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We investigate isothermal diffusion and growth of micron-scale liquid domains within membranes of 

free-floating giant unilamellar vesicles (GUVs) with diameters between 80µm and 250m.  Domains 

appear after a rapid temperature quench, when the membrane is cooled through a miscibility phase 

transition such that coexisting liquid phases form.  In membranes quenched far from a miscibility critical 

point, circular domains nucleate and then progress within seconds to “late stage” coarsening in which 

domains grow via two mechanisms: (1) collision and coalescence of liquid domains, and (2) Ostwald 

ripening.  Both mechanisms are expected to yield the same growth exponent,  = 1/3, where domain 

radius grows as time.  We measure  = 0.28 ± 0.05, in excellent agreement.  In membranes close to a 

miscibility critical point, the two liquid phases in the membrane are bi-continuous.  A quench near the 

critical composition results in rapid changes in morphology of elongated domains.  In this case, we 

measure  = 0.50 ± 0.16, consistent with theory and simulation. 
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excerpted from a manuscript in preparation and from Chapter VI of the doctoral dissertation of Aurelia R. Honerkamp-Smith.  
 

COARSENING DYNAMICS OF DOMAINS IN LIPID MEMBRANES 

I. Introduction 

Lipid membranes as 2D liquids 

I study the diffusion dynamics of domains in lipid bilayers. Lipids, which have 

hydrophobic tails and hydrophilic heads, self-assemble into a 2-dimensional sheet of a 

membrane. Giant unilamellar vesicles (GUVs) are spherical lipid bilayer membranes with water 

inside and outside. GUVs are used as simplified model systems to study lipids in membranes 

without interference from other components typically found in cell membranes, such as 

proteins and the cytoskeletal network. We study GUVs composed of mixtures of three lipid 

types: 1) phospholipids with high melting temperatures, 2) phospholipids with low melting 

temperatures, and 3) cholesterol. For the work here, our vesicles are 80-250 μm in diameter. 

The lipids in vesicle membranes exhibit interesting miscibility phase behavior that has 

implications in biological function of cell membranes [Veatch et al. 2008]. I study the dynamics 

of this phase separation process. 

Most people are familiar with miscibility phase separation in 3-dimensions, such as the 

separation of oil and water. Consider shaking a bottle of salad dressing composed of oil and 

vinegar: if the oil is the minority phase, many small droplets of oil diffuse throughout the 

vinegar, collide with each other, and then coalesce into larger oil droplets. This process 

continues until the bottle contains one single contiguous volume of vinegar separated by a 

single interface from one volume of oil. Intermolecular interactions drive this separation. 

Individual water molecules have lower energy when surrounded by other water molecules, and 

oil molecules have lower energy when surrounded by oil molecules. The energy of the whole 

system is lowered by separating the molecules into two different phases, and by decreasing the 

boundary between the two phases. GUV membranes are unique because the lipids behave as a 
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quasi-2-dimensional liquid in the plane of the bilayer. It is not a purely 2-dimensional liquid 

because there is water inside and outside of the vesicle with which the lipids can couple, but 

the membrane still behaves differently from a 3-dimensional system. 

At high temperatures, the lipids in the bilayer are well mixed in one phase. After the 

temperature is quenched, a miscibility transition occurs, which means that the lipids separate 

into two liquid phases. Multiple micron-scale liquid domains nucleate, undergo Brownian 

diffusion, and coarsen [Veatch & Keller 2003] (Figure 1). The historical names given to the two 

coexisting liquid phases in the membranes are “liquid-disordered” (Ld) and “liquid-ordered” (Lo). 

Unless the system is close to a miscibility critical point, the boundary between phases has a 

significant line tension (>1 pN) such that the free energy of the entire system is lowest when 

the length of all boundaries is minimized [Honerkamp-Smith et al. 2008, Esposito et al. 2007]. 

Therefore, when domains collide, they coalesce. This decreases the number of domains while 

increasing the average size of the domains, and therefore decreases the overall boundary 

length between the two phases. I measure spatial properties of the domains using image 

analysis of videos collected by fluorescence microscopy by Dr. Aurelia Honerkamp-Smith. It is 

possible to image the two different phases because a fluorescent dye added to the membrane 

partitions preferentially into the more disordered of the two phases. The evolution of domain 

number, size, and boundary is expected to be described by a growth exponent if the system 

Figure 1: Temperature quench of a giant unilamellar 

vesicle with an area fraction of liquid ordered (dark) 

phase less than 0.3. Panel a is a fluorescence 

micrograph focused at the equator of the vesicle. Upon 

a temperature quench as in panel b, the lipids separate 

into two distinct liquid phases. Panel c - h show frames 

of a movie during constant temperature and 

corresponds to time points c-h in panel b. Frames i - k 

illustrate an example of domain collision and 

coalescence. Frames i – k are from a different vesicle 

than a – h. 
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falls within a scaling regime. 

Theory  

Diffusion  

Prediction of the exponent of radius growth, α, is based on a diffusion coefficient,     , 

of a domain of radius   that varies as    
 ⁄ . I measure diffusion coefficients of domains with 

a range of sizes. In detail, I track domains for ten frames (5 seconds) to measure their mean 

square displacements and radii. Diffusion of a disk embedded in a membrane bounded by bulk 

solution on either side has been solved analytically in two limiting cases. The two cases are 

distinguished by a length scale, Lh, characterized by the ratio of the 2-D membrane viscosity,   , 

to the viscosity of the bulk liquid,      . The first case considers domains of small radius and/or 

membranes of high viscosity [Saffman & Delbruck 1975]. In this limit, the diffusion coefficient, 

    , is: 

      
   

    
[  

  

      
   

 

 
]                               (eq 1) 

where   is the Euler constant,          . In the opposite limit of large domain radius and/or 

low membrane viscosity [Hughes et al. 1981]: 

      
   

         
      Or                                                           (eq 2) 

A small correction was made to equation 2 by assuming that the single inclusion is fluid, with 

the same viscosity as the infinite planar membrane through which it travels [De Koker 1996, 

Seki 2011]. That correction yields: 

      
    

         
.          (eq 3) 

For intermediate cases, the approximation below is valid [Petrov & Schwille 2008]: 
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where                                                The fitting parameters 

    and      are determined through minimization of the square of the residuals over 161 

different values of the reduced radius, r(ηbulk/ηm)  [Petrov & Schwille 2008]. The equations 

above illustrate how a change in the viscosity of the bulk liquid should result in a change in 

Figure 2: Diffusion coefficients versus binned domain radii for vesicles for which the Lo phase covers an (a) area 

fraction, ϕ,  less than 0.3 and (b) area fraction between 0.4 and 0.6. In this plot, only domains that are circular 

and/or grow predominantly by collision and coalescence are represented. For ϕ < 0.3, domains are circular for all 

times analyzed. For 0.4 < ϕ < 0.6, domains are circular only at long times. All relations that satisfy Dµ1/ r  

appear as a line with a slope of –1 on this log-log plot. In both panels, dashed black lines are fits to 

D(r) = 2kBT / 3
2 
3D r with no free parameters, where T is the average final temperature of all quenches. Black 

curves are best fits to Eq 4 [Petrov & Schwille 2008], and shaded regions are 95% confidence intervals of those 

fits.  Vertical uncertainties are standard deviations. Measurement uncertainty in domain size is at most two 

pixels, or 0.4 microns.  Data is binned every 1 µm in domain diameter. (a) Filled vs. open triangles represent 

vesicles diluted into water vs. dextran solution.  T = 40.3˚C and 3D =  water at 40.3˚C = 0.652 x10
-3

 Pa s [Kestin 1978].  

The upper dashed grey line is offset by a factor 2.  The lower dashed grey line is offset by an additional factor of 

3.2. (b) Squares represent diffusion coefficients of nearly circular liquid domains in vesicles with area fraction 

0.4 <  < 0.6 and compositions between 25:20:55 and 30:20:50. T = 26.2˚C and 3D =  water at 29˚C = 0.864 x10
-3

 

Pa s.  The dashed grey line is offset by a factor 2.   
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domain diffusion coefficient, which will in turn affect domain growth kinetics. 

Growth exponent  

  Off-critical collision & coalescence 

Here I consider the growth of domains that 

diffuse, collide, and coalesce, as illustrated by a 

simple example. The sketch in Figure 3 shows 

coalescence of 4 domains. The area fraction of the 

total membrane covered by domains is constant. 

Let   equal the minimum distance that one domain 

must travel before it collides with another domain. Let   equal the domain size (radius). From 

Figure 3,    . Domains diffuse by Brownian motion in 2-dimensions as 〈  〉     , where   is 

time and   is the diffusion coefficient. From my measurements of diffusion coefficients, I know 

that it is roughly true that          for my system (Figure 2). Therefore, the equation 

〈  〉      becomes           , or    
 

 ⁄ . In other words, I expect the average domain 

radius to grow with an exponent of α = 1/3 when domains are circular and diffusing randomly. 

Notice that within figure 3 the area fraction of shaded domains stays constant as the domains 

merge. As the average radius increases, the average perimeter decreases at an equal but 

opposite rate. 

Off-critical Ostwald ripening  

By eye, we find that collision and coalescence of domains is the dominant mechanism 

for domain growth through time in vesicles. Another possible mechanism is Ostwald ripening, 

in which individual lipids detach from the perimeter of a small domain, diffuse across the 

membrane, and join with a larger domain. Ostwald ripening is also known as evaporation 

condensation. Ostwald ripening of liquid domains has been observed in membranes on a solid 

Figure 3: A schematic of a membrane with an 
area fraction of dark domains of ¼. Each 
domain must diffuse a distance that scales 
linearly with its radius to reach and collide 
with another domain. If area is constant, the 
average radius increases and the perimeter of 
the shaded area decreases proportionately. 
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support [Garcia-Saez et al. 2008], a system in which collective motion of lipids is hindered 

[Przybylo et al. 2006, Stottrup et al. 2004]. Ostwald ripening is expected to give a growth 

exponent of α = 1/3 in a 2-dimensional system [Gomez et al. 2008] (the same value as for 

collision and coalescence). The hallmark of Ostwald ripening would be that the differences in 

sizes between neighboring large and small domains would increase through time in the absence 

of domain collision and merging. Most of the data I have analyzed here show constant domain 

sizes between merging events, although I can anecdotally report that some small domains 

under the resolution of my thresholding program appear to shrink and disappear during the 

course of an experiment. Although these Ostwald ripening events may be contributing to the 

increase in average size of domains, the main contributor to the 1/3 exponent I measure is 

collision and coalescence. 

Literature values for growth exponents of circular domains 

During domain coarsening, the average radius of domains increases with time as tα, 

where α is the power law exponent of radius growth. For the moment, consider only the case in 

which circular, liquid domains comprise a small area fraction, , of the entire vesicle surface. 

For coarsening of micron-sized domains based on only collision and coalescence, the exponent 

α is usually predicted to be 1/3 [Saeki et al. 2006, Laradji & Sunil Kumar 2004, Taniguchi 1996, 

Gomez et al. 2008, Camley & Brown 2011], and in one case has been predicted to be 1/4 

[Yanagisawa et al. 2007]. To date, published experiments have not reproduced expected values 

of α = 1/3 for micron-sized (and larger) domains, as shown in the table 1. In this dissertation, I 

Theory 
      

Assumptions 
Experiment 

α 
System Reference 

          
 

 ⁄        ⁄       
Unilamellar vesicles, 

diameter ~50 μm 
Saeki et al. 2005 

   
 

 ⁄         ⁄   
 ⁄  

Unilamellar vesicles, 
diameter = 10-150 μm 

Yanagisawa et al. 2007 

   
 

 ⁄        ⁄  
 

 ⁄   * 

  ** 

Unilamellar vesicles, 
diameter < 20 μm 

Liang et al. 2010 *** 

Table 1: Growth exponents reported in the literature. 
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 ⁄         ⁄   
 ⁄  
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Yanagisawa et al. 2007 

   
 

 ⁄        ⁄  
 

 ⁄   * 

  ** 

Unilamellar vesicles, 
diameter < 20 μm 

Liang et al. 2010 *** 

 Table 1: Growth exponents reported in the literature. 

* For domain sizes < 1 μm.   ** For domain sizes > μm.   *** Temperature is not constant. 

 

Figure 4: Part of a figure by Ursell et al. 2009 showing the bending of the membrane (blue) between two 

neighboring domains (red).* For domain sizes < 1 μm.   ** For domain sizes > μm.   *** Temperature is not 

constant. 
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present an independent measurement of the power law exponent with the goal of 

understanding the discrepancy between predicted and measured values. I intend to clear up 

the discrepancy in the literature by carefully measuring domain growth on vesicles by avoiding 

the pitfalls I see in the literature.  

A difficult experimental aspect of measuring growth exponents is that only a small 

percentage of the surface of the vesicle is in focus at one time. This can lead to low statistics 

and undercounting of large domains even in the very large vesicles that we employ. 

Undercounting large domains would lead to a lower average radius in time, making the 

measured growth exponent lower than it would be if it were possible to measure the large 

domains. Saeki et al. find a growth exponent of 0.15 on small vesicles with radii on the order of 

only 10 μm (Table 1), for which any large domain would continue outside of the area being 

studied and therefore not measured. We avoid problems of undercounting that are inherent 

with measuring domain radius by instead measuring a normalized domain size, R, which is 

defined as the area of the minority phase divided by the total perimeter between the two 

phases measured in each frame. Another factor that would lead to a low growth exponent 

would be if the domains have hindered kinetics [Ursell et al. 2009]. This would happen if the 

domains were bulging out of the membrane (Figure 4), which was reported by Saeki et al. to be 

the case with some of their vesicles. We avoid hindered kinetics by creating a slight osmotic 

pressure inside of the vesicle.  

Yanagisawa et al. find a growth exponent of 2/3 for 

the size of domains in time when collision is not kinetically 

hindered. Their measured value is larger than theory 

expects. A possible explanation of this high growth 

exponent could be that their compositions are near critical 

and that  ~ 1/2, since they suggest spinodal 

decomposition happens at early times and then the 

Figure 4: Part of a figure by Ursell et 
al. 2009 showing the bending of the 
membrane (blue) between two 
neighboring domains (red). 

 

 

Figure 4: Part of a figure by Ursell et 
al. 2009 showing the bending of the 
membrane (blue) between two 
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domains become circular. Simulations discussed below show growth exponents for membranes 

with = 1/2are expected to be around α = 1/2. As I will show in this dissertation, circular 

domains in membranes with   = 1/2 grow with an exponent of 1/3. Another reason Yanagisawa 

et al. could have measured a high growth exponent could be due to photo-oxidation of the 

double bonds in dioleoylphosphatidylcholine (DOPC). This will increase the miscibility 

temperature of the system. To avoid this problem we use diphytanoylphosphatidylcholine 

(DiphyPC), which has methyl groups on the lipids. 

 Finally, it is important to look at coarsening at a constant temperature. For example, 

Liang et al. report a growth exponent of 1/3 for domains < 1 μm. Although this value is in good 

agreement with the theoretically expected exponent for the diffusion regime of domains on 

vesicles, Liang et al. are looking at a system in which the temperature is changing during the 

coarsening process and their measured growth exponents of domains > 1 μm changes to α = 1. 

Comparison with the values reported by Saeki et al. and Yanagisawa et al. is not straightforward.  

Simulations  

Off-critical 

In order to place my experimental results in the context of existing literature, here I will 

review simulations performed by others. Coarsening proceeds via two mechanisms, which have 

both been termed “coalescence” in the literature. In the first mechanism, “grains” (domains) 

α Model Reference 

0.3 Dissipative particle dynamics.  = 0.3 Taniguchi 1996 

 
 ⁄  Purely dissipative dynamics.  = 0.3 Laradji et al. 2004 

0.31 200 spherical caps on a vesicle.  = 0.09 Putzel (Northwestern U.) 

 
 ⁄  Continuum approach with hydrodynamics Fan et al. 2010 

 
 ⁄  Stochastic phase field model + hydrodynamics Camley et al. 2010 

Table 2: Simulation results for diffusion and coalescence of circular domains. 
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smaller than a critical size dissolve into the background fluid, and large grains accrete material 

[Pitaevskii & Lifshitz 1981]. This mechanism is called “condensation-evaporation” or Ostwald-

Ripening. In this mechanism, domains would grow even if they did not diffuse. During the “early 

stage”, the distribution of domain areas evolves, normalized with respect to an average domain 

area. We do not intend to study the early stage, which occurs during the interval we allow for 

temperature equilibration. Roughly sixty seconds elapse between the time Aurelia instigates a 

quench of 2oC and when she begins acquiring images. Moreover, we analyze too few domains 

in each vesicle to determine whether the shapes of distributions of domain sizes are changing. 

During the “late stage”, the normalized distribution remains static, although the average 

domain size increases [Pitaevskii & Lifshitz 1981].  

 In the second mechanism, domains grow by colliding and merging. Diffusion of domains 

must occur in order for them to grow. As I will discuss in this dissertation, I measure different 

growth exponents depending on the area fraction of the vesicle, which is either   < 0.3 or 0.4 < 

Figure 5: (a) Log-log plot of average arc length from the center of a domain to the edge 
versus time. The black line represents the results of the simulation described in the text. 
The grey line shows perimeter         for comparison. The radius of the vesicle is set to 1. 
(b-d) Histograms of domain sizes normalized to the average for different time. Simulations 
and graphs by Greg Putzel (Northwestern Univ. Physics). 

 

Figure 5: (a) Log-log plot of average arc length from the center of a domain to the edge 
versus time. The black line represents the results of the simulation described in the text. 
The grey line shows perimeter         for comparison. The radius of the vesicle is set to 1. 
(b-d) Histograms of domain sizes normalized to the average for different time. Simulations 
and graphs by Greg Putzel (Northwestern Univ. Physics). 

 

Figure 5: (a) Log-log plot of average arc length from the center of a domain to the edge 
versus time. The black line represents the results of the simulation described in the text. 
The grey line shows perimeter         for comparison. The radius of the vesicle is set to 1. 
(b-d) Histograms of domain sizes normalized to the average for different time. Simulations 
and graphs by Greg Putzel (Northwestern Univ. Physics). 

 

Figure 5: (a) Log-log plot of average arc length from the center of a domain to the edge 
versus time. The black line represents the results of the simulation described in the text. 
The grey line shows perimeter         for comparison. The radius of the vesicle is set to 1. 
(b-d) Histograms of domain sizes normalized to the average for different time. Simulations 
and graphs by Greg Putzel (Northwestern Univ. Physics). 
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  < 0.6. Several simulations have been performed for low minority phase area fractions, as 

listed below and seen in table 3.  

(1) In unpublished work, Dr. Greg G. Putzel (Northwestern University, Physics) seeded a 

spherical surface with ~ 200 spherical caps and allowed the caps to diffuse across the surface of 

the sphere with a diffusion coefficient proportional to 1/r, where r is the arc length from the 

center of the cap to the edge. His area fraction was set to 9%. Greg’s first simulation results are 

shown in figure 5a.  Greg also ran a simulation of domain sizes on a vesicle with an area fraction 

set to 1.5%. In an early stage, the shape of the distribution of normalized domain sizes changes 

dramatically (Figure 5b-d). At a later stage, the growth exponent α = 0.31. This is followed by a 

terminal stage in which the total number of caps on the spherical surface is very small. 

 (2) Laradji and Sunil Kumar have conducted DPD (dissipative particle dynamics) 

simulations in which each lipid is taken to be a linear chain of one hydrophilic particle and three 

hydrophobic particles [Lardaji & Sunil Kumar 2004, 2005]. Each particle is given a label “A” or “B” 

and assigned an interaction strength between it and the other particles in the system, including 

water. Parameters are set such that lipids are strongly segregated into A-rich and B-rich 

domains. For vesicles with little excess area, the authors state that “coarsening proceeds mainly 

through coalescence of flat circular patches.” When the ratio of lipid types is set to be 0.3 by 

b 

 

b 

 

b 

 

b 
Figure 6: (a) Figure taken from Laradji & Kumar, 2004. A log-log plot of perimeter, L, between the two phases in 
time, t. The blue curve is a simulation of a vesicle with high line tension which fits to a line with a slope of -1/3. 
(b) Figure taken from Taniguchi, 1996. A log-log plot of the number of domain lattice points, NDB, over time. 
The bottom dotted line is a simulation done on a rigid sphere. The guide line is a slope of -1/3.   
 

 

Figure 6: (a) Figure taken from Laradji & Kumar, 2004. A log-log plot of perimeter, L, between the two phases in 
time, t. The blue curve is a simulation of a vesicle with high line tension which fits to a line with a slope of -1/3. 
(b) Figure taken from Taniguchi, 1996. A log-log plot of the number of domain lattice points, NDB, over time. 
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volume, the total perimeter of all domains decreases with a growth exponent of α that is 

slightly less than α = 0.3 (Figure 6a). When the same simulation was done at an area fraction of 

50%, Laradji et al. found that α = 0.5. 

(3) Taniguchi (1996) conducted a simulation using a purely dissipative dynamical model 

of a two-component vesicle in which the area fraction of one component was 30%. The total 

perimeter of domains was defined as the number of boundary points between phases on a 

lattice. The total perimeter decreased in time with an exponent of α = 1/3 (Figure 6b).  

(4) Fan et al. (2010) used a two component simulation in a planar membrane. They 

focused on three hydrodynamic lengths, Lh, where Lh is the ratio of the 2D membrane viscosity 

to the 3D bulk viscosity. If Lh   , hydrodynamic effects are confined within the membrane 

and are independent of the solvent. If Lh  0, the hydrodynamic effects are dominated by the 

solvent. If Lh is finite, hydrodynamic effects couple the membrane and the solvent and govern 

the growth of the apparent domain size, R. In the case of R << Lh, domains diffuse and coarsen 

with α = 0.3. They also find α = 0.3 in the case of Ostwald ripening when the membrane 

viscosity is high. 

(5) Camley & Brown (2010) used a stochastic phase-field model of a quasi-two-

dimensional thin fluid membrane in a 3-dimensional aqueous solution. This simulation also took 

into account thermal fluctuations in the boundaries of the phases. For off-critical mixtures, they 

find that if domain radius is much greater than Lh, then  = 1/3.  The opposite case, in which 

domain radius is much smaller than Lh, does not apply to our system, and yields = 1/2. 

Near critical 

 A vesicle with a 50% area fraction of both phases is close to a critical composition. In a 

quench, near-critical vesicles phase separate into elongated domains instead of small circular 

domains. Elongated domains in a membrane that is quenched to a low temperature change 

a 

 

a 

 

a 

 

a 



12 
 

shape from long, thin worm-like structures to more circular structures. Scaling is not always 

observed in this case, which means that a single value of α cannot always be assigned. When 

scaling is seen in simulations, normalized domain size, R, increases as t1/2 when R >> Lh 

[Ramachandran et al. 2009, Laradji & Sunil Kumar 2005, Camley & Brown 2010, Camley & 

Brown 2011]. In this dissertation, I show that R indeed increases with α ~ 1/2 when domains are 

elongated, which occurs at short time after a quench (Table 3). I also show that once the 

domains become roughly circular in shape, they begin to grow by collision and coalescence. In  

this regime, the growth exponent becomes 1/3.  

