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Abstract

From Geometry Optimization to Time Dependent Molecular Structure Modeling:
Method Developments, ab initio Theories and Applications

Wenkel Liang

Chair of the Supervisory Committee:
Associate Professor Xiaosong Li

Department of Chemistry

This dissertation consists of two general parts: I. developments of optimization algo-

rithms (both nuclear and electronic degrees of freedom) for time-independent molecules

and II. novel methods, first-principle theories and applications in time dependent

molecular structure modeling. In the first part, we discuss in specific two new al-

gorithms for static geometry optimization, the eigenspace update (ESU) method in

nonredundant internal coordinate that exhibits an enhanced performace with up to a

factor of 3 savings in computational cost for large-sized molecular systems; the Car-

Parrinello density matrix search (CP-DMS) method that enables direct minimization

of the SCF energy as an effective alternative to conventional diagonalization approach.

For the second part, we consider the time dependence and first presents two nonadi-

abatic dynamic studies that model laser controlled molecular photo-dissociation for

qualitative understandings of intense laser-molecule interaction, using ab initio di-

rect Ehrenfest dynamics scheme implemented with real-time time-dependent density

functional theory (RT-TDDFT) approach developed in our group. Furthermore, we

place our special interest on the nonadiabatic electronic dynamics in the ultrafast time

scale, and presents 1) a novel technique that can not only obtain energies but also the



electron densities of doubly excited states within a single determinant framework, by

combining methods of CP-DMS with RT-TDDFT; 2) a solvated first-principles elec-

tronic dynamics method by incorporating the polarizable continuum solvation model

(PCM) to RT-TDDFT, which is found to be very effective in describing the dynam-

ical solvation effect in the charge transfer process and yields a consistent absorption

spectrum in comparison to the conventional linear response results in solution. 3)

applications of the PCM-RT-TDDFT method to study the intramolecular charge-

transfer (CT) dynamics in a C60 derivative. Such work provides insights into the

characteristics of ultrafast dynamics in photoexcited fullerene derivatives, and aids in

the rational design for pre-dissociative exciton in the intramolecular CT process in

organic solar cells.
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Chapter 1

INTRODUCTION

The following document collects major achievements of my research while work-

ing towards my doctorate degree. My work at the University of Washington has

covered many topics in the realm of computational physical chemistry, which involves

primarily:

• Development of efficient parallel optimization methodology and algorithm for

large-scale molecular geometry and electronic structure in quantum chemistry.

[1–4]

• Development of novel theory and methodology for ab initio electronic dynamics

and linear response theory.[5–8]

• Modeling and simulating molecular systems, from linear/non-linear optical prop-

erties, to reaction energetics, and to time-dependent laser controlled photochem-

istry. [9–14]

• Solvation effect with polarizable continuum model (PCM) methods and solva-

tion shell response. [15, 16]

This introductory chapter provides a brief overview of the fields of geometry opti-

mization for molecule and time-dependent molecular structure modeling. My devel-

opment of novel methods and interesting applications are also highlighted. Chapter 2
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introduces an efficient eigenspace update geometry optimization method in nonredun-

dant internal coordinate. Chapter 3 presents a novel Car-Parrinello density matrix

search (CP-DMS) method for direct minimization of the SCF energy as an effective

alternative to conventional diagonalization approach. Chapter 4 describes the theory

of ab initio direct Ehrenfest dynamics implemented with real-time time-dependent

density functional theories (RT-TDDFT) approach, and discusses two studies using

this method that model laser controlled photo-dissociation. Chapter 5 presents a

novel technique that combines the CP-DMS method with RT-TDDFT to explore

doubly excited states within a single determinant framework. Chapter 6, extends

RT-TDDFT with solvation effect using polarizable continuum model (PCM) to give

an effective first-principles solvated electronic dynamics approach. Finally, in Chapter

7, I apply the PCM-RT-TDDFT to study some dynamical aspects of excited state

electron-hole separation in a fullerine derivative complex (C60:DMA).

A brief appendix is included at the end of this thesis, in which I work through

some of the details and derivations of the traditional Ehrenfest molecular dynamics

approach.

1.1 Geometry Optimization for Stationary Molecule

Starting from the non-relativistic time-independent Schrödinger equation

ĤΨ(R, r) = EΨ(R, r) (1.1)
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where R refers to nuclear positions and r electronic coordinates. The standard Hamil-

tonian contains kinetic and potential energy operators for all particles

Ĥ = T̂n + T̂e + V̂ne + V̂ee + V̂nn

= −
∑

I

h̄2

2MI

∇2
I −

∑

i

h̄2

2me

∇2
i +

∑

i<j

e2

|ri − rj|

−
∑

i,I

e2ZI
|ri −RI |

+
∑

I<J

e2ZIZJ
|RI −RJ |

(1.2)

Because electrons are much ligher than nuclei, they have much faster motion than

nuclei. One can approximately separate the electrons from nuclei. Such separa-

tion is well-known as the Born-Oppenheimer (BO) approximation. Under the BO

approximation, the electronic wave function depends parametrically on the nuclear

coordinates. On the other hand nuclei move on potential energy surfaces (PES) that

are solutions to the electronic Schrödinger equation, which can be expressed as follows

Ψ(R, r) = Ψn(R)Ψe(R, r)

Ĥe = T̂e + V̂ne + V̂ee + V̂nn

ĤeΨe(R, r) = Ee(R)Ψe(R, r)

(T̂n + Ee(R))Ψn(R) = EtotΨn(R) (1.3)

Therefore, the nuclear and electron wave function can be optimized separately within

the BO framework.

1.1.1 Nuclear Geometry Optimization

Nuclei of atoms are de facto heavy enough for quantum effects to be neglected, and

therefore nuclei are often treated as classical particles. With the classical description,

optimization of nuclear geometry of a molecule is equivalent to the search of the
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minimum energy structure, or mathematically defined as:

∂Etot
∂R

= 0,
∂2Etot
∂R2

> 0 (1.4)

Quasi-Newton Approach The most widely used geometry optimization method

is the so-called quasi-Newton approach, in which analytical first derivatives and ap-

proximate second derivatives are used to search for a lower energy point on the PES.

In this method, a Newton-Raphson step, ∆x, is taken on a local quadratic PES

∆x = −H−1g (1.5)

where g is the gradient (first derivative) and H is the Hessian (second derivative). In

practical implementations, the Newton-Raphson step is stabilized with a control tech-

nique such as the rational function optimization (RFO)[17, 18] and the trust radius

model (TRM).[19–22] A numerical Hessian update scheme, such as BFGS,[23, 24]

SR1,[25] and PSB,[20, 26] is employed to relace computationally expensive analytical

evaluations of the second derivatives. To obtain an optimization step ∆x, eq 1.5 can

be solved with a direct inversion of the Hessian or RFO/TRM in the eigenvector space

of the Hessian. However, inversion or diagonalization of a Hessian matrix incurs an

O(N3) scaling, where N is the number of nuclear degrees of freedom. Such a cubic

scaling can become a substantial bottleneck in the optimization of large molecules

with semiempirical or linear scaling electronic structure methods. Alternatively, an

iterative O(N2) approach can be carried out to search for the RFO solution in the

reciprocal space of the Hessian.[27] However, iterative solutions are often subjected

to numerical instabilities and a large scaling prefactor. In addition, such iterative

approach does not offer direct computation of eigenvectors and eigenvalues that are

important in vibrational analysis and transition state optimizations.
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Internal Coordinate v.s. Cartesian Coordinate The choice of coordinate sys-

tem is crucial for successful convergence of the geometry optimization algorithm. In

most cases, geometry optimization in an appropriate set of internal coordinates can

converge significantly faster than in standard Cartesian coordinates.[28–30] For ex-

ample, bond distance, bond angle and dihedral angle are better representations than

the traditional Cartesian coordinates for a molecular system with rich chemical in-

formation. However, a practical internal coordinate system for molecular geometry

optimizations often contains redundancy. For large-scale systems, coordinate redun-

dancy can become the speed-limiting factor arising from operating on excessively

large matrices. In principle, redundancy can be removed by transformation to the

nonredundant internal coordinate, leading to a much smaller coordinate space and

less computationally expensive matrix inversion. However, obtaining the redundant-

nonredundant vectors is another O(N3) procedure where N is the number of nonredun-

dant coordinates. This dilemma largely prevents a practical application of geometry

optimization in nonredundant coordinate space.

A novel eigenspace update for large scale system method in nonredundant internal

coordinate is introduced in Chapter 2 for geometry optimization of large scale system

with enhanced overall performance.

1.1.2 Electronic Structure Optimization

Having a fixed nuclear geometry, the stationary electronic wave function can be ob-

tained following variational principle and by minimizing total electronic energy with

respect to internal variables such as spin orbitals or electron density. In practice,

stable electronic wave function is usually solved iteratively using self-consistent-field

(SCF) procedures. A number of linear scaling SCF methods have been developed

to optimize wave functions for large-scale molecules within the single Slater determi-
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nant/configuration framework, using Hartree-Fock (HF) and density functional theory

(DFT) methods. At the large molecule limit, the most computationally expensive step

was previously the evaluation of two-electron integrals and forming the Fock/Kohn-

Sham matrix that formally scales as O(N4). This step has been improved to almost

linear scaling by means of the fast multipole method (FMM)[31, 32] and linear scaling

exchange.[33–35]

In addition, with density matrix search (DMS) methods and sparse matrix manip-

ulations, [36] the O(N3) scaling diagonalization step for solving the Roothaan-Hall

SCF equation can be avoided. The DMS methods, exemplified by the conjugate-

gradient[37] and quasi-Newton (QN-)[36] DMS algorithms, offer an alternative to

diagonalization through direct minimization of the energy with respect to the density

matrix. With these advances, SCF based first principles methods have achieved lin-

ear scaling in the large molecule limit. Conceptually similar to the DMS method, the

Car-Parrinello (CP)[38] and atom-centered density matrix propagation (ADMP)[39]

approaches minimize the electronic energy along a dynamical force, treating electron

density motion with a classical equation of motion and a properly tuned fictitious

mass.[40–42]

In spite of the success in molecular dynamics, the advantage of being first order

propagation methods, CP or ADMP based methods have not been quite successful

in SCF wave function optimization due to slow convergence. Chapter 3 presents a

novel Car-Parrinello density matrix search (CP-DMS) method to directly minimize

the SCF energy as an effective alternative to diagonalization.
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1.2 Time Dependent Electronic Structure

The non-relativistic time-dependent Schrödinger equation (TDSE) governs the gen-

eral behavior of a quantum molecular system in both time and space

ih̄
∂

∂t
Ψ(R, r; t) = ĤΨ(R, r; t) (1.6)

If the Hamiltonian remains time-independent and contains the same set of operators

as in eq 1.2, to approximately solve the TDSE nuclear and electronic degrees of

freedom can be separated in a similar BO spirit. For example, the total wavefunction

can be written in the form of a product ansatz with a phase factor[43]

Ψ(R, r; t) ≈ Ψn(R, t)Ψe(r, t)exp

[
i

h̄

∫ t

t0

dt′Ẽe(t
′)

]
(1.7)

where the nuclear and electronic wavefunctions are separately normalized to unity at

every instant of time, and the phase factor is chosen as

Ẽe(t) = 〈Ψn(R, t)Ψe(r, t)| Ĥe |Ψn(R, t)Ψe(r, t)〉 (1.8)

1.2.1 Ehrenfest Molecular Dynamics

By substituting the product ansatz in eq 1.7 into eq 1.6, and extracting the clas-

sical mechanics within the classical limit h̄ → 0 for the nuclear wavefunction, one

can obtain a coupled set of differential equations as (see Appendix A for detailed

derivations)

MIR̈I(t) = −∇I 〈Ψe| Ĥe (r,RI(t)) |Ψe〉

ih̄
∂Ψe

∂t
= Ĥe (r,R(t)) Ψe (1.9)

Thereby, the nuclei are propagated by classical Newton’s equation and the poten-

tial energy surface (PES) is constructed by solving the time-dependent electronic
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Schrödinger equation “on-the-fly”. Such approach is often referred to as the “Ehren-

fest molecular dynamics”, and it has been shown to include rigoriously nonadiabatic

transitions between different electronic states within the framework of classical nuclear

motion and the mean-field (TDSCF) approximation to the electronic structure.

With the electronic wavefunction represented by a single Slater determinant of

one-electron molecular orbitals (MOs) φi, the time-dependent Schrödinger equation

reduces to the time-dependen Hartree-Fock (TDHF) equation, or the time-dependent

Kohn-Sham (TDKS) equation,

ih̄
∂φi
∂t

= K̂(t)φi (1.10)

the MOs are represented as a linear combination of atomic orbital (AO) basis functions

χµ as

φi(t) =
∑

µ

cµ,i(t)χµ (1.11)

where the time-dependent coefficients are complex numbers. The field-free Hamilto-

nian describes the molecular electronic system at a given time,

K̂0(t) = ĥ(t) + Ĝ(t) (1.12)

The one-electron operator ĥ(t) (in atomic units h̄ = me = e = 1) includes the

electron-nuclear attractive potential and electron kinetic energy operator,

ĥ(t) = −
∑

i

1

2
∇2
i −

∑

i,I

ZI
|ri −RI |

(1.13)

If the nuclei degrees of freedom are frozen, the one-electron operator becomes time-

independent constant as ĥ(t) = ĥ(t0). The two-electron operator Ĝ[ρ(t)] gives the

electron-electron interactive potential, and it is implicitly time-dependent because it

depends on the instantaneous electron distribution at a give time. In the adiabtic
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KS-DFT formalism, Ĝ[ρ(t)] includes the electron-electron Coulomb and exchange-

correlation potentials

Ĝ(t) =

∫
ρ(r′, t)

|r− r′|dr
′ + Vxc[ρ](r, t) ≈

∫
ρ(r′, t)

|r− r′|dr
′ + Vxc[ρt](r) (1.14)

Because the exact form of Vxc[ρ](r, t) is unknown for general system, the adia-

batic approximation is made within DFT that the exchange-correlation potential Vxc

only depends on the instantaneous time-dependent density ρ(r, t) at a given time:

Vxc[ρ](r, t) ≈ Vxc[ρt](r)

After some simple algebra, the TDHF/TDDFT equation of eq 1.10 can also be

represented in the form of a single-particle Liouville equation in terms of the density

ih̄
∂ρ

∂t
= K̂ρ− ρK̂ =

[
K̂, ρ

]
(1.15)

where ρ is the one-body density matrix in the MO basis

ρ(r, r′, t) =
∑

i

φi(r, t)φ
∗
i (r
′, t) (1.16)

Based on the matrix representation of the above Liouville equation, Chapter 4

presents two nonadiabatic dynamic studies that model laser controlled molecular

photo-dissociation, using ab initio direct Ehrenfest dynamics scheme implemented

with real-time time-dependent DFT (RT-TDDFT) approach.

1.2.2 Nonadiabatic Electronic Dynamics

In the ultrafast time scale where the nuclear degrees of freedom are mostly inactive,

electronic dynamics proves to be quite useful in describing reactions in the strongly

coherent regime and some nonadiabatic phenomenon. In this dissertation, several

interesting applications will be discussed.
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Doubly Excited State Resonant excitation within real-time TDHF and TDDFT

gives rise to mixing with doubly excited reference states, yielding excitation ener-

gies and excited state dipoles.[44] In combination with a wave function optimiza-

tion method based on a Car-Parrinello density matrix search (CP-DMS) with first-

principles fictitious mass,[3] a novel technique that can obtain not only energies, but

also the electron densities of doubly excited states within a single determinant frame-

work is presented in Chapter 5.

Solvated Electronic Dynamics Solvation effects can change fundamental physi-

cal properties of the solute, drastically alter the outcome of chemical reactions, and

either prevent or enhance the formation of certain macrostructures. In addition, sol-

vents have been known to have a considerable impact on the stabilization of molecular

electronic structures and dynamics, particularly states with strong permanent dipole

moments, a characteristic of charge-transfer (CT) states,[45, 46] as well as chemical

reaction rates due to the introduction of additional free energy of solvation. To bet-

ter simulate the class of electronic dynamics taking place in the solution phase, the

inclusion of solvent effects is always desirable and critically important for an accurate

description.

A first-principles solvated electronic dynamics method is described in Chapter 6.

