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1. Introduction. In this section, we will limit ourselves to an informal statement of the

problem, its motivation and a brief review of our results. See Section 2 for the rigorous

theorems and Section 3 for the proofs.

Let D ∈ Rd, d ≥ 2, be an open connected set with a finite volume and let X be

the normally reflected Brownian motion (RBM) on D constructed using Dirichlet form

methods (see section 2 for details). Note that X is well defined for every starting point

in D and for x ∈ D we let Px denote the distribution of Xt starting from X0 = x, with

the corresponding expectation E x. Let B ⊂ D be a closed ball with non-zero radius and

denote by TB = inf{t ≥ 0 : Xt ∈ B} the first hitting time of B by X. If E xTB is very

large for some x then RBM starting from that x appears to be trapped near the boundary

of D. We will say that D ⊂ Rd, d ≥ 2, is a trap domain if

sup
x∈D

E xTB = ∞. (1.1)

The definition of a trap domain does not depend on the choice of B (see Lemma 3.2 in the

last section).

Our article is mainly devoted to the following problem.

Problem 1.1. Find necessary and sufficient geometric conditions for D to be a trap

domain.

It will be convenient to express this problem in purely analytic terms. Let G(x, y) be

defined on (D \B)× (D \B) by

∫

(D\B)∩A

G(x, y)dy = E x

∫ TB

0

1{Xt∈A}dt, A ⊂ D.

In other words, G(x, y) is the Green function for the domain D\B with the (zero) Neumann

boundary conditions on ∂D (in the distributional sense) and (zero) Dirichlet boundary

conditions on ∂B. The existence of such G(x, y) follows from a result in [Fu] saying that

there exists a strictly positive function pt(x, y) on [0,∞)×D×D such that for every x ∈ D

and A ⊂ D,

Px(Xt ∈ A) =
∫

D∩A

pt(x, y)dy,
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(see Section 2.1 below for details). We will call pt(x, y) the Neumann heat kernel on D.

From the technical point of view, it is easier to define the Green function with the specified

boundary conditions than the corresponding RBM. The condition

sup
x∈D\B

∫

D\B
G(x, y)dy = ∞, (1.2)

is equivalent to (1.1) but avoids some thorny questions related to the construction of RBM.

For example, if D is a simply connected planar domain, G(x, y) can be constructed in an

elementary way using a conformal mapping and the reflection principle (see the proof of

Theorem 2.2). Problem 1.1 can be expressed as

Problem 1.2. Find necessary and sufficient geometric conditions for D so that (1.2) holds.

Problems 1.1 and 1.2 are closely related to some other potential analytic questions.

Recall that pt(x, y) denotes the heat kernel for D with the Neumann boundary conditions.

We will say that the parabolic Harnack principle (PHP in short) holds in D if for some

t0 > 0, c1 = c1(D, t0) < ∞,

pt(x, y) ≤ c1 pt(v, z) for all t ≥ t0 and v, x, y, z ∈ D. (1.3)

It is easy to show that (1.3) is equivalent to the existence of c2 < ∞ and c3 > 0 such that

for some t1 > 0 and all t ≥ t1,

sup
x,y∈D

∣∣∣∣pt(x, y)− 1
Vol(D)

∣∣∣∣ ≤ c2e
−c3t. (1.4)

It is well known that, for a domain with finite volume, a uniform bound for the

transition densities of the reflected Brownian motion, such as (1.3) or (1.4), implies that

the 1-resolvent of the Neumann Laplacian is compact (see the proof of Theorem 2.6(i)).

Proposition 1.3. Let D ⊂ Rd be a connected open set with finite volume.

(i) Conditions (1.3) and (1.4) are equivalent.

(ii) If the parabolic Harnack principle holds in D then D is not a trap domain.

(iii) There exists a non-trap domain where the 1-resolvent of the Neumann Laplacian is

not compact and, therefore, the parabolic Harnack principle does not hold.
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The parabolic Harnack principle is very useful. For example, it implies that the

Laplacian in D with the Neumann boundary conditions has a discrete spectrum; see [BB,

p. 6] for a typical application. Problem 1.5 and Proposition 2.13 below discuss a question

about the parabolic Harnack principle.

Proposition 1.3(ii) resembles a part of the probabilistic characterization of intrinsic

ultracontractivity in terms of Dirichlet heat kernels, see [D1]. The equivalence of conditions

similar to (1.4) and the negation of (1.1) is well known in probability; see, for example,

page ix of the Preface or Theorem 13.0.1 in [MT].

Remark 1.4. This remark contains a brief informal review of our main results; see Section

2 for the rigorous presentation.

We will give a complete solution to Problems 1.1-1.2 in the case of finitely connected

planar domains. This result will allow us to analyze explicitly several examples, it will

provide clues to finding trap domains among non-finitely connected and higher dimensional

domains, and it will indicate technical difficulties that one is likely to encounter while

dealing with multidimensional domains.

Among other results, our second most complete theorem is concerned with Jα domains,

a class of domains that may have thin and long channels or bottlenecks (the parameter α

indicates their shape). We will define Jα domains as in Maz’ja [M], and then we will prove

that Jα domains satisfy the parabolic Harnack principle for α < 1. We will also show that

the result is sharp by constructing a trap domain in J1.

However, the result on Jα domains is somewhat misleading in its completeness. There

are natural classes of J1 domains and non-Jα domains that are not trap domains. We

will define twisted starlike domains and prove that they are not trap domains. This class

of domains includes the usual starlike domains. A generic example of a twisted starlike

domain (but not necessarily a starlike domain) is a domain whose boundary is locally the

graph of a function. Next, we will analyze a modified von Koch domain to compare our

results on simply connected planar domains and Jα domains.

A number of classes of domains with rough boundaries have been defined and are well

known in the potential theoretic literature; examples include John domains and extension
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domains. We will indicate how they fit into our scheme of things.

We will supplement our main theorems on trap domains with some results related

to two natural questions about the Neumann Laplacian. The literature on the Neumann

Laplacian is enormous but we could not find the answers in published articles.

We have mentioned earlier in the introduction that the parabolic Harnack principle

implies that the Neumann Laplacian in D has a discrete spectrum.

Problem 1.5. Does the parabolic Harnack principle necessarily hold if the Neumann

Laplacian has a discrete spectrum?

We will show in Proposition 2.13 below that there is a trap domain D where the

1-resolvent of the Neumann Laplacian on D is compact. Hence the answer to Problem 1.5

is negative.

Clearly, if the 1-resolvent of the Neumann Laplacian on D is compact, then it has

discrete spectrum and so does the Neumann Laplacian itself. However when D has finite

volume, then the converse is true as well. That is, if D has finite volume, then the 1-

resolvent of the Neumann Laplacian on D is compact if and only the Neumann Laplacian

on D has discrete spectrum.

Let Pt be the semigroup for the Dirichlet Laplacian in D conditioned by the first

Dirichlet eigenfunction through Doob’s h-transform. We say that D is intrinsically ultra-

contractive (IU in abbreviation) if Pt maps L2(D) into L∞(D) for every t > 0 (see [DS1]).

The following question was posed by Davies and Simon in [DS1, p. 372].

Problem 1.6. Is there a relationship between the compactness of the 1-resolvent of the

Neumann Laplacian and intrinsic ultracontractivity of the Dirichlet Laplacian in a given

domain?

In Proposition 2.14 below, we will show that there is no logical relationship between the

two properties, i.e., all four logical combinations of the two properties and their negations

occur in some domains. Moreover, Proposition 1.3(iii) together with Proposition 2.13

below shows that there is no logical relationship between a domain D being non-trap and
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the compactness of 1-resolvent of the Neumann Laplacian in D. In summary, the results

in this paper show that, for a domain D with finite volume, except for the obvious relation

that the PHP implies D is non-trap and the 1-resolvent of the Neumann Laplacian in

D is compact, there are no other logical relationships between the following properties:

non-trap, IU, discrete spectrum of the Neumann Laplacian and PHP.

We end this section with an informal description of a research project which provided

the initial motivation for the results presented in this paper. Problem 1.1 was inspired by

a technical question that arose in an article of Burdzy, HoÃlyst and March [BHM], where

a branching particle system was defined and analyzed. In that model, a fixed number of

Brownian particles are confined to an open set. When a particle hits the boundary of the

set, it jumps to the location of one of the other particles. This is the only interaction be-

tween the particles. Otherwise they move independently of one another. One of the main

theorems in [BHM] asserts that the particle configuration has a stationary distribution,

and when the number of particles goes to infinity, these stationary distributions converge

to the first eigenfunction of the Laplacian with the Dirichlet boundary conditions, in an

appropriate sense. The theorem is limited to a family of domains satisfying an interior ball

condition. In other words, the domains are assumed not to have outward pointing thorns

or wedges. This restriction seems to be technical in nature, i.e., it is our opinion that

the theorem holds for a much larger class of domains. One way (somewhat speculative at

this point) to overcome that technical difficulty is to analyze the trace of the “immortal

particle,” i.e., that branch in the genealogical tree of the particle system (chosen with

clairvoyant powers) which never touches the boundary. The immortal particle seems to be

a process with properties between those of the reflected Brownian motion and Brownian

motion conditioned to stay in the domain forever, using the Doob parabolic h-path trans-

form. One needs a uniform upper bound for the expected time to return to the center of

the domain for the immortal particle, to be able to generalize the result from [BHM]. In

this paper, we do not analyze the immortal particle but the reflected Brownian motion.

We hope that the techniques developed in this paper will eventually help to extend the

results in [BHM] to a wide class of domains.
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2. Main results.

It is elementary to see that bounded domains with smooth boundaries are not trap

domains so Problem 1.1 is meaningful only if D has a rough boundary. There are many

definitions of reflecting Brownian motion. The most elementary and the most powerful

definitions, such as the (deterministic) Skorokhod problem method and the martingale

problem method, apply only when D has a C2-smooth boundary. Hence, we cannot

use any of the relatively easy definitions of reflecting Brownian motion. For this reason,

Subsection 2.1 will be entirely devoted to the technical issues surrounding the definition

of RBM and the Green function in non-smooth domains.

2.1. Reflecting Brownian motion and Green’s function.

Let D be a domain in Rd with finite volume and let m denote Lebesgue measure on

D. The Euclidean closure of D will be denoted by D. Let W 1,2(D) denote the set of

functions f in L2(D,m) that have distributional derivatives
∂f

∂xi
, i = 1, . . . , d, that are also

in L2(D, m). Define the symmetric positive definite bilinear form E on H1(D) by

E(f, g) =
1
2

∫

D

∇f(x) · ∇g(x) m(dx), f, g ∈ W 1,2(D), (2.1)

where∇ denotes gradient and · denotes vector dot product. Note that W 1,2(D) is a Hilbert

space with Hilbert inner product E1 := E+( · , · )L2(D). When the domain D is C2-smooth,

the Dirichlet form (W 1,2(D), E) is regular on D in the sense that W 1,2(D)∩C(D) is dense

both in (W 1,2(D), E1/2
1 ) and in (C(D), ‖ · ‖∞). It is well known that there is a continuous

strong Markov process X associated with the Dirichlet space (W 1,2(D), E) and it has a

Skorokhod semimartingale decomposition starting from any point in D:

Xt = X0 + Bt +
∫ t

0

n(Xs) dLs, t ≥ 0, (2.2)

where B is a d-dimensional Brownian motion martingale additive functional of X, n is the

inward unit normal vector field on ∂D, and L is a positive continuous additive functional

of X with associated (Revuz) measure proportional to surface measure σ on ∂D.

