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Abstract. Let A be the set of all points of the plane C, visited by 2-dimensional
Brownian motion before time 1. With probability 1, all points of A are “twist points”
except a set of harmonic measure zero. “Twist points” may be continuously ap-
proached in C \ A only along a special spiral. Although negligible in the sense of
harmonic measure, various classes of “cone points” are dense in A, with probability
1. “Cone points” may be approached in C \A within suitable wedges.

1. Introduction. It is well known that, with probability 1, the 2-dimensional
Brownian trajectory (i.e. the random function t → X(t)) is not differentiable even
at a single point. There is no doubt that every initial segment of the Brownian trace
(i.e. the set X([0, t])) must be highly irregular. Mandelbrot (1982) confirms this
intuition with computer simulations. In his book, the “irregularity” of fractals is
measured by their Hausdorff dimension. In this article, a different approach will be
taken; it will be shown that the Brownian trace has strange geometric properties.

Itô and McKean (1974), Knight (1981) and Williams (1979) are rich sources of
information about Brownian path properties and especially their local properties.
The present research has been inspired by some recent activity of Cranston, Hsu
and March (1987), El Bachir (1983), Evans (1985), Le Gall (1986, 1987), Mountford
(1987) and Shimura (1984, 1985). The author himself has published some related
results (Burdzy (1985, 1986a,b, 1987 a-f, 1988), Burdzy and Williams (1986)).

The main results are given in Section 2. Their proofs appear in Sections 4–7.
They are not arranged in the order of logical implication but it is easy to check that
there are no circular arguments in the paper. Section 3, “Preliminaries”, should not
be totally ignored. It contains many little facts which are not completely trivial.

The main tools used in the paper are two versions of the excursion theory of
Markov processes, due to Itô (1972) and Maisonneuve (1975), potential theory and
complex analysis. The proofs make use of several difficult and quite recent results
of McMillan (1969), Dahlberg (1977), Varadhan and Williams (1985) and an idea
of El Bachir (1983) and Le Gall (1986).

The author would like to express his gratitude to Jim Pitman for sending his
personal notes taken at a conference. They provided a decisive impulse to write
this article. Special thanks go to the Referees for many helpful comments.
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2. Main results. Let X be the standard complex (= 2-dimensional) Brownian
motion starting from 0 w.p.1. Denote

R+ = {x ∈ R : x > 0} = {x ∈ C : =x = 0,<x > 0},

At = X([0, t]) = {x ∈ C : ∃s ∈ [0, t] such that Xs = x}.
Ft will denote the unbounded connected component of C \At.

G(x, a, b, ε) df= {y ∈ C : 0 < |x− y| < ε, arg(y − x) ∈ [a, b]}

for x ∈ C, a, b ∈ R, a ≤ b, ε > 0. Let BF
t (a, b) be the set of all points x ∈ ∂Ft such

that
i) there exists ε > 0 such that G(x, a, b, ε) ⊂ Ft and
ii) if a1 ≤ a, b1 ≥ b, b1 − a1 > b− a, ε1 > 0 then G(x, a1, b1, ε1) ∩At 6= ∅.
A class Bt(a, b) is defined in the same way as BF

t (a, b) with the exception that
it is required that x ∈ At and G(x, a, b, ε) ⊂ C \ At rather than x ∈ ∂Ft and
G(x, a, b, ε) ⊂ Ft.

BF
t (c) df=

⋃

a,b∈R
b−a=c

BF
t (a, b),

Bt(c)
df=

⋃

a,b∈R
b−a=c

Bt(a, b).

The symbol BF
t (∞) will stand for the set of all twist points of ∂Ft i.e., x ∈ BF

t (∞)
if and only if x ∈ ∂Ft and there exists a continuous path Γ = {Γ(s), s ∈ (0, 1)} ⊂ Ft

such that lims→0 Γ(s) = x and

(2.1) − lim inf
s→0

arg(Γ(s)− x) = lim sup
s→0

arg(Γ(s)− x) = ∞.

Here arg is chosen so that arg(Γ(s)−x) is a continuous function of s. For a function
h : R→ R denote

C+(h, ε) = {x ∈ C : |x| < ε,<x > 0, 0 < =x < h(<x)},
C−(h, ε) = {x ∈ C : |x| < ε,<x > 0,−h(<x) < =x < 0},

C(h, ε) = C+(h, ε) ∪ C−(h, ε).

Let Vt denote the left endpoint of the unbounded component of R+ ∩ Ft. The set
of all points in At at the minimal distance from 1 will be denoted Mt. It is easy to
see that w.p.1, for all t > 0, the set At is closed and bounded, Ft and Vt are well
defined, Ft is simply connected, and 1 /∈ Mt. For every t > 0, w.p.1, the set Mt

contains only one point.

Theorem 2.1. i) For every t > 0, w.p.1, Vt ∈ BF
t (0, 0).

ii) For a < 0, b > 0, b− a < π, w.p.1 there exists t > 0 such that Vt ∈ BF
t (a, b).

iii) For a < 0, b > 0, b− a = π, w.p.1 there is no t > 0 such that Vt ∈ BF
t (a, b).

iv) W.p.1, there are no a < 0, b > 0, b− a > π, t > 0 such that Vt ∈ BF
t (a, b).
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Theorem 2.2. Suppose that h : R → R, h(0) = 0, h ≥ 0, and h is Lipschitz or
nondecreasing. Fix some t > 0.
i) If

∫ 1

0
h(r)r−2dr < ∞ then w.p.1 there exists ε > 0 such that Vt + C(h, ε) ⊂ Ft.

ii) If
∫ 1

0
h(r)r−2dr = ∞ then w.p.1 there is no ε > 0 such that Vt + C+(h.ε) ⊂ Ft.

Theorem 2.3. i) For every t > 0, w.p.1, Mt ⊂ Bt(π).
ii) For a, b ∈ R, b− a ∈ (π, 3π/2), w.p.1 there exists t > 0 such that Mt = {Xt} ⊂
Bt(a, b).

Theorem 2.4. i) For all a, b ∈ R, b − a ∈ [0, π], w.p.1, for every t > 0 the set
BF

t (a, b) is dense in ∂Ft.
ii) (Evans (1985)) For every t > 0, w.p.1, for all a, b ∈ R, b − a > π, one has
Bt(a, b) = ∅.
Theorem 2.5. i) (Le Gall (1986, 1987)) For a, b ∈ R, b − a < 3π/2, w.p.1 there
exists t > 0 such that Xt ∈ BF

t (a, b).
ii) (Burdzy(1985); Shimura(1985)) W.p.1, for all a, b ∈ R, b− a > 3π/2, t > 0, one
has Bt(a, b) = ∅.
Theorem 2.6. W.p.1, for every t > 0,
i) ∂Ft \BF

t (∞) has null harmonic measure in Ft and, therefore,
ii) BF

t (∞) is dense in ∂Ft.