Solvent electronic degrees of freedom are coupled to the time-dependent electronic

density of a solute molecule by means of the implicit reaction field method, and

the entire electronic system is propagated in time. This real-time time-dependent

approach, incorporating the polarizable continuum solvation model (PCM), is shown

to be very effective in describing the dynamical solvation effect in the charge transfer

process and yields a consistent absorption spectrum in comparison to the conventional

linear response results in solution.
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Ultrafast Coherent Electron-Hole Separation Dynamics in a Fullerene Deriva-

tive The use of fullerene derivatives as electron donors in bulk heterojunctions is

a promising development in the search for efficient energy conversion in hybrid solar

cells. A long-lived photoexcited electron-hole pair will give rise to increased efficiency

in photoenergy conversion. One way to prevent fast electron-hole recombination is to

engineer fullerene derivatives that exhibit intrinsic electron-hole separation through

accessible charge-transfer excited states.

In Chapter 7, the dynamics of photoexcited electron-hole pairs in a C60 derivative

is studied using the real-time time-dependent density functional theory (RT-TDDFT)

with inclusion of solvent effect by means of the implicit reaction field method. Al-

though the charge-transfer excited state is not directly accessible from the ground

state, intrinsic coherent electron-hole separation is observed following photoexcition

as a result of direct coupling between excited states. Ultrafast charge-transfer dy-

namics is the dominant phenomenon in <60 fs after visible photoexcitation. This

work provides insights into the characteristics of ultrafast dynamics in photoexcited

fullerene derivatives, and aids in the rational design of efficient solar cells.
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Chapter 2

EIGENSPACE UPDATE FOR MOLECULAR GEOMETRY
OPTIMIZATION IN NONREDUNDANT INTERNAL

COORDINATE

Following the discussions in the introductory chapter, this chapter presents an

eigenspace update (ESU) method for molecular geometry optimization. This method

takes advantage of previously computed eigenvectors for obtaining eigenspaces of the

transformation G matrix and the Hessian maxtrix and exhibits an O(N2) scaling.

A select set of large molecules will be tested and compared with the conventional

method of direct diagonalization in redundant space.

2.1 Eigenspace Update - An O(N2) Algorithm for Molecular Geometry
Optimization

Assume eigenvectors, C, and eigenvalues, λ, of the Hessian exist at step i :

Hi = Ci · λi ·C†i (2.1)

A forward optimization step, ∆xi, can be gained by means of RFO or TRM, using

eq 1.5, resulting in a new geometry, xi+1; a new gradient, gi+1; and a new and

updated Hessian, Hi+1. In the current implementation, the Hessian is updated using

a weighted combination of BFGS[23, 24] SR1,[25] and PSB,[20, 26] and SR1[25] with

the square root of the Bofill[47] weighting factor (see refs [48] and [49] for the technical

details). The new Hessian Hi+1 can be projected into the previous eigenvector space

Ci as

∆i+1 = C†i ·Hi+1 ·Ci (2.2)
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The equation above can be considered as an intermediate diagonalization step. In

principle, one can obtain the eigenvalues, λi+1, and eigenvectors, Ci+1, of the Hessian

by diagonalizing ∆i+1:

λi+1 = A†i+1 ·∆i+1 ·Ai+1 (2.3)

Ci+1 = Ci ·Ai+1 (2.4)

However, eqs 2.3 do not initially seem advantageous over the traditional approach of

direct diagonalization of Hi+1. From the molecular vibration standpoint, nonzero off-

diagonal elements in eq 2.2 are related to vibrational couplings and anharmonicities.

For any given normal mode, there exists a vibration which gives rise to the strongest

coupling, or the largest off-diagonal element in ∆i+1. Usually, in a nearly quadratic

potential energy surface, changes in the Hessian matrix are small. If we only consider

changes of the Hessian from the strongest couplings, ∆i+1 in eqs 2.3 and 2.4 can be

replaced with a tridiagonal form, ∆3,i+1, where the only nonzero off-diagonal elements

are the first diagonal below/above the main diagonal. Diagonalization of a tridiagonal

matrix in eq 2.3 formally scales as O(N2) when the Divide and Conquer[50] algorithm

is employed. As a result, eqs 2.2 and 2.3 become an eigenvector and eigenvalue update

scheme, which is much more efficient than direct diagonalization.

In later numerical tests, we use a LAPACK subroutine to obtain eigenvalues and

eigenvectors of a tridiagonal matrix ∆3,i+1. The projected Hessian matrix ∆i+1 is

reorganized by swapping rows/columns in every optimization step so that the largest

off-diagonal element for any given mode is positioned in the first diagonal below/above

the main diagonal. The reorganization starts from the first projection vector in Ci.

When the projected Hessian matrix is reorganized, the related projection eigenvectors

Ci are also rearranged consistently according to the rows/columns being swapped in

∆i+1. Note that this reorganization does not change the map between eigenvectors

C and the geometric coordinates x.
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2.2 Transformation to Nonredundant Coordinate Space

Analytical gradients, g, are usually computed in the Cartesian coordinate and require

geometries, x, represented in the same coordinate as well. The transformation from

the Cartesian coordinate x to the redundant internal coordinate q can be done with

a symmetric G matrix built from the Wilson texbfB matrix:[51]

B =
dq

dx
(2.5)

G = BBT (2.6)

where dq and dx are infinitesimal displacements in internal and Cartesian coordinates,

respectively. With the transformation matrices defined in eqs 2.5 and 2.6, the gradient

and optimization step can be transformed between two representations (Cartesian and

redundant internal):

fq = G−Bfx (2.7)

∆x = BTG−∆q (2.8)

where fx and fq are forces in the Cartesian and redundant internal coordinate, and

the NewtonâĹŠRaphson step, ∆q, in the redundant internal coordinate is

∆q = H−1f (2.9)

Note that in the quasi-Newton approach, the Hessian matrix can be updated in redun-

dant internal coordinates without transformation back to the Cartesian coordinate.

For optimizations of large-scale systems, a smaller nonredundant coordinate space

is preferred. The redundancy condition can be determined by single value decompo-

sition (SVD) of the matrix G:[30]

G = (KL)


 Λ 0

0 0


 (KL)T , Λ 6= 0 (2.10)
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In eq 2.10, K corresponds to the nonredundant coordinate space with nonzero eigen-

values Λ, and L consists of redundant eigenvectors of G. However, obtaining the

eigenspace of the G matrix is another O(N3) procedure and speed-limiting step, and

large molecules often have a large number of redundant coordinates. The eigenspace

update concept introduced in section 2.1 can be used here to reduce the dimension

of the G matrix. Assuming the linear dependence in the internal coordinate space

remains the same from step to step, the full G matrix can then be reduced into the

nonredundant coordinate space using the previous nonredundant vectors K, followed

by an SVD of the reduced and much smaller G̃ matrix.

G̃ = KT
i ·Gi+1 ·Ki (2.11)

G̃ = Ui+1 ·Λi+1 ·UT
i+1 (2.12)

The nonredundant coordinate space at the i+ 1 step can be constructed accordingly:

Ki+1 = Ki ·Ui+1 (2.13)

The SVD of the full G matrix in redundant internal space is performed only once

in the first step. Subsequent geometry optimization steps will take advantage of

this eigenspace update scheme (eqs 2.11-2.13) to obtain the nonredundant coordinate

space Ki+1. As the reduced G̃ matrix is significantly smaller than the original G

matrix in redundant space, the SVD on G̃ is no longer computationally dominant.

As a result, obtaining the redundantâĹŠnonredundant transformation matrix Ki+1

becomes a pseudo-O(N2) approach.

With the eigenspace of the nonredundant internal coordinate, the NewtonâĹŠRaph-

son step in eq 2.9 can be transformed into the nonredundant internal coordinate space

with the following equation:

K−1∆q =
(
KTHK

)−1
KT f (2.14)
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If we define the Newton-Raphson step, Hessian, and force in the nonredundant internal

coordinates as

∆q̃ = K−1∆q (2.15)

H̃ = KTHK (2.16)

f̃ = KT f (2.17)

eq 2.14 becomes the familiar form of the Newton-Raphson step, but in the nonredun-

dant internal coordinate space:

∆q̃ = H̃−1f̃ (2.18)

The RFO correction can be applied to eq 2.18 with the Hessian eigenspace update

scheme presented in the previous section. The displacement is then transformed back

to redundant internal coordinate:

∆q = K∆q̃ (2.19)

followed by another transformation to the Cartesian coordinate using the curvilinear

eq 2.8 through an iterative approach.[30]

2.3 Computational Details

Optimizations are carried out using the AM1 Hamiltonian as implemented in the

development version of the Gaussian program[52] with the addition of the geometry

optimization algorithm using the eigenspace update (ESU) method in the nonredun-

dant internal coordinate presented in sections 2.1 and 2.2. For all test cases, the

geometry optimization is considered converged when the maximum component of

the force vector is less than 4.5 × 104 au, the root-mean-square (RMS) force is less

than 3× 104 au, the maximum component of the geometry displacement is less than

1.8 × 103 au, and the RMS geometry displacement is less than 1.2 × 103 au. To
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ensure a smooth convergence, the tridiagonal approximation of the reduced Hessian

matrix is turned on when the regular RFO correction is smaller than one-tenth of

the minimum Hessian eigenvalue. In the following discussion, we refer to a geometry

step as the procedure including (1) forming the Wilson B matrix; (2) obtaining the

nonredundant eigenspace (section 2.2), (3) Hessian update, and (4) diagonalization

or eigenspace update (section 2.1); and (5) solving the RFO equation. For semiem-

pirical and force field methods, the computational cost of the analytical gradient is

not considered to be a computationally expensive step.

2.4 Benchmarks and Performance

In the ESU approach, the Hessian eigenspace is usually an approximation and requires

a number of optimization steps to converge to the true value. Figure 2.1 shows the

convergence of the Hessian eigenspace using the ESU method and direct diagonaliza-

tion of the updated Hessian, compared to the true analytical Hessian. It is known

that the Hessian update scheme is able to converge to the true Hessian within a few

geometry steps. Built on the Hessian update scheme, the Hessian eigenspace update

method (section 2.1) adds an additional degree of approximation. Therefore, the

convergence behavior of the ESU approach is slower than the diagonalization-based

method, but only by a few geometry steps. Nevertheless, the gain in computational

speed owing to the O(N2) scaling and the nonredundancy is promising for large scale

systems.

Table 2.1 lists relative computational costs for geometry optimizations using the

ESU method for a select set of molecules compared to those obtained with full diago-

nalization in the redundant internal coordinate. The computational cost is evaluated

using the total CPU time of geometry steps of the Hessian diagonalization-based RFO

approach as the unit reference. For smaller molecules, such as hydrazobenzene, there
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Figure 2.1: Comparison of minimum eigenvalues of the Hessian during optimization of a
single water molecule, using analytical Hessian, updated Hessian with diagonalization, and
Hessian eigenspace update approaches.
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are no savings in the overall computational cost. Although the computational cost

for geometry steps is reduced, the approximate nature of the Hessian eigenspace in

ESU leads to several additional optimization steps compared to the diagonalization-

based RFO approach. As a result, additional computational cost incurs, arising from

additional SCF steps, and therefore the application of ESU for small molecules is not

particularly advantageous.

Table 2.1: Comparison of Computational Costs for RFO Approach Using the Diagonaliza-
tion in Redundant Space and Eigenspace Update Method

diagonalization in eigenspace

redundant space update

molecules (# of atoms) energy (au) geomb SCF stepsc geomb SCF stepsc

hydrazobenzene (26) 0.129468 1.00 8.70 20 0.52 8.70 20

taxolâĂĽ(113) âĹŠ0.666862 1.00 0.68 63 0.45 0.71 66

for-(Ala)10-NH2âĂĽ(106) âĹŠ0.733344 1.00 0.82 100 0.66 0.97 115

for-(Ala)20-NH2âĂĽ(206) âĹŠ1.424445 1.00 0.63 206 0.52 0.70 238

for-(Ala)25-NH2âĂĽ(259) âĹŠ1.779332 1.00 0.48 82 0.38 0.50 87

crambinâĂĽ(642) âĹŠ4.167923 1.00 0.27 389

crambinâĂĽ(642) âĹŠ4.169380 0.20 0.23 333

a The computational cost is evaluated using the total CPU time of geometry steps using full

diagonalization in redundant internal coordinate as the unit reference.

b One geometry step includes forming the Wilson B matrix; obtaining the nonredundant

eigenspace, Hessian update, diagonalization, or eigenspace update; and solving the RFO

equation.

c Total number of geometry optimization steps.

On the other hand, as the molecular size increases, the cost for geometry steps

becomes dominant in computational cost for semiempirical self-consistent field (SCF)
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or force field energy calculations. In Table 2.1, we include test cases of large-scale

molecules, such as taxol, alanine chains, and crambin. Because of excessive nuclear

and electronic degrees of freedom, and numerous undesirable shallow potential wells

on the PES, these molecules are often difficult and computationally expensive to

optimize. As the nuclear degrees of freedom increase, the computational cost of

the ESU-based method is noticeably less expensive than the conventional approach

using full diagonalization in redundant coordinates. For the 25-alanine chain case, a

60% computational saving is observed. In this case, the total computational cost for

SCF iterations in the ESU-based method is slightly (1%) more expensive than the

conventional approach due to a slightly larger number of geometry steps. Therefore,

such a large computational savings in the ESU-based method can be ascribed to

the efficient eigenspace update algorithm in nonredundant internal coordinate space

introduced herein. Although we cannot make a direct comparison for the largest test

case, crambin, as the two methods converge to different minima,[53] a factor of 3 in

computational cost is definitely noticeable.

To further understand the computational performance of the ESU approach, we

plot in Figure 2.2 the computational cost of a single geometry step as a function of the

number of atoms. It is clear that ESU is an O(N2) method while the diagonalization-

based approach exhibits an O(N3) scaling. As the molecular sizes increase, the ad-

vantage of using an O(N2) approach becomes highly appreciated. Figure 2.3 illus-

trate optimization processes of selected large-sized molecules: taxol, alanine-25, and

crambin at the AM1 level of theory. It shows that the ESU method takes a similar

optimization pathway as diagonalization in the redundant-space-based RFO approach

but has the advantage of being much more efficient.
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Figure 2.2: Comparison of computational costs using diagonalization in the redundant
coordinate and eigenspace update. The computational cost of a single optimization step is
plotted against the number of atoms.
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Figure 2.3: Comparison of optimizations using diagonalization in redundant space and
eigenspace update methods for (a) taxol, (b) 25-alanine chain, and (c) crambin at the AM1
level of theory. See Table 2.1 regarding the evaluation of computational cost.
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2.5 Conclusions and Future Prospects

This chapter presents a geometry optimization method using an eigenspace update

approach. An encouraging efficiency for geometry optimization is observed, with up

to a factor of 3 savings in computational cost for large-sized molecular systems like

25-alanine chain molecule. Meanwhile, the optimization pathways are similar to those

using conventional diagonalization in the redundant-space-based RFO approach.

One possibly more promising implementation of the ESU method would be combi-

nation with direct inversion in the iterative subspace algorithm (DIIS), as exemplified

by the energy-represented DIIS[49] and the simultaneous DIIS methods.[53]
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Chapter 3

CAR-PARRINELLO DENSITY MATRIX SEARCH
METHOD FOR ELECTRONIC WAVE FUNCTION

OPTIMIZATION

This chapter introduces a first-principles fictitious mass scheme to weigh each

individual density element differently and instantaneously. As an alternative to di-

agonalization in SCF, the Car-Parrinello scheme is implemented as a density matrix

search method by dampening the electronic density velocity at each step to ensure a

down-hill minimization.

The DMS algorithm presented later is formulated in an orthonormal basis. Trans-

formations from an atomic orbital (AO) basis to an orthonormal basis can be done

using the Löwdin[54] or Cholesky methods[55] (see refs [36, 37] for details). The

Cholesky transformation is preferred in the context of linear scaling SCF because

the computational cost of forming the sparse transformation matrices exhibits O(N)

scaling with respect to the number of basis functions.

3.1 Dampened velocity CP-DMS

In an orthonormal basis, the extended Lagrangian for an electronic system can be

written as [56]

L =
1

2
Tr(VTMV) +

1

2
mTr[WW]− E(R,P)− Tr[Λ(PP−P)] (3.1)

where M, R, and V are the nuclear mass, position, and velocity, respectively. P,

W, and m are the density matrix, density matrix velocity, and the uniform fictitious
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electron mass, respectively. Λ is a Lagrangian constraint for the conservation of the

number of electrons and idempotency of the density matrix. Equation 3.1 is the

well-known CP Lagrangian equation in the orthonormal atomic basis.

