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Many years of research have yielded computer modeling techniques that can predict the behavior 

of complex systems, such as traffic speeds in regional transportation systems, with high 

accuracy. However, the prediction accuracy suffers significantly when non-recurring events, 

such as traffic accidents, occur in these systems. Yet the impacts of such disruptions are 

precisely the events that vehicle operators need to be aware of when planning their trips. 

Techniques for autonomously detecting these events, such as automated incident detection from 

traffic flow data and computer vision, are active fields of research but currently offer 

significantly less accurate data than actual human observations. Therefore, introducing novel 

ways to identify and quantify disruptions using human input can improve modeling accuracy 

when speeds are disrupted, while raising new topics for research to address this large, unmet 

need. Blending human-relayed incident detection mined from social networks with existing 

traffic modeling techniques provides a promising new direction for improving accuracy in traffic 

speed prediction. 
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Introduction 

Many years of research have yielded computer modeling techniques that can predict the 

behavior of complex systems, such as traffic speeds in regional transportation systems, with high 

accuracy. The two most common prediction techniques are: travel time prediction along a route, 

which predicts the time taken to traverse a given sequence of traffic segments, and speed 

prediction on a single road segment, which is then stitched together with other predictions to 

provide an overview of traffic speeds in a region. Both methods are key components in a 

comprehensive traffic prediction system. However, this paper focuses on the prediction of traffic 

speeds on a single segment, as it applies to all vehicles that utilize the segment, without respect 

for their origin, destination, nor the vehicle’s route between them. Some practices and methods 

used in route prediction are valid for both techniques and are leveraged in this experiment where 

appropriate. 

The accuracy of both modeling techniques decreases significantly when non-recurring 

events, such as traffic accidents, occur in the systems they attempt to model. In order for a model 

to consistently predict conditions with high accuracy, it must include data about these events and 

incorporate their influence into its predictions. Current techniques for autonomously detecting 

traffic events, such as automated incident detection from traffic flow data and computer vision 

are vibrant fields of research but currently offer significantly less accurate data than actual 

human observations.  

Therefore, introducing novel ways to identify and quantify disruptions using human input 

can improve modeling accuracy when flows are interrupted. The cost of hiring new people to 

monitor traffic and provide input data for prediction models is a high burden and therefore, is not 

an optimal solution. However, social networks provide a rich source of information broadcast 
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and consumed by millions of vehicle operators in near real-time. Incorporating human-observed 

incident detection gleaned from semantic mining of social network data with existing traffic 

modeling techniques provides a rich source of real-time information for improving accuracy in 

traffic flow prediction.  
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Chapter I: Rationale 

The rationale for pursuing this research follows several threads that the thesis itself 

intends to weave together. This chapter introduces these topics and narrows their scope to the 

specific approaches explored in this research. The organization is as follows: 

Brief Introduction of Traffic Congestion: This section frames the problem, introduces 

factor that motivate the research, and sets the stage for the experimental solution.  

Introduction to Artificial Neural Networks: This section describes the architecture of 

feed-forward neural networks and how they model information to generate predictions. It also 

describes how to train a neural network using back-propagation. It introduces the idea that 

training variations cause prediction variations and to provide context for using an ensemble of 

multiple ANN models as a mechanism for cross-validation. 

Artificial Neural Networks in Traffic Prediction: This section describes the role of 

artificial neural networks in Data Driven Intelligent Transportation Systems, the current state of 

the art, and the lack of a viable automated data source for detecting incidents. 

Using Twitter for Convergent Validity: This section describes how Twitter can be used 

as an early warning system for non-recurring events and how it can be harnessed to provide a 

human-curated data source for informing traffic prediction models. 
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Traffic Congestion 

Traffic congestion is a topic that negatively affects nearly all people, regardless of 

whether they are contributing to it by driving a vehicle or trying to avoid it by using mass transit. 

The costs of traffic congestion are difficult to quantify but in the year 2000, it was estimated to 

account for 3.6 billion vehicle-hours of delay, 5.7 billion U.S. gallons of wasted fuel, and $67.5 

billion in lost productivity (0.7% of GDP) or approximately $1000 per driver in large cities or 

$200 per driver in small ones. (Traffic Congestion) Congestion increases the time required to 

traverse road segments so, in addition to increased fuel consumption, it results in increased air 

pollution (Shawe-Taylor, De Bie, & Cristianini, 2006) and health problems such as heart attacks 

(Peters, et al., 2004).  

Population growth continues to drive urban density. Despite the trend toward building 

more public transportation infrastructure in high density cities, traffic congestion can be expected 

to worsen. (Meliaa, Parkhurst, & Barton, 2011) However, we can assume that individual drivers 

are rational decision makers that will make an attempt to reduce their trip time if provided with 

sufficient information for doing so. (van Lint J. , 2006) This presents an opportunity to reduce 

traffic congestion by providing accurate traffic predictions to drivers so they can each optimize 

their individual travel plans. Individuals directly realize the benefit of this approach through 

shorter trip times. At the same time, the entire transportation system benefits from fewer vehicles 

unknowingly heading into areas of congestion, exacerbating backups in problem spots. While 

there are clear benefits to providing this information to drivers, it is not abundantly clear how to 

formulate such traffic predictions.  

Many years of research have yielded computer modeling techniques that can predict the 

behavior of complex systems, such as traffic speeds in regional transportation systems, with high 
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accuracy. These predictions suffer greatly when disruptions, such as traffic accidents, occur in 

these systems. Current techniques, such as automated incident detection from traffic flow data 

and computer vision are studied broadly but are significantly less accurate than actual human 

observations. Therefore, introducing novel ways to identify and quantify disruptions with human 

input can improve modeling accuracy while creating new topics for research to address this 

large, unmet need. Blending human-relayed incident detection mined from social networks with 

existing traffic modeling techniques provides a new method for improving accuracy in traffic 

speed prediction.  
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Artificial Neural Networks 

Artificial Neural Networks (ANNs) are mathematical models that mimic the structure of 

a biological neural network. ANNs are comprised of a structure of interconnected nodes called 

neurons. (Artificial neural network). Each neuron is connected to other neurons to form a 

network, as in biological neural networks. Data is received by a neuron by connecting the output 

from one or more neurons to the subject neuron’s input. Neurons in an ANN work together to 

model complex non-linear relationships between input and output data. Traffic prediction 

requires the capability to model complex relationships between present conditions and future 

conditions, which makes ANNs a reasonable choice for this application. 

Structure 

Neurons are grouped together into layers. Neurons within a layer depend only on output 

from neurons in the previous layer (neurons within a layer are not connected to one another.) The 

first layer of all ANNs is called the input layer, as these nodes receive the raw numeric input 

data, which is scaled or transformed by an activation function (typically a sigmoid function 

(Faghri & Aneja, 2007)), before it is emitted as output, which is consumed by the next layer. 

These neurons receive data by connecting the output from one or more other neurons. These 

neurons weight each input, combine it, and transform it via an activation function before emitting 

it as output. Data is transformed in this manner and flows from the input layer through one or 

more “hidden” layers until it eventually reaches the output layer, which performs its own 

weighted combination of the previous nodes’ outputs and produces one or more final output 

values.  

ANNs can be represented as a directed graph, as depicted in Figure 1 - An Artificial 

Neural Network. There are many types of ANNs that implement various schemes for structuring 
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their nodes and the connections between them. This document uses ANN to refer to a Feed 

Forward ANN, where the graph does not contain cycles and data always flows from the input 

layer toward the output layer without re-entering a node or layer that has been previously visited.  

 

Figure 1 - An Artificial Neural Network (Artificial neural network) 

 

The number of input nodes is fixed, as each piece of input data is fed to a distinct input 

node. The number of output nodes is also fixed, as each output node predicts a distinct piece of 

data. The number of hidden layers and nodes within each hidden layer is not prescribed. There 

are no heuristics for determining how many of each to use (Faghri & Aneja, 2007), so a trial and 

error approach is typically used to determine which configuration provides the best predictions. 

The complexity of an ANN is related to the number of nodes and layers that it contains. An 
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increase in structural complexity affords an increase in “degrees of freedom” for an ANN to 

model more complex problems but requires an increase in training data to properly “learn” the 

problem space. It follows that it is best to use the simplest structure that yields acceptable results. 

Each neuron performs its computation by receiving one or more inputs, performing a 

weighted combination of the inputs, scaling it according to the activation function, and emitting 

the result as its output. The weights that each neuron uses for combining its input data are 

independent from all other neurons. Neurons’ weights are assigned by an offline trial and error 

process called training, where example data is fed through the network and its weights are 

adjusted to minimize the error in predicting the expected output.  

Training 

ANNs can be trained using one of two methods: unsupervised learning and supervised 

learning. Unsupervised learning is a method of training an ANN without providing specific 

expected outcomes for it to attempt to predict. This model of learning is typically used in data 

mining or clustering applications where the intended outcome is not known a-priori. 

(Unsupervised Learning, 2012) Supervised learning refers to the method of training where an 

expected outcome is known and therefore allows direct computation of the error between the 

expected output and the predicted one. (Supervised Learning, 2012) This study is done using 

supervised learning, as the modeling experiments require the error to be quantified and actual 

traffic speeds are available for training & validation. Success will be measured by the relative 

error in predictions produced by each experiment.  

Back-Propagation is the most common method for training an ANN. (Faghri & Aneja, 

2007) It is performed by providing example data to an ANN and computing the error of its 

outputs. The error is then presented to the output nodes, which adjust their weights to minimize 
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the error, which more accurately predicts the expected outcome. The error is then propagated 

backward to each node, where they perform their own adjustments until the input nodes are 

reached. (Backpropagation, 2012) After each node has adjusted its weight, the weight adjustment 

process is repeated through hundreds or thousands of iterations. These iterations are called 

epochs. Training an ANN is an iterative process that is done until the error of the predictions 

reaches an acceptable threshold or until the error reaches a plateau, where further training epochs 

do not yield an improvement.  

The complexity of an ANN affects how much data is required to learn weights that will 

produce an accurate prediction. In the extreme case, training with a single example can allow the 

ANN to model the relationship between the input and output for that example. That ANN will be 

unable to predict anything other than its single example, so its utility is quite limited. Ideally, the 

examples in the training dataset would include all possible interactions between input variables 

that are necessary to produce all possible outcomes. In practice, this is not possible. 

Evaluation 

Given that ANNs can model complex, non-linear relationships between input and output 

data (Faghri & Aneja, 2007), many training epochs must be executed to arrive at internal weights 

that yield accurate predictions. If too many epochs are run, the ANN risks being over-trained. If 

an ANN’s structure is sufficiently complex enough to model the relationship between its input 

and output and is trained over an excessive number of training epochs, the nodes’ weights 

effectively “memorize” the training data. This behavior is called over-fitting, as the ANN no 

longer approximates the dataset from which the training data was sampled. Instead, it only 

models the training dataset itself. (Artificial neural network)  
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Ensembles and Confidence Levels 

There are many parameters that can be set for how an ANN adjusts its weights during 

each epoch while training. For example, the concept of momentum is applied to weights to 

ensure that they aren’t snapped to drastically different values in each training epoch. Given the 

connected-ness of the ANN structure, a change in one neuron’s weight will affect all 

downstream computations. Momentum is a smoothing function to reduce abrupt changes from 

one epoch to the next, which makes the learning process less erratic, allowing weights to be 

optimized in fewer epochs. (Faghri & Aneja, 2007) In addition, a ceiling for the amount of 

change applied to a weight in each epoch (known as the learning rate) can be adjusted to aid the 

training process. There is no heuristic for determining how to set these values, so experiments 

are typically repeated using different values. Changing the training parameters will cause each 

neuron’s final weights to be different, which results in a different prediction. (Faghri & Aneja, 

2007) This means that two models that are trained on the same data can produce different 

predictions, depending on the parameters used to train them. Which one is correct?   

A common approach to arbitrate between ANNs trained with different parameters or on a 

different subset of training data is to train multiple ANNs, generate predictions from each of 

them, and combine the predictions. The theory behind this approach is that the random error 

across a whole suite of ANNs will be orthogonal and will cancel out, while their “agreement” 

will result in a more accurate prediction. This is known as an Ensemble (Ensemble Learning, 

2012) and is an entire field of study in its own right. Several techniques regularly used in 

Ensemble Learning have been applied in traffic prediction to get a rough measure of the 

confidence of a prediction. 
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An important point to remember is that ANNs are just a chain of mathematical functions. 

They will always produce an output for a set of inputs, without any indication of how accurate it 

is. This means we won’t know how much credibility to give a model’s prediction without more 

data. However, a good proxy for determining prediction confidence can be obtained by 

generating predictions from an Ensemble of ANNs and quantifying the dispersion of their 

predictions. In cases where there is relatively low dispersion (high agreement), the predictions 

can be assumed to have high confidence. Conversely, low agreement among the ANNs indicates 

that the prediction has low confidence. (van Lint J. , 2006) 
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Artificial Neural Networks in Traffic Prediction 

There are many approaches to monitoring and predicting traffic today. Zhang, et al. 

propose a Data Driven Intelligent Transportation System (D
2
ITS) which employs computer 

vision, automated incident detection, and sensor-based models, that learn complex traffic 

interactions; to stitch together massive amounts of data. The information produced by D
2
ITS is 

then used to inform infrastructure planning, vehicle management systems, and traveler 

information systems. Ultimately, it was determined that highly accurate computer vision systems 

are currently too expensive for most transportation institutions; and today’s state-of-the-art 

computer vision technology is not mature enough to provide information with enough 

consistency to be relied on. In addition, they concluded that computer vision systems had 

problems with difficult shadows and was confused by variations in vehicle types and sizes, 

which occur very regularly in transportation infrastructures. (Zhang, et al., 2011) ANN-based 

automated incident detection systems also suffer significant decreases in accuracy when 

environments change due to rain, snow, or even glare. (Shehata, et al., 2008)  

However, data driven models fed by in-road sensors have proven very successful in 

modeling the complex interactions between many factors that can influence future traffic 

conditions; (van Lint J. , 2006) and have been considered an essential component of any 

intelligent transportation system for almost two decades. (Cheslow, Hatcher, & Patel, 1992) Data 

driven models are also very cost-effective, as they use the same data that is already collected in 

most urban centers to publish current speed and flow information. The two most common 

approaches use data modeling to predict travel time along a route (van Lint J. , 2004) and to 

predict instantaneous speeds and/or flow on a road at some future time. (Faghri & Aneja, 2007) 

(Park, Messer, & Urbanik II, 2007) (Zheng, Lee, & Shi, 2006) However, Zhang, et al. claim that 
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making predictions based on a single data source, such as road sensor data, does not yield 

reliable accuracy in D
2
ITS. As an example, traffic accidents generate different patterns than 

those seen in recurrent congestion, which is why they offer the multi-part strategy of using 

computer vision and automated incident detection in addition to sensor-based modeling. This 

“fusion strategy” provides convergent validity for predictions, as it can cross-validate a 

prediction based on inputs from multiple sources. (Zhang, et al., 2011) The key takeaway is that 

road sensor data needs to be augmented by somehow “seeing” when something out of the 

ordinary is occurring that changes how traffic behaves. 

Challenges in Predicting Traffic Conditions using ANNs 

A number of attempts have been made to synthesize a multi-source model for prediction, 

due to the onerous requirements for obtaining real distinct sources, cited by Zhang, et al. These 

approaches are attempts to work around the error intrinsic in single-source prediction models 

without the burden of true multi-source data. For example, random subsampling works by 

teaching only part of the dataset to a model. This yields models trained on slightly different 

datasets, which causes variations in their predictions. 

Different modeling techniques respond to data corruption and omission instances very 

differently. (Kotsiantis, 2007) One way to leverage the heterogeneity of errors is to utilize 

multiple models of different types in Ensemble Learning (Ensemble Learning, 2012) to 

effectively “bolster the signal” and “cancel out” the noise in predictions. (van Lint J. , 2006) 

Ensemble methods yield predictions with a lower error rate than a single model. (Park, Messer, 

& Urbanik II, 2007)  

The proper selection of input data is important to consider when using ANNs to model 

traffic data. Likewise, the capability for ANNs to produce accurate predictions decreases as 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   14 

   

predictions are made further in the future. Chen & Chen experimented with many different 

configurations of input and output data to determine which produced the most accurate 

predictions. They considered the temporal granularity of samples, how far they needed to “look 

back”, and how far they could “look forward.” Their conclusion was that data older than 32-48 

minutes is not useful in predicting future traffic conditions. At the same time, they found that 

prediction accuracy degraded quickly as “look forward” periods increased in all cases. When 

using samples with a granularity of 4 minutes, accuracy dropped quickly when predicting 

between 8 and 16 minutes in the future. (Chen & Chen, 2007)  

These approaches attempt to minimize errors and omissions in training data as well as 

prediction inaccuracy caused by the dynamics inherent in one model vs. another, all while 

ensuring that the input and output data windows yield the best predictions possible. However, all 

of the aforementioned techniques are still single-source prediction mechanisms. When 

performing online predictions in the field, their data still comes from a single source: in-road 

sensors. This does not meet the multi-source requirement set forth by Zhang, et al. for achieving 

reliable accuracy. In addition to these techniques, a separate source of data is needed to cross-

validate the sensor data and indicate when the traffic flow does not reflect a normal pattern. 

Human Validation 

Data Driven Intelligent Transportation Systems (D
2
ITS) are aimed at generating 

information autonomously. They are intended to drive regional transportation infrastructure that 

can tune itself dynamically via on-ramp metering and other mechanisms to consistently optimize 

traffic flow. A part of ITS involves presenting users with accurate information about its current 

state without requiring human curators. However, the current state-of-the-art technology is not 

capable of replacing humans. (Zheng, Lee, & Shi, 2006)  
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Therefore, we must conclude that traffic data generated by human curators is required to 

provide data driven models with the information required to model non-recurring traffic events, 

such as a traffic accident or spontaneous lane closure. 
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Twitter as a Proxy for Human Validation 

Social Networking has become nearly as ubiquitous as email. As of August 2011, the 

social network Twitter had over 300 million users, generating over 300 million 140-character 

messages, known as “Tweets,” each day. (Twitter Blog, 2011) Twitter is unique among social 

networks, in that the follower / followee model is much more loosely coupled than a traditional 

friend-based network model, such as Facebook. Actual friend-to-friend collaboration on Twitter 

is done by a sparse, hidden network of connections that underlies the declared follower / 

followee relationships and only represents about a quarter of Twitter activity. In fact, most inter-

personal connections on Twitter are meaningless from an interaction perspective (Huberman, 

Romero, & Wu, 2008) Even conversations with complete strangers can easily be joined based 

purely on interest. (de Moor, 2010) Twitter requires no reciprocity, so it resembles an 

information dissemination network more than another social network. (Kwak, Lee, Park, & 

Moon, 2010)  

Twitter does, however, lend itself well to a different collaboration model. It applies a 

principle of least collaborative effort (de Moor, 2010) by limiting messages to 140 characters and 

allowing everyone to respond to anything on the network. Viewing Twitter as a broadcast + 

amplify model of collaboration more closely resembles how its users interact. In this model, a 

message is broadcast from a user to whoever is following them and is also accessible by anyone 

who searches for it via the Twitter API or website. Followers who find value in the information 

can then re-broadcast (re-tweet) it, amplifying the message and exposing it directly to their 

followers – a potentially distinct set of new recipients. Sakaki, et al. showed how Twitter tweets 

could be used to detect and broadcast the location and trajectory of earthquakes faster than the 

Japan Meterological Agency. By tracing the initial tweet(s) back, they were able to locate the 
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epicenter of the earthquake and subsequent tweets were found to radiate in the direction of the 

shock wave’s travel. (Sakaki, Okazaki, & Matsuo, 2010) 

Challenges in Semantic Mining of Twitter Messages 

Twitter’s loose model for inter-personal connections and lack of structure for tweets 

present challenges in mining information from its data. The connection graph is not a good proxy 

for a Page Rank-style authority model so discovering the structure of a hub and spoke topology 

among users requires an expensive probabilistic approach. (Lawrence, 2011) (Huberman, 

Romero, & Wu, 2008) Therefore, it is better to start with a known authoritative source when 

examining how data propagates through Twitter. 

The abbreviated message style of Twitter has fostered the use of hash tags to express the 

relationship of a tweet to a topic or concept. However, even mining sentiment (which is much 

simpler than a full semantic classification) from hash tags requires a statistical approach. 

(Davidov, Tsur, & Rappoport, 2010) Twitter’s simplicity creates a low barrier to posting, which 

allows more noise into network from both automated spam tweets and ad-hoc hash tag creation 

(which may simply be misspellings or rephrasing of existing hash tags.) Most importantly, most 

hash tags tend to have a short life, limiting their long-term utility. Of the hash tags with a long 

lifespan, such as #obama, most end up applied inconsistently over time. The few long-lived hash 

tags that managed to maintain semantic consistency over time tend to be application or source 

names included in tweets generated automatically by applications. (Laniado & Mika, 2010) 

Therefore, attempts to mine Twitter data cannot rely on hash tags to accurately map a tweet to a 

concept, which rules them out as a proxy for semantic analysis. 

Twitter’s mechanism for re-broadcasting tweets while preserving attribution (re-tweeting) 

is problematic, precisely due to the structure-free format of Tweets. The process of re-tweeting is 
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analogous to forwarding email but the individual user is not forced to specify that it is a re-tweet 

and include attribution, because those constraints undermine the principle of least collaborative 

effort. Therefore, re-tweets are subject to stylistic variations in both their structure and the 

motivation for their re-broadcast, making them difficult to aggregate. The information that is re-

tweeted tends to be time-sensitive, such as news or traffic (Boyd, Golder, & Lotan, 2010). This 

implies two things: 1) traffic information itself likely to be amplified and 2) detection and 

aggregation of traffic information without an authority is difficult. 

Semantic Analysis of Traffic Broadcasts from Authoritative Sources 

Official traffic broadcasts do not suffer from the problems inherent in generalized mining 

of Twitter data. Major metropolitan transit authorities, such as the Washington Department of 

Transportation, Oregon Department of Transportation, and California Department of 

Transportation broadcast their own messages on the Twitter accounts. (Their tweets can be 

viewed by the Twitter usernames @wsdot_traffic, @ODOTPDXMtHoodFA, and @Caltrans8, 

respectively.) These user accounts are recognized authorities for traffic data that do not require 

cross-validation through a social graph. The trained staff of a regional transportation authority is 

intentionally monitoring and reporting on traffic conditions affecting the majority of their 

transportation system. It can be assumed that these primary sources cover the majority of 

interesting roadways and use consistent conventions for naming events, locations, and severity. 

Restrictions in Twitter message length, coupled with the fact that transit employees are 

intended to represent government agencies, actually benefit semantic processing of traffic 

broadcasts. The messages must be concise in specifying the location, type, and severity of an 

event, so the variations expected in their contents should be more constrained than free-form 
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text. Finally, abbreviations for common elements should be more consistent among broadcasts 

from trained staff than from the public-at-large.  

Detection of re-tweets remains a difficult problem to solve. However, its importance in 

modeling traffic data is secondary to the proper aggregation of primary data sources, such as 

initial tweets from transit authorities. While the accurate capture and aggregation of traffic 

broadcast re-tweets could provide incremental value in traffic predictions, it is theorized that this 

is not critical in prediction accuracy. 