3. Preliminaries. This section offers a brief review of some basic notation, defi-
nitions, and a few theorems. For more information, consult Blumenthal and Getoor
(1968) (Markov processes), Burdzy (1987c) (excursion laws), Doob (1984) (poten-
tial theory, Brownian motion, h-processes), Itô (1972) (Poisson point processes),
Maisonneuve (1975) (exit systems), Naim (1957) (Martin boundary, minimal fine
topology), Pommerenke (1975) (complex analysis, prime ends), Williams (1979)
(Markov processes, Brownian motion).

i) General notation and definitions. The sets of all integers, real and complex
numbers will be denoted Z,R and C, resp. By convention, R2 = C, R = {x ∈ C :
=x = 0}. Denote R+ = {x ∈ R : x > 0} ⊂ C, D∗ = {x ∈ C : <x > 0}. The
(Euclidean) boundary and the complement (in C) of a set A ⊂ C will be denoted
∂A and Ac. | · | will stand for the Euclidean norm in C (and R).

A function f will be called Lipschitz with constant λ if |f(x)− f(y)| < λ|x− y|
for all x, y in the domain of f .

The notation Y BF
t (a, b), Y Vt etc. will be used instead of BF

t (a, b), Vt etc. when-
ever these objects are defined relative to a process Y , rather than X.

ii) Potential theory and complex analysis. The Green function of a Greenian
set D ⊂ C will be denoted GD(x, y). For such a domain D ⊂ C, fix a reference point
z0 ∈ D and let K(x, y) = KD

z0
(x, y) df= GD(x, y)/GD(x, z0) for x, y ∈ D, x 6= z0.

There exists a unique up to a homeomorphism compactification DM of D such
that K may be extended continuously to (DM \ {z0})×D and K(x, · ) ≡ K(y, · )
only if x = y. The set ∂MD

df= DM \D will be called the Martin boundary of D
and the topology of DM will be called the Martin topology. A point x ∈ ∂MD will
be called minimal if every positive harmonic function in D majorized by K(x, · ) is
a constant multiple of K(x, · ). The set of all minimal Martin boundary points will
be denoted ∂M

1 D and called the minimal Martin boundary. A set A ⊂ D will be
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called minimal thin in D at x ∈ ∂M
1 D if x is an isolated point in the subset {x}∪A

of DM or there exists a measure ν such that
∫

D

K(x, y)ν(dy) < lim inf
z→x
z 6=x
z∈A

∫

D

K(z, y)ν(dy).

This definition of minimal thinness is taken from Naim (1957). The minimal fine
topology is defined by declaring that x ∈ ∂M

1 D is a minimal fine limit point of A if
A is not minimal thin in D at x.

The Euclidean boundary may be identified with a (“finite”) part of the minimal
Martin boundary in Lipschitz domains. In simply connected plane domains, the
Martin boundary and the minimal Martin boundary coincide and may be identified
with the Carathéodory prime end boundary. The Green function is conformal
invariant so the Martin kernel K, Martin boundary, minimal thin sets, harmonic
measure, etc. are conformal invariant as well.

It will be convenient to look at subsets of C as subsets of the Riemann sphere
i.e., the usual one point compactification of C. Thus, for example, both sets {x ∈
C : |x| < 1} and {x ∈ C : |x| > 1} are simply connected and there exists a
conformal one-to-one mapping of the first one onto the other. If the complement
of an open simply connected set D ⊂ C contains at least two distinct points then
D is a Greenian domain.

Now, a few geometric criteria for the minimal thin sets will be given.
(1) Suppose that A ⊂ D∗ is an open and simply connected set. It is a mini-

mal fine neighborhood of 0 ∈ ∂M
1 D∗ if and only if there exists a Lipschitz

function h : R→ R such that h(r) > 0 for r 6= 0,

(3.1)
∫ 1

−1

h(r)r−2dr < ∞

and for some ε > 0

(3.2) {x ∈ C : |x| < ε,<x > h(=x)} ⊂ {x ∈ A : |x| < ε}.

This criterion follows from Theorems 5.2 and 5.3 of Burdzy (1986b) although
the Lipschitz function considered in these theorems need not be strictly
positive. Observe that if a Lipschitz nonnegative function h1 satisfies (3.1)
and (3.2), and h(r) = h1(r) + min(r2, 1) then h is Lipschitz, satisfies (3.1)
and (3.2), and h(r) > 0 for r 6= 0.

(2) For a ∈ (−π/2, π/2), the ray G(0, a, a,∞) is not minimal thin in D∗ at 0
(see Doob (1984) 1.XII.12 Example (b)).

(3) Let D = {x ∈ C : |x + 1| > 1} and f : D → D∗ be a conformal, one-
to-one mapping onto D∗. It is easy to see that f(D) is a minimal fine
neighborhood of 0 in D∗, by using criterion (1) and an explicit formula
for f . By the conformal invariance of the minimal fine topology, D∗ is a
minimal fine neighborhood of 0 in D. Theorem 15 of Naim (1957) implies
that a subset A of D∗ is minimal thin in D∗ at 0 if and only if it is minimal
thin in D at 0. In particular, for a ∈ (−π/2, π/2), the ray G(0, a, a,∞) is
not minimal thin in D at 0. Similar statements hold for the complements
of other discs.



GEOMETRIC PROPERTIES OF 2-DIMENSIONAL BROWNIAN PATHS 5

(4) Let D be the interior of G(0,−a, a,∞) for some a ∈ (0, π). The function
f(x) = x2a/π defines a conformal, one-to-one mapping of D∗ onto D and
maps rays onto rays. It follows that for b ∈ (−a, a), the ray C(0, b, b,∞) is
not minimal thin in D at 0.

(5) Let D = C \ (R+ ∪ {0}) and recall the definition of C+(h, ε) from Section
2. Assume that h is Lipschitz, h(0) = 0, h ≥ 0. Let f : D → D∗, f(x) =
(−x)1/2, A = f(C+(h, ε)).

Suppose first that lim supr→0+ h(r)/r = c > 0. Then it is easy to see
that

∫ 1

0
h(r)r−2dr = ∞. For each ε1 > 0, there exists x ∈ A, |x| < ε1, such

that arg x = c1 for some fixed c1 ∈ (−π/2, π/2). This implies that condition
(3.1) cannot be satisfied for A and, therefore, A is not minimal thin in D∗
at 0. Consequently, C+(h, ε) is not minimal thin in D at 0.