Using the principle of stationary action, the Euler-Lagrange equation for the prop-

agation of the density is given by

m
d2P

dt2
= −

[
∂E(R,P)

∂P

∣∣∣∣
R

+ ΛP + PΛ−Λ

]
(3.2)

Equation 3.2 can be integrated using the velocity-Verlet algorithm

Pi + 1 = Pi + Wi∆t−
∆t2

2
m−1

[
∂E(R,P)

∂P

∣∣∣∣
R

+ ΛiPi + PiΛi −Λi

]
(3.3)

As in QN-DMS[36] and ADMP[39], the gradient term is a modified Li-Nunes-Vanderbilt

(LNV) functional,[57]

∂E(R,P)

∂P

∣∣∣∣
R

= 3FP + 3PF− 2FP2 − 2PFP− 2P2F (3.4)

Equations 3.1-3.4 have been successfully implemented as the ADMP method for

molecular dynamics studies.[39, 56, 58–60] The underpinnings of the CP or ADMP

approach are to maintain adiabaticity and energy conservation using the classical

equation of motion for electrons, which can be integrated with many first order meth-

ods.

In the context of searching for a self-consistent minimum of the electronic wave

function, the first term, the nuclear kinetic energy, in eq 3.1 becomes a constant,

which can be conveniently set to zero. The idea of using eqs 3.1-3.4 for optimizations

of electronic wave functions is to lower the potential energy term in the Lagrangian.

In this paper, we use a dampened velocity method where the electronic translational

kinetic energy [the second term in eq 3.1] is dampened at each integration step. This

simple idea leads to a modified Verlet integration,

Pi+1 = Pi −
∆t2

2
m−1

[
∂E(R,P)

∂P

∣∣∣∣
i,R

+ ΛiPi + PiΛi −Λi

]
(3.5)
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When m is a constant scalar, eq 3.5 shares a similar form as the steepest decent

approach. As a first order approach, the computational cost of eq 3.5 is linear with

respect to the number of elements. However, a first order based minimization scheme

is generally slow, and not efficient for wave function optimization. In the next section,

we introduce a first-principles fictitious electron mass method that exhibits a stable

and fast SCF convergence.

3.2 First-principles fictitious electron mass

During the wave function optimization process, electrons experience a different po-

tential at any given step. The key to improving gradient-based DMS is to allow

the propagation scheme to adapt to the instantaneous potential. We herein derive a

first-principles fictitious electron mass scheme that is independent of system of choice.

The frequency of a quantummechanical electronic harmonic oscillator, ω =
√
k/m,

suggests that an appropriate form for the fictitious mass would be m = k/ω2, where

k is the force constant and ω the frequency associated with each electronic element.

The fundamental electronic element in the DMS scheme is the density matrix element

Pµν which leads to an associated fictitious mass of

mµν =
kµν
ω2
µν

(3.6)

where µ and ν are indices for orthonormal atomic basis. Equation 3.6 is a good

approximation for electrons near the bottom of the electronic potential well or close

to the adiabatic surface. For an idempotent density matrix, ∂E(R,P)/∂P in eq 3.4

is equivalent to (I−P)[F,P]. In a quadratic electronic potential, ∂E(R,P)/∂Pµν =

kµν∆Pµν . As a result, the fictitious electron mass scheme in eq 3.6 is related to the

[F,P] commutator, consistent with that found in ref [61]. As eq 3.6 is a second order

approach with information about instantaneous curvature of the electronic potential,

it, in principle, provides a better description of local electronic configuration. On the



27

other hand, because eq 3.6 is essentially a decoupled electronic oscillation model, it

may have difficulties for highly coupled/correlated electronic systems. To support the

method introduced here, we will present in section 3.5 (Benchmarks and Performance)

some results for highly correlated systems.

The necessary force constants can be approximated from the diagonal elements

of the Hessian matrix, which can be calculated directly from the density and Fock

matrices[36, 37]

kµν ≈ Hµν,µν = (3− 2Pµµ)Fνν + (3− 2Pνν)Fµµ

−2(PF)µµ − 2(PF)νν − 2(FP)νν − 2(FP)νν (3.7)

Note that eq 3.7 is a simple approximation to the rank-2 Hessian using some elements

from the rank-4 Hessian tensor without computationally expensive two-electron in-

tegrals. Therefore, eq 3.7 does not impose any significant computational cost and

storage requirements for approximate diagonal Hessian elements. The frequency for

each density element is given by

ωµν =
εµν
h̄

= FµνPνµ (3.8)

Equations 3.6-3.8 illustrate the first-principles fictitious electron mass scheme used in

the CP-DMS scheme introduced in this paper. As a result, eq 3.5 becomes,

P ∗i+1,µν = Pi,µν −m−1µν

[
∂E(R,P)

∂P

∣∣∣∣
i,R

]
(3.9)

where density, gradient, and fictitious mass matrices are used as vectors. The La-

grangian constraint is dropped from eq 3.9, and will be enforced directly by an itera-

tive procedure, discussed in the next section.

As in standard electronic structure theory, the frequency in eq 3.8 is using the

atomic heat of formation as the zero point reference, which leads to a negative fre-

quency for electrons. In order to effectively use this fictitious mass scheme, we intro-

duce an arbitrary zero point frequency ω0 so that all electron elements have positive
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frequencies. We also introduce a cutoff frequency ωcore so that only active electron

elements are taken into account in the first-principles fictitious mass scheme,

mµν =




ω0 if ωµν ≤ ωcore

kµν
(ω0+ωµν−ωcore)2 if ωµν > ωcore

(3.10)

3.3 Constraints and matrix sparsity

As an alternative to explicitly calculating the Lagrangian constraint, the conservation

of the number of electrons and idempotency of the density matrix are maintained by

a simple scaling followed by McWeeny purifications[62]

Pi+1 = P∗i+1 ·
Ne

Tr
[
P∗i+1

]

P̃i+1 = 3P2
i+1 − 2P3

i+1 (3.11)

To achieve linear scaling, sparse matrix techniques are used. The computational cost

is reduced by storing and manipulating only the significant matrix elements. In each

DMS, the Fock and density matrices are enforced to have the same sparsity form of

F+P.

3.4 Computational Details

Test cases were carried out on an SGI Altix 450 workstation (Intel dual core-Itanium

1.6 GHz with 48 GB of RAM) using the development version of the GAUSSIAN series

of programs[52] with the addition of the CP-DMS algorithm presented here. For the

CP-DMS method, the wave function is considered converged when the ∂E(R,P)/∂P

is less than 103 a.u., and the root-mean-square ∂E(R,P)/∂P is less than 104 a.u.

From a number of tests, it was found that for any choices of ω0 and ωcore, there

exists an optimal time step ∆t which gives rise to the best SCF convergence. In
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the following test jobs, we use an effective zero point frequency of ω0 = 5.0 a.u.,

a cutoff of ωcore= âĹŠ5.0 a.u. for core and valence electrons, and a time step of

∆t = 0.16 a.u. This set of parameters has been tested extensively and consistently

and shows excellent computational speed and SCF convergence. The matrix sparsity

cutoff used in the following tests is 106 a.u. For each test case, all methods considered

here converge the electronic wave function to the same minimum with no more than

1 × 105 a.u. difference in the final energy. For all the test cases, we used a least-

squares minimization scheme based SCF method with the direct inversion of iterative

subspace approach (see ref [63] for details).

3.5 Benchmarks and Performance

We compare in Figure 3.1 wave function optimizations using CP-DMS with a uniform

fictitious mass and the first-principles fictitious mass scheme introduced here (section

3.2). Both methods are able to converge the electronic wave function, suggesting

that damping the velocity in CP dynamics is effective in leading electronic degrees

of freedom to a lower energy minimum. However, the convergence of CP-DMS using

a uniform fictitious mass is very slow, and this has been the main reason that a

CP-based method has not been successful in SCF wave function optimization. In

sharp contrast to results using a uniform fictitious mass, the CP-DMS using our new

fictitious mass scheme shows a fast and smooth convergence. Figure 3.1 serves merely

as a proof for the efficiency of the new fictitious mass scheme developed here. In

the following discussion, we refer to CP-DMS using the first-principles fictitious mass

scheme simply as CP-DMS.

Figure 3.2 plots the computational costs as a function of system size using both

the CP-DMS and conventional diagonalization based approaches. The test molecules

are L-alanine chains terminated by a D-alanine with a helical secondary structure,
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Figure 3.1: Comparison of SCF convergence using the Car-Parrinello method with damp-
ened velocity for a uniform fictitious electron mass (m = 1 a.u.) and first-principles fictitious
electron mass.

optimized at the AM1 level of theory. The 6-31G** Pople type basis set is used

in this test to showcase the linear scaling of CP-DMS even for such a large basis

set with polarization functions. As expected, the diagonalization scales as O(N3),

and it becomes computationally expensive at the large molecule limit. On the other

hand, CP-DMS shows a linear scaling with respect to the system size for the alanine

chain test cases. Although conventional diagonalization is still cheaper than CP-DMS

in computational cost for systems with < 10 000 basis functions, the linear scaling

aspect of CP-DMS becomes significantly advantageous at the large molecule limit.

Also note that diagonalization routines use fast LAPACK engines, while the sparse

matrix manipulation has yet to be optimized. The CP-DMS method introduced

here is formally an O(N2) approach. The significant matrix sparsity of the large,

linear molecule, as a result of many long-range integrals below the zero threshold,

is the dominant factor that makes the CP-DMS algorithm exhibit linear scaling. In
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addition, for each alanine test case, the number of SCF iterations using the CP-DMS

method required to reach convergence is equal or comparable to the conventional

method using diagonalizations. This, once again, shows that CP-DMS is not only a

linear scaling method, but also a stable wave function optimizer with fast convergence.

Figure 3.2: Comparison of the computational cost for a single SCF iteration using diago-
nalization and CP-DMS at the HF/6-31G** level of theory. Computational cost is expressed
as a ratio of the CPU time of a single SCF iteration of the test case relative to that of the
100 alanine molecule.

While the above result shows that CP-DMS exhibits linear scaling for molecules

with hydrocarbon backbones, wave function optimization methods for condensed mat-

ter have been an area that increasingly demands theoreticians’ attention. Particu-

larly, nanosized particles, such as ZnO and CdSe quantum dots, can be synthesized

and characterized experimentally. Although computational research on nanoparti-

cles seems to be computationally affordable at the limit of existing computational



32

resources, converging the wave function often becomes a very difficult task. Figure

3.3 shows a test case of a Cd153Se153 quantum dot, capped with pseudohydrogens (for

the detailed capping scheme, see ref [64]), computed at the screened-exchange hybrid

functional[65–67] HSE1PBE/LANL2MB+ (an additional set of S AO is added to the

LANL2MB basis set) level of theory. Note that when core electrons are replaced with

Figure 3.3: Comparison of SCF convergence using conventional diagonalization and CP-
DMS for a Cd153Se153 quantum dot at the HSE1PBE/LANL2MB+ level of theory.

effective core potentials, they are no longer treated with AOs or as core electrons in

the method developed. The conventional diagonalization undergoes drastic unpro-

ductive oscillations at the beginning of the wave function optimization, and takes

21 SCF iterations to reach self-consistency. Such a phenomenon is quite common in

the Roothaan-Hall SCF approach using diagonalization when the curvature of the

electronic degrees of freedom is very small or the electronic potential surface is very

shallow, as in free electrons in conductors and semiconductors. In sharp contrast
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to the performance of conventional SCF, CP-DMS converges the wave function in

ten SCF iterations with smooth down-hill behavior. Derivations in section 3.2 in-

dicate that the CP-DMS is essentially a simulated-annealing process with gradient

corrections from the instantaneous electronic curvature/Hessian. In addition, the

first-principles fictitious mass gives different weights to electrons with different ener-

gies. One can see from eq 3.6 that electrons with higher energies are associated with

smaller masses, which leads to larger first order CP-DMS steps. As a result, active

(high energy) electrons are converged faster than less active electrons, and the overall

CP-DMS convergence scheme is progressive. Figure 3.4 plots the total computational

cost as a function of the quantum dot size. For quantum dots considered here, the

Figure 3.4: Comparison of the total computational cost of SCF wave function optimization
using diagonalization and CP-DMS at the HSE1PBE/LANL2MB+ level of theory. Compu-
tational cost is expressed as a ratio of the total CPU time of the test case relative to that
of a Cd153Se153 quantum dot.
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number of integrals below the zero threshold is rather small due to their compact

structure and diffuse valence electrons. Therefore, the CP-DMS exhibits an asymp-

totic quadratic scaling with respect to the system size. Because of its fast and smooth

convergence, CP-DMS is consistently much less computationally expensive than the

diagonalization based SCF method for all CdSe quantum dots tested here.

3.6 Conclusions and Future Prospects

We introduced a first-principles fictitious mass scheme derived from the electronic

harmonic frequency. Force constants are evaluated as approximate diagonal elements

of the Hessian matrix, and therefore the computational cost and memory storage

requirements are trivial. Each individual electronic density element has a unique in-

stantaneous fictitious mass in every SCF iteration. Not only is this new fictitious

mass scheme independent of system of interest, it also leads to a much fast energy

minimization toward a stationary state. The CP scheme described above is imple-

mented as a DMS (CP-DMS) as an alternative to the O(N3) scaling diagonalization

step in the SCF routine. The overall performance of CP-DMS can be summarized as:

• The new fictitious mass scheme leads to a much faster convergence of the elec-

tron wave function compared to the conventional uniform electron fictitious

mass scheme in CP.

• For molecules with a hydrocarbon backbone, such as the alanine helical chains,

CP-DMS exhibits a linear scaling with respect to the size of the system.

• For compact three-dimensional structures, such as CdSe quantum dots, wave

function optimizations are often difficult tasks for conventional diagonalization

based SCF.
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Our tests show that CP-DMS is able to converge the wave function very smoothly,

benefiting from the new fictitious mass scheme. As a result, the CP-DMS wave

functional optimization shows a factor of 2-4 speed-up compared to diagonalization

based SCF. The success of the frequency-dependent fictitious mass in wave function

optimization bodes well for its future implementation in CPMD or ADMP. It will

likely lead to much better energy conservation and larger step sizes in molecular

dynamics simulations.
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Chapter 4

TIME-DEPENDENT DENSITY FUNCTIONAL THEORY
CALCULATIONS OF EHRENFEST DYNAMICS OF LASER

CONTROLLED DISSOCIATIONS

Advanced laser techniques, such as ultrashort laser pulses, high-intensity electric

fields, pulse shaping, and multiwave mixing, are able to provide increasing control of

molecular electronic and vibrational excitation of target states.[68, 69] Although these

advances offer possibilities to use tailored electromagnetic fields to control the outcome

of a chemical reaction via a desired pathway, [70–74] the underpinnings of many laser

control mechanisms still remain unclear. The difficulty lies in the complexity of the

laser-molecule interaction. For example, just a few of the phenomena necessary to

account for mechanism include the time-dependent Stark shift of the potential energy

surfaces (PESs), possible multiphoton processes when intense laser fields are used, and

nonadiabatic excitation of electronic states. Simple PES modeling is not sufficient,

and nonadiabatic electron dynamics are necessary. Such complexity motivates the use

of time-domain approaches to understand some aspects laser-molecule interactions

and their effects on the outcome of molecular reactions. It is for this purpose that

we developed ab initio Ehrenfest dynamics with TDHF[75] and TDDFT[76] as a

computationally inexpensive alternative to full time-dependent Schrodinger equation

(TDSE) approach.

This chapter first details the theory of ab initio direct Ehrenfest dynamics imple-

mented with real-time time-dependent density functional theories (RT-TDDFT) ap-

proach. Next, two theoretical investigations will be presented on the laser-controlled
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photo-dissociations of C2H
2+
2 and NO+ molecules.

Acetylene dication has attracted great interest in both experiments[77–79] and

theoretical calculations,[80–83] due to its importance as a prototype of proton mi-

gration, and also because it is one of the smallest stable polyatomic dications. On

the similar ground, the study of NO/NO+ has been an intense area of research for

both experiment[84, 85] and theoretical calculation[86–88] due to the physical and

chemical processes occurring in the upper atmosphere and pollution problems. The

goal of study on C2H
2+
2 is to understand some aspects of laser control mechanism,

while the purpose of the NO+ study is to further explore the role of pulse length in

the control mechanism.