When the boundary of D is non-smooth there need not be a continuous strong Markov

process on D associated with the Dirichlet space (W 1,2(D), E). For example, reflecting
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Brownian motion on a planar disc with a slit removed can not be a strong Markov process

on the Euclidean closure of the domain. However for any domain D ⊂ Rd, one can

always find (see [C2]) a suitable compact metric space D∗ that contains D as a dense

open subset such that (E ,W 1,2(D)) is a regular Dirichlet space on D∗. For example, the

Martin-Kuramochi compactification used by Fukushima in [Fu] can play the role of D∗,

on which there is a continuous strong Markov process associated with the Dirichlet space

(W 1,2(D), E). Fukushima [Fu] was the first to construct reflecting Brownian motion on D∗

for arbitrary bounded domain D.

The “association” between X∗ and (W 1,2(D), E) can be expressed as follows. Writing

(Tt, t ≥ 0) for the transition semigroup of X∗, we have

E(f, f) = lim
t→0

t−1

∫

D

f(x)(f(x)− Ttf(x))m(dx), f ∈ W 1,2(D),

and W 1,2(D) consists precisely of those functions in L2(D,m) for which the indicated limit

exists. We extend m to a measure on D∗ by defining m(D∗ \D) = 0, thereby identifying

L2(D, m) with L2(D∗,m). We shall recall below a few facts about X∗ that are relevant

to the present discussion; for full details the reader is referred to [Fu] and [FOT]. The

transition probabilities of X∗ are absolutely continuous with respect to m. Consequently

the notions “set of capacity zero” and “polar set” coincide. Thus, a property or statement

holding quasi-everywhere holds outside some polar set.

The process X∗ is a conservative diffusion. More precisely, t 7→ X∗
t takes values in

D∗ and is continuous Px-a.s. for all x ∈ D∗. In fact, there is a polar set A0 ⊂ D∗ \D such

that

Px(X∗
0 = x,X∗

t ∈ D∗ for all t ≥ 0) = 1, for all x ∈ D∗ \A0.

Intuitively speaking, the elements of A0 are “branch points” and they are only a nuisance.

According to [FOT], there is a polar set (called proper exceptional set) A ⊃ A0 such that

A ⊂ D∗ \D and

Px(X∗
0 = x,X∗

t ∈ D∗ \A for all t ≥ 0) = 1, for all x ∈ D∗ \A.

So we may and will assume A0 = ∅ in the rest of this paper by taking D∗ to be D∗ \ A

if necessary. By Theorem 2 of [Fu], for every t > 0, X∗
t has a unique transition density
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function pt(x, y) with respect to measure m such that pt(x, y) is continuous on (0,∞) ×
D∗ ×D. In particular we have for every t > 0 and x ∈ D∗,

Px(X∗
t ∈ D∗ \D) = 0. (2.3)

The semigroup {Pt, t > 0} of X∗ defined by

Ptf(x) =
∫

D

pt(x, y)f(y) dy = E x[f(Xt)], x ∈ D,

is a strongly continuous semigroup in L2(D, dx). Let (L, D(L) denote its L2-infinitesimal

generator, which is self-adjoint in L2(D, dx). Then (see [FOT]) f ∈ D(L) if and only if

f ∈ W 1,2(D) and there is function u ∈ L2(D, dx) such that

E(f, ϕ) =
∫

D

u(x)ϕ(x)dx for every ϕ ∈ W 1,2(D),

and this unique u is equal to Lf . Note that Lf = − 1
2∆f for f ∈ D(L). We call −2L the

Neumann Laplacian on D. Clearly its 1-resolvent R1 is given by R1u = 1
2

∫∞
0

e−t/2Ptu.

The following result might be known to experts. We present it here for the reader’s

convenience.

Lemma 2.1. Suppose that D is a domain in Rn with finite volume. Then the following

are equivalent.

(i) The Neumann Laplacian in D has discrete spectrum.

(ii) The 1-resolvent R1 of the Neumann Laplacian in D is a compact operator in L2(D, dx).

(iii) The embedding W 1,2(D) → L2(D, dx) is compact.

Proof. The equivalence of (i) and (iii) follows immediately from Theorem 4.8.2 and

Theorem 4.10.1.3 of Maz’ja [M]. If R1 is compact, then R1 has discrete spectrum, so does

the Neumann Laplacian in D; that is, (ii) implies (i). Now suppose (iii) holds. Since

R1 is a bounded operator from L2(D, dx) into W 1,2(D), it follows that R1 is a compact

operator from L2(D, dx) into itself. Hence, (iii) implies (ii) and this completes the proof

of the lemma.

Recall that (W 1,2(D), E) is the Dirichlet form of X∗, which is regular on D∗. Hence

every function u ∈ W 1,2(D) has an E-quasi-continuous version on D∗. We will use this
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E-quasi-continuous version for every function in W 1,2(D) in the rest of this paper. Using a

quasi-continuous projection from D∗ to D one can construct a reflecting Brownian motion

Xt on D for every starting point in D or even more generally, for every starting point

in D∗. Here is the idea of the construction in [C1]-[C2]. The coordinate maps D 3 x =

(x1, · · · , xn) → xi, i = 1, · · · , n, are locally elements of W 1,2(D). Let ϕi denote the E-quasi-

continuous extension of x → xi to all of D∗ and set ϕ = (ϕ1, · · · , ϕn). It is easy to see (cf.

[C1]) that ϕ : D → D is an identity map and that ϕ(D∗ \D) ⊂ ∂D. Define X = ϕ(X∗) as

the reflecting Brownian motion on D, which has continuous sample paths on D. We will call

X the reflecting Brownian motion on D. It is not hard to see that this definition agrees with

all other standard definitions in smooth domains (see [C1]). It follows from the Dirichlet

form construction of RBM that {X∗
t , t < T ∗D∗\D} = {Xt, t < T∂D} is just the Brownian

motion in D killed upon exiting D (cf. [FOT]). Here T ∗D∗\D := inf{t ≥ 0 : X∗
t ∈ D∗ \D}

and T∂D := inf{t ≥ 0 : Xt ∈ ∂D}.
The reflecting Brownian motion defined above is conformally invariant in planar do-

mains in the following sense. Suppose that D and U are two planar domains, ϕ is a

one-to-one conformal map from D onto U and X∗ is the reflecting Brownian motion on D

constructed above. Since both the real and imaginary parts of ϕ are locally in W 1,2(D), ϕ

extends to be an E-quasi-continuous function on D∗ and so t 7→ ϕ(X∗) is continuous a.s.

(cf. [FOT]). As was pointed out in [BBC], the time changed process {ϕ(X∗
τs

), s ≥ 0} has

Dirichlet form (W 1,2(U), E) on L2(U, dx), where

τs := inf
{

t ≥ 0 :
∫ t

0

|ϕ′(X∗
r )|2 dr > s

}
. (2.4)

This implies that process {ϕ(X∗
τs

), s ≥ 0} is the reflecting Brownian motion on U .

Given a closed non-degenerate ball B in D, it is clear that the first hitting time of

TB = inf{t ≥ 0 : Xt ∈ B} of B by X is the same as the first hitting time T ∗B = inf{t ≥ 0 :

X∗
t ∈ B} of B by X∗, if X0 = X∗

0 ∈ D. So we will not distinguish TB with T ∗B . Since D has

finite volume, 1 ∈ W 1,2 and E(1, 1) = 0. It follows that X∗ is recurrent (see [FOT]) and

hence B will be hit in finite time. Let Y ∗ be the process X∗ killed upon hitting B; that is

Y ∗
t = X∗

t if t < TB and Y ∗
t = ∂ if t ≥ TB , where ∂ is a cemetery point. Process Y ∗ is called

the RBM on D∗ killed upon hitting B. If we use process X instead of X∗ in the above
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procedure, then the so obtained process Y will be called RBM on D killed upon hitting B.

Process Y ∗ has a symmetric transition density function pY ∗
t (x, y) with respect to measure

m on D∗ \ B. Using the strong Markov property of X∗ (or Dynkin’s formula), one can

express pY ∗
t (x, y) using ps(x, y) and, since B is a closed ball in D, it is routine to show from

it that pY ∗
t (x, y) is continuous on (0,∞)× (D∗ \ B)× (D \ B). Since Y ∗ is transient and

irreducible, it follows that (cf. [FOT]) (i) the Green function G(x, y) :=
∫∞
0

pY ∗
t (x, y)dt

of Y ∗ is finite a.e. on (D∗ \ B) × (D \ B), (ii) G(x, y) is symmetric, and (iii) for every

y ∈ D \ B, x → G(x, y) is Y ∗-excessive. Clearly, for any Borel function f ≥ 0 on D \ B,

we have

E x

[∫ TB

0

f(X∗
s )ds

]
=

∫

D\B
G(x, y)f(y)dy := Gf(x) for x ∈ D∗ \B.

It follows from the strong Markov property of Y ∗ that for every y ∈ D \ B and for every

B(x0, r) ⊂ B(x0, r) ⊂ (D \B) \ {y},

G(x, y) = E x
[
G(X∗

τB(x0,r)
, y)

]
for every x ∈ B(x0, r).

Here τB(x0,r) := inf{t ≥ 0 : X∗
t 6= B(x0, r)}. Since {X∗

s , 0 ≤ s < τB(x0,r)} is just the killed

Brownian motion in B(x0, r), we conclude that x 7→ G(x, y) is harmonic in (D \ B) \ {y}
and consequently (x, y) 7→ G(x, y) is continuous on (D \ B) × (D \ B) except along the

diagonal.

It is well known (see [FOT]) that the reflecting Brownian motion Y ∗ on D∗ killed

upon hitting B has Dirichlet form (W 1,2
0 (D;B), E), where

W 1,2
0 (D; B) =

{
u ∈ W 1,2(D) : u = 0 E-q.e. on B

}
. (2.5)

Here E-q.e. is the abbreviation for quasi-everywhere with respect to the process X∗, or

equivalently, relative to the Dirichlet form (W 1,2(D), E). In fact, W 1,2
0 (D;B) is the closure

under the norm E1/2
1 of functions in C∞(D) ∩ W 1,2(D) that vanish on B. It follows

from Theorem 1.5.4 of [FOT] that for any non-negative function f in L2(D \ B) with

Gf ∈ L2(D \B), Gf ∈ W 1,2
0 (D;B) and

∫

D\B
∇Gf(x) · ∇v(x)m(dx) =

∫

D\B
f(x)v(x)m(dx) for every v ∈ W 1,2

0 (D; B).
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This implies that for each fixed y ∈ D \B, the function x 7→ G(x, y) satisfies the Neumann

boundary condition on ∂D in the distributional sense and Dirichlet condition on B.

Suppose that B is a closed ball in a planar domain D and ϕ is a one-to-one conformal

map from D onto another planar domain U . Let Y ∗ be the RBM on D killed upon hitting

B and let G(x, y) be its Green function. Then it follows from the conformal invariance for

reflecting Brownian motions in planar domains (see the paragraph containing (2.4)) that

ϕ(Y ∗) is a time changed RBM on U killed upon hitting ϕ(B). More specifically, {ϕ(Y ∗
τt

, 0 ≤
t < ζ} is the RBM on U killed upon hitting ϕ(B), where τt = inf{s ≥ 0 :

∫ s

0
|ϕ′(Y ∗

r )|2 dr >

t} and ζ =
∫ TB

0
|ϕ′(Y ∗

r )|2 dr. This implies that (x, y) 7→ G(ϕ−1(x), ϕ−1(y)) is the Green

function for RBM on U killed upon hitting ϕ(B). That is, if we use GD\B to denote the

Green function of the RBM on D killed upon hitting B, then

GD\B(x, y) = Gϕ(D)\ϕ(B)(ϕ(x), ϕ(y)) for x, y ∈ D \B. (2.6)

We say that D ⊂ Rd has a continuous boundary if for every x ∈ ∂D there exist a

neighborhood U of x, a continuous function f : Rd−1 → R and an orthonormal coordinate

system such that in that system, D ∩ U = {(y1, . . . , yd) ∈ U : yd > f(y1, . . . , yd−1)}. If

D is a domain in Rd with continuous boundary, then it is known (see Theorem 2 on page

14 of Maz’ja [M]) that (E , W 1,2(D)) is a regular Dirichlet space on D. In this case we

can take D∗ = D and therefore there is a strong Markov process X on D associated with

(E ,W 1,2(D)); in other words one can construct RBM on D as a consistent Markovian

family of distributions for the process starting from every point in D except possibly for a

subset of ∂D having zero capacity.