Now consider the case when limr→0+ h(r)/r = 0. If arg x = a then
arg f ′(x) = −π/2 + a/2. The graph of h is a curve in D approaching the
real axis tangentially. Thus arg f ′(x) converges to −π/2 when x converges
to 0 along the graph of h. It follows that asymptotically, near 0, the image
of the graph of h by f is rotated by −π/2 and, therefore it is a graph of a
Lipschitz function h1 i.e., for some ε2 > 0,

{x ∈ A : |x| < ε2} = {x ∈ C : |x| < ε2,=x < 0, 0 < <x < h1(=x)}.

The “area element” h(r)r−2dr is mapped by f approximately onto h1(
√

r)r−1(dr·
r−1/2/2). Thus

∫ 1

0
h(r)r−2dr < ∞ if and only if

∫ 1

0
h1(

√
r)r−3/2dr < ∞.

The last integral is finite if and only if
∫ 1

0
h1(u)u−2du < ∞ (change the

variable:
√

r = u). By criterion (1), A is minimal thin in D∗ at 0 if and
only if

∫ 1

0
h1(u)u−2du < ∞, which is equivalent to

∫ 1

0
h(r)r−2dr < ∞. This

is also equivalent to minimal thinness of C+(h, ε) in D at 0. Similar results
hold for C−(h, ε) and C(h, ε). The function h in C+(h, ε) may be assumed
monotone, instead of being Lipschitz (see Burdzy (1987a)).

Geometric definitions of prime ends may be found in Pommerenke (1975) or
Ohtsuka (1970). A point x ∈ C will be called a principal point of a prime end
y ∈ ∂M

1 D if x is a cluster point of every continuous line in D converging to y in
the Martin topology. A prime end y ∈ ∂M

1 D will be called accessible if there exists
a continuous line in D which converges to y in the Martin topology and to some
point x ∈ C in the Euclidean topology. Every accessible prime end has one and
only one principal point.

Suppose that D ⊂ C is simply connected and an accessible prime end y ∈ ∂M
1 D

has a principal point x ∈ C. It follows from a theorem of Jackson (1980) that if
z → y in the minimal fine topology then z → x in the Euclidean topology, z ∈ D.
Suppose that A,B ⊂ D, A is a minimal fine neighborhood of y in D,U ⊂ C is
a Euclidean neighborhood of x, and A ∩ U ⊂ B ∩ U . Then B is a minimal fine
neighborhood of y in D.

Suppose that f : R+ ∪ {0} → C is continuous and let D be the unbounded
connected component of C \ f([0, t]), for some t > 0 such that f(t) 6= f(0). Then
D is open and simply connected. It is easy to prove that every analytic, one-
to-one mapping of {x ∈ C : |x| < 1} onto D may be extended continuously to
{x ∈ C : |x| ≤ 1}. This implies that every sequence in D, converging in the Martin
topology converges also in the Euclidean topology. Thus every point in the minimal
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Martin boundary of D corresponds to a single Euclidean boundary point (but not
vice versa: one point of ∂D may correspond to many different Martin boundary
points). It is now obvious that all points of ∂M

1 D are accessible. W.p.1, for all
t > 0, Ft has similar properties.

The interior S(a) of G(0,−a, a,∞), a ∈ (0, π/2) is usually called a Stolz angle.
A point x will be called the angular limit of a function f : D∗ → C at y and
denoted f(y) if lim z→y

z−y∈S(a)

f(z) = x for every a < π/2. The limit is taken in the

Euclidean or Martin topology depending on whether x ∈ C or x ∈ ∂Mf(D∗). For
a set A ⊂ ∂D∗, f(A) may have two different meanings; it may be a subset of C or
∂Mf(D∗). For an analytic function f : D → C, the symbol mf-f ′(y) will stand for
the minimal fine limit of the function f ′ at y ∈ ∂M

1 D (if it exists).
Suppose that f : D∗ → D, f is analytic, one-to-one and onto. Call a point

x ∈ ∂D∗ an f -twist point if f(x) ∈ C exists and for every continuous path Γ =
{Γ(s), s ∈ (0, 1)} ⊂ D∗ with lim

s→0
Γ(s) = x one has

− lim inf
s→0+

arg(f(Γ(s))− f(x)) = lim sup
s→0+

arg(f(Γ(s))− f(x)) = ∞.

It is easy to see that if x is an f -twist point then f(x) is a twist point of ∂D (see
Section 2 for the definition).

The following version of a theorem of McMillan (1969) is proved in Burdzy
(1987e) as Theorem 3.4. Let f : D∗ → D be one-to-one, onto and analytic. Then
for almost every x ∈ ∂D∗, either mf-f ′(x) ∈ C \ {0} or x is an f -twist point.

iii) Probability. A) Various probability structures will be used in the paper.
There is no need to specify them here. Unless stated otherwise, X will be the
canonical process on the probability space {Ω,F , P 0} introduced in this subsection.
In particular, the phrase “w.p.1” will usually refer to P 0.

Let Ω be the family of all functions ω : [0,∞) → C∪ {δ}, continuous up to their
lifetime R = inf{t ≥ 0 : ω(t) = δ} and constantly equal δ at R and afterwards. The
case R = ∞ is not excluded. The point δ is a “coffin” state outside C, not identified
with the usual compactification of C. The canonical process will be denoted X i.e.,
Xt(ω) = ω(t) for all t and ω.

F = σ{Xt, t ≥ 0},

Ft = σ{Xs, 0 ≤ s ≤ t}.
P x and Ex will denote the distribution (i.e., a measure on (Ω,F)) of the standard
2-dimensional Brownian motion and the corresponding expectation. The hitting
time of a set A, inf{t > 0 : Xt ∈ A}, will be denoted TA.

The process

Yt
df=

{
Xt for t < TDc ,

δ otherwise,

will be called a Brownian motion in D, provided X has a distribution P x for some
x ∈ D. The distribution of this process will be denoted P x

D. If Pt(x, dy) are the tran-
sition probabilities of Brownian motion in D and h is a positive harmonic function
in D then Pt(x, dy)h(y)/h(x) are transition probabilities of a Markov process, called
an h-process. If h is a minimal harmonic function represented by y ∈ ∂M

1 D and X
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is an h-process starting w.p.1 from x ∈ DM then its distribution will be denoted
P x

y . If X has a distribution P x for some x ∈ D and P x(X(T∂D) ∈ A) > 0 then,
conditional on {X(T∂D) ∈ A}, the distribution of {Xt1{t<T∂D} + δ1{t≥T∂D}, t ≥ 0}
is a mixture of P x

y , for y in a subset of ∂M
1 D.