4.1 ab initio Direct Ehrenfest Dynamics

Based on discussions of the single-particle Liouville equation in Chapter 1, the matrix

form of TDHF/TDDFT equation in an orthonormal MO basis can be written as

i
dP

dt
= KP−PK (4.1)

where P and K are the density and Fock/Kohn-Sham matrices with matrix elements

Pµν =
∑

i cµ,ic
†
ν,i.

In practice, the ab initio direct Ehrenfest dynamics is implemented with a triple-

split operator scheme with three different integrators: a modified midpoint and uni-

tary transformation (MMUT) TDHF/TDDFT, a nuclear position coupled midpoint

Fock/Kohn-Sham integrator and nuclear velocity-Verlet.[89] All energies, gradients,

and properties are generated directly as needed, or “on the fly”. The electronic de-

grees of freedom are propagated with a modified midpoint and unitary transformation

method (MMUT).[90] The unitary transformation matrix is a time-evolution operator

constructed from the eigenvectors C(tk) and eigenvalues ε(tk) of the Fock/Kohn-Sham
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matrix

ε(tk) = C†(tk) ·K(tk) ·C(tk) (4.2)

U(tk) = exp [i ·∆te ·K(tk)]

= C(tk) · exp [i ·∆te · ε(tk)] · C†(tk) (4.3)

where ∆te is the time step for the MMUT integrator. The density matrix is then

propagated from time tk−1 to tk+1 with a fixed nuclear position

P(tk+1) = U(tk) ·P(tk−1) ·U†(tk) (4.4)

By computing the Kohn-Sham matrix at the midpoint of the step, the MMUT method

accounts for linear changes in the density matrix during the time step. Because the

electronic wave function changes much faster than the nuclear motion, the nuclear

position coupled midpoint Fock/Kohn-Sham propagator updates integrals required in

the Fock/Kohn-Sham matrix with the second kind of time step ∆tNe, which encom-

passes m∆te iterations. The integrals are recomputed at the midpoint of every ∆tNe

time step, t′ + (∆tNe)/2, and are used in the Fock/Kohn-Sham matrix K for the m

MMUT steps between t′ and t′ + ∆tNe

K(t) = h

[
x

(
t′ +

∆tNe
2

)]
+ Gxe

[(
t′ +

∆tNe
2

)
,P(t)

]
(4.5)

where h and Gxe are one and two electron matrices, respectively. The nuclear position

is updated for n∆tNe time steps before the gradient is recalculated, which occurs in

the third time step ∆tN = n∆tNe. Velocity Verlet is used to propagate the nuclear

coordinates

p(tk+1/2) = p(tk)−
1

2
g(tk) ·∆tN (4.6)

x(tk+1) = x(tk) +
p(tk+1/2)

M
·∆tN (4.7)

p(tk+1) = p(tk+1/2)−
1

2
g(tk+1) ·∆tN (4.8)
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where p is the momenta, and g is the energy gradient. The quantum mechanical

gradient, for non-commuting Fock/Kohn-Sham and density matrices, [K,P] 6= 0, is

generally different than that for Born-Oppenheimer dynamics.[75]

The time-dependent Kohn-Sham Hamiltonian includes the electron-field coupling

term within the electric-dipole approximation,

K(t) = K0(t) + d · e(t) (4.9)

where K0 is the field-free Fock/Kohn-Sham matrix, and dµν = 〈χµ| r |χν〉 is the dipole
integral in the AO basis. We use a linearly polarized and spatially homogeneous

external field of frequency ω and maximum field strength Emax,

e(t) ≈ Emaxsin(ω · t) (4.10)

As a result of eq 4.9, at any given time during the simulation, the total energy of the

system including the electron-field coupling can be written as,

E(t) = Tr

[
P(t) ·

(
K(t)− 1

2
G(t)

)]
= Emol(t) + µ(t) · e(t) (4.11)

where we define Emol as the field-free energy of the molecule, and µ is the instan-

taneous dipole. In the current implementation of the TDDFT Ehrenfest dynamics,

atom-centered basis functions are used in the MO expansion. As a result, electronic

ionizations cannot be modeled directly. On the other hand, the focus of this work is

to illustrate the crucial role of laser pulse length in the photo-absorption processes

during the course of dissociative reaction.

4.2 Boltzmann Ensemble of Initial Conditions

Initial conditions were chosen to simulate a Boltzmann ensemble of harmonic oscil-

lators at room temperature (298 K); For a specific vibrational mode with a given

Boltzmann-sampled vibrational energy, the initial phase was chosen randomly and
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classically. The total angular momentum was set to zero. Since the actual potential

energy surface is not strictly harmonic, the initial vibrational coordinates and mo-

menta generated by this procedure were scaled to correct for the anharmonicity.[91]

C2H
2+
2 molecule A Boltzmann ensemble of acetylene dication molecules is simu-

lated at room temperature (298 K). This ensemble assumes a broad geometric distri-

bution of vibrational phases of the initial ground state (3Σ−g ) species from which the

strong laser field interactions take place. A similar approach has been implemented

for studies of Coulomb explosion of the acetylene dication.[83] A total of 50 initial

conditions and trajectories were integrated for each set of applied field parameters.

The C-H bonds are within about ±0.15Å of the equilibrium bond length of 1.14Å.

Because the C-C bond is stronger, the distribution is not as broad, with 95% within

±0.07Å of the equilibrium of 1.35Å. Even though the minimum energy geometry of

C2H
2+
2 is linear, vibrational Boltzmann sampling of the bending modes allows devi-

ation from exact linearity. The initial distribution of the H-C-C angle appears that

90% of the runs are within ±25◦ of the linear structure. In our simulations, fields

are applied parallel and perpendicular to the axis described by the optimized linear

structure, and this distribution indicates that most of the C2H
2+
2 starting conditions

give a structure that is close to linear.

NO+ molecule Similar approach is applied to NO+ molecule. A total of 50 trajec-

tories were integrated for each set of field parameters. Initial conditions were chosen

for the NO+ molecule to simulate a Boltzmann ensemble of harmonic oscillators at

room temperature (298 K). The room temperature Boltzmann distribution of the

initial N-O bond lengths shows that the initial N-O bond lengths are within about

±0.08Å of the equilibrium bond length of 1.08Å.
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4.3 Computational Details

The modified development version of the GAUSSIAN(32) series of programs was

used to carry out all computations in the present investigation. The BLYP functional

with the 6-31++G(d,p) basis set is used for calculations of ground state properties

and excited states within the linear response framework[92, 93] and is implemented

with the Ehrenfest dynamics approach as described in section 4.1 for laser-controlled

electron-molecule dynamics. In the Ehrenfest dynamics, a step size of tN= 0.10 fs is

used for the velocity Verlet, with tNe = 0.01 fs for the midpoint Kohn-Sham integrator,

and te = 0.001 fs for the MMUT step. Tests showed that these time steps conserve

the energy of the system (after field removal) to within 10−4 Hartree and represent a

reasonable combination of accuracy and computational cost.

4.4 Results and Discussion: C2H
2+
2 Simulation

The ground state of the acetylene dication has a triplet configuration (3Σ−g ) with two

unpaired electrons each occupying one πµ bonding orbital. Within our calculations,

the molecular axis is along the z axis, and the two π bonds are aligned along the

x and y axes. The ground-state optimized C-C bond length is 1.35Å, and the C-H

bond length is 1.14Å. We use a constant envelope 20 fs laser pulse, with Emax = 0.08

au (which corresponds to a field intensity of 2 × 1014W/cm2). After the first 20 fs

when the laser field is on, the molecular reaction continues until t = 150 fs. At the

end of the simulation, the C-H and C-C bonds are considered broken if their length

exceeds 3Å. We divide our nonadiabatic Ehrenfest molecular dynamics results into

five dissociation pathways:

(1) no bonds are broken

(2) single-proton dissociation

(3) dissociation of both C-H bonds
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(4) dissociation of all bonds

(5) proton dissociation with C-C dissociation

An additional pathway, with the C-C bond breaking with no C-H dissociation, is

possible but was never observed in our simulations of the triplet state. Although a

large torsional energy could break the C-C bond, the Boltzmann sampling shows that

this mechanism is very unlikely at room temperature. This pathway is thought to

occur through an excited singlet surface through a bent transition state.[81] Although

vibrational sampling of the bending mode breaks the strict linear symmetry of the

optimized structure, the results of our simulations can be broadly divided into two

different categories: laser application perpendicular to the molecular axis and laser

application along the molecular axis. Although this division is made for the ease of

interpreting our theoretical results, intense laser pulses can be used to produce align-

ment of even nonpolar molecules, with the molecule aligning with its most polarizable

axis along the laser polarization direction.[94–97] Within our scheme, this technique

could be used to provide greater control of the molecular dissociation.

E-Field Perpendicular to the Molecular Axis When a 20 fs laser pulse was

applied in the xy plane (perpendicular to the molecular z axis, with Emax = 0.057

au along both the x and y axes), no bonds were broken within the experimentally

relevant range of photon energies 1.5 eV = 800 nm (titanium-sapphire laser) to 8.3 eV

= 157 nm (an ArF excimer laser, the high-energy range of current laser technology).

We increased the photon energy and found that no bonds broke until we reached an

extremely high photon energy of 13.6 eV = 91.2 nm. This high-energy field frequency

did not lend itself to controlled dissociation, however, as there were many dissociation

pathways accessed, but none of them dominant. With the 13.6 eV photon energy xy

field, the distribution of the five dissociation pathways is shown in Figure 4.1. The
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percentages range from 10% (pathway 5: dissociation of a single C-H bond with C-C

dissociation) to 30% (pathway 3: dissociation of both C-H bonds). Thus, when the

laser field is aligned perpendicular to the molecular axis, the probability of controlling

molecular dissociation of C2H
2+
2 is rather small.

Figure 4.1: Percentages of various dissociation pathways with an xy laser field with a
frequency of ω = 13.6 eV.

We next analyze the corresponding xy-allowed excited states. Figures 4.2a and

4.2b show the PESs for the four lowest energy xy-dipole-allowed electronic transitions

as functions of C-H and C-C distances, respectively, as well as the PES of the ground

state. For the PESs in Figure 4.2a, the C-H bonds were symmetrically stretched.

The vertical lines indicate the maximum and minimum starting bond lengths in the

Boltzmann ensemble. The two lowest lying excited states in Figures 4.2a and 4.2b

correspond to excitation from the C-H bonding ÏČg orbital to the C-C bonding ÏĂu

orbital, which should weaken the C-H bond and meanwhile strengthen the C-C bond.

The lowest energy excited state should be accessible with a field frequency ω of 5

eV = 248 nm when the field is aligned in the xy plane. Although it seems that

this excitation provides a desirable control scheme for selective bond breakage since it

weakens the C-H bond while strengthening the C-C bond, these σ → π transitions are

only weakly allowed in the xy plane (oscillator strength f < 0.004), even at stretched

bond lengths. The second highest xy-allowed excited state is also very weakly allowed.
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Figure 4.2: Potential energy surfaces for C2H
2+
2 . Red lines indicate the range of bond

lengths within the room temperature Boltzmann distribution: (a) xy- allowed states for
the asymmetric C-H stretch; one C-H bond is stretched while the other is optimized, (b)
xy-allowed states for the symmetric C-H stretch; both C-H bonds have the same length, and
(c) xy-allowed states for the C-C stretch.
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The two higher energy excitations in Figures 4.2a and 4.2b correspond to exci-

tations from the C-H bonding σg orbital to the C-C antibonding πg orbital, which

weakens both the C-H and C-C bonds. While transitions to these states are not highly

allowed, the oscillator strength of the fourth excited state, at 14 eV, is a bit larger

than the other xy states; it ranges between f = 0.2 and 0.03, indicating that popula-

tion of this state is likely responsible for the dissociations observed with the 13.6 eV

field. In addition to this state having a non-minimal oscillator strength, it is also seen

to be repulsive along both the C-C and C-H bond coordinates, allowing for direct dis-

sociation. We thus see that while the first of the xy transitions is in the experimental

photon energy range, the very small oscillator strength of this state keeps it from

being available to C2H
2+
2 upon excitation with an applied laser field. Population of

a higher lying state, at an energy well beyond the reach of today’s experimental laser

technology, is theoretically possible due to a larger oscillator strength. It appears to

be this repulsive state that causes the various dissociations seen in Figure 4.1.

E-Field Parallel to the Molecular Axis When the laser field is aligned along

the molecular z axis, there is a wide range of dissociation patterns observed. Fig-

ure 4.3 shows the distribution of the various five pathways for four different photon

energies. In all tested laser fields, the C-H dissociation channels (pathways 2 and

3) are the most probable reaction pathways. At the lowest photon energy, 9.5 eV,

single C-H dissociation, pathway 2, is the dominant dissociation channel. When the

photon energy increases, the probability of double C-H bond dissociation, pathway

3, also increases. The Ehrenfest trajectories at the lower photon energies (<12 eV)

do not undergo C-C dissociation. When the photon energy is above 12 eV, the C-C

dissociation channel is open; however, these higher photon energies also lead to C-H

dissociation. Therefore, a simple frequency control scheme as explored here on the

triplet surface is not able to break the C-C bond while maintaining the C-H bonds,
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but at a frequency of 9.5 eV, we are, in fact, able to selectively break only one of the

C-H bonds since pathway 2 dominates over pathway 3. At higher frequencies, the

double C-H dissociation of pathway 3 dominates. Examination of the energy profiles

during the dynamics indicates that trajectories with a 10 eV or greater increase in

the potential energy when the field is on are likely to experience dissociation. As the

dynamics continue, some of this large potential energy is transferred to the kinetic

energy of the C2H
2+
2 fragments.

Figure 4.3: Percentages of various dissociation pathways with a z laser field. The five
different pathways are given in Figure 4.1 and in the text.

With double C-H dissociation, we find that the charge profile of the fragments

varies with laser frequency. Since Ehrenfest dynamics propagates the nuclear motion

on an average potential energy surface, the final partial charge indicates probabilities

of dissociation on various surfaces. At higher frequencies, we find that each hydrogen

has a larger positive charge, with the C2 fragment holding onto the positive charge
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more with the lower 10.8 eV frequency. This means that higher frequency laser fields

are more likely to lead to double-proton dissociation, while lower frequency laser fields

are more likely to lead to single-proton dissociation, followed by dissociation of neutral

hydrogen.

As with the perpendicular xy laser field, we rationalize these dissociation patterns

through analysis of the electronic excitations. Figures 4.4a-c are the PESs for z-

allowed transitions for symmetric and asymmetric C-H bond breakage and C-C bond

breakage. The lowest energy excited state is z-dipole-allowed; the oscillator strength f

ranges from 0.2 to 0.4 within the initial Boltzmann geometries (marked with a vertical

line). This lowest energy state corresponds to excitation from the C-C πµ bonding

orbital to the C-C π∗g antibonding orbital, which should lead to C-C bond weakening

followed by a possible dissociation. Along the C-H coordinate this first excited state

has a shallow potential well, while along the C-C coordinate the PES is very flat. The

second and third excited-state PESs in Figures 4.4a-c correspond to excitation from

the C-H bonding σg orbital to the C-H antibonding σ∗µ orbital. This kind of excitation

will result in a zero C-H bond order and is observed to have a repulsive PES along

both the C-H and C-C bond coordinates. While the second excited state has a small

oscillator strength (f = 0.02-0.04), the third excited state is highly allowed: f ranges

between 0.6 and 1.1 within the initial Boltzmann geometries.

Figure 4.4 suggests that within the thermally sampled distances, photon energies

of 8-11 eV can excite C2H
2+
2 to the first excited state, which should weaken the C-C

bond. However, the lower energy field frequencies at 9.5 and 10.8 eV do not cause any

dissociation of the C-C bond within the Ehrenfest dynamics; only C-H dissociation is

observed. This is likely due to the small potential well of the first excited state, which

makes the PES not entirely repulsive, thus not allowing for immediate dissociation of

the C-C bond.
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Figure 4.4: Potential energy surfaces for C2H
2+
2 . Red lines indicate the range of bond

lengths within the room temperature Boltzmann distribution: (a) z-allowed states for the
asymmetric C-H stretch; one C-H bond is stretched while the other is optimized, (b) z-
allowed states for the symmetric C-H stretch; both C-H bonds have the same length, and
(c) z-allowed states for the C-C stretch.
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While we can rationalize the observance of the C-H dissociation at low photon

frequencies of 9.5 and 10.8 eV by realizing that the second excited state becomes

energetically available at these photon frequencies at highly stretched C-H distances

(see Figure 4.4a and 4.4b), this rationale was surprising initially, considering the

relatively small oscillator strength of this state compared to the first excited state.

