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Abstract

A Resampling Approach to Clustering with Confidence
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Chair of the Supervisory Committee:
Professor Werner Stuetzle

Statistics

We propose a method for estimating the number of groups in a data set. Our method is

an extension of Generalized Single Linkage clustering (GSL) (Stuetzle and Nugent 2010), a

nonparametric clustering method based on the premise that groups in the data correspond

to modes of the underlying data density. GSL starts with a nonparametric density estimate.

It recursively splits the data into high density regions separated by valleys. The leaves of

the resulting cluster tree correspond to modes of the density estimate. The problem is that

nonparametric density estimates tend to have spurious modes due to sampling variability,

giving rise to spurious splits in the cluster tree. We propose a resampling method aimed at

assessing the significance of splits and a way of constructing a cluster tree making only sig-

nificant splits. The only parameter is the significance level. Our method can identify highly

non-linear groups. Simulation experiments suggest that the method is very conservative,

which may explain its low power.
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Chapter 1

INTRODUCTION

The goal of cluster analysis is to identify distinct groups in a data set. One of the

major challenges in clustering is choosing the number of clusters. This has been an area

of active research; we review some of the ideas in Chapter 2. Our approach is based on

generalized single linkage clustering (GSL) (Stuetzle and Nugent 2010). We assume in the

following that the reader is familiar with GSL. GSL assumes a correspondence between

groups and modes of the underlying density p(x), and it estimates the modes of the p(x)

by the modes of a nonparametric density estimate p̂(x). However, nonparametric density

estimates typically have spurious modes due to sampling variability, and the challenge is

to distinguish spurious modes from real ones. We first choose a confidence threshold and

generate random partitions of data into half-samples Xtrain and Xtest. For each partition,

we construct a cluster tree from the training data such that the significance level of each

split which is assessed using the test set is lower than the signifiance threshold. We then

“average” the resulting cluster trees over partitions to arrive at a final tree. We describe

our method in detail in Chapter 3. In Chapter 4, we present results of a Monte Carlo study

of its performance. Chapter 5 concludes with a summary, discussion and ideas for future

work.
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Chapter 2

LITERATURE REVIEW

A number of methods for choosing the number of clusters have been proposed over the

years. We will review three distinct approaches: a) Burman and Polonik (2009) examine

the density along the line segments connecting potential modal candidates to determine if

there is a dip which reflects distinct modal regions. Tibshirani, Walther and Hastie (2009)

focus on k-means clustering and attempt to detect an “elbow” in the plot of within cluster

dispersion versus number of clusters. Tibshirani and Walther (2005) use a measure of

stability for determining the number of clusters.

2.1 Multivariate mode hunting: Data analytic tools with measures of signifi-
cance - Burman and Polonik, 2009

Burman and Polonik (2009) proposed a method for locating isolated modes in a mul-

tivariate data set without pre-specifying their total number. Their method consists of the

following three steps. First, they select initial modal candidates using an iterative nearest

neighbor method which repeatedly employs two substeps: a) searching for a modal can-

didate, and b) eliminating its neighbors. Second, they test whether the level sets around

each modal candidate are approximately elliptical. Modal candidates that fail the test are

subsequently eliminated. However, the purpose of this step is not entirely clear. The third

and most crucial step is to test whether the remaining candidates after steps 1 and 2 really

represent different modal regions. For a given pair of modal candidates mi and mj , they

consider the line segment connecting mi and mj and assess whether the density along the

line has a dip. More formally, they define SB(α) := min{logf(mi), logf(mj)} − logf(mα)

where mα = (1− α)mi + αmj for α ∈ [0, 1] denotes a point on the line connecting mi and

mj . A test of SB(α) ≤ 0 which shows a significant overshoot over zero or a significant bump

would indicate that modal regions mi and mj are in different modal regions of the underly-

ing density. To decide which of the modal candidates are “real”, they repeatedly apply the

pairwise method above. Let m1,m2...mk be the candidates numbered in decreasing order

of density. They first test to see whether mi and mj for i=1 and j=i+1, ..., k belong to the

same modal region. If the test does not reject, Wj is eliminated as a modal candidate. This
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results in a smaller subset of candidates m1...mk1 with k1 ≤ k. They then set i = i+ 1 and

repeat the substeps iteratively until only distinct modal regions are left.