B) The following version of the exit system theorem of Maisonneuve (1975) will be
used in the paper. A more general probability structure than that introduced in
the previous subsection will be needed.

Let (Ω,F ,Ft, Y, θ,Q) be the canonical realization of a family of Markov transi-
tion probabilities. The set Ω is the family of all right continuous functions from
[0,∞) to a state space Γ ∪ {δ}, where δ is an isolated trap state in Γ ∪ {δ}. Y is
the canonical process i.e., Yt(ω) = ω(t) for all ω and t.

F0 = σ{Ys, s ≥ 0},

F0
t = σ{Ys, 0 ≤ s ≤ t}.

F and Ft will denote the completions of F0 and F0
t with respect to the family

{Qµ}. Here, Qµ denotes the distribution of the process with the initial distribution
µ. The symbol θ will stand for the usual shift operator.

Suppose that N is a closed random set, homogeneous in (0,∞) i.e., for each
ω ∈ Ω, N(ω) is a closed subset of [0,∞) and

(N − t) ∩ (0,∞) = (N ◦ θt) ∩ (0,∞)

for all ω and t. For each t ≥ 0 such that t ∈ N define an excursion et of Y from N
by

et(s) =
{

Y (t + s) for t + s < inf{u > t : Yu ∈ N},
δ otherwise.

It is possible that et ≡ δ.
Then, there exists a universally measurable family {Hx, x ∈ Γ} of σ-finite mea-

sures on Ω and an additive functional L such that

(3.3) E·(
∑

t∈N

Ztf(et)) = E·(
∫ ∞

0

ZtH
Yt(f)dLt)

for all positive well measurable Z and all positive F-measurable f , vanishing on
excursions constantly equal to δ. For each x ∈ Γ, Hx(Y0 6= x) = 0 and {Yt, t > 0} is
strong Markov under Hx with the Q-transition probabilities, killed at the “hitting
time” of N , inf{t > 0 : t ∈ N}. The measures Hx will be called excursion laws.

Every pair (dL,H) satisfying the above properties will be called an exit system
of Y from N .

C) A special kind of excursion laws will play the central role in the paper. Return
to the space (Ω,F) defined in subsection (A).

An excursion law Hx of Brownian motion in an open set D ⊂ C is a σ-finite
measure on Ω such that {Xt, t > 0} is strong Markov under Hx with the PD

transition probabilities and Hx(lim
t→0

Xt 6= x) = 0. An excursion law Hx will be

called standard if 0 < Hx(TB < ∞) < ∞ for every nonpolar compact set B ⊂ D.
The point x may be an element of the Euclidean or the minimal Martin boundary.
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A point x ∈ ∂M
1 D will be called attainable if P y

x (R < ∞) = 1 for some (and
therefore all) y ∈ D. If D is simply connected and x ∈ ∂M

1 D is accessible then it is
attainable (Burdzy (1987c,d)). For each attainable x ∈ ∂M

1 D there exists a unique,
up to a multiplicative constant, standard excursion law Hx in D.

A set A will be called Hx-regular if Hx(TA 6= 0) = 0. If x ∈ ∂M
1 D and Hx

is the standard excursion law in D then A ⊂ D is Hx-regular if and only if it is
not minimal thin in D at x (Burdzy (1987a)). This property may be derived from
another probabilistic interpretation of the minimal fine topology: a set A ⊂ D is
minimal thin in D at x ∈ ∂M

1 D if and only if the last exit time of X from A is
strictly less than the lifetime R,P y

x -a.s. for every y ∈ D (Doob (1984) 3.III.3).
Suppose that Hx

1 is a standard excursion law in D1, f : D1 → D2 is one-to-one,
analytic and onto and f(x) is an accessible prime end. Denote

c(t) =
∫ t

0

|f ′(X(s))|2ds for t ∈ (0, R)

and

Y (c(t)) =
{

f(X(t)) if t ∈ (0, R) and c(t) < ∞,

δ otherwise.

If the distribution of X is Hx
1 then the distribution of Y is a standard excursion

law in D2, denoted f(Hx
1 ).

Now, consider a special case. Let H0
∗ be the standard excursion law in D∗, f(x) =

xa for some a ∈ (1, 2), and D = f(D∗). Then f(H0
∗ )

df= H0 is a standard excursion
law in D. By Theorem 3.3 (iii) of Burdzy (1986a),

H0
∗ ( max

t∈(0,R)
|Xt| ∈ dx) = cx−2dx

so

(3.4) H0( max
t∈(0,R)

|Xt| ∈ dx) = c1x
−1−1/adx

and
H0( max

t∈(0,R)
|Xt| > ε) < ∞ for ε > 0.

If X has the distribution H0 then {c2X(t/c2
2), t ≥ 0} is also a standard excursion

law in D, since a similar scaling property characterizes Brownian motion. By the
uniqueness of the standard excursion law, H0

1 = c3H
0. This and (3.4) imply that

c3 = c
1/a
2 . This, in turn, may be used to derive the following formula: H0(R ∈

dt) = c4t
−1−1/(2a)dt. In particular, the expectations of max

s∈(0,R)
|X(s)| and R are

finite under H0.
D) Let λ be the Lebesgue measure on R+ and µ be a σ-finite measure on a set
U . Then there exists a Poisson point process Z on R+ × U with the characteristic
measure λ × µ i.e., Z is a random subset of R+ × U defined on some probability
space, such that for every pair A,B of disjoint, nonrandom subsets of R+ × U ,
card(Z ∩A) and card(Z ∩B) are independent and have Poisson distributions with
mean values (λ × µ)(A) and (λ × µ)(B). W.p.1 there are no two points in Z with
the same first coordinate (Itô (1972)).
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4. Path behavior near Vt.

Proof of Theorem 2.2. For a random variable Y0 define Yt = sup(Y0, Vt). Let Qx,y

be the distribution of {(Xt, Yt), t ≥ 0} when Y0 ≡ y and X has the distribution
P x. It is easy to see that the process (X,Y ) under Qx,y is strong Markov with
the transition probabilities Q. From now on, it will be assumed that (X,Y ) is
the canonical realization of the family of transition probabilities Q, in the sense of
Section 3(iii)(B).