However, the oscillator strength of the second excited state is still greater than the

fourth xy-allowed state that caused dissociation with the 13.6 eV field in the xy

direction. It appears that in addition to requiring a non-minimal oscillator strength

(f>0.01), dissociation dynamics also prefers the shape of the PES to be repulsive, so

that direct dissociation can occur. Thus, at these lower energy frequencies, it is the

repulsive nature of PES that determines the dynamics, rather than the magnitude of

the oscillator strength.

An additional question in understanding the Ehrenfest dynamics results is why

single C-H bond breakage (pathway 2) dominates double C-H bond breakage (pathway

3) at the lowest photon energy. Close scrutiny of the symmetric and asymmetric C-H

PESs shows that the second excited state, which we have shown is responsible for the

dissociation dynamics at these lower energies, dips to slightly lower energies for the

antisymmetric stretching of the C-H bond, compared to the symmetric stretching.

We see that this selectivity for single C-H dissociation is suppressed by increasing the

photon energy. This result agrees well with our phase analysis of initial conditions in

which asymmetric stretch is slightly more probable than the symmetric stretch.

Going to even higher photon energies at 12.2 and 13.6 eV shows that favoring of

single C-H bond breakage (pathway 2) over double C-H bond breakage (pathway 3)

decreases as the system acquires more energy. Overall, a greater percentage of C-H

dissociation is observed, which is likely due to C2H
2+
2 now having enough energy to

access the highly allowed and repulsive third excited state. In addition, some complete
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dissociation is seen, including the C-C bond. This indicates that the extra energy of

the field allows the system to overcome the potential barrier seen in the PES of the

first excited state, allowing for complete, direct dissociation of all bonds.

4.5 Results and Discussion: NO+ Simulation

In order to study the role of pulse length in the laser control mechanism, a linearly po-

larized and spatially homogeneous light pulse was applied for interaction time periods,

ranging from 20 to 100 fs. The light polarization, within the dipole approximation

(eq 4.10), is aligned with the molecular axis. After the laser field is turned off, the

simulation continues until t = 150 fs. At the end of the simulation, the N-O bond is

considered broken if the distance between atoms exceeds 3Å.

In the previous section, we have shown that the probability of laser control of

molecular reaction strongly depends on the oscillator strength of the electronic tran-

sition. For polarizations perpendicular to the NO+ molecular axis, the lower lying

electronic transitions are only weakly allowed (oscillator strength f < 0.02) and the

PESs are attractive in nature. Therefore, in this study we only focus on situations

where the laser polarization is aligned with the molecular axis. Figures 4.5a shows

several PESs for lowest dipole-allowed electronic transitions along the molecular axis,

obtained with linear response TDDFT. Figure 4.5b shows the same set of PESs com-

puted with a static electric field of E = 0.05 au within the perturbative linear response

theory. Although the electronic system in such an electronic field is beyond the per-

turbative regime, the PES obtained still can provide some insights into the control

mechanism. The lowest energy excited state corresponds to the π → π∗ electronic

transition. Although the PES of this excited state is slightly attractive, the oscillator

strength of the excitation is very large (f∼0.7), making it a good candidate as the

target doorway state, which provides possibilities to access higher lying excited states
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via sequential photon absorption process. As shown in Figure 4.5a, within the Boltz-

mann sampled bond lengths, this doorway state is accessible with a resonant photon

frequency of ω = 0.60 au (16.3 eV), and, therefore, we choose this frequency of light in

the following simulations. Because Figure 4.5b indicates that application of a static

external field of E = 0.05 au significantly changes the characteristics of the PES,

real-time electronic-molecular dynamics is needed to provide a better understanding

of laser control.

Figure 4.6 schematically shows snapshots of the time-dependent charge density dis-

tribution taken from one representative laser-controlled dissociative reaction. Time-

dependent charge density is defined as, ∆ρ(t) = ρ(t)− ρ0(t), where ρ(t) and ρ0(t) are

TDDFT and ground state electron densities at time t. Blue and yellow coded surfaces

represent electron populating and depopulating regions, respectively, as compared to

the ground state configuration. At t = 0, the electron wave function starts in the

ground state. As the field is turned on, electrons are driven into the excited state

while the bonding orbital gradually loses electron populations. At t = 50 fs, most of

the electrons in the bonding orbital are excited to high-lying molecular orbitals, and

the molecule starts to dissociate during the period of 50-75 fs. At t = 100 fs, the

N and O atoms are already well separated, with the oxygen atom gaining electrons

during the dissociative process.

Since the TDDFT Ehrenfest dynamics is a mean-field theory, atomic and molec-

ular properties represent average values even at the asymptotic dissociation limit.

Nevertheless, a qualitative understanding of the laser-controlled dissociative charge

state can be obtained from analyzing the charge distribution at the end of the dy-

namics. For example, if the nitrogen atom formed at the point of dissociation has a

majority of the positive charge, we then assign the dynamics to the: O+N+ channel.

The same approach can be applied to the O+ + N channel. Figure 4.7 shows prob-
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Figure 4.5: Lowest electric-dipole allowed transitions: (a) field-free PES and (b) field-
dressed PES with a static electric field of E = 0.05 au applied along the molecular axis. Red
lines indicate the range of bond lengths within the room temperature Boltzmann distribu-
tion. The π → π∗ transition has an oscillator strength of 0.7.
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Figure 4.6: Snapshots of charge density distribution at t = 0, 25, 50, 75, and 100 fs. Blue
and yellow coded areas represent negative and positive charge distributions, respectively.
Relative charge distributions at the end of the trajectories are used to identify dissociative
reaction channels.
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abilities of nondissociative and dissociative reactions on different dissociative charge

states as a function of excitation laser pulse length. The laser field is aligned along

the molecular axis with Emax = 0.05 au (∼ 9× 1013W/cm2), ω = 0.6 au. Five differ-

ent pulse lengths are investigated with respect to the laser control mechanism. With

short laser pulses (<40 fs), nondissociative reactions account for >98% of the prod-

uct. For dissociation reactions, the probabilities for N+ +O and N +O+ channels are

dependent on pulse length. As the pulse length increases, the probability of observing

dissociative reactions of NO+ also increases, from 0% with a 20 fs pulse to 52% with

a 100 fs pulse. The probability for forming the O + N+ channel is approximately

twice as likely as the O+ +N channel for dissociative reactions at all pulse durations.

Although this observation presents an interesting target for the control of desired

dissociation products with tailored pulse length, the mechanism of this effect remains

to be clarified. Figure 4.8 shows time-dependent total energies of the reaction sys-

Figure 4.7: Probabilities of dissociative charge states of NO+ as a function of applied pulse
length.
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tem itself from three representative electron-molecule Ehrenfest dynamics simulations

with a 60 fs pulse. The total energy, calculated using eq 4.11, includes âĂĲon-the-

flyâĂİ molecular kinetic energy, the electronic energy using the instantaneous electron

density, and the electron-field coupling within the dipole approximation. The large

stepwise jumps in energy clearly indicate electronic excitations upon absorption of

resonant photons. The vibrational time period of NO+ is 14.3 fs, suggesting that the

time-delay between excitations is modulated by molecular vibrations as the resonant

excitation has to coincide with the time-dependent potential energy gap. If the ini-

tial vibrational condition does not give rise to resonant absorption, it will take some

period of time before the molecule vibrates to a certain position that can lead to res-

onant absorption. The smaller amplitude oscillations during the time evolution are

important characteristics of adiabatic electron dynamics on a given dressed potential

surface. These oscillations are faster than the fundamental molecular vibration, but

slower than the external driving field. Simple Rabi oscillation model can be used to

understand this phenomenon. From linear response TDDFT calculations, the tran-

sition dipole moment for excitation from the ground state to the doorway excited

state is 0.61 au. With laser field parameters used in this work, the fundamental Rabi

frequency is calculated to be 0.05 au (2.9 fs in time period). This frequency agrees

with those smaller oscillations in Figure 4.8. As the dynamics moves away from the

resonant region after a large stepwise jump, the Rabi oscillation amplitude slightly

decreases as expected.

By identifying the number of jumps in the energy time-evolution during the simu-

lation, multiple photoabsorption processes can be analyzed. As a result, the observed

excitations can be thought of as sequential multiple single-photon processes as plotted

in Figure 4.9. Within a 20 fs pulse, the molecule can only undergo 1.4 vibrational

cycles (ν = 2328.3cm−1), therefore the resonant one and two single-photon processes
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Figure 4.8: Total energy of the molecule (Emol) plus the electric-dipole coupling (µ · e) as
a function of reaction time for three select trajectories with a 60 fs laser pulse, ω = 0.60 au,
Emax = 0.05 au (∼ 9× 1013W/cm2).

dominate. However, as indicated in Figure 4.5b, the Stark-shifted or strong-field

dressed lower lying PESs are mostly attractive potentials. Our simulations also sug-

gest that the probability of observing dissociation with a 20 fs pulse is rather small

for the NO+ molecule. As the laser pulse length increases, the molecule is able to

undergo more vibrational cycles and undergo multiple resonant excitations. There

thus exists an optimal pulse length associated with the maximum probability of a

certain multiple single-photon process. For example, the probability of absorption of

two photons is highest with a 40 fs pulse, whereas the three photon process dominates

with a 60-80 fs pulse. This relationship between multiple single-photon processes and

laser pulse length can be used to explain the observed laser control pattern in Fig-

ure 4.7. As indicated from the molecular orbital (MO) density of states (DOS) plot

in Figure 4.10, most lower-lying (from -15 to 0 eV) empty MOs show more positive
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charge built-up on N than on O, indicating a higher probability to access the N+ +O

channel for lower energy excited states. On the other hand, there are a significant

number of MOs that correspond to the N + O+ dissociation channel among higher

energy (>0 eV) empty MOs. As the pulse length increases, probabilities of multiple

single-photon processes increase and the probability of accessing higher energy PESs

also increases. As a result, the likelihood of the dissociative products coming from

the N + O+ channel increases with longer pulse lengths. This analysis provides an

important control mechanism for the fundamental photoabsorption processes with a

controlled laser pulse length. Because the method used in this work is constrained

Figure 4.9: Probabilities of sequential multiple photon absorption processes as a function
of laser pulse length.

within a single Slater determinant, proper symmetry-adapted singlet excited states

cannot be obtained during the dynamics. Excitations observed in this work corre-

spond to simultaneous spin-up and spin-down two-electron transitions.[44] As a result,
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Figure 4.10: Density of state plot of molecular orbitals of the ground state NO+. Partial
charges on N and O are plotted as colored lines. In the lower energy regime (-15 to 0 eV),
most MOs are related to the N+ + O channel, whereas higher energy (>0 eV) MOs see
higher probability to access the N +O+ dissociation channel.
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the multiple single-photon processes as discussed above apply simultaneously to both

spin-up and spin-down electrons and are below the double ionization potential. With

the external field used in this paper, the Keldysh parameter[98] is calculated to be

27, suggesting possible multiphoton ionization. However, even with the 100 fs pulse,

we did observe energies that were close to or above the double ionization potential

of NO+. This work introduces a mechanism of using laser pulse length to control

photoabsorption probabilities. Although the intensity of the field is important for

simultaneous multiphoton absorption processes, theoretical observations herein show

that sequential single-photon processes can be controlled with tailored pulse length.



60

Chapter 5

OBTAINING HARTREE-FOCK AND DENSITY
FUNCTIONAL THEORY DOUBLY EXCITED STATES

WITH CAR-PARRINELLO DENSITY MATRIX SEARCH

The accurate calculation of doubly excited states presents a great theoretical

challenge. The standard, very common single configuration excited state linear re-

sponse methodologies, such as configuration interaction singles (CIS), time dependent

Hartree-Fock (TDHF), and the commonly used adiabatic functional approximations

in time-dependent density functional theory (TDDFT), are only capable of modeling

singly excited states.[99–102] Multiconfigurational methods that use multiple deter-

minants to create doubly excited state wave functions are often too expensive to use

on systems of practical interest, such as quantum dots or molecules with extended

conjugated π-systems. For example, the doubly excited 21Ag state of linear polyenes

has been an area of theoretical and experimental study since the early 1970s;[103–110]

this state is thought to play a key role in the photophysics of transferring energy from

carotenoids to chlorophylls in photosynthesis.[111] While linear response single deter-

minant TDHF and TDDFT methods have been used to study excitations in this and

many other extended conjugated systems,[107] much work shows that these methods

neglect double and higher excitations.[99–102]

On the other hand, extensions of linear response TDHF/TDDFT to quadratic

response theory show that doubly excited states occur incorrectly at sums of the

energies of singly excited states.[112] Recent developments in other research groups

also show that energies for doubly excited states can be greatly improved with a
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dressed/frequency-dependent TDDFT treatment that includes doubly excited deter-

minants. [113, 114] However, there must be a priori knowledge of the energies of

the doubly excited states, and electronic wave functions or density distributions can-

not be obtained easily with this method. Thus, most calculations of doubly excited

states[44, 109] instead use multireference configuration interaction (CI) methods, such

as complete active space self-consistent field (CASSCF) or symmetry adapted cluster-

CI (SAC-CI).[115, 116] Because precise knowledge of excited states is of crucial impor-

tance in determining mechanisms of many photochemical processes, a computational

inexpensive method for calculation of doubly excited states is needed.

Our previous work showed that while doubly excited states are absent in linear

response TDHF and adiabatic approximation TDDFT methods, resonant excitation

within real-time TDHF and TDDFT gives rise to mixing with doubly excited ref-

erence states, and can be used to obtain the doubly excited state electron density,

yielding energies and other properties.[44] However, this method requires an extensive

numerical search for the resonant perturbation frequency, and a stationary state of

the Hamiltonian is not guaranteed. In our recent work, we presented a wave func-

tion optimization method based on a Car-Parrinello density matrix search (CP-DMS)

with first-principles fictitious mass,[3] which shows very fast and smooth convergence

behavior. In this paper, we combine these two developments into a novel technique

that can obtain not only energies, but also the electron densities of doubly excited

states within a single determinant framework. Having the electronic density, in addi-

tion to the energy, is of great importance in obtaining insights into the character of a

doubly excited state, as it is necessary in order to calculate properties such as dipole

moments. We use the real-time TDHF/TDDFT unitary transformation technique to

excite the system to an approximate guess of the doubly excited state electron density.

We then use our CP-DMS method to converge the density to the nearest closed-shell
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stationary state. In this chapter, we first describe our new method and then apply

it to two and multielectron molecules: H2, HeH+, LiH, ethylene, and butadiene. The

method converges to the desired doubly excited state in all test cases.

5.1 Dampened velocity Car-Parrinello density matrix search (CP-DMS)

The details of the CP-DMS method have been discussed in Chapter 3.1 previously,

and we only provide a brief review here. The DMS algorithm is formulated in an

orthonormal basis. Transformations from an atomic orbital (AO) basis to an or-

thonormal basis can be done using the Löwdin[54] or Cholesky[55] methods. In an

orthonormal basis, the extended Lagrangian[56] for an electronic system gives rise to

the Euler-Lagrange equation(eq 3.2,3.3) for the propagation of the density using the

principle of stationary action, integrated with the velocity-Verlet algorithm. In the

context of searching for a self-consistent stationary point of the electronic wave func-

tion, we use a dampened velocity method where the electronic translational kinetic

energy is dampened at each integration step,

Pi+1 = Pi −
∆t2

2
m−1

[
∂E(R,P)

∂P

∣∣∣∣
i,R

+ ΛiPi + PiΛi −Λi

]
(5.1)

When m is a constant scalar, eq 5.1 has a form similar to the steepest decent approach.

In eq 5.1, we used a complete dampening scheme, in which the density matrix velocity

is set to zero, to ensure fast convergence.

5.2 Local quantum harmonic oscillators

In most CP or atom-centered density matrix propagation applications, equations

3.2,3.3,5.1 describe the equation of motion of the overall electronic system. However,

as shown previously,[3] a uniform effective mass scheme for the whole electronic system

does not fully take into account the inhomogeneity of electron density distribution,
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and therefore, converges the electronic wave function to a stationary point much

slower than conventional SCF approaches. In our current and previous works, we

introduce the concept of a local equation of motion for a finite electron density, δρ(r).