2.2 Estimating the number of clusters in a data set via the gap statistic -
Tibshirani, Walther and Hastie, 2009

Tibshirani, Walther and Hastie (2009) proposed the ‘gap statistic’ to choose the ap-

propriate number k of clusters in k-means clustering. The main idea is to standardize the

graph of log(Wk) where Wk is the within-cluster sum of squares (dispersion) for k clusters

by comparing it with its expectation under an appropriate reference distribution of the data.

They define the gap statistic as Gapn(k) = E∗n{log(Wk)} − log(Wk) where E∗n denotes ex-

pectation for samples of size n from the reference distribution. The estimate of the optimal

number of clusters k̂ is the value maximizing Gapn(k). The authors consider two choices

for the reference distribution: a) a uniform distribution on the smallest axis parallel hyper-

rectangle containing the data and b) a uniform distribution over a bounding box aligned

with the principal components of the data. Method (a) has the advantage of simplicity

while method (b) takes into account the shape of the data distribution. It is important to

note that k-means clustering performs well only under the assumption of spherical groups.
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Figure 2.1: (Left) Banana-shaped data, (Right) Gap curve

If this assumption is violated, the gap statistic tends to over-estimate the number of groups.

Consider the same banana-shaped data set (Fig. 2.1 Left), the maximum value of the gap

statistic from the resulting gap curve (Fig 2.1 Right) misleadingly estimate 6 clusters.

2.3 Cluster Validation by Prediction Strength - Tibshirani and Walther, 2005

Tibshirani and Walther (2005) approached estimating of the number of clusters as a

model selection problem, focusing on prediction error rather than within-cluster dispersion.

Their main idea is to examine the stability of the clusters based on a prediction strength

measure. The data X is first divided into Xtrain and Xtest with g and h = n − g obser-

vations respectively. Both Xtrain and Xtest are then clustered into k clusters using any

clustering procedure, obtaining cluster labels y1...yg and z1...zh. The observations in Xtest

are assigned to the clusters of Xtrain, obtaining predicted cluster labels ẑ1...ẑh. This is a

supervised learning problem. With two partitions of Xtest, one obtained by directly clus-

tering Xtest, the other by assigning the observations in Xtest to the clusters obtained by

clustering Xtrain, they test the stability of the clusters by checking the similarity of the

two partitions. To measure agreement between the two partitions, specifically to measure

how well the training set clusters predict co-memberships in the test set, Tibshirani and

Walther introduced the idea of “prediction strength”. For each pair of test observations
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that are assigned to the same test cluster, they determine whether they are also assigned

to the same cluster based on the training set. For each test cluster, they compute the

proportion of observation pairs in that cluster that are also assigned to the same cluster

by the training set. “Prediction strength”, ps(k) is hence defined as the minimum of this

quantity over k test clusters. If k = k0, the true number of clusters, then the k training

set clusters will be similar to the k test set clusters, and will predict them well, resulting

in a high ps(k). The optimal number of clusters k̂ is chosen to be the largest k such that

ps(k) is above some threshold. This procedure is repeated for random partitions and the

results are “averaged” to obtain the number of clusters. The premise is that if the number

of clusters is larger than the number of distinct groups in the data, then the partitions will

be unstable. However, whether or not this premise holds depends on the clustering method.