2.2. Simply connected planar domains.

This subsection will use complex analytic notation and concepts. Consult [P] for the

definitions of prime ends, harmonic measure, etc.

Suppose D is a simply connected open subset of the complex plane C, z0 ∈ D is a fixed

base point, and ζ is a prime end in D. Consider a collection {γn}n≥1 of non-intersecting

cross cuts of D such that γn separates γn−1 from ζ and γn’s tend to ζ. Suppose further

that σ is a curve in D connecting z0 to ζ such that σ ∩ γn is a single point zn, for each n.

This system of curves divides D into subregions: let Ωn denote the component of D \ γn
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which does not contain z0. Thus Dn = Ωn \ Ωn+1 is the region between γn and γn+1.

Write Ω1 \ σ = Ω+ ∪Ω−, where each set Ω+ and Ω− is connected, and set D+
n = Ω+ ∩Dn

and D−
n = Ω− ∩Dn. See Figure 2.1.

PSfrag replacements
zn

zn+1

D+
n

D−

n

ζ

z0 σ

γn

γn+1

Figure 2.1. Hyperbolic blocks.

The harmonic measure of a set A ⊂ ∂D in the domain D, relative to z, will be denoted

ω(z,A, D). We will say that the system of curves {γn} ∪ σ divide D into hyperbolic blocks

tending to the prime end ζ if for some ε > 0 and all n ≥ 1, the following conditions hold:

(i) ε ≤ ω(z0, ∂Ω+ ∩ ∂D, D) ≤ 1/2 and ε ≤ ω(z0, ∂Ω− ∩ ∂D, D) ≤ 1/2,

(ii) for all n ≥ 1 and for all z ∈ ∂D+
n ∪ {zn−1}, we have ω(z, ∂D+

n ∩ ∂D, D) ≥ ε,

(iii) for all n ≥ 1 and for all z ∈ ∂D−
n ∪ {zn−1}, we have ω(z, ∂D−

n ∩ ∂D, D) ≥ ε.

For every simply connected (and even finitely connected) domain and any prime end

ζ, there exists a family of hyperbolic blocks. Here is one way to construct {γn}n≥1 and

σ. Suppose that ϕ is a conformal map of the upper half plane H onto D, such that

ϕ(0) = ζ and ϕ(i) = z0. Then we can take γn = ϕ(H ∩ {|z| = 2−n}), n ≥ 1, and

σ = {ϕ(iy) : 0 < y ≤ 1}. The conformal invariance of the harmonic measure makes it is

easy to verify that {γn} ∪ σ divide D into hyperbolic blocks tending to ζ. We will later

show by example how to construct hyperbolic blocks geometrically. The term “hyperbolic”

in the name of the family {γn}∪ σ is derived from the “hyperbolic distance” (see [P]). We
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will show in the proof of Theorem 2.2 that the hyperbolic distances between zn−1 and zn

for n ≥ 1 are bounded below and above by constants.

Theorem 2.2. A simply connected domain D ⊂ C having finite area is a non-trap domain

if and only if there is a constant ε > 0 such that for each prime end ζ ∈ ∂D there is a

system of curves {γn} ∪ σ dividing D into hyperbolic blocks with parameter ε and

sup
ζ

∑
n

Area(Ωn) ≤ 1/ε. (2.7)

Note that (2.7) is equivalent to

sup
ζ

∑
n

nArea(Dn) ≤ 1/ε, (2.8)

and that we have not assumed in Theorem 2.2 that D is bounded.

Our proof of Theorem 2.2 yields some additional useful information. It shows that if

one can find a system of hyperbolic blocks for some prime end ζ with
∑

n Area(Ωn) = ∞
then D is a trap domain. It follows that in such a case, there is no need to examine any

other family of hyperbolic blocks.

2.3. Maz’ja’s domains.

We will define a class of multidimensional domains D ⊂ Rd, d ≥ 2, following Maz’ja

[M]. We call a bounded open set F ⊂ D “admissible” if the part of its boundary that lies

in D, i.e., ∂iF = ∂F ∩D, is a C∞ manifold. Let |F | denote the d-dimensional Lebesgue

measure on Rd and let S denote the (d− 1)-dimensional surface area measure on ∂iF .

Definition 2.3. For α > 0, we say that D belongs to class Jα if for some ε > 0, c < ∞
and all admissible sets F ⊂ D with |F | ≤ ε, we have |F |α ≤ cS(∂iF ).

Clearly it follows from the definition that for 0 < α < β, Jα ⊃ Jβ .

Theorem 2.4. Let D ⊂ Rd be a connected open set with finite volume.

(i) Domains D ∈ Jα with α < 1 satisfy the parabolic Harnack principle.

(ii) There exists a trap domain D ∈ J1.

14



Part (ii) of Theorem 2.4 suggests that this result provides a sharp answer to Problems

1.1-1.2. It turns out that it is not a complete solution. We will show in Theorem 2.10 and

Proposition 2.15 that there exist some natural classes of non-trap domains that are not

contained in Jα for any α < 1.

The intuitive meaning of the definition of a Jα domain is quite clear but proving that

a given domain belongs to this class is far from trivial, because the definition involves a

condition that is supposed to hold for a very large class of sets F . The methods used by

Maz’ja to analyze concrete examples (see [M], Section 3.3.3, page 175) are based on explicit

mappings and estimates of their Jacobians. This is sufficient to deal with regular horn-

shaped domains but the method does not seem to be applicable to fractal domains. On the

other hand, it is relatively easy to show that a domain does not belong to a class Jα because

all one has to do is to find a sequence of admissible sets Fn with |Fn|α/S(∂iFn) →∞.

We recall another class of domains from [M], defined in terms of conductivity or

relative capacity.

Definition 2.5. For α > 0, a domain D ⊂ Rd is said to belong to class J2,α if for some

ε > 0, c > 0 and for any bounded relatively closed set F in D and open subset G of D

with F ⊂ G, |G| ≤ ε and Cap(F, G) > 0, we have |F |α ≤ c Cap(F, G)1/2. Here

Cap(F, G) = inf
{ ∫

D

|∇f(x)|2dx : f is Lipschitz on D,

f ≥ 1 on F and f ≤ 0 on D \G
}

.

It is clear that for 0 < α < β, J2,α ⊃ J2,β . Domains in classes Jα and J2,α can

be characterized in terms of the Sobolev embedding. By Lemma 4.3.2 on page 199 and

Theorem 4.3.3.1 on page 200 of [M] (taking p = 1 = s, q∗ = q = 1/α there), a domain

D ⊂ Rd is in Jα for some α < 1 if and only if

‖u‖1/α ≤ c (‖∇u‖1 + ‖u‖1) for u ∈ W 1,1(D); (2.9)

while by Theorem 4.3.3.1 on page 200 of [M] (taking p = 2 = s, q∗ = q = 1/α there), D is

a domain in J2,α for some α < 1/2 if and only if there is c > 0 such that

‖u‖1/α ≤ c (‖∇u‖2 + ‖u‖2) for u ∈ W 1,2(D). (2.10)

15



Theorem 2.6. Let D ⊂ Rd be a connected open set with finite volume.

(i) Domains D ∈ J2,α with α < 1/2 satisfy the parabolic Harnack principle.

(ii) There exists a trap domain D ∈ J2,1/2.

The definition of J2,α is a bit more abstract than that of Jα. According to Proposition

4.3.4.2 on page 203 of [M], we have Jα+ 1
2
⊂ J2,α. Hence Theorem 2.4(i) follows from

Theorem 2.6(i), while Theorem 2.4(ii) implies Theorem 2.3(ii).

The rest of this subsection is devoted to the discussion of two classes of domains well

known in analysis. Suppose D ⊂ Rd. Let α = (α1, . . . , αd) denote a multi-index, where αj

are non-negative integers. Let |α| = ∑d
j=1 αj and Dα = (∂/∂x1)α1 . . . (∂/∂xn)αd . We say

that a locally integrable function f on D has a weak derivative of order α if there exists a

locally integrable function Dαf such that

∫

D

f(Dαϕ)dx = (−1)|α|
∫

D

(Dαf)ϕdx,

for all C∞ functions ϕ with compact support in D. For 1 ≤ p ≤ ∞, and integer k ≥ 1, we

denote by W k,p(D) the Sobolev space of functions having weak derivatives of all orders α,

|α| ≤ k, satisfying

‖f‖W k,p(D) =
∑

0≤|α|≤k

‖Dαf‖W k,p(D) < ∞.

An extension operator on W k,p(D) is a bounded linear operator Λ : W k,p(D) → W k,p(Rd)

such that Λf
∣∣
D

= f for f ∈ W k,p(D). We say that D is a W k,p-extension domain if there

exists an extension operator for W k,p(D) (see, e.g., [J]).

Theorem 2.7. If a set D ⊂ Rd, d ≥ 2, is a W 1,1-extension domain or a W 1,2-extension

domain having finite volume then the parabolic Harnack principle holds in D.

Theorem 2.7 follows from Theorems 2.2 and 2.3 because we will show that every W 1,1-

extension domain is a J d−1
d

-domain and every W 1,2-extension domain is a J2,α-domain with

α = (d− 2)/(2d).

The definition of an extension domain is not easily verifiable. Jones [J] found an

important class of extension domains with an intuitive geometric characterization—he
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called them (ε, δ)-domains. For a rectifiable arc γ ∈ Rd, let `(γ) be its length. Let ρ(x)

be the distance from x to Dc. We say that D is an (ε, δ)-domain if δ, ε > 0, and whenever

x, y ∈ D and |x− y| < δ then there exists a rectifiable arc γ ⊂ D joining x and y and such

that `(γ) ≤ |x− y|/ε and ρ(z) ≥ ε|x− z| · |y − z|/|x− y| for all z ∈ γ.

We do not know what the relationship between W 1,1-extension domains and W 1,2-

extension domains is, i.e., whether one of these classes contains the other. However, when

D is a finitely connected planar domain, Jones [J] showed that D is a W 1,2-extension

domain if and only if it is an (ε, δ)-domain and therefore a W 1,1-extension domain. We

note that, in general, an extension operator on W 1,2(D) is not necessarily an extension

operator on W 1,1(D) and vice versa, an extension operator on W 1,1(D) is not necessarily

an extension operator on W 1,2(D).

Corollary 2.8. The parabolic Harnack principle holds in every (ε, δ)-domain with finite

volume.

Corollary 2.8 follows from our Theorem 2.7 and Theorem 1 of Jones [J]. Note that non-

tangentially accessible domains defined by Jerison and Kenig in [JK] are (ε,∞)-domains

(see (3.4) of [JK]).

A planar simply connected domain D is called a John domain if there exists c < ∞
such that for any curve Γ ⊂ D with endpoints x, y ∈ ∂D, which cuts D into D1 and D2,

we have diam(D1) < c diam(Γ) or diam(D2) < c diam(Γ) (see [P] p. 96). It is easy to see

that a John domain is an (ε, δ)-domain.