Let N = {t ≥ 0 : Xt = Yt}. Then N is a homogeneous closed random set and
there exists an exit system (dL,H) of (X, Y ) from N . Choose a compact nonpolar
set B, B ⊂ D

df= C \ (R+ ∪ {0}) and apply the exit system formula (3.3) with
T = inf{t ≥ 0 : Xt ∈ B + Yt}, f(et) = 1{T<∞}(et), Zt = 1[0,T ](t) to obtain

E·(1) = E·(
∫ T

0

HXt,Yt(T < ∞)dLt).

Thus the right hand side is finite and, therefore, dL does not charge w.p.1 the set
{t ≤ T : (Xt, Yt) ∈ {(x, y) : Hx,y(T < ∞) = ∞}}. By a similar argument applied
with T replaced by consecutive hitting times of B + Yt byXt, one can show that
the measure dL does not charge {t < ∞ : (Xt, Yt) ∈ {(x, y) : Hx,y(T < ∞) = ∞}}.
This shows that the measures Hx,y with Hx,y(T < ∞) = ∞ play no role in the
exit system (3.3), i.e. the value of the right hand side of (3.3) would not change if
all such measures were replaced by null measures. Thus, it may be assumed that
Hx,y(T < ∞) < ∞ for all x and y. The only excursion laws Hx,y that count in
(3.3) are such that x = y ∈ R+ since w.p.1 there are no excursions of (X, Y ) from
N starting from points (x, y) with x 6= y. For x ∈ R+, the process {(Xt, Yt), t > 0}
under Hx,x is strong Markov with the transition probabilities Q, killed at

Tx
df= inf{t > 0 : =Xt = 0,<Xt ≥ x},

and Hx,x((X0, Y0) 6= (x, x)) = 0. It follows that under Hx,x, Y is equal to x up to
its lifetime and X is strong Markov with the transition probabilities PD+x. Let Hx

1

denote the distribution of X under Hx,x, x ∈ R+. This measure is an excursion law
of Brownian motion in D + x. By the argument given above, Hx

1 (TB+x < ∞) =
Hx,x(T < ∞) < ∞ for every compact set B ⊂ D. One has Hx

1 (TB+x < ∞) > 0
because otherwise the measure would have to be null (which is possible but such
measures play no role in the proof). It follows that it may be assumed that all
measures Hx

1 are standard. Thus, a subset of D + x is Hx
1 -regular if and only if it

is not minimal thin in D + x at x.
Suppose that

∫ 1

0
h(r)r−2dr = ∞. Then x+C+(h, ε), ε > 0, is not minimal thin in

D+x at x (see Section 3 (ii)), and it is Hx
1 -regular. Therefore, (x+C+(h, ε))×R is

Hx,x-regular. The exit system formula (3.3) implies that Q0,0-a.s., every excursion
et = (e1

t , e
2
t ) of (X,Y ) from N hits immediately every set (e1

t (0)+C+(h, ε))×R, for
all rational ε > 0. Observe that for a fixed t > 0,=Xt 6= 0 w.p.1, so Vt corresponds
to the starting point of the last excursion of (X,Y ) from N before t. Thus, for a
fixed t > 0, w.p.1 (Vt + C+(h, ε))∩At 6= ∅ for every rational ε > 0. This completes
the proof of Theorem 2.2 (ii).

Now assume that
∫ 1

0
h(r)r−2dr < ∞. In this case, (x + C(h, 1)) × R is not

Hx,x-regular. The exit system formula implies that Q0,0-a.s., for each excursion
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et = (e1
t , e

2
t ) of (X, Y ) from N there exists some ε > 0 such that (e1

t (0)+C(h, ε))×R
is not immediately hit by {et(s), s > 0}. It follows that for a fixed t > 0, w.p.1
there exists ε > 0 such that

Xu /∈ Vt + C(h, ε) for u ∈ (S, t),

where S = sup{s < t : Xs = Vt}.
It is easy to see that Hx

1 (X(R−) = x) = 0, so the exit system formula implies
that Q0,0-a.s. all excursions et = (e1

t , e
2
t ) of (X,Y ) from N have the property

e1
t (0) 6= e1

t (R−), where R is the lifetime of et. Thus, w.p.1 there are no s, t, u, 0 <
s < t, such that Xs = Xt = Vu and, therefore, S = inf{s > 0 : Xs = Vt} w.p.1.

Let U(s) = TR+ + S. The strong Markov property applied at TR+ shows that
for every µ, Pµ-a.s., for every rational s > 0 there exists ε > 0 such that Xu /∈
VU(s) + C(h, ε) for u < U(s), u > inf{v > 0 : Xv = VU(s)}. Observe that for a
fixed t > 0, Pµ-a.s., either TR+ > t or Vt = VU(s) for some rational s > 0 such that
U(s) > t. Thus for a fixed t > 0, Pµ-a.s. either TR+ > t or there exists ε > 0 such
that

(4.1) Xu /∈ Vt + C(h, ε) for u ∈ (S, t].

Now, let µ be a normal distribution, say µ(dx) = P 0(Xu ∈ dx) for some u > 0.
Then the distributions of {Xs, s ∈ (0, t)} and {Ws

df= Xt−s, s ∈ (0, t)} are mutually
absolutely continuous, provided X has the distribution Pµ. It follows that for a
fixed t > 0, Pµ-a.s., either TR+ > t or there exists ε > 0 such that

Xu /∈ Vt + C(h, ε) for u ∈ [0, S)

since Vt = W Vt and, Pµ-a.s.,

S = inf{s > 0 : Xs = Vt} = sup{s < t : Xs = Vt}.

This, combined with (4.1), proves that for a fixed t > 0, Pµ-a.s., either TR+ > t
or there exists ε > 0 such that Vt + C(h, ε) ⊂ Ft. It follows that for a fixed t > 0,
P 0-a.s., for all rational s ∈ (0, t), either inf{u > 0 : W s

u ∈ R+} > t or there exists
ε > 0 such that

W s

Vt + C(h, ε) ⊂ W s

Ft,

where W s
u = Xs+u. The continuity of paths implies now easily that for a fixed

t > 0, P 0-a.s. there exists ε > 0 such that Vt + C(h, ε) ⊂ Ft. This completes the
proof of Theorem 2.2 (i). ¤

Proof of theorem 2.1. i) Fix t > 0. Obviously, G(Vt, 0, 0, 1) ⊂ Ft. Observe that
C+(h, ε)+Vt = G(Vt, 0, a, ε) for h(r) = r tan a, a ∈ (0, π/2). Since