Traffic Accident Ontologies 

For consistency and reusability, the plain text of tweets should be mapped into an 

ontology. However, few ontologies have been published for classifying traffic impediments 

according to the concrete impact of their severity. TADO is a risk-based ontology that focuses on 

the circumstances surrounding the occurrence of an accident with the intent of predicting and 

avoiding areas with a high occurrence of accidents. (Wang & Wang, 2011) It includes detailed 

geospatial information about type of structures near an incident (the type of roadway and nearby 

buildings) in addition to environmental conditions such as light and weather during an incident. 

The latter provides an interesting avenue for additional signals to add in future iterations of this 

experiment. However, the ontology does not include any information about the severity of an 

incident and its impact on surrounding roadways. 

Traffic-related ontologies have also been developed with the intent of applying spatial 

clustering algorithms to incidents (Hwang, 2003) but these typically omit details about the 

magnitude of the incident that could aid in prediction of traffic around it. Dieng’s experiment in 

graph comparison used several ontologies produced by traffic experts, which come closer to the 

mark. They call out categories of accidents, such as Conflict-in-intersection and Accident-of-2-
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vehicles-in-current-section (Dieng, 1996) but lack attributes that are relevant to predicting traffic 

speeds, such as whether extraordinary visual distractions such as fire or an overturned vehicle are 

present.  

An ontology to classify tweets about traffic incidents should leverage the relevant 

concepts from prior efforts, where applicable. Given that the literature does not contain a ready-

made ontology for semantic classification of traffic incident tweets with the intent of describing 

their impact on traffic speeds, the concepts that are published must be paired with attributes 

gleaned from uncovering patterns present in tweets from traffic authorities to form a traffic 

incident ontology. 
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Chapter II - Methods 

This chapter describes the concrete aspects of the experiment. The experiment identifies 

in-road speed sensors in popular road segments and trains ANN models to predict future speeds. 

The organization is as follows: 

Experimental Design: This section describes the structure of the experiment and how it 

addresses threats to validity. 

Data Selection and Preparation: This section describes how datasets were chosen for 

experimentation, their characteristics, and how they are modeled internally prior to generating 

the training and validation datasets.   

Traffic Incident Ontology: This section discusses different attributes of Tweets and the 

ontology built from analyzing them for their impact on traffic disruptions.  

Experimental Parameters: This section discusses how the specifics of setting up this 

forecasting experiment, including dataset subsampling and how far in the future it attempts to 

forecast speeds. 

Evaluation Criteria: This section describes the methods for evaluating the experiments 

and how they are calculated.  

ANN Architecture and Training Configuration: This section describes the pre-work 

done to determine the optimal settings for training the ANNs and the result configuration that 

was used for training the ANNs in the experiment. 

Terms and Definitions: This section provides a list of terms and succinct definitions for 

concepts that have been introduced.  
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Experimental design 

This experiment generates predictions of road segment speeds in the future. The 

predictions are made by modeling either sensor data combined with social data (the treatment 

group) or the sensor data without social data (the control group.) The experimental hypothesis 

claims that the error of the predictions generated by sensor and social data combined will be less 

than the error of the predictions generated by sensor data alone. See Figure 2 - Experiment 

Architecture. 

An experiment is conducted for a randomly selected sensor using a Posttest-Only Control 

Group Design: 

                          

                            

The “treatment” applied to the treatment group is the incorporation of social data in its 

model. The control group is the same subject sensor without the “treatment” social data in its 

model. This is acceptable because the experiment subjects are simply datasets that are not altered 

by history or maturation effects. The validity of an experiment conducted on a single road 

segment raises questions of whether a selection bias threatens its internal validity. To address 

this threat, this study uses a random sample containing ten percent of the sensors available on the 

subject road segment to conduct the experiment in multiple locations, to measure its outcome. 

ANNs present a unique challenge in experimental design, as the best practices for 

constructing them can produce varying results when executed multiple times on the same data. 

This is a side-effect of the standard process of randomizing an ANN’s weights prior to training 

it. To address this problem, techniques called K-Fold Cross Validation (also known as random 

subsampling) and Ensemble Forecasting are used. K-Fold Cross Validation randomly selects 
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data points for a subset of the training data and constructs an ANN model using that subset. The 

process is repeated K times to produce K different models. Ensemble Forecasting combines the 

results of multiple models to produce a prediction that represents the consensus of the ensemble. 

Combining model predictions into an ensemble increases their accuracy and helps to quantify 

prediction confidence. In this study, the treatment group contains an ensemble of models trained 

with social data and the control group contains an ensemble of models trained without social 

data.  

 

Figure 2 - Experiment Architecture 
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Data Selection and Preparation 

This section describes how data is collected and processed prior to modeling for this 

study. 

Road Segment Selection 

Choosing which road segments to model is challenging. Selecting segments from the 

complete pool of available segments at random avoids selection bias but has low utility, as most 

tweets from @WSDOT_Traffic broadcast events on high occupancy segments. In fact, tweets 

about events occurring on segments of the I-5 corridor outnumber those on the next most 

common roadways by a ratio of 3:1 (See Figure 3 – Tweets broadcast by @WSDOT_Traffic user 

between 2/12/2012 and 3/13/2012. Note that the “N/A” bucket comprises conversational tweets 

that are not intended to notify consumers of specific events.) Therefore, this experiment only 

considers segments along I-5 within the Seattle city limits. (@WSDOT_Traffic is primarily 

focused on Seattle. Other regions’ traffic data is broadcast using different Twitter handles, such 

as @WSDOT_Tacoma.) The city limits of I-5 are defined as being bounded by milepost 156 at 

the south end and 174 at the north end. 
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Figure 3 – Tweets broadcast by @WSDOT_Traffic user between 2/12/2012 and 3/13/2012. 

 

Despite constraining the problem to this roadway within these bounds, there are 223 

active sensors that can be modeled. It is impractical to attempt to model and analyze all of them, 

especially when each lane a separate sensor which produces very similar readings to those 

around it. It is also important to choose an unbiased, yet representative subset when sampling 

which sensors to model. Modeling ten percent of the sensors provides a representative sample. 

To select the sensors without bias, a random number is assigned to each sensor. Sensors with 

numbers greater than or equal to .9 are modeled in this experiment. This approach yielded 31 

sensors to model. Table 1 - Sensors to Mode details the specific sensors modeled in this 

experiment. The ID assigned below is a serial number given to each sensor when it is imported 

into the experiment database. For convenience, these IDs are used to refer to specific sensors 

instead of the WSDOT Sensor ID for the remainder of this document. 

ID WSDOT Sensor ID Milepost Direction Lane Location Description 

38 005es15821:_MNH_T5 158.21 N 5 (HOV) S. Victor St 

39 005es15845:_MN__T2 158.45 N 2 S. Norfolk St 

49 005es15892:_MN__T3 158.92 N 3 S. Benefit St 

72 005es15996:_MS__T1 159.96 S 1 S. Holden St 
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77 005es16040:_MN__T2 160.40 N 2 S. Myrtle St, NB 

80 005es16040:_MNH_T5 160.40 N 5 (HOV) S. Myrtle St, NB 

87 005es16064:_MS__T4 160.64 S 4 S. Holly St 

91 005es16097:_MN__T3 160.97 N 3 S. Graham St. 

94 005es16120:_MN__T1 161.20 N 1 Swift Ave-NB 

98 005es16120:_MNH_T5 161.20 N 5 (HOV) Swift Ave-NB 

105 005es16186:_MN__T2 161.86 N 2 S. Pearl St 

108 005es16186:_MS__T2 161.86 S 2 S. Pearl St 

109 005es16186:_MS__T3 161.86 S 3 S. Pearl St 

111 005es16186:_MSH_T5 161.86 S 5 (HOV) S. Pearl St 

118 005es16237:_MS__T3 162.37 S 3 S. Oregon St 

119 005es16237:_MSH_T5 162.37 S 5 (HOV) S. Oregon St 

132 005es16377:_MN__T1 163.77 N 1 S. Walker St, NB 

141 005es16395:_MNH_T5 163.95 N 5 (HOV) S. Holgate St, NB 

149 005es16426:_MN__T3 164.26 N 3 S. Atlantic St 

151 005es16466:_MN__T1 164.66 N 1 4
th

/Dearborn-NB 

155 005es16466:_MS__T1 164.66 S 1 4
th

/Dearborn-SB 

161 005es16512:_MN__T4 165.12 N 4 Yesler Way, NB 

168 005es16583:_MN__T4 165.83 N 4 University St-NB 

169 005es16732:_MN__T1 167.32 N 1 E. Galer St 

176 005es16802:_MS__T4 168.02 S 4 E. Roanoke St 

179 005es16831:_MS__T3 168.31 S 3 E. Hamlin St 

200 005es17075:_MS__T2 170.75 S 2 Lake City Way 

206 005es17162:_MS__T2 171.62 S 2 NE 88
th

 St 

233 005es17328:_MS__T3 173.28 S 3 NE 120
th

 St 

239 005es17375:_MS__T2 173.75 S 2 NE 130
th

 St-SB 

242 005es17375:_MSH_T5 173.75 S 5 (HOV) NE 130
th

 St-SB 

Table 1 - Sensors to Model 

The distribution of sensors is depicted in Figure 4 - Sensor distribution. 
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Figure 4 - Sensor distribution 

Collecting Sensor Data 

The traffic data used in this experiment is sourced from the Washington Department of 

Transportation (WSDOT) and is available for downloading at 

http://data.wsdot.wa.gov/Traffic/NW/FreewayData/5minute/. The data is provided in five minute 

intervals for each sensor. The data is downloaded, extracted, and pre-processed for import into a 

database by a series of steps depicted in Figure 5 - Ingestion Pipeline.  
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Figure 5 - Ingestion Pipeline 

 

The actual data published by the WSDOT is a packed format that is designed to reduce its 

size. The packed format is more efficient than plain text for storing and transferring the data over 

the Internet. The WSDOT provides tools to extract the raw data from their packed format, so the 

packed format’s details are uninteresting. The data format information is described for 

completeness and ease of reproducing the experiment data.  

The WSDOT’s tool called CDR (Compact Disc Retriever) is used to extract the raw data 

from the packed files. The procedure used to extract the data is described in Appendix 1 – 

WSDOT Data Extraction Method. 

Collecting and Labeling Twitter Data 

Twitter exposes a public REST API for searching its tweets, as documented at 

https://dev.twitter.com/docs/api/1/get/search. It offers multiple options for searching their data 

store but this experiment only uses tweets from an authoritative source; the Washington 

Department of Transportation (WSDOT). WSDOT has several Twitter accounts that offer 

information filtered by locality, such as @WSDOT_Tacoma and @WSDOT_Passes. This 

experiment uses the broadest account offering Seattle traffic information, @WSDOT_Traffic.  

The Twitter search API does not consistently return tweets older than one week, so the 

WSDOT_Traffic tweets were captured each week over a four week period starting February 13, 

2012 and ending March 12, 2012. The timestamp and the contents of the tweet, including any 

hashtags, were recorded.  

The data was hand-labeled to ensure that the quality is higher than that of an automated 

process while helping to inform the ontology. It was difficult to determine which attributes 

occurred frequently enough to label a-priori. However, only a few attributes occurred regularly 

https://dev.twitter.com/docs/api/1/get/search
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enough to include in the ontology. See the section Traffic Incident Ontology for details. In 

addition, very few instances of individual people re-tweeting WSDOT messages occurred during 

the data collection period. Of those, roughly half were re-tweets by local news organizations, 

such as King 5 News, komonews.com, and Northwest Cable News. Further, the messages were 

not usually re-tweeted verbatim, so correlating tweets with re-tweets quickly became a sparse 

data problem whose application in this research would be beyond the scope of this work. 

Mapping Tweets to Sensor Data 

The cardinality of tweets to sensor data records is many-to-many relationship: a tweet 

may describe an incident affecting a large area, so speeds recorded by many sensors could be 

reduced by it. Likewise, multiple tweets can affect speeds reported by a single sensor, as in the 

case when multiple incidents occur. Each set of sensor training data includes all tweets, 

regardless of whether they are expected to influence the speeds observed by the sensor. The 

magnitude of a tweet’s impact is determined by its proximity to the sensor, in addition to the 

attributes of the actual event, such as the capacity impact. To address the case of multiple tweets 

causing an impact at the same time, the training data for a time segment is repeated once for each 

tweet that is active. This is done to prevent models from learning interaction effects between 

concurrent tweets. Combining multiple tweets into a single input is an interesting avenue for 

exploration but is out of scope for this experiment. 

Twitter assigns timestamps to tweets as they are broadcast. The range of values for these 

timestamps is nearly continuous, which is very different from the timestamps assigned to the 

sensor data. The WSDOT reports speed information in five minute increments, so the two 

schemes must somehow be mapped together. This experiment aligns tweet timestamps to sensor 

timestamps by determining which sensor timestamp occurred after the tweet and replacing the 
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tweet’s timestamp with the sensor’s. This implies that a tweet broadcast at 1:01AM would be 

treated as occurring in the 1:05AM time slot. The approach is designed to be slightly 

conservative and never allow out-of-order errors in training data, where the tweets would be seen 

as describing events happening in the future. (Tweets used in this experiment are always 

reactive, so they always correspond to an event that exists, rather than conditions that could 

cause an event.) 

Data Model 

Data is normalized into a star schema: when importing new records, sensor names and 

dates are scanned for values that don’t already exist in the Sensor and DateTimes dimension 

tables. New values are inserted into these tables with unique numeric identifiers. The actual 

speed information is stored in a fact table named SpeedData. The fact table only contains 

numeric data, as the human-readable fields have been replaced with numeric ones during 

normalization. The schemas and cardinality of these tables are depicted in Figure 6 - Normalized 

Data Model.  
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Figure 6 - Normalized Data Model 

 

 Tweets are incorporated into the data model as a separate table, with DateTimeId as a 

foreign key that associates them with a set of timestamps. When training or evaluation datasets 

are generated, the tweets’ proximity to a sensor and whether their direction aligns with the 

sensor’s direction are computed.  
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Traffic Incident Ontology 

Initial attributes were derived from the literature and general knowledge of types of 

incidents that have occurred. All incidents are assumed to have a flat hierarchy, existing as 

uniform objects containing the same attributes. Research spanning a longer time period may 

allow for a more full-featured ontology. However, aside from opaque disabled vehicles and 

collisions, ontological information was quite sparse in the WSDOT tweets. 

Message Type 

A tweet can announce a new incident, the continuation of an existing incident event, or 

the clearing of an incident. Incidents have a well-defined life cycle: an incident occurs, it has 

some impact (which could last for a few minutes or several hours), and it clears. Therefore, 

tweets broadcast to inform users of an incident should map to one of these three events. Some 

tweets are not intended to cite a specific incident but describe present conditions on a road 

segment as their event. The cardinality of tweets to events is many-to-one: zero or more tweets 

may be broadcast for each event type. These indicate whether an event should have a negative 

effect on future predictions (initial / continuation) or whether they indicate that conditions should 

improve. For this study, announcements of current conditions are considered to Continuation 

messages, as they indicate that something is occurring but don’t indicate whether traffic is taking 

a turn for the better or worse. See Table 2 - Message Type Examples. 

Message Type Example 

Initial On I-5 northbound just south of SR 18 there is a disabled vehicle blocking the 

right lane. 

Continuation  Tow truck arrived on scene: On I-5 northbound just south of SR 18 there is a 

disabled vehicle blocking the right lane. 

Clearing Cleared: On I-5 northbound just south of SR 18 there is a disabled vehicle 

blocking the right lane. 

Table 2 - Message Type Examples 
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Location 

Impediments must correspond to a physical location to be useful for measuring their 

impact on traffic speeds. Impediments will always be considered to be on a roadway of interest, 

so the name of the roadway is one part of the location. Incidents can occur anywhere along a 

roadway, so the location must be specified, in addition to the roadway name. In order to calculate 

the distance from an incident to a speed sensor, this ontology uses the milepost to specify the 

location of incidents. Finally, major roadways typically have two directions of traffic flow, so 

this will be indicated as well. 

Examples of tweets with ontological location mapping are shown in Table 3 - Location 

Attributes.  

Road 

Name 

Direction Milepost Tweet Text 

I-5 S 163 On I-5 southbound at S Spokane St there is a collision 

partially blocking the right lane. 

I-5 N 165 On the I-5 northbound collector-distributor at Yesler Way 

there is a disabled vehicle partially blocking the right lane. 

I-405 N 2 On I-405 northbound just north of S R167 there is a 

collision blocking the right center lane and the right lane. 

I-5 Multiple 164 UPDATE: List of ramp closures...N/B I-5 & S/B I-5 to 

Dearborn Street & N/B I-5 to E/B I-90 all due to police 

activity. 

Table 3 - Location Attributes 

 

Extraordinary Distraction 

This binary attribute attempts to include concept of whether an extraordinary distraction 

is present that can magnify the severity of an incident. The value of this attribute is zero, unless 

the description of the incident contains information indicating that there is a significant reason 

that the incident would draw more attention than a stalled vehicle or collision. See Table 4 - 

Extraordinary Distraction Examples.  
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Distraction Examples 

Car fire 

Police activity 

Overturned vehicle 

Ambulance on scene 

Table 4 - Extraordinary Distraction Examples 

 

Capacity Impact 

Blocking impediments typically affect a single lane, reducing the capacity by the amount 

of traffic carried by that lane. The impact is significantly increased when multiple lanes are 

blocked. Conversely, when an incident is moved to the side of the road, it represents a visual 

distraction but no physical impediment to flow, so its capacity impact is zero. See Table 5 - 

Capacity Impact Examples. 

Capacity 

Impact 

Description Example 

0 No physical 

reduction in 

capacity. 

Just cleared to the right shoulder. RT @JenniferKimKOMO: 

disabled car nb5 approaching 272nd... in the left lane 

1 Mild reduction 

in capacity. 

Single lane 

On I-5 southbound at NE 50th St there is a disabled vehicle 

blocking the right center lane. 

2 Severe reduction 

in capacity: 

multiple/all lanes 

All lanes still blocked on S/B I-5 at Ravenna, along with the 

ramp from Ravenna. Here's a look: http://t.co/mDBqJmVk 

Table 5 - Capacity Impact Examples 

 

Incident Type 

The most common types of incidents are stalled or disabled vehicles and collisions. They 

are categorized accordingly. See Table 6 - Incident Type Examples. 

Incident Type Example 

Stall On I-5 northbound just south of SR 18 there is a disabled vehicle blocking the 

right lane. 

Collision On I-5 southbound at Dearborn St there is a collision blocking the HOV lane. 

Table 6 - Incident Type Examples 
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Experimental Parameters 

Appropriate Look-ahead and Look-back Periods 

The design of a forecasting experiment includes the selection of look-ahead and look-

behind periods. Choosing the appropriate periods for look-ahead and look-back is one of the 

most difficult challenges in setting up a prediction experiment of this nature. The look-ahead 

period determines how far into the future the model is attempting to look ahead. Long look-

ahead periods tend to be inaccurate because the data directly affecting the prediction is not 

included as part of the input. In the extreme case, traffic speeds on a road one year from today 

would be most closely related to the conditions near that time and likely only coincidentally 

related to conditions today.  

The look-back period is the amount of time in the past we consider conditions relevant 

for predicting current conditions. This period also needs to be chosen carefully, as the influence 

of previous readings decrease as their ages increase. Providing extraneous data increases model 

complexity, as the model must learn to ignore data that doesn’t influence the outcome. 

Therefore, a look-back that is so large that it contains old data that does not affect the outcome 

will actually decrease the model’s accuracy 

Selection 

Chen and Chen experimented with the effect of look-back and look-ahead periods on 

prediction accuracy. (Chen & Chen, 2007) Their experiments using data collected at four minute 

intervals is most closely related to the five minute data collection interval used in this 

experiment, so the conclusions they made about that dataset are applied here.  

They concluded that using five collection intervals (20 minutes) as the look-back period 

produced the most accurate predictions. They did not include results for look-back periods more 
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than five collection intervals in duration. They are not explicit that six or more intervals would 

be unhelpful, but they do cite the most accurate look-back intervals as four and three, when the 

collection interval is eight minutes (32 and 24 minutes, respectively.) It can be inferred that 

looking back more than 30 minutes does not yield more accurate predictions. This experiment 

uses five collection intervals as the look-back period (25 minutes) as an approximation of Chen 

and Chen’s findings.  

Look-ahead period selection is a balance between utility (it is not useful to predict 

conditions 1 second in the future) and accuracy (predictions 60 minutes in the future are not 

useful if they are only accurate 1% of the time.) The accuracy of look-ahead periods cited by 

Chen and Chen showed a steady decrease in accuracy when moving from one to two to three 

collection intervals, using a four minute collection interval and a 20 minute look-back period. 

The observed degradation in accuracy between look-ahead periods between one and two 

collection intervals is half of that observed between look-ahead periods between two and three 

collection intervals. Therefore, this experiment will use two collection intervals (10 minutes) as 

its look-ahead period for predictions. 
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K-Folding and Datasets 

An ensemble of models can produce predictions with a lower error than individual 

models. (Ensemble Learning, 2012) In addition, the disagreement between models’ predictions 

can also be used to indicate how well the ensemble models the conditions it attempts to predict. 

(van Lint J. , 2006) An ensemble used in this experiment will be comprised of one model trained 

on each of the k-folds of the dataset. This experiment will use a k-value of 5, producing 

ensembles of 5 models for all 31 road segments to model, yielding 155 models. The experiment 

is performed with one ensemble trained on sensor data alone for a road segment and repeated 

using sensor data augmented with social data, which doubles the model count to 310. 

K-fold cross-validation requires a training dataset (comprised of data from February 13, 

2012 through March 13, 2012), which is partitioned into training segments 5 different times (one 

for each fold.) A disjoint dataset called the validation dataset is used to evaluate the ensemble 

after all its ANNs have been trained. The validation dataset is comprised of data from March 14, 

2012 through March 21, 2012, which ensures that none of the ANNs in the ensemble have been 

trained or evaluated on the data.  

Training Dataset 

To partition the training dataset, each time interval is assigned five random numbers 

ranging from 0-1.0. The random numbers are sourced from www.random.org, to ensure that they 

do not suffer from computational pseudorandom bias and are uniformly distributed. (Haahr, 

2012) The first random number for a time interval is its seed for fold1, the second random 

number for that interval is its seed for fold2, and so forth. Time intervals with seeds greater than 

0.05 are selected to comprise the training segment in a fold. This attempts to use as much data as 

http://www.random.org/


IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   39 

   

possible for training and holding back a representative amount for creating diversity in the 

training data and the ANNs trained on it. 

Validation Dataset 

The validation dataset is never used in training processes. It is a final scoring of the ANN 

ensemble that is used to determine its accuracy. This allows the experiment to simulate the 

performance of this technique as if it were deployed to be used by real vehicle operators while 

quantifying the error of its performance. This dataset is not partitioned – ensembles are evaluated 

against the entire validation dataset. 
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Operational Definitions of Independent Variables 

This section describes how variables are translated into training and validation datasets 

for modeling. These variables represent input to the ANN that it will use to predict traffic speeds. 

Time 

Provided as multiple parts, to facilitate learning of repeating patterns, as depicted in 

Table 7 - Time Decomposition 

Day of Week Ranges from 0-6, with 0 indicating Sunday. 