In their paper, Tibshirani and Walther focus on k-means clustering and they note that their

method fails if groups in the data are non-spherical. This finding is not surprising and does

not in itself indicate a problem with the prediction strength criterion. After all, k-means

clustering assumes that the groups in the data are roughly sphered with the same variance,

and if this assumption is violated, we should not be surprised if a stability-based criterion

fails to identify the correct number of groups.
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Chapter 3

METHODS

We first describe how we construct a cluster tree making only “significant” splits based

on a random partition of the data set X into two half samples Xtrain and Xtest. We then

propose a method of “averaging” these trees over a number of random partitions. We as-

sume that the reader is familiar with generalized single linkage clustering (Stuetzle and

Nugent 2010).

3.1 Building a “confident tree” for a given partition

Step 1. Split the data set X into half-samples Xtrain and Xtest (Fig. 3.1).
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Figure 3.1: (Top) Full Data, (Bottom Left) Training Data, (Bottom Right) Test Data
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Step 2. Apply generalized single linkage (GSL) to Xtrain and obtain a cluster tree Ttrain

(Fig. 3.2). Each internal node of Ttrain corresponds to an edge of the maximum spanning

tree (Fig. 3.2) which we call the “split edge”.

1 2 3 4

1
2

3
4

x1.obs

x2
.o

bs

0.
0

0.
1

0.
2

0.
3

0.
4

sq
rt

(le
ve

l)

1

2 3

4

5

6
7 8

Figure 3.2: (Left) Maximum Spanning Tree and (Right) Cluster Tree Ttrain based on Train-
ing Data
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Step 3. For each internal node in Ttrain, find split edge e, left cluster core cl, right cluster

core cr and the corresponding xmin, xl and xr defined as

xmin = arg min
x∈e

p̂train(x)

xl = arg max
xi∈cl

p̂train(xi) (left mode)

xr = arg max
xi∈cr

p̂train(xi) (right mode)

0.
0

0.
1

0.
2

0.
3

0.
4

Cluster Tree
sq

rt
(le

ve
l)

A

B

1 2 3 4

1
2

3
4

Maximum Spanning Tree

A

1 2 3 4

1
2

3
4

Maximum Spanning Tree

B

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Density along split edge

D
en

si
ty

x_min

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Density along split edge

D
en

si
ty

x_min
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line shows the edge connecting the left and right cluster cores for split at Node A/B of cluster
tree Ttrain, (Bottom Left/Right) Density p̂train along the split edge
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Step 4. Draw neval half-samples from Xtest (quarter-samples from data X) and obtain den-

sity estimates for these quarter samples q̂1, q̂2 ... q̂neval.

Step 5. Compute distribution (over neval quarter samples) of the statistic:

Vi = log(min(q̂i(xl),q̂i(xr)))-log(q̂i(xmin))

for each of the internal nodes in Ttrain.
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Step 6. Assign a “confidence level” defined as c = Pq̂(V >0) to each internal nodes of Ttrain

(and the corresponding split edge of the maximum spanning tree M). We define the “sig-

nificance” of a split as 1− c.

Step 7. Pick a confidence threshold and assign a binary label (significant or not) to each

corresponding edge of the maximum spanning tree M (Fig. 3.5).
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Figure 3.5: Max Spanning Tree: Dotted lines show edges corresponding to internal nodes
of cluster tree Ttrain. If a confidence threshold of 0.9 is chosen, based on the confidence
measure, only edge 1 would correspond to a significant split.
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Step 8. Construct a new cluster tree T ∗train from the maximum spanning tree M allowing

only splits of significant edges. First find the significant edge with the lowest edge weight.

If there is no such edge, then the cluster tree consists only of the root node. Otherwise,

break the edge, thereby splitting the maximum spanning tree into two segments; generate

two daughters of the root node representing the segments; and recurse.

Step 9. Assign the observations in Xtest to the nodes of T ∗train (Fig. 3.6) using a nearest

neighbor classifier.
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Figure 3.6: New Cluster Tree T ∗train

10. Construct a similarity matrix S for data X from the cluster tree T ∗train. The similarity

matrix is a n by n matrix with Sij=1 if Xi and Xj are in the same leaf of T ∗train and Sij=0

otherwise.
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3.2 “Averaging” over partitions

Step 11. Repeat Step 1 to 10 for nhalf random partitions. For each partition, sort the

confidence values for the splits in decreasing order. Let βik be the kth largest confidence

value for partition i. Table 3.1 shows the confidence values βik for 19 random partitions of

our data set.