∫ 1

0
(r tan a)r−2dr =

∞, Theorem 2.2 (ii) implies that w.p.1 Vt + C+(h, ε) = G(Vt, 0, a, ε) intersects At

for every ε > 0. The same holds for G(Vt, a, 0, ε), a ∈ (−π/2, 0), by symmetry. It
follows that Vt ∈ BF

t (0, 0).
ii) The main part of the proof of Theorem 2.1 (ii)-(iv) will be based on an idea
dicovered independently by El Bachir (1983) and Le Gall (1986). Readers are
referred to Le Gall (1987) for the details (El Bachir’s thesis contains an error).
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Fix a, b, a ∈ (−π, 0), b ∈ (0, π). Let Wt = inf{x ∈ R+ : G(x, a, b,∞) ∩ At = ∅}.
Consider the process {Yt, t ≥ 0}, Yt

df= Xt − Wt. If X has a distribution P x for
some x ∈ C,=x > 0, then, up to the stopping time TR, Y is a reflected Brownian
motion in C \ (G(0,−π, b,∞)∪{0}) with the oblique reflection on ∂G(0,−π, b,∞).
This follows from Theorem 6.1 of Le Gall (1987). Moreover, it has been shown that
the vector of reflection is parallel to the real axis. It follows that Y is a reflected
Brownian motion in D

df= C \ (G(0, a, b,∞) ∪ {0}), with the vector of reflection
parallel to R, on both sides of the wedge D. In the notation and conventions of
Varadhan and Williams (1985), the process Y is a reflected Brownian motion in a
wedge with angle 2π−(b−a) and angles of reflection θ1 = π/2−b and θ2 = π/2+a.
Varadhan and Williams (1985) have shown that the process Y reaches 0 if and only
if θ1 + θ2 > 0, i.e., b − a < π. It follows easily that, when X has the distribution
P 0, then w.p.1, Yt = 0 for some t > 0 if and only if b− a < π.

Fix a, b, a ∈ (−π, 0), b ∈ (0, π), b − a ≥ π. W.p.1, there is no t > 0 such that
G(Vt, a, b,∞) ⊂ Ft. It follows that w.p.1, there are no rational s > 0 and arbitrary
t > 0 such that G(Zs

Vt, a, b,∞) ⊂ Zs

Ft, where Zs
t = Xt+s. If Vt ∈ BF

t (a, b) then
G(Zs

Vu, a, b,∞) ⊂ Zs

Fu for some rational s ∈ (0, t) and u > 0. This implies that
w.p.1, there is no t > 0 such that Vt ∈ BF

t (a, b). In particular, Theorem 2.1 (iii)
holds true.

W.p.1, there are no rational a ∈ (−π, 0), b ∈ (0, π), b− a < π, rational s > 0 and
arbitrary u > 0 such that G(Zs

Vu, a, b,∞) ⊂ Zs

Fu. If Vt ∈ BF
t (a, b) for some t > 0

and a ∈ (−π, 0), b ∈ (0, π), b − a > π, then there exist rational a1 ∈ (−π, 0), b1 ∈
(0, π), a1 > a, b1 < b, b1 − a1 > π, s > 0 and u > 0 such that G(Zs

Vu, a1, b1,∞) ⊂
Zs

Fu. Thus, w.p.1 there are no a ∈ (−π, 0), b ∈ (0, π), b − a > π and t > 0 such
that Vt ∈ BF

t (a, b). In other words, Theorem 2.1 (iv) holds.
Now suppose that a < 0, b > 0, b − a < π. Denote Tx = inf{t > 0 : Xt ∈

∂G(x, a, b,∞)}. In the present case, the point 0 is a regular point for the process Y
(Williams (1987)), so the set {t < T1 : G(Xt, a, b,∞) ⊂ Ft, Xt ∈ R+} is nonempty
w.p.1. Denote its maximum T . If a and b are fixed then each point x ∈ C lies on
the boundary of exactly one set G(y, a, b,∞), y ∈ R. Let hx denote the minimal
harmonic function in Dy

df= C\(G(y, a, b,∞)∪{0}), represented by x (here x ∈ ∂Dy).
Fix some y ∈ R+, y < 1. Consider an event {XT ∈ [x, x + ∆x]}, for some

∆x > 0, [x, x + ∆x] ⊂ [y, 1]. By the strong Markov property, the process {Xt, 0 <
t < Tx} is independent of T given {XT ∈ [x, x + ∆x]} and {X(Tx) = z}. Thus,
given {XT ∈ [x, x + ∆x]} and {X(Tx) = z} the process {Xt, 0 < t < Tx} is a
Brownian motion conditioned to be z at Tx; in other words, it is an hz-process
in Dx. It follows that given {XT ∈ [x, x + ∆x]} and {X(Tx) = z}, the process
{Xt, 0 < t < Ty} is an hz-process in Dy (Doob (1984) 2.X.2).

Observe that when ∆x → 0 then the conditional distribution of X(Tx)−x given
{XT ∈ [x, x + ∆x]} converges to the point mass at 0, uniformly in x ∈ [y, 1].
Easy explicit computations show that hz converges to hx, uniformly on compacts
in Dy, when z → x /∈ Dy. The last two observations permit to conclude that given
{XT = x}, x ∈ [y, 1], the distribution of {Xt, 0 < t < Ty} is that of an hx-process
in Dy. Now fix x and let y → x. It follows that the distribution of {Xt, 0 < t < T}
given {XT = x} is that of an hx-process in Dx.

For c ∈ (−π, a) ∪ (b, π) the set G(x, c, c,∞) is not minimal thin in Dx at x. It
follows that for every such c, w.p.1 sup{t < T : arg(Xt−XT ) = c} = T (see Section
3 (iii) (C)). Thus, w.p.1 there are no a1 ≤ a, b1 ≥ b, b1 − a1 > b − a, ε1 > 0 such



12 KRZYSZTOF BURDZY

that G(XT , a1, b1, ε1) ⊂ FT . This, combined with the definition of T , shows that
XT = VT ∈ BF

T (a, b). This completes the proof of Theorem 2.1 (ii). ¤
5.Path behavior near Mt.

Proof of Theorem 2.3. i) The proof will be only sketched because it is completely
analogous to that of Theorem 2.2.

By abuse of notation, Mt will denote its element, in the case it contains only one
element.

For a random variable Y0 define

Yt = min(Y0, inf{|Xs − 1| : s ∈ [0, t]}).
Let Qx,y be the distribution of {(Xt, Yt), t ≥ 0} when Y0 ≡ y and X has the dis-
tribution P x. The process (X, Y ) under Qx,y is strong Markov with the transition
probabilities Q. It may be assumed that (X, Y ) is the canonical realization of the
family of transition probabilities Q. Let N = {t ≥ 0 : |Xt−1| = Yt} and let (dL,H)
be an exit system of (X,Y ) from N . The only excursion laws Hx,y that count are
such that |x − 1| = y. Let Hx

1 be the distribution of X under Hx,|x−1|. Then Hx
1

is a standard excursion law in Dx
df= {z ∈ C : |z − 1| > |x− 1|}.