Hour of Day Ranges from 0-23 

Minutes Past the Hour Ranges from 0-59 (chunked into 5-minute 

increments, due to the WSDOT data format. 

E.g.: 0, 5, 10, 15…50, 55.) 

 

Table 7 - Time Decomposition 

 

Previous Segment Speeds 

The speeds measured from the previous 25 minutes (in 5 minute intervals.) They are each 

provided as a separate input, so this is represented as                 , where T is a 5 minute 

interval. 

Age of Last Traffic Impediment Broadcast 

The number of minutes elapsed since the last tweet from the WSDOT about traffic in the 

subject road segment. This will range from 0 to 60 minutes – after 60 minutes have elapsed, it 

will be assumed that the tweet is no longer relevant. 
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Extraordinary Distraction 

A value of zero or one, indicating that a tweet mentions an extraordinary distraction (1) 

or not (0). Note that none of the social data from the validation dataset contained this attribute, so 

there is no drilldown into its effect on prediction win probability. 

Capacity Impact 

An ordinal field indicating what portion of capacity is affected. This is a coarse measure, 

indicating whether zero, one, or multiple lanes are blocked. The range of values representing the 

aforementioned conditions is {0, 1, 2}, respectively.  

Incident Type 

A pair of boolean values, indicating whether the incident is a stall, a collision, or neither. 

The most common incident types broadcast by the WSDOT are stalls and collisions.  

Impediment Direction 

A value ranging from 0 to 1, indicating whether the impediment is in the same (1) or 

opposite (0) flow direction as the sensor. Note that this is specific to each sensor, so an example 

that has a value of zero for the direction in a dataset for a northbound sensor would have a value 

of one in the dataset for a southbound sensor. 

Occupancy 

This is a value ranging from 0 to 1, representing the number of vehicles present in the 

segment divided by the segment’s vehicle capacity. 
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Operation Definition of Dependent Variable 

The models attempt to predict a single outcome: the traffic speed ten minutes in the 

future. This is the sole dependent variable 

Future Segment Speed 

The predicted speed on the subject segment two collection intervals (10 minutes) in the 

future is represented as (    )
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Evaluation Criteria 

The experiment deemed to have improved predictions if the error between speeds 

predicted by the ensemble and observed speeds decreases when models are trained with social 

data.  

Ensemble Prediction 

The ensemble’s prediction is calculated as the mean of all K-folds: 

                    
∑            
 
   

 
 

Ensemble Disagreement 

The standard deviation of the ANNs’ predictions will be considered the disagreement of the 

ensemble for each prediction. Ensemble disagreement is not used to determine success or failure 

of a prediction but is used to suggest relative confidence across predictions. This is calculated as 

the standard deviation of prediction error across the K-folds in an ensemble. Ensemble 

aggregation is calculated on each example in the validation set. However, the mean and standard 

deviation of values observed across the validation dataset must be calculated in order to indicate 

the relative confidence of an individual prediction. 

                       √
∑ (           ) 
 
   

 
 (

∑ (           )
 
   

 
)

 

  

Error Calculation 

The experiment is determined to have improved predictions if the root mean square error 

between speeds predicted by the ensemble and observed speeds decreases when models are 

trained with social data. RMS error is the standard measure for experiments that test ANN 
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accuracy. This is calculated across the entire validation dataset, containing N examples: 

           √
∑ (                                 )

  
   

 
 

Traffic prediction experiments have also used the Mean Absolute Percentage Error for 

quantifying results. Whereas RMS error optimizes for the best aggregate fit of the data, MAPE 

optimizes for higher accuracy at low speeds. The ANNs are trained to optimize their RMS error 

but MAPE is calculated to depict results in the same language used by other studies. MAPE also 

anomalous when observed speeds approach zero, as dividing the prediction error by a tiny 

number yields a disproportionately high absolute percentage error. To address that issue, this 

study’s calculations use the greater of Observation i or 1.0.  

      
∑ (|

                                 
            

|) 
   

 
 

 

Theoretical Route Travel Time 

This experiment considers each road segment as a point along a route heading either 

north or south on a roadway. In order to evaluate the combined effect of sensor predictions vs. 

observed results in a way that is meaningful to vehicle operators, a theoretical route travel time is 

calculated. This route assumes that at a given point in time, the theoretical travel time along the 

route can be calculated by assuming a vehicle can travel at the speed observed or predicted at a 

sensor until it reaches the next sensor in the route, where its speed is defined by the second 

sensor’s observation or prediction. This continues until the user reaches the milepost that defines 

the boundary of the roadway that is being evaluated.  

                      ∑
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This travel time is purely theoretical, as it does not account for the time that elapses while 

in transit between sensors, where the speeds may have changed. Traffic maps depicting current 

conditions provide exactly this kind of data but quantifying differences between them is difficult. 

Instead, comparing theoretical travel time is a good alternative.
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ANN Architecture and Training Configuration 

ANNs are all trained using the Multiple Back-Propagation tool version 2.2.4, from Noel 

de Jesus Mendonca Lopes (http://dit.ipg.pt/MBP/).  

The literature indicated that there is no heuristic for determining the optimal 

configuration for training ANNs a-priori. It is recommended that many configurations be 

attempted and those yielding the best results on a particular dataset be used. The first fold of 

Sensor Id 38’s training data was used to test various combinations of learning rate, momentum, 

and training epoch counts to determine which yielded the best results. This was done once for the 

training set with social data and once for the training set without social data.  

To test the parameters, an ANN is trained with combination of learning rate and 

momentum settings for 100 epochs. The error on the training data and the evaluation data is 

noted and then the ANN is trained for an additional 150 epochs, for a total of 250. Error is noted 

for this configuration, and the process is repeated, testing epochs 500, 1,000, 2,500, 5,000, up to 

10,000, 20,000, or 50000, if the results continue improving. This test is performed for all 

combinations of learning rate and momentum, where values are in the set {0.3,0 .5, 0.7 }. The 

results are included in Table 30 - ANN Training without Social Signals and Table 31 - ANN 

Training with Social Signals, located in Appendix 2 – Testing Training Parameter Effects on 

Error. 

Training an ANN over more epochs requires more time to train it. Given that this 

experiment requires the training of 310 ANNs, consideration must be made regarding how much 

burden training a greater number of epochs incurs against the significance of the potential 

increase in accuracy. To aid in this decision, tables of training parameters and errors are 

summarized by the minimum error produced at each number of training epochs. Based on the 
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table below, there is no significant difference in the error observed when training for over 1000 

epochs. This is likely caused by the ability of the ANNs to quickly achieve a nominal fit of the 

training data due to the aggressive initial learning rates. The experimental epoch count was 

decided by picking the middle values (5,000 and 10,000) and breaking the tie by selecting the 

higher number of epochs (10,000), as it appeared to be one of the better options for the models 

trained with social data, as shown below. This corresponded to a learning rate of 0.3 and a 

momentum of 0.5. 

Training Epochs Min Error 

1000 0.0647 

2500 0.0648 

5000 0.0648 

10000 0.0648 

20000 0.0647 

50000 0.06462 

Table 8- Minimum Error Values by Epoch for Non-Social Data. Note the minute differences 

in the error across the table. A .0001 error corresponds to roughly 0.01MPH, which is not 

important. 

 

 

Table 9 - Minimum Error Values by Epoch for Non-Social Data 
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The smallest error in the social training dataset was observed when trained for 20,000 

epochs. However, this is not significantly better than the error observed when training for 10,000 

epochs. In order to reduce the burden of training the social ANNs, the experiment trained these 

ANNs for 10,000 epochs. This error was produced with a learning rate and momentum of .3 and 

.5, respectively. See Table 10 - Minimum Error Values by Epoch for Social Data 

Training Epochs Min Error 

1000 0.0628 

2500 0.0625 

5000 0.0621 

10000 0.0619 

20000 0.0617 

50000 0.0617 

Table 10 - Minimum Error Values by Epoch for Social Data 

 

 

Table 11 - Minimum Error Values by Epoch for Social Data 
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Terms and Definitions 

Collection Interval – the amount of time (in minutes) that each data sample represents.  

Training Dataset – the dataset used to train the ANNs to model future traffic speeds.  

Validation Dataset – the dataset used to evaluate the ANNs’ predictions. This data is 

never used to train ANNs and is disjoint from the Training Dataset. 

Look-ahead Period – the amount of time between the collection of a sample and the 

expected realization of a prediction. This is described in minutes as well as a multiple of 

collection intervals. This describes how far in the future the model is trying to predict conditions. 

Look-back Period – the amount of time between the collection of a sample and the 

previous samples, where it can be assumed that older samples have insignificant contributions to 

predicting future conditions. This describes how far in the past the model is considering samples 

to predict future conditions. 

Tweet – a message broadcast on the Twitter social network
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Chapter III – Experimental Results 

This section describes the details of the experiment, teasing out statistics about the input 

data, presenting the aggregate results, and drilling into the details.  

 

Training and Validation Data Characteristics 

Speed data observed across the system is subject to significant variation. However, the 

validation and training datasets exhibit similar characteristics, with their mean and standard 

deviation differing only slightly. Note that both sets have significant numbers of invalid 

examples that needed to be excluded from experiments. Examples are flagged as suspect or 

invalid in the WSDOT dataset when their sensor is unresponsive sensors or sending invalid data.  

Statistic Training Dataset Validation Dataset 

Mean 53.95 MPH 53.25 MPH 

St. Dev 20.09 MPH 19.77 MPH 

Valid Example Count 147028 35500 

Invalid Example Count 72078 19566 

Min Value 0 0 

Max Value 100 100 

Table 12 - Training and Validation Dataset – Sensor Statistics  

 

Each sensor’s training and validation sets can display different characteristics, depending 

on how often the sensor returned invalid data. Most sensors’ distribution was similar to Sensor 

38, shown in Table 13 – Dataset Breakdown for a Typical Sensor (Sensor 38). The speeds are 

skewed toward the maximum values, with the mean ending up near the first quartile (Q1) value 

and a mode near the third quartile value (Q3.) 

Sensor 38  

Training Dataset Without Social Data 

Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 66.32 66.34 66.34 66.33 66.32 
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StDev 3.46 3.40 3.35 3.44 3.38 

Mode 67 67 67 67 67 

Example Count 5053 5054 5059 5072 5057 

Min 15 15 15 15 15 

Max 72 72 72 72 72 

Q1 66 66 66 66 66 

Median 67 67 67 67 67 

Q3 68 68 68 68 68 

 

Training  Dataset With Social Data 

Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 66.32 66.34 66.34 66.33 66.32 

StDev 3.26 3.40 3.34 3.43 3.38 

Mode 67 67 67 67 67 

Example Count 6026 5072 5077 5090 5075 

Min 15 15 15 15 15 

Max 72 72 72 72 72 

Q1 66 66 66 66 66 

Median 67 67 67 67 67 

Q3 68 68 68 68 68 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 65.98 65.53 

   StDev 4.33 5.51 

   Mode 67 67 

   Example Count 1298 1573 

   Min 22 22 

   Max 73 73 

   Q1 65 65 

   Median 67 67 

   Q3 68 68 

   

      Table 13 – Dataset Breakdown for a Typical Sensor (Sensor 38) 

 

Sensors 161 and 242 are notable exceptions to this pattern. They both report a much 

lower mean speed and a mode of zero. See Table 14 - Anomalous Sensor Data (Sensor 161). 

This characteristic is present in both the training and validation sets, so it is unlikely to be an 
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error. The number of examples in these sets is comparable to the others, so it is also unlikely that 

the statistics are anomalous due to an excessively small sample size. 

Sensor 161  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 24.85 24.95 25.00 24.91 24.97 

StDev 22.15 22.16 22.12 22.13 22.13 

Mode 0 0 0 0 0 

Example Count 7530 7514 7541 7520 7521 

Min 0 0 0 0 0 

Max 87 87 87 87 87 

Q1 0 0 0 0 0 

Median 27 27 28 27 28 

Q3 47 48 48 48 48 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 25.13 24.96 25.00 24.91 24.98 

StDev 21.54 22.14 22.11 22.12 22.12 

Mode 0 0 0 0 0 

Example Count 8399 7532 7559 7538 7539 

Min 0 0 0 0 0 

Max 87 87 87 87 87 

Q1 0 0 0 0 0 

Median 26 27 27 27 27 

Q3 47 48 48 48 47 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 22.91 23.10 

   StDev 21.33 20.76 

   Mode 0 0 

   Example Count 1900 2134 

   Min 0 0 

   Max 61 61 

   Q1 0 0 

   Median 22 23 

   Q3 46 46 

   Table 14 - Anomalous Sensor Data (Sensor 161) 
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Tweet Characteristics 

The ontological characteristics of traffic incident tweets from the @WSDOT_Traffic 

account are present with the characteristics detailed in Table 15 - Training and Validation 

Datasets – Social Statistics. Comparing the training and validation datasets, the breakdown of the 

attribute occurrence is very similar for Capacity Impact. The balance of disabled vehicles vs. 

collisions shifted but they were both in the high-30% to 50% range. The incidents mostly 

occurred in the southern half of the roadway examined.  

Statistic Training Dataset Validation Dataset 

Example Count 248 74 

Capacity Impact Instances 190 (77%) 56 (76%) 

 Capacity Impact = 1 167 (67%) 49 (66%) 

 Capacity Impact = 2 23 (9%) 7 (9%) 

Disabled Vehicle Instances 91 (37%) 38 (51%)  

Collision Instances 99 (40%) 28 (38%) 

Extraordinary Distraction Instances 9 (4%) 0 (0%) 

Mean Incident Milepost 166.99 165.03 

StDev Incident Milepost 3.79 4.11 

Table 15 - Training and Validation Datasets – Social Statistics 

 

Multiple tweets were reported for most incidents, as shown in Table 16 - Tweets 

Broadcast per Incident. 

 Training Validation 

Min 1 1 

Max 7 4 

Mean 1.35 1.28 

St Dev 0.93 0.64 

Table 16 - Tweets Broadcast per Incident 
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Tweets are not uniformly distributed by location and have a different distribution in the 

validation dataset than in the training dataset. See Table 17 - Tweet Distribution in Training and 

Validation Datasets and Figure 7 - Tweet Distribution in Training and Validation Datasets. 

Milepost Training Tweet Count Evaluation Tweet Count 

157 6 5 

158 4 5 

161 4 6 

163 30 8 

164 36 5 

165 10 5 

166 21 8 

167 22 17 

168 22 0 

169 14 9 

170 30 1 

171 18 1 

172 19 0 

173 5 3 

174 7 1 

Table 17 - Tweet Distribution in Training and Validation Datasets 

 

 

Figure 7 - Tweet Distribution in Training and Validation Datasets 
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Figure 8 - Tweet Counts by Milepost with Sensor Error Overlayed. There doesn't appear to 

be a correlation between tweet counts and error magnitude. 

 

Tweets are quite pervasive when matched with the sensor data, as roughly a third of data 

points in both training and validation contain a tweet. Examples with tweets show speeds that are 

slightly less skewed toward the max observed values than those found in the general training and 

validation datasets. 

 

Examples 1210 

Examples containing a Tweet 219 

Probability an example containing of Tweet 0.18 

  

Min Speed w/ Tweet 12 

First Quartile Speed w/ Tweet 18 

Median 25 

Third Quartile 63 

Max Speed w/ Tweet 72 

  

Mean 35.56621005 

Standard Deviation 20.78195015 

Table 18 - Sensor 206, Fold 1 Training Set Tweet Breakdown. 
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Examples 377 

Examples containing a Tweet 125 

Probability an example containing of Tweet 0.331565 

  

Min Speed w/ Tweet 14 

First Quartile Speed w/ Tweet 23 

Median 30 

Third Quartile 35 

Max Speed w/ Tweet 69 

  

Mean 50.9955 

Standard Deviation 18.42876 

Table 19 - Sensor 206, Fold 1 Validation Set Tweet Breakdown. Roughly a third of 

examples have tweets associated with them. 

 

Aggregate ANN Prediction Performance 

The performance for each ANN ensemble is listed below. Two of the sensors were not 

reporting data (Sensor 141 and 233), so they do not have predictions. A decrease in the RMS 

prediction error observed in ANNs using social signals is considered a win. There are 8 instances 

of social wins (noted with an asterisk * in  

Sensor 

ID 

Sensor Data Sensor Data w/ Social Signals 

RMS 

Error Disagreement 

Mean 

Disagreement 

St Dev 

RMS 

Error 

(MPH) 

Disagreement 

Mean 

Disagrement 

St Dev 
(MPH) 

38 2.41 0.27 0.28 3.95 0.72 0.86 

39 2.89 0.25 0.21 4.08 0.47 0.75 

49 3.35 0.31 0.35 4.04 0.74 1.14 

* 72 1.78 0.22 0.13 1.74 0.62 0.59 

77 3.52 0.35 0.38 3.80 1.00 1.25 

80 4.45 0.32 0.36 4.67 1.11 1.21 

* 87 2.37 0.20 0.24 2.28 0.67 0.75 

91 6.06 0.37 0.46 6.30 1.07 1.37 

94 6.46 0.44 0.36 6.74 0.95 1.23 

* 98 19.01 0.98 0.55 17.99 2.15 1.77 

105 4.92 0.34 0.21 5.70 1.17 1.28 

108 2.92 0.31 0.20 2.94 0.85 1.57 
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109 2.85 0.29 0.23 2.90 0.60 0.97 

* 111 14.21 0.59 0.56 13.84 1.17 1.01 

118 2.11 0.11 0.05 2.11 0.21 0.44 

* 119 19.96 0.90 0.60 19.92 1.69 1.75 

* 132 4.16 0.40 0.22 4.39 0.83 0.72 

141 No Data No Data 

149 4.15 0.35 0.26 4.53 1.01 1.04 

151 5.53 0.44 0.34 6.02 1.31 1.38 

155 1.47 0.23 0.13 1.50 0.59 1.25 

* 161 12.38 0.75 0.50 12.36 1.51 1.38 

168 3.42 0.38 0.36 3.54 0.70 0.98 

169 3.78 0.32 0.27 3.97 0.77 0.70 

176 4.88 0.42 0.32 5.44 0.99 1.15 

179 4.78 0.37 0.31 5.52 0.69 0.90 

200 3.63 0.25 0.32 4.16 0.56 0.81 

206 6.08 0.47 0.36 6.63 1.24 1.42 

233 No Data No Data 

239 3.49 0.35 0.26 3.55 1.06 1.58 

* 242 23.87 1.38 0.83 23.00 2.10 1.50 

Table 20 - RMS Errors Observed in Predictions) where the aggregate RMS error of 

predictions products by ANNs with social signals is lower than the ANN trained without social 

signals, as shown in the data below. 

Sensor 

ID 

Sensor Data Sensor Data w/ Social Signals 

RMS 

Error Disagreement 

Mean 

Disagreement 

St Dev 

RMS 

Error 

(MPH) 

Disagreement 

Mean 

Disagrement 

St Dev 
(MPH) 

38 2.41 0.27 0.28 3.95 0.72 0.86 

39 2.89 0.25 0.21 4.08 0.47 0.75 

49 3.35 0.31 0.35 4.04 0.74 1.14 

* 72 1.78 0.22 0.13 1.74 0.62 0.59 

77 3.52 0.35 0.38 3.80 1.00 1.25 

80 4.45 0.32 0.36 4.67 1.11 1.21 

* 87 2.37 0.20 0.24 2.28 0.67 0.75 

91 6.06 0.37 0.46 6.30 1.07 1.37 

94 6.46 0.44 0.36 6.74 0.95 1.23 
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* 98 19.01 0.98 0.55 17.99 2.15 1.77 

105 4.92 0.34 0.21 5.70 1.17 1.28 

108 2.92 0.31 0.20 2.94 0.85 1.57 

109 2.85 0.29 0.23 2.90 0.60 0.97 

* 111 14.21 0.59 0.56 13.84 1.17 1.01 

118 2.11 0.11 0.05 2.11 0.21 0.44 

* 119 19.96 0.90 0.60 19.92 1.69 1.75 

* 132 4.16 0.40 0.22 4.39 0.83 0.72 

141 No Data No Data 

149 4.15 0.35 0.26 4.53 1.01 1.04 

151 5.53 0.44 0.34 6.02 1.31 1.38 

155 1.47 0.23 0.13 1.50 0.59 1.25 

* 161 12.38 0.75 0.50 12.36 1.51 1.38 

168 3.42 0.38 0.36 3.54 0.70 0.98 

169 3.78 0.32 0.27 3.97 0.77 0.70 

176 4.88 0.42 0.32 5.44 0.99 1.15 

179 4.78 0.37 0.31 5.52 0.69 0.90 

200 3.63 0.25 0.32 4.16 0.56 0.81 

206 6.08 0.47 0.36 6.63 1.24 1.42 

233 No Data No Data 

239 3.49 0.35 0.26 3.55 1.06 1.58 

* 242 23.87 1.38 0.83 23.00 2.10 1.50 

Table 20 - RMS Errors Observed in Predictions 

 

 Win/Loss Comparison 

To assess the aggregate performance of each social ANN, the probability of a loss is 

calculated. This is the probability that the social ANN will generate a prediction with a smaller 

error than the ANN trained with sensor data alone. Probabilities near .5 indicate no noticeable 

effect, as that’s equivalent to a coin toss for determining which is more accurate. Higher 

probabilities mean a greater chance of a social ANN out-performing the sensor-based ANN and 

conversely, lower probabilities indicate that the social ANN has a greater chance of being less 

accurate than the sensor-based ANN.  
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Figure 9 - Social win probability by Sensor. Example count is also shown 

 

Some of the sensors that had lower RMS error with Social signals, such as 72, 87, 91, and 

161 also had a higher probability of a win. Some sensors that did not show an improvement in 

RMS error had a higher probability of winning with social signals, as observed with sensor 108. 

The latter indicates a predictor that can be relied on in a greater number of instances but when 

wrong, has significantly greater error than the model without social signals. To determine which 

factors were important in producing a win or loss for each experiment with social data, sensor 

performance is examined against social attributes. To keep visuals clean, only social wins are 

graphed in this section. The complete analysis is located in Appendix 4 – Detailed Result 
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Capacity Impact 

 

Figure 10 - Capacity Impact Distribution for Social Wins 

 

The chart of wins does not indicate any single impact level where social signals clearly 

show an improvement. Most of the wins occur for scenarios where there are very few examples. 

This raises the question of whether wins are connected with low example counts. Overall, this is 

not the case, as depicted in Figure 11 - Social Win Probability vs. Capacity Impact for Low 

Example Counts. There are thirty one losses (PWin < .5) and only thirteen wins (PWin > .5) as 

shown in Table 21 - Low Example Count Win Loss Counts. These drilldowns examine cases 

where the example counts are less than fifty. 

Capacity Impact Losses Wins 

0 6 6 

1 3 3 

2 22 4 

Total 31 13 

Table 21 - Low Example Count Win Loss Counts 
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Figure 11 - Social Win Probability vs. Capacity Impact for Low Example Counts 

 

Disabled Vehicles and Collisions 

 

The most significant win probability, with respect to the presence of disabled vehicles, came in 

instances where a tweet did not contain a report of a disabled vehicle (indicated by a zero value 

in the chart.) It is worth reiterating that tweets can contain information about a collision, disabled 

vehicle, or neither. The latter case corresponds with tweets mentioning slow traffic without 
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specifying a particular cause. This case also reports significant wins when data is scarce, so it is 

worth looking at a win/loss breakdown when the number of examples is less than fifty. 