Splits 1 2 3 4 5 6 7 8 9 10 11 12 13 Significant Splits

Partition 1 0.99 0.86 0.44 0.16 0.01 0 0 - - - - - - 1

Partition 2 1 0.49 0.14 0.1 0 0 - - - - - - - 1

Partition 3 1 0.33 0.14 0 0 - - - - - - - - 1

Partition 4 0.98 0.6 0.14 0.11 0.1 0 - - - - - - - 1

Partition 5 1 0.24 0.23 0.19 0.04 0 0 - - - - - - 1

Partition 6 1 0.34 0.2 0.06 0 0 0 - - - - - - 1

Partition 7 1 0.15 0.12 0.09 0 - - - - - - - - 1

Partition 8 1 0.79 0.47 0.37 0 0 0 0 - - - - - 1

Partition 9 1 0.48 0.44 0.02 0.02 0 - - - - - - - 1

Partition 10 1 0.49 0.44 0.28 0.26 0.09 0 - - - - - - 1

Partition 11 1 0.46 0.27 0.2 0.15 0.1 0 - - - - - - 1

Partition 12 1 0.53 0.41 0.38 0.26 0 - - - - - - - 1

Partition 13 0.99 0.43 0.33 0.1 0.08 0 0 - - - - - - 1

Partition 14 0.98 0.46 0.27 0.17 0.06 0.02 0 0 - - - - - 1

Partition 15 1 0.65 0.07 0.01 0 0 - - - - - - - 1

Partition 16 1 0.6 0.38 0.17 0.05 0 - - - - - - - 1

Partition 17 0.94 0.59 0.17 0.08 0.03 0 0 0 0 - - - - 1

Partition 18 0.99 0.83 0.22 0.08 0.07 0.02 0.01 0.01 0 0 0 0 0 1

Partition 19 1 0.34 0.2 0.18 0 0 - - - - - - - 1

Table 3.1: Confidence of each node (sorted in decreasing order). The last column show the
number of significant nodes using a confidence threshold of 0.9.

Step 12. Given a confidence threshold, let ki, i = 1...nhalf be the number of significant

splits for partition i. Choose k̄ = median(ki) as the number of splits in the final output.

For example, if a confidence threshold of 0.9 if chosen, all 19 partitions give one significant

split, and therefore the final tree will have one split. However, if a confidence threshold of

0.4 is chosen, more than half of the 19 partitions give two significant splits, resulting in the

median to be two significant splits.
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Step 13. Calculate a similarity S̄ = mean(Si), where Si is the similarity matrix obtained in

Step 10, for partition i.

Step 14. Use GSL with similarity matrix S̄ to create a cluster tree with k̄ splits. This tree

is the final output of the procedure.
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Chapter 4

RESULTS

4.1 Simulation Scenarios

We generated nrep = 100 independent realizations of data sets for each of 14 different

scenarios:

Scenario 1. Uniform data in two dimensions: 200 data points uniformly distributed

over the unit square in 2 dimensions (Fig. 4.1 Left).

Scenario 2. Standard gaussian data in two dimensions (Fig. 4.1 Right)

Uniform Standard Gaussian

Figure 4.1: (Left) Uniform Data, (Right) Standard Gaussian Data
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Scenarios 3-8. Bullseye data in two dimensions: 200 data points with parameter

fraction of data in the standard gaussian eye and the remaining data points in the ring

made up of standard gaussians with centers uniformly chosen on the circle with parameter

radius from the center of the eye. The parameter fraction takes the values 0.25, 0.5 and

0.75 while the parameter radius takes the values 5 and 7. Abreviations are used to label

these scenarios; for example, “b-f0.25-r5” identifies bullseye data with fraction 0.25 of data

in the eye with a radius of 5.