The dampened velocity CP-DMS method described above is used to propagate δρ(r)

with a “tuned” effective mass. As the potential that any given electron density, δρ(r),

experiences is quadratic with respect to electron density, the overall electronic system

can then be thought as a collection of local harmonic oscillators, or the local drude

model. In the AO basis, we define the local electronic density as the density matrix

element, Pµν , where µ, ν are indices for the orthonormal atomic basis. As a result, eq

5.1 becomes

P ∗i+1,µν = Pi,µν −m−1µν

[
∂E(R,P)

∂P

∣∣∣∣
i,R

]
(5.2)

The Lagrangian constraint is dropped from eq 5.2, and will be enforced directly

by an iterative procedure. The gradient term is a modified Li-Nunes-Vanderbilt

functional,[57]

∂E(R,P)

∂P

∣∣∣∣
R

= 3FP + 3PF− 2FP2 − 2PFP− 2P2F (5.3)

The solution of the quantum mechanical harmonic oscillator can be used to obtain

the local effective mass for the local harmonic oscillator oscillating at Pµν,

mµν =
kµν
ω2
µν

(5.4)

where k is the force constant and ω is the fundamental frequency associated with

local electronic element. The necessary force constants can be approximated from

the diagonal elements of the Hessian matrix, which can be calculated directly from

the density and Fock/Kohn-Sham matrices,[36, 37]

kµν ≈ Hµν,µν = (3− 2Pµµ)Fνν + (3− 2Pνν)Fµµ

−2(PF)µµ − 2(PF)νν − 2(FP)νν − 2(FP)νν (5.5)
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Note that equation above is a simple approximation to the rank-2 Hessian using

some elements from the rank-4 Hessian tensor without computationally expensive

two-electron integrals. The fundamental frequency for each density element is given

by

ωµν =
εµν
h̄

= FµνPνµ (5.6)

This local harmonic oscillator model gives rise to a local effective mass scheme that

takes into account the inhomogeneity of the electron distribution.

5.3 Lagrangian constraint and zero point reference

As an alternative to explicitly calculating the Lagrangian constraint, the conservation

of the number of electrons and idempotency of the density matrix are maintained by

a simple scaling followed by McWeeny purifications (eq 3.11)[62]

As in standard electronic structure theory, the frequency in eq 5.6 is using the

atomic heat of formation as the zero point reference, which leads to a negative fre-

quency for electrons. In order to effectively use this fictitious mass scheme, we intro-

duce an arbitrary zero point frequency ω0 so that all electron elements have positive

frequencies. We also introduce a cutoff frequency ωcore so that only active electron

elements are taken into account in the first principles fictitious mass scheme,

mµν =




ω0 if ωµν ≤ ωcore

kµν
(ω0+ωµν−ωcore)2 if ωµν > ωcore

(5.7)

5.4 Unitary transformation real-time TDHF/TDDFT to propagate the
electron density

To prepare appropriate initial guesses of electron density distributions for excited

states, we use a high intensity field with real-time TDHF/TDDFT approach.[44]

A modified midpoint unitary transformation propagator,[59] constructed from the



65

eigenvectors C(tk) and eigenvalues ε(tk) of the Fock/Kohn-Sham matrix, is used to

evolve the time-dependent density,

P(tk+1) = U(tk) ·P(tk−1) ·U†(tk)

ε(tk) = C†(tk) ·K(tk) ·C(tk)

U(tk) = C(tk) · exp [i ·∆te · ε(tk)] · C†(tk) (5.8)

where ∆te is the time step for the integrator. In the current work, we use a linearly

polarized and spatially homogeneous external field of frequency ω and maximum field

strength Emax,

e(t) ≈ Emaxsin(ω · t) (5.9)

The instantaneous electron-field interaction is introduced into the Hamiltonian through

the electric-dipole approximation,

K(t) = K0(t) + d · e(t) (5.10)

where K0 is the field-free Fock/Kohn-Sham matrix, and dµν = 〈χµ| r |χν〉 is the dipole
integral in the AO basis.

In this work our Hamiltonians for propagation are either the HF Hamiltonian

or standard ground state DFT functionals within the adiabatic approximation. The

same Hamiltonian is used to calculate the energy based on the CP-DMS converged

density, using the ground state equilibrium geometry. To be clear, we are not using the

DFT functional to calculate the excited Kohn-Sham states, but instead to propagate

and then to calculate the energy for a given electronic density. Developing new DFT

functionals for excited state propagation and energies is beyond the scope of this

work, but were the exact functional known that related the density to the true energy

of the system (either ground or excited), convergence would lead to the true density

of the doubly excited state, and the true energy of the system could be calculated.
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5.5 Numerical Tests and Discussion

Calculations were carried out using the development version of the GAUSSIAN series

of programs (ref 35) with the addition of the real-time TDHF/TDDFT and CP-DMS

algorithms presented here. In the following, we use an effective zero point frequency of

ω0 = 5.0 a.u., and a cutoff of ωcore = -5.0 a.u. for core and valence electrons. This set

of parameters has been tested extensively and consistently shows excellent computa-

tional speed and SCF convergence.[3] Using CP-DMS//TDHF or CP-DMS//TDDFT,

we implement the following procedure to obtain the doubly excited states: (1) to gen-

erate an approximate doubly excited state, a linearly polarized continuous wave light

pulse is applied as a perturbation to the molecular system initially in its ground state

equilibrium geometry, driving electrons into potential wells of higher excited states

using the unitary transformation propagator (eqs 5.8-5.10); (2) when the external

field is turned off, the CP-DMS approach (Sec. 5.1) is then applied to converge the

wave function to the nearest closed-shell single determinant stationary state; and (3)

the energy of the excited state is obtained using the converged electron density and

adiabatic ground state exchange-correlation kernel. For all test cases, final electronic

wave functions are converged with the root-mean-square (rms) gradient (eq 5.3) less

than 5× 10−4 a.u. It is important to note that the true excited state energy requires

an exact exchange-correlation kernel for excited states. However, searching for such

functionals is beyond the scope of this chapter, and the excited state energies obtained

are only approximations within the framework of the adiabatic ground state kernel.

Excitation energies obtained correspond to vertical excitations from the ground state

equilibrium geometries. he frequency and maximum amplitude of the field are ω =

0.1-1.0 a.u., and Emax = 0.10-0.50 a.u. Different sets of field parameters are chosen

for different systems to generate a strong perturbation to drive electrons to excited

states.
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Figure 5.1 shows the CP-DMS//TDHF results for H2, modeled with the minimal

STO-3G basis to limit the number of excited states to S1 (singly excited) and S2

(doubly excited) for a clear understanding of the behavior of the method introduced

here. We remove the field at two different times, at t = 13.4 and t = 19.1 a.u. The

shorter length pulse does not perturb the electron density far enough away from the

ground state, and the CP-DMS method converges the density back to the original

ground state, as seen by the population of the antibonding σ∗ orbital (Figure 5.1a)

returning to the initial zero value. The longer pulse length continues to drive the

electron density, and CP-DMS converges this electron density into the doubly excited

S2 state which, in this case, corresponds to double occupation of the antibonding σ∗

orbital. Figure 5.1b shows that with the external field turned on, the rms gradient (eq

5.3) increases from less than 10−12 a.u. when the system is in the initial ground state

to a maximum of 0.29 a.u. when 0.72 electrons occupy the σ bonding orbital. If the

external field continues to drive the electronic density into σ∗, the rms gradient (eq

5.3) starts to decrease as electrons are driven into the electronic potential well of the

S2 state. For electron densities in this region, CP-DMS is able to converge the wave

function to the S2 state of the electronic system. Figure 5.1c shows the energy as the

system returns to the initial ground state, and as it is converged to the S2 state. At

the convergence of the S2 state, the S0 → S2 energy gap is calculated to be 1.596 a.u.

at the HF level, in agreement with that obtained with real-time dynamics.[44]

As we showed in earlier work,[117] simultaneous two-electron excitation can be

achieved by tuning the external field to resonance. The electron density of the S2

state can then be obtained as the density that yields the smallest amplitude of residual

dipole oscillation. The advantage of combining CP-DMS//TDHF with the previous

real-time dynamics method is that CP-DMS does not require a precise resonant field

to be applicable. It is also not necessary to examine the amplitude of the oscillation of
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Figure 5.1: (a) Energy and (b) rms gradient of energy with respect to the density (eq 5.3),
and (c) population of σ∗ orbital (in atomic units) during the time-evolution of electrons in
H2 calculated with CP-DMS//TDHF/STO-3G. ω = 0.75 a.u., Emax = 0.2 a.u.
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the residual dipole at a variety of electron densities. We simply converge the density

to the nearest stationary state once we have a reasonable guess to the doubly excited

state electron density.

Table 5.1: Excitation energies (in atomic units) of doubly excited electronic states com-
puted with CP-DMS//TDHF/STO-3G. Relevant full CI results are shown for comparison.

LiH

Method H2 HeH+ σ → px, py σ → pz σ → σ∗

HF 1.596 2.157 0.668 0.871 1.091

B3LYP 1.520 2.151 0.645 0.812 1.017

PBE 1.492 2.141 0.637 0.807 0.992

Full CI 1.637 2.166 0.670 0.900 1.141

We show in Table 5.1 the H2 minimal basis doubly excited state energy gaps for

HF, B3LYP, and Perdew-Burke-Ernzerhof (PBE) methods using CP-DMS after the

real-time propagation. We also give the full CI results for comparison. As noted in

ref [44], these energies are not twice the singly excited state energies as is predicted

from quadratic response theory. The HF results are in better agreement with the

CI results because the CI wave function is dominated by a single HF configuration.

The standard DFT functionals drastically underestimate the energy of the S2 state,

mainly due to the fact that the adiabatic exchange-correlation kernels are tuned to

produce ground state electronic densities and energies.

Also given in Table 5.1 are the doubly excited state energy gaps for minimal basis

HeH+ and LiH. HeH+ is a broken symmetry analog of H2, also with two orbitals and

two electrons, and only one possible doubly excited state. The four-electron LiH is

more complicated because double electron excitations can occur either into the empty

σ∗ orbital, or into the empty p orbitals on Li. By tuning the field polarization, we

are able to selectively excite electrons into doubly excited states of interest. In the
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case of LiH, when the field is perpendicular to the molecular axis, excitations into

the degenerate px/py orbitals can be obtained as indicated in Figure 5.2a. On the

other hand, a parallel field with respect to the molecular axis gives rise to excitations

into the σ∗ antibonding orbital and the s-pz hybridized empty orbital (Figure 5.2b

and c). For two-electron two-orbital systems, such as H2 and HeH+ with a minimal

basis, the necessary length of laser pulse for exciting electrons into the potential well

of the doubly excited state can be chosen by simply monitoring the population in the

antibonding orbital. When multiple (>2) orbitals and multiple (>2) electrons are

involved in the laser induced excitation process, choosing the laser pulse length for

the desired double excitation becomes more difficult. In the current work, we chose

to stop the laser field when we observed a “cleanâĂİ double excitation, one in which

only the target orbitals showed significant population change. For example, in Figure

5.2c, even though the σ and σ∗ orbitals show a near population inversion at t∼10
a.u., other molecular orbitals are also involved in the excitation. Therefore, electron

density at this moment does not give rise to the desired σ → σ∗ double excitation.

A clean σ → σ∗ transition is observed at t∼37 a.u., and the electron density is used

to obtain the doubly excited state. As Table 5.1 shows, the HF energy gaps for LiH

again are much closer to the CI energy gaps than those obtained with B3LYP and

PBE. As the σ∗ electron is more correlated with other electrons in the system than

the localized p electron, the lack of correlation in HF likely leads to more significant

error in the σ → σ∗ transition, compared to the full CI results.

While for symmetric H2, the HF and DFT doubly excited states have both elec-

trons in σ∗, this is generally not the case for other systems. For example, for minimal

basis HeH+, the final population of σ∗ is 1.928e (HF), 1.897e (B3LYP), and 1.883e

(PBE), and for LiH, the final population of the px/py orbital in the first of the doubly

excited states is 1.923e (HF), 1.485e (B3LYP), and 1.529e (PBE).
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Figure 5.2: Electron orbital populations for LiH using CP-DMS//TDHF/STO-3G: (a)
laser field aligned perpendicular to the molecular axis, ω = 0.4 a.u., Emax = 0.3 a.u., (b)
laser field aligned parallel to the molecular axis, ω = 0.4 a.u., Emax = 0.5 a.u., and (c) laser
field aligned parallel to the molecular axis, ω = 0.6 a.u., Emax = 0.4 a.u. Solid line indicates
field on, and dashed line indicates field off.
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To further demonstrate the robustness of this promising approach for obtaining

doubly excited states, we also examined the π → π∗ double excitation of ethylene and

butadiene, shown in Table 5.2, using a variety of basis sets. Although the relative

Table 5.2: Excitation energy (in atomic units) and corresponding π∗ final electron popu-
lations for 11Ag → 21Ag transition of ethylene and butadiene.

Molecule Method ∆E(11Ag2
1Ag) π∗ population

Ethylene CASSCF(12,12)/STO-3G 0.670

SAC-CI/STO-3G 0.589

CP-DMS//TDHF/STO-3G 0.656 2.000

CP-DMS//TDHF/3-21G 0.566 1.996

CP-DMS//TDHF/6-31G* 0.516 1.891

CP-DMS//TDHF/6-31G** 0.509 1.855

CP-DMS//TDHF/6-31+G** 0.505 0.904

Butadiene CASSCF(4,4)/STO-3G 0.309

SAC-CI/STO-3G 0.323

CP-DMS//TDHF/STO-3G 0.425 1.334

CP-DMS//TDHF/6-31G* 0.327 1.291

CP-DMS//TDHF/6-31+G** 0.308 0.810

position of the doubly excited 21Ag state of all-trans polyenes has been an interesting

topic and the subject of much research,[110] it is not the focus of this study. For

both ethylene and butadiene, the CP-DMS method is able to find the doubly excited

21Ag state, which has dominantly doubly occupied π∗ character. This is shown for

butadiene in Figure 5.3, using the STO-3G and 6-31G* basis sets. However, adding

diffuse functions to the basis set leads to complicated mixings of π → π∗ with other

transitions, and a π → π∗ doubly excited state for the 6-31+G** basis was not found.

We could not easily perform full CI calculations on ethylene and butadiene, and in-
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stead used truncated multiconfigurational methods with a minimal basis. Therefore,

for comparison with the CP-DMS results, included in Table 5.2 are energies for a

(12,12) CASSCF calculation of ethylene, correlating all noncore electrons and or-

bitals, a (4,4) CASSCF calculation of butadiene, correlating the π system, and also

calculations using the SAC-CI general-R method, which includes excitations through

sextuples within the valence space. The double excitation energies obtained using the

CP-DMS//TDHF method are again in very good agreement with the multiconfigu-

rational methods.

In addition to obtaining doubly excited state energies and properties, an interest-

ing point that we can address with this work is the character of the closed shell single

Slater determinant excited states, that is, whether they are minima, maxima, or sad-

dle points in the potential energy landscape. The determination is made by evaluating

the electronic Hessian, which reflects the characteristics of the local electronic poten-

tial energy landscape. A minimum or a maximum would yield all positive or negative

values, respectively, while a saddle point would give both positive and negative values.

For the special case of H2 using the minimal basis, all elements in the Hessian matrix

for the two-electron excited state are negative, indicating the doubly excited state is

a maximum in the electronic potential energy landscape for this system. There is a

single positive Hessian value for HeH+ on the diagonal element for the hydrogen atom.