Corollary 2.9. The parabolic Harnack principle holds in every John domain with finite

volume.

2.4. Twisted starlike domains.

This subsection is devoted to some multidimensional domains which are not trap

domains but do not necessarily belong to the family Jα for any α < 1. There are two

geometric reasons why a domain might not belong to Jα for any α < 1. The first one is

that it may contain many bottlenecks; we discuss such domains in Proposition 2.15. The

17



second reason might be that the domain contains very thin and long channels—this is the

class of domains we are going to discuss in this subsection.

We will temporarily drop the assumption that the vector of reflection for the RBM is

normal to stress that our probabilistic method of proof does not depend on the assumption

that the vector of reflection is normal. First suppose that D ⊂ Rd, d ≥ 2, has a C2

boundary, n(x) is the inward normal vector at x ∈ ∂D, and v(x), x ∈ ∂D, is the reflection

vector field satisfying for some c1 > 0 and all x ∈ ∂D,

(v(x),n(x)) > c1. (2.11)

If Bt is a d-dimensional Brownian motion then the reflected Brownian motion starting

from x0 ∈ D can be defined as the unique strong solution to the following stochastic

differential equation,

Xt = x0 + Bt +
∫ t

0

v(Xs)dLs, (2.12)

where Lt is the local time of Xt on the boundary of D (see [LS]).

Recall that reflected Brownian motion with the normal reflection on the boundary in

an arbitrary open set D ⊂ Rd, d ≥ 2, is defined in Section 2.1 using the Dirichlet form

approach.

The idea of a “twisted starlike” domain is best explained by an example such as

D = (−1, 1)× (0, 2) \
⋃

k≥1

{(x, y) ∈ R2 : x = 2−k, 0 < y < 1}. (2.13)

It is easy to see that this domain is not starlike but it is also clear that one can deform

this domain in a smooth way to make it a starlike domain (see Remark 2.11 below).

We will call D a twisted starlike domain if there exists a continuous one-to-one mapping

F : D → Rd such that F (D) is bounded and starlike with respect to 0 ∈ Rd, B(0, r0) ⊂
F (D) for some r0 > 0, F is of class C2 in D and its partial derivatives of second order are

bounded above, and 0 < c1 < |∇|F (x)|| < c2 < ∞ for x ∈ D ∩ F−1(B(0, r0/2)).

Theorem 2.10. (i) Assume that D is a bounded twisted starlike domain with C2 bound-

ary, v(x) satisfies (2.11) and (v(x),∇|F (x)|) ≤ 0 for every x ∈ ∂D. Define the reflected
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Brownian motion Xt in D with the oblique direction of reflection v(x) using (2.12). Then

D is not a trap domain in the sense that the supremum in (1.1) is finite.

(ii) Assume that D is a bounded twisted starlike domain (with no assumptions on the

smoothness of the boundary) and let Xt be the reflected Brownian motion in D with the

normal direction of reflection, in the sense of Section 2.1. Then D is not a trap domain.

Note that the twisted starlike domain in (2.13) does not belong to Maz’ja’s Jα class

for any α < 1.

Remark 2.11. Recall the definition of a domain with a continuous boundary given in

Section 2.1. Roughly speaking, a domain with continuous boundary lies locally above the

graph of a continuous function. Now consider a more general class of bounded monotone

planar domains which lie locally above the graph of a function, which can be discontinuous.

In other words, D ⊂ R2 is monotone if for every x ∈ ∂D there exist r > 0, a neighborhood

U of x, a function f : R → R and an orthonormal coordinate system such that in that

system, x = 0, D ∩ U = {(z, y) ∈ U : y > f(z)} and {(z, y) : z2 + y2 < r2, y = f(z)} ⊂ U .

We will sketch an argument showing that every such domain is a twisted starlike domain

and therefore is a non-trap domain.

First, consider the domain in (2.13) and let A = D ∩ ((−1/4, 3/4) × (0, 3/2)). If

f(z) = exp(iz+2) in the complex notation then f(A)∪B(0, e3/4) is a starlike domain with

respect to 0. Since ∂D \ A is a polygonal line, it is easy to see that f can be extended to

a function F satisfying the conditions in the definition of a twisted starlike domain.

Next consider a general bounded monotone domain. By compactness, its boundary

can be covered by a finite number of open sets {Uk} as in the definition of a monotone

domain. If the corresponding coordinate systems in two overlapping Uk’s have parallel

axes, we combine the two sets into one, so that we can assume that for every pair of

overlapping Uk’s, the coordinate systems are at a non-zero angle. This implies that the

boundary of D is Lipschitz in the intersection of any two Uk’s. For every k, we can define

F on Uk \
⋃

j 6=k Uj using the same idea as in the special case of (2.13). It is easy to see that

the separate pieces of F can be patched together using C2 functions because the boundary

of D is Lipschitz outside
⋃

k(Uk \
⋃

j 6=k Uj).
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A similar argument seems to work in higher dimensions, at least for some classes of

domains, but we will not try to provide the details of the proof here.

2.5. Examples.

The geometric characterization of simply connected planar domains can be made even

more explicit when we limit ourselves to “horn” domains. Suppose f : [1,∞) → (0,∞) is

a Lipschitz function and let the corresponding horn domain Df be defined by

Df =
{
(x, y) ∈ R2 : x > 1, |y| < f(x)

}
.

Proposition 2.12. A horn domain Df ⊂ R2 is a trap domain if and only if

∫ ∞

1

(∫ x

1

1
f(z)

dz

)
f(x)dx = ∞.

This explicit test, combined with an equally explicit test for the compactness of the

1-resolvent of the Neumann Laplacian derived by Evans and Harris ([EH], see also [DS2])

yields the following example answering in negative the question in Problem 1.5.

Proposition 2.13. (i) Suppose D = Df ⊂ R2 is a horn domain. If D is not a trap

domain, then the 1-resolvent of the Neumann Laplacian is compact.

(ii) There exists a trap domain D where the 1-resolvent of the Neumann Laplacian is

compact. Hence the Neumann Laplacian has a discrete spectrum in D but the parabolic

Harnack principle does not hold.

As we already saw from Proposition 1.3(iii), the conclusion of Proposition 2.13(i) is

not true for general planar domains with finite volume.

We will say that a domain D is IU if the Dirichlet Laplacian is intrinsically ultracon-

tractive in D (the definition is given is Section 1).

Proposition 2.14. There exist domains Dk, k = 1, 2, 3, 4, having finite volumes with the

following properties.
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(i) D1 is IU and it satisfies the parabolic Harnack principle (hence the 1-resolvent of the

Neumann Laplacian on D1 is compact).

(ii) D2 is IU and the 1-resolvent of the Neumann Laplacian on D2 is not compact.

(iii) D3 is not IU and it satisfies the parabolic Harnack principle (hence the 1-resolvent of

the Neumann Laplacian on D3 is compact).

(iv) D4 is not IU and the 1-resolvent of the Neumann Laplacian on D4 is not compact.

The classical von Koch snowflake may be defined as follows. Start with an equilateral

triangle T1. Consider one of its sides I and the equilateral triangle one of whose sides is

the middle one third of I and whose interior does not intersect T1. There are three such

triangles; let T2 be the closure of the union of these three triangles and T1 (see Fig. 2.2).

We proceed inductively. Suppose I is one of the line segments in ∂Tj and consider the

equilateral triangle one of whose sides is the middle one third of I and whose interior does

not intersect Tj . Let Tj+1 be the closure of the union of all such triangles and Tj . The

snowflake DvK is the interior of the closure of the union of all triangles constructed in all

inductive steps.

Figure 2.2. Second step of snowflake construction, i.e., T2.

We will illustrate our results by a variant of the von Koch snowflake which can be

obtained from the snowflake DvK as follows. Fix a function f : (0,∞) → (0,∞) with

f(a) ≤ a for all a. Consider any two triangles in the above construction whose boundaries

have a common part I with length a > 0. Let I ′ be I with the middle f(a)-portion removed,

i.e., if I has endpoints x and y then I ′ is the union of two closed line segments, the first
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with endpoints x and x+ a−f(a)
2

y−x
a , and the second with endpoints y− a−f(a)

2
y−x

a and y.

Let Df be DvK minus all sets of the form I ′ (see Fig. 2.3). The point of the construction

is that the passage from a smaller triangle to a bigger triangle is blocked in Df by a wall

with a small opening. One may guess that if f(a)/a tends to 0 rapidly as a → 0 then Df

is a trap domain.

Figure 2.3. Modified snowflake Df .

Proposition 2.15. (i) Each of Corollaries 2.1 and 2.2 separately implies that the von

Koch snowflake DvK is not a trap domain. In other words, Df is not a trap domain for

f(a) = a.

(ii) Suppose that f(a) = aβ where β < 2. Then Df ∈ Jβ/2 and so Theorem 2.4(i)

implies that Df is not a trap domain.

(iii) Suppose that f(a) = exp(−a−γ). If γ < 2 then Df is not a trap domain, but it

is a trap domain if γ > 2.

Parts (i) and (ii) of Proposition 2.15 are much weaker than part (iii)—we stated them

only to illustrate the strength of various results. Parts (ii) and (iii) of Proposition 2.15

show that Theorem 2.4(ii) must be interpreted with a great caution. Note that a domain

Df , with f(a) = exp(−a−γ) for some 0 < γ < 2, is not in class Jα for any α > 0. So one
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must not presume that a domain is a trap domain just because it does not belong to class

Jα for any 0 < α < ∞.

Another example is a spiral domain.

Proposition 2.16. Let

Sp = D \ {reiθ : r = θ−p and θ ≥ 1}.

Then Sp is a trap domain if and only if p ≤ 1.

3. Proofs.

In this section, we give proofs for the results stated in the previous two sections.

Proof of Proposition 1.3. (i) Obviously, (1.4) implies (1.3). For s, t ≥ t0 we have

pt+s(x, y) =
∫

pt(x, z)ps(z, y)dz. Now we can apply Lemma 6.1 of [BTW] (see Lemma 1

of [BK] for a more accessible version) to see that (1.3) implies convergence of pt(x, y) to

the stationary density at an exponential rate, as in (1.4).

(ii) If we assume (1.3) then for some c4 > 0 and all x ∈ D, Px(TB ≤ t1) ≥
∫

B
pt1(x, y)dy ≥ c4. By the Markov property of X∗ and the fact that Px(X∗

t ∈ D∗ \D) = 0

for every x ∈ D and t > 0, we conclude that Px(TB ≥ kt1) ≤ (1 − c4)k for every x ∈ D

and k ≥ 1. This implies that

sup
x∈D

E xTB ≤ sup
x∈D

∞∑

k=0

t1Px(TB ≥ kt1) < ∞

and so D is not a trap domain.

(iii) The proof of part (iii) of this proposition will be given after the proof of Propo-

sition 2.15.

We will now present two elementary lemmas showing that our main problem is well

posed.
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Lemma 3.1. If D ⊂ Rd, d ≥ 1, has finite volume and B is a closed ball in D, then

E xTB < ∞ for every x ∈ D.

Proof. Recall the definition of RBM X∗ on D∗, and the RBM Y ∗ on D∗ \B killed upon

hitting B given in Section 2.1. As Y ∗ is transient, by Lemma 1.6.4 and Theorem 1.5.1

of [FOT], there is a function g ∈ L1(D \ B, dx) such that g > 0 and Gg < ∞ a.e. on

D \B. One can modify g as follows. Define A1 = {x ∈ D \B : Gg(x) ≤ 2} and for k ≥ 2,

Ak = {x ∈ D \ B : k < Gg(x) ≤ k + 1}. Note that G(g1Ak
)(x) ≤ supy∈Ak

G(g1Ak
)(y) for

x ∈ D \B. Let f(x) =
∑∞

k=1 2−k(k +1)−1g(x)1Ak
(x). Then f ≤ g, f > 0 and Gf ≤ 1 a.e.

on D \B. Since D has finite volume and G is symmetric, we have
∫

D\B
f(x)G1(x)dx =

∫

D\B
Gf(x)dx ≤ |D| < ∞.