II. Methods  

Collection of raw data 

I study vesicles whose lipid membranes contain coexisting liquid phases. My 

experimental work is a collaboration with Dr. Aurelia Honerkamp-Smith, who produces vesicles 

by electroformation from a mixture of dipalmitoylphosphatidlycholine (DiphyPC), 

diphytanoylphosphatidylcholine (DPPC), and cholesterol. A dye, Texas Red DPPE, at 0.8 mole % 

labels the Ld phase. Vesicles are formed in a solution of either 100 μM sucrose in water or 4-5% 

(by weight) dextran plus 1 mM sucrose. Depending on the composition of lipids used (see table 

4), vesicles contain some area fraction of dark, liquid-ordered domains diffusing on a bright, 

liquid-disordered, low-viscosity background (Figure 1). In the case of vesicles with an area 

fraction > 0.5, domains can also be bright on a dark background.  

Immediately before observation, vesicles are diluted ~ 40-fold in water or in 4-5% 

α Model Reference 

 
 ⁄  Purely dissipative dynamics (DPD).  = ½ Laradji et al. 2005 

 
 ⁄  DPD, membrane is not surrounded by water. Ramachandran et al. 2009 

 
 ⁄  Binary fluid with hydrodynamics,    

  
     

⁄ . Fan et al. 2010 

 
 ⁄  

Binary fluid with hydrodynamics and thermal 

fluctuations.    
  

     
⁄ . 

Camley et al. 2011 

Table 3: Simulation results for domains on vesicles with an area fraction of 1/2. 
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dextran, respectively. In both cases, a slight osmotic pressure difference eliminates excess area 

in the membrane. This is important because excess membrane hinders the coarsening of 

domains, which bulge out of the membrane surface [Vind-Kezunovic et al. 2008, Taniguchi 1996, 

Yanagisawa et al. 2007, Laradji & Sunil Kumar 2004, Ursell et al. 2009]. In order for bulged 

domains to approach each other, the membrane between them must curve. Figure 4 shows 

part of a figure by Ursell et al. that illustrates the bending energy of a membrane section (blue) 

that is between two neighboring domains (red). The bending energy associated with this 

membrane deformation results in a kinetic barrier to domain coalescence [Ursell et al. 2009]. 

Aurelia collects movies via an upright fluorescence microscope with an air objective. The 

Texas Red dye is excited with a mercury lamp and emitted light is filtered and collected with a 

CCD camera at either 2 frames/second or 10 frames/second. She controls vesicle temperature 

via a home-built stage and controlled as described previously [Honerkamp-Smith et al. 2008]. 

Upon commencing acquisition of images of vesicles in a movie, Aurelia quenches the 

temperature ~2 oC (Figure 1).  

Pre-processing 

I delete all frames of the movie before the time when temperature stabilizes to a 

Figure 7: Dimensionless area, which is area/R
2
, is shown for a flat circle (green curve with symbols) and a 

spherical cap (blue curve). For the flat circle, R is a maximum radius and a is the actual radius of the circle. For 
the spherical cap, R is the radius of the sphere and a is the radius at the base of the cap. Here I show that the 
area of a circle and a spherical cap are roughly equal until the ratio of a/R exceeds roughly 0.5. This ratio is 
roughly 5 times larger than for any vesicle domain analyzed in the research here. 
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standard deviation in the temperature of ~ 0.02 oC. For example, in figure 1b all of the points 

before point c are not analyzed and are therefore deleted from the movie I use for measuring 

the dynamics of phase separation. I remove vesicle drift from movies by aligning each image 

frame with respect to the vesicle center in the 2D images collected by the CCD camera. I crop 

images to select areas that are in focus and relatively flat. Flatness can be evaluated from the 

geometry of a sphere with a diameter of 200 μm. The area, A, that is in focus is a spherical cap 

~ 25 μm in radius. If       , then this spherical cap has a height of 3.2 μm in the center with 

respect to the edges. For an arbitrary vesicle of radius R, the true surface area of a domain, a 

spherical cap with a circular base with area a, does not differ significantly from the area of the 

base until the domain radius is approximately half the radius of the vesicle (Figure 7). Typical 

values of a/R in our experiment are < 6%. However, domains near the edge of images can 

appear ovoid and can appear to diffuse shorter distances. To correct for this, I map the 2-D 

image back onto a 3-D sphere by incorporating a Matlab program written by Sarah Veatch into 

my code. When this is applied, a slight stretching of domains near the corners of the frame can 

be observed; ovoid domains become more circular (Figure 8). 

Overview of coding 

There are four main areas of coding required for my project; (1) centering and cropping 

movies for removing drift, (2) tracking domains for the measurement of diffusion coefficients, 

(3) measuring the boundary between liquid phases for the calculation of growth exponents, and 

(4) individual domain size tracking for Ostwald Ripening studies. With the exception of the first, 

all of the project areas require a parameter file specific for each data set and a “run_all” file 

Figure 8: The left panel is a thresholded 
image of one frame of a movie of domains on 
the surface of a giant unilamellar vesicle. The 
right panel shows the same frame after I 
apply a geometric fix. 

 

Figure Figure 8: The left panel is a 
thresholded image of one frame of a movie 
of domains on the surface of a giant 
unilamellar vesicle. The right panel shows the 
same frame after I apply a geometric fix. 
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that analyzes the data and also reruns parameter files if necessary.  

Centering and cropping movies 

The vesicles used for all projects are free-floating in water. The vesicles exhibit Brownian 

motion, are subject to flows in the water, and often move during a temperature quench. 

Vesicles can undergo translation and/or rotation, which I will discuss separately. Both must be 

removed to ensure that the domain displacement and growth that I measure is due only to 

Brownian motion of domains in the membrane. To accomplish this, each frame of a movie must 

be aligned with respect to the center of the vesicle, thereby deleting vesicle translation from 

the movement of domains. This step allows for easy, long-term tracking of domains. In order to 

identify collective movement due to rotating vesicles, I trained and directed an undergraduate 

in a project to map domain trajectories (Figure 9) using a modified version of the diffusion 

coefficient program described below, which was later used to investigate whether Ostwald 

Ripening of domains occurs on vesicles. The trajectories clearly show which vesicles exhibit 

collective movement of domains, and are hence rolling or spinning (Figure 9b), and which have 

no net movement of domains (Figure 9a). Once a movie is collected via the commercially 

available program NIS elements, it can be centered automatically via a Matlab program called 

track_vesicle (Appendix A). The original program track_vesicle was written by Dr. Aurelia 

Honerkamp-Smith and I further modified 

it for use here. 

Track_vesicle places a ring on top 

of the brightest part of the image, which 

corresponds to the perimeter of the 

portion of the vesicle that is in focus. 

Given the radius of this ring, the program 

finds a list of x and y-coordinates of the 

Figure 9: a) Trajectory of domains over 61 frames. 
Average trajectory shows no common direction of 
domain movement. b) Trajectory for 61 frames of a 
vesicle exhibiting common movement in one direction 
suggesting a rotating vesicle. 

 

Figure Figure 9: a) Trajectory of domains over 61 frames. 
Average trajectory shows no common direction of 
domain movement. b) Trajectory for 61 frames of a 
vesicle exhibiting common movement in one direction 
suggesting a rotating vesicle. 
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center of each frame. All of these coordinates are plotted on an image of the first frame and 

saved as a data file in the folder containing the movie (Figure 10). The user has two options for 

finding the radius: the program can choose the best fitting ring, or the user can explicitly enter 

the radius. We have configured the fitting program so that users click the center of the vesicle 

and the outer edge, and then the code finds the best fitting ring (Figure 11). The radius of the 

area in focus is collected in a data file placed in the folder containing the movie. A limitation of 

this code arises if the edge of the area in focus goes out of the frame. In this case, the ring’s 

radius will appear to be terminated at the edge of the image and the center of the area in focus 

will be incorrect. If a movie contains frames in which the edge of the area in focus goes off 

screen, then it is necessary for the user to input a value for a guess of the radius of the area in 

focus. This allows for the ring to continue outside of the frame, leaving the center of the ring in 

the correct position. 

Figure 10: Screen shot of the Matlab function, track_vesicle, which outputs the center of the vesicle as a red 

dot (left) as a result of fitting the dark ring overlaid on the high-intensity perimeter (shown in red in the false-

color representation at right) that bounds the area in focus. 
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Figure 11: Left – The crosshairs show the location of the first click to tell the Matlab function track_vesicle 
where to start looking for the center of the vesicle. Right - Second click to tell the function a starting point to 
find the edge of the region in focus. 
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The track_vesicle program can encounter problems fitting a ring around the area in 

focus for various scenarios: when bright artifacts such as vesicle aggregates or tubes are near 

the ring, when additional vesicles appear at the edge of the frame, when the ring around the 

area in focus is dim, and when the vesicle is so large that the ring around the area in focus is off 

of the frame. In order to track these movies, undergraduate Chris Warth augmented the 

track_vesicle program to make a new version called manual_track. He added the functionality 

to allow the user to click the center of the area in focus at chosen intervals in the movie (Figure 

10 left). The program then interpolates the movement of the vesicle from the earlier click to 

the later click. This program is very useful for tracking the centers of vesicles that drift smoothly.  

The program center_crop (written by Dr. Aurelia Honerkamp-Smith) is called at the end 

of track_vesicle. It uses the x and y-coordinates collected to center each frame with respect to 

the center of the area of the vesicle that is in focus. The coordinates are smoothed by a box car 

averaging program to eliminate any jumps in the center coordinates of the fitted ring due to 

slight variations in the brightness levels from frame to frame. It then uses the shortest distance 

Figure 11: Left – The crosshairs show the location of the first click to tell the Matlab function track_vesicle 
where to start looking for the center of the vesicle. Right - Second click to tell the function a starting point to 
find the edge of the region in focus. 

 

 

FigureFigure 11: Left – The crosshairs show the location of the first click to tell the Matlab function track_vesicle 
where to start looking for the center of the vesicle. Right - Second click to tell the function a starting point to 
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from the center to the edge of the frame to crop a square centered on the vesicle (Figure 12). 

The output is a cropped tif stack that can be used for the next three parts. 

Diffusion Coefficient Measurement  

I find the diffusion coefficient by measuring the mean squared displacement of domains 

of different radii versus time. To do this, I have adapted Matlab code from an original program 

by Pietro Cicuta [Cicuta et al. 2007]. We have chosen a system in which domains diffuse within 

a membrane for which the 2-dimensional viscosity,   , has been previously shown to be low 

(42:25:30 DiphyPC:DPPC:chol) [Cicuta et al. 2007]. In figure 2a, I verify that the diffusion 

coefficient varies as    
 ⁄  within experimental uncertainty for vesicles with low area fraction 

in water.  

Next, I tested how increasing the 3-D bulk viscosity of the solution affects the diffusion 

coefficient of domains. Aurelia produced and diluted vesicles in a higher viscosity solution, an 

aqueous solution of 4-5% dextran (average molar mass 400-500 kDa). An undergraduate whom 

I advised, Andrea Lamprecht, used a viscometer to determine that the viscosity of a 4-5% 

dextran solution at 23oC is ~3.2 times the viscosity of 

water. By fitting our data in Figure 2a (bottom dashed 

line), I independently found that the viscosity of our 

dextran solution is ~3.2 times the viscosity of water. 

Tracking domains requires establishing 

parameter files. Domains are tracked in this 

dissertation for four different applications: 

determination of vesicle rotation, measurement of 

diffusion coefficients, analysis of growth exponents, 

and evaluation of Ostwald ripening. Parameter files for 

measuring diffusion coefficients are called 

Figure 12: The dark ring is overlaid on the 
high-intensity perimeter that bounds the 
area in focus. The black bar is longer than 
the white bar, so the frame will be 
cropped from the center to the end of the 
white bar. 

 

 

FigureFigure 12: The dark ring is overlaid 
on the high-intensity perimeter that 
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param_difco (Appendix A) and are the simplest of the parameter file types because the 

tracker_diffusion (Appendix A) program requires the user to identify which domains can be 

tracked and does so only in ten frame intervals. Since each interval needs a new parameter file, 

there is no need for lists of parameters that can analyze entire movies or even lists of movies. 

Intervals of five, ten, and twenty frames were tested for a single movie to determine the best 

interval of measurement. Movies broken into five-frame intervals took the longest to analyze. 

Movies broken into twenty-frame intervals had the lowest R2 for a linear fit of mean square 

displacement (msd) versus time. Ten frame intervals were chosen for all subsequent 

calculations of the diffusion coefficient as a compromise between maximizing efficiency and 

minimizing R2 of the fit. 

The tracker_diffusion program is called by the param_difco file. It includes a Gaussian 

filter and a thresholding algorithm that uses the Otsu method [Otsu 1979] to find a minimum in 

the histogram of pixel values in order to distinguish between grey scale values in the domains. 

After each set of ten frames is thresholded and after the image is stretched geometrically, the 

program assigns a different number to each of the features in the frame that are trackable 

(Figure 13). Trackable domains are those that do not reach an eccentricity that differs by more 

than 25% from the eccentricity of a circle, do not merge with other domains, and do not touch 

the edge of the image. Allowing the program to determine all trackable domains produces false 

Figure 13: Illustration of the challenges of tracking domains. 
Trackable domains are circled in yellow. These are domains 
that never touch the edge of the image over the course of a 
specific number of frames, which is 10 frames in this case. 
Domains not circled in yellow but with faint pink lines inside 
are false positives, which means that the program has 
incorrectly identified these domains as trackable even though 
they touch the edge of the image. The inability to resolve 
false positives (for example, by asking the program to delete 
all domains with black pixels at the image edge) mean that 
domains are required to be identified by hand. The process 
could not be automated. Domains not circled in yellow but 
with a yellow dot inside are correctly identified by the 
program as untrackable. 
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Figure 14: Mean square displacement versus frame for 4 
different domains. Aurelia wrote a linear fit function to force 
the fit through the point (0,0). 
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positives. Therefore, the user must select the trackable 

domains from among the features that the Matlab 

program labels as acceptable features for diffusion 

coefficient calculations. Two examples in which false 

positives arise are when (1) two domains complete a 

merge between frames such that a figure-8 shaped 

intermediate is not captured in the movie and (2) if most 

of the domain is in the frame, but a small portion is out 

of the frame. 

The displacement of each domain is found by 

tracking its center of mass over ten frames. The displacement of each center of mass from its 

initial position is calculated for each frame in both the x and y direction. The sum of the msd in 

the x and y directions is then plotted versus frame number (Figure 14).  Calculation of the 

diffusion coefficient requires a simple conversion from pixel2/frame to μm2/time. Since we are 

interested in the dependence of the diffusion coefficient on domain radius, the diameter (in 

pixels) of each clicked domain is recorded and saved with the diffusion coefficient. The 

diameter of chosen domains is found using Matlab’s standard regionprops function. 

To make automation easier, I wrote a series of run_all files. Their first function is to 

search for all the output files generated by tracker_diffusion programs within a specified folder. 

Their second function is to convert units of pixels and frames into units of micrometers and 

seconds. The conversion to μm from pixels depends on the magnification used while imaging. In 

most cases Aurelia collected the images with a 40x objective, which means that each pixel is a 

square with an edge of length 0.18 μm. For images collected with a 10x objective, each pixel is a 

square with an edge of length 0.72 μm. Converting the slope from pixel2/frames to 

μm2/seconds requires knowing how many frames were collected per second using the 

commercial software that drives our camera (NIS Elements). Since many domains have similar 

Figure 14: Mean square displacement 
versus frame for 4 different domains. 
Aurelia wrote a linear fit function to 
force the fit through the point (0,0). 
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Figure 15: Illustration of the problems 
inherent in measuring mean radius of 
domains. The plot to the left shows 
mean radius over time (red) and 
temperature (blue). Notice that data 
collection does not start until the 
time at which temperature has 
attained a value of at least 0.5

o
C from 

the final set temperature (black 
dashed line). The slope of a line fit to 
log(time) versus log(mean radius) 
should yield the growth exponent. 
This plot illustrates how mean radius 
can vary significantly as a result of 
poor statistics. Drastic dips in mean 
radius are due to undercounting of 
large domains that touch the edge of 
the cropped image. 
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radii, it is easiest to view the data by binning diffusion coefficients by radius and plotting the 

average diffusion coefficient with standard deviations. My run_all file plots this without using 

Matlab’s internal errorbar plotting function so that conversion of the plots format to log-log will 

not change the appearance of the error bars. My run_all file also plots the expected values of 

diffusion coefficients over the range of radii using equation 3, called from my function called 

Ediffco (Figure 2, dashed lines), and using equation 4, called from my function called 

PetrovSchwille (Figure 2, solid lines) (Appendix A). 

Growth Exponent Measurement  

I have found that domain radius is not the best parameter to evaluate when measuring 

growth laws (Figure 15). The measurement uncertainty in average domain radius is large 

because as time progresses there are fewer domains, and statistics become poor. Moreover, 

radii cannot be accurately found for domains 

whose edges touch the edge of the cropped 

viewing window (Figure 13). Disregarding data 

from domains in contact with the edge leads to 

undercounting of large domains and a growth 

exponent that is lower than theory predicts.  

 Instead, I measure domain growth 

exponents by evaluating two different 

parameters: (1) perimeter of all domains, 

including those touching the edge of the image, 

and (2) normalized domain size. Since average 

domain radius is expected to grow as t1/3, 

perimeter should decrease as t-1/3, provided that 

the area fraction of domains is constant (Figure 3). 

Figure 15: Illustration of the problems inherent 
in measuring mean radius of domains. The plot 
to the left shows mean radius over time (red) 
and temperature (blue). Notice that data 
collection does not start until the time at which 
temperature has attained a value of at least 
0.5

o
C from the final set temperature (black 

dashed line). The slope of a line fit to log(time) 
versus log(mean radius) should yield the 
growth exponent. This plot illustrates how 
mean radius can vary significantly as a result of 
poor statistics. Drastic dips in mean radius are 
due to undercounting of large domains that 
touch the edge of the cropped image. 
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In our images, the local area fraction is not conserved throughout the movie, although the area 

fraction for the entire vesicle is constant. If a domain travels into the frame, the measured area 

fraction, AFm, and measured perimeter, Pm, will increase. In order to distinguish changes in 

perimeter that occur due to coarsening from changes due to domains diffusing into or out of 

view, we define an effective total perimeter, PE, given an ideal area fraction, AFI:  

   
     

   
.                                               (eq 5) 

Figure 16 shows the effective perimeter versus time for domains that coarsen after a 

temperature quench. The ideal area fraction is arbitrary and in all cases I set it to be the area 

fraction in the first frame of the movie.  

There are four advantages of measuring normalized domain size, R, which is the 

measured area of the minority phase divided by the measured perimeter of all domains in the 

image. First, as in the measurement of 

effective perimeter, corrections are 

applied for changes in area fraction in 

each frame. Second, comparison with 

other literature values [Fan et al. 2010, 

Camley & Brown 2011] is more 

straightforward. Third, readers gain an 

intuition that domain size is increasing. If 

area (μm2) is divided by perimeter (μm), 

the result is a normalized length that 

should still increase as t1/3 just as domain 

radius does (Figure 19a). Fourth, 

normalized domain size can be used to 

evaluate length scales of elongated 

Figure 16: Log-log plot of effective perimeter versus time 
for one quench of one vesicle. Data to the left of the 
green line corresponds to early times, before 
temperature stabilized. The purple line fits all data at 
time points after the green line, and yields a slope near -
1/3. The offset blue line has a slope of -1/3 and is shown 
simply for comparison of the slopes. A slope of  

-1/3 means that perimeter ∝ (time)
-1/3

. 
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domains in membranes near miscibility critical points, for which measurement of domain radii 

is not well defined.  

The parameter files that I have established to measure growth exponents (called 

param_growth) involve the most pre-processing effort. Since the program for measuring the 

growth exponent can run multiple movies, the parameter file must contain all of the 

parameters for all of the movies. Different parameters are needed because the size and 

number of domains change throughout each movie. Most of 

these changes occur in the first 400 frames of the movie. I have 

found that it is best to create one param_growth file for each 

quench, including all of the filter parameters for all of the movies 

in one location. The example param_growth file in Appendix A 

illustrates the options available for processing, which are 

described within the comments. 

I wrote three versions of the growth exponent 

measurement program. All programs threshold greyscale images using the Otsu method [Otsu 

1979]. My complete program is called growthexponent and allows the user to run multiple 

movies without any input during analysis. This program calls Matlab’s standard regionprops 

function to count the pixels in the boundary between the black and white regions (Figure 17) 

after each frame is thresholded and stretched geometrically. About 1000 frames of a 200 pixel2 

movie requires ~ 2 hours to run, but can be run unattended. Data analysis is checked in the 

output files upon completion. If a subset of movies within a group process correctly, the user 

can specify which data require further analysis in the param_growth file and re-run only the 

data necessary.  

The second variation of the growth exponent program is called 

growthexponent_startanywhere and allows for overlapping of starting and ending points for 

Figure 17: An image of the 

perimeters of domains in 

one frame of a movie. 

 

FigureFigure 17: An image 

of the perimeters of 

domains in one frame of a 

movie. 

 

Figure 18: Area in time for 

6 domains on the same 

vesicle. The hallmark of 

Ostwald ripening should be 

that large domains become 

larger and small domains 

become smaller without 

collisions. This figure also 

shows merges between 

domains 2 and 3 and 

between domains 4 and 5. 

Domain 4 is measured for a 

short time because it 

diffuses into the viewing 

area around t = 85 seconds 

and then merges with 

domain 5 at t=105 seconds. 

Domain 6 likely merges 
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each set of parameters so that the filtering parameters can be compared as they are changed. 

This is for testing the parameters on each movie. If a change in parameters causes a large 

change in the output data, those data can be re-examined to discover why the parameter 

change has such a large effect. The first and second programs could be combined if needed, but 

keeping track of parameters becomes complicated. I have chosen to keep the individual 

programs and call the one I need from the parameter files. 

The third version of the growth exponent program is called growthexponent_choose 

and produces the same types of output as the growthexponent program does, except that the 

program contains code from tracker_diffusion. This feature is designed to eradicate the same 

type of false positives that arise in identifying trackable domains in measurements of diffusion 

coefficients and to measure the area of specific domains. The growthexponent_choose 

program requires manual input to select the measureable domains within an image. Using the 

standard Matlab program regionprops, several different parameters can be measured for each 

individual domain. The problem is that some domains are untrackable in some frames, so the 

measurement must be done over small enough sets of frames that every domain is measured 

over as much time as possible. This requires the creation of several parameter files as in the 

diffusion coefficient project, but is not limited to intervals of only ten frames since individual 

domains are not required to be individually identified from frame to frame. 

Ostwald Ripening Measurement  

 The hallmark of Ostwald ripening should be that the differences in sizes between 

neighboring large and small domains would increase through time in the absence of domain 

collision and merging. When I track individual domains, I find that domain areas are roughly 

constant between merging events (Figure 18). By eye, I believe that I occasionally observe very 

small domains slowly shrinking in size until they become indistinguishable against the 

background. However, these small domains are below the resolution for thresholding and 
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processing by my Matlab programs, so their sizes are difficult to quantify over time. I have 

attempted several procedures for simultaneously measuring the sizes of all domains spanning 

large length scales in a single image. Unfortunately, the filtering process used in my code 

requires a minimum and maximum length scale for domain determination rendering 

simultaneous measurement impossible with my current code. When domains are very different 

in size, large domains are broken into smaller domains, or small domains are consumed in the 

background.  