This indicates that additional charge build up on hydrogen would cause an increase

in the overall energy of the system, whereas other charge distributions would decrease

the energy. For the other doubly excited states studied herein, which are generally

the low-lying doubly excited states, the Hessian matrix always has multiple negative

values, with the number of negative values varying from one to ten, and the number

of positive values greatly outweighing the negative. For ethene, the larger basis sets

yield doubly excited state Hessians with fewer negative values than the smaller basis,
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Figure 5.3: Electron orbital populations for butadiene using CP-DMS//TDHF with (a)
STO-3G, ω = 0.2 a.u., Emax = 0.1 a.u. and (b) 6-31G*, ω = 0.17 a.u., Emax = 0.1 a.u.
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but for butadiene we find that the larger basis set gives more negative values. Thus,

there does not appear to be a systematic dependence on the size of the basis set for

the lower lying doubly excited states studied here. Because the general case includes

both negative and positive Hessian values, the doubly excited states within a single

Slater determinant are saddle points on the potential energy landscape.
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Chapter 6

ULTRAFAST SOLVATED ELECTRONIC DYNAMICS
USING TIME-DEPENDENT DENSITY FUNCTIONAL
THEORY AND POLARIZABLE CONTINUUM MODEL

The most direct way to describe the composite solute-solvent system is to explicitly

include solvent molecules and evaluate the state of the system by means of molecular

mechanics (MM),[118, 119] quantum mechanics (QM), or a combination thereof.[120–

122]

In such cases, the time dependence of the solvent polarization is obtained explic-

itly from the simulated trajectories in solute-solvent molecular dynamics (MD). A

less computationally demanding and more flexible approach uses the implicit solva-

tion model. In this model the polarization is determined by the dielectric function

of the solvent, described as a continuous medium in which a cavity hosts the so-

lute. Continuum models developed to treat the time-dependent solvation response

can be generally categorized into two main classes. The first introduces a separation

of the solvent polarization into a dynamical contribution described by the optical

dielectric constant, associated with the solute’s electronic motion, and an inertial

or orientational contribution, related to its nuclear motion and the bulk dielectric

permittivity.[123–126] The response of the solvent is described in terms of these two

contributions, and typically the dynamical component is assumed to equilibrate in-

stantaneously to the final state in the presence of the inertial part of the polarization,

while the orientational component of the polarization remains in equilibrium with

the charge density of the initial state. On the other hand models of the second class
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implicitly consider dynamical and inertial effects in a single response,[127–130] as the

transition is represented as a step-like change in the solute charge density, and the

solvent response is modeled by introducing the complex dielectric permittivity as a

function of the frequency.

In order to include solvent effects within solute ultrafast electronic dynamics the

method presented herein employs a polarizable continuum model and is developed

according to the following strategy: the solvent electronic response is treated as a

dynamical quantity, whose change comes instantaneously as a result of motion in

the electronic degrees of freedom of the solute molecule. We incorporate a continuum

representation of the solvent within the polarizable continuum model (PCM)[131, 132]

to the real-time time-dependent density functional theory (RT-TDDFT) approach,[90]

following the principle that the solvent effect is added as solvent reaction field to the

total system Hamiltonian,

Ĥ(t) = Ĥ0(t) + V̂PCM(t) (6.1)

where H0 represents the solute Hamiltonian and VPCM is the solvent reaction po-

tential. The PCM method allows a realistic representation of the cavity in which

the solute is embedded as well as a quantum mechanical description of the solute

and proves to be an excellent tool in describing the effects of solvation on molecular

phenomena and the resultant properties.

In this chapter, we introduce solvent effects into first-principles electronic dynam-

ics by inclusion of the PCM method within RT-TDDFT electronic dynamics simu-

lations. Our primary interest is on the description of the solvent effect on temporal

evolution after sudden changes in the solute charge distribution. We first describe

the theoretical methodologies used to propagate the solvated electronic structure of a

molecular system. Next, we apply our scheme to the optically active organic molecule

para-nitroaniline (pNA) and present the results for discussion.
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6.1 Propagation of the Nonperturbative TDDFT Equation

We propagate the electronic degrees of freedom with a modified midpoint and unitary

transformation method (MMUT), while enforcing a stationary nuclear configuration

(see ref [90] for detailed machinery and algorithm), according to the TDDFT equation

in an orthonormal basis (using atomic units)

i
dP′

dt
= K′P′ −P′K′ (6.2)

where P’ and K’ are density and Kohn-Sham matrices. Transformations from an

atomic orbital (AO) basis (P and K) to an orthonormal basis (P’ and K’) can be

achieved using the Löwdin[54] or Cholesky[55] methods. The time-dependent Kohn-

Sham matrix K corresponds to the effective Hamiltonian in eq 6.1, and its form will

be discussed in Section 6.2. Because the PCM reaction potential is included in the

description of the effective Hamiltonian, the TDDFT equation (eq 6.2) gives rise to

the solvated electronic dynamics driven by the interplay between the solvent and

solute. Note that the PCM reaction potential is implicitly time-dependent as a result

of the time-dependent electron density P of the solute, as discussed in Section 6.2.

The unitary transformation matrix is a time-evolution operator constructed from the

eigenvectors C(tk) and eigenvalues ε(tk) of the Fock/Kohn-Sham matrix,

ε(tk) = C†(tk) ·K′(tk) ·C(tk) (6.3)

U(tk) = C(tk) · exp [i · 2∆te · ε(tk)] · C†(tk) (6.4)

where ∆te is the time step for the MMUT integrator. The density matrix is then

propagated from time tk1 to tk+1 with a fixed nuclear position

P′(tk+1) = U(tk) ·P′(tk−1) ·U†(tk) (6.5)

Equations 6.3-6.5 are used to propagate the electron density in the space of all atomic

orbitals with time-reversibility. We have demonstrated in our previous publications
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that this nonperturbative TDDFT approach is capable of describing both electronic

dynamics in the strongly coherent regime and nonadiabatic phenomenon.[9, 76, 133–

135]

6.2 PCM Formalism with RT-TDDFT

The PCM model approximates the solvent as a continuous dielectric medium with an

embedded cavity that hosts the solute. The solute-solvent interaction is obtained by

solving the Poisson equation with the appropriate boundary conditions and expressed

as a quantum mechanical self-consistent reaction field (SCRF). Such a reaction field

can be represented by an apparent surface charge (ASC) density placed on the surface

of the cavity. The ASC density can be determined using a variety of methods depend-

ing on which model of the PCM family is being implemented. Practical applications

of all PCM methods also require a discrete representation of the ASC density over the

solute-solvent interface. The integral equation formalism PCM (IEF-PCM)[136–139]

and the continuous surface charge (CSC) formalism[140] are used in this work, but

the implementation to RT-TDDFT can be generalized to any discrete charge formal-

ism. In the CSC method, the ASC density is defined over all space and represented

in a basis of spherical Gaussian functions φ with the polarization charges q as the

expansion coefficients.

σ(r) =
∑

i

qi
ai
φi(r; si, ζi)) (6.6)

where ai is the area of the i -th surface elements, qi is the corresponding expansion

coefficients of the ASC (i.e. the polarization charges), and si is the representative

point of the i -th surface element. If the electronic wave function of the solute is

expanded in a set of atomic orbital (AO) basis χ, the electrostatic potential Vi acting
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on the solvent, with a Gaussian ansatz for φi, can be expressed as (in atomic units),

Vi(t) =
∑

A

∫
ZAφi(r)

|r−RA|
d3r−

∑

µν

Pµν(t)

∫ ∫
φi(r)χµ(r′)χν(r′)

|r− r′| d3rd3r′ (6.7)

where ZA and RA are nuclear charge and position and P is the electronic density ma-

trix (see ref [140] for detailed derivations) of the solute. As indicated in eq 6.7, for fixed

nuclear coordinates, the time-dependence of the electrostatic potential comes from the

time-dependent electronic degrees of freedom, propagated by the RT-TDDFT method

introduced in the previous section.

In the current implementation, we model the solvent electronic response to the

ultrafast time-dependent electrostatic potential induced by the solute electronic dy-

namics. The solvent electronic response is ultrafast and instantaneous; that is, the

solvent electronic distribution is always in equilibrium with respect to V(t), while the

orientational component of the polarization remains in equilibrium with the charge

density of the initial state of the solute. Note that nuclear and molecular orientational

response, which takes place on a much longer time scale than the characteristic time

for appreciable motion in the solvent electronic degrees of freedom, requires additional

components in the continuum model to explicitly account for such phenomena, and

is not considered in this work. Current implementation focuses on the ultrafast elec-

tronic response of the solvent. With the time-dependent electrostatic potential defined

in eq 6.7, solvent dynamical electronic response can be simulated within any of the

continuum models. As a result, the equilibrium state of solvent polarization charges

can be obtained by solving the discretized PCM model self-consistently[141, 142] with

the given solute electrostatic potential V at time t and the solvent optical dielectric

permittivity.

On the other hand, the PCM modeled solvent drives the electronic density of the

solute via the solute-solvent coupled Kohn-Sham operator and an effective solvent
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reaction potential VPCM

K = h + G[P] + α · Exc[P] + VPCM (6.8)

V PCM
µν =

∑

i

∫ ∫
qiφi(r)χmu(r′)χnv(r′)

|r− r′| d3rd3r′ (6.9)

where h is the core-Hamiltonian matrix and G is the two-electron integral matrix

including the Coulomb term and exchange term in the case of Hartree-Fock. Exc

is the DFT exchange-correlation contribution to the Hamiltonian with α = 0 for

Hartree-Fock and α = 1 for DFT. For hybrid functionals Exc take on fractional DFT

exchange and correlation parts along with fractional Hartree-Fock exchange. Equation

6.8 includes the PCM reaction potential optimized with a given solute electronic

density. It is this reaction potential that in turn drives the electronic dynamics of the

solute.

6.3 Time-Dependent Electric Polarization

In order to investigate the interplays between solvent and solute electronic dynamics,

modeled by PCM and RT-TDDFT, respectively, the time-evolution of solvent and

solute polarizations will be analyzed. The time-dependent electronic polarization of

the composite system can be evaluated as

D(t) =

∫
rρ(r, t)d3 (6.10)

where ρ(r, t) is the total charge density and D(t) describes the polarization response

to all orders. Similar to the static polarization expansion, the extension of the time-

dependent polarization response can be expressed as[143]

Di(t) = D0
i +D

(1)
ij (t)Ej +D

(2)
ijk(t)EjEk + · · · 2 (6.11)

D
(1)
ij (t) =

∫
dt1αij(t− t1)Fj(t1) (6.12)

D
(2)
ijk(t) =

∫
dt1

∫
dt2βijk(t− t1, t− t2)Fj(t1)Fk(t2) (6.13)
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Here i, j, k ≡ x, y, z denote the Cartesian axes, and summations are implicit for re-

peated indices. F (t) is the temporal envelope of the electric field E, and α(t) and β(t)

are the time-dependent polarizability and the first hyperpolarizability, respectively.

By applying the convolution theorem to eq 6.12, we can obtain the usual frequency-

dependent polarization, whose first order term is related to the linear absorption

spectrum,

D
(1)
ij (ω) = α

(1)
ij (ω)F (ω) (6.14)

The imaginary part of the frequency dependent polarizability α(ω) directly relates to

the transition dipole strength S(ω) or absorption cross section σ(ω)[144]

Tr [Imα(ω)] =
π

2ω
S(ω) ∝ σ(ω)

ω
(6.15)

where Tr[. . . 2] denotes the trace.

6.4 Numerical Tests on pNA

Calculations were carried out on a Dell PowerEdge R610 Server (dual quad-core 2.4

GHz Intel Xeon with 16GB of RAM), using the development version of the GAUS-

SIAN series of programs(35) with the addition of the PCM solvated real-time TDDFT

(PCM-RT-TDDFT) approach presented here. The total energy conservation of the

system is maintained within 0.5 kcal/mol. The following describes the computational

setup to model the ultrafast solvent and solute electronic response:

• The initial solute ground state geometry and wave function are fully optimized

with or without an external static field.

• The initial solvent PCM polarization charge distribution is resolved self-consistently

using the solvent bulk dielectric constant (ε= 2.271 for benzene), which in prin-

ciple addresses solvent nuclear and electronic relaxations.
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• The ultrafast electronic dynamics starts at t = 0 and is initiated by photoexci-

tation or removal of the external static field. Solute electronic density and sol-

vent PCM reaction potential are propagated according to the scheme described

above. Because we are modeling the interplays of solvent and solute electronic

degrees of freedom, the solvent optical dielectric permittivity ε∞ (ε∞= 2.253 for

benzene) is used in the PCM model.

• The ultrafast time-resolved polarizations are analyzed using the method pre-

sented in Section 6.3.

Excited State Charge Transfer Dynamics The charge transfer dynamics in

a pNA molecule (Figure 6.1) is employed as a test, and dynamical phenomena are

compared in vacuo and benzene solution. The small pNA molecule is one of the first

organic electro-optic molecules, and it is also known to have a large hyperpolarizability

induced by the HOMO→LUMO intramolecular donor-acceptor charge-transfer (CT)

process.[145–147] The hybrid density functional B3LYP[148, 149] with the 6-31G(d)

basis set is applied to both optimizations of chromophore structures and electronic

dynamics simulations. The initial electronic CT state of the pNA molecule at t = 0

is prepared by means of a Koopmans’ excitation, manifested through swapping the

occupation of HOMO and LUMO orbitals of the ground state both in vacuo and in

benzene solution. The charge transfer dynamics are simulated in both environments

for 48 fs.

Figure 6.2a shows the oscillation of the x-component of the time-dependent dipole

moment µx(t) of pNA. Apparent dipole enhancement is observed for pNA in benzene

over the vacuum case, and the electronic CT state also appears to be more stable in

benzene than in vacuo. The amplitude of dipole oscillation is decreased in solution,

while the average of µx is increased, implying a charge separation that is both larger
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Figure 6.1: Molecular structure of p-nitroaniline (pNA), with Cartesian axes. Carbon
atoms are shown as dark gray circles, hydrogen as light gray, nitrogen as blue, and oxygen
as red.

in magnitude and more stable. Further, this indicates a more significant population in

the CT state, which comes about as a result of solvent reorganization, or a downward

shift in energy of the CT state. As a result, the energy separation of the ground and

excited electronic states is decreased. This is borne out in the Fourier transform (Fig-

ure 6.2b) of the time-evolution of dipole in Figure 6.2a. All peaks in benzene solution

are red-shifted, due to the stabilization of the CT state. The relative amplitudes in

benzene solution are also significantly altered, as the HOMO→LUMO transition in

solution leads to an electronic density with a much larger CT character but a smaller

transition dipole moment to the ground state. These observations are consistent with

experiments.

Absorption Spectrum from Ground State To further prove the validity of our

PCM-RT-TDDFT method, we chose to compare the optical absorption spectrum

of the pNA molecule obtained using the conventional linear-response TDDFT (LR-

TDDFT)[92, 150] and RT-TDDFT approach both in vacuo and in benzene solution.

The initial electronic density of the pNA molecule at t < 0 is prepared by optimizing
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Figure 6.2: (a) Dipole moment oscillation along the x axis for pNA in vacuo (dotted blue
line) and benzene (solid red line), following a HOMO→LUMO Koopmans’ excitation, and
(b) the Fourier transform of these patterns.
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the ground state electronic structure in the presence of a small perturbative static

electric field E0 = 0.001 au both in vacuo and in solution. The dipole moment of

ground state pNA along the molecular axis is slightly higher in benzene (8.3 D) than

that in vacuo (7.1 D). The static electric field is able to initialize a small mixing of

the ground state with excited states. Such mixing will give rise to a time-dependent

dipole oscillation upon removal of the static field. The time-evolution of the dipole

can then be used to resolve the ground state absorption spectrum.