This implies that E xTB = G1(x) < ∞ for a.e. x ∈ D \B. Now for an arbitrary but fixed

x0 ∈ D \ B, let r > 0 so that B(x0, 2r) ⊂ D \ B. By the strong Markov property of Y ∗,

we have

G1(x) = E xτB(x0,r) + E x
[
G1(Y ∗

τB(x0,r)
)
]

for x ∈ B(x0, r).

Clearly E xτB(x0,r) < ∞ for x ∈ B(x0, r) as {X∗
t , 0 ≤ t < τB(x0,r)} is the killed Brownian

motion in B(x0, r). Function u(x) := E x
[
G1(Y ∗

τB(x0,r)
)
]

is finite a.e. on B(x0, r) and

harmonic in B(x0, r) so it is finite everywhere on B(x0, r). This implies that G1(x) < ∞
for every x ∈ B(x0, r) and hence for every x ∈ D \B.

Lemma 3.2. If D ⊂ Rd is a connected open set with finite volume and B1 and B2 are

closed non-degenerate balls in D then supx∈D E
xTB1 < ∞ if and only if supx∈D E

xTB2 <

∞.

Proof. This is standard so we only sketch the proof. Suppose that supx∈D E
xTB1 < ∞.

Then supx∈D Px(TB1 > t) ≤ supx∈D E
xTB1/t, and so infx∈D Px(TB1 ≤ t0) ≥ c1 for some

t0 < ∞ and c1 > 0. Let pt(x, y) and p0
t (x, y) denote the transition density function for RBM

X∗ on D∗ and the killed Brownian motion in D, respectively. Clearly pt(x, y) ≥ p0
t (x, y)

on (0,∞)×D ×D and so

inf
x∈B1,y∈B2

p1(x, y) ≥ inf
x∈B1,y∈B2

p0
1(x, y) > c2 > 0.
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By the Markov property of X∗
t and the fact that Px(X∗

t ∈ D∗ \D) = 0 for every x ∈ D

and t > 0, we have supx∈D Px(TB2 ≤ t0 + 1) ≥ c1c2 and by induction, supx∈D Px(TB2 >

k(t0 + 1)) ≤ (1− c1c2)k. This implies that supx∈D E
xTB2 < ∞.

Note that there is nothing special about assuming Bj are balls. We could, for example,

use compact sets with non-empty interior.

Proof of Theorem 2.2. We will use the Riemann mapping theorem. It will be convenient

first to map the unit disc D onto D, and then switch to a different mapping, from the upper

half-plane H to D. We use the notation dz for two dimensional, or Area, measure.

Let B be a closed ball contained in D and let f be a conformal map of the unit disc

D onto D with f({z : |z| < r0)}) ⊂ B. Let U be the “double” of D \ f−1(B):

U =
(
D \ f−1(B)

) ∪ ∂D ∪
{

1
z

: z ∈ D \ f−1(B)
}

,

and let gU (z, a) be the classical Dirichlet Green’s function for U with gU (z, a) = 0 for

z ∈ ∂U , a ∈ U and gU (z, a) + log |z − a| harmonic for z ∈ U . Then for z, a ∈ D \ f−1(B)

the function

G(z) = gU (z, a) + gU (z, 1/a)

satisfies G(z) = 0 for z ∈ ∂f−1(B), G(z) + log |z− a| is harmonic for z ∈ D \ f−1(B) and
∂G
∂r = 0 on ∂D, since G(z) = G(1/z). By Green’s theorem and (2.6),

G(z) = GD\f−1(B)(z, a) = GD\B(f(z), f(a)). (3.1)

By the maximum principle, for z, a ∈ U ,

G(z) ≤ log
c1

|z − a||1− az|

since the difference of these two functions is harmonic, G = 0 on ∂U and |z − a||1− az| ≤
(1 + 1/r0)2 ≡ c1. Thus for z, a ∈ D \ f−1(B),

GD\f−1(B)(z, a) ≤ log c1 + log
1

|z − a|2 ,
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and by (3.1) D is non-trap if

sup
a∈D

∫

D
log

1
|z − a| |f

′(z)|2dz < ∞, (3.2)

since Area(D) =
∫ |f ′(z)|2dz < ∞. Note also that

∫
D log(1/|z − a|)dz < C < ∞ and thus

(3.2) holds if and only if

sup
1−δ<|a|<1

∫
log

1
|z − a| |f

′(z)|2dz < ∞.

If δ is sufficiently small, then for 1− δ < |a| < 1 and for z ∈ ∂U ,

|z − a||1− az| ≥ c2 > 0

so by the maximum principle again

log
c2

|z − a||1− az| ≤ G(z).

Thus for z, a ∈ D \ f−1(B),

log
c2

2
+ log

1
|z − a| ≤ GD\f−1(B)(z, a)

and by (3.1) D is non-trap if and only if

sup
3/4≤|a|≤1

∫

{|z−a|<1/2}
log

1
|z − a| |f

′(z)|2dz < ∞. (3.3)

We will show that (3.3) holds if and only if

sup
|a|=1

∫

{|z−a|<3/4}
log

1
|z − a| |f

′(z)|2dz < ∞. (3.4)

Consider a ∈ D with 3/4 < |a| < 1 and let Ba = {z : |z − a| < (1− |a|)/2} and a′ = a/|a|.
By Corollary 1.6 on page 10 of [P], for some constant c3 < ∞ not depending on a,

sup
z∈Ba

|f ′(z)| ≤ c3 inf
z∈Ba

|f ′(z)|.

A straightforward calculation shows that
∫

Ba

log
1

|z − a′|dz ≥ c4

∫

Ba

log
1

|z − a|dz,
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so ∫

Ba

log
1

|z − a′| |f
′(z)|2dz ≥ c5

∫

Ba

log
1

|z − a| |f
′(z)|2dz. (3.5)

On Bc
a, we have

log
1

|z − a′| ≥ c6 log
1

|z − a|
so ∫

Bc
a

log
1

|z − a′| |f
′(z)|2dz ≥ c6

∫

Bc
a

log
1

|z − a| |f
′(z)|2dz. (3.6)

Note that {|z − a| < 1/2} ⊂ {|z − a′| < 3/4}. Combining (3.5) and (3.6), we obtain

∫

{|z−a′|<3/4}
log

1
|z − a′| |f

′(z)|2dz ≥ c7

∫

{|z−a|<1/2}
log

1
|z − a| |f

′(z)|2dz,

and this proves that (3.3) and (3.4) are equivalent.

We transfer (3.4) to the upper half plane H by applying the conformal maps to D

given by ψa(z) = a(i− z)/(i + z), with |a| = 1. Thus (3.4) is equivalent to

sup
ϕ

∫

H∩{|z|<1}
log

1
|z| |ϕ

′(z)|2dz < ∞, (3.7)

where the supremum is taken over all conformal maps ϕ of H onto D such that ϕ(i) = z0,

a fixed base point in D. We will split the rest of the argument into several lemmas. Recall

the parameter ε from the definition of hyperbolic blocks.

Lemma 3.3. If {γn}∪σ divides D into hyperbolic blocks tending to ζ = ϕ(0), where ϕ is

a conformal map of H onto D mentioned above, then ϕ−1(σ ∩Ω1) lies in a non-tangential

cone Γε = {z ∈ H : πε < arg z < π(1− ε)}.

Proof. Recall condition (i) in the definition of hyperbolic blocks. It implies, by conformal

invariance, that I+
n = ϕ−1(∂D+

n ∩∂D) ⊂ (0,∞) for all n ≥ 1 or all of these intervals belong

to (−∞, 0). We will assume without loss of generality that I+
n = ϕ−1(∂D+

n ∩∂D) ⊂ (0,∞)

and I−n = ϕ−1(∂D−
n ∩ ∂D) ⊂ (−∞, 0). If z ∈ σ ∩Dn and if Re ϕ−1(z) ≤ 0, then

ε ≤ ω(z, ∂D+
n ∩ ∂D, D) = ω(ϕ−1(z), I+

n ,H)

≤ ω(ϕ−1(z), [0, +∞),H) = 1− 1
π

arg ϕ−1(z),
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since the harmonic measure of an interval evaluated at z is equal to the angle subtended

at z by the interval divided by π. Similarly if z ∈ σ ∩Dn and Re ϕ−1(z) > 0, then

ε ≤ ω(z, ∂D−
n ∩ ∂D,D) = ω(ϕ−1(z), I−n ,H)

≤ ω(ϕ−1(z), (−∞, 0],H) =
1
π

arg ϕ−1(z).

Thus

πε ≤ arg ϕ−1(z) ≤ π(1− ε)

and the lemma follows.

Recall that zn is the intersection point of γn and σ in the definition of hyperbolic

blocks for D.

Lemma 3.4. There is a δ > 0 depending on ε but not on n so that if z ∈ Dn ∪ {zn−1},
n ≥ 1, then

δ ≤
∣∣∣∣

ϕ−1(z)
ϕ−1(zn)

∣∣∣∣ ≤
1
δ
. (3.8)

Proof. Write I+
n = [a+

n+1, a
+
n ] and I−n = [a−n , a−n+1]. As in the proof of Lemma 3.3, by

condition (ii) in the definition of hyperbolic blocks,

ε ≤ ω(ϕ−1(zn), I+
n−1,H) ≤ ω(ϕ−1(zn), [a+

n ,∞),H)

= 1− 1
π

arg(ϕ−1(zn)− a+
n ).

This implies that

a+
n ≤ C|ϕ−1(zn)|,

which is perhaps easiest to see by scaling H by the factor 1/a+
n . Similarly by condition

(ii),
ε ≤ ω(ϕ−1(zn), I+

n ,H) ≤ ω(ϕ−1(zn), [0, a+
n ],H)

=
1
π

arg
(

ϕ−1(zn)− a+
n

ϕ−1(zn)

)
.

By Lemma 3.3, ϕ−1(zn) lies in the non-tangential cone Γε, so this implies a+
n ≥ c|ϕ−1(zn)|.

We conclude that a+
n is comparable to |ϕ−1(zn)| for all n and similarly |a−n | is comparable

to |ϕ−1(zn)|.
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Now suppose that z ∈ γn+1 ⊂ ∂Dn. Then by conditions (ii) and (iii) either

ε ≤ ω(ϕ−1(z), I+
n ,H) ≤ 1− 1

π
arg(ϕ−1(z)− a+

n+1), (3.9)

or

ε ≤ ω(ϕ−1(z), I−n ,H) ≤ 1
π

arg(ϕ−1(z)− a−n+1). (3.10)

Conditions (3.9) and (3.10) define two half-lines in H. Let T be the open triangle with

sides on these half-lines and the real axis. We have shown that ϕ−1(z) /∈ T for z ∈ γn+1

and hence for all z ∈ Dn ∪{zn−1}, since ϕ−1(γn+1) is a crosscut of H. Two of the vertices

of T are a−n+1 and a+
n+1 and its height is comparable to |a+

n+1 − a−n+1|. Since a+
n+1 and

|a−n+1| are comparable to |ϕ−1(zn+1)|, this implies that |ϕ−1(z)| ≥ δ|ϕ−1(zn+1)| for some

δ > 0 and all z ∈ Dn ∪ {zn−1}. Similarly, for z ∈ γn ⊂ ∂Dn, by conditions (ii) and (iii),

ε ≤ ω(ϕ−1(z), I+
n ,H) ≤ 1

π
arg

(
ϕ−1(z)− a+

n

ϕ−1(z)

)
,

or

ε ≤ ω(ϕ−1(z), I−n ,H) ≤ 1
π

arg
(

ϕ−1(z)
ϕ−1(z)− a−n

)
.