 I established parameter files called param_ost for the Ostwald ripening project. These 

files are similar to the param_difco files, except that each domain is assigned a letter and every 

parameter file is named for that individual domain. Individual domains are then tracked for as 

long as possible until an untrackable frame is reached for that specific domain. Then a new 

Figure 18: Area in time for 6 domains on the same vesicle. The hallmark of Ostwald ripening should be that 

large domains become larger and small domains become smaller without collisions. This figure also shows 

merges between domains 2 and 3 and between domains 4 and 5. Domain 4 is measured for a short time 

because it diffuses into the viewing area around t = 85 seconds and then merges with domain 5 at t=105 

seconds. Domain 6 likely merges with a small domain around t= 90 seconds, where the small domain is below 

the resolution of the filtering process used to identify domains. Before and after this putative merge, domain 6 

is a possible candidate for Ostwald ripening since it gets bigger with time. No other domains are viable 

candidates, although small domains that may be getting even smaller through time may be below the 

resolution of the filter process. The conclusion from the figure above is that domain coarsening is dominated by 

merging processes rather than Ostwald ripening. 

 

Figure 18: Area in time for 6 domains on the same vesicle. The hallmark of Ostwald ripening should be that 

large domains become larger and small domains become smaller without collisions. This figure also shows 

merges between domains 2 and 3 and between domains 4 and 5. Domain 4 is measured for a short time 

because it diffuses into the viewing area around t = 85 seconds and then merges with domain 5 at t=105 

seconds. Domain 6 likely merges with a small domain around t= 90 seconds, where the small domain is below 
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parameter file is generated for that domain, which picks up at the next trackable frame. In this 

way, several data files containing the radii for individual domains named a1, a2, …, b1, b2, … are 

generated. The program growthexponent_choose was optimized for the Ostwald ripening 

measurement and has been equipped to save the initial frame and the number of frames to a 

list to be called by a run_all file. With this information, my run_all file pieces together all of the 

size information in time for individual domains to visualize what is happening on a vesicle 

throughout a whole data set. The result is a trace of several domains over the timeframe of the 

entire data set with the few untrackable points excluded (Figure 18). 

III.  Results 

D(r) and 2D for  < 0.3 

When area fraction  < 0.3, vesicle membranes of DiphyPC/DPPC/chol contain circular 

Lo-phase domains that coarsen over hundreds of seconds at constant temperature. Figure 2a 

shows diffusion of micron-scale Lo domains within an Ld background. The largest angle 

subtended by a domain tracked in figure 4a is 20˚.  By eye,  in figure 2a, which means 

that Eq. 1 and its condition that r << Lh do not hold in this case.  Since diffusion in figure 4a is 

roughly a factor of two slower than predicted by either Eq. 2 or Eq. 3, the condition that r >> Lh 

does not hold. By applying Eq. 4, which is an approximation valid between the two limiting 

cases of Eq. 1 and Eq. 2 [Petrov & Schwille 2008] and by using 3D = 0.652 x10-3 Pa s at the 

average experimental temperature of 40.3˚C [Kestin et al. 1978], we find a best-fit value of 

2D = (3.3 ± 1.1) x 10-9 Pa s m, with a 95% confidence interval from 2D = 1.0 x 10-9 Pa s m to 

5.6 x 10-9 Pa s m.  This result is self-consistent in that we find hydrodynamic length Lh = 2D/3D 

to be roughly 5 µm, which is of the same order of magnitude as domain radius, r.  As such, the 

approximation by Petrov and Schwille [Petrov & Schwille 2008] should indeed be justified.  

Applying equations relevant to fluid rather than solid domains (e.g. applying an approximation 

based on Eq. 3 rather than Eq. 2) would likely increase the value of 2D that we find by ~10%.   

Dµ1/ r
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Our value of 2D = (3.3 ± 1.1) x 10-9 Pa s m is in good agreement with results previously 

found in vesicles composed of the same three lipids used here, albeit at different ratios.  In that 

work, temperatures and compositions were tuned to place vesicles near membrane miscibility 

critical points.  Analysis of structure factors of membrane critical composition fluctuations 

yielded 2D =  (5.5 ± 1.5) x 10-9 Pa s m [Honerkamp-Smith et al. 2012], and analysis of shape 

fluctuations of domain boundaries yielded (4 ± 1) x 10-9 Pa s m [Camley et al. 2010]. The good 

agreement suggests that equations formulated for diffusion of a single inclusion within a 

uniform, flat membrane adequately describe diffusion of a domain within a curved GUV 

membrane containing multiple domains, at least within experimental uncertainty. In figure 4a, 

we make three minor improvements on the previous measurement of Cicuta et al. [Cicuta et al. 

2007], namely, we confine our results to vesicles with diameters >80m, we correct for 

curvature, and we exclude vesicle rotation without subtracting the center of mass of all 

domains. 

We test our results by varying the viscosity of the bulk solution, specifically by placing 

vesicles in a dextran solution with a viscosity that is 3.2 times that of water. Our most basic 

expectation is that diffusion coefficients should decrease by roughly a factor of 3.2, which they 

do (Figure 4a). Another test is to compare 2D in the dextran vs. water solutions; they should be 

the same within experimental uncertainty. Using the same approximation above, we fit 

diffusion coefficients for vesicles in dextran using a 3D viscosity that is 3.2 times the viscosity of 

water at the average experimental temperature of 38.1˚C, or 3D = 3.2 * (0.675 x 10-3 Pa s). We 

find a best-fit value of 2D = (9.6 ± 3.0) x 10-9 Pa s m, within a 95% confidence interval from 

2D = 3.0 x 10-9 Pa s m to 1.6 x 10-8 Pa s m. The confidence intervals of 2D from the two systems 

overlap as we expect they should. 

Growth exponent  for  < 0.3 

Coarsening results in an increase in normalized domain size, where         and  is 
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the growth exponent. Circular domains observed at area fractions of  < 0.3 appear to coarsen 

primarily by a mechanism of collision and coalescence rather than by evaporation-condensation. 

To illustrate this, figure 18 tracks a group of coarsening domains over 250 seconds. A hallmark 

of evaporation-condensation is that small domains become smaller and large domains become 

larger. No domains appear to be shrinking, although domains ≤ 1 µm2 elude our tracking 

program. The growth of only one domain, the largest one, is not explained by merges with 

other tracked domains.  It is unclear how much of this growth is due to evaporation-

condensation vs. merges with untracked domains. 

We expect to measure a growth exponent of  = 1/3 whether or not domains grow by 

evaporation-condensation or by collision and coalescence (since the data in the log-log plot of 

figure 4a have a slope of –1, so roughly follow ). Figure 19a shows a collapse plot of 17 

measurements of R vs. time for vesicles with area fractions  < 0.3. The resulting average 

growth exponent of  = 0.29 ± 0.05 (Table 4) is within experimental uncertainty of the 

Dµ1/ r

Figure 19: a) Collapse plot of normalized domain size, R, vs. time for circular liquid domains in vesicles with area 

fraction of liquid ordered phase of  < 0.3.  Vesicles are diluted in water and 17 distinct measurements are 

denoted by different grey scales.  Measurements are rescaled by dividing each point by the values of the first 

data point at (R0, t0), where time – t0 ranged from 593 to 1349 seconds.  The average growth exponent for this 

data is  = 0.29 ± 0.05 (dashed line).  A solid line denoting  = 1/3 is shown for comparison. b) Top row: Cropped 

images of domains on the surface of a 246µm-diameter vesicle of 25:45:30 DiPhyPC:DPPC:chol grow through 

time.  No correction for vesicle curvature and no image contrast enhancement has been applied.  Middle row: 

Thresholded and curvature corrected versions of the same images.  Grey boxes show the areas magnified in the 

bottom row.  Bottom row: Domains appear to not grow through time when they are rescaled by a factor of 

[(1349 seconds)/(time – time0)]
0.29

.    

 

 

Figure 19: a) Collapse plot of normalized domain size, R, vs. time for circular liquid domains in vesicles with area 

fraction of liquid ordered phase of  < 0.3.  Vesicles are diluted in water and 17 distinct measurements are 
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predicted value of  = 1/3.  In this experiment, vesicles were diluted in water. Coarsening was 

followed for a minimum of 593 seconds (and a maximum of 1349 seconds). Roughly the same 

growth exponent,  = 0.27 ± 0.06, was found when the bulk fluid in contact with the vesicles 

was dextran solution instead of water. 

 Visual confirmation that  ≈1/3 for vesicles with area fraction  < 0.3 is shown for a 

single vesicle in figure 19b.  With time, domain sizes increase.  When the micrographs in figure 

19b are rescaled for the growth exponent found for this data set, which is  = 0.29, domain 

sizes appear roughly constant through time. For all experiments, data was collected from only 

the largest vesicles produced (> 80 µm diameter) in order to minimize deviations from  = 1/3 
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0.015 <  < 0.3 
25:45:30 38.7±2.2˚C 12 5 

water N.A. 0.29 ± 0.05 

0.28 ± 0.05 1/3 
40:30:30 43.4±0.9˚C 5 3 

0.015 <  < 0.3 
25:45:30 38.1±2.9˚C 9 7 

dextran N.A. 0.27 ± 0.06 
40:30:30 42.1˚C 1 1 

0.40 <  < 0.60 

25:20:55 

to 

30:20:50 

29.2±0.9˚C 6 5 water 

late N.A. 0.31 ± 0.05 1/3 

17.3±2.5˚C 4 2 dextran 

0.40 <  < 0.60 30:20:50 
28.2±0.8˚C 2 2 water 

early N.A. 0.50 ± 0.16 1/2 
19.4±2.1˚C 6 3 dextran 

Table 4: Growth exponent results 
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Table 4: Growth exponent results 

* The quoted measurement uncertainty is the standard deviation of all measured growth exponents. It ignores the 

uncertainty in measuring each individual exponent, which is an order of magnitude smaller than the standard 

deviation. 

**The quoted measurement uncertainty is the standard deviation of post-quench temperatures for all 

experimental runs. It is roughly an order of magnitude greater than the variation in post-quench temperature 

throughout the course of each movie. 

N.A. = Not applicable. 

 

* The quoted measurement uncertainty is the standard deviation of all measured growth exponents. It ignores the 

uncertainty in measuring each individual exponent, which is an order of magnitude smaller than the standard 

deviation. 

**The quoted measurement uncertainty is the standard deviation of post-quench temperatures for all 
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arising from purely geometric considerations when domain radii approach the size of vesicle 

radii (Figure 7) and from hydrodynamic coupling of two or more domains via the bulk fluid 

inside the vesicle. 

Line tensions, 2D, and growth exponents for 0.4 <  < 0.6.   

By choosing a membrane composition that results in nearly equal area fractions of Lo 

and Ld phases, and by making a shallow quench below the transition temperature, we place our 

membrane near a miscibility isothermal critical point (also called a plait point). Henceforth in 

this document I will use the shorter term “critical point” to denote the plait point. Experimental 

signatures of proximity to a critical point include fluctuating domain edges with a correlation 

length , and low line tension between Lo and Ld phases [Honerkamp-Smith 2008 et al., Tian et 

al. 2007].  By analyzing fluctuations in the shape of domain edges as described in [Honerkamp-

Smith et al. 2008], we find that a shallow quench reliably sets membrane tension to a low value 

of 0.35 ± 0.08 pN.  Another way of finding line tension is to fit shapes of merging domains 

[Wintersmith et al. 2007], using a first-order approximation that Eq. 2 holds.  

Line tension found is this way is indeed low (1.25 ± 0.15 pN) for the domain boundary 

shown in figure 20, which is within a couple of degrees of its miscibility temperature and has 

area fraction 0.4 <  < 0.6.  Analyzing the same movie to extract fluctuations in the shape of 

non-merging domain edges yields 0.43 ± 0.05 pN.  The conclusion remains the same, that 

Figure 20: Time series after a merge of two Lo domains 

within a background membrane of Ld phase in a vesicle 

composed of 30/20/50 mole% DPPC/DiPhyPC/Chol.  

Black denotes areas in which Lo domains were 

observed, but not captured by simulations.  White 

denotes the opposite.  The small area of black and 

white highlights close agreement between data and 

simulations used to find domain line tension.  Line 

tension is calculated to be 1.25±0.15 pN using the 

method of [Wintersmith et al. 2007]. This figure was 

generated by Pritam Mandal and Elizabeth Mann at 

Kent State University. 

 

 

Figure 20: Time series after a merge of two Lo domains 

within a background membrane of Ld phase in a vesicle 



31 
 

membranes prepared with 0.4 <  < 0.6 and a shallow quench exhibit critical behavior. 

We measured growth rates of domains in membranes with near-critical compositions in 

two different time regimes: (1) early after a quench, when phases appear bicontinuous and 

domains are elongated, and (2) late after a quench, when domains are nearly circular, even 

though their edges fluctuate.  With time, all domains undergo a transition from elongated to 

circular shapes and then begin to grow primarily via coalescence. Small domains transition 

before large domains do. Increases in R occur both when domains change shape and when 

domains coalesce.  Early quench times are defined here as occurring when increases in R are 

due to shape changes, before small domains grow via collision and coalescence with each other 

(Figure 21). Late quench times commence when no further increases in R are due to shape 

changes  (Figure 22). It is worth keeping in mind that “early” here mens well after spinodal 

decomposition has commenced since recording does not commence until temperature has 

Figure 21: a) Collapse plot of normalized domain size, R, vs. time for elongated liquid domains in vesicles with 

area fraction of liquid ordered phase of 0.4 <  < 0.6.  Vesicles are diluted in water and 8 distinct 

measurements are denoted by different grey scales.  Measurements are rescaled by dividing each point by the 

values of the first data point at (R0, t0), where time – t0 ranged from 8 to 33 seconds.  The average growth 

exponent for this data is  = 0.50 ± 0.16 (dashed line).  A solid line denoting  = 1/2 is also plotted, although it 

lays on top of the dashed line. b) Top row: Cropped images of domains through time on the surface of a 

101µm-diameter vesicle composed of 30:20:50 DiPhyPC:DPPC:chol.  No correction for vesicle curvature has 

been applied.  Middle row: Thresholded and curvature corrected versions of the same images.  Grey boxes 

mark the boundaries of the areas magnified in the bottom row.  Bottom row: Domains appear to not grow 

through time when they are rescaled by a factor of [(28.0 seconds)/(time – time0)]
0.52

.  

 

 

Figure 21: a) Collapse plot of normalized domain size, R, vs. time for elongated liquid domains in vesicles with 

area fraction of liquid ordered phase of 0.4 <  < 0.6.  Vesicles are diluted in water and 8 distinct 
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largely stabilized. 

For late quench times, we expect the growth exponent to be  = 1/3, just as it was for 

circular domains with  < 0.3. Experimentally, we find  = 0.31 ± 0.05 for late quench times 

within a membrane with area fraction 0.4 <  < 0.6, in good agreement (Table 4, Figure 22a). 

The expectation that  = 1/3 rests on an assumption that, to first order, domains diffuse with 

.  The data in figure 4b uphold this assumption for late quench times and 0.4 <  < 0.6. 

The data are fit even better by Eq. 4, which is an approximation valid between the limiting cases 

of Eq. 1 and Eq. 2 [Petrov & Schwille 2008], and which yields a best-fit value of 

2D = (7.0 ± 3.3) x 10-9 Pa s m, with a 95% confidence interval from 2D = 1.5 x 10-11 Pa s m to 

1.4 x 10-8 Pa s m. 

The scenario is more complex for early quench times in a membrane near a critical 

composition.  The membrane contains elongated domains, which become more circular with 

time (Figure 21b).  In other words, growth in normalized domain size, R, is heavily influenced by 

domain morphological changes and is not simply due to changes in domain area as a result of 

Dµ1/ r

Figure 22: a) Collapse plot of normalized domain size, R, vs. time for circular liquid domains in vesicles with area 

fraction of liquid ordered phase of 0.4 <  < 0.6 after the early period of growth.  Vesicles are diluted in water 

and 10 distinct measurements are denoted by different grey scales. Measurements are rescaled by dividing each 

point by the values of the first data point at (R0, t0), where time – t0 ranged from 1.5 to 20.4 seconds.  The 

average growth exponent for this data is  = 0.31 ± 0.05 (dashed line).  A solid line denoting  = 1/3 is shown for 

comparison. b) Continuation of the micrographs in figure 21 showing diffusion and collision of domains.  

 

Figure 22: a) Collapse plot of normalized domain size, R, vs. time for circular liquid domains in vesicles with area 

fraction of liquid ordered phase of 0.4 <  < 0.6 after the early period of growth.  Vesicles are diluted in water 

and 10 distinct measurements are denoted by different grey scales. Measurements are rescaled by dividing each 

point by the values of the first data point at (R0, t0), where time – t0 ranged from 1.5 to 20.4 seconds.  The 
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either collision-coalescence or evaporation-condensation. Experimentally, we find 

 = 0.50 ± 0.16 at early quench times for elongated domains within membranes with 0.4 <  < 

0.6.  As in figure 19b, domains within a near-critical membrane early after a quench appear self-

similar; when micrographs in figure 21b are thresholded and rescaled by the growth exponent, 

domain sizes appear constant through time.   

Figure 23 shows a vesicle with  ~ ½ for which no scaling operation can be performed as 

in figure 19b or 21b that makes all panels appear similar. This situation is described by Fan et al. 

(2010) and Camley & Brown (2011) in reference to simulations they conducted in which R is not 

well governed by a growth exponent. Two distinct events occur in figure 23 that contribute to 

the inability to assign a growth exponent to this sequence. First, at the top left in panel a, there 

is a white domain inside a black domain, which is inside a white domain. A merge between 

Figure 23: Sequence of images of coexisting 
liquid domains on the surface of a vesicle 
with a critical composition.  Over the entire 
vesicle (although not in this cropped 
image), the area of dark and bright areas is 
roughly equal.  No scaling operation can be 
performed to make the images appear the 
same.  In other words, the images are not 
self-similar, and no growth exponent can be 
extracted.  Corresponding morphologies are 
described by Fan et al. 2010 and in Camley 
and Brown 2011.  Panel time points are as 
follows: a = 0s, b = 122s, c = 250s , d = 369s, 
e = 549s, f= 609s, g = 760s, h = , i = 971s. 

 

Figure 23: Sequence of images of coexisting 
liquid domains on the surface of a vesicle 
with a critical composition.  Over the entire 
vesicle (although not in this cropped 
image), the area of dark and bright areas is 

Figure 24: Coarsening of liquid domains in a 

membrane in which a miscibility transition 

was initiated by photo-oxidation of lipids.  

Panel time points are as follows: a = 0s, b = 3s, 

c = 6s, d = 9s, e = 12s, f = 15s, g = 18s, h = 21s, 

and i = 24s. 
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these two white areas cannot be described as a merge between two circular domains. Second, 

the entire vesicle has phase separated so that one side contains predominantly white domains 

on a black background (the right side of panel a in figure 23) and the other contains the 

opposite (left side). If the vesicle rotates, as appears to be happening in figure 23, the measured 

total perimeter will change as the boundary between the predominantly black and 

predominantly white regions drift out of the viewing window. 

Triggering changes in Tmix via photo-oxidation 

Jumps in the miscibility temperature (Tmix) of fluorescently-labeled membranes can be 

initiated by high light levels, which causes changes in membrane composition due to lipid 

photo-oxidation [Honerkamp-Smith et al. 2008]. In this method, the process of crossing a 

miscibility transition is entirely isothermal. Figure 24 shows domains coarsening after a 

transition initiated by photo-oxidation.  In our setup, jumps initiated by high light levels are not 

superior to jumps initiated by a quench in sample temperature because the time scales of 

jumps are similar via both mechanisms.  More importantly, once photo-oxidation is initiated, it 

is not easily curtailed.  Maintaining a constant offset between Tmix and the sample temperature, 

which is required for quantitative analysis of growth exponents and diffusion coefficients, is 

difficult. 

IV. Discussion 

Within lipid vesicles, four natural length scales arise, and their interplay determines the 

rate of domain diffusion and coarsening.  The first is the hydrodynamic length Lh = 2D/3D.  The 

second is the normalized domain size R.  The third is the correlation length, , for domains in a 

membrane near a miscibility critical point.  Correlation length is inversely proportional to line 

tension.  When correlation lengths are large and line tension is small, boundaries of domains 

fluctuate, resulting in noncircular domains.  The fourth is the vesicle diameter, which ranges 

between 80 µm and 250 µm in the experiments here.  
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Here we find that fitting diffusion coefficients of circular, Lo domains in a free-floating 

unilamellar vesicle of DiPhyPC/DPPC/chol yields membrane viscosities of (3.3 ± 1.1) x 10-9 

Pa s m (for < 0.3 and vesicles in water), of (9.6 ± 3.0) x 10-9 Pa s m (for  < 0.3 and vesicles in 

dextran), and of (7.0 ± 3.3) x 10-9 Pa s m (for 0.4 < < 0.6 and vesicles in water). These values 

are in good agreement with previous values (2D = (5.5 ± 1.5) x 10-9 Pa s m and (4 ± 1) x 10-9 Pa s 

m) found by analyzing structure factors of composition fluctuations [Honerkamp-Smith et al. 

2012] and by analyzing shape fluctuations of domain boundaries within membranes of the 

same three lipids at a similar lipid ratio and temperature [Camley & Brown 2010]. This 

agreement implies that reasonably accurate measurements of diffusion coefficients can be 

made over the range of domain sizes probed here, even though domains can appear crowded 

[Aliaskarisohi et al. 2010]. To give a sense of the effect of lipid ratios on membrane viscosity, 

lateral diffusion coefficients of lipids within Ld vs. Lo domains in vesicles and planar bilayers 

differ by a factor of ~2 – 10 [Kahya et al. 2005, Lindblom et al. 2009, Honigmann et al. 2010].  

Measured values of membrane viscosities in other systems are on the same order of 

magnitude. In fluid membranes of DOPC/DPPC/chol, 2D ≈ 5 x 10-10 to 3 x 10-9 Pa s m (from 

[Petrov & Schwille 2008] using data from Cicuta et al. 2007). In fluid membranes of SOPC, 

2D = (3 ± 1) x 10-9 Pa s m [Dimova et al. 1999]. Taken together, these results imply that in many 

vesicle membranes in water, length Lh is on the order of 1 µm and that deviations from theories 

that treat domain diffusion as being entirely dominated by the effects of momentum 

dissipation into water are expected for even planar membranes.  Previous work has suggested 

that such deviations are primarily due to confinement of domains on a curved surface and 

hydrodynamic interactions between domains [Aliaskarisohi et al. 2010]. 

We find that circular (or nearly circular) domains in our vesicles isothermally coarsen 

with a growth exponent of  ≈ 1/3, independent of whether the bulk fluid in which the vesicles 

are embedded is water or a more viscous solution containing dextran.  These circular domains 

appear in membranes with 0.4 <  < 0.6 at late times after a quench or in membranes with  < 
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0.3.  Elongated domains that appear in our vesicle membranes with 0.4 <  < 0.6 early after a 

quench isothermally coarsen with  ≈ 1/2.   

A range of experimentally-measured growth exponents for circular domains has been 

published (Table 1). Previous measurements did not uniformly exclude cases with inconstant 

temperature, bulged domains, or small vesicles. In 2005, Saeki et al. reported  ≈ 0.15 using 

unilamellar vesicles of 35:35:30 DOPC/DPPC/chol with diameter ~50µm. The researchers noted 

that they observed domains that curved out of the membrane. Domains that bulge out of the 

spherical shell of the vesicle (known by a variety of names in the literature, including “dimples”) 

interact through an elastic deformation of the surrounding membrane (Figure 4). Bulged 

domains are kinetically hindered from coarsening [Ursell et al. 2009]. In 2007, Yanagisawa et al. 