 

Figure 12 - Social Win Probability vs. Disabled Vehicle Presence for Low Example Counts 

 

In this case, there were six social wins vs. eight social losses, so low example counts 

don’t necessarily precede a social win.  

 

Figure 13 - Collision Distribution for Social Wins 
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The sensors showing the largest gains had low example counts again. As in the previous 

analysis, it raises the question of whether scarce data correlates with wins in this case. When 

examining this data slice, there were six social wins and ten losses for instances of fewer than 

fifty examples, as shown in Figure 14 - Social Win Probability vs. Collision Presence for Low 

Example Counts.  

 

Figure 14 - Social Win Probability vs. Collision Presence for Low Example Counts 

 

Direction 

Direction is a little more challenging to dissect, due to the way it was modeled in this 

experiment. Recall that multiple tweets during a single time sample are provided as separate 

examples during training and validation. However, when aggregating the data to determine a win 

or loss for a sample, they must be combined. When multiple tweets are present for a sample, the 

presence of a collision or disabled vehicle is described as the maximum value among all tweets. 

However, tweets may describe incidents affecting the opposite lane, the same lane, or a 

combination of both. To aggregate the direction of active incidents, the mean of direction is used. 

Therefore, a value of zero indicates that all tweeted incidents are in the opposite direction. A 
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value of one indicates that all tweeted incidents are in the same direction. Values between one 

and zero indicate some combination of the two. The three categories are depicted in Figure 15 - 

Social Wins When All Incidents are in the Opposite Direction, Figure 16 - Social Wins When 

All Incidents are in the Same Direction, and Figure 17 - Social Wins When All Incidents are in a 

Combination of Directions below.  

 

Figure 15 - Social Wins When All Incidents are in the Opposite Direction 

 

 

Figure 16 - Social Wins When All Incidents are in the Same Direction 
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Figure 17 - Social Wins When All Incidents are in a Combination of Directions 

 

There are several interesting facets to point out about this drill down: the majority of wins occur 

when there are multiple tweets, without any particular pattern (this is expected, as direction is a 

weaker signal when aggregated like this.) The sensors that show a correlation with a particular 

direction (such as sensor 39, where it only recorded wins when incidents were either in the same 

or opposite directions but not a combination of both) can indicate that the way multiple incidents 

are modeled makes their impact difficult to learn. As in previous analyses, low example counts 

are a threat to external validity. In this case, there are sufficient examples for sensors 39 and 149 

to consider the effect a real observation, using the statistical rule-of-thumb that considers thirty 

samples the point at which there is critical mass. 

Sensor  Prob. Of Win Example Count 

39.00 0.54 39 

149.00 0.55 216 

239.00 0.64 11 

Table 22 - Social Wins When All Incidents are in the Opposite Direction 
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On the other end of the spectrum, only sensor 87 showed a meaningful correlation with 

incident direction. 

Sensor Prob. Of Win Example Count 

39.00 0.60 15 

87.00 0.54 246 

Table 23 - Social Wins for Sensors 39 and 87 When Incidents are in the Same Direction 

 

Distance to Incident 

The nearest distance to an incident is the most relevant way to aggregate multiple 

distances when comparing performance. This results in a much simpler analysis but it still 

requires stratification, as the distance from each sensor to a single incident will be different, 

which makes distinct distance buckets uninteresting. The observed wins have the distribution 

depicted in Table 24 - Distribution of Social Wins by Distance, so stratifying distances into 

buckets where the distance was less than five miles, five to ten miles, and greater than ten miles 

should be reasonable. There were many instances of sensor/bucket combinations having very 

small example counts, so the chart below only includes those with thirty or more examples 

(Figure 18 - Social Win Probability vs. Stratified Distance to Incident.)  

Metric Value 

Mean 5.92 

StDev 4.01 

Min 0.03 

Max 15.79 

Table 24 - Distribution of Social Wins by Distance 
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Figure 18 - Social Win Probability vs. Stratified Distance to Incident 

 

Some of the more unexpected results, such as sensors 38 and 49 resulting in wins when 

incidents are reported more than ten miles away, occur when there are very few examples, as 

shown in Table 25 - Social Win Probability vs. Distance Buckets. The more interesting results 

are those shown by sensor 94and sensor 111, as they have both a significant number of examples 

and show an interesting win probability when incidents fall into buckets zero and one, 

respectively.  

Sensor / Bucket Prob. Of Win Example Count 

38 

  2 0.667 12 

49 

  2 0.583 12 

91 

  0 0.514 243 

94 

  0 0.531 64 

105 

  1 0.516 64 

108 

  0 0.692 26 
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111 

  1 0.554 56 

118 

  0 0.6 5 

149 

  1 0.526 76 

239 

  0 1 1 

1 0.667 6 

Table 25 - Social Win Probability vs. Distance Buckets 

 

Given that sensor 111 is sensitive to incident distance, it is curious that the sensor does not show 

wins for incidents nearer to it (in bucket zero.) Conversely, sensor 94 shows a decrease in wins 

when incidents are farther away. One would expect that the impact of an incident on road speeds 

would decrease as the distance to the incident increases. Figure 19 - Social Win Probability vs. 

Stratified Distance to Incident for Sensors 94 and 111 indicate that sensor 94 follows the 

expected performance degradation, whereas sensor 111 does not.  

 

Figure 19 - Social Win Probability vs. Stratified Distance to Incident for Sensors 94 and 111 
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Figure 20 - Sensor 111 Probability of Social Win vs. Minimum Distance to Incident (also 

included in the data breakdown appendix) supports the claim that this sensor actually did 

perform markedly better when incidents were five to ten miles away than when incidents were 

nearer. When incidents were farther than ten miles away, the accuracy decreased as expected.  

 

Figure 20 - Sensor 111 Probability of Social Win vs. Minimum Distance to Incident 

 

This sensor is located in the HOV lane, so it may be interesting to examine whether other 

HOV lanes behave in a similar way. Excluding sensors with low example counts, it does appear 

that some HOV sensors show a slight sensitivity to incident distance, as evidenced by sensors 91, 

94, 105, 111, and 149. 

Sensor - Bucket Prob. Of Win Example Count 

38 

   2 0.667 12 

49 

   2 0.583 12 

87 

   1 0.504 262 

91 

   0 0.514 243 

94 
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 0 0.531 64 

105 

   1 0.516 64 

108 

   0 0.692 26 

111 

   1 0.554 56 

118 

   0 0.6 5 

149 

   1 0.526 76 

239 

   0 1 1 

 1 0.667 6 

 

 

Figure 21 - Social Win Probability for HOV Lanes by Distance 

 

Age of Tweets 

There are many, many data points for sensors with win probability greater than .5, depending on 

the age of the last tweet. However, a significant number of these points had very few examples, 

which undermines the generalizability of any analysis that includes them. The following analysis 

excludes data points with fewer than thirty samples. Figure 22 - Social Win Probability vs. Age 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   71 

   

of Last Tweet where Example Count is Greater than 30. raises interesting questions about the 

data. The impact from a tweet may not be observed immediately on a segment, especially if it is 

in the opposite direction or a significant distance away. In a number of instances, win probability 

increases significantly as the age of the last tweet increases, which seems counter-intuitive. One 

possible explanation could be that the social ANN does a better job at modeling the recovery 

after the incident took place. Sensor 87 is a good example for drilling down into this behavior. 

 

Figure 22 - Social Win Probability vs. Age of Last Tweet where Example Count is Greater 

than 30. 

 

This sensor showed several instances winning with social data, when traffic patterns significantly 

deviate from the norm. Figure 23 - Sensor 87 Social Win for Incident Occurring 3/17/2012 After 

21:00 shows the breakdown of predictions made by social and sensor-based ANNs and the actual 

speed that they attempt to predict. In this case, a tweet arrived at 22:35 (which corresponds to the 

dip of the Actual Speed near the middle of the graph) indicating that 2 lanes were blocked. The 

sensor-based ANN did not register a noticeable difference, whereas the social-enhanced ANN 

lowered its predictions until the tweet expired approximately 30 minutes later.  
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Figure 23 - Sensor 87 Social Win for Incident Occurring 3/17/2012 After 21:00 

 

Theoretical Travel Times 

To provide an overall sense for what a consumer could expect from models trained with 

social signals, theoretical travel times are examined. The travel times the ten best and ten worst 

instances were selected, based on the number of wins vs. losses observed for social models along 

the entire northbound or southbound corridor. For example, some worst cases scenarios have 

zero wins for the social model. The predictions were used to generate a theoretical travel time for 

the corridor, as described in the methods section. The social predictions, sensor predictions, and 

actual transit times are graphed against one another to illustrate the difference between the sensor 

and social models, as well as their differences from the observed speeds. 
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Figure 24 - Northbound Best-Case Travel Times 

  

Date/Time Actual Social Sensor 

3/15/12  06:20 350 133 129 

3/15/12  16:20 125 118 117 

3/15/12  06:25 357 113 108 

3/14/12  07:15 126 112 111 

3/20/12  06:25 73 78 77 

3/20/12  16:20 139 127 126 

3/20/12  00:10 325 135 127 

3/20/12  06:15 72 80 81 

3/17/12  16:20 68 69 69 

3/18/12  07:40 334 126 122 

Table 26 - Northbound Best-Case Travel Times (in seconds) 
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Figure 25 - Northbound Worst-Case Travel Times 

 

Date/Time Actual Social Sensor 

3/15/12  12:25 71 69 69 

3/15/12  13:15 73 67 68 

3/15/12  12:55 70 68 69 

3/14/12  3:35 259 99 99 

3/19/12  9:05 71 74 73 

3/19/12  9:10 64 67 66 

3/19/12  2:45 89 94 94 

3/17/12  22:45 63 64 64 

3/17/12  9:55 66 64 65 

3/14/12  11:20 111 73 75 

Table 27 - Northbound Worst-Case Travel Times (in seconds) 

 

It is immediately apparent, that even in the worst case, relying on social model predictions does 

not cause a significant negative impact on travel times, even in the worst case.  
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Figure 26 - Southbound Best-Case Transit Times 

 

Date/Time Actual Social Sensor 

3/20/12  0:50 878 106 105 

3/20/12  1:15 710 111 109 

3/20/12  0:30 258 96 95 

3/14/12  1:10 871 103 103 

3/15/12  2:40 877 110 109 

3/20/12  1:25 263 104 103 

3/20/12  0:25 260 94 93 

3/20/12  3:10 879 114 113 

3/20/12  0:35 265 103 102 

3/18/12  3:00 245 79 78 

Table 28 - Southbound Best-Case Transit Times (in seconds) 
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Figure 27 - Southbound Worst-Case Transit Times 

 

Date/Time Actual Social Sensor 

3/14/12  9:35 77 73 74 

3/14/12  10:15 80 73 73 

3/15/12  17:40 30 30 30 

3/15/12  10:15 93 95 97 

3/15/12  15:30 31 28 29 

3/14/12  16:30 37 37 37 

3/14/12  13:55 114 76 89 

3/15/12  10:20 86 87 89 

3/14/12  9:30 78 73 75 

3/14/12  16:45 31 30 31 

Table 29 - Southbound Worst-Case Transit Times (in seconds) 

 

 The southbound case is somewhat unexpected, as it’s quite accurate for a worst-case 

transit time. The worst case showcases times when the social models were less accurate than the 

sensor models without respect for the magnitude of the errors. It follows that there were a 

number of instances where both models were quite close but the social one lost out by a slim 

margin. 
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Chapter IV – Findings and Discussion  

Overall, the results do not point to an overall significant increase in modeling accuracy 

when incorporating social signals into the datasets. It is important to point out that the various 

spikes in accuracy seen in HOV sensors for incidents at various distances and modest 

improvement in best-case transit time studies do not meet the bar of statistical significance to 

assert that they are caused by anything but randomness in the data. It is especially important to 

reiterate that while co-occurrence of specific conditions might prove to have a better than .5 

probability of producing a win for sensors with social signals, this does not prove beyond a doubt 

that the impact is due to actual differences, as opposed to random noise. 

Instead, this research provides a basis for understanding how to better model future 

experiments in this domain. The focus of that work should be to reduce the uncertainty produced 

by noisy data and by the rudimentary modeling approach used on the social signals in this 

experiment. 

Data Quality 

There are many references to the importance of data quality with respect to traffic 

modeling in the literature. (Turner, 2004) This experiment reinforced the need to carefully scrub 

out suspect data, as approximately one third of the examples in both the training and validation 

datasets needed to be discarded. The problem was compounded by the fact that each training 

example requires eight sequential samples: one for the current speed, the five previous speeds, 

the current occupancy, and the future speed to predict. This caused many examples to be 

discarded due to the absence of one or more of the samples and significantly reduced the dataset 

sizes. Some sensors, such as sensor 118 had such sparse data (163 examples in the validation set) 

that their results cannot be expected to generalize to a larger, more representative dataset.  
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One way to address this issue would be to build larger datasets for both training and 

validation. Analysis based on whether the day of week has an effect on modeling precision is 

worthless when the training dataset only contains four weeks of data. That’s quite insufficient for 

a model to learn the difference between a Friday evening commute and Sunday evening at the 

same time. This is addressed to a large degree by the use of the prior speed data in generating 

predictions, however the days of the week exhibit different behavior in practice so ideally, the 

models should reflect that.  

Further, collecting a large body of data with the expectation that a large amount of it will 

be discarded due to questions about its validity incurs additional threats to internal validity. The 

imbalance of data for sensors raises the question of whether that is a truly fair comparison. The 

periodic pattern of sensors providing corrupted data (or the failure of sensors to provide data at 

all) start to become baked into the models as well. When dealing with such noisy, imprecise 

signals as messages broadcast from Twitter, the introduction of additional noise signals 

generated by sensor dynamics can cause the models to learn the incorrect signals.  

The inconsistencies in Twitter data broadcast by the @WSDOT_Traffic handle reduce its 

utility for automated consumption. Of the incidents described in the @WSDOT_Traffic 

broadcasts, very few had notifications of both the start and end of their impact. There were 

duplicated messages, where one was clearly from an automated tool and the other was an 

editorialized version of the same incident. The Twitter datasets used in this experiment contain 

many instances where the first broadcast from the @WSDOT_Traffic alias is an update for an 

existing event. This is counter-productive to modeling because the social signal was effectively 

telling the model that everything is clear prior to the message, when there was actually a known 

incident.  
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Matching multiple tweets about a single incident together to understand the progression 

of its impact (for example, there could be the initial report, possibly additional blocking 

characteristics when aid arrives on-scene, partial clearing, followed by complete clearing) is 

challenging to do in an automated fashion. Adding additional error incurred by fuzzy matching 

would further obfuscate any positive effects of social signals on traffic prediction. Therefore, it is 

worth reaching out to the WSDOT to request consistent incident identification (perhaps an 

incident ID included with each tweet) in addition to more predictable broadcasts, when it comes 

to the lifecycle of each incident. 

Finally, as dataset sizes grow, the number of errant “noise” patterns also grows. Shawe-

Taylor, et al reported that as more potential patterns are tested, more spurious ones will be picked 

up (Shawe-Taylor, De Bie, & Cristianini, 2006). This reinforces the need to have a large and 

representative verification dataset (comparable to the one that is mined for the initial patterns) to 

determine whether patterns are actual recurring phenomena vs. random noise that happens to 

coalesce in an interesting way, without any underlying cause. 

 

Modeling and Re-Modeling Social Signals 

Some modeling decisions in this experiment, such as the one to assume that all incidents 

have a sixty minute lifespan where they affect traffic, were needed to work around shortcomings 

in the underlying data. However, other modeling decisions should be revisited to further 

optimize the social signal presented to the models. There are many different avenues for 

modeling the interaction of multiple incidents to produce aggregate attributes representing the 

state of all incidents active for a given sample.  
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For example, using the mean of the direction attribute for aggregating data was not 

beneficial for analyzing the results. Stratification helped to glean some meaning, wherein 

incidents were either all in the same direction, all in the opposite direction, or somewhere in the 

middle. This didn’t allow for direct comparison of similar data points and further confused the 

results. (e.g.: what does it mean when a sensor has an increased win probability when incidents’ 

directionality has a mean of .14?) Sensors report speeds for each lane but the locations of tweets 

were only modeled by direction and location. The effects of an incident occurring very close to a 

sensor are likely to vary, based on whether it is in the same lane, or even whether it’s in the lane 

to the right or left of the sensor. 

Other attributes were also less effective than they could have been, due to the aggregation 

scheme when modeling. For example, the collision attribute is important but it is equally 

important to know whether the collision is in the current direction or the opposite one. The 

source datasets list these two attributes separately, so models can learn to correlate them but 

teasing out the probability of a win, given a set of prior conditions is difficult, at best.  

There are signals that would be useful to model and could deliver a significant benefit 

when they are present, such as when a fatality accident triggers a multi-hour operation of taking 

measurements and the required documentation for such a tragic event. These events are very 

infrequent but have a disproportionately large impact on traffic. The “extraordinary distraction” 

attribute was aimed at addressing this, in addition to including it as a stratus of the “capacity 

impact” attribute. However, there were no occurrences of this in the validation dataset, so 

perhaps a restructuring of how the training and validation datasets are partitioned would allow 

sufficient representation in both sets. 
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Improvements in accuracy are also possible by restructuring the experiment to only train 

models on time samples that include social data. Restricting to this time rage allows the models 

to only learn the behavior observed when traffic incidents occur, rather than attempting to 

generalize across the whole spectrum of behavior. This approach assumes that we can train 

general purpose models that can generate accurate predictions for the nominal case and then 

switch to the special social models when an incident tweet is received from @WSDOT_Traffic. 

The signal-to-noise ratio would be significantly stronger for the social signals, so a more exact 

fitting of the data could be expected. However, this approach requires that we know when an 

incident is no longer impacting traffic. The problem could be remedied by reaching out to the 

WSDOT to request that they be more disciplined about broadcasting an end to incident impact or 

by using a heuristic, such as when the speed is back to within ten percent of the limit, the 

incident is deemed to be over. 
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Appendix 1 – WSDOT Data Extraction Method 

In the tool, the Raw Data option provides the data in a format that is closest to what is 

needed to train an ANN (the tool is designed to generate reports, so it provides single and multi-

day aggregation capabilities as well. These are not used in this experiment) (See Figure 28 - 

Selecting raw data for export using CDR) 

 

Figure 28 - Selecting raw data for export using CDR 

 

All available dates need to be exported. Dates are selected pushing the “Change” button 

in the Dates control (See Figure 29 - Selecting dates in CDR) 
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Figure 29 - Selecting dates in CDR 

 

Finally, the “Elements” (speed sensors) are selected by pushing the “Change” button in 

the Elements control. The resulting dialog allows users to choose the roadway (1), the cabinet 

along the roadway (2) (which is like a recording station where the nearby sensors’ data is 

collected and routed to the WSDOT), and the individual sensors themselves (3). The sensors 

selected for export are shown in the pane at the right (4). (See Figure 30 - Selecting sensors to 

export in CDR) 
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Figure 30 - Selecting sensors to export in CDR 

 

The export process is completed by dismissing the dialogs and pressing the large “GO” 

button in CDR.  

The reports generated by CDR are in a human readable format so they contain rich 

header information preceding each day’s set of sensor data.  
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Formatting for Import 

An AWK script was used to reformat the data into a tab-delimited file where each line 

contained the sensor name, the timestamp, and the data. This makes it easier to import into a 

database, as each line in the report file has a uniform format and contains the timestamp, sensor 

name, and sensor data. The WSDOT uses the Flg (flag) parameter to indicate when data is 

suspect or missing. The road sensors regularly drop samples, so zero values may be reported 

when there is actually no data. To eliminate the possibility of error introduced by suspect data, 

samples that are listed as anything other than correct are not included in this experiment.  

