c(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p−1
2
∫ x2

x1

dxx
p−3
2 Hαβ(ν, θ). (C.21)

Then the three emissivities can be written:
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Figure C.2 Linear polarization fraction in emission (blue) and absorption (green) coeffi-
cients from this work and Legg & Westfold (solid), Melrose (dashed) and Jones & Odell
(diamonds).

jI =
ne2(p − 1)νc

2
√

3c(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p−1
2

[GI(x1) − GI(x2)], (C.22)

jQ =
ne2(p − 1)νc

2
√

3c(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p−1
2

[GQ(x1) − GQ(x2)], (C.23)

jV =
2ne2(p − 1)νc cot θ
3
√

3c(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p
2

[GV (x1) − GV (x2)], (C.24)

(C.25)

where the power law synchrotron integrals are,

GI(x) =
∫ ∞

x
dzz

p−3
2 F (z), (C.26)

GQ(x) =
∫ ∞

x
dzz

p−3
2 G(z), (C.27)

GV (x) =
∫ ∞

x
dzz

p
2−1H(z). (C.28)
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In many prior studies [112, 23, 131, 104] the integrals are performed analytically for the

frequency range νc,min 5 ν 5 νc,max where the limits of integration, x1,2 = ν/(γ2
1,2νc) can

be extended to 0 and ∞.

For the primary non-thermal source considered in this thesis, M87,

νc,min ∼ 2 × 1011

(
B

10G

)( γ1

100

)2
Hz, (C.29)

uncomfortably close to frequencies of interest for mm-VLBI for γ1 " 30. We then keep

the finite limits of integration and numerically tabulate the integrals GI , GQ and GV as

functions of x for desired values of p. This procedure can be sped up significantly using the

relation [199],

L(x; s,α) ≡
∫ ∞

x
dξξs−1

∫ ∞

ξ
dyKα(y)

=
α + s

s

∫ ∞

x
dξξs−1Kα(ξ) − xs

s

[∫ ∞

x
dyKα+1(y) − Kα(x)

]
(C.30)

to reduce the double integrals to single integrals. The results agree with those in Legg &

Westfold Eq. (33) after using a recurrence relation,

2K ′
α(x) = −(Kα+1 + Kα−1), (C.31)

and noting that K−α(x) = Kα(x) to transform the Bessel functions in H(x).

To check against approximate formulae elsewhere, we extend the limits of integration to

0 and ∞ and use,

I(s,α) ≡
∫ ∞

0
dxxsKα(x) = 2s−1Γ

(
s + α + 1

2

)
Γ
(

s − α + 1
2

)
(C.32)

J(s,α) ≡ L(0; s + 1,α− 1) =
α + s

s + 1
I(s,α− 1)

=
α + s

s + 1
2s−1Γ

(
s + α

2

)
Γ
(

s − α

2
+ 1

)
(C.33)

to find the approximate forms GI,Q,V (0) − GI,Q,V (∞):
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GI(0) = J

(
p − 1

2
,
5
3

)
=

2
p−3
2 (p + 7/3)

p + 1
Γ
(

p

4
+

7
12

)
Γ
(

p

4
− 1

12

)
, (C.34)

GQ(0) = I

(
p − 1

2
,
2
3

)
=

p + 1
p + 7/3

GI(0), (C.35)

GV (0) = J

(
p

2
− 1,

1
3

)
+ I

(
p

2
,
1
3

)

=
2

p
2−1(p + 2)

p
Γ
(

p

4
+

1
3

)
Γ
(

p

4
+

2
3

)
, (C.36)

GI,Q,V (∞) = 0 (C.37)

leading to the approximate emissivities:

j0
I =

ne2(p − 1)νc

2
√

3c(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p−1
2

2
p−3
2

p + 7/3
p + 1

Γ
(

p

4
+

7
12

)
Γ
(

p

4
− 1

12

)
,(C.38)

j0
Q =

p + 1
p + 7/3

j0
I , (C.39)

j0
V =

2ne2(p − 1)νc cot θ
3
√

3c(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p
2

2
p
2−1 p + 2

p
Γ
(

p

4
+

1
3

)
Γ
(

p

4
+

2
3

)
. (C.40)

These results agree with those of several authors.

In the case of non-thermal emission, the absorption coefficient cannot be simply related

to the emissivity using Kirchoff’s Law, and instead we use [132]:

ααβ = − c

mν2

∫ ∞

0
dγγ2 d

dγ

[
N(γ)
γ2

]
ηαβ(γ, ν, θ). (C.41)

The derivation is analogous to that for the emissivity, and the results are:

αI =
ne2(p − 1)(p + 2)

4
√

3mcνc(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p
2−2

[GaI(x1) − GaI(x2)] , (C.42)

αQ =
ne2(p − 1)(p + 2)

4
√

3mcνc(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p
2−2

[GaQ(x1) − GaQ(x2)] , (C.43)

αV =
ne2(p − 1)(p + 2) cot θ
3
√

3mcνc(γ1−p
1 − γ1−p

2 )

(
ν

νc

)− p+5
2

[GaV (x1) − GaV (x2)] (C.44)

where the power law absorption integrals are,



196

GaI(x) =
∫ ∞

x
dzz

p
2−1F (z), (C.45)

GaQ(x) =
∫ ∞

x
dzz

p
2−1G(z), (C.46)

GaV (x) =
∫ ∞

x
dzz

p−1
2 H(z). (C.47)

Again extending the limits of integration, we find agreement with approximate formulae

in the literature:

GaI(0) =
p + 10/3

p + 1
2

p
2−1Γ

(
p

4
+

5
6

)
Γ
(

p

4
+

1
6

)
, (C.48)

GaQ(0) =
p + 2

p + 10/3
GaI(0) (C.49)

GaV (0) =
p + 3
p + 1

2
p−1
2 Γ

(
p

4
+

7
12

)
Γ
(

p

4
+

11
12

)
, (C.50)

GaI,Q,V (∞) = 0. (C.51)

Figure C.1 compares numerical integration of the exact formulae in Equations (C.22)

and (C.42) with the forms from the literature. Figure C.2 compares the linear polarization

fraction from the exact and approximate forms.