[Yanagisawa et al. 2007} reported  ≈ 2/3 using unilamellar vesicles of 40:40:20 

DOPC/DPPC/chol with diameters ~10-150µm. Their value of  ≈ 2/3 applied to vesicles that did 

not exhibit “trapped coarsening” of bulged domains. They speculated that domains attract each 

other. Work by other groups [Honerkamp-Smith et al. 2008, Esposito et al. 2007] imply that no 

net attractive or repulsive interactions exist between unbulged domains since fluctuations in 

their boundaries fit normal capillary theory (Tobias Baumgart, personal communication). Our 

measurement of  ~ 1/3 implies that there are no net attractive or repulsive interactions 

between domains. In 2007, Liang et al. reported  ≈ 1/3 for domains smaller than 1 µm and  ≈ 

1 for domains larger than 1 µm within unilamellar vesicles of 1:1:1 bovine brain 

sphingomyelin/DOPC/chol with diameter > 20 µm. They speculated that a growth exponent of 

 ≈ 1 at long observation times could be explained if a merge of two domains triggered 

subsequent merges in the vicinity. Their longest observation time was roughly an order of 

magnitude shorter than the shortest run in figure 20a. 

On the other hand, the growth exponents measured here for the coarsening of circular 

domains are in excellent agreement with predictions from theory and simulation, which give 

 = 1/3 [Pitaevskii & Lifshitz 1961,Taniguchi 1996, Laradji & Sunil Kumar 2004, Laradji & Sunil 
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Kumar 2005]. Our results are limited to domains that have not yet grown to be the size of the 

vesicle; circular domains coarsen until membranes eventually contain only one Ld domain and 

one Lo domain. At this point, domains on opposite sides of the vesicle become coupled via 

hydrodynamics [Aliaskarisohi et al. 2010]. Even when hydrodynamics are neglected, deviations 

from a growth exponent of  = 1/3 arise from geometry and/or poor statistics when domain 

and vesicle sizes are comparable. Figure 5 shows the results of a simulation in which domains 

diffuse on a spherical surface with and coarsen purely by coalescence events after 

collisions. The surface was seeded with ~200 spherical caps at  = 0.09 and r was defined as the 

arc length from the center to the edge of each cap.  Strong deviations from the overall growth 

exponent of  = 0.31 occurred at short times during a size equilibration period and weak 

deviations occurred at long times, when the average domain radius divided by the vesicle 

radius reached values greater than 10-0.8, or ~16%. Deviations at long times are due to 

geometric reasons or to poor statistics, since few domains populate the vesicle at long times. 

We find that ~ 1/2 at long time for vesicles with 0.4 <  < 0.6 for which scaling is 

possible. In this growth regime, we find that changes in R are heavily influenced by changes in 

domain shape. The DPD simulations of Laradji & Sunil Kumar (2005) and Ramachandran et al. 

(2009) find  = 1/2. The more complex simulations of Fan et al. (2010) and Camley & Brown 

(2010, 2011) find cases in which an apparent growth exponent of  = 1/2 is observed, most 

notably when R >> Lh. 

A range of experimental conditions can produce anomalously low or high values of .  

The growth exponent will be too low (1) if domains bulge out of the membrane, (2) if the range 

between the experimental temperature and the membrane miscibility transition temperature 

(Tmix) is decreasing, either because photo-oxidation lowers Tmix or because the sample 

temperature is increasing, (3) if large domains are undercounted in a measurement of domain 

radius instead of domain perimeter, (4) if large domains are undercounted because vesicles are 

too small, or (5) if the viewing area is stuck on a glass substrate such that domains move too 

Dµ1/ r
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slowly [Stottrup et al. 2004]. In contrast, the growth exponent will be too high (1) if the range 

between the experimental temperature and Tmix is decreasing, either because photo-oxidation 

increases Tmix (as can occur in the DOPC/DPPC/chol system), or because the sample 

temperature is decreasing, or (2) if flow of the exterior bulk solution brings domains frequently 

in contact with a substrate that has a preferential interaction with one phase vs. the other (data 

not shown). All of these experimental difficulties are surmounted in the system of free floating 

giant unilamellar vesicles of DiPhyPC/DPPC/chol used here. 
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Section 2: Chemical Education Research 

Math assessment of UW chemistry students shows mathematics skills atrophy 

with disuse 

I. Introduction 

A strong math background is important for 

students’ success in chemistry. My results (Figure 26 & 

27) support the results of other researchers who have 

shown that a student’s grade in General Chemistry 

correlates with the student’s performance in math, 

including remedial math [Rixes & Pickering 1985, 

Ozsogomonyan et al. 1979, Leopold & Edgar 2008 

(figure 25)]. In my own teaching experiences and in 

those of others [Koopman et al.2008], time devoted to 

teaching chemical concepts was not maximized because students needed to be taught basic 

mathematics (e.g. logarithms). Leopold & Edgar point out that students commonly 

Figure 25: Leopold & Edgar (2008) show 
that the average course grade is correlated 
to 1

st
 semester general chemistry student 

aptitude on a mathematics assessment. 

Figure 26: The final exam grade for first quarter 
advanced General Chemistry (Chem 144) students 
correlated with scores on the mathematics 
assessment. The green line is a best fit line to the 
data and the blue lines show the average final exam 
grade and the standard deviations from the average. 

 

Figure 27: The final exam grade for first quarter 
senior level Thermodynamics for Biochemists 
correlated with scores on the mathematics 
assessment. The green line is a linear best fit 
and the blue line is a horizontal line for 
comparison. 
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misunderstand logarithms as being equivalent to square roots. This single misunderstanding 

can affect a student’s understanding of pH. Students should have learned all math needed for 

the first term of college chemistry while in high school, yet only half of students in Leopold & 

Edgar’s study could simplify the term ln(ex). 

In order to evaluate UW students’ math preparation, Sarah Keller developed a math 

quiz (Figure 28) covering only the remedial math required in General Chemistry. Students 

performed poorly (Figure 29 & 30), on par with similar students at the University of Minnesota 

[Leopold & Edgar 2008 (Table 5)]. The results of this study motivated us to study the 

mathematics ability of students in undergraduate General Chemistry and senior level 

Thermodynamics for Biochemists. In all cases, the students did not show high mathematical 

aptitude in areas where prerequisites would suggest that the students should excel.  We have 

modified the mathematics quiz into a mathematics intervention that tests the students’ 

mathematics aptitude, then guides students to grade their own work and to retry problems 

after seeing the key. The intent is that students will realize they have previously learned the 

math required to be successful in chemistry, but that they must work to remind themselves 

how to do it. In this way, we can hopefully help students excel by learning to review 

prerequisite material before a course. 

Nationally, there is a current emphasis on increasing diversity within STEM fields 

[Malcom 2010]. We found that women performed slightly worse in our Chem 144 math quiz 

Question text Correct Answer Most Common Wrong 

Answer 

% Students Correct 

What is the log of 100? 2 10 50% 

What is log(ab)? log a + log b (log a)(log b) 64% 

What is (2 x10
4
)(3x10

2
)? 6 x 10

6
 6 x 10

8
 86% 

Given   
   

   
, simplify Cannot be simplified d = a/c 72% 

Table 5: Selected questions from Leopold & Edgar (2008) showing results from the mathematics quiz given to 

second quarter general chemistry students. 
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(data not shown), as in the Minnesota study [Leopald & Edgar 2008]. Similarly, we found that 

students who qualified for a UW program serving first generation college students, students 

who are economically disadvantaged, and/or are members of an underrepresented ethnic 

minority also performed slightly worse (data not shown). These students are more likely to 

Figure 28: Mathematics Brush-up designed by Sarah Keller, showing correct answers and percent of 
correct responses. 



42 
 

have poor math backgrounds [Tapia 2009]. By increasing the math ability of all students, we 

hope to increase the numbers of STEM majors from diverse backgrounds. Using an adaptive 

homework program such as ALEKS may allow students with underdeveloped mathematical 

skills to individually practice the mathematics required along with the chemistry with which it is 

paired. 

II. Details of Studies 

First year chemistry mathematics quizzes 

Leopold and Edgar showed that second semester General Chemistry students have low 

proficiency in pre-calculus. They gave a 30 minute, surprise, calculator-free quiz of 20 multiple 

choice questions to 360 students (Table 5). Our first study, in 2008, involved administering a 

similar mathematics quiz to two populations of students to determine if our students had 

similar mathematics aptitudes to those in Leopold & Edgar’s study (Figure 28). The quiz was 

given during the first TA-led recitation session (“quiz section”) in Autumn of 2009 to 1st quarter 

General Chemistry students (Figure 29) and 3rd quarter General Chemistry students (Figure 30). 

Students in both groups appear to have little retention of logs, scientific notation, and 

probability. In 2009, we gave a similar mathematics quiz to ~240 first quarter Advanced General  

Figure 29: Percentage of 1st quarter General 
Chemistry students who answered the selected 
questions correctly, reported not knowing the 
answer, or reported being out of time.  

 

Figure 30: Percentage of third quarter General 
Chemistry students who answered the selected 
questions correctly, reported not knowing the 
answer, or reported being out of time. 
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Chemistry (Chem 144) students (Table 6). Our results were not very different from what 

Leopold and Edgar found at the start of 2nd semester, showing that students have problems in 

areas of logarithms, exponents, and algebra. A second, similar math quiz was given to the same 

group of students at the start of 2nd quarter advanced General Chemistry (Chem 154). Although 

the average number of students with the correct answer increased, the percentage of students 

with correct answers was around 85% in all areas. This indicated that during the term in which 

students took General Chemistry they either learned or remembered some of the math needed 

for chemistry, but that they were still not as proficient in areas of mathematics required for full 

mastery of chemical concepts like pH, proportionality, and probability.  

Senior year chemistry math refreshers 

In 2010, 105 students in senior level Thermodynamics for Biochemists (Chem 452) were 

given an untimed, self-graded, calculator-free homework assignment in order to assess their 

ability to complete pre-calculus and calculus math problems. The students tried a set of 

problems and reported whether they did the problem correctly by looking at an answer key and 

a description of the correct way to finish the problem. The students then tried questions similar 

to the original problems. Second attempt scores were higher than first attempt scores for all 

questions (Figure 31). The pre-requisites for Chem 452 are second quarter General Chemistry, 

second quarter Calculus, and second quarter Physics. This shows that students are forgetting 

the mathematics required to master senior level Physical Chemistry. Many 4th year students 

have not taken a math course in at least 2 years. This suggests that expecting students to enter 

Physical Chemistry courses with a high level of mathematics proficiency is not plausible. 

Question text Correct Answer % Students Correct in 

1
st

 quarter 

% Students Correct in 

2
nd

 quarter 

(a
2
bc

-1
)(ab

-3
) = ? a

3
b

-2
c

-1 
80% 87% 

Express as one term: ln7 – ln 4 = ? ln 7/4 64% 85% 

A∝B means what? (multiple choice) A is proportional to B 39% 84% 

Table 6: Selected questions from the mathematics assessment given to first and second quarter advanced 

General Chemistry students. 
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In 2009, we gave an online mathematics assessment to students in first quarter Physical 

Chemistry for Biochemists (Chem 452). These students reported similar results as those who 

had completed paper assessments (data not shown). Students were asked to self-report 

whether they got the answer correct, were on the right path, or got the answer wrong. 

Interestingly, many students incorrectly inflated their own self-grading results even though full 

credit was given simply for completing the assignment. Several students had incorrect answers 

recorded, yet reported they did it correctly. Students were told that their responses would help 

the professor assess how to teach best. Students who inflated scores encouraged the professor 

to skip remedial mathematics material that those students needed. Even more interesting were 

students who had entirely incorrect answers and yet reported that they were on the right path. 

This raises questions regarding whether students did not want to admit being wrong, or if the 

students did not realize how different their answers were from the actual answer. This also 

raises issues of self-reporting among students. It would be interesting to follow up on self-

reporting cases by interviewing students to assess why they reported what they did. 

Figure 31: Mathematics brush-up results for senior level Thermodynamics for Biochemists (Chem 
452) students. Blue bars show the percentage of students who got the questions correct. Green bars 
shows the additional percentage of students who answered the question correctly the second time. 
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Senior year chemistry opinion survey 

In 2009, ~200 students completed anonymous surveys at the start of senior-level 

Thermodynamics for Biochemists (Chem 452) concerning what they expected of the math 

content in the course. The survey was a series of questions students answered on a Likert scale, 

with 5 corresponding to “strongly agree” and 1 corresponding to “strongly disagree” (Figure 32). 

Most students seemed worried about the mathematics they expected to see in the course 

(Figure 33), which suggests they recognized the challenge of the course material. The most 

telling data is the disagreement between what the professors predicted that students would 

say and what the students actually reported. Professors overestimated the confidence students 

would have about their mathematics proficiency and overestimated the level of engagement 

the students expect to have in the course, which corresponds to the level of agreement 

reported with the statement “I enjoy math problems in chemistry”. 

 

Figure32: Survey given to students in Thermodynamics for Biochemists (Chem 452). 
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SAT and final GPA correlations 

Plots of mathematics brush-up scores versus SAT scores contain significant scatter, 

although there is a slight positive correlation between how well a student did on the 

mathematics portion of the SAT and how well a student did on the brush-up (Figure 34). This 

suggests that doing well on the SAT does not necessarily mean a student has a high retention of 

Figure 33: A survey given to first quarter Thermodynamics for Biochemists students (blue) to assess how 
students feel about mathematics in the course. The same survey was given to professors (green) to 
predict what students would say. 

 

Figure 35: Final exam percent earned in General 
Chemistry correlated with Mathematics SAT 
scores. 

 

Figure 34: General Chemistry mathematics 
brush-up score correlated with Mathematics SAT 
scores. 
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math skills. There is also significant scatter in plots of final exam scores versus SAT scores, with 

a slight correlation between doing well on the SAT and doing well on the final exam (Figure 35). 

This once again suggests that doing well on the SAT does not guarantee that a student will do 

well in Chemistry. Andrews and Andrews (1979) found similar results showing that chemistry 

grades correlate positively to SAT scores, but with significant scatter. They concluded that a 

high SAT score in mathematics does not necessarily guarantee a student a high GPA in General 

Chemistry, whereas a low SAT score is more predictive of doing poorly in General Chemistry.  

ALEKS data from Colleen Craig 

For the past few years, at the University of Washington homework for the large General 

Chemistry courses was conducted via the website Webassign. Webassign is an online 

homework platform that mirrors traditional homework, and consists of about 10 homework 

questions chosen by the instructor for the students to complete weekly. During the past few 

quarters, online homework has been switched to ALEKS. ALEKS is an adaptive program that 

assesses how well the student performs on an objective and modifies subsequent questions 

accordingly. In “learning mode”, the students have access to tutorials for help with the 

Figure 36: Overall exam scores correlated with 
Webassign homework percentage for first quarter 
General Chemistry (Chem 142) students. 
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questions. Once a student works through the objectives in learning mode, ALEKS switches to 

“assessment mode”. The assessment mode measures what a student can do, cannot do, and 

what the student should learn next. This type of homework allows a student to learn at his/her 

own pace, and it brings up old topics to remind students how to solve questions they have not 

seen recently. This repetition continues until the student shows mastery in the topic. Data 

taken in 2010 shows that final course grades correlate weakly with Webassign grades (Figure 36, 

unpublished data of Colleen Craig). Data taken in 2011 with the same instructor shows grades 

correlate more strongly with mastery in ALEKS assessment (Figure 37, unpublished data of 

Colleen Craig). This is not to say that students perform better using ALEKS than with Webassign, 

but doing well on ALEKS is a better indicator of how students will perform on the final exam. 

Therefore, ALEKS provides more meaningful feedback to students on their mastery of the 

material. The main difference between the data sets taken in the two quarters lies in the 

scatter. Webassign grades are more scattered with respect to final exam grades, whereas the 

ALEKS grades are more tightly correlated around the average line. 

 

Figure 37: Overall exam score correlated with mastery in assessment in ALEKS for first quarter General 
Chemistry (Chem 142) students. Mastery in ALEKS assessment is measured by the overall progress in 
assessment mode that the student made through the quarter. 
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III. Discussion and conclusions 

Foremost, I observed that students had lower mathematics aptitudes than I expected 

given the time that had elapsed between students’ required mathematics courses and science 

courses. Perhaps the lack of a strong correlation between SAT scores and their scores on the 

mathematics refresher (Figure 34) could be due to the fact that some students took math 

immediately before the SAT while in high school, and then did not take math again, or at least 

until they completed General Chemistry. It would be interesting to compare math refresher 

scores and the time that elapsed between General Chemistry and students’ last math to see if 

there is a correlation. There is evidence that students need reminders after delays between 

math courses. In the case of the senior level Chemistry student scores on the mathematics 

refresher, we know that students have previously learned the mathematics they need because 

they have passed prerequisites, but that they have forgotten it (Figure 31). Once students are 

reminded of the process of working through mathematical problems, the number of correct 

answers always increased. Students report that they know their math is not as good as it needs 

to be (Figure 33), but professors may not be aware of students’ lack of confidence. Students 

who lack confidence in their own ability do not do as well as students who have high confidence 

in chemistry [Lewis et al. 2009]. Reminding the students of what they know may be an effective 

tactic to increase their mathematics confidence so that they perform better in chemistry classes. 

Given my results above, one avenue of research that I think would be valuable would be 

to design an intervention of math questions tailored to individual homework sets, much as in 

Koopman et al. 2008. This intervention could be applied both to General Chemistry and to 

Physical Chemistry for Biochemists (Chem 452) through an adaptive homework program such 

as ALEKS. This procedure would remind students of forgotten math without taking class time.  

One aspect of the intervention that will require careful design is to ensure that students 

are encouraged to continue in chemistry even if they perform poorly on a math quiz. Students 
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with a positive opinion of their own abilities perform better in General Chemistry [Lewis et al.]. 

In our Chem 144 study in the Autumn quarter of 2009, students with more than 5 out of 16 

questions incorrect were sent a friendly letter encouraging them to get help through several 

resources available on campus. We learned through anecdotal student feedback to teaching 

assistants that (at minimum) several students contemplated dropping their Chemistry class out 

of fear of failure because of poor performance on the math quiz, but that no students did (at 

least in this small set). It would be helpful to hold interviews with students in order to ascertain 

how to best motivate them to review the required math without scaring them away from 

majoring in STEM fields.  

My data suggests that a fruitful avenue of research may lie in optimizing the sequence 

used to teach math and science. If we want to make students better scientists, they require a 

firm grasp of certain mathematical concepts. It may help students if math and science 

education is far more integrated than it is right now. A short term goal would be to require 

students to complete a mathematics assessment that highlights to each student what math 

they will need to review for the course. Then, throughout the course, students should practice 

important mathematical skills required for success. This procedure can be easily added to an 

adaptive program such as ALEKS, since it is already designed to remind students of topics they 

have already learned throughout the term. In this way we can help students practice a skill that 

is essential to success in Chemistry, but has been atrophied by disuse.  
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Appendix A: Matlab code 

 
Track_vesicle 
 
function track_vesicle(fileName, diskrad) 
% This m-file is for tracking and centering a tif stack of vesicle images 
%CENTER CROP CALLED AT END!!!! You need to run this as a function, but 
%beforehand you need to input the folder and home. You can leave diskrad 
%blank if you are unsure of the radius of the in-focus area of the vesicle. 
%You will want to change the disk thickness depending on your bright ring 
%around the in-focus area of the vesicle. See line 50 
%Needs Avesiclemask2.m, center_crop.m 
%Program originally written by Aurelia R. Honerkamp-Smith and modified by Cynthia A. Stanich 
%It includes a 12-line section written by Matthew Blosser that  
% finds the radius of the in-focus area 
FOLDER = ('C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\Ostwald\Water\2-16-10\v2')%Where 
the movies are 
HOME = ('C:\Program Files (x86)\MATLAB\R2007a Student\work'); %Where work files are 
cd(FOLDER) %Change the directory to where the movies are 
file = [fileName];  
%%%THIS IS FOR TIFFS - It should not be required to change anything below this line  
fileinfo=imfinfo(file); 
moviesize=fileinfo.Width; 
lengthmovie=max(size(fileinfo)); 
in=zeros(moviesize,moviesize,lengthmovie,'uint16'); 
            for k=1:lengthmovie; 
in(:,:,k)=imread(file,k); 
           end 
%Have loaded in the movie.  Now, take each frame and find the center of the vesicle.   
%Choose a radius, then find the center.   
        figure(200) 
        firstone = in(:,:,1);  
        imshow(firstone) 
        hold on 
%make starting guess 
          start = ginput(1);  %this line lets you click on the first picture to choose the center.  
            if nargin < 2 %If you didn't know the radius of the in-focus area of the vesicle  
                %(which is almost always the case), then this will ask you to do a second click. 
                %Click the edge of the bright ring. 
            edge = ginput(1); 
            diskrad = ((start(1) - edge(1))^2 + (start(2) - edge(2))^2)^(1/2); %Calculates the radius of the in-focus area of 
the vesicle. 
            end 
            for k=1:max(size(fileinfo)) 
            clear s pic  
            pic = in(:,:,k); 
            s = size(pic);  
            s1 = double(pic);   
             %figure(11)                        %**remove this figure to run faster** 
             %imagesc(pic), axis square 
             %hold on 
  %%%%Start Matt Blosser's code that finds the radius of the in-focus area%%%%%% 



56 
 

            diskwidth = 10; 
             vars(1) = start(1); %Your first click, center of vesicle 
             vars(2) = start(2); %second click, if needed, edge of vesicle. 
             if nargin == 1 
                 vars(3) = diskrad; 
                testFcn = @(vars)Avesiclemask2(vars, s1, diskwidth); %Calls a program written by Aurelia 
                fit = fminsearch(testFcn, vars); 
             else 
                testFcn = @(vars)maskFixedRad(vars, s1, diskrad, diskwidth); 
                fit(3) = diskrad; 
                fit = fminsearch(testFcn, vars); 
             end %End Matt's code 
             
             if nargin > 1 
                 fit(3) = diskrad; 
             end 
            if (fit(1)<=0) | (fit(2) <= 0) | fit(1) >= s(1) | fit(2) >= s(2) 
                ERROR = 1  
                   xxx %crash program if center is outside picture 
            end 
            figure(200) 
            plot(fit(1), fit(2), 'or', 'LineWidth', 3) 
            hold on  
            savefit(k,:) = fit;%round(fit); %Matt had the round function but you shouldn't use it. 
            picsize(k,:) = s;  
            k 
            start = fit;  
           % saverad(k)=diskrad; 
        end 
      save([ file '_center.dat'], 'savefit', '-ascii', '-tabs', '-double');  %Saves the center coordinates 
      save([ file 'diskrad.dat'], 'savefit', '-ascii', '-tabs', '-double');  %Saves the radius per frame 
%clear savefit center picsize final  
    close all 
   figure (42) 
    plot(savefit(:,3)) 
     
    cd(HOME) 
  center_crop  %calls the center_crop file to create the centered and cropped movie file. 
     