Every half-line Kx with endpoint x, not intersecting C\Dx is not minimal thin in
Dx at x so it is Hx

1 -regular. Thus, Q0,1-a.s., every excursion et = (e1
t , e

2
t ) of (X, Y )

from N hits immediately every set Kx×R+, where x = e1
t (0) and Kx∩(C\Dx) = ∅.

It follows that for a fixed t > 0, w.p.1 for all a, b, b − a > π, ε > 0, one has
G(Mt, a, b, ε) ∩At 6= ∅.

Let Ux be the half-space containing {z ∈ C : |z − 1| ≤ |x− 1|}, such that ∂Ux is
tangent to this disc at x. The set Ux ∩Dx is minimal thin in Dx at x, so it is not
Hx

1 -regular. As in the proof of Theorem 2.2, one can show that for a fixed t > 0,
w.p.1 there exists ε > 0 and a, b, b− a = π, such that

Xu /∈ G(Mt, a, b, ε) for u ∈ (S, t],

where S = sup{s > 0 : Xs ∈ Mt}. The time reversal trick shows that for each
t > 0, w.p.1 there exist ε1 > 0 and a, b, b− a = π such that Xs /∈ G(Mt, a, b, ε) for
s ∈ [0, t]. Thus, for t > 0, w.p.1 Mt ∈ Bt(π).
ii) Fix a, b ∈ R, b − a ∈ (π, 3π/2). The results of Le Gall (1987) show that w.p.1
there exists t > 0 such that Xt ∈ BF

t (a, b). This implies easily that for some p > 0,

P x({Xt} = Mt ⊂ Bt(a, b) for some t < T1/2) ≥ p

for all |x− 1| = 1, where

Tr = inf{t > 0 : |Xt − 1| ≤ r}.
By scaling,

P x({Xt} = Mt ⊂ Bt(a, b) for some t < T2−k) ≥ p

for all |x − 1| = 2−k+1, k ≥ 1. The events ({Xt} = Mt ⊂ Bt(a, b) for some
t ∈ (T2−k+1 , T2−k)) have P 0-probabilities greater or equal to p, by the strong Markov
property. It follows that infinitely many of these events will happen, with proba-
bility not less than p. Since such an event belongs to the tail σ-field and p > 0, it
is certain. Theorem 2.3 (ii) has been proved. ¤
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6. Existence of cone points.

Proof of Theorem 2.4. i) The proof will consist of several steps.
(A) The case b − a ∈ (0, π). Construction of a 2-dimensional Brownian motion Y
from excursions in a wedge.
(B) Paths of Y contain cone points.
(C) The set of cone points is dense.
(D) Same as (C), for b− a = π.
(E) Same as (C), for b− a = 0.
(F) Proof of the theorem for floating t (t has been fixed in (A) – (E)).

(A) Fix a, b, b − a ∈ (0, π). Since Brownian motion is rotation invariant, it is
enough to consider only the case b = −a > 0. Let D = C \ (G(0,−b, b,∞) ∪ {0})
and H0 be the standard excursion law in D. Consider a Poisson point process on
R+×Ω with the characteristic measure λ×H0, where λ is Lebesgue measure. The
elements of the random set Z may be unambiguously denoted by (t, ft) (see Section
3 (iii) (D)). Denote Rt = inf{s > 0 : ft(s) = δ}, |ft| = sup

s∈(0,Rt)

|ft(s)|, Rε
t = Rt − ε,

f ε
t (s) = ft(s + ε)− ft(ε). Under H0, the lifetime R and max

s∈(0,R)
|X(s)| have densities

c1t
−1−1/(2a) and c2x

−1−1/a, resp. (see Section 3 (iii) (C)). Theorem 4.6 of Itô (1972)
shows that for every fixed u > 0, w.p.1

∑
t≤u

Rt < ∞,
∑
t≤u

|ft| < ∞ and, therefore,
∑
t≤u

|ft(Rt−)| < ∞. It follows that for each ε ≥ 0, w.p.1, the following process Y ε

is well defined for all t > 0. The sums in the next two formalae will extend over u
such that Rε

u > 0. First note that

t =
{

s +
∑

u<r Rε
u if there exists (r, fr) ∈ Z such that Rε

r > 0,∑
u<r Rε

u otherwise,

defines unique r > 0 and s ∈ [0, Rε
r). Then let

Y ε
t =

{
f ε

r (s) +
∑

u<r f ε
u(Rε

u−) if there exists (r, fr) ∈ Z such that Rε
r > 0,∑

u<r f ε
u(Rε

u−) otherwise,

and let Y
df= Y 0.

Since H0( max
t∈(0,R)

|Xt| ≥ ε1) < ∞ for ε1 > 0, it follows that for r > 0, ε1 > 0, w.p.1

there are only a finite number of excursions fu with u ≤ r and |fu| ≥ ε1. This and
the continuity of each function s → ft(s) imply the continuity of Y . The continuity
of the process Y ε is even more evident, since the sums in the definition of Y ε are
finite w.p.1, for ε > 0.

For a fixed ε > 0, the processes {f ε
t (s), s ≥ 0} are independent, which follows

from the strong Markov property of Z (Theorem 5.1 of Itô (1972)). Consider a
process {f ε

t (s), s ≥ 0} together with its natural filtration, enlarged by the sets
generated by ft(ε). By the strong Markov property of H0, such a process is a
Brownian motion killed at a stopping time. It follows that Y ε is pieced together
from such independent Brownian segments, a finite number of them on each finite
time interval. It is now evident that Y ε is a Brownian motion.

For u > 0, w.p.1
∑
t≤u

Rt < ∞ and
∑
t≤u

|ft| < ∞ so it is easy to see that for a

fixed t > 0, w.p.1. Y ε → Y in the supremum norm on [0, t]. It follows that Y is a
Brownian motion.
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(B) If x1, x2, . . . belong to Dc then
∞
Σ

k=1
xk ∈ Dc, provided the sum is well defined.

This implies that
Dc +

∑

t≤v<u

fv(Rv−) ⊂ Dc

and
ft(s) /∈ Dc +

∑

t≤v<u

fv(Rv−), for t < u, s ∈ (0, Rt).