 

CDR Output Report 

*********************************** 

Filename: DEFAULT.DAT 

 

Creation Date: 02/19/12 (Sun) 

Creation Time: 10:46:06 

    File Type: TEXT 

*********************************** 

520es00469:_MWH_S1  SR 520  84th Ave NE-WB      4.69 

02/05/2012 (Sun) 

     ---Raw Loop Data Listing--- 

     Time    Vol    Occ   Flg  nPds 

     ------------------------------ 

      0:00     0    0.0%   1    15 

      0:05     0    0.0%   1    15 

Database Import Format 

Sensor Day Time Vol Occ Flg nPds 

520es00469:_MWH_S1 02/05/2012 0:00 0 0.0% 1 15 

520es00469:_MWH_S1 02/05/2012 0:05 0 0.0% 1 15 
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The data is then imported into a Microsoft Access database, where it is normalized for 

efficient storage and retrieval. 
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Appendix 2 – Testing Training Parameter Effects on Error 

Learning Rate Momentum Epochs RMS Error Training* RMS Error Eval* 

0.7 0.7 1000 0.06934 0.06529 

0.7 0.7 2500 0.06868 0.064977 

0.7 0.7 5000 0.06841 0.06493 

0.7 0.7 10000 0.06814 0.0649 

0.7 0.7 20000 0.06776 0.06477 

0.7 0.7 50000 0.0661 0.06538 

0.5 0.7 1000 0.06931 0.06528 

0.5 0.7 2500 0.06889 0.065 

0.5 0.7 5000 0.0686 0.06495 

0.5 0.7 10000 0.06828 0.06492 

0.5 0.7 20000 0.06766 0.06482 

0.5 0.7 50000 0.06651 0.06518 

0.3 0.7 1000 0.06911 0.0653 

0.3 0.7 2500 0.06879 0.06513 

0.3 0.7 5000 0.06861 0.065 

0.3 0.7 10000 0.06838 0.06494 

0.3 0.7 20000 0.06796 0.06488 

0.3 0.7 50000 0.06711 0.0651 

0.7 0.5 1000 0.06916 0.0659 

0.7 0.5 2500 0.06886 0.06559 

0.7 0.5 5000 0.06868 0.06542 

0.7 0.5 10000 0.06848 0.06529 

0.7 0.5 20000 0.06818 0.06511 

0.7 0.5 50000 0.06756 0.06481 

0.5 0.5 1000 0.0693 0.0655 

0.5 0.5 2500 0.06973 0.06504 

0.5 0.5 5000 0.06857 0.06492 

0.5 0.5 10000 0.06841 0.0649 

0.5 0.5 20000 0.06808 0.06489 

0.5 0.5 50000 0.06697 0.06497 

0.3 0.5 1000 0.0695 0.066 

0.3 0.5 2500 0.06885 0.06526 

0.3 0.5 5000 0.06866 0.065 

0.3 0.5 10000 0.0685 0.065 

0.3 0.5 20000 0.0681 0.0649 

0.3 0.5 50000 0.0673 0.0648 

0.7 0.3 1000 0.0693 0.0647 

0.7 0.3 2500 0.06885 0.0648 
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0.7 0.3 5000 0.06869 0.0648 

0.7 0.3 10000 0.06849 0.0648 

0.7 0.3 20000 0.0682 0.0647 

0.7 0.3 50000 0.0677 0.06462 

0.5 0.3 1000 0.0694 0.065 

0.5 0.3 2500 0.069 0.065 

0.5 0.3 5000 0.0687 0.065 

0.5 0.3 10000 0.0685 0.0651 

0.5 0.3 20000 0.0683 0.0651 

0.5 0.3 50000 0.0675 0.0652 

0.3 0.3 1000 0.0689 0.0652 

0.3 0.3 2500 0.0687 0.06524 

0.3 0.3 5000 0.0686 0.065 

0.3 0.3 10000 0.0684 0.065 

0.3 0.3 20000 0.0681 0.065 

0.3 0.3 50000 0.0677 0.065 

0.7 0.7 1000 0.06934 0.06529 

0.7 0.7 2500 0.06868 0.064977 

0.7 0.7 5000 0.06841 0.06493 

0.7 0.7 10000 0.06814 0.0649 

Table 30 - ANN Training without Social Signals 

 

Learning Rate Momentum Epochs RMS Error Training* RMS Error Eval* 

0.7 0.7 1000 0.06539 0.06316 

0.7 0.7 2500 0.06474 0.0625 

0.7 0.7 5000 0.06446 0.0621 

0.7 0.7 10000 0.0641 0.0619 

0.7 0.7 20000 0.0637 0.0617 

0.7 0.7 50000 0.0627 0.062 

0.5 0.7 1000 0.06531 0.06306 

0.5 0.7 2500 0.0648 0.06296 

0.5 0.7 5000 0.06461 0.06288 

0.5 0.7 10000 0.06432 0.0626 

0.5 0.7 20000 0.0638 0.0623 

0.5 0.7 50000 0.0624 0.0625 

0.3 0.7 1000 0.06542 0.0632 

0.3 0.7 2500 0.06477 0.06293 

0.3 0.7 5000 0.0645 0.0626 

0.3 0.7 10000 0.06426 0.0624 

0.3 0.7 20000 0.0638 0.0623 

0.3 0.7 50000 0.06271 0.06258 
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0.7 0.5 1000 0.0651 0.0633 

0.7 0.5 2500 0.0648 0.0627 

0.7 0.5 5000 0.0646 0.0624 

0.7 0.5 10000 0.0643 0.0622 

0.7 0.5 20000 0.064 0.0621 

0.7 0.5 50000 0.0632 0.062 

0.5 0.5 1000 0.067 0.0653 

0.5 0.5 2500 0.0653 0.0639 

0.5 0.5 5000 0.0647 0.0633 

0.5 0.5 10000 0.0644 0.063 

0.5 0.5 20000 0.064 0.0627 

0.5 0.5 50000 0.0632 0.0625 

0.3 0.5 1000 0.0654 0.0636 

0.3 0.5 2500 0.0649 0.0629 

0.3 0.5 5000 0.0645 0.0626 

0.3 0.5 10000 0.0643 0.0625 

0.3 0.5 20000 0.064 0.0624 

0.3 0.5 50000 0.0634 0.06212 

0.7 0.3 1000 0.0657 0.0628 

0.7 0.3 2500 0.0651 0.0626 

0.7 0.3 5000 0.0648 0.0625 

0.7 0.3 10000 0.0646 0.0625 

0.7 0.3 20000 0.0644 0.0625 

0.7 0.3 50000 0.0637 0.0626 

0.5 0.3 1000 0.0652 0.0631 

0.5 0.3 2500 0.0648 0.0627 

0.5 0.3 5000 0.0646 0.0625 

0.5 0.3 10000 0.0644 0.0623 

0.5 0.3 20000 0.06419 0.0621 

0.5 0.3 50000 0.0634 0.0617 

0.3 0.3 1000 0.0659 0.0644 

0.3 0.3 2500 0.0652 0.0632 

0.3 0.3 5000 0.0648 0.0628 

0.3 0.3 10000 0.0646 0.0625 

0.3 0.3 20000 0.0643 0.0623 

0.3 0.3 50000 0.0638 0.0621 

0.7 0.7 1000 0.06539 0.06316 

0.7 0.7 2500 0.06474 0.0625 

0.7 0.7 5000 0.06446 0.0621 

0.7 0.7 10000 0.0641 0.0619 

0.7 0.7 20000 0.0637 0.0617 
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0.7 0.7 50000 0.0627 0.062 

0.5 0.7 1000 0.06531 0.06306 

Table 31 - ANN Training with Social Signals 

 

* RMS error values depicted in the tables above are scaled between 0 and 1, per the 

convention used for quantifying ANN error in the literature. In addition, the learning rate is set to 

decay by 1% every seven epochs. This feature optimizing the training process; as training 

progresses outliers can prevent weights from converging at optimal values for the training set. 

Decreasing the learning rate over time reduces this impact as the ANN fits a curve that best maps 

to the training set which will have the greatest error when measured against outlier data points. If 

the learning rate is too high, weights are adjusted excessively in each epoch, causing an 

oscillation that may never converge. This training process is configured to cut the learning rate in 

half if the RMS error increases by more than .1%, to prevent oscillations. 
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Appendix 3 – Sensor Data Speed Statistics 

Sensor 38  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 66.32 66.34 66.34 66.33 66.32 

StDev 3.46 3.40 3.35 3.44 3.38 

Mode 67 67 67 67 67 

Example Count 5053 5054 5059 5072 5057 

Min 15 15 15 15 15 

Max 72 72 72 72 72 

Q1 66 66 66 66 66 

Median 67 67 67 67 67 

Q3 68 68 68 68 68 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 66.32 66.34 66.34 66.33 66.32 

StDev 3.26 3.40 3.34 3.43 3.38 

Mode 67 67 67 67 67 

Example Count 6026 5072 5077 5090 5075 

Min 15 15 15 15 15 

Max 72 72 72 72 72 

Q1 66 66 66 66 66 

Median 67 67 67 67 67 

Q3 68 68 68 68 68 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 65.98 65.53 

   StDev 4.33 5.51 

   Mode 67 67 

   Example Count 1298 1573 

   Min 22 22 

   Max 73 73 

   Q1 65 65 

   Median 67 67 

   Q3 68 68 

   

      Sensor 39  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 
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Mean 62.87 62.87 62.87 62.88 62.86 

StDev 3.02 3.02 3.02 3.02 3.02 

Mode 63 63 63 63 63 

Example Count 1790 1771 1778 1764 1778 

Min 14 14 14 14 14 

Max 73 73 73 73 73 

Q1 61 61 61 61 61 

Median 63 63 63 63 63 

Q3 65 64 65 65 65 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.88 62.87 62.87 62.88 62.86 

StDev 3.01 3.02 3.02 3.02 3.02 

Mode 63 63 63 63 63 

Example Count 1797 1771 1778 1764 1778 

Min 14 14 14 14 14 

Max 73 73 73 73 73 

Q1 61 61 61 61 61 

Median 63 63 63 63 63 

Q3 65 64 65 65 65 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 61.71 61.27 

   StDev 5.84 6.89 

   Mode 63 63 

   Example Count 452 460 

   Min 21 21 

   Max 70 70 

   Q1 61 61 

   Median 63 63 

   Q3 64 64 

   

      Sensor 49  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 64.61 64.63 64.62 64.61 64.61 

StDev 4.08 4.04 4.03 4.06 4.08 

Mode 66 66 66 66 66 

Example Count 7570 7556 7576 7565 7557 

Min 15 15 15 15 15 
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Max 74 74 74 74 74 

Q1 64 64 64 64 64 

Median 65 65 65 65 65 

Q3 66 66 66 66 66 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 64.49 64.63 64.62 64.61 64.60 

StDev 4.02 4.04 4.02 4.06 4.08 

Mode 65 66 66 66 66 

Example Count 8482 7574 7594 7583 7575 

Min 15 15 15 15 15 

Max 74 74 74 74 74 

Q1 64 64 64 64 64 

Median 65 65 65 65 65 

Q3 66 66 66 66 66 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 63.52 63.05 

   StDev 6.33 7.18 

   Mode 66 66 

   Example Count 1934 2197 

   Min 16 16 

   Max 71 71 

   Q1 63 63 

   Median 65 65 

   Q3 66 66 

   

      Sensor 72  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.77 62.76 62.76 62.75 62.75 

StDev 3.13 3.15 3.19 3.19 3.16 

Mode 64 64 64 64 64 

Example Count 7900 7887 7909 7902 7889 

Min 13 13 13 13 13 

Max 71 71 71 71 71 

Q1 62 62 62 62 62 

Median 63 63 63 63 63 

Q3 64 64 64 64 64 
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Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.61 62.75 62.75 62.74 62.74 

StDev 3.35 3.18 3.22 3.22 3.19 

Mode 63 64 64 64 64 

Example Count 8900 7907 7929 7922 7909 

Min 13 13 13 13 13 

Max 71 71 71 71 71 

Q1 62 62 62 62 62 

Median 63 63 63 63 63 

Q3 64 64 64 64 64 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 62.47 62.38 

   StDev 2.16 2.12 

   Mode 63 63 

   Example Count 2004 2279 

   Min 40 40 

   Max 73 73 

   Q1 61 61 

   Median 63 63 

   Q3 64 64 

   

      Sensor 77  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 59.38 59.44 59.41 59.41 59.40 

StDev 8.60 8.51 8.55 8.52 8.57 

Mode 63 63 63 63 63 

Example Count 6842 6848 6872 6861 6847 

Min 12 12 12 12 12 

Max 69 69 69 69 69 

Q1 60 60 60 60 60 

Median 62 62 62 62 62 

Q3 63 63 63 63 63 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 58.70 59.41 59.37 59.38 59.37 

StDev 9.55 8.56 8.60 8.57 8.62 

Mode 63 63 63 63 63 
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Example Count 7842 6868 6892 6881 6867 

Min 12 12 12 12 12 

Max 69 69 69 69 69 

Q1 60 60 60 60 60 

Median 62 62 62 62 62 

Q3 63 63 63 63 63 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 58.49 57.73 

   StDev 8.53 9.22 

   Mode 62,63 62 

   Example Count 1737 2012 

   Min 15 15 

   Max 67 67 

   Q1 58 58 

   Median 61 61 

   Q3 63 63 

   

      Sensor 80  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 63.15 63.24 63.17 63.20 63.15 

StDev 11.25 11.12 11.20 11.17 11.25 

Mode 68 68 68 68 68 

Example Count 5108 5104 5111 5121 5100 

Min 13 13 13 13 13 

Max 72 72 72 72 72 

Q1 65 65 65 65 65 

Median 67 67 67 67 67 

Q3 68 68 68 68 68 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.45 63.20 63.12 63.15 63.11 

StDev 12.13 11.18 11.27 11.23 11.31 

Mode 68 68 68 68 68 

Example Count 6076 5122 5129 5139 5118 

Min 13 13 13 13 13 

Max 72 72 72 72 72 

Q1 64 65 65 65 65 

Median 67 67 67 67 67 
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Q3 68 68 68 68 68 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 62.85 61.90 

   StDev 11.15 11.89 

   Mode 68 67 

   Example Count 1335 1610 

   Min 13 13 

   Max 72 72 

   Q1 64 63 

   Median 67 66 

   Q3 68 68 

   

      Sensor 87  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 59.48 59.48 59.47 59.47 59.47 

StDev 3.15 3.19 3.18 3.16 3.16 

Mode 60 60 60 60 60 

Example Count 7109 7094 7106 7105 7094 

Min 15 15 15 15 15 

Max 66 66 66 66 66 

Q1 59 59 59 59 59 

Median 60 60 60 60 60 

Q3 61 61 61 61 61 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 59.41 59.47 59.47 59.47 59.46 

StDev 3.30 3.22 3.20 3.19 3.19 

Mode 60 60 60 60 60 

Example Count 8044 7112 7124 7123 7112 

Min 15 15 15 15 15 

Max 66 66 66 66 66 

Q1 59 59 59 59 59 

Median 60 60 60 60 60 

Q3 61 61 61 61 61 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 59.01 58.98 
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StDev 3.37 3.20 

   Mode 60 60 

   Example Count 1997 2272 

   Min 0 0 

   Max 64 64 

   Q1 58 58 

   Median 59 59 

   Q3 60 60 

   

      Sensor 91  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.73 61.77 61.72 61.72 61.74 

StDev 10.02 9.92 10.03 10.02 10.01 

Mode 65 65 65 65 65 

Example Count 6407 6423 6444 6436 6419 

Min 11 11 11 11 11 

Max 70 70 70 70 70 

Q1 63 63 63 63 63 

Median 65 65 65 65 65 

Q3 66 66 66 66 66 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.28 61.75 61.69 61.70 61.71 

StDev 10.58 9.97 10.09 10.06 10.06 

Mode 65 65 65 65 65 

Example Count 7216 6439 6460 6452 6435 

Min 11 11 11 11 11 

Max 70 70 70 70 70 

Q1 63 63 63 63 63 

Median 64 65 65 65 65 

Q3 65 66 66 66 66 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 60.16 59.13 

   StDev 12.02 13.02 

   Mode 65 65 

   Example Count 1622 1862 

   Min 12 12 

   Max 69 69 
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Q1 62 62 

   Median 64 64 

   Q3 65 65 

   

      Sensor 94  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 58.12 58.05 58.10 58.05 58.05 

StDev 9.61 9.65 9.66 9.69 9.65 

Mode 61 61 61 61 61 

Example Count 2712 2696 2701 2694 2708 

Min 0 0 0 0 0 

Max 82 82 82 82 82 

Q1 58 57 57 58 57 

Median 60 60 60 60 60 

Q3 62 62 62 62 62 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 57.79 58.03 58.08 58.03 58.03 

StDev 9.93 9.66 9.68 9.70 9.67 

Mode 61 61 61 61 61 

Example Count 2808 2702 2706 2700 2714 

Min 0 0 0 0 0 

Max 82 82 82 82 82 

Q1 57 57 57 57 57 

Median 60 60 60 60 60 

Q3 62 62 62 62 62 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 56.72 55.44 

   StDev 10.18 11.52 

   Mode 58 58 

   Example Count 684 721 

   Min 0 0 

   Max 82 82 

   Q1 57 56 

   Median 59 59 

   Q3 61 61 

   

      Sensor 98  
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Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 66.10 66.27 66.01 65.97 65.88 

StDev 26.90 26.85 27.05 26.99 27.09 

Mode 87 87 87 87 87 

Example Count 2278 2250 2256 2253 2252 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 42 43 42 42 42 

Median 78 78 78 78 78 

Q3 86 86 86 86 86 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 63.19 66.14 65.87 65.84 65.75 

StDev 27.04 26.86 27.06 27.01 27.10 

Mode 87 87 87 87 87 

Example Count 2538 2260 2267 2263 2262 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 39 43 42 42 42 

Median 76 78 78 78 78 

Q3 85 86 86 86 86 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 66.42 63.01 

   StDev 24.97 24.89 

   Mode 87 87 

   Example Count 651 760 

   Min 0 0 

   Max 100 100 

   Q1 45 40 

   Median 77 73 

   Q3 85 84 

   

      Sensor 105  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 51.56 51.53 51.49 51.42 51.50 

StDev 16.13 16.15 16.18 16.25 16.16 

Mode 62 62 62 62 62 
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Example Count 2853 2834 2842 2819 2827 

Min 11 11 11 11 11 

Max 71 71 71 71 71 

Q1 41 41 39 39 40 

Median 60 60 60 60 60 

Q3 62 62 62 62 62 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 48.66 51.43 51.40 51.33 51.41 

StDev 17.47 16.21 16.24 16.32 16.22 

Mode 62 62 62 62 62 

Example Count 3231 2845 2853 2830 2838 

Min 11 11 11 11 11 

Max 71 71 71 71 71 

Q1 28 39 38 38 39 

Median 59 60 60 60 60 

Q3 62 62 62 62 62 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 48.89 45.53 

   StDev 16.66 17.49 

   Mode 60 60 

   Example Count 775 926 

   Min 14 14 

   Max 68 68 

   Q1 29 25 

   Median 59 56 

   Q3 61 61 

   

      Sensor 108  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.66 62.76 62.72 62.71 62.74 

StDev 6.41 6.20 6.22 6.25 6.30 

Mode 63 63 63 63 63 

Example Count 1729 1706 1710 1703 1703 

Min 0 0 0 0 0 

Max 76 76 74 76 76 

Q1 62 62 62 62 62 

Median 63 63 63 63 63 
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Q3 65 65 65 65 65 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.57 62.74 62.69 62.69 62.71 

StDev 6.59 6.28 6.31 6.33 6.39 

Mode 63 63 63 63 63 

Example Count 1738 1707 1711 1704 1704 

Min 0 0 0 0 0 

Max 76 76 74 76 76 

Q1 61 62 62 62 62 

Median 63 63 63 63 63 

Q3 65 65 65 65 65 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 63.00 62.91 

   StDev 3.38 3.44 

   Mode 63 63 

   Example Count 399 405 

   Min 41 41 

   Max 76 76 

   Q1 61 61 

   Median 63 63 

   Q3 65 65 

   

      Sensor 109  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 63.79 63.83 63.80 63.76 63.79 

StDev 6.01 5.89 5.99 5.93 5.99 

Mode 65 65 65 65 65 

Example Count 1262 1248 1248 1243 1236 

Min 16 16 16 16 16 

Max 74 74 73 74 74 

Q1 63 63 63 63 63 

Median 65 65 65 65 65 

Q3 66 66 66 66 66 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 63.58 63.80 63.76 63.72 63.76 
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StDev 6.64 6.03 6.13 6.08 6.14 

Mode 65 65 65 65 65 

Example Count 1275 1249 1249 1244 1237 

Min 16 16 16 16 16 

Max 74 74 73 74 74 

Q1 63 63 63 63 63 

Median 65 65 65 65 65 

Q3 66 66 66 66 66 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 63.68 63.61 

   StDev 4.09 4.15 

   Mode 65 65 

   Example Count 273 275 

   Min 38 38 

   Max 72 72 

   Q1 62 62 

   Median 64 64 

   Q3 66 66 

   

      Sensor 111  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.51 62.61 62.60 62.58 62.57 

StDev 16.86 16.57 16.68 16.67 16.73 

Mode 66 66 66 66 66 

Example Count 3830 3817 3825 3815 3815 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 63 63 63 63 63 

Median 66 66 66 66 66 

Q3 69 69 69 69 69 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 62.61 62.60 62.59 62.57 62.56 

StDev 16.37 16.57 16.68 16.68 16.73 

Mode 66 66 66 66 66 

Example Count 4133 3825 3833 3823 3823 

Min 0 0 0 0 0 

Max 100 100 100 100 100 
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Q1 63 63 63 63 63 

Median 66 66 66 66 66 

Q3 69 69 69 69 69 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 62.06 62.16 

   StDev 16.25 15.69 

   Mode 66 66 

   Example Count 974 1049 

   Min 0 0 

   Max 87 87 

   Q1 62 62 

   Median 65 65 

   Q3 68 68 

   

      Sensor 118  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 60.47 60.51 60.48 60.46 60.49 

StDev 2.14 2.11 2.14 2.14 2.13 

Mode 60 60 60 60 60 

Example Count 733 717 711 722 707 

Min 51 51 51 51 51 

Max 66 66 66 66 66 

Q1 59 59 59 59 59 

Median 61 61 60 60 61 

Q3 62 62 62 62 62 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 60.47 60.51 60.48 60.46 60.49 

StDev 2.14 2.11 2.14 2.14 2.13 

Mode 60 60 60 60 60 

Example Count 733 717 711 722 707 

Min 51 51 51 51 51 

Max 66 66 66 66 66 

Q1 59 59 59 59 59 

Median 61 61 60 60 61 

Q3 62 62 62 62 62 

      Validation Without Social With Social 
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Data Data 

Mean 60.71 60.71 

   StDev 2.17 2.17 

   Mode 61 61 

   Example Count 163 163 

   Min 52 52 

   Max 68 68 

   Q1 59 59 

   Median 61 61 

   Q3 62 62 

   

      Sensor 119  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 57.57 57.86 57.82 57.78 57.66 

StDev 21.32 20.96 21.08 21.05 21.19 

Mode 0 0 0 0 0 

Example Count 2588 2569 2583 2569 2571 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 61 61 61 61 61 

Median 64 64 64 64 64 

Q3 68 68 68 68 68 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 57.63 57.86 57.82 57.78 57.66 

StDev 21.18 20.96 21.08 21.05 21.19 

Mode 0 0 0 0 0 

Example Count 2632 2569 2583 2569 2571 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 61 61 61 61 61 

Median 64 64 64 64 64 

Q3 68 68 68 68 68 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 56.62 56.61 

   StDev 22.46 22.34 

   Mode 0 0 

   Example Count 602 609 
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Min 0 0 

   Max 93 93 

   Q1 60 60 

   Median 64 64 

   Q3 67 67 

   

      Sensor 132  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 50.80 50.81 50.81 50.84 50.83 

StDev 11.43 11.40 11.43 11.40 11.41 

Mode 61 61 61 61 61 

Example Count 5711 5711 5728 5735 5723 

Min 15 15 15 15 15 

Max 67 67 67 67 67 

Q1 40 40 40 40 40 

Median 56 56 56 56 56 

Q3 60 60 60 60 60 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 49.36 50.78 50.78 50.81 50.80 

StDev 11.81 11.40 11.44 11.41 11.42 

Mode 61 61 61 61 61 

Example Count 6648 5730 5747 5754 5742 

Min 15 15 15 15 15 

Max 67 67 67 67 67 

Q1 37 40 40 40 40 

Median 54 56 56 56 56 

Q3 60 60 60 60 60 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 49.99 48.34 

   StDev 12.03 12.36 

   Mode 61 61 

   Example Count 1488 1763 

   Min 15 15 

   Max 65 65 

   Q1 38 36 

   Median 56 53 

   Q3 60 60 
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      Sensor 149  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 52.39 52.38 52.38 52.36 52.41 

StDev 10.74 10.77 10.78 10.78 10.72 

Mode 59 59 59 59 59 

Example Count 6228 6230 6244 6246 6235 

Min 11 11 11 11 11 

Max 66 66 66 66 66 

Q1 50 50 50 50 50 

Median 56 56 56 56 56 

Q3 59 59 59 59 59 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 50.84 52.34 52.34 52.32 52.37 

StDev 11.62 10.80 10.81 10.81 10.75 

Mode 58 59 59 59 59 

Example Count 7204 6250 6264 6266 6255 

Min 11 11 11 11 11 

Max 66 66 66 66 66 

Q1 48 50 50 50 50 

Median 55 56 56 56 56 

Q3 59 59 59 59 59 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 50.66 49.37 

   StDev 11.66 12.02 

   Mode 58 58 

   Example Count 1592 1859 

   Min 14 14 

   Max 65 65 

   Q1 48 45 

   Median 56 54 

   Q3 59 58 

   

      Sensor 151  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 63.15 63.14 63.14 63.16 63.14 
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StDev 16.80 16.85 16.85 16.76 16.82 

Mode 71 71 71 71 71 

Example Count 7822 7809 7829 7821 7811 

Min 0 0 0 0 0 

Max 83 83 83 83 83 

Q1 64 64 64 64 64 

Median 70 70 70 70 70 

Q3 72 72 72 72 72 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.92 63.11 63.11 63.13 63.11 