b−f0.25−r5 b−f0.25−r7

b−f0.5−r5 b−f0.5−r7

b−f0.75−r5 b−f0.75−r7

Figure 4.2: Bullseye Data
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Scenarios 9-14. Bimodal standard gaussian data in two dimensions: 200 data points

with parameter fraction of data in the first standard gaussian and the remaining data

points in the second standard gaussian, with center parameter separation away from the

center of the first gaussian. The parameter fraction takes the values 0.5, 0.7 and 0.9 while

the parameter separation takes the values 4 and 7. Abreviations are used to label these

scenarios; for example, “g-f0.7-s4” identifies a bimodal gaussian data with fraction 0.7 of

data in the first standard gaussian and a separation of 4 between the two standard gaussian

centers.

g−f0.5−s4 g−f0.5−s7

g−f0.7−s4 g−f0.7−s7

g−f0.9−s4 g−f0.9−s7

Figure 4.3: Bimodal Standard Gaussian Data
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4.2 Simulation Results

For each of the 14 scenarios, we present 3 plots. First, the fraction of realizations with

more than the correct number of clusters versus confidence threshold; second, the fraction

of realizations versus the estimated number of clusters ; and third, the fraction of replicates

with the correct number of clusters versus the fraction of replicates when the number of

clusters over-estimates the number of groups, as a function of confidence level. The points

corresponding to confidence levels 0.8, 0.85, 0.9 and 0.95 are marked on the curves.
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Figure 4.4: (Left) Fraction of realizations with more than the correct number of clusters
versus confidence threshold, (Center) Fraction of realizations versus the number of clus-
ters estimated, (Right) Fraction of replicates with the correct number of clusters versus the
fraction of replicates when the number of clusters over-estimates the number of groups
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4.3 Interpretation of Simulation Results

Our (admittedly very limited) simulation study suggests two hypotheses:

a) Our resampling method for estimating the number of groups is very conservative.

The fraction of replications for which the method over-estimates the number of groups is

consistently much lower than the nominal significance level.

b) This mis-calibration leads to the low power. Consider, for example the scenario “g-

f0.5-s4”. Even for significance level 0.2, the method over-estimates the number of groups

for 0 out of 100 replications. It correctly identifies two groups only 20% of the time, while

the corresponding calibration curve shows that, with correct calibration, it would produce

the correct answer 80% of the time.
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Chapter 5

SUMMARY/DISCUSSION

We have presented a clustering method that combines GSL with a resampling-based

approach to determine the number of clusters. The only user input required is the desired

significance threshold. Because it is based on GSL, our method can identify even highly non-

linear (non-elliptical) groups. Our (admittedly limited) simulation study suggests that the

method is very conservative: the fraction of replicates for which the method over-estimates

the number of groups is much lower than the nominal significance. Correct calibration

would result in a significant increase in power.

It is instructive to compare our method to the method of Burman and Polonik (2009).

Both approaches are based on multivariate density estimation; both assume that distinct

groups correspond to modes of the underlying density; and both consist of two main steps:

a) finding modal candidates and b) checking if the modal candidates are separated by

valleys. However, there is a fundamental difference in the way in which the two methods

check for separation between modal candidates. The Burman and Polonik method looks at

the estimated density along the line segment connecting the modal candidates whereas our

method looks at the estimated density along the unique path in the maximum spanning

tree connecting the modal candidates.
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Figure 5.1: Line segment connecting two spurious modal candidates

Problems with the Burman and Polonik method can arise for non-convex groups. Con-

sider a banana-shaped data set as in Figure 5.1. Spurious modal candidates occurring at

the two ends of the banana create a line segment along which the estimated density has a

significant dip, leading to the erroneous conclusion that there are 2 groups. Another dif-

ference to note is that Burman and Polonik uses asymptotics to assess the significance of a

dip in density while we use a resampling approach.

There are several areas for future work. The most important one is to improve the

calibration and thereby the power of the method. A more comprehensive simulation study

would also be helpful.
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