     
 
 
 
 

For manual_track.m, the code to run the program is very similar. The input for the function is 
the full address of the movie. 
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Param_difco 
 
%%This is a typical example of a param file for running programs to measure diffusion constants. 
%Written by Cynthia A. Stanich. 
close all 
clear 
firstgo=0; % set this to 1 to select the region of interest and check domains on first frame. 
TEST=0; %if  TEST=1, then program will stop (crashing) at the right point to  
%show/check feature detection. 
useframes=10; %We tested 5 frames, 10 frames, and 20 frames at a time. 
%Useframes is important because it chooses how many frames are used in the  
%diffusion constant calculation of mean squared displacement/time.  
% It turns out that 10 frames and 5 frames 
% give similar results, whereas 20 starts to deviate. Since 10 frames 
%causes less work, we used 10 in all of my work. 
 cut=16;   % this is the  distance in pixels that will be accepted as maximum  
%movement in successive frames 
maxdiam=400; % this is the maximum area allowed for an object. used to  
%through away any large patches from image analysis. 
WHITEDOMAINS=0; % set =1 if domains are bright on dark background in original movie file, set =0 otherwise 
%The next two variables are set to zero because we center the movies before we measure. 
inputgrossDY= 0;%108 ;  DY is the column (so horizontal movement)  negative if image is moving to right 
inputgrossDX= 0;%-142 ;  DX is the row (so vertical movement) negative if image is moving downwards 
cd('C:\Program Files (x86)\MATLAB\R2007a Student\work\') 
hd=cd; 
traj={'q2Thesis'}; %Name your output folders. 
file='q2_00.tif'; %The name of the movie you are using. 
% the movie above must be in the folder below. 
filedirectory=['C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\Comp1\Water\11-10-
09\v2\q2\movies']; 
%NeedsAureliaGradient=1;  %uncomment this line if the movie has an uneven background. 
using_previous_choice_of_domains=0; % make = 1 if you already clicked the domains for these 10 frames. 
threshold =1; %The otsu method used in the tracker_diffusion program sometimes estimates the  
%threshold as too high or too low. You may need to adjust some multiplier to move the threshold to something 
better. 
initial=[85  ]; %First frame for the set of 10 frames. 
smallf=0.035; %This is the minimum end of the length scale for the filters. 
%If whitedomains=1, increasing smallf will increase the detail on the frame 
bigf=0.2; %This is the maximum end of the length scale for the filters. 
%If whitedomains =1, increasing bigf will increase the detail on the frame 
cd(filedirectory) 
AAA=imfinfo(file); %imfinfo will read all kinds of information about your movie. 
RECT(:,1)=[1   1  AAA.Width  AAA.Height]'; %left column   %top row   %right column   %bottom row 
FILT=1; %Strange counter needed for tracker_Diffusion, just leave as 1. 
FFF=1; %Again, counting is no longer used, but will crash tracker_diffusion without this 
%Below this line is the tracker program you choose to use 
tracker_diffusion 
%You can have different outputs displayed if you want.  
OUTGOOD(FFF)=Nfeg; 
OUTX(:,FFF)=meandevx2; 
OUTY(:,FFF)=meandevy2; 
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Tracker_diffusion 
 
%Tracker_diffusion program for measuring diffusion coefficients. 
% SAVES Eccentricity, diameters, slopes 
% Has a geometric fix, does not delete overall center of mass movement 
%This program was originally written by Pietro Cicuta and modified by Aurelia R. Honerkamp-Smith and Cynthia A. 
Stanich. 
% It calls “sfigure” written by Chris Warth. 
% 
skip = 0; %When rerunning all of the movies for reprocessing on automatic, sometimes there is no domain to track  
%through the ten frame interval. This gives an empty d* folder and needs to skip the code below. This skip must 
%be here and will be changed to a 1 below if needed. 
 
cd(filedirectory) %Change directory to the \movies folder 
cd .. %goes up one directory to create the d* folder 
dos(['md ' char(traj)]) %create d* folder 
cd(char(traj)) %open d* folder 
  
thisdatahere=cd;  %defines a variable as the d* folder 
cd(filedirectory) %opens the d* folder 
datadir=thisdatahere; %some later code written by others uses datadir instead of thisdatahere    
%  for the d* folder. % I have defined both to be the d* folder 
  
  
clear in %in is the array of grey scale image matrix (Changing the tif stack to Matlab variables) 
first=initial(FFF); last= first+useframes-1; %defining the first and last frames 
  
%%%%%%%%%%%%%%%%%%%%READ IN MOVIES 
if exist('fileisavi')==0, % this means that the file is not avi, and is a tiff stack 
  
   for k=1:useframes, %useframes is given from the param file 
   in(:,:,k)=imread(file,initial+k-1); %turning the tif stack to an array of 
                                       %grey scale images 
   end %end reading in movie 
  
end %end the if tif cycle 
  
if exist('fileisavi')==1, % this means that the file is an avi 
  
    MOV = aviread(file,first:last); %This is how you read in an avi 
    aviinfo(file) %will print the avi info onto the command line 
  
    for k=1:useframes, %changing the avi info into a Matlab variable 
       in(:,:,k)=MOV(k).cdata; 
  
    end %end avi info to Matlab variable 
  
end %end the if avi cycle 
  
  
numframes=useframes; %numframes is used for useframes in code written by others 
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% This defines the area of interest. Most param files set this as the size of the movie. You can choose smaller areas 
if desired 
minwidth=RECT(1,FFF); %left column 
minheight=RECT(2,FFF);  %top row 
maxwidth=RECT(3,FFF); %right column 
maxheight=RECT(4,FFF);%bottom row 
  
%First go is set in the param files. You can set it to 1 and choose the 
%area of interest manually. 
if firstgo==1, 
    sfigure(50); %sfigure was written by Chris Warth. It allows for use of Matlab even while figures are  
%popping up. If you use "figure" instead,the figure is always on top. 
    imshow(in(:,:,1)) %show the first image  
    hold on 
    [rex,rey] = ginput(2); %You will have to make two clicks on the image; 
    %one on the top left and one on bottom right corners. 
     RECT(:,1)=round([rex(1) rey(1) rex(2)  rey(2)]'); %must be integers 
     minwidth=RECT(1,FFF); %left column 
    minheight=RECT(2,FFF);  %top row 
    maxwidth=RECT(3,FFF); %right column 
    maxheight=RECT(4,FFF);%bottom row 
  
    %The plot below will show up on figure (50) as colored lines denoting 
    %the area of interest you chose 
  
    plot( [ minwidth  maxwidth   ], [  minheight minheight ], '-r' ) %top side 
    plot([ minwidth  maxwidth   ], [maxheight maxheight   ],  '-g' ) %bottom side 
    plot([minwidth minwidth   ], [ minheight maxheight    ],  '-b' )  %left side 
    plot([ maxwidth  maxwidth   ], [minheight maxheight    ],  '-c' ) %right side 
    RECT'   %prints the values for the vector 
  
end %ends manual selection of the area of interest 
  
%I have commented out the lines below because my area of interest is always 
%the size of the movie. If you intend to input an area of interest without 
%manual clicking, but it is an area smaller than the size of the movie, you 
%must uncomment these lines so you can see the outline of the area of 
%interest. This is only necessary if you want to check your work, otherwise 
%it saves time to remove it. 
  
% if firstgo~=1, 
%     sfigure(50); 
%     imshow(in(:,:,1)) 
%     hold on 
%     plot( [ minwidth  maxwidth   ], [  minheight minheight ], '-r' ) %top side 
%     plot([ minwidth  maxwidth   ], [maxheight maxheight   ],  '-g' ) %bottom side 
%     plot([minwidth minwidth   ], [ minheight maxheight    ],  '-b' )  %left side 
%     plot([ maxwidth  maxwidth   ], [minheight maxheight    ],  '-c' ) %right side 
% end 
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for k=1:useframes, %Doing initial analysis of the 10 frame interval 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
%            LOAD IMAGES AND SELECT REGION OF INTEREST          % Written by Pietro Cicuta 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
    im=in(:,:,k); %k-th frame 
    imgray=(im(minheight:maxheight,minwidth:maxwidth,1));  %region of interest  
    h = sfigure(1);  
    set(h,'units','normalized','position',[0.1 0.1 0.3 0.3]);  
    if k==1, imgrayfirst=imgray; end  % keep the first image in memory 
   averagelight=mean(mean(imgrayfirst)); 
    imshow(imgray) %shows the first frame in figure 1 
    pause(0.01); 
     
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  %                   NOW CLEAN UP THE IMAGE,                     % 
  %             TO GET THE BEST POSSIBLE BLACK&WHITE              % Written by Pietro Cicuta 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
    I=imgray; 
    %  figure, imshow(I) 
    % Set up spatial frequency bandpass filter 
    if (k==1) 
         [f1,f2] = freqspace(81,'meshgrid'); 
         Hd = ones(81); 
         radius = sqrt(f1.^2 + f2.^2); 
         Hd((radius<smallf)|(radius>bigf)) = 0;  % remember in frequency space 
         %figure, mesh(f1,f2,Hd) 
          win = fspecial('gaussian',81,10); 
         win = win ./ max(win(:));  % Make the maximum window value be 1. 
         %figure, mesh(win) 
         filter = fwind2(Hd,win); 
         %figure, freqz2(filter) 
         %figure, freqz2( filter(1:2:length(filter(:,1))  ,1:2:length(filter(1,:)) )  )    
     end 
  
    %filter with it and threshold 
    out = imfilter(I,filter,'replicate'); 
    out2 = imadjust(out,stretchlim(out),[0,1]); 
  
    %figure, imshow(imadjust(I,stretchlim(I),[0,1])); 
%NeedsAureliaGradient filter written by Aurelia R. Honerkamp-Smith and modified for use 
%here by Cynthia A. Stanich 
% It is an Otsu method done over a grid 
    if exist('NeedsAureliaGradient')==1 %%Allows for files done before 9/3/09 to work with this 
% tracker program without having a "needsAureliaGradient" value. 
        if NeedsAureliaGradient==1 %NeedsAureliaGradient is good for images of a vesicle that 
%is next to a bright vesicle and so has a gradient of illumination across it. 
            eye=double(out2); %change the values of filtered image to double 
            H = fspecial('disk',100); 
            J = imfilter(out2, H, 'replicate'); 
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            J=double(J); 
            %figure(100) 
            % imshow(out2, []); 
            % figure(200) 
            % imshow(out2, []) 
            % figure(300) 
            % imshow(eye-J, []); 
            FI = eye - J; %excess brightness 
            addittoFI=min(min(FI)); 
            out2=FI-addittoFI; %remove excess brightness 
        end %end NeedsAurliaGradient = 1 
    end  
     
    %figure, imshow(out2); 
    %The line below sets the threshold value for black and white choices 
    thresholdvalue = threshold*graythresh(out2)*(max(max(out2))); %threshold is set in the param files 
    if WHITEDOMAINS==0, %set in the param file, if 0: dark domains 
        bw2 = (out2 < thresholdvalue);  % this  processes images that have dark domains 
    end 
  
    if WHITEDOMAINS==1, %set in the param file, if 1: bright domains 
        bw2 = (out2 > thresholdvalue);  % this  processes images that have bright domains 
    end 
 
%We know the domains are uniform, but sometimes light differences across the domains cause the domain to  
%appear to have domains inside. The line below fills in the perimeter of the domain to ensure the domain is 
% uniform. However, you should comment the line below out if your domains are not uniform. 
    bw2 = imfill(bw2, 'holes');  
%%%Commented out for speed 
%     sfigure(2); 
%     imshow(bw2) 
%%%%%%DO Geometric Fix here%%%%%%%%% 
R=load('R.dat'); %This is measured beforehand by track_vesicle 
bw3=geometrical_correction(bw2,R); 
[bw4,num]=bwlabel(bw3); 
bw2 = bw4; 
  
    sfigure(3); %This shows the goodness of the thresholding code 
  
    pat0(:,:,2)=0.99*double(imgray)/65536; 
    %pat0(:,:,2)=double(imgray)/255; 
    pat0(:,:,3)=0.99*double(imgray)/65536;%double(imgray)/255; 
    %pat0(:,:,3)=double(imgray)/255; 
    pat0(:,:,1)=0.99*double(imgray)/65536;%double(imgray)/255; 
    %pat0(:,:,1)=double(imgray)/255; 
    pat=pat0; 
    pat(:,:,2)=1; 
    dbw = bw2; 
    pat(:,:,3)=1-0.5*(dbw); 
    pat(:,:,1)=1-0.5*(dbw); 
    merged = immerge( pat0 , pat, 0.5); 
    imshow(merged) 
    hold on 
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if (k==1) %I want to click the processed image 
    clickthisone=merged; 
end 
   
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       
  %                   NOW LABEL EACH FEATURE                      % Originally written by Pietro Cicuta and  
  %modified by Cynthia A. Stanich 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
          
    %label connected regions, find mean coordinates of each region 
    fprintf('frame %d\n', k); 
    ima=bw2; 
    [cim, num] = bwlabel(ima);  % label each connected region     
  %Defile the measurements desired: 
    stats = regionprops(cim,'Centroid','Eccentricity','EquivDiameter','Area','Perimeter'); 
    %%%%Change the line below if you are looking at circular domains. 
    eccthreshold = 1; %This is useful to cause the program to ignore merging domains.  
    cc = 1; %set counter to 1 
    xm=[]; ym=[]; siz=[]; rad=[]; memo=[]; ecc=[]; %create empty matricies 
    %loop over the boundaries 
    for c = 1:num 
  
        metric = stats(c).Eccentricity; 
        centroid = stats(c).Centroid; 
        totalarea=stats(c).Area; 
        perimeter=stats(c).Perimeter; 
        diameter  = stats(c).EquivDiameter; 
        circumradius=perimeter*(diameter/2); 
        topdoublearea=totalarea*2*1.15; 
        bottomdoublearea=totalarea*2*0.85; 
  
        plot(centroid(1),centroid(2),'xr') 
        %ignore particles at edges of image and non-circular ones and small ones (prob. dirt) 
        if (diameter > 4)&(diameter < maxdiam) %very small 
          if (circumradius > bottomdoublearea)&(circumradius < topdoublearea) %better measurement than  
%setting an eccentricity threshold. (Cynthia likes this more) 
            if metric < eccthreshold 
centerx=centroid(2); 
centery=centroid(1); 
distancex=centerx+(diameter*(3/5)); 
distancey=centery+(diameter*(3/5)); 
ifneartopleftcornerx=centerx-(diameter*(3/5)); 
ifneartopleftcornery=centery-(diameter*(3/5)); 
ifnearbottomrightcornerx=centerx+(diameter*(3/5)); 
ifnearbottomrightcornery=centery+(diameter*(3/5)); 
if (ifneartopleftcornerx >= 1)&(ifneartopleftcornery >= 1) %This ignores domains on the top and left edge of the 
% image. 
    if (ifnearbottomrightcornerx <= maxwidth)&(ifnearbottomrightcornery <=maxheight) 
        %Ignores domains on the bottom and right edge of the image. 
                xm(cc) = centroid(2); 
                ym(cc) = centroid(1); 
                siz(cc)= stats(c).Area; 
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                rad(cc)= diameter; 
                memo(cc)= c; 
                ecc (cc) = metric; 
                cc = cc + 1; 
                 plot(centroid(1),centroid(2),'xg') %shows domains that "pass" inspection 
           end    
         end 
        end    
          end 
        end 
    end 
  
    if TEST==1, 
        xxx  % uncomment this xxx to cause the program to stop. Use for 
        % finding the best region of interest and threshold value on the first frame 
    end   
     pause(0.01) %comment out for speed 
    %close(figure(3)) 
    %for each image, generate a matrix with info on the features 
if size(xm) ~=0  %This could be zero if there are no measurable domains in the frame 
    xm=xm'; ym=ym'; siz=siz'; rad=rad'; memo=memo'; ecc=ecc'; 
%This creates information for each domain in each frame 
    eval([ 'FEA' num2str(k) '(:,1)' ' = xm ;']); 
    eval([ 'FEA' num2str(k) '(:,2)' ' = ym ;']); 
    eval([ 'FEA' num2str(k) '(:,3)' ' = siz ;']); 
    eval([ 'FEA' num2str(k) '(:,4)' ' = rad ;']); 
    eval([ 'FEA' num2str(k) '(:,5)' ' = memo ;']); 
    eval([ 'FEA' num2str(k) '(:,6)' ' = ecc ;']); 
    % cd(thisdatahere) 
  
    if k==1,  %save the list of object radii obtained from the first image of each time series 
        save([datadir filesep char(traj(1)) 'radius' char(num2str(FFF)) '.dat'], 'rad', '-ascii', '-tabs', '-double'); 
        save([datadir filesep char(traj(1)) 'eccentricity' char(num2str(FFF)) '.dat'], 'ecc', '-ascii', '-tabs', '-double'); 
    end  
    clear siz; clear xm; clear ym; clear rad; clear memo; clear ecc; 
    %save the labelled matrix cim, in which the numbers correspond to the numbers in memo(cc) 
    save([datadir filesep char(traj) '_' file '_temp_labelled_' num2str(k) '_' char(num2str(FFF)) '.dat'],'cim','-ascii','-
double') 
  
   onesinbw2=nonzeros(bw2); 
   [l,w]=size(bw2); 
   totalsizebw2=l*w; 
   allones=length(onesinbw2); 
   areafraction(k)=allones/totalsizebw2;  %Calculates area fraction of each frame 
else 
skip=1; 
end  % this end finishes the first cycle through the time series (k) 
end 
%we now have all the important info summarized in the vectors vxm, vym,etc...  positions (cc) along these vectors  
%refer to the feature of numbers memo(cc) in the  file saved from the matrix cim.  
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
  %   NOW MATCH UP CORRESPONDING FEATURES IN TIME SERIES    % Written by Pietro Cicuta 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%take the list of features from successive pairs of images and match them up 
if skip ~=1 
for k=1:useframes-1;  
  
    fprintf('frame %d \n', k); 
    safe=0; like=0; 
    ini=   eval([ 'FEA' num2str(k)  ]);  %check syntax 
    fin=   eval([ 'FEA' num2str(k+1)]); 
     roughXM(k)=mean(ini(:,1)); 
    roughYM(k)=mean(ini(:,2)); 
    roughXMf(k)=mean(fin(:,1)); 
    roughYMf(k)=mean(fin(:,2)); 
   % roughDX(k)=roughXM(k)-roughXMf(k); roughDY(k)=roughYM(k)-roughYMf(k); 
    roughDX(k)=0; roughDY(k)=0; 
    %roughDX(k)=inputgrossDX; roughDY(k)=inputgrossDY; 
  
    distmatrix=zeros(size(ini,1),size(fin,1)); 
    transmatrix=zeros(size(ini,1),size(fin,1)); 
  
    fprintf('size=%d\n', size(ini,1)); 
  
    %build the distance matrix 
    for ii=1:size(ini,1),  
        dist=sqrt(      ( ini(ii,1)-fin(:,1)-roughDX(k) ).^2   +  ( ini(ii,2)-fin(:,2)-roughDY(k) ).^2          ); 
        distmatrix(ii,:)=dist'; 
     end 
     for ii=1:size(ini,1),   %cycle down the rows of the matrix 
        [val pos]=  min(  distmatrix(ii,:)   );        
        [val2 pos2] = min(  distmatrix(:,pos)   ); 
             if (val<cut)&(pos2==ii),    %condition of forwards/backwards identity 
                transmatrix(ii,pos)=1; distmatrix(ii,pos)=1000; safe=safe+1; %found safe matching     
            end                    
    end  
  
    for ii=1:size(ini,1),   %cycle down the rows of the matrix 
        [val pos]=  min(  distmatrix(ii,:)   ); 
        [val2 pos2] = min(  distmatrix(:,pos)   ); 
        if (val<cut),    %condition of forwards/backwards identity 
            transmatrix(ii,pos)=2;  like=like+1;%found likely matching     
        end                    
    end  
  
    fprintf('safe=%d      like=%d\n', safe, like); 
         
    %now save to file the coordinates of the 1s and 2s 
    [un1 un2]=find(transmatrix==1); [du1 du2]=find(transmatrix==2); 
    if isempty(un1)~=1, 
        uni(:,1)=un1; uni(:,2)=un2;  
        else  uni=[0 0];  
    end 
    if isempty(du1)~=1, 
        dui(:,1)=du1; dui(:,2)=du2;  
        else  dui=[0 0];  
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    end 
     eval([ 'UNI' num2str(k)  ' = uni ;']); 
    eval([ 'DUI' num2str(k)  ' = uni ;']); 
      %tran(1)=trans2(k+1);   tran(2)=trans1(k+1);  
    %eval([ 'TRA' num2str(k)  ' = uni ;']); 
    clear uni; clear dui; 
 end 
end 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  %   NOW TRACK THROUGH THE SEQUENCE TO PRODUCE TRAJECTORY DATA   % 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tottrans=zeros(2,useframes); 
 %attempt to follow through the particles from the first image, 
%making a trajectory matrix 
if skip ~=1 
Nfe= length(eval([ 'FEA' num2str(1) '(:,1)']))   
xcord=zeros(  useframes,   Nfe         );  %rows are increasing time, columns are each feature 
ycord=xcord; 
nfet=zeros(  useframes,   Nfe         ); 
  
 for ff=1:Nfe, 
    k=1; 
    xcord(1,ff)=eval([ 'FEA' num2str(k) '(ff,1)']); 
    ycord(1,ff)=eval([ 'FEA' num2str(k) '(ff,2)']); 
    nfet(1,ff)=ff; 
end 
  
for ff=1:Nfe, %fixes feature in initial image, to track where it goes    
    for k=1:useframes-1, 
        temfea=nfet(k,ff); %this is the feature in the start image of each couple 
         if temfea~=0, 
            uui=eval(   [ 'UNI' num2str(k) '(:,1)']                ); 
            uuu=find(uui==temfea); 
            ddi=eval(   [ 'DUI' num2str(k) '(:,1)' ]               ); 
            ddd=find(ddi==temfea); 
            if isempty(ddd)~=1,   
                 ddf=eval(   [ 'DUI' num2str(k) '(ddd,2)']                ); 
                xcord(k+1,ff)=eval([ 'FEA' num2str(k+1) '(ddf,1)'])-tottrans(1,k+1); 
                ycord(k+1,ff)=eval([ 'FEA' num2str(k+1) '(ddf,2)'])-tottrans(2,k+1); 
                nfet(k+1,ff)= ddf; 
             end 
            if isempty(uuu)~=1,   
                uuf=eval(   [ 'UNI' num2str(k) '(uuu,2)']                ); 
                xcord(k+1,ff)=eval([ 'FEA' num2str(k+1) '(uuf,1)'])-tottrans(1,k+1); 
                ycord(k+1,ff)=eval([ 'FEA' num2str(k+1) '(uuf,2)'])-tottrans(2,k+1); 
                nfet(k+1,ff)= uuf; 
             end      
            if (isempty(uuu)==1)&(isempty(ddd)==1),   nfet(k+1,ff)= 0; end  %added 19 nov 04 
        end  % ends if temfea~=0, 
   end % ends k=1:useframes-1, 
end % ends cycle on features 
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  %now for all the objects in first frame, save the list of object radii, for 
 %reference. These are saved in FEA 4th column. 
  
listofradiuses=[]; 
listofeccen=[]; 
for ff=1:Nfe,   
listofradiuses=[listofradiuses FEA1(ff,4)];   
listofeccen = [listofeccen FEA1(ff,6)]; 
end 
save([datadir filesep char(traj) 'set' char(num2str(FFF)) 'listofradiuses' '.dat'], 'listofradiuses', '-ascii', '-tabs', '-
double'); 
save([datadir filesep char(traj) 'set' char(num2str(FFF)) 'xcord' '.dat'], 'xcord', '-ascii', '-tabs', '-double'); 
save([datadir filesep char(traj) 'set' char(num2str(FFF)) 'ycord' '.dat'], 'ycord', '-ascii', '-tabs', '-double'); 
    