StDev 17.34 16.87 16.87 16.77 16.83 

Mode 71 71 71 71 71 

Example Count 8725 7828 7848 7840 7830 

Min 0 0 0 0 0 

Max 83 83 83 83 83 

Q1 61 64 64 64 64 

Median 69 70 70 70 70 

Q3 72 72 72 72 72 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 60.78 59.06 

   StDev 16.85 17.72 

   Mode 70 70 

   Example Count 1992 2257 

   Min 12 12 

   Max 78 78 

   Q1 61 55 

   Median 68 67 

   Q3 70 70 

   

      Sensor 155  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.94 61.93 61.96 62.13 61.96 

StDev 9.63 9.67 9.55 9.01 9.59 

Mode 64 64 64 64 64 

Example Count 1926 1903 1915 1902 1900 

Min 0 0 0 0 0 

Max 70 70 70 70 70 
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Q1 62 62 62 62 62 

Median 64 64 64 64 64 

Q3 65 65 65 65 65 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.86 61.93 61.96 62.13 61.96 

StDev 9.77 9.67 9.55 9.01 9.59 

Mode 64 64 64 64 64 

Example Count 1930 1903 1915 1902 1900 

Min 0 0 0 0 0 

Max 70 70 70 70 70 

Q1 62 62 62 62 62 

Median 64 64 64 64 64 

Q3 65 65 65 65 65 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 62.96 62.96 

   StDev 1.36 1.36 

   Mode 63 63 

   Example Count 515 515 

   Min 57 57 

   Max 67 67 

   Q1 62 62 

   Median 63 63 

   Q3 64 64 

   

      Sensor 161  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 24.85 24.95 25.00 24.91 24.97 

StDev 22.15 22.16 22.12 22.13 22.13 

Mode 0 0 0 0 0 

Example Count 7530 7514 7541 7520 7521 

Min 0 0 0 0 0 

Max 87 87 87 87 87 

Q1 0 0 0 0 0 

Median 27 27 28 27 28 

Q3 47 48 48 48 48 

      Training With Social Data 
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Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 25.13 24.96 25.00 24.91 24.98 

StDev 21.54 22.14 22.11 22.12 22.12 

Mode 0 0 0 0 0 

Example Count 8399 7532 7559 7538 7539 

Min 0 0 0 0 0 

Max 87 87 87 87 87 

Q1 0 0 0 0 0 

Median 26 27 27 27 27 

Q3 47 48 48 48 47 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 22.91 23.10 

   StDev 21.33 20.76 

   Mode 0 0 

   Example Count 1900 2134 

   Min 0 0 

   Max 61 61 

   Q1 0 0 

   Median 22 23 

   Q3 46 46 

   

      Sensor 168  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 53.77 53.78 53.86 53.89 53.75 

StDev 11.12 11.19 10.99 10.96 11.17 

Mode 57 57 57 57 57 

Example Count 2470 2450 2468 2453 2458 

Min 0 0 0 0 0 

Max 67 67 67 67 67 

Q1 54 55 55 55 54 

Median 57 57 57 57 57 

Q3 58 59 59 59 59 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 53.07 53.75 53.84 53.87 53.72 

StDev 11.67 11.19 10.99 10.97 11.17 

Mode 57 57 57 57 57 

Example Count 2587 2455 2473 2458 2463 
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Min 0 0 0 0 0 

Max 67 67 67 67 67 

Q1 54 55 55 55 54 

Median 57 57 57 57 57 

Q3 58 59 59 59 59 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 55.00 54.98 

   StDev 6.48 6.49 

   Mode 55 55 

   Example Count 575 576 

   Min 12 12 

   Max 64 64 

   Q1 55 54 

   Median 56 56 

   Q3 58 58 

   

      Sensor 169  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 54.79 54.78 54.78 54.75 54.75 

StDev 7.31 7.32 7.34 7.38 7.34 

Mode 57 57 57 57 57 

Example Count 7915 7903 7925 7915 7905 

Min 0 0 0 0 0 

Max 71 71 71 71 71 

Q1 55 55 55 55 54 

Median 57 57 57 57 57 

Q3 58 58 58 58 58 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 53.66 54.75 54.74 54.72 54.72 

StDev 8.65 7.36 7.39 7.42 7.39 

Mode 57 57 57 57 57 

Example Count 8915 7923 7945 7935 7925 

Min 0 0 0 0 0 

Max 71 71 71 71 71 

Q1 54 55 55 54 54 

Median 56 57 57 57 57 

Q3 58 58 58 58 58 
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Validation 

Without Social 

Data 

With Social 

Data 

   Mean 54.02 53.34 

   StDev 7.06 7.53 

   Mode 57 57 

   Example Count 1997 2265 

   Min 0 0 

   Max 67 67 

   Q1 54 53 

   Median 56 56 

   Q3 58 58 

   

      Sensor 176  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 53.74 53.68 53.71 53.72 53.70 

StDev 7.50 7.69 7.60 7.57 7.63 

Mode 56 56 56 56 56 

Example Count 6918 6913 6932 6913 6911 

Min 0 0 0 0 0 

Max 77 77 77 77 77 

Q1 54 54 54 54 54 

Median 56 56 56 56 56 

Q3 57 57 57 57 57 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 53.66 53.67 53.72 53.72 53.70 

StDev 7.49 7.70 7.60 7.58 7.64 

Mode 56 56 56 56 56 

Example Count 7360 6921 6940 6921 6919 

Min 0 0 0 0 0 

Max 77 77 77 77 77 

Q1 53 54 54 54 54 

Median 55 56 56 56 56 

Q3 57 57 57 57 57 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 52.26 51.83 

   StDev 8.24 8.61 
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Mode 56 56 

   Example Count 1753 1910 

   Min 0 0 

   Max 66 66 

   Q1 52 52 

   Median 55 54 

   Q3 56 56 

   

      Sensor 179  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 59.67 59.65 59.69 59.65 59.67 

StDev 8.53 8.57 8.55 8.59 8.56 

Mode 64 64 64 64 64 

Example Count 6286 6281 6297 6303 6260 

Min 12 12 12 12 12 

Max 68 68 68 68 68 

Q1 59 59 59 59 59 

Median 62 62 62 62 62 

Q3 64 64 64 64 64 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 59.32 59.64 59.68 59.64 59.65 

StDev 8.99 8.60 8.56 8.62 8.58 

Mode 64 64 64 64 64 

Example Count 6738 6289 6304 6311 6268 

Min 12 12 12 12 12 

Max 68 68 68 68 68 

Q1 59 59 59 59 59 

Median 62 62 62 62 62 

Q3 64 64 64 64 64 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 58.31 57.71 

   StDev 9.34 9.72 

   Mode 63 63 

   Example Count 1791 1963 

   Min 13 13 

   Max 68 68 

   Q1 57 56 
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Median 62 61 

   Q3 64 63 

   

      Sensor 200  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.90 61.91 61.92 61.91 61.92 

StDev 4.04 3.97 3.99 4.00 3.96 

Mode 63 63 63 63 63 

Example Count 6830 6825 6848 6829 6823 

Min 0 0 0 0 0 

Max 67 67 67 67 67 

Q1 62 62 62 62 62 

Median 63 63 63 63 63 

Q3 63 63 63 63 63 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 61.72 61.91 61.91 61.91 61.91 

StDev 4.57 3.98 4.00 4.01 3.97 

Mode 63 63 63 63 63 

Example Count 7269 6831 6855 6835 6829 

Min 0 0 0 0 0 

Max 67 67 67 67 67 

Q1 62 62 62 62 62 

Median 63 63 63 63 63 

Q3 63 63 63 63 63 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 61.29 60.89 

   StDev 4.96 5.45 

   Mode 63 63 

   Example Count 1626 1758 

   Min 22 22 

   Max 67 67 

   Q1 61 61 

   Median 62 62 

   Q3 63 63 

   

      Sensor 206  

     Training Without Social Data 
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Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 55.92 55.80 55.95 55.77 55.78 

StDev 16.83 16.94 16.82 16.97 16.93 

Mode 65 64 65 64 65 

Example Count 1154 1139 1131 1132 1146 

Min 12 12 12 12 12 

Max 76 76 76 76 76 

Q1 59 59 59 59 59 

Median 64 64 64 64 64 

Q3 66 66 66 66 66 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 54.24 55.77 55.92 55.74 55.75 

StDev 18.17 16.96 16.84 16.99 16.95 

Mode 65 64 65 64 65 

Example Count 1210 1140 1132 1133 1147 

Min 12 12 12 12 12 

Max 76 76 76 76 76 

Q1 41 59 59 59 59 

Median 64 64 64 64 64 

Q3 66 66 66 66 66 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 48.32 46.99 

   StDev 18.99 19.30 

   Mode 64 64 

   Example Count 356 377 

   Min 12 12 

   Max 73 73 

   Q1 29 28 

   Median 61 60 

   Q3 65 64 

   

      Sensor 239  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 57.88 58.00 57.87 57.91 57.93 

StDev 10.82 10.64 10.83 10.85 10.81 

Mode 62 62 62 62 62 

Example Count 1479 1446 1448 1458 1453 
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Min 0 0 0 0 0 

Max 77 77 77 77 77 

Q1 58 58 58 58 58 

Median 61 61 61 61 61 

Q3 64 64 64 64 64 

      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 56.75 57.98 57.84 57.87 57.89 

StDev 11.73 10.65 10.87 10.89 10.85 

Mode 62 62 62 62 62 

Example Count 1564 1447 1450 1460 1455 

Min 0 0 0 0 0 

Max 77 77 77 77 77 

Q1 56 58 58 58 58 

Median 61 61 61 61 61 

Q3 63 64 64 64 64 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 56.97 55.02 

   StDev 9.23 10.30 

   Mode 62 62 

   Example Count 302 340 

   Min 28 28 

   Max 71 71 

   Q1 55 44 

   Median 61 60 

   Q3 63 63 

   

      Sensor 242  

     Training Without Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 47.03 47.35 47.26 47.37 47.20 

StDev 30.60 30.52 30.53 30.52 30.58 

Mode 0 0 0 0 0 

Example Count 4064 4056 4078 4047 4059 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 0 0 0 0 0 

Median 64 64 64 64 64 

Q3 70 70 70 70 70 
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      Training With Social Data 

     Metric Fold1 Fold2 Fold3 Fold4 Fold5 

Mean 47.19 47.34 47.25 47.36 47.19 

StDev 29.88 30.50 30.52 30.50 30.57 

Mode 0 0 0 0 0 

Example Count 4354 4060 4083 4051 4063 

Min 0 0 0 0 0 

Max 100 100 100 100 100 

Q1 0 0 0 0 0 

Median 63 64 64 64 64 

Q3 70 70 70 70 70 

      

Validation 

Without Social 

Data 

With Social 

Data 

   Mean 46.51 46.60 

   StDev 30.47 29.24 

   Mode 0 0 

   Example Count 849 933 

   Min 0 0 

   Max 100 100 

   Q1 0 0 

   Median 63 61 

   Q3 70 69 
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Appendix 4 – Detailed Result Breakdown 

Sensor 38 

 

 

Day of Week Prob. Of Win Example Count 

1 0.542 155 

2 0.589 190 

3 0.531 175 

4 0.500 188 

5 0.388 196 

6 0.546 207 

7 0.642 187 
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Hour of Day Prob. Of Win Example Count 

5 0.267 15 

6 0.533 60 

7 0.516 64 

8 0.414 70 

9 0.324 71 

10 0.524 84 

11 0.631 84 

12 0.667 84 

13 0.548 84 

14 0.488 84 

15 0.583 84 

16 0.667 84 

17 0.333 84 

18 0.619 84 

19 0.581 74 

20 0.527 74 

21 0.603 58 

22 0.524 42 

23 0.500 14 
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Row Labels Prob. Of Win Example Count 

0 0.60 793 

1 0.42 505 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.420 69 

1 0.424 399 

2 0.432 37 
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Row Labels Prob. Of Win Example Count 

0 0.390 241 

1 0.455 264 

 

 

Row Labels Prob. Of Win Example Count 

0 0.436 280 

1 0.409 225 
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Row Labels Prob. Of Win Example Count 

0 0.45 197 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.00 6 

0.5 0.48 42 

0.75 0.00 7 

1 0.42 250 
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Directionality of Tweets 

Sensor 38 Probability of Social Win vs. Tweet 
Direction 

Prob. Of Win

Example Count
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Row Labels Prob. Of Win Example Count 

0.21 0.385 26 

1.21 0.214 28 

2.79 0.259 54 

4.79 0.529 34 

5.79 0.574 54 

6.79 0.434 53 

7.79 0.500 82 

8.79 0.485 99 

10.79 0.154 39 

11.79 0.250 12 

14.79 0.500 12 

15.79 0.667 12 
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Row Labels Prob. Of Win Example Count 

0 0.429 56 

5 0.431 51 

10 0.420 50 

15 0.521 48 

20 0.404 47 

25 0.395 43 

30 0.462 39 

35 0.263 38 

40 0.306 36 

45 0.444 36 

50 0.533 30 

55 0.484 31 

 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   124 

   

Sensor 39 

 

Row Labels Prob. Of Win Example Count 

1 0.568 95 

2 0.348 46 

3 0.528 53 

4 0.379 58 

5 0.481 77 

6 0.588 51 

7 0.667 72 
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Day of Week 

Sensor 39 Win Probability vs. Example Count by 
Day of Week 

242 - Prob. Of Win

242 - Example Count
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Row Labels Prob. Of Win Example Count 

0 0.521 48 

1 0.560 75 

2 0.462 78 

3 0.561 82 

4 0.532 47 

5 0.680 25 

6 0.688 16 

7 0.375 16 

8 0.462 13 

10 0.667 3 

12 1.000 1 

19 0.500 2 

21 0.333 3 

22 0.357 14 

23 0.379 29 

 

 

Row Labels Prob. Of Win Example Count 

0 0.52 396 

1 0.55 56 
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Row Labels Prob. Of Win Example Count 

0 0.000 2 

1 0.548 42 

2 0.667 12 

 

 

Row Labels Prob. Of Win Example Count 

0 0.667 12 

1 0.523 44 
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Row Labels Prob. Of Win Example Count 

0 0.523 44 

1 0.667 12 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.54 39 

0.5 0.50 2 

1 0.60 15 
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Row Labels Prob. Of Win Example Count 

2.55 1.000 1 

4.55 0.353 17 

5.55 0.500 2 

8.55 0.462 13 

10.55 0.727 11 

14.55 0.750 12 
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Row Labels Prob. Of Win Example Count 

0 0.667 6 

5 0.600 5 

10 0.600 5 

15 0.500 4 

20 0.500 4 

25 0.800 5 

30 0.500 4 

35 0.500 4 

40 0.600 5 

45 0.400 5 

50 0.200 5 

55 0.750 4 

 

Sensor 49 

 

 

Row Labels Prob. Of Win Example Count 

1 0.538 288 

2 0.464 274 

3 0.507 274 

4 0.561 271 

5 0.506 267 

6 0.590 288 
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7 0.596 272 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.532 79 

1 0.429 84 

2 0.429 84 

3 0.488 84 

4 0.474 78 

5 0.518 83 

6 0.619 84 

7 0.429 77 

8 0.417 84 

9 0.429 84 

10 0.532 77 

11 0.476 84 

12 0.548 84 

13 0.519 77 

14 0.571 84 

15 0.588 80 

16 0.681 69 

17 0.628 78 

18 0.730 74 

19 0.619 84 

20 0.506 81 
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21 0.635 74 

22 0.614 83 

23 0.548 84 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.57 1373 

1 0.46 561 
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Capacity Impact 

Sensor 49 Probability of Social Win vs. Capacity 
Impact 

Total
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Row Labels Prob. Of Win Example Count 

0 0.522 69 

1 0.442 446 

2 0.500 46 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.482 251 

1 0.435 310 
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Disabled Present 

Sensor 49 Probability of Social Win vs. Disabled 
Vehicle Presence 

Total
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Collision Presence 

Sensor 49 Probability of Social Win vs. Collision 
Presence 

Prob. Of Win

Sum of Attempts
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Row Labels Prob. Of Win Example Count 

0 0.444 322 

1 0.473 239 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.43 240 

0.25 0.00 1 

0.333 0.50 2 

0.4 0.17 6 

0.5 0.48 42 

0.75 0.00 7 

1 0.50 263 
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Directionality of Tweets 

Sensor 49 Probability of Social Win vs. Tweet 
Direction 

Prob. Of Win

Example Count
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Row Labels Prob. Of Win Example Count 

0.92 0.538 26 

1.92 0.231 26 

2.08 0.470 66 

4.08 0.283 46 

5.08 0.473 55 

6.08 0.491 53 

7.08 0.388 85 

8.08 0.590 105 

10.08 0.431 51 

11.08 0.417 12 

14.08 0.458 24 

15.08 0.583 12 
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Min Distance to Incident 

Sensor 49 Probability of Social Win vs. Minimum 
Distance to Incident 

Mean Win Probability

Example Count

Sum of Distance
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Row Labels Prob. Of Win Example Count 

0 0.433 60 

5 0.411 56 

10 0.389 54 

15 0.528 53 

20 0.462 52 

25 0.404 47 

30 0.465 43 

35 0.415 41 

40 0.500 42 

45 0.475 40 

50 0.568 37 

55 0.472 36 
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Age of Last Tweet (minutes) 

Sensor 49 Probability of Social Win vs. Age of 
Last Tweet 

Prob. Of Win

Example Count
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Sensor 72 

 

 

Row Labels Prob. Of Win Example Count 

1 0.587 288 

2 0.524 288 

3 0.590 288 

4 0.481 283 

5 0.584 281 

6 0.642 288 

7 0.691 288 
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Row Labels Prob. Of Win Example Count 

0 0.658 79 

1 0.690 84 

2 0.536 84 

3 0.524 84 

4 0.560 84 

5 0.762 84 

6 0.524 84 

7 0.369 84 

8 0.583 84 

9 0.429 84 

10 0.405 84 

11 0.417 84 

12 0.655 84 

13 0.548 84 

14 0.571 84 

15 0.607 84 

16 0.548 84 

17 0.631 84 

18 0.726 84 

19 0.655 84 

20 0.655 84 

21 0.667 78 

22 0.663 83 

23 0.690 84 
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Row Labels Prob. Of Win Example Count 

0 0.64 1427 

1 0.46 577 

 

 

 

Row Labels Prob. Of Win Example Count 
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Sensor 72 Probability of Social Win vs. Capacity 
Impact 

Total
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0 0.536 69 

1 0.453 459 

2 0.429 49 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.429 261 

1 0.487 316 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.527 332 

1 0.371 245 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.43 280 

0.25 0.29 7 

0.5 0.43 35 

0.6 0.33 6 

0.667 1.00 2 

0.75 1.00 1 

1 0.50 246 
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Row Labels Prob. Of Win Example Count 

1.04 0.389 72 

1.96 0.600 20 

2.96 0.545 33 

3.04 0.435 46 

4.04 0.364 55 

5.04 0.509 53 

6.04 0.517 87 

7.04 0.384 112 

9.04 0.471 51 

10.04 0.500 12 

13.04 0.708 24 

14.04 0.500 12 
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Row Labels Prob. Of Win Example Count 

0 0.492 63 

5 0.500 58 

10 0.500 56 

15 0.426 54 

20 0.453 53 

25 0.438 48 

30 0.432 44 

35 0.442 43 

40 0.429 42 

45 0.439 41 

50 0.474 38 

55 0.486 37 
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Sensor 77 

 

 

Row Labels Prob. Of Win Example Count 

1 0.560 234 

2 0.460 252 

3 0.526 251 

4 0.535 245 

5 0.418 244 

6 0.529 259 

7 0.583 252 
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Row Labels Prob. Of Win Example Count 

0 0.525 59 

1 0.375 8 

2 1.000 2 

3 0.571 14 

4 0.379 66 

5 0.518 83 

6 0.476 84 

7 0.512 84 

8 0.357 84 

9 0.464 84 

10 0.488 84 

11 0.536 84 

12 0.476 84 

13 0.500 84 

14 0.583 84 

15 0.548 84 

16 0.595 84 

17 0.619 84 

18 0.643 84 

19 0.381 84 

20 0.560 84 

21 0.564 78 

22 0.470 83 

23 0.607 84 
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Row Labels Prob. Of Win Example Count 

0 0.57 1196 

1 0.39 541 

 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.493 69 

1 0.388 423 

2 0.306 49 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.395 261 

1 0.393 280 
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Row Labels Prob. Of Win Example Count 

0 0.382 296 

1 0.408 245 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.37 227 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.50 6 

0.5 0.17 42 

0.75 0.43 7 

1 0.45 256 
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Row Labels Prob. Of Win Example Count 

0.6 0.444 72 

2.4 0.200 20 

2.6 0.265 34 

3.4 0.515 33 

3.6 0.418 55 

4.6 0.340 53 

5.6 0.425 87 

6.6 0.460 100 

8.6 0.275 51 

9.6 0.583 12 

12.6 0.167 12 

13.6 0.333 12 
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Row Labels Prob. Of Win Example Count 

0 0.350 60 

5 0.418 55 

10 0.377 53 

15 0.373 51 

20 0.380 50 

25 0.356 45 

30 0.366 41 

35 0.425 40 

40 0.462 39 

45 0.395 38 

50 0.457 35 

55 0.412 34 
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Sensor 80 

 

 

Row Labels Prob. Of Win Example Count 

1 0.618 157 

2 0.516 192 

3 0.555 200 

4 0.464 194 

5 0.393 196 

6 0.512 207 

7 0.619 189 
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Row Labels Prob. Of Win Example Count 

5 0.467 15 

6 0.383 60 

7 0.470 66 

8 0.338 65 

9 0.461 76 

10 0.524 84 

11 0.619 84 

12 0.667 84 

13 0.381 84 

14 0.583 84 

15 0.488 84 

16 0.595 84 

17 0.512 84 

18 0.614 83 

19 0.551 78 

20 0.560 84 

21 0.547 75 

22 0.521 48 

23 0.385 13 

 

 

Row Labels Prob. Of Win Example Count 

0 0.57 830 

1 0.45 505 
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Row Labels Prob. Of Win Example Count 

0 0.406 69 

1 0.474 399 

2 0.243 37 

 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.426 237 

1 0.466 268 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.406 283 

1 0.500 222 

 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.46 199 

0.25 0.00 1 

0.333 1.00 2 

0.4 0.67 6 

0.5 0.52 42 

0.75 0.57 7 

1 0.42 248 

 

 

 

Row Labels Prob. Of Win Example Count 

0.6 0.433 60 

2.4 0.650 20 

2.6 0.353 34 

3.4 0.345 29 

3.6 0.473 55 

4.6 0.519 52 

5.6 0.438 80 

6.6 0.530 100 

8.6 0.205 39 

9.6 0.667 12 

12.6 0.333 12 

13.6 0.333 12 
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Row Labels Prob. Of Win Example Count 

0 0.518 56 

5 0.529 51 

10 0.460 50 

15 0.468 47 

20 0.468 47 

25 0.381 42 

30 0.474 38 

35 0.432 37 

40 0.444 36 

45 0.417 36 

50 0.273 33 

55 0.406 32 

 

Sensor 87 
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Row Labels Prob. Of Win Example Count 

1 0.507 288 

2 0.497 288 

3 0.510 288 

4 0.597 283 

5 0.580 274 

6 0.556 288 

7 0.743 288 
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Row Labels Prob. Of Win Example Count 