Since a+
n and |a−n | are comparable to |ϕ−1(zn)|,

|ϕ−1(z)| ≤ 1
δ
|ϕ−1(zn)|,

which must then hold for all z ∈ Dn, since ϕ−1(γn) is a crosscut of H. Likewise for

z = zn−1

|ϕ−1(zn−1)| ≤ 1
δ
|ϕ−1(zn)|,

and so for all z ∈ Dn ∪ {zn−1}

δ2|ϕ−1(zn)| ≤ δ|ϕ−1(zn+1)| ≤ |ϕ−1(z)| ≤ 1
δ
|ϕ−1(zn)|.

Lemma 3.5. There are constants 0 < c1 < c2 < ∞ depending on ε but not on n such

that

c1n < log
1

|ϕ−1(zn)| < c2n. (3.11)
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Proof. By (3.8) ∣∣∣∣
ϕ−1(zn−1)
ϕ−1(zn)

∣∣∣∣ ≤
1
δ
,

and hence

log
∣∣∣∣
ϕ−1(z0)
ϕ−1(zn)

∣∣∣∣ ≤ n log
1
δ
.

For the reverse inequality, recall that ϕ−1(zn) lies in a cone at 0, so that Im ϕ−1(zn) is

comparable to |ϕ−1(zn)| and also is comparable to a+
n . Since

ε ≤ ω(ϕ−1(zn), [a+
n+1, a

+
n ],H) =

1
π

arg

(
ϕ−1(z)− a+

n

ϕ−1(z)− a+
n+1

)
,

there is a λ < 1, depending only on ε such that

a+
n+1 ≤ λa+

n .

Thus

|ϕ−1(zn)| ≤ C1 Im ϕ−1(zn) ≤ C2a
+
n ≤ C3λ

n,

and so

log
∣∣∣∣

C3

ϕ−1(zn)

∣∣∣∣ ≥ n log
1
λ

.

Proof of Theorem 2.2 (ctnd). By Lemmas 3.4 and 3.5, the symmetric difference A of

the sets H ∩ {|z| < 1} and ϕ−1(Ω1) lies in H ∩ {c1 < |z| < c2}, where 0 < c1 < c2 < ∞
depend only on ε but not on ϕ (i.e., ζ). Hence,

∣∣∣∣
∫

A

log
1
|z| |ϕ

′(z)|2dz

∣∣∣∣ ≤ c3

∫

A

|ϕ′(z)|2dz ≤ c3Area(D) < ∞,

and, therefore, (3.7) is equivalent to

sup
ϕ

∫

ϕ−1(Ω1)

log
1
|z| |ϕ

′(z)|2dz < ∞. (3.12)

We apply Lemmas 3.4 and 3.5 again to conclude that the ratio of
∫

ϕ−1(Ω1)
log 1

|z| |ϕ′(z)|2dz

and
∑∞

n=1 n
∫

ϕ−1(Dn)
|ϕ′(z)|2dz is bounded below and above by constants depending only

on ε. This implies that (3.12) is equivalent to

sup
ϕ

∞∑
n=1

n

∫

ϕ−1(Dn)

|ϕ′(z)|2dz = sup
ϕ

∞∑
n=1

n Area(Dn) = sup
ϕ

∞∑
n=1

Area(Ωn) < ∞.
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Remark 3.6. It is quite easy to extend Theorem 2.2 to finitely connected planar domains

D. We will limit ourselves to a very sketchy outline of the argument. Using the remark

immediately following Lemma 3.2, we can choose a compact subset K of D such that each

component of D \ K is doubly connected, and apply Theorem 2.2 to each component.

Green’s function can also be constructed on D \ B by first using the Riemann mapping

theorem, once for each boundary component to map to a region Ω bounded by analytic

curves. Then the Riemann surface “double”, call it R, is formed by attaching two copies of

Ω \B along ∂Ω. If a ∈ Ω \B and if a∗ is the corresponding point on the second copy, then

Green’s function equals gR(z, a) + gR(z, a∗) as before, where gR is the classical Dirichlet

Green’s function for the Riemann surface R. One could leave the statement of the result

and its proof as is, using the analytic language but it is possible to give a probabilistic

interpretation of the argument. First, one can construct a Brownian motion on R using the

fact that R is an analytic manifold, i.e., for every point z in R, including the part where

the two leaves of R meet, one can find an analytic mapping of a neighborhood U of z onto a

disc. The inverse mapping of the usual Brownian motion on the disc, appropriately time-

changed, is a Brownian motion on U and its projection on Ω is the reflected Brownian

motion on a subset of Ω. The standard piecing-together method then shows that the

reflected Brownian motion on Ω is the projection of the Brownian motion on R.

Proof of Theorem 2.4. (i) As we mentioned previously, this part follows from Theorem

2.6(i), whose proof will be given immediately after the proof of part (ii) of this theorem.

(ii) One counterexample is the region

D = {(x, y) : x ≥ 1 and |y| ≤ e−x}.

It is easy to verify that D is a trap domain using Proposition 2.12. The proof that D ∈ J1

is exactly like the proof in the example below. We include another counterexample, though

for two reasons: it is a bounded region, and the proof has perhaps greater intuitive appeal

for probabilists.

Our counterexample is a snake-like domain (see Fig 3.2).
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Figure 3.2. Snake-like J1 domain.

Let

Ak = {(x, y) ∈ R2 : 2−2k−1 < x < 2−2k, 0 ≤ y ≤ 1}, k ≥ 0,

Uk = {z = (x, y) ∈ R2 : |z − (3 · 2−2k−3, 1)| > 2−2k−3,

|z − (9 · 2−2k−4, 1)| < 7 · 2−2k−4, y ≥ 1}, k ≥ 0, k even,

Uk = {z = (x, y) ∈ R2 : |z − (3 · 2−2k−3, 0)| > 2−2k−3,

|z − (9 · 2−2k−4, 0)| < 7 · 2−2k−4, y ≤ 0}, k ≥ 0, k odd,

D =
⋃

k≥0

Ak ∪
⋃

k≥0

Uk,

B = B((3/4, 1/2), 1/8),

zk = (3 · 2−2k−2, 1/2), k ≥ 1,

Ck = {(x, y) ∈ R2 : 2−2k−1 ≤ x ≤ 2−2k, y = 1/2}, k ≥ 1,

Fk = {(x, y) ∈ R2 : 2−2k−1 ≤ x ≤ 2−2k, y = 1/4 or y = 3/4}, k ≥ 1,

Sk = inf{t ≥ 0 : Xt ∈ Ck}, k ≥ 1,

Tk = inf{t ≥ Sk : Xt ∈ Fk}, k ≥ 1.

Since the part of D between the two line segments comprising Fk is a rectangle whose

the long side has length 1/2, it is easy to see that the distribution of Tk − Sk is the same

as the distribution Q of the hitting time of {−1/4, 1/4} by the one-dimensional Brownian
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motion starting from 0. By the strong Markov property of RBM X on D, {Tk − Sk}k≥1

are i.i.d. with distribution Q. If the process Xt starts from zk then it must go through the

channels containing Cj and Fj for all j < k, before hitting B. Then TB ≥ ∑k−1
j=1 Tj − Sj

and this easily implies that supk E
xkTB = ∞. One can also reach this conclusion using

Theorem 2.2.

It remains to show that D ∈ J1. Let the two continuous curves comprising ∂D\{(x, y) :

1/2 ≤ x ≤ 1, y = 0} be called γ1 and γ2 and let σ be the set of points in D equidistant from

γ1 and γ2. For x ∈ σ, let ρ(x) be the distance from x to (3/4, 0) along σ. For x ∈ D \ σ,

find the point y on σ which is closest to x and set ρ(x) = ρ(y).

Consider any admissible set F ⊂ D with |F | < 1/8. Since α = 1, it is enough to

assume F is connected. Suppose ∂F does not touch one of the curves γ1 and γ2. Let

a = infx∈F ρ(x) and b = supx∈F ρ(x). Then the length of ∂F ∩ D is bounded below by

c1(b − a) (this may be infinite) and Area(F ) < c2(b − a). Next suppose ∂F touches both

γ1 and γ2. Let K be the connected part of ∂F ∩D for which we have infx∈K ρ(x) = a. If

x = (x1, x2) ∈ K with ρ(x) ≤ a + 1 then the length of K is bounded below by c3x1 and

Area(F ) ≤ c4x1. We conclude that Area(F ) is bounded by a constant times the length of

∂F ∩D. It follows that D ∈ J1.

Proof of Theorem 2.6. (i) Suppose that D is a domain in J2,α for some α < 1/2 and

has finite volume. By (2.10) there is a constant c > 0 such that

‖u‖1/α ≤ c (‖∇u‖2 + ‖u‖2) for u ∈ W 1,2(D). (3.13)

By Varopoulos’ theorem (see Theorem 2.4.2 in [D]), there is a constant c1 > 0 so that

e−tpt(x, y) ≤ c1t
−µt for every t > 0 and x, y ∈ D∗,

where µ = (1 − 2α)−1 and pt(x, y) is the the transition density function of the RBM X∗

on D∗ (see Section 2.1). In particular, pt(x, y) is a bounded function on D∗×D∗ for every

t > 0. Since D has finite volume and m(D∗ \D) = 0,
∫

D

∫

D

pt(x, y)2dxdy =
∫

D

p2t(x, x)dx < ∞,
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that is, the semigroup Pt of X∗ is a Hilbert-Schmidt operator. So Pt is a self-adjoint

compact operator in L2(D, dx) (see Problem 5.1.4 of [Fr]) and hence it and therefore the

Neumann Laplacian in D has a discrete spectrum (see Problems 6.7.4 and 6.7.5 in [Fr]).

Now it follows from the argument on p. 6 of [BB] or Theorem 2.4 in [BH] that there are

constants c2, c3 > 0 such that

sup
x,y∈D

∣∣∣∣pt(x, y)− 1
Vol(D)

∣∣∣∣ ≤ c2 e−c3t for t ≥ 1.

Therefore, by Proposition 1.3, the parabolic Harnack principle holds on D.

(ii) As we observed previously, this part follows from Theorem 2.4(ii).

Proof of Theorem 2.7. It is well known (see Theorem 5.4 in [A]) that the Sobolev space

W 1,p(Rd) can be continuously embedded into space Lq(Rd) for any p ≤ q ≤ dp/(d − p)

when p < d and for any p ≤ q < ∞ when p = d; that is there is a constant c > 0 such that

‖u‖q ≤ c (‖∇u‖p + ‖u‖p) := c ‖u‖1,p for u ∈ W 1,p(Rd). (3.14)

(i) If D is a W 1,1-extension domain with finite volume, there is a continuous linear

map T : W 1,1(D) → W 1,1(Rd) such that Tu = u a.e. on D for u ∈ W 1,1(D). It follows

then from (3.14) with p = 1 and q = d/(d− 1) that for u ∈ W 1,1(D),

‖u‖q ≤ ‖Tu‖q ≤ c1 ‖Tu‖1,1 ≤ c2 ‖u‖1,1.

Now by (2.9), we conclude D is a domain in J d−1
d

and so, by Theorem 2.4, the parabolic

Harnack principle holds on D.