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  %   MAKE SOME FIGURES TO SEE IF TRACKING WAS OK    % Written by Pietro Cicuta 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
figure(10) 
imshow(imgrayfirst); hold on; 
%plot the successful trajectories  
for ff=1:Nfe,  
    if nfet(useframes,ff)~=0 
        plot(  ycord(:,ff), xcord(:,ff), '-g', 'linewidth',0.5 );          
        hold on    
    end 
     if nfet(useframes,ff)==0 
        plot(  ycord(1,ff), xcord(1,ff), 'or', 'linewidth',0.5, 'markersize',2  );  
        hold on    
    end 
 end 
  
plot(roughYM,roughXM,'-xy') 
%plot(roughYM-roughDY,roughXM-roughDX,'-xw') 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
  %        NOW TIDY UP DATA TO PRESENT TRACKING RESULTS           % 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
Nfe=eval('size(nfet(1,:))'); Nfe=Nfe(2); 
indi=1; goodx=[]; goody=[]; goodf=[]; 
  
%make new lists with only the successful ones, for later ease of analysis 
for ff=1:Nfe,  
     if nfet(useframes,ff)~=0 
        goodx(:,indi)=xcord(:,ff); goody(:,indi)=ycord(:,ff);    goodf(:,indi)=nfet(:,ff);  
        goodrad(indi) = listofradiuses(ff); 
        indi=indi+1; 
     end  
end 
[sizegoodf,sizegoodff]=size(goodf); 
if sizegoodf ~= 0 
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Nfeg=eval('size(goodf(1,:))'); Nfeg=Nfeg(2);   %this is the number of successful trajectories 
meanxtime=mean(goodx,2);  meanytime=mean(goody,2); % these are the mean x and y of all the features at each 
time 
meanxtime0=meanxtime(1);  meanytime0=meanytime(1);  
newgoodx=[];   newgoody=[];  
    for tt=1:useframes, 
        if (Nfe == 1) 
            newgoodx(tt,:) = goodx(tt,:); newgoody(tt,:) = goody(tt,:); 
        else 
        newgoodx(tt,:)= goodx(tt,:);%-meanxtime(tt)+meanxtime0;%Comment out after goodx(tt,:)  
%to stop deleting collective center of mass movement 
        newgoody(tt,:)= goody(tt,:);%-meanytime(tt)+meanytime0;%Comment out after goodx(tt,:)  
%to stop deleting collective center of mass movement 
        end 
    end 
  
%sfigure(20); 
%imshow(imgrayfirst); hold on;     
%imshow(clickthisone); hold on; 
%sizeimgrayfirst=size(imgrayfirst); 
sizeimgrayfirst=size(clickthisone); 
for ff=1:Nfeg,  
    plot(  newgoody(:,ff), newgoodx(:,ff), '-m', 'linewidth',0.5 );      
end 
for ff=1:Nfe,  
    if nfet(useframes,ff)==0 
        plot(  ycord(1,ff), xcord(1,ff), 'oy', 'linewidth',0.5, 'markersize',2  );  
        hold on    
    end 
end 
 print([datadir filesep file 'temp' char(num2str(FFF)) '.tif'],'-dtiff') 
 
%make the the mean square displacements for each object: 
devx2=[]; devy2=[]; 
for tt=1:useframes, 
    devx2(tt,:)= (newgoodx(tt,:)-newgoodx(1,:)).^2;   devy2(tt,:)= (newgoody(tt,:)-newgoody(1,:)).^2;   
end 
meandevx2= mean(devx2,2); meandevy2= mean(devy2,2);  %these are the averages over all  
%features 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  %  NOW SELECT THE GOOD DOMAINS TO BE ANALYZED  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  if using_previous_choice_of_domains~=1, % graphical input for choice of domains 
    badclick=0; 
sfigure(20); 
imshow(clickthisone); hold on; 
for ff=1:Nfe,  
     if nfet(useframes,ff)~=0 
        plot(  ycord(:,ff), xcord(:,ff), '-m', 'linewidth',0.5 );          
        hold on    
     end 
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    if nfet(useframes,ff)==0 
        plot(  ycord(1,ff), xcord(1,ff), 'or', 'linewidth',0.5, 'markersize',2  );  
        hold on    
    end 
end 
    disp('Choose some dots!'); 
    [k_x, k_y] = myginput; % these are coordinates of points inside the features that we want to keep.     
    disp('Thank you, that was delicious.'); 
    
    save([datadir filesep char(traj) 'k_x'  '.dat'], 'k_x', '-ascii', '-tabs', '-double'); 
    save([datadir filesep char(traj) 'k_y'  '.dat'], 'k_y', '-ascii', '-tabs', '-double'); 
 else % load the info from saved file 
    k_x=load([datadir filesep char(traj) 'k_x'  '.dat'], 'k_x'); 
    k_y=load([datadir filesep char(traj) 'k_y'  '.dat'], 'k_x'); 
  
%%%%This code below is an attempt to map existing dots onto the geometric fixed image. This works most of the  
%time. Figure 20 at the end will let you know if it doesn’t.     
d1k_x=int16(k_x); 
d1k_y=int16(k_y); 
matrixsize=max(size(clickthisone)); 
olddotmatrix=zeros(RECT(3)); 
for i=1:length(d1k_x); 
%for j = 1:length(d1k_y) 
colindex=d1k_x(i); 
rowindex=d1k_y(i); 
olddotmatrix(rowindex,colindex)=1; 
%end 
end 
% figure (1) 
% imshow(olddotmatrix) 
% title('Old Dot Placement') 
  
%R=load('C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\Comp1\Water\9-4-
%09\v1\q2\movies\R.dat') 
newdotmatrix=geometrical_correction(olddotmatrix,R); 
% figure (2) 
% imshow(newdotmatrix) 
% title('New Dot Placement') 
threshclick = 0.001; 
  
bwdotmatrix=im2bw(newdotmatrix,threshclick); 
[clickcim, clicknum] = bwlabel(bwdotmatrix); 
clickstats = regionprops(clickcim,'Centroid'); 
 for c = 1:clicknum 
clickcent(c,:) = clickstats(c).Centroid; 
 end 
  
 k_x = round(clickcent(:,1)); 
 k_y = round(clickcent(:,2)); 
% newdotmatrix=int16(newdotmatrix); 
% [row,column]=find(newdotmatrix == 1);%column are the x axis, row is the y 
% %row=matrixsize-row; 
% k_x=column; 
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% k_y=row;    
numclicks=length(k_x); 
if Nfeg ~= numclicks, 
    badclick=1; 
else 
    badclick=0; 
   % numclicks=Nfeg 
end 
%%%%%%%%%%%end remaping    
end % ending if USINGPREVIOUS~=1, 
 numclicks=length(k_x); 
k_x=round(k_x);  k_y=round(k_y);  
  % AIM: figure out which is the feature in "cim" corresponding to each of the 
  % mouse clicks on sfigure(20). Remember there is a cim matrix for each 
  % timestep, and the matching feature has a different numner in cim at 
  % each time ! 
  
  clear num 
for ff=1:numclicks,    
    dist=(   (k_y(ff)-newgoodx(1,:)).^2 + (k_x(ff)-newgoody(1,:)).^2  ); 
    [mi po]=min(dist); 
    num(ff)=po; % this contains the index in newgoodx and newgoody of the clicked feature ff  
end 
% now go back to the information that is in matrix "cim" 
clear  num_c    
% It is better to use mouse click positions in cim only on first frame, as domains might  
%move, (especially the small ones). 
%For the geometrically fixed images, some clicks are done on domains that touch the edge. 
k=1;            
cim = load([datadir filesep char(traj) '_' file '_temp_labelled_' num2str(k) '_' char(num2str(FFF)) '.dat']); 
for ff=1:numclicks,   
    num_c(k,ff)=cim( k_y(ff), k_x(ff) ); % this is now the number in the matrix "cim" for 1st frame  
%(will not be the same for all k) 
end 
% so better strategy after 1st frame to use the center of mass of  the domain 
  
    for k=2:numframes, %cycle through time again 
        cim=   load([datadir filesep char(traj) '_' file '_temp_labelled_' num2str(k) '_' char(num2str(FFF)) '.dat']); 
        for ff=1:numclicks,    
            num_c(k,ff)=cim( round(goodx(k, num(ff))), round(goody(k, num(ff))) ); % this is now the  
%number in the matrix "cim" for 1st frame (will not be the same for all k) 
        end    
    end % end of cycle through time 
% num(k,ff)=po; % this contains the index in newgoodx and newgoody of the clicked feature ff  
%(should be the same for all k) 
 
  %check we got the proper ones 
sfigure(20); 
imshow(clickthisone); hold on; 
  
for k=1:numframes,   
    for ff=1:numclicks,  
        sfigure(20); hold on 
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        plot(newgoody(k,num(ff)), newgoodx(k,num(ff)), 'oc', 'linewidth',0.5, 'markersize',3  );  
        hold on    
    end 
end 
  
clear cell_row cell_col cm_row cm_col areafea    
  
for ff=1:numclicks,         
    for k=1:numframes,   
        % cd(thisdatahere) 
        cim=   load([datadir filesep char(traj) '_' file '_temp_labelled_' num2str(k) '_' char(num2str(FFF)) '.dat']); 
        % cd(here) 
        clear bw_single BW1_p BW2_p xee yee 
        bw_single = (cim == num_c(k,ff)); 
        BW1_p = bwmorph(bw_single,'fill'); 
        BW2_p = bwperim(BW1_p); 
        areafea(ff,k)=sum(sum(bw_single)); 
        double_single = double(bw_single); 
        singlestat = regionprops(double_single,'Perimeter','Eccentricity'); 
        perim(ff,k) = singlestat.Perimeter; 
        eccen(ff,k) = singlestat.Eccentricity; 
        [xee yee]=find(BW2_p == 1); 
        cell_row(ff,k) = {[xee]}; 
        cell_col(ff,k) = {[yee]}; 
        cm_row(ff,k)=mean([xee]); 
        cm_col(ff,k)=mean([yee]); 
%We no longer subtract the average center of mass movements. 
        cell_row{ff,k}= cell_row{ff,k} + cm_row(ff,1)  - cm_row(ff,k) ; %taking away center of mass  
%motion for the figure 
        cell_col{ff,k}= cell_col{ff,k} + cm_col(ff,1)  - cm_col(ff,k) ; 
%Commented out to try to fix out of bounds problem  
% can put back to see what happens 
%         sfigure(20); 
%         plot(cell_col{ff,k}, cell_row{ff,k}, 'oy', 'markersize', 1) 
%         hold on    
    end 
end 
if badclick == 1 
    %My first thought was to find the change in the areas, but this doesn't 
    %work very well if the mistaken domains have similar sizes. Instead I 
    %am trying the difference in x direction placement 
            %A=mean(areafea,2); 
            %B=abs(A-areafea(:,1)); 
            diffdomains=clicknum - Nfeg; 
            A = abs(cm_row(:,1)-cm_row(:,2)); 
            for z=1:diffdomains  %need to remove the bad domains from the list 
            C=find(A==max(A)); 
            A(C,:)=[]; 
            cm_row(C,:)=[]; 
            cm_col(C,:)=[]; 
        areafea(C,:)=[]; 
        perim(C,:) = []; 
        eccen(C,:) = []; 
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        cell_row(C,:)= []; 
        cell_col(C,:)= [] ; 
            end 
end 
   
figure (20) 
delete(get(0,'CurrentFigure')) 
figure(20) 
imshow(clickthisone);, hold on 
[endff, frames]= size(cell_col); 
for ff=1:endff,         
    for k=1:numframes,  
plot(cell_col{ff,k}, cell_row{ff,k}, 'oy', 'markersize', 1) 
    end 
end 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       
  %  NOW ANALYZE DIFFUSION IN THE SELECTED DOMAINS             % 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %I normally do not use color and lines to look at figure 30, but uncomment the next two lines if desired (Note: if 
there are too many domains, this will crash your program when it reaches the end. 
 %color = {'or' 'oy' 'og' 'oc' 'ob' 'ok' 'om' 'vr' 'vy' 'vg' 'vc' 'vb' 'vk' 'vm' 'or' 'oy' 'og' 'oc' 'ob' 'ok'}; 
 %line =  {'-r' '-y' '-g' '-c' '-b' '-k' '-m' ':r' ':y' ':g' ':c' ':b' ':k' ':m' '-r' '-y' '-g' '-c' '-b' '-k' '-m'}; 
  
figure(30) 
hold on 
x = 0:k-1;  
for ff = 1:numclicks,  
    fnum = num(ff);  
  
%     rmsd = sqrt(devx2(:,fnum) + devy2(:,fnum)); 
%     msq(ff,:) = rmsd; 
  
%From Cicuta, Keller and Veatch paper, "the average of vertical and horizontal mean  
%square displacements (MSD) is linear with time t and fit to <x^2> = 2nDr(t) 
    msd = devx2(:,fnum) + devy2(:,fnum);  
%msd=uint16(msd); 
    dia(ff) = goodrad(fnum);  
    %PP=polyfit([1:k],msd',1); 
   % P=PP(1); 
    %[P,intercept,aerror,corcoe]=curveFitting([1:k],msd); 
    [P] = lsqcurvefit('Alinear', 1, [1:k], msd'); %fitting time 
   % slope(ff) = P(1);  
   slope(ff)=P/4; %n = 2 
%I normally do not use color and lines to look at figure 30, but uncomment the next two lines if desired (Note: if 
there are too many domains, this will crash your program when it reaches the end. 
%     plot(x, rmsd, char(color(ff))) 
%     plot(x, P*x, char(line(ff))) 
%If you uncommented the two lines above, you will want to comment the two lines below. 
     plot(x, msd) 
     plot(x, P*x) 
  
end 
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xlabel('frames') 
ylabel('msd (pixels squared)') 
  
figure(35) 
plot(dia, slope, 'ob') 
xlabel('diameter (pixels)') 
ylabel('slope of msd fit (pixels squared per frame') 
  
%Now save the diameter and slope information to read in later 
saveslopes = vertcat(dia, slope); 
save([char(traj) 'slopes' '.dat'], 'saveslopes', '-ascii', '-tabs', '-double'); 
save([char(traj) 'areafraction' '.dat'], 'areafraction', '-ascii', '-tabs', '-double'); 
save([char(traj) 'AREA' '.dat'], 'areafea', '-ascii', '-tabs', '-double'); 
times=[initial,useframes]; 
save([char(traj) 'times' '.dat'],'times','-ascii', '-tabs', '-double'); 
save([char(traj) 'Perimeter' '.dat'], 'perim', '-ascii', '-tabs', '-double'); 
save([char(traj) 'Eccentricity' '.dat'], 'eccen', '-ascii', '-tabs', '-double'); 
end 
end 
%The lines below are for old param files so they do not crash. It simply 
%resets values of cleared variables for looping perposes. 
Nfeg=1; 
meandevx2=1; 
meandevy2=1; 
char(traj) %I like to print the traj folder upon completion so if I get a crash, 
%I know where to start processing. 
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Run_all_difco 

%This is a typical run_all file to analyze data from tracker_diffusion. 
%Written by Cynthia A. Stanich 
clear all 
close all 
 fileplace='C:\Program Files (x86)\MATLAB\R2007a student\work\diffusion\halfandhalf\water\9-13-10\v1\movies'; 
cd(fileplace) 
  
%This part loads in all the data 
files = dir('d*slopes.dat')  %A * is a space filler and this will find any file with d and slopes.dat in the name. 
filenames = char(files.name);  
  
%Read in the radiuses (in pixels, column 1) and slopes (in pixels per 
%frame, column 2) of domains from a movie 
s = size(filenames); %This is how many files there are and how many characters in the names. 
s=s(1); %This is how many files there are. 
  
for i = 1:s %I use a loop here to keep the files in order. This is not so important for the  
    %diffusion constant calculation, but it is important for anything time 
    %dependent. 
    j = char(num2str(i)) 
file = strcat('d',j,'slopes.dat'); 
%    file = filenames(i, :);  
    thisdata = load(file)';  
if i==1 %This starts the alldata string. You can also start it with alldata=[] without the if/then. 
    alldata=thisdata; 
else 
    alldata = vertcat(alldata, thisdata); 
 end 
end 
[row,column]=size(alldata); 
%now load up later movies with 1s/frame data 
  
diameter = alldata(:,1)*.18; %this should convert diameter to microns. 
slope = [alldata(:,2) * (.18)^2 * (2)]; %this should convert to microns squared per second 
 
figure(1), hold on 
 plot(diameter/2, slope,'*')% plotskies(m,:)) 
xlabel('domain radius in microns') 
ylabel('D in microns squared per second') 
%legend(compositions) 
  
%now bin in bins of one micron (This is useful for diameter, but to plot it 
%is better to use bins/2. This will convert to radius and allow for half micron binning. 
  
nbins = 30; %Should be the same as your max diameter 
for i = 1:nbins,  
    lowint = find(diameter <= i); 
    highint = find(diameter >= (i-1));  
    int = intersect(lowint, highint); 
    slbin(i) = mean(slope(int));  
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    devbin(i) = std(slope(int)); 
    clear lowint highint int 
end 
  
%Make a figure with errorbars 
figure(3), hold on 
errorbar((1:nbins)/2, slbin, devbin,'*')%, plotskies(m,:)) 
xlabel('domain radius in microns') 
ylabel('D in microns squared per second') 
%legend(compositions); 
  
%But you can't get a nice log-log plot with the errorbar function above. So do it the way below: 
figure (4), hold on 
plot((1:nbins)/2,slbin,'*')%(m,:),plotskies(m,:)) 
  
for x=1:nbins;  
     plot([x/2, x/2], [slbin(x)-(devbin(x)/2), slbin(x) + (devbin(x)/2)])%, colorskies(m,:) ) 
end 
%end 
  
%Now plot the expected values from HPW's Diffusion Constant equation. There 
%are no free parameters, use values from the actual data.  
%EDIT: Ediffco was changed to the new equation by de Koker 1996 and Seki 2011 to assume the inclusion is fluid 
with the same viscosity as the membrane. 
T=38+273.15; %Use the temperature from the quench 
r=(1:0.1:20)*10^(-6); 
eida=.0007; 
D=Ediffco(T,eida,r); 
r=r*10^6; 
D=D*10^12; 
plot(r,D) 
  
%This is for getting rid of imaginary numbers from the diffusion constants. 
%Mostly this is for if the radii and slopes are binned after taking the 
%log. However, I use this as a final filtering step. 
xva=find(~isnan(slbin)); 
for a=1:length(xva); 
    newslbin(a)=slbin(xva(a)); 
    newdevbin(a)=devbin(xva(a)); 
end 
  
%Plot final plot for log-log manipulation and visualization 
figure (42), hold on 
plot(xva/2,newslbin,'*') 
for x=1:length(xva);  
     plot([xva(x)/2, xva(x)/2], [newslbin(x)-(newdevbin(x)/2), newslbin(x) + (newdevbin(x)/2)]) end 
plot(r,D) 
  
%Save data with lines below if you plan to use this data for figures for 
%papers using another run_all file later. 
% save(['allradii.dat'], 'radius', '-ascii', '-tabs', '-double'); 
% save(['alldifco.dat'], 'slope','-ascii','-tabs','-double' 
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Ediffco 

 
%Written by Cynthia A. Stanich 
function D=Ediffco(T,eida,r) 
%D=(1.3807*10^(-23)).*T./(16.*eida.*r); %HPW 
D=(2.*1.3807*10^(-23)).*T./(3.*(pi^2).*eida.*r); %de Koker 1996, Seki 2011 
end 
%This results in D in m^2/s 
%Run for D with these values. THEN you multiply r by 10^6 to put back into 
%microns and multiply D by 10^12. Then plot. 
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PetrovSchwille 
 
%Written by Cynthia A. Stanich 
function [Dum] = PetrovSchwille(a,T,eida,mu1) %calculates the diffusion constant of radii  
%according to Petrov & Schwille 
%a = set of domain radii in microns 
%T = temperature of quench in Celcius 
%eida = viscosity of the membrane 
%in P&S e=a/l and is called the reduced radius. 
if nargin <4 
    mu1 = 0.0006535 
end 
if nargin < 3 
    eida = 4*10^-9; %units of Pa s m 
end 
if nargin < 2 
    T = 40.29; %C 
end 
if nargin < 1 %This is set up to work with Cynthia's data on her laptop. If you would like to 
    %have an auto-loading data file, you will need to create one.  
nbins=45; %This is to create the plot that I want to fit with the equation below. These are the x  
%values 
slbin=load('slbin.dat'); %This will load the y values of the plot you are fitting with the equation below. 
figure (12) 
plot(2:nbins,slbin(2:nbins),'o') 
title('Diffusion Constants versus radii of domains') 
xlabel('Radii (microns)') 
ylabel('Diffusion constants (micron^2 / s)') 
end 
% %%% 
% %%%%%%%%%%%%%%%%%% 
% %This loads the actual radii of the domains so that you have actual values 
% %of data to work with. These values are in microns 
% allradii=load('radii.dat'); 
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% 
%%%Below here is anything you might want to change. You should check units 
%%%of the values I have below and make sure they all make sense 
k = 1.3806503*10^(-23); %(m^2kg/s^2K) 
T = 273.15+T; %K 
avagadro = 6.0221415*10^(23); %molecules/mole 
%%%%%%%%%%%%%%%%% 
%%%%eida is the viscosity of the membrane. It is the number you should try 
%%%%changing once you make sure all the units make sense 
iis=0.0008:0.0001:0.1; 
colorset=varycolor(length(iis)); 
m=1; 
c1 = 0.73761; %Unitless constant 
c2 = 0.52119; %Unitless constant 
b1 = 2.74819; %Unitless constant 
b2 = 0.61465; %Unitless constant 
gamma = 0.577215; %Unitless euler's constant 
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mu2 = mu1; 
a=a*10^(-6);% changes radii from microns to meters 
%epsilon will change as you change eida. Please make sure the units 
%actually cancel. Where is the thickness of membrane? What does that do to 
%units????? 
epsilon = (a.*(mu1+mu2))./(eida); %unitless  epsilon is also a/L, where L = thickness of membrane * viscosity of 
membrane / (2 * viscosity of water). 
%%%%%%%%%%%%  
%%%%%%%%%%%Don't change the stuff in the next few lines%%%%%%%%%%%%%%%%%%%% 
part1 = log(2./epsilon)-gamma+(4.*epsilon./pi)-((epsilon.^2)/2).*log(2./epsilon); %unitless 
part2 = 1-(((epsilon.^3)/pi).*log(2./epsilon))+((c1*epsilon.^b1)./(1+c2*epsilon.^b2)); %unitless 
D=(k*T/(4*pi*eida)).*part1./part2; %m^2/s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
aum=a*10^6; %in microns 
Dum=D*(10^6)*(10^6); %in microns^2/s 
%This figure will plot the values you created. Does it look right? 
figure (103), hold on 
plot(aum,Dum,'.k') 
title('Diffusion Constants versus radii of domains') 
xlabel('Radii (microns)') 
ylabel('Diffusion constants (micron^2 / s)') 
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Param_growth 
 