0 0.544 79 

1 0.643 84 

2 0.643 84 

3 0.476 84 

4 0.619 84 

5 0.762 84 

6 0.464 84 

7 0.571 84 

8 0.583 84 

9 0.571 77 

10 0.548 84 

11 0.512 84 

12 0.548 84 

13 0.476 84 

14 0.571 84 

15 0.571 84 

16 0.548 84 

17 0.643 84 

18 0.607 84 

19 0.571 84 

20 0.476 84 

21 0.551 78 

22 0.590 83 

23 0.583 84 
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Row Labels Prob. Of Win Example Count 

0 0.60 1424 

1 0.50 573 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.565 69 

1 0.503 455 

2 0.327 49 
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Row Labels Prob. Of Win Example Count 

0 0.483 261 

1 0.506 312 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.546 328 

1 0.429 245 
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Row Labels Prob. Of Win Example Count 

0 0.50 276 

0.25 0.86 7 

0.5 0.20 35 

0.6 0.00 6 

0.667 0.00 2 

0.75 1.00 1 

1 0.54 246 
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Row Labels Prob. Of Win Example Count 

0.36 0.397 68 

2.36 0.652 46 

2.64 0.250 20 

3.36 0.418 55 

3.64 0.576 33 

4.36 0.434 53 

5.36 0.448 87 

6.36 0.527 112 

8.36 0.627 51 

9.36 0.167 12 

12.36 0.667 24 

13.36 0.750 12 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.419 62 

5 0.544 57 

10 0.527 55 

15 0.491 53 

20 0.396 53 

25 0.438 48 

30 0.500 44 

35 0.605 43 

40 0.571 42 
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45 0.488 41 

50 0.447 38 

55 0.568 37 

 

Sensor 91 

 

Row Labels Prob. Of Win Example Count 

1 0.800 235 

2 0.603 242 

3 0.591 235 

4 0.482 193 

5 0.440 225 

6 0.539 243 

7 0.639 249 
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Row Labels Prob. Of Win Example Count 

0 0.630 54 

1 0.800 5 

2 0.667 3 

3 0.500 2 

4 0.568 44 

5 0.564 78 

6 0.687 83 

7 0.589 73 

8 0.456 68 

9 0.408 71 

10 0.643 84 

11 0.662 77 

12 0.714 84 

13 0.607 84 

14 0.617 81 

15 0.763 80 

16 0.671 82 

17 0.712 73 

18 0.747 83 

19 0.440 84 

20 0.452 84 

21 0.474 78 

22 0.458 83 

23 0.464 84 
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Row Labels Prob. Of Win Example Count 

0 0.65 1111 

1 0.46 511 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.343 67 

1 0.494 395 
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2 0.367 49 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.466 253 

1 0.457 258 

 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.412 279 

1 0.522 232 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.49 217 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.67 6 

0.5 0.43 37 

0.75 0.00 1 

1 0.44 247 
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Row Labels Prob. Of Win Example Count 

0.03 0.569 65 

2.03 0.783 23 

2.97 0.300 20 

3.03 0.407 54 

3.97 0.455 33 

4.03 0.563 48 

5.03 0.437 87 

6.03 0.457 92 

8.03 0.235 51 

9.03 0.333 12 

12.03 0.500 14 

13.03 0.667 12 
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Row Labels Prob. Of Win Example Count 

0 0.407 54 

5 0.388 49 

10 0.532 47 

15 0.500 48 

20 0.489 47 

25 0.581 43 

30 0.375 40 

35 0.462 39 

40 0.579 38 

45 0.459 37 

50 0.314 35 

55 0.441 34 
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Sensor 94 

 

 

Row Labels Prob. Of Win Example Count 

1 0.413 121 

2 0.528 89 

3 0.442 113 

4 0.421 95 

5 0.587 104 

6 0.519 79 

7 0.530 83 
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Row Labels Prob. Of Win Example Count 

0 0.529 68 

1 0.500 84 

2 0.488 84 

3 0.536 84 

4 0.437 71 

5 0.647 34 

6 0.583 24 

7 0.222 27 

8 0.385 13 

9 0.375 8 

10 0.643 14 

11 0.333 12 

12 0.167 6 

13 0.250 8 

14 0.000 1 

15 0.833 12 

16 0.650 20 

18 0.333 3 

19 0.000 6 

20 0.222 9 

21 0.462 13 

22 0.458 24 

23 0.492 59 
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Row Labels Prob. Of Win Example Count 

0 0.50 561 

1 0.41 123 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.714 7 
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1 0.412 102 

2 0.286 14 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.400 50 

1 0.425 73 
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Row Labels Prob. Of Win Example Count 

0 0.400 75 

1 0.438 48 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.41 78 

0.5 0.67 3 

1 0.40 42 
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Row Labels Prob. Of Win Example Count 

0.2 0.739 23 

1.8 0.462 13 

2.8 0.000 1 

3.8 0.167 6 

4.2 0.800 5 

4.8 0.375 16 

5.8 0.344 32 

7.8 0.333 12 

8.8 0.000 3 

11.8 0.167 12 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.231 13 

5 0.583 12 

10 0.400 10 

15 0.167 12 

20 0.364 11 

25 0.500 10 

30 0.444 9 

35 0.500 8 

40 0.625 8 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   175 

   

45 0.375 8 

50 0.364 11 

55 0.545 11 

 

Sensor 98 

 

 

Row Labels Prob. Of Win Example Count 

1 0.459 85 

2 0.481 54 

3 0.595 111 

4 0.491 112 

5 0.433 134 

6 0.303 89 

7 0.470 66 
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Row Labels Prob. Of Win Example Count 

0 0.588 51 

1 0.544 79 

2 0.310 84 

3 0.417 84 

4 0.380 71 

5 0.500 26 

6 0.552 29 

7 0.378 45 

8 0.381 42 

9 0.500 18 

10 0.714 14 

11 0.500 4 

14 0.500 2 

15 0.750 12 

16 0.500 36 

17 0.519 27 

18 0.000 1 

23 0.615 26 
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Row Labels Prob. Of Win Example Count 

0 0.47 504 

1 0.44 147 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.500 2 

1 0.427 131 

2 0.571 14 
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Row Labels Prob. Of Win Example Count 

0 0.512 43 

1 0.413 104 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.388 98 
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1 0.551 49 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.36 66 

0.5 0.67 3 

0.75 0.57 7 

1 0.49 71 
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Row Labels Prob. Of Win Example Count 

0.2 0.474 38 

1.8 0.483 29 

2.8 0.667 9 

3.2 0.000 3 

5.8 0.325 40 

7.8 0.500 16 

11.8 0.500 12 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.526 19 

5 0.588 17 

10 0.471 17 

15 0.385 13 

20 0.533 15 

25 0.545 11 

30 0.273 11 

35 0.700 10 

40 0.222 9 

45 0.222 9 

50 0.125 8 

55 0.375 8 
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Sensor 105 

 

 

Row Labels Prob. Of Win Example Count 

1 0.467 105 

2 0.402 87 

3 0.476 103 

4 0.400 125 

5 0.447 152 

6 0.507 134 

7 0.565 69 
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Row Labels Prob. Of Win Example Count 

0 0.475 59 

1 0.427 82 

2 0.476 84 

3 0.464 84 

4 0.418 55 

5 0.533 45 

6 0.672 58 

7 0.426 68 

8 0.356 45 

9 0.500 20 

10 0.800 5 

11 0.400 10 

12 0.667 3 

13 0.333 3 

14 0.000 4 

15 0.150 20 

16 0.341 41 

17 0.586 29 

18 1.000 2 

19 0.000 2 

21 0.167 6 

22 0.737 19 

23 0.419 31 
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Row Labels Prob. Of Win Example Count 

0 0.48 583 

1 0.42 192 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.379 29 

1 0.418 134 
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2 0.483 29 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.461 76 

1 0.397 116 

 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.382 123 

1 0.493 69 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.44 100 

0.333 1.00 1 

0.4 0.50 4 

0.5 0.40 10 

0.75 0.14 7 

1 0.41 70 
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Row Labels Prob. Of Win Example Count 

0.86 0.172 29 

1.14 0.345 29 

2.14 0.286 7 

3.14 0.400 15 

3.86 0.500 12 

4.14 0.667 3 

4.86 0.526 19 

5.14 0.439 41 

7.14 0.652 23 

11.14 0.500 14 
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Row Labels Prob. Of Win Example Count 

0 0.400 25 

5 0.263 19 

10 0.471 17 

15 0.500 18 

20 0.333 15 

25 0.571 14 

30 0.462 13 

35 0.333 15 

40 0.385 13 

45 0.467 15 

50 0.400 15 

55 0.538 13 
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Sensor 108 

 

 

Row Labels Prob. Of Win Example Count 

1 0.514 74 

2 0.431 51 

3 0.611 54 

4 0.488 43 

5 0.500 80 

6 0.614 57 

7 0.550 40 
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Row Labels Prob. Of Win Example Count 

0 0.578 45 

1 0.486 74 

2 0.492 59 

3 0.520 75 

4 0.511 45 

5 0.647 17 

6 0.500 12 

7 0.800 5 

8 0.800 10 

9 1.000 1 

10 0.857 7 

11 1.000 1 

12 0.333 3 

15 0.000 2 

16 0.333 3 

17 0.000 1 

22 0.357 14 

23 0.560 25 
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Row Labels Prob. Of Win Example Count 

0 0.54 345 

1 0.48 54 

 

 

 

Row Labels Prob. Of Win Example Count 

1 0.435 46 

2 0.750 8 
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Row Labels Prob. Of Win Example Count 

0 0.667 9 

1 0.444 45 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.444 45 

1 0.667 9 
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Row Labels Prob. Of Win Example Count 

0 0.29 14 

0.5 1.00 4 

1 0.50 36 

 

 

Row Labels Prob. Of Win Example Count 

0.86 0.778 9 

1.14 0.500 12 

2.14 1.000 4 

4.14 1.000 1 
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5.14 0.385 13 

7.14 0.429 7 

11.14 0.000 8 

 

 

 

Row Labels Prob. Of Win Example Count 

0 0.500 6 

5 0.333 6 

10 0.800 5 

15 0.600 5 

20 0.200 5 

25 0.600 5 

30 0.000 3 

35 0.000 2 

40 0.400 5 

45 1.000 4 

50 0.750 4 

55 0.250 4 
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Sensor 111 

 

Row Labels Prob. Of Win Example Count 

1 0.467 122 

2 0.423 123 

3 0.503 143 

4 0.465 187 

5 0.451 173 

6 0.429 133 

7 0.441 93 
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Row Labels Prob. Of Win Example Count 

0 0.435 62 

1 0.430 79 

2 0.416 77 

3 0.524 84 

4 0.488 84 

5 0.394 71 

6 0.478 69 

7 0.533 45 

8 0.550 40 

9 0.412 34 

10 0.297 37 

11 0.412 34 

12 0.478 23 

13 0.300 20 

14 0.667 6 

15 0.600 5 

16 0.615 13 

17 0.667 6 

18 0.250 4 

19 0.308 26 

20 0.444 18 

21 0.342 38 

22 0.521 48 

23 0.569 51 
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Row Labels Prob. Of Win Example Count 

0 0.47 766 

1 0.41 208 

 

 

Row Labels Prob. Of Win Example Count 

0 0.560 25 

1 0.380 163 

2 0.450 20 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.435 85 

1 0.390 123 

 

 

Row Labels Prob. Of Win Example Count 

0 0.398 123 

1 0.424 85 

 

 

Row Labels Prob. Of Win Example Count 

0 0.31 94 

0.25 0.60 5 

0.5 0.33 9 
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0.6 1.00 1 

1 0.49 99 

 

 

Row Labels Prob. Of Win Example Count 

0.86 0.263 38 

1.14 0.500 28 

2.14 0.118 17 

3.14 0.448 29 

3.86 0.500 2 

4.14 0.300 20 

4.86 0.444 9 

5.14 0.526 38 

7.14 0.533 15 

8.14 1.000 3 

11.14 0.444 9 
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Row Labels Prob. Of Win Example Count 

0 0.565 23 

5 0.476 21 

10 0.333 18 

15 0.429 21 

20 0.381 21 

25 0.250 16 

30 0.278 18 

35 0.429 14 

40 0.357 14 

45 0.400 15 

50 0.385 13 

55 0.571 14 
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Sensor 118 

 

Row Labels Prob. Of Win Example Count 

1 0.500 6 

2 0.516 31 

3 0.477 44 

4 0.593 27 

5 0.560 25 

6 0.367 30 

 

 

Row Labels Prob. Of Win Example Count 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   201 

   

0 0.474 19 

1 0.414 29 

2 0.488 41 

3 0.525 59 

4 0.615 13 

5 0.500 2 

 

 

Row Labels Prob. Of Win Example Count 

0 0.50 157 

1 0.50 6 
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Row Labels Prob. Of Win Example Count 

1 0.600 5 

2 0.000 1 

 

 

Row Labels Prob. Of Win Example Count 

0 0.000 1 

1 0.600 5 

 

 

Row Labels Prob. Of Win Example Count 

0 0.600 5 

1 0.000 1 
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Row Labels Prob. Of Win Example Count 

1 0.50 6 

 

 

Row Labels Prob. Of Win Example Count 

0.63 1.000 1 

4.63 0.500 4 

6.63 0.000 1 
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Row Labels Prob. Of Win Example Count 

5 0.000 1 

15 1.000 1 

20 0.000 1 

25 1.000 1 

30 1.000 1 

35 0.000 1 

 

Sensor 119 
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Row Labels Prob. Of Win Example Count 

1 0.391 87 

2 0.500 96 

3 0.440 75 

4 0.500 92 

5 0.500 100 

6 0.400 80 

7 0.389 72 

 

 

Row Labels Prob. Of Win Example Count 

0 0.397 58 

1 0.384 73 

2 0.403 77 

3 0.417 84 

4 0.452 84 

5 0.600 65 

6 0.417 36 

7 0.500 8 

8 0.545 11 

9 0.000 4 

10 0.000 4 

11 0.667 3 

16 0.000 1 

20 0.800 5 

21 0.167 6 

22 0.516 31 
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23 0.558 52 

 

 

Row Labels Prob. Of Win Example Count 

0 0.48 539 

1 0.17 63 

 

 

 

Row Labels Prob. Of Win Example Count 

0 1.000 1 

1 0.159 44 

2 0.167 18 
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Row Labels Prob. Of Win Example Count 

0 0.217 23 

1 0.150 40 

 

 

Row Labels Prob. Of Win Example Count 

0 0.150 40 

1 0.217 23 
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Row Labels Prob. Of Win Example Count 

0 0.00 5 

0.5 0.25 4 

1 0.19 54 

 

 

Row Labels Prob. Of Win Example Count 

0.63 0.083 12 

1.37 0.167 12 

1.63 0.200 5 

3.63 0.000 1 

4.63 0.308 13 
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Directionality of Tweets 

Sensor 119 Probability of Social Win vs. Tweet 
Direction 

Prob. Of Win

Example Count
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5.37 0.400 5 

6.63 0.083 12 

10.63 0.000 3 

 

 

Row Labels Prob. Of Win Example Count 

0 0.000 4 

5 0.333 6 

10 0.000 7 

15 0.333 6 

20 0.000 7 

25 0.000 5 

30 0.400 5 

35 0.000 5 

40 0.400 5 

45 0.500 4 

50 0.000 5 

55 0.250 4 
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Sensor 132 

 

Row Labels Prob. Of Win Example Count 

1 0.545 187 

2 0.526 209 

3 0.514 218 

4 0.535 213 

5 0.517 203 

6 0.515 231 

7 0.626 227 
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Row Labels Prob. Of Win Example Count 

0 0.526 19 

1 1.000 4 

2 0.000 1 

4 0.625 8 

5 0.471 51 

6 0.712 66 

7 0.641 78 

8 0.560 84 

9 0.429 84 

10 0.476 84 

11 0.488 84 

12 0.464 84 

13 0.488 84 

14 0.512 84 

15 0.500 84 

16 0.464 84 

17 0.476 84 

18 0.536 84 

19 0.679 84 

20 0.619 84 

21 0.679 78 

22 0.612 67 

23 0.333 24 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.59 967 

1 0.45 521 

 

 

Row Labels Prob. Of Win Example Count 

0 0.377 69 

1 0.470 415 

2 0.297 37 

 

 

Row Labels Prob. Of Win Example Count 

0 0.419 246 
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1 0.469 275 

 

 

Row Labels Prob. Of Win Example Count 

0 0.433 291 

1 0.461 230 

 

Row Labels Prob. Of Win Example Count 

0 0.46 207 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.67 6 

0.5 0.50 42 

0.75 0.71 7 
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1 0.41 256 

 

 

Row Labels Prob. Of Win Example Count 

0.23 0.483 60 

0.77 0.585 41 

1.23 0.528 53 

2.23 0.425 87 

2.77 0.400 55 

3.23 0.434 106 

5.23 0.391 46 

5.77 0.143 7 

6.23 0.333 12 

6.77 0.500 30 

9.23 0.333 12 

10.23 0.333 12 
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Row Labels Prob. Of Win Example Count 

0 0.456 57 

5 0.481 52 

10 0.400 50 

15 0.551 49 

20 0.417 48 

25 0.409 44 

30 0.425 40 

35 0.333 39 

40 0.500 38 

45 0.459 37 

50 0.471 34 

55 0.424 33 
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Sensor 149 

 

Row Labels Prob. Of Win Example Count 

1 0.595 220 

2 0.500 228 

3 0.562 235 

4 0.495 220 

5 0.485 227 

6 0.445 236 

7 0.527 226 
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Row Labels Prob. Of Win Example Count 

0 0.900 30 

4 0.800 20 

5 0.618 68 

6 0.468 77 

7 0.595 84 

8 0.643 84 

9 0.464 84 

10 0.438 80 

11 0.487 78 

12 0.560 84 

13 0.519 77 

14 0.631 84 

15 0.524 84 

16 0.524 84 

17 0.452 84 

18 0.369 84 

19 0.393 84 

20 0.464 84 

21 0.449 78 

22 0.470 83 

23 0.519 77 

 

 

Row Labels Prob. Of Win Example Count 

0 0.54 1073 

1 0.46 519 
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Row Labels Prob. Of Win Example Count 

0 0.493 69 

1 0.468 410 

2 0.375 40 

 

 

Row Labels Prob. Of Win Example Count 

0 0.444 252 

1 0.483 267 
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Row Labels Prob. Of Win Example Count 

0 0.475 284 

1 0.451 235 

 

 

Row Labels Prob. Of Win Example Count 

0 0.55 216 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.00 6 

0.5 0.40 42 

0.75 0.57 7 

1 0.41 245 
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Row Labels Prob. Of Win Example Count 

0.26 0.392 51 

0.74 0.431 51 

1.26 0.415 41 

1.74 0.437 87 

2.74 0.491 106 

3.26 0.534 58 

4.74 0.429 49 

5.74 0.583 12 

6.26 0.571 7 

7.26 0.576 33 

8.74 0.583 12 

9.74 0.250 12 
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Row Labels Prob. Of Win Example Count 

0 0.561 57 

5 0.519 52 

10 0.385 52 

15 0.440 50 

20 0.489 47 

25 0.409 44 

30 0.462 39 

35 0.368 38 

40 0.486 37 

45 0.514 37 

50 0.364 33 

55 0.545 33 
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Sensor 151 

 

Row Labels Prob. Of Win Example Count 

1 0.490 288 

2 0.493 288 

3 0.490 288 

4 0.509 271 

5 0.512 281 

6 0.490 288 

7 0.510 288 
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Row Labels Prob. Of Win Example Count 

0 0.570 79 

1 0.512 84 

2 0.524 84 

3 0.595 84 

4 0.619 84 

5 0.548 84 

6 0.679 84 

7 0.512 84 

8 0.310 84 

9 0.405 84 

10 0.500 78 

11 0.538 78 

12 0.524 84 

13 0.524 84 

14 0.512 84 

15 0.321 84 

16 0.476 84 

17 0.476 84 

18 0.512 84 

19 0.429 84 

20 0.524 84 

21 0.410 78 

22 0.458 83 

23 0.500 84 
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Row Labels Prob. Of Win Example Count 

0 0.52 1427 

1 0.44 565 

 

 

Row Labels Prob. Of Win Example Count 

0 0.333 69 

1 0.456 447 

2 0.449 49 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.418 261 

1 0.461 304 

 

 

Row Labels Prob. Of Win Example Count 

0 0.449 323 

1 0.430 242 

 

 

Row Labels Prob. Of Win Example Count 

0 0.50 251 

0.25 1.00 1 

0.333 0.50 2 
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0.4 0.67 6 

0.5 0.52 42 

0.75 0.43 7 

1 0.36 256 

 

 

Row Labels Prob. Of Win Example Count 

0.34 0.549 51 

0.66 0.540 50 

1.34 0.322 87 

1.66 0.434 53 

2.34 0.500 118 

3.66 0.317 60 

4.34 0.466 58 

5.34 0.167 12 

6.34 1.000 1 

6.66 0.667 6 

7.66 0.667 33 

8.34 0.250 24 

9.34 0.250 12 
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Row Labels Prob. Of Win Example Count 

0 0.468 62 

5 0.456 57 

10 0.519 54 

15 0.442 52 

20 0.314 51 

25 0.404 47 

30 0.419 43 

35 0.524 42 

40 0.390 41 

45 0.415 41 

50 0.474 38 

55 0.459 37 
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Sensor 155 

 

Row Labels Prob. Of Win Example Count 

1 0.426 68 

2 0.472 72 

3 0.630 54 

4 0.564 78 

5 0.635 85 

6 0.433 67 

7 0.473 91 
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Row Labels Prob. Of Win Example Count 

0 0.597 72 

1 0.512 84 

2 0.532 77 

3 0.427 82 

4 0.516 64 

5 0.595 37 

6 0.565 23 

7 0.286 7 

20 0.000 1 

21 1.000 5 

22 0.458 24 

23 0.487 39 

 

 

Row Labels Prob. Of Win Example Count 

0 0.55 456 

1 0.27 59 
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Row Labels Prob. Of Win Example Count 

1 0.255 47 

2 0.333 12 

 

 

Row Labels Prob. Of Win Example Count 

0 0.333 12 

1 0.255 47 
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Row Labels Prob. Of Win Example Count 

0 0.255 47 

1 0.333 12 

 

 

Row Labels Prob. Of Win Example Count 

0 0.17 12 

1 0.30 47 
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Row Labels Prob. Of Win Example Count 

1.66 0.250 12 

2.34 0.333 12 

3.66 0.273 11 

4.34 0.333 12 

8.34 0.167 12 

 

 

Row Labels Prob. Of Win Example Count 

0 0.800 5 

5 0.600 5 

10 0.000 5 
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15 0.400 5 

20 0.200 5 

25 0.400 5 

30 0.000 5 

35 0.000 5 

40 0.200 5 

45 0.200 5 

50 0.000 5 

55 0.500 4 

 

Sensor 161 

 

Row Labels Prob. Of Win Example Count 

1 0.504 278 

2 0.537 281 

3 0.577 274 

4 0.572 276 

5 0.618 241 

6 0.587 288 

7 0.573 262 
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Row Labels Prob. Of Win Example Count 