At time t = 0, the external field is turned off and the entire electronic system,

including solvent, is propagated in real time according to the method introduced

in this article. Figure 6.3 illustrates the time-evolution of the polarization in thex-

direction for pNA in vacuo and in benzene solution. Figure 6.4a shows the absorption

spectrum of the pNA molecule calculated using the formulation presented in Section

6.3 and results in Figure 6.3. Red-shifting of nearly every peak in benzene solution

is observed compared to those in vacuo. Large shifts occur for peaks with strong

charge-transfer characters located at 4 eV and 7 eV. The vertical absorption spec-

tra obtained using the real-time TDDFT technique is compared to those computed

by the linear response TDDFT with PCM[126] (Figure 6.4b). Both techniques use

the optical dielectric permittivity of the solvent to address the ultrafast solvent elec-

tronic response. While linear response technique is able to compute state-resolved

spectra, the advantage of real-time TDDFT lies in the rich dynamical information of

solvent-solute inter-responses. Nevertheless, the absorption peak positions and rela-

tive intensities are in excellent agreement for the two methods both in vacuo and in

solution, reinforcing the accuracy and efficacy of the approach introduced herein.
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Figure 6.4: Absorption spectrum for pNA obtained using (a) real-time TDDFT method
and (b) linear response TDDFT both in vacuo (dotted blue lines) and in benzene (solid red
lines). Linear response TDDFT peaks are dressed with Gaussian functions and a broadening
parameter of 0.10 eV.
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Chapter 7

ULTRAFAST COHERENT ELECTRON-HOLE
SEPARATION DYNAMICS IN A FULLERENE

DERIVATIVE

The use of fullerene derivatives as electron acceptors in bulk heterojunctions (BHJ)

is a promising development in the search for efficient energy conversion in hybrid solar

cells.[151, 152] These interesting materials exhibit photoabsorption in the visible range

with the additional benefit of having the ability to optimize the molecular packing

with a judicious selection of functional groups and coblended polymers.[153] The

first step in generating current in a BHJ solar cell that employs these complexes is

the creation of a sufficiently long-lived exciton within the donor phase of the active

layer. When these photo-generated excitons travel to phase boundaries, the potential

gradient at the interface can lead to either hole or electron transfer from the organic

phase to the charge carrier phase that is coupled to an electrode. Using appropriate

molecular entities in the electron donor and acceptor phases can currently lead to

efficiencies greater than 7%.[154]

The migration of an electron to a phase boundary can occur through fullerene-to-

fullerene electron transfer or through spatial translation of the coulomb-bound Frenkel

exciton. This process must occur on a time scale shorter than that of electron-hole

recombination. One way to prevent fast electron-hole recombination is to engineer

fullerene derivatives that exhibit intrinsic electron-hole separation through accessible

charge-transfer excited states. However, direct excitation to charge transfer excited

states is either completely forbidden or only weakly allowed according to the pho-
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toabsorption spectra of fullerene derivatives. The solvent-dependent fluorescence de-

cay of C60:DMA (DMA = N,N-diethylamine) suggests the existence of a lower lying

ligand-to-fullerene intramolecular electron transfer state that gives rise to a long-

lived electron-hole pair.[155, 156] A recent time-dependent density functional theory

(TDDFT) study of the absorption cross section of complex supramolecular triads

consisting of carotenoid-diaryl-porphyrin-C60 also revealed an efficient charge sepa-

ration pathway following photo-excitation.[157–159] The strong electron-withdrawing

fullerenes should make sequestering of an electron either through intra- or intermolec-

ular charge transfer a readily accomplished task. The authors of ref [157] also noted

that not all of the effects leading to the charge separation in the final state are fully un-

derstood. To aid in a better understanding of the interplay between the photoexcited

electron-hole pair and the charge-separated state, we present in this chapter some

dynamical aspects of excited state electron-hole separation in a C60:DMA complex

(see Figure 7.1) using PCM solvated real-time nonadiabatic nonperturbative TDDFT

(PCM-RT-TDDFT) electronic dynamics, as described in the previous chapter.

Figure 7.1: 2D representation of C60:DMA.

The exploitation of intramolecular charge transfer in a BHJ active layer has the
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advantage of needing only a single molecular species in the electron donor phase,

compared to the binary phases utilized in concert with intermolecular transfer from

an electronically excited polymer to a fullerene, as is employed in a majority of ex-

perimental studies and practical implementations.

7.1 Computational Details

Excited state electronic dynamics beyond the perturbative regime models a coherent

electronic wave function in the time-domain. Important dynamics and kinetic infor-

mation can be obtained through analysis of the coherence between excited states.[134]

All calculations, including geometry optimization, absorption spectra, and electronic

dynamics were performed using the B3LYP hybrid functional with the all electron

basis 6-31G(d) using the development version of the Gaussian suite of programs[52]

with the addition of PCM solvated real-time TDDFT dynamics. The computational

scheme of excited electronic dynamics is as follows:

• The electronic density that corresponds to an excited state of interest is prepared

by promoting an electron from a selected occupied to an unoccupied molecular

orbital. This step creates an electron density that is not stationary but repre-

sents a coherent wave packet composed of the ground state and excited states

of interest.

• The coherent state is propagated using PCM-RT-TDDFT electronic dynamics

in both vacuo and methycyclohexane (MCH) solution (ε=2.024). The reason

to choose MCH as a representative nonpolar solvent is because of its strong flu-

orescence quantum yield reported in experimental study,[155, 156] which could

potentially enhance the intramolecular charge transfer process.

• The total electron density is projected on the ground state molecular orbital
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space and analyzed.

Computational time was significantly reduced using a dynamical active space

screening for the electron density, based on incremental Fock/Kohn-Sham builds in

the time domain wherein only the contribution to the two-electron integral of por-

tions of the electron density that are perturbed above a predetermined threshold are

recalculated at each time step.[5]

The structure of C60:DMA has been previously studied using the semiempirical

AM1 theory.[155] In both previous and current studies, the phenyl ring of the aniline

is orthogonal to the pyrole that is covalently bonded to the fullerene (Figure 7.1). The

relative rotation of these groups leads to a decrease in the overlap of their respective π

bonding orbitals, which can affect intramolecular charge transfer rates in a detrimental

manner. Figure 7.2 shows the absorption spectrum of C60:DMA computed using the

linear response TDDFT in the frequency domain.[93, 101, 160, 161] The strongest

absorption in the UV range corresponds to excitations within the DMA ligand, where

the relatively small absorption in the visible (inset of Figure 7.2) is a result of photo-

excitations of C60. Electron-hole pairs in these states are of strong binding energy

because they are localized on the fullerene with a relatively low dielectric constant.

In principle, such excited states are relatively short-lived and inefficient electron or

hole donor states. On the other hand, the presence of a covalently bound ligand

does introduce several lower energy charge-transfer or electron-hole separated states

at 1.7-1.8 eV. However, these charge-transfer states are not electric-dipole allowed

from the ground state and therefore have zero oscillator strengths. One hypothesis

regarding intramolecular charge transfer between ligand and fullerene is that the

photoexcited C60 or DMA states can couple to the charge-transfer states through a

coherent charge-transfer mechanism between excited states. To test this hypothesis,

we consider two excitation schemes wherein either a fullerene-fullerene or ligand-
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ligand electronic transition is imposed. The former probes the visible region of the

absorption spectrum of C60:DMA, while the latter induces molecular transitions in the

UV. PCM-RT-TDDFT technique is used to follow the electron density immediately

after the photoexcitation.

Figure 7.2: Absorption spectrum of C60:DMA. Excitations with nonzero oscillator strength
were induced on either the fullerene (visible, inset) or the ligand (UV).

The initial excited state that can be thought of as resulting from photo-excitation

by visible light in C60:DMA is prepared by promoting an electron from the second

highest occupied molecular orbital (HOMO-1) to the lowest unoccupied molecular

orbital (LUMO) to form a photogenerated electron-hole pair. This transition corre-

sponds to the absorption peak at about 1.8 eV in Figure 7.2. These MOs correspond

to photogenerated electron and hole localized on C60 and an electron localized on the

DMA ligand (see MO plots in Figure 7.3). Figure 7.4 shows the time evolution of

the orbital occupation numbers for the ground state HOMO-1, LUMO, and HOMO
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in vacuo and MCH solution, computed by projecting the instantaneous electronic

density onto the initial ground state molecular orbital space. An electron density pre-

pared in this scheme does not correspond to an eigenstate of the Fock/Kohn-Sham

matrix, but can be described as a nonequilibrium superposition of eigenstates, which

gives rise to the ensuing charge transfer.

Figure 7.3: Time evolution of the photogenerated electron (LUMO, dotted line) and hole
(HOMO-1, dashed line) localized on C60, and an electron localized on the DMA ligand
(HOMO, solid line) following a fullerene-localized excitation in vacuo.

7.2 Analysis and Discussion

In Figure 7.4, the electron-hole pair dynamics shows an approximately 22% electron

transfer from the ligand (HOMO) to the photogenerated hole in the fullerene (HOMO-

1) occurring within the first 12 fs in vacuo, and the transfer percentage seems to be

promoted up to 36% in MCH solution within the first 19 fs, as the nonequilibrium
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Figure 7.4: Time evolution of the photogenerated electron (LUMO )and hole (HOMO-
1) localized on C60, and an electron localized on the DMA ligand (HOMO) following a
fullerene-localized excitation.

electron density begins to evolve. In contrast, the photogenerated electron (LUMO)

loses no appreciable population while the charge transfer state is being accessed ini-

tially. This phenomenon suggests that the transition from photoexcited C60 to the

charge-transfer state is much stronger than the electron-hole recombination at short

times. As the electron density being propagated represents a coherent superposition

state, the charge-transfer event does not result in an irreversible transfer of a single

electron from the ligand to the fullerene, but results in coherent electronic wavepacket

motion, with charge oscillating between the donor and acceptor.

In vacuo

• Analysis of the time-dependent dipole moment of the molecule (Figure 7.5)

indicates coherent electronic wavepacket motion with a period of 23 fs, which
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correlates to a frequency consistent with the energy gap of 0.18 eV between the

initial state and the charge-transfer state.

• The dipole moment of C60:DMA increases by a factor of 2.5, from 4.33 to 10.79

Debye, in 11.5 fs, also suggesting a strong charge-transfer event.

• This oscillation amplitude persists until the initial photoexcited electron (LUMO)

begins to lose population at 50 fs as the initial electron-hole pair recombination

starts to compete with the charge-transfer event.

• Since the ligand-to-fullerene charge transfer is in direct competition with electron-

hole recombination, a lower limit on the time scale for charge transfer is dictated

by recombination; in the present case, this event occurs at approximately 70-75
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fs.

In MCH solution

• The coherent electronic wavepacket period starts to be ∼34 fs at beginning, and

rather than maintaining a steady propagation the period dramatically decreases

down to 25 fs in the follw-up cycle, suggesting a trend for chirping. The average

period of 29 fs corresponds to a frequency consistent with the energy gap of

0.14 eV between the initial state and the second lowest charge-transfer state,

suggesting apparent alternation of charge-transfer pathway. Such phenomenon

is somewhat unexpected and very difficult to obtain with conventional static

calculations.

• The dipole moment of C60:DMA increases by a factor of 3.6, from 4.64 to 16.55

Debye, in 18.3 fs, slower compared to vaccum but with a stronger charge-transfer

event.

• This oscillation amplitude also persists for 50 fs before the initial electron-hole

pair recombination emerges to compete with the charge-transfer event.

• The a lower limit on the time scale for charge transfer is still dictated by re-

combination and at a even faster pace that takes place at approximately 65-70

fs.

Note that we do not include nuclear motion which can open a relaxation pathway

for the otherwise coherent electron density. When nuclear-motion induced decoher-

ence exists, the ultrafast electron-hole pair separation dynamics observed above can

become irreversible, leading to long-lived charge separation excited state. Upon care-

ful selection of an appropriate ligand donor that possesses the desired photophysics,
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it may be possible to create a covalently bound bridging region that is amenable to a

more complete exergonic charge transfer than is presently seen.
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Appendix A

DERIVING CLASSICAL AND EHRENFEST MOLECULAR
DYNAMICS

Most of this appendix follows closely from Ref [43].

Continuing the discussion in section 1.2 of the introductory chapter, as we insert

the product ansatz in eq 1.7 into eq 1.6, and multiply from the left by 〈Ψe| and 〈Ψn|
while imposing energy conservation d〈H〉/dt ≡ 0, we can reach the following relations

ih̄
∂Ψe

∂t
= −

∑

i

h̄2

2me

∇2
iΨe + 〈Ψn(R, t)| V̂ee + V̂ne + V̂nn |Ψn(R, t)〉Ψe (A.1)

ih̄
∂Ψn

∂t
= −

∑

I

h̄2

2MI

∇2
IΨn + 〈Ψn(R, t)| Ĥe |Ψn(R, t)〉Ψn (A.2)

This set of coupled equations defines the basis of the time-dependent self-consistent

field (TDSCF) method introduced as early as 1930 by Dirac.[162] Both electrons and

nuclei move quantum-mechanically in time-dependent effective potentials obtained

from appropriate expectation averages over the other class of freedom. Thus, the

relations of eq A.1 and A.2 gives rise to a mean-field description of the coupled

nuclear-electronic quantum dynamics, which is also the simplest possible separation

of electronic and nuclear variables.

To derive the classical molecular dynamics, the next step is to approximate the

nuclei as classical point particles. An effective scheme to extract classical mechanics

from quantum mechanics starts with reinterpreting the QM nuclear wavefunction

using an amplitude factor A and a phase S that both are real with A > 0, see
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refs[163–165] for instance.

Ψn(R, t) = A(R, t)exp

[
i

h̄
S(R, t)

]
(A.3)

Then transform the nuclear wavefunction in eq A.2 with the new variables and sep-

arate the real and imaginary parts, one can arrive the so-called “quantum fluid dy-

namical representation” of the TDSCF equation for the nuclei.

ih̄
∂Ψn

∂t
= −

∑

I

h̄2

2MI

∇2
IΨn + 〈Ψe(R, t)| Ĥe |Ψe(R, t)〉Ψn (A.4)

ih̄
∂Ψe

∂t
= −

∑

i

h̄2

2me

∇2
iΨe + 〈Ψn(R, t)| V̂ee + V̂ne + V̂nn |Ψn(R, t)〉Ψe (A.5)

Note that equations A.4 and A.5 can also be applied to solve the time-dependent

Schrödinger equation. The relation for A, eq A.4, can be further expressed as a

continuity equation[163–165] using the nuclear density |Ψn|2 ≡ A2 from the new

definition eq A.3. In this continuity equation, h̄ vanishes and the particle probability

|χ|2 associated to the nuclei in the presence of a flux is locally conserved.

On the other hand, the relation for S (eq A.5) provides more useful information

for the present purpose. The term on the right hand side of this equation depends on

h̄, and it is solely negligible considering the classical limit as h̄→ 0,

∂S

∂t
+
∑

I

1

2MI

(∇IS)2 + 〈Ψe| Ĥe |Ψe〉 = 0 (A.6)

Expansion on h̄ in eq A.5 can lead to a hierarchy of semiclassical methods.[164, 166]

The resulting equation shares the similar form to equations of motion in the Hamilton-

Jacobi formulation[167] of classic mechanics

∂S

∂t
+H({RI}, {∇IS}) = 0 (A.7)

with the classical Hamilton function

H({RI}, {PI}) = T ({PI}) + V ({RI}) (A.8)
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where H is defined in terms of generalized coordinates RI and their conjugate mo-

menta PI . With the connecting transformation PI ≡ ∇IS, the Newtonian equation

of motion corresponding to eq A.6 becomes

dPI

dt
= −∇IV

E
e ({RI(t)}) or

MIR̈I = −∇I 〈Ψe| Ĥe |Ψe〉 (A.9)

Thereby, the nuclei motion is determined by classical mechanics that all of them move

in an effective potential V E
e given by the electrons. Such potential depends only on the

nuclear positions at time t and the averagingHe over the electronic degrees of freedom,

i.e. the quantum expectation value 〈Ψ| Ĥe |Ψ〉, with nuclear positions fixed at their

instantaneous values. Such classical interpretation also leads to a time-dependent

electronic wave equation

ih̄
∂Ψe

∂t
= 〈Ψe(R, t)| Ĥe |Ψe(R, t)〉 (A.10)

which evolves self-consistently as the classical nuclei are propagated following eq A.9.

In time-dependent molecular system modeling, solving eq A.9 together with eq

A.10 is often referred as the “Ehrenfest molecular dynamics” approach, in honor of

Ehrenfest who was the first to relate Newtonian classical dynamics to Schrödinger’s

wave equation.[168] In a brief sense, this hybrid or mixed approach force the nuclei

to behave like classical particles, while treat the electrons as quantum objects.

Although being a mean-field theory, the TDSCF approach underlying Ehrenfest

molecular dynamics rigorously includes all transitions between different electronic

states, so it is capable of capturing the nonadiabatic effect. This can be seen by

expanding the electronic wavefunction Ψe in terms of many electronic states or de-

terminants ψk with complex coefficients {ck(t)}

Ψe(r,R; t) =
∞∑

k=0

ck(t)ψk(r,R) (A.11)
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The squre norm of the coefficients {|ck(t)|2} thus shows explicitly the time evolution

of the populations (occupations) of the different states {k} whereas interferences are
included through the {c∗kcl 6=k} contributions. One good choice for the basis ψk is the

adiabatic state obtained from solving the time-independent electronic Schrödinger

equation

Ĥe(r,R)ψk = Ek(R)ψk(r,R) (A.12)

where R are the instantaneous nuclear positions at time t according to eq A.9.
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