%Written by Cynthia A. Stanich 
%%%GROWTH%%% 
%Parameter file for using with all versions of the growthexponent measurements.  
%Be sure to comment out the correct lines. 
clear all   
close all 
firstgo=0; %Set to 1 if you want to choose RECT 
warning off all 
WHITEDOMAINS=0; % set =1 if domains are bright on dark background in original avi file, set =0 otherwise 
hd='C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\Comp2\Water\2-1-
10\water_sucrose\v1\q1\movies'; 
cd(hd) 
homedirect='C:\Program Files (x86)\MATLAB\R2007a Student\work'; %This is where the program files are. 
filedirectory=[hd]; 
FILT=1; %counter 
  
%%%growthexponent required lines: YOU MUST COMMENT THIS OUT FOR growthexponent_startanywhere and  
%growthexponent_choose 
%Below is a loop through all of the movies of a single quench 
initial = 1; 
filelist=['q1_00.tif'; 
'q1_01.tif'; 
'q1_02.tif'; 
'q1_03.tif'; 
'q1_04.tif'; 
'q1_05.tif']; %you can use as many movies at a time as you want with growthexponent.m 
TimeStart=[5,4,14; 
5,8,16; 
5,10,23; 
5,12,09; 
5,13,59; 
5,16,32]; %Hour,Minute,Seconds TIME WHEN THE MOVIE STARTS 
traj='q1Grow'; %Make folder for data 
%%%%End growthexponent.m required lines 
  
%%%growthexponent_startanywhere required lines: COMMENT THIS OUT FOR growthexponent and for  
%growthexponent_choose, you will not be able to do a loop. You should 
%only give one value in firstframelist, useframeslist, perfectrun, and fillon 
filelist=['v2001.tif']; %For growthexponent_startanywhere you can only use 1 movie. 
TimeStart=[1,00,00]; %Hour,Minute,Seconds TIME WHEN THE MOVIE STARTS 
traj='v2001Growth'; %Make folder for data, must be named by movie 
firstframelist=[1:10:150];%actual movie is 159 frames, 15 runs 
useframeslist=[ones(1,14)*20,159-max(firstframelist)]; 
perfectrun=[zeros(1,15)]; %You can have the code skip parts of movies if it ran successfully before. 
fillon=zeros(1,15); %It is possible to turn off fill. This is important for anything not circular. 
[row2,column2]=size(firstframelist); 
  
%These lists are necessary for all growthexponent programs. 
%If using growthexponent: These are the filters you need for each movie. 
%If using growthexponent_startanywhere and growthexponent_choose: These are the filters you will use 
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%for interval designated by the initial and final frames.  
smallflist=[0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.035,0.035,0.035,0.035,0.035,0.035,0.04];%,0.04,0.04];  
bigflist=[0.17,0.14,0.14,0.13,0.13,0.12,0.10,0.10,0.13,0.12,0.11,0.11,0.10,0.09,0.08];%,0.11,0.10]; 
thresholdlist=[0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.85,0.85,0.8,0.8,0.8,0.85,0.85];%,0.8,0.8]; 
NeedsAureliaGradientList=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];%,0,0]; 
 
%%%%%The following lines are necessary if you are using 
%%%%%growthexponent_startanywhere. These lines are not necessary to comment out. 
doyou= exist (strcat([char(hd) filesep char(traj) filesep char(traj) 'perimetersum' char(filelist) '.dat'])); 
if (doyou == 2) 
 perimetersum=load([char(hd) filesep char(traj) filesep char(traj) 'perimetersum' char(filelist) '.dat']); 
 areafraction=load([char(hd) filesep char(traj) filesep char(traj) 'areafraction' char(filelist) '.dat']); 
 normalizedperimeter=load([char(hd) filesep char(traj) filesep char(traj) 'normalizedperimeter' char(filelist) '.dat']); 
 blackarea=load([char(hd) filesep char(traj) filesep char(traj) 'blackarea' char(filelist) '.dat']); 
end 
%%%%%%%%%%%End growthexponent_startanywhere code 
  
% 
dos(['md ' char(traj)]) 
[row,column]=size(filelist);%Get the number of movies from "row" 
for loop=1:row; %This loops over all of the movies (row) 
     smallf=smallflist(loop); 
    bigf=bigflist(loop); 
    threshold=thresholdlist(loop); 
    NeedsAureliaGradient=NeedsAureliaGradientList(loop); 
file=filelist(loop,:);%calls up the movie 
AAA=imfinfo(file); 
[little,big]=size(AAA); 
final=big; 
useframes=final-initial+1; 
framelist(loop)=useframes; 
cd(homedirect) 
growthexponent %Measures all movies in a quench (MULTIPLE MOVIES) 
growthexponent_startanywhere %Measures intervals IN ONE MOVIE 
growthexponent_choose %For measuring specific domains 
  
times=0.5*(0:useframes-1); %times in seconds (for figures in growthexponent_v4.m) 
  
for www=1:useframes; 
    clear (['FEA' num2str(www)]) 
    clear (['DUI' num2str(www)]) 
end 
clear imgray 
clear MOV 
clear cim 
clear ddi 
clear diam 
clear distmatrix 
clear ecclist 
clear f1 
clear f2 
clear fin 
clear goodf 
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clear goodx 
clear goody 
clear histed 
clear histme 
clear im 
clear ima 
clear imgrayfirst 
clear ini 
clear listofradiuses 
clear lograd 
clear logtime 
clear meandiam 
clear merged 
clear micronmeanradius 
clear nfet 
clear nome 
clear onesinbw2 
clear out 
clear out2 
clear perim 
clear radius 
clear roughDX 
clear roughDY 
clear roughXM 
clear roughXMf 
clear roughYM 
clear roughYMF 
clear tottrans 
clear transmatrix 
clear win 
clear xcord 
clear ycord 
close all 
end 
cd(thisdatahere) 
  
for loop=1:row 
 hour=TimeStart(loop,1); 
 minute=TimeStart(loop,2); 
 second=TimeStart(loop,3); 
 sec(1,loop)=second+(60*minute)+(3600*hour); 
  
if (loop==1) 
time=[0.5:0.5:framelist(1)/2];%sets initial time 
else if (loop~=1) 
    nextstart=sec(loop)-sec(1); 
    nextend=nextstart+(((framelist(loop))-1)/2); 
    sequence=nextstart:0.5:nextend; 
    time=[time,sequence]; 
    end 
end 
end 
save([char(traj) 'TimeList' '.dat'],'time','-ascii','-tabs','-double') 
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for loop=1:row; %This loops over all of the movies (row) 
file=filelist(loop,:);%calls up the movie 
newareafraction=load ([char(traj) 'areafraction' char(file) '.dat']); 
newperimetersum=load ([char(traj) 'perimetersum' char(file) '.dat']); 
newnormperim=load([char(traj) 'normalizedperimeter' char(file) '.dat']); 
newdiams=load([char(traj) 'diam' char(file) '.dat']); 
neweccs=load([char(traj) 'eccentricity' char(file) '.dat']); 
[rows,columns]=size(neweccs); 
for n=1:columns; %Process over each frame of the each movie 
    indexlist=find(newdiams(:,n)); %This finds the indicies that are not zeros 
    aa=min(indexlist); %Starting (always 1) 
    bb=max(indexlist); %Ending (last index before the first zero) 
    for k=aa:bb; 
    %a(k,n)=sqrt(newareas(k,n)/(pi*sqrt(-(neweccs(k,n)^2-1)))); 
    %b(k,n)=sqrt((a(k,n))^2-(((a(k,n))^2)*neweccs(k,n))); 
    %r(k,n)=sqrt(a(k,n)*b(k,n)); 
    r(k,n)=newdiams(k,n)/2; 
    end 
meanr(n)=mean(r(aa:bb,n)); 
end 
clear r 
if loop==1 
    perimList=newperimetersum; 
    normperimList=newnormperim; 
    AFList=newareafraction; 
    meanrList=meanr; 
else AFList=[AFList,newareafraction]; 
    normperimList=[normperimList,newnormperim]; 
    perimList=[perimList,newperimetersum]; 
    meanrList=[meanrList,meanr]; 
end 
clear meanr 
end 
close all 
  
figure (1) 
plot(time,AFList) 
title('The fraction of dark to all versus time') 
xlabel('Time (seconds)') 
ylabel('Fraction of dark to all') 
  
figure (4) 
plot(time,perimList) 
title('Total Perimeter vs Time') 
xlabel('Time') 
ylabel('Perimeter (pixels)') 
  
figure (5) 
plot(time,normperimList) 
title('Normalized Perimeter vs Time') 
xlabel('Time') 
ylabel('Normalizeed Perimeter (Perimeter/area of movie)')  
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Growth_exponent 
 
%%%GROWTH%%%   
% You can use this program to measure R on multiple movies. 
% Saves area fraction, total area, total perimeter, and time 
%LINE 338 - holes 
%VERSION 6 - Rewriting the way k is counted. Need a "while" instead of a "for" 
%VERSION 5 - Streamlined growthexponent code. 
%Saves total perimeter 
%Includes geometric fix. 
%saves Area and Eccentricity for a better calculation of 
%diameter. Ensures that the area chosen is square. 
%This program contains parts of tracker_diffusion that were originally  
%written by Pietro Cicuta and modified by Cynthia A. Stanich 
  
  
cd(filedirectory) %makes directory hd 
cd(char(traj)) %Changes directory to new directory 
thisdatahere=cd; %Tells the code to put all the data in the new directory 
  
%figure(5)%First go (firstgo=1,test=1) this will be blank 
set(gcf,'paperunits','centimeters') 
set(gcf,'paperposition',[5 5 10 8]) %left bottom  totalwidth totalheight 
axes('position',[0.2 0.2 0.6 0.6])   %left bottom  relativewidth relativeheight 
  
cd(filedirectory)%makes directory hd from param*.m 
here=cd; 
cd(hd) 
 %This next part allows for choosing the area to study on figure 50. 
if firstgo==1, 
sfigure(50) 
    imshow(in(:,:,1)) %This part takes the bitdepth values in the in array and plots them on figure 50 
    hold on 
    [rex,rey] = ginput(2);%graphical input from mouse. This gets 2 points from 
    %the current axes and returns the x- and y-coordinates in length 2 vectors rex and rey  
    RECT(:,1)=round([rex(1) rey(1) rex(2)  rey(2)]'); 
   % CIRC(:,1)=round([rex(3) rey(3) rex(4) rey(4)]'); 
      minwidth=RECT(1,FFF); %left column 
    minheight=RECT(2,FFF);  %top row 
    maxwidth=RECT(3,FFF); %right column 
    maxheight=RECT(4,FFF);%bottom row 
    diffies=[maxwidth-minwidth,maxheight-minheight]; %Our measurement requires that the 
    %area of interest is square. This forces it to be so. 
 square=max(diffies)-min(diffies); 
 if diffies(1)>=diffies(2) 
    maxheight=maxheight+square; 
   else maxwidth=maxwidth+square; 
 end    
  
    %%draws the colored square around the vesicle seen on figure 50 
    plot( [ minwidth  maxwidth   ], [  minheight minheight ], '-r' ) %top side 
    plot([ minwidth  maxwidth   ], [maxheight maxheight   ],  '-g' ) %bottom side 
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    plot([minwidth minwidth   ], [ minheight maxheight    ],  '-b' )  %left side 
    plot([ maxwidth  maxwidth   ], [minheight maxheight    ],  '-c' ) %right side 
  
         %RECT' %prints the chosen numbers 
end %Ends first go 
  
if firstgo~=1, %aka 0 
%in this case all the Rect values are known. No need to choose 
sizes=[AAA.Width, AAA.Height]; 
sides=min(sizes); 
   RECT(1,:)=[1 1 sides sides]; 
    minwidth=RECT(1); %left column 
    minheight=RECT(2);  %top row 
    maxwidth=RECT(3); %right column 
    maxheight=RECT(4);%bottom row   
    
 %You can comment this figure out to speed up processing.   
   sfigure(50) 
    imshow(in(:,:,1)) 
    hold on 
    plot( [ minwidth  maxwidth   ], [  minheight minheight ], '-r' ) %top side 
    plot([ minwidth  maxwidth   ], [maxheight maxheight   ],  '-g' ) %bottom side 
    plot([minwidth minwidth   ], [ minheight maxheight    ],  '-b' )  %left side 
    plot([ maxwidth  maxwidth   ], [minheight maxheight    ],  '-c' ) %right side 
  
end %Ends first go 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  %            LOAD IMAGES AND SELECT REGION OF INTEREST% Originally written by Pietro Cicuta 
  %   %%Modified heavily by Cynthia A. Stanich     
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%Want to count through k so that each frame set just continues with the next k in the line. 
counter=1; 
for loop=1:column2; %This loops over all of the framesets (row) and reads in 
    %all of the values in the parameter file for each movie. 
    smallf=smallflist(loop); 
    bigf=bigflist(loop); 
    threshold=thresholdlist(loop); 
    NeedsAureliaGradient=NeedsAureliaGradientList(loop); 
    lastframe=firstframelist(loop)+useframeslist(loop)-1; 
    useframes=useframeslist(loop); 
    k = firstframelist(loop); 
    if perfectrun(loop) == 0 
while k <= lastframe 
    im=in(:,:,k); 
    imgray=(im(minheight:maxheight,minwidth:maxwidth,1));  % select the best part of the frame  
clear im 
    if k==firstframelist(loop), imgrayfirst=imgray;  end% keep the first image in memory 
    averagelight=mean(mean(imgrayfirst)); 
        h =sfigure(1);  
        set(h,'units','normalized','position',[0.1 0.1 0.3 0.3]);  
        imshow(imgray) 
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  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  %                   NOW CLEAN UP THE IMAGE,                     % 
  %             TO GET THE BEST POSSIBLE BLACK&WHITE   % Written by Pietro Cicuta 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
      I=imgray; 
      % Set up spatial frequency bandpass filter 
    if (k==firstframelist(loop)) 
         [f1,f2] = freqspace(81,'meshgrid'); 
         Hd = ones(81); 
         radius = sqrt(f1.^2 + f2.^2); 
         Hd((radius<smallf)|(radius>bigf)) = 0;  % remember in frequency space 
         %figure, mesh(f1,f2,Hd) 
         win = fspecial('gaussian',81,10); 
         win = win ./ max(win(:));  % Make the maximum window value be 1. 
         %figure, mesh(win) 
          filter = fwind2(Hd,win); 
           end 
    %filter with it and threshold 
    out = imfilter(I,filter,'replicate'); 
    out2 = imadjust(out,stretchlim(out),[0,1]); 
    %figure, imshow(imadjust(I,stretchlim(I),[0,1])); 
 
%NeedsAureliaGradient filter written by Aurelia R. Honerkamp-Smith and modified for use 
%here by Cynthia A. Stanich 
% It is an Otsu method done over a grid 
   if exist('NeedsAureliaGradient')==1 %%Allows for files done before 9/3/09 to work with this tracker program 
without having a "needsAureliaGradient" value. 
        if NeedsAureliaGradient==1 %Needs Aurelia Gradient is good for images of a vesicle that are next to a bright 
vesicle and so have a gradient of illumination across it. 
            eye=double(out2); %change the values of filtered image to double 
            H = fspecial('disk',100); 
            J = imfilter(out2, H, 'replicate'); 
            J=double(J); 
            %figure(100) 
            % imshow(out2, []); 
            % figure(200) 
            % imshow(out2, []) 
            % figure(300) 
            % imshow(eye-J, []); 
            FI = eye - J; %excess brightness 
            addittoFI=min(min(FI)); 
            out2=FI-addittoFI; %remove excess brightness 
        end %end NeedsAurliaGradient = 1 
    end  
     
    %figure, imshow(out2); 
 %The line below sets the threshold value for black and white choices 
    thresholdvalue = threshold*graythresh(out2)*(max(max(out2))); 
   if WHITEDOMAINS==0, %set in the param file, if 0: dark domains 
        bw2 = (out2 < thresholdvalue);  % this  processes images that have dark domains 
    end 
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    if WHITEDOMAINS==1, %set in the param file, if 1: bright domains 
        bw2 = (out2 > thresholdvalue);  % this  processes images that have bright domains 
    end 
    if fillon(loop) == 1 %We do not know the domains are uniform. The param file 
        %sets whether or not you should fill in the holes. 
   bw2 = imfill(bw2, 'holes');  
    end 
   clear FI 
        
%Commented out for speed 
%         sfigure(2) 
%         imshow(bw2) 
  
clear pat0 
clear pat 
clear merged 
clear dbw 
           sfigure(3) %comment out for speed 
          
          pat0(:,:,2)=0.99*double(imgray)/65536; 
    %pat0(:,:,2)=double(imgray)/255; 
    pat0(:,:,3)=0.99*double(imgray)/65536;%double(imgray)/255; 
    %pat0(:,:,3)=double(imgray)/255; 
    pat0(:,:,1)=0.99*double(imgray)/65536;%double(imgray)/255; 
    %pat0(:,:,1)=double(imgray)/255; 
    pat=pat0; 
  
    pat(:,:,2)=1; 
  
         clear imgray 
          %aurelia intervention to change bw2 type! 
         dbw = double(bw2);  
          pat(:,:,3)=1-0.5*(dbw); 
          pat(:,:,1)=1-0.5*(dbw); 
cd(hd) 
        merged =immerge(pat0,pat,0.5);%uses immerge.m(explanation included in that file) 
       hold on 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      
  %                   NOW LABEL EACH FEATURE                      % 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%label connected regions, find mean coordinates of each region 
   ima=bw2; 
   [cim, num] = bwlabel(ima);   % label each connected region     
   %%%%%THIS IS THE NEW CODE FOR GEOMETRICAL CORRECTIONS%%%%%%%%% 
R=load('R.dat'); 
    bw3=geometrical_correction(cim,R); %Uses Sarah Veatch's geometric fix program 

[bw4,num]=bwlabel(bw3); 
%%%END CODE FOR GEOMETRICAL CORRECTIONS 
  
  close(figure(3)) 
 cd(thisdatahere) 
save([char(traj) char(file) 'CorrectedImage' char(num2str(counter)) '.dat'], 'bw4', '-ascii', '-tabs', '-double') 
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    %Change bw2 to bw4 below 
BW2=bwperim(bw4,4); %finds the boarder between the phases 
sfigure (2), imshow(bw4) 
sfigure (5), imshow(BW2) 
  
totalperim=sum(sum(BW2)); %The boarder pixels are designated as a 1 in the 
%matrix. This adds them all up to find the length of the total boarder. 
[rp,cp]=size(BW2); 
%The lines below delete the edges of the matrix since matlab outlines 
%domains touching the edge on the edge of the image. 
edgeperim=sum(BW2(1,:))+sum(BW2(rp,:))+sum(BW2(:,1))+sum(BW2(:,cp)); 
perimetersum(counter)=totalperim-edgeperim;      
  
 pause(0.02) 
 %adding up the area fraction 
   onesinbw4=nonzeros(bw4); 
   [l,w]=size(bw4); 
   totalsizebw4=l*w; 
   allones=length(onesinbw4); 
   blackarea(counter)=allones; 
   areafraction(counter)=allones/totalsizebw4; 
   timelist(counter)=k; 
   counter=counter+1; 
 clear siz; clear xm; clear ym; clear rad; clear memo;% clear perimeters; 
clear bw4; clear BW2; clear cim; clear bw2; clear FEA; clear DUI; 
  
 cd(here) 
   k=k+1; 
end% this end finishes the first cycle through the time series (k) 
    end %ends perfectrun if 
end 
  % we now have all the important info summarized in the vectors vxm, vym, etc...   
%positions (cc) along these vecors refer to the  
  % feature of numbers memo(cc) in the  file saved from the matrix cim.  
sfigure (5000) 
plot(areafraction) 
title('areafraction') 
   
cd(thisdatahere) 
areaofmovie=RECT(3)*RECT(4); 
normalizedperimeter=blackarea./perimetersum; % REALLY R from Fan,Han,Haataja 2010 
  
    save([char(traj) 'perimetersum' char(file) '.dat'], 'perimetersum', '-ascii', '-tabs', '-double'); 
    save([char(traj) 'areafraction' char(file) '.dat'], 'areafraction', '-ascii', '-tabs', '-double'); 
    save([char(traj) 'normalizedperimeter' char(file) '.dat'], 'normalizedperimeter', '-ascii', '-tabs', '-double'); 
    save([char(traj) 'blackarea' char(file) '.dat'], 'blackarea','-ascii', '-tabs', '-double'); 
    save([char(traj) 'timelist' char(file) '.dat'], 'timelist','-ascii', '-tabs', '-double'); 
    cd(hd) 
   
   clear arealist 
  clear diam 
  clear ecclist 
  clear perim 
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  clear areafraction 
clear m1 
clear m2 
clear m3 
clear mmm 
clear thresholdvaluem1 
clear thresholdvaluem1m2 
clear thresholdvaluem1m3 
clear thresholdvaluem2m1 
clear thresholdvaluem2 
clear thresholdvaluem2m3 
clear thresholdvaluem3m1 
clear thresholdvaluem3m2 
clear thresholdvaluem3 
clear BW2 
clear perimetersum 
clear blackarea 
clear in 

 
 
 
 
 
 
 
 
 
 
 
 
 
Two additional programs, growthexponet_startanywhere.m and growthexponent_choose.m 

were written and are extremely similar to code above. The program 

growthexponent_startanywhere.m is a modified form of growthexponent.m and is different for 

the method by which it loops through movies and by which it saves and names output files. The 

program growthexponent_choose.m is similar growthexponent.m but retains some tracking 

code from tracker_diffusion.m. 
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Run_all_growth 

%Run all for growth 
%This is for getting the growth exponent and will be added to the run_all* files upon completion. 
%This run_all file will plot several measurements in time. 
%Written by Cynthia A. Stanich 
clear all 
%close all 
sets='C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\halfandhalf\water\9-13-
10\v1\movies'; %The movies you are interested in 
setz=1; 
%Need to calculate the seconds. 
TimeStart=[4,02,15; 
4,07,15; 
4,11,14; 
4,15,57; 
4,20,19; 
4,25,14]; 
  
cd('C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\halfandhalf\water\9-13-
10\v1\movies\v1Grow') %you will need to put the traj directory from the param file here. 
[row,column]=size(TimeStart); 
framelist=[389,121,121,121,121,121]; %Lengths in frames of all the movies 
firstmovielength=framelist(1); 
adjfirstmovieindex=firstmovielength-(121*2); %You only want the last 121 frames of the first movie, or the first 
movie weights the average too much. 
traj='v1Grow'; %Traj 
hour = TimeStart(1,1); 
minute = TimeStart(1,2); 
second = TimeStart(1,3); 
sec(1,1)=second+(60*minute)+(3600*hour); 
timelist=[0.5:0.5:framelist(1)/2]; 
for loop=2:row 
 hour=TimeStart(loop,1); 
 minute=TimeStart(loop,2); 
 second=TimeStart(loop,3); 
 sec(1,loop)=second+(60*minute)+(3600*hour); 
%  if (loop==1) 
% timelist=[0.5:0.5:framelist(1)/2];%sets initial time 
% else if (loop~=1) 
    nextstart=sec(loop)-sec(1); 
    nextend=nextstart+(((framelist(loop))-1)); 
    sequence=nextstart:nextend; 
    timelist=[timelist,sequence]; 
  %  end 
  %  end 
end 
save([char(traj) 'TimeList' '.dat'],'timelist','-ascii','-tabs','-double') 
  