0 0.835 79 

1 0.929 84 

2 0.857 84 

3 0.964 84 

4 0.774 84 

5 0.714 84 

6 0.655 84 

7 0.556 81 

8 0.545 66 

9 0.548 73 

10 0.544 79 

11 0.418 79 

12 0.417 84 

13 0.345 84 

14 0.493 73 

15 0.614 70 

16 0.548 84 

17 0.384 73 

18 0.420 69 

19 0.384 73 

20 0.369 84 

21 0.269 78 

22 0.361 83 

23 0.536 84 
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Row Labels Prob. Of Win Example Count 

0 0.63 1374 

1 0.40 526 

 

 

Row Labels Prob. Of Win Example Count 

0 0.500 62 

1 0.383 415 

2 0.367 49 
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Row Labels Prob. Of Win Example Count 

0 0.371 237 

1 0.415 289 

 

 

Row Labels Prob. Of Win Example Count 

0 0.432 303 

1 0.345 223 
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Row Labels Prob. Of Win Example Count 

0 0.35 240 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.00 1 

0.5 0.24 42 

0.75 0.57 7 

1 0.47 233 

 

 

Row Labels Prob. Of Win Example Count 

0.12 0.458 48 
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0.88 0.378 90 

1.12 0.400 50 

1.88 0.342 114 

2.12 0.377 53 

3.88 0.372 43 

4.12 0.425 40 

4.88 0.167 12 

5.88 0.000 1 

7.12 0.833 6 

7.88 0.417 24 

8.12 0.515 33 

8.88 0.500 12 

 

 

Row Labels Prob. Of Win Example Count 

0 0.483 58 

5 0.308 52 

10 0.360 50 

15 0.404 47 

20 0.370 46 

25 0.409 44 

30 0.400 40 

35 0.487 39 

40 0.350 40 

45 0.385 39 

50 0.417 36 

55 0.371 35 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   239 

   

Sensor 168 

 

Row Labels Prob. Of Win Example Count 

1 0.439 114 

2 0.569 72 

3 0.537 82 

4 0.548 73 

5 0.524 63 

6 0.583 72 

7 0.495 99 
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Row Labels Prob. Of Win Example Count 

0 0.522 46 

1 0.482 83 

2 0.560 84 

3 0.571 84 

4 0.442 52 

5 0.458 24 

6 0.462 13 

7 0.333 12 

8 0.833 12 

9 0.000 1 

10 0.500 2 

11 0.333 6 

12 0.667 3 

13 0.500 12 

14 0.250 4 

15 0.429 7 

16 0.500 10 

17 1.000 1 

18 0.526 19 

19 0.727 11 

20 0.667 9 

21 0.714 7 

22 0.500 44 

23 0.483 29 
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Row Labels Prob. Of Win Example Count 

0 0.55 504 

1 0.28 71 

 

 

Row Labels Prob. Of Win Example Count 

0 0.667 9 

1 0.231 52 

2 0.200 10 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.263 19 

1 0.288 52 

 

 

Row Labels Prob. Of Win Example Count 

0 0.263 57 

1 0.357 14 

 

 

Row Labels Prob. Of Win Example Count 

0 0.31 36 

1 0.26 35 
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Row Labels Prob. Of Win Example Count 

0.17 0.467 15 

0.83 0.000 4 

1.17 0.357 14 

1.83 0.167 6 

2.83 0.333 12 

3.17 0.400 5 

4.83 0.000 3 

7.17 0.083 12 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.000 5 

5 0.250 4 

10 0.167 6 

15 0.000 4 

20 0.250 8 

25 0.571 7 

30 0.143 7 

35 0.200 5 

40 0.200 5 

45 0.667 6 

50 0.429 7 

55 0.286 7 

 

Sensor 169 

 

Row Labels Prob. Of Win Example Count 

1 0.483 288 

2 0.382 288 

3 0.549 288 

4 0.576 283 

5 0.466 281 

6 0.420 281 

7 0.434 288 
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Row Labels Prob. Of Win Example Count 

0 0.367 79 

1 0.393 84 

2 0.429 84 

3 0.452 84 

4 0.393 84 

5 0.429 84 

6 0.488 84 

7 0.560 84 

8 0.429 84 

9 0.524 84 

10 0.500 84 

11 0.476 84 

12 0.536 84 

13 0.357 84 

14 0.452 84 

15 0.571 84 

16 0.655 84 

17 0.603 78 

18 0.482 83 

19 0.440 84 

20 0.464 84 

21 0.436 78 

22 0.446 83 

23 0.464 84 
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Row Labels Prob. Of Win Example Count 

0 0.50 1427 

1 0.39 570 

 

 

Row Labels Prob. Of Win Example Count 

0 0.406 69 

1 0.389 452 

2 0.408 49 
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Row Labels Prob. Of Win Example Count 

0 0.372 261 

1 0.411 309 

 

 

Row Labels Prob. Of Win Example Count 

0 0.372 325 

1 0.420 245 
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Row Labels Prob. Of Win Example Count 

0 0.43 244 

0.25 0.00 1 

0.333 0.00 2 

0.4 0.67 6 

0.5 0.40 42 

0.75 0.86 7 

1 0.35 268 

 

 

Row Labels Prob. Of Win Example Count 

0.32 0.431 123 
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1.32 0.244 86 

1.68 0.467 60 

2.32 0.212 52 

2.68 0.500 12 

3.32 0.240 50 

3.68 0.000 1 

4.32 0.642 53 

5.68 0.333 24 

6.32 0.517 58 

6.68 0.667 12 

9.32 0.500 6 

10.32 0.303 33 

 

 

Row Labels Prob. Of Win Example Count 

0 0.460 63 

5 0.379 58 

10 0.345 55 

15 0.426 54 

20 0.404 52 

25 0.362 47 

30 0.419 43 

35 0.524 42 

40 0.439 41 

45 0.400 40 

50 0.289 38 

55 0.216 37 
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Sensor 176 

 

Row Labels Prob. Of Win Example Count 

1 0.490 288 

2 0.432 259 

3 0.521 257 

4 0.480 202 

5 0.535 200 

6 0.398 259 

7 0.417 288 
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Row Labels Prob. Of Win Example Count 

0 0.557 79 

1 0.500 84 

2 0.512 84 

3 0.452 84 

4 0.595 84 

5 0.512 84 

6 0.536 84 

7 0.569 72 

8 0.493 69 

9 0.316 79 

10 0.369 84 

11 0.420 81 

12 0.475 80 

13 0.286 84 

14 0.333 72 

15 0.474 38 

16 0.680 25 

17 0.526 38 

18 0.643 56 

19 0.457 70 

20 0.390 77 

21 0.423 78 

22 0.446 83 

23 0.417 84 
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Row Labels Prob. Of Win Example Count 

0 0.51 1311 

1 0.33 442 

 

 

Row Labels Prob. Of Win Example Count 

0 0.204 49 

1 0.340 344 

2 0.408 49 
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Row Labels Prob. Of Win Example Count 

0 0.311 209 

1 0.352 233 

 

 

Row Labels Prob. Of Win Example Count 

0 0.336 256 

1 0.328 186 
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Row Labels Prob. Of Win Example Count 

0 0.31 190 

0.25 0.20 5 

0.5 0.40 30 

1 0.35 217 

 

 

Row Labels Prob. Of Win Example Count 

0.98 0.250 48 

1.02 0.424 92 

1.98 0.167 12 

2.02 0.434 76 
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3.02 0.269 52 

4.02 0.375 40 

4.98 0.292 24 

5.02 0.308 39 

7.02 0.308 26 

11.02 0.152 33 

 

 

Row Labels Prob. Of Win Example Count 

0 0.391 46 

5 0.400 45 

10 0.429 42 

15 0.293 41 

20 0.366 41 

25 0.316 38 

30 0.206 34 

35 0.212 33 

40 0.313 32 

45 0.290 31 

50 0.414 29 

55 0.300 30 
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Sensor 179 

 

Row Labels Prob. Of Win Example Count 

1 0.548 281 

2 0.513 263 

3 0.482 255 

4 0.580 212 

5 0.403 231 

6 0.479 261 

7 0.517 288 
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Row Labels Prob. Of Win Example Count 

0 0.468 79 

1 0.442 77 

2 0.440 84 

3 0.619 84 

4 0.679 84 

5 0.464 84 

6 0.464 84 

7 0.548 84 

8 0.488 84 

9 0.310 84 

10 0.310 84 

11 0.440 84 

12 0.429 77 

13 0.512 84 

14 0.456 79 

15 0.549 51 

16 0.440 25 

17 0.583 36 

18 0.576 59 

19 0.565 69 

20 0.532 77 

21 0.526 78 

22 0.687 83 

23 0.610 77 
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Row Labels Prob. Of Win Example Count 

0 0.55 1334 

1 0.37 457 

 

 

Row Labels Prob. Of Win Example Count 

0 0.236 55 

1 0.385 353 

2 0.449 49 

 

 

Row Labels Prob. Of Win Example Count 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   259 

   

0 0.431 216 

1 0.324 241 

 

 

Row Labels Prob. Of Win Example Count 

0 0.314 264 

1 0.456 193 

 

 

Row Labels Prob. Of Win Example Count 

0 0.32 205 

0.25 0.14 7 

0.5 0.30 30 
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1 0.45 215 

 

 

Row Labels Prob. Of Win Example Count 

0.69 0.326 43 

1.31 0.433 90 

1.69 0.167 12 

2.31 0.385 78 

3.31 0.288 52 

4.31 0.268 41 

4.69 0.417 24 

5.31 0.392 51 

7.31 0.333 33 

11.31 0.576 33 
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Row Labels Prob. Of Win Example Count 

0 0.420 50 

5 0.311 45 

10 0.400 45 

15 0.350 40 

20 0.326 43 

25 0.405 37 

30 0.429 35 

35 0.286 35 

40 0.235 34 

45 0.438 32 

50 0.548 31 

55 0.367 30 
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Sensor 200 

 

Row Labels Prob. Of Win Example Count 

1 0.570 272 

2 0.541 281 

3 0.452 270 

4 0.386 171 

5 0.441 177 

6 0.619 223 

7 0.517 232 
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Row Labels Prob. Of Win Example Count 

0 0.709 79 

1 0.536 84 

2 0.476 84 

3 0.595 84 

4 0.702 84 

5 0.560 84 

6 0.458 83 

7 0.578 64 

8 0.517 58 

9 0.352 71 

10 0.262 84 

11 0.378 74 

12 0.491 57 

13 0.634 41 

14 0.324 34 

15 0.778 36 

16 0.733 30 

17 0.645 31 

18 0.860 57 

19 0.526 78 

20 0.488 84 

21 0.436 78 

22 0.349 83 

23 0.298 84 
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Row Labels Prob. Of Win Example Count 

0 0.54 1230 

1 0.41 396 

 

 

Row Labels Prob. Of Win Example Count 

0 0.409 44 

1 0.448 310 

2 0.143 42 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.326 187 

1 0.488 209 

 

 

Row Labels Prob. Of Win Example Count 

0 0.502 235 

1 0.280 161 

 

 

Row Labels Prob. Of Win Example Count 

0 0.46 199 

0.25 0.00 7 

0.5 0.05 19 
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1 0.41 171 

 

 

Row Labels Prob. Of Win Example Count 

0.25 0.750 4 

0.75 0.333 12 

1.75 0.280 25 

2.25 0.458 24 

3.25 0.333 12 

3.75 0.350 60 

4.75 0.438 73 

5.75 0.388 49 

6.75 0.684 38 

7.75 0.333 51 

9.75 0.409 22 

13.75 0.385 26 
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Row Labels Prob. Of Win Example Count 

0 0.436 39 

5 0.333 36 

10 0.351 37 

15 0.378 37 

20 0.432 37 

25 0.485 33 

30 0.412 34 

35 0.400 30 

40 0.433 30 

45 0.556 27 

50 0.286 28 

55 0.464 28 
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Sensor 206 

 

Row Labels Prob. Of Win Example Count 

1 0.194 31 

2 0.500 26 

3 0.529 34 

4 0.518 83 

5 0.353 68 

6 0.424 66 

7 0.542 48 
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Row Labels Prob. Of Win Example Count 

0 0.522 23 

1 0.424 66 

2 0.434 53 

3 0.429 42 

4 0.182 11 

5 1.000 1 

8 0.125 8 

9 0.800 5 

10 0.000 3 

11 0.800 10 

12 0.579 19 

13 0.355 31 

14 0.304 23 

15 0.565 23 

16 0.533 15 

17 0.526 19 

18 0.333 3 

23 0.000 1 

 

 

Row Labels Prob. Of Win Example Count 

0 0.46 252 

1 0.41 104 
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Row Labels Prob. Of Win Example Count 

0 0.625 16 

1 0.375 88 

 

 

Row Labels Prob. Of Win Example Count 

0 0.500 28 

1 0.382 76 
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Row Labels Prob. Of Win Example Count 

0 0.384 73 

1 0.484 31 

 

 

Row Labels Prob. Of Win Example Count 

0 0.39 33 

0.5 0.43 7 

0.667 0.00 2 

1 0.44 62 
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Row Labels Prob. Of Win Example Count 

1.38 0.273 11 

2.62 0.455 22 

4.62 0.517 29 

5.62 0.273 11 

6.62 0.750 4 

8.62 0.100 10 

10.62 0.400 15 

13.62 1.000 2 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.250 8 

5 0.300 10 

10 0.500 8 

15 0.375 8 

20 0.778 9 

25 0.333 9 

30 0.400 10 

35 0.300 10 

40 0.455 11 

45 0.400 10 

50 0.571 7 

55 0.250 4 

 

Sensor 239 

 

Row Labels Prob. Of Win Example Count 

1 0.526 19 

3 0.553 47 

4 0.413 46 

5 0.435 69 

6 0.425 73 

7 0.667 48 
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Row Labels Prob. Of Win Example Count 

0 0.525 40 

1 0.519 52 

2 0.492 63 

3 0.535 43 

4 0.536 28 

5 0.333 3 

6 0.875 8 

7 0.485 33 

8 0.120 25 

9 0.600 5 

10 0.500 2 
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Row Labels Prob. Of Win Example Count 

0 0.49 271 

1 0.52 31 

 

 

Row Labels Prob. Of Win Example Count 

0 0.667 3 

1 0.500 28 
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Row Labels Prob. Of Win Example Count 

1 0.516 31 

 

 

Row Labels Prob. Of Win Example Count 

0 0.516 31 
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Row Labels Prob. Of Win Example Count 

0 0.64 11 

0.25 0.43 7 

1 0.46 13 

 

 

Row Labels Prob. Of Win Example Count 

0.75 1.000 1 

6.75 0.667 6 

10.75 0.438 16 

12.75 0.500 8 
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Row Labels Prob. Of Win Example Count 

0 0.333 3 

5 0.333 3 

10 0.333 3 

15 0.750 4 

20 1.000 3 

25 0.000 1 

30 0.500 4 

35 0.500 2 

40 0.500 2 

45 1.000 2 

50 0.500 2 

55 0.000 2 
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Sensor 242 

 

Row Labels Prob. Of Win Example Count 

1 0.435 115 

2 0.556 72 

3 0.493 134 

4 0.529 157 

5 0.516 157 

6 0.460 100 

7 0.482 114 
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Row Labels Prob. Of Win Example Count 

0 0.485 66 

1 0.611 72 

2 0.556 72 

3 0.472 72 

4 0.458 72 

5 0.476 42 

6 0.367 30 

7 0.381 63 

8 0.571 42 

9 0.625 8 

10 0.167 6 

11 0.667 6 

12 0.556 9 

13 0.800 5 

14 0.333 6 

15 0.444 9 

16 0.667 3 

17 0.333 9 

18 0.429 7 

19 0.463 41 

20 0.587 46 

21 0.583 48 

22 0.551 49 

23 0.379 66 
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Row Labels Prob. Of Win Example Count 

0 0.53 708 

1 0.33 141 

 

 

Row Labels Prob. Of Win Example Count 

0 0.300 10 

1 0.348 112 

2 0.211 19 

 

 

Row Labels Prob. Of Win Example Count 
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0 0.364 44 

1 0.309 97 

 

 

Row Labels Prob. Of Win Example Count 

0 0.303 99 

1 0.381 42 

 

 

Row Labels Prob. Of Win Example Count 

0 0.33 52 

0.25 0.29 7 

0.5 0.33 3 
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0.6 0.50 2 

1 0.32 77 

 

 

Row Labels Prob. Of Win Example Count 

0.75 0.286 14 

2.75 0.000 2 

3.75 0.500 2 

4.75 0.250 16 

6.75 0.350 40 

7.75 0.385 13 

8.75 0.800 5 

10.75 0.344 32 

12.75 0.176 17 
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Row Labels Prob. Of Win Example Count 

0 0.182 11 

5 0.364 11 

10 0.417 12 

15 0.556 9 

20 0.636 11 

25 0.273 11 

30 0.231 13 

35 0.250 12 

40 0.313 16 

45 0.231 13 

50 0.333 12 

55 0.200 10 

 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   285 

   

Bibliography 

Twitter Blog. (2011, August 1). Retrieved from Twitter: http://blog.twitter.com/2011/08/your-

world-more-connected.html 

Backpropagation. (2012, March 10). Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/Backpropagation 

Ensemble Learning. (2012, March 10). Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/Ensemble_learning 

Supervised Learning. (2012, March 10). Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/Supervised_learning 

Unsupervised Learning. (2012, March 10). Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/Unsupervised_learning 

Artificial neural network. (n.d.). Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/File:Artificial_neural_network.svg 

Boyd, D., Golder, S., & Lotan, G. (2010). Tweet, Tweet, Retweet: Conversational Aspects of 

Retweeting on Twitter . Proceedings of the 43rd Annual Hawaii International 

Conference on System Studies (pp. 1 - 10 ). Koloa, Kauai, Hawaii: IEEE. 

Chen, L., & Chen, C. (2007). Ensemble Learning Approach for Freeway Short-Term Traffic 

Flow Prediction. SoSE '07. IEEE International Conference on System of Systems 

Engineering (pp. 1-6, 16-18). San Antonio, TX: IEEE. 

Cheslow, M., Hatcher, S. G., & Patel, V. M. (1992). An Initial Evaluation of Alternative 

Intelligent Vehicle Highway Systems Architectures. McLean, VA: Mitre Corporation. 

Davidov, D., Tsur, O., & Rappoport, A. (2010). Enhanced sentiment learning using Twitter 

hashtags and smileys. COLING '10 Proceedings of the 23rd International Conference on 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   286 

   

Computational Linguistics: Posters (pp. 241-249). Beijing, China: Association for 

Computational Linguistics. 

de Moor, A. (2010). Conversations in context: a Twitter case for social media systems design. I-

SEMANTICS '10 Proceedings of the 6th International Conference on Semantic Systems 

(p. Article 29). Graz, Austria: ACM. 

Dieng, R. (1996). Comparison of Conceptual Graphs for Modeling Knowledge of Multiple 

Experts: Application to Traffic Incident Analysis. In Various, Foundations of Intelligent 

Systems (pp. 78-87). Berlin / Heidelberg: Springer. 

Faghri, A., & Aneja, S. (2007). Artificial Neural Network-Based Approach to Modeling Trip 

Production. Transportation Research Record: Journal of the Transportation Research 

Board, 131-136. 

Haahr, D. M. (2012, 03 24). FAQ. Retrieved from Random.Org: 

http://www.random.org/faq/#Q2.1 

Huberman, B. A., Romero, D. M., & Wu, F. (2008, December 5). Social Networks that Matter: 

Twitter Under the Microscope. Retrieved from Social Science Research Network: 

http://ssrn.com/abstract=1313405 or http://dx.doi.org/10.2139/ssrn.1313405 

Hwang, J. S. (2003, June 17). Ontology-based Spatial Clustering Method: Case Study of Traffic 

Accidents. Pacific Grove, California, USA: University Consortium of Geographic 

Information Science. Retrieved from University Consortium for Geographic Information 

Science: http://www.ucgis.org/summer03/studentpapers/juliehwang.pdf 

Kotsiantis, S. B. (2007). Supervised Machine Learning : A Review of Classification Techniques. 

Informatica , 249-268. 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   287 

   

Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news 

media? WWW '10 Proceedings of the 19th international conference on World wide web 

(pp. 591-600). Raleigh, NC USA: ACM. 

Laniado, D., & Mika, P. (2010). Making Sense of Twitter. The Semantic Web - ISWC 2010: 9th 

International Semantic Web Conference (pp. 470-485). Shanghai, China: Springer. 

Lawrence, R. (2011). Social Media Analytics. Yorktown Heights, NY: IBM Research. 

Meliaa, S., Parkhurst, G., & Barton, H. (2011). The Paradox of Intensification. Transport Policy, 

46-52. 

Park, B., Messer, C. J., & Urbanik II, T. (2007). Short-Term Freeway Traffic Volume 

Forecasting Using Radial Basis Function Neural Network. Transportation Research 

Record: Journal of the Transportation Research Board, 39-47. 

Peters, A., van Klot, S., Heier, M., Trentinaglia, I., Hoermann, A., Wichmann, H. E., & Loewel, 

H. (2004). Exposure to Traffic and the Onset of Myocardial Infarction. New England 

Journal of Medicine, 1721-1730. 

Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes Twitter users: real-time event 

detection by social sensors. WWW '10 Proceedings of the 19th international conference 

on World wide web (pp. 851-860). Raleign, NC USA: ACM. 

Shawe-Taylor, J., De Bie, T., & Cristianini, N. (2006). Data Mining, Data Fusion and 

Information Management. Intelligent Transportation Systems, 221-229. 

Shehata, M. S., Cai, J., Badawy, W. M., Burr, T. W., Pervez, M. S., Johannesson, R. J., & 

Radmanesh, A. (2008). Video-Based Automatic Incident Detection for Smart Roads: The 

Outdoor Environmental Challenges Regarding False Alarms. IEEE Transactions on 

Intelligent Transportation Systems, 349 - 360. 



IMPROVING TRAFFIC PREDICTIONS WITH SOCIAL SIGNALS   288 

   

Traffic Congestion. (n.d.). Retrieved March 10, 2012, from Wikipedia: 

http://en.wikipedia.org/wiki/Traffic_congestion#United_States 

Turner, S. (2004). Defining and Measuring Traffic Data Quality. Transportation Research 

Record: Journal of the Transportation Research Board, 62-69. 

van Lint, J. (2004). Reliable Travel Time Predictions for Freeways. Delft, Netherlands: TRAIL 

Research School. 

van Lint, J. (2006). Reliable Real-Time Framework for Short-Term Freeway Travel Time 

Prediction. Journal of Transportation Engineering, 921-932. 

Wang, J., & Wang, X. (2011). An ontology-based traffic accident risk mapping framework. 

SSTD 2011 12th International Symposium on Advances in Spatial and Temporal 

Databases (pp. 21-38). Minneapolis, MN USA: Springer. Retrieved from 

http://sstd2011.cs.umn.edu/files/Slides/SSTD_Jing.ppt 

Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., & Chen, C. (2011). Data-Driven 

Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent 

Transportation Systems, 1624-1639. 

Zheng, W., Lee, D.-H., & Shi, Q. (2006). Short-Term Freeway Traffic Flow Prediction: 

Bayesian Combined Neural Network Approach. Journal of Transportation Engineering, 

114-121. 

 

 