(ii) If D is a W 1,2-extension domain with finite volume, there is a continuous linear

map T : W 1,2(D) → W 1,2(Rd) such that Tu = u a.e. on D for u ∈ W 1,2(D). When d ≥ 3,

by (3.14) with p = 2 and q = 2d/(d− 2), we have

‖u‖q ≤ ‖Tu‖q ≤ c3 ‖Tu‖1,2 ≤ c4 ‖u‖1,2 for u ∈ W 1,2(D).

By (2.10), D is a J2,α-domain with α = d−2
2d and so it is a non-trap domain. When d = 2,

the same argument shows that

‖u‖q ≤ c5 ‖u‖1,2 for u ∈ W 1,2(D)
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holds for every q < ∞. By (2.10) D is in class J2,α for any α > 0 and so, by Theorem 2.6,

the parabolic Harnack principle holds on D.

Proof of Theorem 2.10. (i) Let Xt be the reflected Brownian motion in D and set

B = F−1(B(0, r0)) for r0 > 0 such that B(0, 2r0) ⊂ F (D). We will estimate E xTB . The

estimate is trivial for x ∈ B so assume that x ∈ D \ B and let Ut = |F (Xt∧TB
)|. Our

assumptions on the mapping F , the domain D and the vector field v easily imply, via the

Itô formula, that Ut satisfies

Ut∧TB
− U0 =

∫ t∧TB

0

a(Xs)dWs +
∫ t∧TB

0

b(Xs)ds + Vt∧TB
,

where Wt is a Brownian motion, 0 < c3 < |a(x)| < c4 < ∞ and |b(x)| < c5 < ∞ where

c3, c4 and c5 depend only on the bounds for the derivatives of F in D \ B, and Vt is a

non-increasing process—a singular drift corresponding to the reflection on the boundary.

Let c(t) =
∫ t

0
a(Xs)−2ds and let Zt = Uc(t) be the corresponding time change of Ut. Note

that for some constants c6, c7 ∈ (0,∞) and all t ≤ TB , c6t ≤ c(t) ≤ c7t. Let T0 = c−1(TB).

We obtain

Zt∧T0 − Z0 = W̃t∧T0 +
∫ t∧T0

0

b̃(Xs)ds + Ṽt∧T0 ,

where W̃t is a Brownian motion, |̃b(x)| is bounded by a constant c8 < ∞ and Ṽt is non-

increasing. Let r1 be the diameter of F (D). For some p1 > 0,

P(W̃t+1 − W̃t < −c8 − r1 − 1) ≥ p1,

so for any t ≥ 0,

P(Z(t+1)∧T0 = r0 | Zt) ≥ p1.

Let T ′ = inf{t : Zt = r0}. By the Markov property applied at times k, for all x ∈ D \ B,

P(T ′ > k | X0 = x) ≤ c9(1− p1)k, and, therefore,

P(TB > c7k | X0 = x) ≤ c9(1− p1)k, (3.15)

where c9 < ∞ depends only on the bounds c3, c4 and c5. Hence we have supx E
xTB ≤

c10 < ∞.

35



(ii) Let D be a twisted starlike domain and let F be the corresponding function. Find

r0 > 0 such that B(0, 2r0) ⊂ F (D) and let B = F−1(B(0, r0)) and B1 = F−1(B(0, 3r0/2)).

It is easy to see that there exists a monotone sequence of starlike domains D̃k ↑ F (D) with

C2 boundaries such that D̃k ⊃ B(0, 2r0) for every k ≥ 1. Let Dk = F−1(D̃k) and note

that if we take the vector field of reflection vk(x) on ∂Dk to be the normal vector field

n(x) then the assumptions of part (i) of the theorem are satisfied for Dk and vk. Fix any

x ∈ D \B1. When k is large enough, x ∈ Dk. Let Xk
t be the reflected Brownian motion in

Dk defined as in (2.12), with Xk
0 = x. Since Dk ↑ D, by Theorem 2 in [BC], the processes

Xk
t converge weakly to Xt with X0 = x, the reflected Brownian motion in D starting from

x. Recall that the estimates obtained in the first part of the proof depend only on the

bounds for the derivatives of F and we can use the same mapping F for each Dk. Hence,

by (3.15),

P(TXk

B > c7k | Xk
0 = xk) ≤ c9(1− p1)k,

where c7 and c9 do not depend on k or x. Here and in the sequel, whenever there is a

danger of confusion, we use TZ
B to denote the first hitting time of B by a process Z; that

is, TZ
B := inf{t ≥ 0 : Zt ∈ B}. The last estimate implies that

sup
k≥1

sup
x∈Dk

E x
[
TXk

B

]
< ∞

and so supx∈D E
x

[
TX

B1

]
< ∞.

Proof of Proposition 2.12. Let σ = {(x, y) ∈ R2 : x ≥ 2, y = 0} and z0 = (x0, 0) =

(2, 0). We will define zn = (xn, 0) and cuts γn inductively. If α < ∞ denotes the Lipschitz

constant of the function f defining the horn domain Df , i.e., |f(x)− f(y)| ≤ α|x− y| then

we let xn = xn−1 + f(xn−1)/(2α) and γn = {(x, y) ∈ R2 : x = xn, |y| < f(xn)}. It is easy

to check (we leave it to the reader) that {γn}n≥1 ∪ σ divide Df into hyperbolic blocks.

Note that 1
2f(xn−1) ≤ f(x) ≤ 3

2f(xn−1) for x ∈ [xn−1, xn] and so there are constants

0 < c1 < c2 < ∞ depending only on α such that for all n ≥ 1,

c1 <

∫ xn

xn−1

1
f(x)

dx < c2.
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Hence there are constants 0 < c3 < c4 < ∞ depending only on α and f(1), such that for

large n and y ∈ [xn, xn+1],

c3n <

∫ y

1

1
f(x)

dx < c4n.

Since the area of Dn is
∫ xn+1

xn
2f(x)dx,

c3/4 <

∫ xm+1

1

∫ y

1
1

f(x)dxf(y)dy
∑m

n=1 nArea(Dn)
< c4,

for large m. This proves that for the prime end representing the point at infinity, the

condition
∑

n≥1 nArea(Dn) < ∞ is equivalent to
∫∞
1

∫ y

1
1

f(x)dxf(y)dy < ∞. We omit a

tedious but routine argument showing that if
∑

n≥1 nArea(Dn) < ∞ is satisfied for the

prime end at infinity then the supremum of
∑

n≥1 nArea(Dn) over all prime ends is finite.

Proof of Proposition 2.13. (i) Suppose that D = Df ⊂ Rn is not a trap domain. Then

by Proposition 2.12,
∫∞
1

(∫ x

1
1

f(z) dz
)

f(x) dx < ∞. Hence

0 = lim
T→∞

∫ ∞

T

(∫ x

1

1
f(z)

dz

)
f(x) dx ≥ lim sup

T→∞

∫ ∞

T

(∫ T

1

1
f(z)

dz

)
f(x) dx

= lim sup
T→∞

(∫ ∞

T

f(x) dx

) (∫ T

1

1
f(z)

dz

)
.

Thus by a theorem of Evans and Harris (see [EH] or [DS2]), the 1-resolvent of the Neumann

Laplacian in D is compact.

(ii) Let Df be the horn domain with f(x) = e−x2
. We have

∫ x

1

1
f(y)

dy =
∫ x

1

ey2
dy ≥ 1

x

∫ x

1

yey2
dy =

1
2x

(ex2 − e),

so ∫ ∞

1

∫ x

1

1
f(y)

dyf(x)dx ≥
∫ ∞

1

1
2x

(ex2 − e)e−x2
dx = ∞.

This shows that Df is a trap domain. We also have
∫ x

1

1
f(y)

dy =
∫ x

1

ey2
dy ≤

∫ x

1

yey2
dy =

1
2

(
ex2 − e

)
,
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and ∫ ∞

x

f(y)dy =
∫ ∞

x

e−y2
dy ≤ 1

x

∫ ∞

x

ye−y2
dy =

1
2x

e−x2
,

so

lim
x→∞

(∫ x

1

1
f(y)

dy

)(∫ ∞

x

f(y)dy

)
= 0.

In view of results of Evans and Harris ([EH], [DS2]), this implies that 1-resolvent of the

Neumann Laplacian in Df is compact.

We would find it interesting to know whether the conclusion of Proposition 2.12(i) is

true for more general domains. Calculations similar to those in the proof for Proposition

2.13(ii) show that if one takes f(x) = e−xα

then the resulting domain is a trap domain for

α ≤ 2 and the 1-resolvent of the Neumann Laplacian is compact for α > 1.

Proof of Proposition 2.14. (i) It is easy to check that the unit disc is IU and it satisfies

the parabolic Harnack principle.

(ii) and (iv) Let Df ∈ R2 be a horn domain with f(x) = xα where α < 0. None of

these domains has a compact 1-resolvent of the Neumann Laplacian, according to [EH]

and [DS2]. The results of Bañuelos and Davis [BD] show that if α < −1 then Df is IU

but it is not IU if −1 ≤ α < 0.

The above may suggest that the result depends on the finiteness of the volume of the

domain. To show that this is not the case, we consider a multidimensional horn domain

Df = {(x1, x2, . . . , xd) ∈ Rd : x1 > 1,
√

x2
2 + . . . + x2

d < f(x1)}. (3.16)

By the results of [EH] (see also [DS2]), Df ∈ Rd, d ≥ 2, does not have a compact 1-

resolvent of the Neumann Laplacian for any f(x) = xα with α < 0. If α < −1 then Df

is IU by Theorem 1.1(i)(A) of [BsB]. If 0 < α < −1 then Df is not IU, as indicated in

Section 4 of [BsB].

(iii) We will first recall a few well-known facts from the homogenization theory for

the killed diffusions. Let K ⊂ B(0, 1/2) ⊂ R2 be the 1-dimensional classical Cantor set

in the unit interval [−1/2, 1/2] sitting on the x-axis in the plane. Note that K, whose
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Hausdorff dimension is log 2
log 3 , has positive logarithmic capacity and so it will be hit by

planar Brownian motion. Let K1 =
⋃

x∈Z2(K + x), let Bt be the Brownian motion in R2,

and for A ⊂ R2, let TB
A = inf{t > 0 : Bt ∈ A}. It is standard to show (see [BCJ]) that for

any ε > 0 there exists r < ∞ such that for x ∈ B(0, 2) we have Px(TB
K1

> TB
∂B(0,r)) < ε.

Let Ka = aK1 for a > 0. By scaling, Px(TB
Ka

> TB
∂B(0,ar)) < ε.

Let xk = (2−k, 1/2), Ak = (B(0, 2−k−2) \ B(0, 2−k−3)) + xk, and D = (0, 1)2 \
⋃

k≥1(Ak ∩Kbk
), where bk’s will be chosen later in the proof.

Let U = (0, 1)2 and F =
⋃

k≥1 Ak ∩Kbk
. Since K has zero 1-dimensional Hausdorff

measure, so does F . Hence by Theorem 3.3 and Remark 2 in [C2], F is a deletable set for

Sobolev space W 1,2; that is, W 1,2(U \ F ) = W 1,2(U). It follows that the 1-resolvent for

the Neumann Laplacian on D = U \ F is the same as that in the square U and so it is

compact.