%You will need different files depending on the growth exponent measurement 
%you are doing. This is for a sequence of movies in the same quench. 
filelist=['v1Growperimetersumv1001.tif.dat';  
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          'v1Growperimetersumv1002.tif.dat'; 
          'v1Growperimetersumv1003.tif.dat'; 
          'v1Growperimetersumv1004.tif.dat'; 
          'v1Growperimetersumv1005.tif.dat'; 
          'v1Growperimetersumv1006.tif.dat']; 
filelist2=['v1Growareafractionv1001.tif.dat'; 
           'v1Growareafractionv1002.tif.dat'; 
           'v1Growareafractionv1003.tif.dat'; 
           'v1Growareafractionv1004.tif.dat'; 
           'v1Growareafractionv1005.tif.dat'; 
           'v1Growareafractionv1006.tif.dat']; 
filelist3=['v1Grownormalizedperimeterv1001.tif.dat'; 
          'v1Grownormalizedperimeterv1002.tif.dat'; 
          'v1Grownormalizedperimeterv1003.tif.dat'; 
          'v1Grownormalizedperimeterv1004.tif.dat'; 
          'v1Grownormalizedperimeterv1005.tif.dat'; 
          'v1Grownormalizedperimeterv1006.tif.dat']; 
filelist4=['v1Growblackareav1001.tif.dat'; 
          'v1Growblackareav1002.tif.dat'; 
          'v1Growblackareav1003.tif.dat'; 
          'v1Growblackareav1004.tif.dat'; 
          'v1Growblackareav1005.tif.dat'; 
          'v1Growblackareav1006.tif.dat']; 
  
for i=1:row; 
nextperiminline=load(filelist(i,:)); 
nextafinline=load(filelist2(i,:)); 
nextRinline=load(filelist3(i,:)); 
nextblackarea=load(filelist4(i,:)); 
if  i==1 
    periminorder=nextperiminline; 
    afinorder=nextafinline; 
    Rinorder=nextRinline; 
    bainorder=nextblackarea; 
else 
    periminorder=[periminorder,nextperiminline]; 
    afinorder=[afinorder,nextafinline]; 
    Rinorder=[Rinorder,nextRinline]; %Basically the most important: R = area/perimeter 
    bainorder=[bainorder,nextblackarea]; 
end 
end 
timelist=load('v1GrowTimeList.dat'); 
  
figure (16) %Perimeter vs time 
plot(timelist,periminorder) 
title('Total Perimeter vs time q5' ) 
xlabel('Time') 
ylabel('Perimeter') 
  
%Best fit for log(perim) vs log(time). CurveFitting.m is a program I wrote 
%to report more statistics than Matlab has avaiable 
%ae is the error in the average 
%r^2 is the sum of the square of the residuals 
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[a_long,b_long,ae_long,r2_long]=curveFitting(log(timelist(adjfirstmovieindex:length(timelist))),log(periminorder(a
djfirstmovieindex:length(timelist)))) 
  
x=log(max(timelist)+3); 
y=0; 
b=b_long; 
idealfity=((-1/3)*log(timelist))+b; %Creates a trend line 
  
%This is Sarah's Idea to relate perimeter with area fraction 
afideal=ones(1,length(timelist))*afinorder(adjfirstmovieindex); 
perimadj=(afideal(1).*periminorder)./afinorder; 
  
[sarah_a_long,sarah_b_long,sarah_ae_long,sarah_r2_long]=curveFitting(log(timelist(adjfirstmovieindex:length(tim
elist))),log(perimadj(adjfirstmovieindex:length(timelist)))) 
b=sarah_b_long; 
idealfity=((-1/3)*log(timelist))+b; %creates a trendline 
  
figure (31), hold on %plots log(perimeter) vs log(time) 
plot(log(timelist(1:adjfirstmovieindex)),log(perimadj(1:adjfirstmovieindex)),'Color',[0.5 0.5 0.5]) 
plot(log(timelist(adjfirstmovieindex:length(timelist))),log(perimadj(adjfirstmovieindex:length(timelist))),'k') 
%plot(log(timelist),(sarah_a_short*log(timelist))+sarah_b_short,'--c')%early 
plot(log(timelist),(sarah_a_long*log(timelist))+sarah_b_long,'--m')%late 
%plot([log(45.5),log(45.5)],[-5,20],'r') 
plot([log(timelist(adjfirstmovieindex)),log(timelist(adjfirstmovieindex))],[-5,20],'g') 
plot([log(max(timelist)),log(max(timelist))],[-5,20],'b') 
plot(log(timelist),idealfity,'--c') 
legend('Early Perimeter Data','Fitable Perimeter Data','fit','time = Start','time = End','y = -1/3 x + b') 
title('log-log Perimeter vs Time - P/AF=Padj/AFideal (Sarah) q5','fontsize',14) 
xlabel('log Time', 'fontsize',14) 
ylabel('log Perimeter','fontsize',14) 
  
  
%This is Aurelia's idea to relate perimeter with area fraction 
afsqrt=sqrt(afinorder*100); 
perimadjahs=periminorder./afsqrt; 
[aurelia_a_long,aurelia_b_long,aurelia_ae_long,aurelia_r2_long]=curveFitting(log(timelist(adjfirstmovieindex:lengt
h(timelist))),log(perimadjahs(adjfirstmovieindex:length(timelist)))) 
%[aurelia_a_short,aurelia_b_short,aurelia_ae_short,aurelia_r2_short]=curveFitting(log(timelist(91:201)),log(perim
adjahs(91:201))) 
b=aurelia_b_long-0.2; 
idealfity=((-1/3)*log(timelist))+b; 
  
  
figure (51), hold on %Plots area fraction in time 
plot(timelist(1:length(timelist)),afinorder(1:length(timelist)),'k') 
plot(timelist(1:length(timelist)),afideal(1:length(timelist)),'r') 
title('Area Fraction vs Time q5', 'fontsize',14) 
xlabel('Time', 'fontsize',14) 
ylabel('Area Fraction','fontsize',14) 
legend('Actual Area Fraction', 'Ideal Area Fraction') 
%perimadjnolog=(afideal(1).*periminorder)./afinorder; 
starttime=timelist(adjfirstmovieindex) 
endtime=max(timelist) 
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figure (61), hold on %Plots R in time 
plot(timelist(1:length(timelist)),Rinorder(1:length(timelist)),'k') 
title('R = (black area/total perimeter) vs Time q5', 'fontsize',14) 
xlabel('Time', 'fontsize',14) 
ylabel('R pixels','fontsize',14) 
[Ra_long,Rb_long,Rae_long,Rr2_long]=curveFitting(log(timelist(adjfirstmovieindex:length(timelist))),log(Rinorder(a
djfirstmovieindex:length(timelist)))) 
  
figure (71), hold on  % Plots the minority phase in time 
plot(timelist(1:length(timelist)),bainorder(1:length(timelist)),'k') 
title('Black Area vs Time q5', 'fontsize',14) 
xlabel('Time', 'fontsize',14) 
ylabel('Black Area pixels^2','fontsize',14) 
timelistadj=timelist(adjfirstmovieindex:length(timelist)); 
Rinorderadj=Rinorder(adjfirstmovieindex:length(timelist)); 
save(['TimeListadj' '.dat'],'timelistadj','-ascii','-tabs','-double') 
save(['Rinorderadj' '.dat'],'Rinorderadj','-ascii','-tabs','-double') 
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CurveFitting 

%%% DIFFUSION AND GROWTH - Curve Fitting %%% 
% Written by Cynthia A. Stanich 
%This function fits a linear line to data. It returns four values. a is the 
%slope of the line y=ax+b and b is the intercept. aerror is the error in 
%the slope due to the fit to the data. corcoe is the correlation coefficient  
%(aka R^2). 
%clear all 
%close all 
function [a,b,aerror,corcoe]=curveFitting(xi,yi)  
%Curve fitting tool given to me by Aurelia is below 
%Uses the statistics toolbox and optimization toolbox, which I have! 
%lsqcurvefit: Find coefficients x that best fit the equation shown in help 
%given input data xdata, and the observed output ydata, 
%where xdata and ydata are vectors of length m and F(x, xdata) is a  
%vector-valued function. 
%[P,resnorm,residual,EXITFLAG,OUTPUT,LAMBDA,Jacobian] = lsqcurvefit('exponential', Po, x, y); 
%CI = nlparci(P,residual,'jacobian',Jacobian, 'alpha', .34); 
%dP = .5*(CI(:, 2)-CI(:, 1)); 
%Start my curve fitting tool below this line 
n=length(yi); 
sumxy=sum(xi.*yi); 
sumx=sum(xi); 
sumy=sum(yi); 
sumxsqrd=sum(xi.^2); 
sumysqrd=sum(yi.^2); 
a=((n*sumxy)-(sumx*sumy))/((n*sumxsqrd)-sumx^2); 
b=((sumxsqrd*sumy)-(sumx*sumxy))/((n*sumxsqrd)-sumx^2); 
sumeqn=yi-(a*xi)-b; 
S=sqrt(sum(sumeqn.^2)/(n-2)); 
aerror=S*sqrt(n/((n*sumxsqrd)-sumx^2)); 
corcoe=(n*sumxy-sumx*sumy)/(sqrt(n*sumxsqrd-sumx^2)*sqrt(n*sumysqrd-sumy^2)); 
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Run_all_Ost 
 
%This is to run the Ostwald ripening data output files generated from growthexponent_choose and a  
%param_growth file.   
%%Written by Cynthia A. Stanich 
clear all 
close all 
%FILES GO INTO THE SAME PLACE AS *slopes.dat and *areafraction.dat Which is 
%the movies folder 
sets='C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\Ostwald\5% Dextran\12-7-
09\v2\ostwald2nd2\movies'; 
setz=1; %There can be more than one directory of data. 
%for n=1:setz 
n=1; 
cd(sets(n,:)) 
numberofdomains=9; % It is easier to count the number of domains while tracking them by hand 
using %growthexponent_choose.m 
ColorSet=varycolor(numberofdomains); %You should set this for the number of domains there are. 
letters=['a';'b';'c';'d';'e';'f';'g';'h';'I';'j';'k';'l';'m';'n';'o';'p';'q';'r';'s';'t';'u';'v';'w';'x';'y';'z']; 
%clr=colorset(n,:); 
for i=1:numberofdomains;%Can set this to stop after a known number of domains, otherwise the ColorSet will not 
work. 
    %Go through all letters 
    filetoload=dir(strcat(letters(i),'*','AREA.dat')); 
   timetoload=dir(strcat(letters(i),'*','times.dat')); 
   s=size(filetoload); 
   filename=char(filetoload.name); 
   timename=char(timetoload.name); 
   %I need to be able to distinguish if I am using domain A or B or C 
   %etc... 
    
   for j=1:s(1); %Once you do this you can comment out and use the loop after the disk radius code 
       newarea=load(filename(j,:)); 
       %newarea=newarea'; 
       newtime=load(timename(j,:)); 
       newtimelist=([newtime(1):newtime(1)+newtime(2)-1]*0.5)-0.5; 
       if j==1 %Have to start the lists, or you can create a blank one at the beginning of the code 
          area=newarea; 
        timelist=newtimelist; 
      else 
          area=horzcat(area,newarea); 
          timelist=horzcat(timelist,newtimelist); 
       end 
      radius=sqrt(area/pi); %Assumes circle (I believe it is safe to assume since we are only tracking “good” domains.) 
      radius=radius*.18; %convert to microns 
      %area = area *.18^2; %microns squared 
      boxcarave=moving_average(radius,2,2); % smooths the data  
      Aboxy=Aboxend(radius, 2); %%Aboxend written by Aurelia R. Honerkamp-Smith 
      Aboxmed=Aboxmedian(radius,2); %%Aboxmedian written by Aurelia R. Honerkamp-Smith 
      timelisttothird=timelist.^(1/3); 
save([letters(i) 'domainradius' '.dat'],'radius','-ascii','-tabs','-double') 
save([letters(i) 'domaindata' '.dat'],'area','-ascii','-tabs','-double') 
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save([letters(i) 'domaintime' '.dat'],'timelist','-ascii','-tabs','-double') 
%This creates a list of all the data found for each domain. 
  
figure (1), hold on % area versus time 
set(gca,'YGrid', 'on') 
area2 = area*.18^2; 
plot(timelist,area2,'Color',ColorSet(i,:)) 
title('Area of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Area (micron^2)') 
        
figure (2), hold on  %radius versus time 
set(gca,'YGrid','on') 
plot(timelist,radius,'Color',ColorSet(i,:)) 
title('Radius of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (micron)') 
  
figure (3), hold on  % using moving_average on radius 
set(gca,'YGrid','on') 
plot(timelist,boxcarave,'Color',ColorSet(i,:)) 
title('Boxcar Average of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (mircon)') 
   
figure (4), hold on  % using Aboxend on radius 
set(gca,'YGrid','on') 
plot(timelist,Aboxy,'Color',ColorSet(i,:)) 
title('Boxcar Average With Aboxend of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (mircon)') 
  
figure (5), hold on  % using Aboxmedian on radius 
set(gca,'YGrid','on') 
plot(timelist,Aboxmed,'Color',ColorSet(i,:)) 
title('Boxcar Median With Aboxmedian of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (mircon)') 
  
figure (6), hold on  % plotting radius versus  t^(1-3) 
set(gca,'YGrid','on') 
plot(timelisttothird,radius,'Color',ColorSet(i,:)) 
title('Radius of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (micron)') 
   end 
   clear area 
   clear timelist 
   clear radius 
end 
 
% For Ostwald ripening measurement, we are looking at very small changes in domain radius. So we wanted to  
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%take into account the movement of the vesicle in the z direction. Track_vesicle saves the disk radius from 
the %centering program. Load it here: 
diskrad=load('C:\Program Files (x86)\MATLAB\R2007a Student\work\diffusion\Ostwald\5% Dextran\12-7-
09\v2\ostwald2nd2_2.tifdiskrad.dat'); 
diskrad=diskrad*.18; %change to microns 
  
%smooth diskrad 
Aboxmed2=Aboxmedian(diskrad(:,3),2); 
Aboxmed2Area = pi*(Aboxmed2.^2) 
%diskarea = pi * (diskrad.^2) 
i=1; 
% while i < length(diskrad) 
% diskarearatio (i) =Aboxmed2Area(i+1)/Aboxmed2Area (i);  
diskarearatio = Aboxmed2Area/Aboxmed2Area(1); 
diskarea = pi * (diskrad(:,3).^2); 
diskareadiff = diskarea - diskarea(1); 
diskraddiff = diskrad(:,3) - diskrad(1,3); 
Aboxmed3 = Aboxmedian(diskraddiff,2); 
Aboxmed3Area = pi * (Aboxmed3.^2); 
% i=i+1; 
% end 
  
for j = 1:numberofdomains %This is for after you do the loop above the disk radius code.  
filetoload=load(strcat(letters(j),'domainradius.dat')); 
timetoload=load(strcat(letters(j),'domaintime.dat')); 
areatoload=load(strcat(letters(j),'domaindata.dat')); 
boxcarave=moving_average(filetoload,2,2); 
      Aboxy=Aboxend(filetoload, 2); 
      Aboxmed=Aboxmedian(filetoload,2); 
aboxcarave=Aboxmedian(areatoload,2);%pixels 
aboxcaravemic = aboxcarave * (.18^2); 
m=1; 
domainarea(1)=aboxcaravemic(1); 
  
while m < length(timetoload) 
    index = (timetoload(m) * 2) +1; 
    domainarea(m+1) = diskarearatio (index) * aboxcaravemic(m+1) 
    m=m+1; 
end 
Aboxdomainarea = domainarea; 
%aboxdomainarea = Aboxdomainarea * (.18^2); 
  
 figure (8), hold on %  Plots a line for each domain for radius versus time 
set(gca,'YGrid', 'on') 
plot(timetoload,filetoload,'Color',ColorSet(j,:)) 
title('Radius of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (micron^2)') 
         
figure (9), hold on  % Plots a line for each domain using moving_average for radius versis time 
set(gca,'YGrid','on') 
plot(timetoload,boxcarave,'Color',ColorSet(j,:)) 
title('Boxcar Average of Domains vs Time') 
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xlabel('Time (s)') 
ylabel('Radius (mircon)') 
   
figure (10), hold on% Plots a line for each domain using Aboxend for radius versis time 
set(gca,'YGrid','on') 
plot(timetoload,Aboxy,'Color',ColorSet(j,:)) 
title('Boxcar Average With Aboxend of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (mircon)') 
  
figure (11), hold on % Plots a line for each domain using Aboxmedian for radius versis time 
set(gca,'YGrid','on') 
subplot(2,1,2),plot(timetoload,Aboxmed,'Color',ColorSet(j,:)) 
title('Boxcar Median With Aboxmedian of Domains vs Time') 
xlabel('Time (s)') 
ylabel('Radius (mircon)') 
  
figure (12), hold on % Aboxmedian is the best smoother we have. We used that one to change radius to microns 
%and plot radius versus time 
set(gca,'YGrid','on') 
%subplot(2,1,2), 
plot(timetoload,aboxcaravemic,'Color',ColorSet(j,:)) 
%subplot(2,1,2),plot(timetoload,domainarea,'Color',ColorSet(j,:)) 
  
figure (13), hold on % Plots the individual domain areas versus time. 
set (gca,'YGrid','on') 
subplot(2,1,2),plot(timetoload,Aboxdomainarea,'Color',ColorSet(j,:)) 
  
clear domainarea 
clear timetoload 
clear filetoload 
end 
  
  
figure (11), hold on 
subplot(2,1,1),plot([1:481]*0.5, Aboxmed2,'Color', [.5,.5,.5]) %Plots the smoothed disk radius 
  
figure (13), hold on 
subplot(2,1,1),plot([1:481]*0.5,Aboxmed2Area(1)*ones(1,481)) %Plots the smoothed disk area 
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Mkparamfiles 
% Written by Chris Warth to generate param files originally written by Cynthia Stanich 
%Automatically make diffusion parameter files for movies. 
function mkparamfiles(name_template, filelist) 
   % You can input a list of files or just one file name. The file list is the list of movies. The name template here is  
   %your choice of how you want to name your param files. I used ‘param_(growth or diffco)_(movie name and  
   %quench)’.  
   %generate a list of file from the file specification, 
    % e.g. '*.tif' might generate 'foo1.tif bar.tif xxx.tif' 
    % 
    foo=dir(filelist); 
    bar = {foo(:).name}; 
     
    % outlist will be filled with the names of all the param files that are 
    % generated.  This is used to make a single script that will run all 
    % the param files. 
    % 
    outlist = []; 
    traj = 1; %I used traj to say what the first number of the param sequence should be. 
    for i = 1:numel(bar), 
        fname = bar{i}; 
        disp(fname); 
       
        [nFiles outnames] = mkparamfile(fname, traj, name_template); 
        traj = traj + nFiles; 
         
        outlist = [outlist outnames]; 
    end 
     mkrunall(outlist); 
   end 
 % create an individual param file. 
% arguments are  
%   - name of the .tif movie file. 
%   - a template for the name of the param file, e.g. 'param_9_7_09_v1_q1' 
%   - traj, the starting number for the param file. 
% 
%  This function will generate a bunch of param files for the tif movie 
%  file, one param file for every 10 frames of the movie. 
%  The param files will be named according to the filename template,  
%  appended with a string like '_d1.m' with the number sequentially 
%  increasing for every 10 frames.    
function [nFiles, outnames] = mkparamfile(fname, traj, name_template) 
     
    iFrame = 10;  % frame increment. 
    [pathstr, basename, ext, versn] = fileparts(fname); 
    imgInfo = imfinfo(fname); 
    tFrames = numel(imgInfo); 
    w = imgInfo.Width; 
    h = imgInfo.Height; 
    w = min(w,h); 
    h = min(w,h); 
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    % save this for later so we can see how many param files we generated 
    % for this movie. 
    initial_traj = traj; 
  
    outnames = []; 
    for i=1:ceil(tFrames/iFrame) 
  
        nFrame =((i-1) * iFrame)+1; 
  
        if (nFrame + iFrame >= tFrames)  
            if (tFrames - nFrame <= 7) 
                break; 
            end 
            iFrame = tFrames - nFrame; 
        end 
         
        [outname] = sprintf([ name_template '_d%d'], traj); 
        fid = fopen([ outname '.m'], 'w'); 
        %Below is the content for the param files 
        fprintf(fid, '\n\n'); 
        fprintf(fid, 'function %s(use_previous)\n', outname); 
        fprintf(fid, '\n'); 
        fprintf(fid, 'using_previous_choice_of_domains=1;\n'); 
        fprintf(fid, 'if (nargin ~= 0)\n'); 
        fprintf(fid, '\tusing_previous_choice_of_domains = str2num(use_previous);\n'); 
        fprintf(fid, 'end\n'); 
        fprintf(fid, '\n\n'); 
        fprintf(fid, 'close all\n'); 
        fprintf(fid, 'firstgo=0;\n');  
        fprintf(fid, 'TEST=0;\n'); 
        fprintf(fid, 'useframes=%d;\n', iFrame); 
        fprintf(fid, 'cut=16;  \n');  
        fprintf(fid, 'maxdiam=400; \n');  
        fprintf(fid, 'WHITEDOMAINS=1;\n');  
        fprintf(fid, 'inputgrossDY= 0;\n');  
        fprintf(fid, 'inputgrossDX= 0;\n');  
        fprintf(fid, 'filedirectory=[''%s''];\n', cd);  
        workdir = fullfile(matlabroot, 'work'); 
        fprintf(fid, '%% cd(''%s'')\n', workdir);  
        fprintf(fid, 'hd = [''%s''];\n', workdir ); 
        fprintf(fid, 'traj={''d%d''};\n', traj);  
        fprintf(fid, 'file=''%s''; \n', fname);  
        fprintf(fid, '% using_previous_choice_of_domains=1;\n');  
        fprintf(fid, 'threshold =1\n');  
        fprintf(fid, 'initial=[%d]; %% %d frames total\n', nFrame, tFrames);  
        fprintf(fid, 'RECT(:,1)=[1   1   %d  %d]''; \n', w, h);  
        fprintf(fid, '    smallf=0.035; bigf=0.13;   \n\n');  
        fprintf(fid, 'NeedsAureliaGradient=0;\n'); 
        fprintf(fid, 'FILT=1;\n\n');  
        fprintf(fid, 'for FFF=1:length(initial),\n');  
        fprintf(fid, '    tracker_diffusion2\n\n'); 
        %fprintf(fid, '    track_diffusion\n\n'); 
 %         fprintf(fid, '    OUTGOOD(FFF) = Nfeg;\n');  
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%         fprintf(fid, '    OUTX(:,FFF) = meandevx2;\n');  
%         fprintf(fid, '    OUTY(:,FFF) = meandevy2;\n');  
        fprintf(fid, 'end\n');  
        fprintf(fid, 'end\n'); 
        fclose(fid); 
        outnames = [outnames cellstr(outname)]; 
        traj = traj + 1; 
     end 
     
    nFiles = traj - initial_traj; 
end 
  
function mkrunall(outlist) 
    % write the 'runall.m' file that collects all the generated param files 
    % in one place. 
    fid = fopen('runall.m', 'w'); 
    fprintf(fid, 'function runall(use_previous)\n'); 
    fprintf(fid, '\n'); 
    fprintf(fid, 'using_previous_choice_of_domains=1;\n'); 
    fprintf(fid, 'if (nargin ~= 0)\n'); 
    fprintf(fid, '\tusing_previous_choice_of_domains = str2num(use_previous);\n'); 
    fprintf(fid, 'end\n'); 
  
         
    for i = 1:numel(outlist), 
        fprintf(fid, '%s using_previous_choice_of_domains\n', outlist{i}); 
    end 
    fprintf(fid, 'end\n'); 
    fclose(fid); 
end 
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