Next we will show that D is not IU. Let Qk = B(xk, 2−k−3) and let pD
t (x, y) and

pQk
t (x, y) be the heat kernels in D and Qk, respectively, with the Dirichlet boundary

conditions. A standard argument based on scaling and eigenfunction expansions shows

that for some 0 < c1, β < ∞ and all k ≥ 1,
∫

Qk

pD
1 (xk, y)dy ≥

∫

Qk

pQk

1 (xk, y)dy ≥ c1 exp(−β2−2k). (3.17)

Fix some α > β and let M = B((3/4, 1/2), 1/16). Let Ck = ∂B(xk, 3 · 2−k−4) and, using

the result from the first paragraph of the proof for (iii), choose bk > 0 so small that for

some c2 < ∞, all k ≥ 1 and every x ∈ Ck,

Px(TB
∂Ak

> TB
∂D) < c2 exp(−α22k). (3.18)

The probability that the Brownian motion starting from xk will hit M before exiting D

is bounded from above by the probability that it will cross Ak without hitting Kbk
. By

the strong Markov property applied at the hitting time of Ck and (3.18), this probability

is bounded by c2 exp(−α22k). It follows that the probability that the Brownian motion

killed on the boundary of D will be in M at time t = 1 is bounded by the same quantity.

In other words, ∫

M

pD
1 (xk, y)dy ≤ c2 exp(−α22k). (3.19)
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This and (3.17) imply that

lim
k→∞

∫
M

pD
1 (xk, y)dy∫

Qk
pD
1 (xk, y)dy

= 0. (3.20)

Let x0 be the center of M . An argument analogous to that proving (3.19) shows that
∫

Qk

pD
1 (x0, y)dy ≤ c2 exp(−α22k),

and, therefore,

lim
k→∞

∫
M

pD
1 (x0, y)dy∫

Qk
pD
1 (x0, y)dy

= ∞. (3.21)

We claim that this and (3.20) show that we cannot have

pD
1 (x, y)

pD
1 (x, z)

≥ c4
pD
1 (v, y)

pD
1 (v, z)

, (3.22)

for some c4 and all x, y, z, v ∈ D. Suppose (3.22) is true, rewrite it in the product form,

take x = xk and v = x0, then integrate y over M first and integrate z over Qk next, to

obtain ∫
M

pD
1 (x, y)dy∫

Qk
pD
1 (x, z)dz

≥ c4

∫
M

pD
1 (v, y)dy∫

Qk
pD
1 (v, z)dz

,

which contradicts the conjunction of (3.20) and (3.21).

The inequality (3.22) is a consequence of intrinsic ultracontractivity (see [D1]) so D

is not IU. We note that according to [D1], the intrinsic inequality holds if and only if the

condition in (3.22) is satisfied for all t > 0 and not only for t = 1 (c4 may depend on t).

Remark 3.7. (i) The proof of Proposition 2.14(iii) is based on a technical trick. We use

sets Ka ⊂ R2 which are negligible from the point of view of the reflected Brownian motion

because they have zero 1-dimensional Hausdorff measure but are not negligible from the

point of view of the killed Brownian motion because they have positive logarithmic capacity.

We believe that using such special sets is not essential. Instead, one could use a countable

number of densely packed slits in Ak, pointing towards xk. This change would not affect

in an essential way the proof of the lack of IU property. The ideas and methods developed

in [BsB1] in relation to “fiber Brownian motion” strongly suggest that the 1-resolvent for

the Neumann Laplacian in this modified domain would be compact.
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(ii) We have pointed out in part (ii) of the last proof that, according to [BD], any

horn domain Df in R2 with f(x) = xα and α < −1 is IU, while, by Proposition 2.11, it is

a trap domain. On the other hand, the domain D in part (iii) of the last proof is clearly

a non-trap domain, since W 1,2(D) = W 1,2
(
(0, 1)2

)
and so D is a W 1,2-extension domain.

We have shown that this domain is not IU. We conclude that there is no logical relationship

between the IU property and trap domains, similarly to the lack of relationship between

the IU property and compactness of the 1-resolvent of the Neumann Laplacian.

Proof of Proposition 2.15. (i) It is well known and not hard to verify that the snowflake

domain is a John domain and an (ε, δ)-domain. One can use either Corollary 2.8 or 2.8 to

conclude that the snowflake is not a trap domain.

(ii) We have mentioned in Section 2 that proving that a domain belongs to a class Jα is

cumbersome when domain is not smooth. In view of part (iii), part (ii) of this proposition

is meant only as an illustration of Theorem 2.4 so we will leave our claim at the heuristic

level. Under the assumptions of part (ii), the opening between two adjacent triangles in

the construction of the modified snowflake Df is of size aβ , where a is the side length of the

smaller triangle and β < 2. The area behind this opening is of order a2 so if we take the

admissible set F to be the set cut off by the line segment closing the opening, we obtain

|F |β/2 ≤ c1 aβ = c1 S(∂iF ). We see that Df ⊂ Jβ/2 and Theorem 2.4(i) implies that Df

is not a trap domain.

(iii) Consider a prime end ζ in Df which is accessible only by going through an

infinite sequence of triangles comprising the domain. Consider two adjacent triangles T1

and T2 in this sequence, with the side length of the smaller triangle equal to a. Let

the size of the opening between the triangles be exp(−a−γ) and let y be its center. Let

ρ1
m = {z ∈ T1 : |y − z| = 2−m} and ρ2

m = {z ∈ T2 : |y − z| = 2−m}, and limit the range of

m by exp(−a−γ) ≤ 2−m ≤ a/8. Let σ be the polygonal line with vertices at the center of

Df and consecutive centers of openings between the triangles in the sequence leading to ζ.

It is easy to see that the union of σ and all curves ρ1
m and ρ2

m corresponding to all pairs of

adjacent triangles in the sequence, divides the domain into hyperbolic blocks. Relabel the

family of all ρ1
m’s and ρ2

m’s as γn’s and recall the definition of domains Dn from Section
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2.1. We have to estimate
∑

n nArea(Dn).

Consider Dn whose boundary contains ρ1
m or ρ2

m, corresponding to a triangle with side

length a. The area of this set Dn is at most c1a
2 and the number of such domains Dn cor-

responding to a single triangle is bounded by c2a
−γ . Hence, the portion of

∑
n nArea(Dn)

corresponding to the triangle with side length a is bounded by c1a
2c2a

−γ = c3a
2−γ . The

sequence of triangle diameters ak along σ is geometric so
∑

n nArea(Dn) ≤ ∑
k c3a

2−γ
k is

finite if γ < 2. A similar argument shows that
∑

n nArea(Dn) = ∞ for γ > 2. We omit a

tedious but routine argument extending the estimates to prime ends which correspond to

boundary points accessible via a finite sequence of triangles.

Our next proof involves the notion of the quasi-hyperbolic distance. This concept

was used implicitly in Theorem 2.2 and its proof but this is the first time we will use it

in an explicit way, because we want to quote a result of Smith and Stegenga ([SS]). The

quasi-hyperbolic distance between points x, y ∈ D is defined as

h(x, y) = inf
Γ

∫

Γ

ds

dist(Γ(s), ∂D)
,

where the infimum is taken over all rectifiable arcs Γ(s) ⊂ D, joining x and y. The quasi-

hyperbolic distance is comparable to the standard hyperbolic distance. See [P] for this fact

and other information about the quasi-hyperbolic distance in the two-dimensional setting.

Proof of Proposition 1.3 (iii). We will use one of the examples from [SS] so, for reader’s

convenience, we will describe the domain using the same notation as in [SS]. Let Rn denote

the disc B(xn, cn) with center xn ∈ R2 and radius cn > 0, for n ≥ 0. We take x0 = 0,

c0 = 1, and assume that 1 < |xn| < 2 for n ≥ 1, and that the discs Rn are disjoint.

For n ≥ 1 let x′n = xn/|xn| and bn = |xn − x′n| − cn. Suppose that an ∈ (0, cn) and

for n ≥ 1 let Cn =
⋃

0≤|x−x′n|≤bn
B(x, an). Assume that Cn ∪ Rn are disjoint and let

D =
⋃∞

n=0(Rn ∪ Cn), where C0 = ∅.
We will assume that bn/cn → 0 and an/cn → 0 as n →∞ and that D has finite volume.

Hence, the following condition needed to apply a result from [SS] holds: anbn/c2
n → 0.

Fix some k ≥ 1 and let ζk be the prime end corresponding to the point in ∂Rk∩∂D that

lies on the line passing through x0 and xk. Let Dn be hyperbolic blocks corresponding
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to ζk as in Theorem 2.2. The largest of sets Dn inside Rk, say Dn0 , will have area

comparable to the area of Rk, and it is easy to see that Dn’s can be chosen so that

Area(Dn+1)/Area(Dn) < c < 1 for n ≥ n0 and Area(Dn−1)/Area(Dn) < c < 1 for

those n ≤ n0 with Dn ⊂ Rk. This implies that
∑∞

n=1 nArea(Dn) is comparable to 1 +

n0Area(Dn0) and hence to 1 + n0Area(Rk), since the sum of nArea(Dn) over those Dn

that are not in Rk is comparable to 1. Recall that zn is the intersection point of γn and

σ in the definition of hyperbolic blocks for D. It is clear from our proof of Theorem 2.2

that n0 is comparable to the quasi-hyperbolic distance h(x0, zn0) between x0 and zn0 ,

and it is easy to see that this distance is comparable to h(x0, xk), so
∑

n nArea(Dn) is

comparable to 1 + h(x0, xk)Area(Rk). According to Theorem 2.2, D is not a trap domain

if supk h(x0, xk)Area(Rk) < ∞ (other prime ends can be analyzed in a similar way).

Theorem 15(ii) of [SS] says that the embedding W 1,2(D) → L2(D, dx) is compact if

and only if limk→∞ h(x0, xk)Area(Rk) = 0. Hence we conclude by Lemma 2.1 that the

1-resolvent R1 of the Neumann Laplacian in D is compact if and only if

lim
k→∞

h(x0, xk)Area(Rk) = 0.

It follows that by a suitable choice of an, bn and cn, we can construct a non-trap

domain where the 1-resolvent of the Neumann Laplacian is not compact.

Remark 3.8. The quasi-hyperbolic distance can also be used to reinterpret Proposition

2.12 since for Lipschitz functions f there are constants c1 and c2 so that for x ∈ R ⊂ C
with x > 2,

c1 ≤ f(x)
dist(x, ∂Df )

≤ c2.

This implies
∫ y

2
1/f(x)dx is comparable to the hyperbolic distance from 2 to y > 2 in Df .

Note that the half-line (1,∞) is a hyperbolic geodesic in Df by symmetry. Thus a horn

domain Df is non-trap if and only if

∫ ∞

2

h(x)f(x)dx =
∫ ∞

2

Area(Df ∩ {z : Re z > x})dh(x) < ∞,

where h(x) is the hyperbolic distance from 2 to x.
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Proof of Proposition 2.16. Hyperbolic blocks for the origin in the spiral domain are

formed by letting σ be a curve running down the “middle” of the channel, and using

cross cuts that divide the channel into approximate squares. Consider the portion of the

channel bounded by the curve r = θ−p with 2π(n−1) ≤ θ ≤ 2π(n+1). Then σ makes one

“loop” around the origin within this portion of the channel. The width of this channel is

comparable to n−(p+1) and the length of this portion of σ is comparable to n−p, so that

there are n approximate squares in this loop. If Cj is one of the cross cuts in this channel,

then the component Ωj of Sp \Cj which does not contain z0 has area comparable to n−2p.

Thus the total contribution to (2.7) from this portion of the channel is n/n2p, so that (2.7)

is comparable to
∑ 1

n2p−1
.

Thus Sp is not a trap domain if p ≤ 1, and (2.7) is finite for p > 1. We leave the verification

that (2.7) is uniformly bounded for all other boundary points if p > 1 to the reader. We

also remark that when p = 1, the same reasoning as in the last paragraph of the proof of

Theorem 2.4 shows that Sp ∈ J1.
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