Since Y is continuous, a similar property holds for points outside excursions f and
it follows that for t > 0, w.p.1 Ys /∈ YT + G(0,−b, b,∞) for all s ∈ [0, t], where
T = T (t) =

∑
s<u0

Rs, u0 = u0(t) = inf{u ≥ 0 :
∑
s≤u

Rs ≥ t}. Hence, for t > 0, w.p.1,

G(YT ,−b, b,∞) ⊂ Y Ft.
For each rational c ∈ (−π,−b) ∪ (b, π), the ray G(0, c, c,∞) is H0-regular so,

w.p.1, for all such c and all excursions fs one has inf{u > 0 : fs(u) ∈ G(0, c, c,∞)} =
0. The stable process {∑u≤s Ru, s ≥ 0} does not hit a point fixed in advance, so
for a fixed t > 0, w.p.1, T (t) < t and Y (T ) is the starting point of the (translated)
excursion fu0 . This implies that for all a1, b1, a1 ≤ −b, b1 ≥ b, b1 − a1 > 2b, ε1 > 0,
the set G(YT , a1, b1, ε1) intersects Y At. Thus, for t > 0, w.p.1 YT ∈ Y BF

t (−b, b)
and, moreover <YT ≥ 0.

Let t > 0, d > 0, Td = inf{s > 0 : <Ys = d}, W d(s) = Y (Td + s). Condition
on Td so that t − Td is “fixed.” Then {W d(s), s ∈ [0, t − Td]} is a Brownian
motion, unless Td ≥ t. Apply to W d the result already proved for Y , to see that
there exists w.p.1 U = U(d) ∈ (0, t − Td) such that W d(U) ∈ W d

BF
t (−b, b) and

<W d(U) ≥ d (unless Td ≥ t). Of course, Y ([0, Td]) ⊂ {x ∈ C : <x ≤ d}, so
W d(U) ∈ Y BF

t (−b, b). This holds w.p.1 for all rational d simultaneously. It may be
concluded that for a fixed t > 0, w.p.1, for every ε > 0 there exists x ∈ Y BF

t (−b, b)
such that <x ≥ max

s∈[0,t]
<Ys − ε.

(C) Now switch to the canonical notation, i.e., let X be the standard Brownian
motion. Fix real numbers p1, p2, p3, p2 < p3, and denote

N = {x ∈ C : <x ≤ p1,=x ∈ [p2, p3]}.

It can be easily proved that w.p.1 either

p1 = max{<Xu : u ∈ [0, t], Xu ∈ N}

or this maximum is attained at a single point of (0, t), say s. Consider this last
case.

Let yk ∈ ∂N be such that =yk = pk,<yk = max{<Xu : =Xu = pk, u ∈
[0, t]}, k = 2, 3. The points y2 and y3 belong to Bt(0, 0), which may be shown
as in the part of the present proof devoted to the case b − a = 0 (see below). It
follows that Xs /∈ ∂N .

Choose q1 and q2, q1 < q2, such that s ∈ (q1, q2) and X([q1, q2]) ⊂ N . Denote
W = {X(u), u ∈ [q1, q2]} and observe that w.p.1 there exists a sequence {xk} such
xk ∈ W BF

t (−b, b) and <xk ≥ max
u∈[q1,q2]

<Xu−1/k = <Xs−1/k, k ≥ 1. The continuity

of X implies that lim
k→∞

xk = Xs and there exists ε > 0 such that {x ∈ At : |Xs−x| <
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ε} = {x ∈ X([q1, q2]) : |Xs − x| < ε}. The last two facts (see also Section 3(ii))
show that xk ∈ Bt(−b, b) for large k. Moreover, if {x ∈ ∂N : <x = p1) ⊂ Ft then
xk ∈ BF

t (−b, b) for large k.
Consider the family of all sets N such that p1, p2 and p3 are rational, {x ∈ ∂N :

<x = p1) ⊂ Ft and Xs is well defined. Theorem 2.6 implies easily that the set of
points Xs corresponding to such sets N is dense in ∂Ft. For a fixed t > 0, w.p.1,
in every neighborhood of every such point Xs there is a point of BF

t (−b, b). This
completes the proof in the case b− a ∈ (0, π), for a fixed t > 0.

(D) Now let b− a = π and assume without loss of generality that b = −a = π/2.
Fix some x ∈ C and let N be the greatest closed square with center x, sides parallel
to the axes, and such that its interior does not contain any points of At. It may
be shown in a way completely analogous to the proof of Theorem 2.3 (i) that for a
fixed t > 0, w.p.1,
a) N ∩At contains only one point y = y(x) which is not a vertex of N and
b) for some b2 ∈ {0, π/2, π,−π/2}, ε1 > 0, and all a1 ≤ b2 − π, b1 ≥ b2, b1 − a1 >
π, ε2 > 0, one has G(y, b2 − π, b2, ε1) ⊂ N and G(y, a1, b1, ε2) ∩At 6= ∅.
Thus y ∈ Bt(b2 − π, b2); moreover, if x ∈ Ft then y ∈ BF

t (b2 − π, b2). For a fixed
t > 0, w.p.1 y(x) ∈ BF

t (b2 − π, b2) simultaneously for all x ∈ Ft with rational
coordinates. It follows from Theorem 2.6 that the set of points y = y(x) such that
x has rational coordinates, x ∈ Ft and y ∈ BF

t (−π/2, π/2), is dense in ∂Ft.
(E) Let b− a = 0, say a = b = 0. Fix t > 0 and denote Ws = W q1

s = X(q1 + s).
W.p.1, W Vq2 ∈ W BF

q2
(0, 0) simultaneously for all pairs of rationals q1, q2 ≥ 0. Since

the left endpoint of every interval of R+∩Ft is equal to W Vq2 for some rational q1, q2,
it follows that all such interval endpoints belong to BF

t (0, 0). By the translation
invariance, w.p.1 all left endpoints of intervals of (x +R+)∩Ft belong to BF

t (0, 0),
for all x ∈ C with rational coordinates. Theorem 2.6 implies easily that the set of
such endpoints is dense in ∂Ft.

(F) Part (i) of Theorem 2.4 has been proved for b − a ∈ [0, π], for a fixed t > 0
and, therefore, it holds w.p.1 for all rational t > 0 simultaneously.

Fix a, b, b − a ∈ [0, π], and suppose that BF
t (a, b) is not dense in ∂Ft for some

t > 0. Choose x ∈ ∂Ft and ε > 0 such that |x−Xt| > 2ε and

{z ∈ BF
t (a, b) : |x− z| < ε} = ∅.

Then, by continuity of X,

{z ∈ BF
s (a, b) : |x− z| < ε} = ∅

for all s ∈ (t, t + ε1) for some ε1 > 0, in particular for some rational s1 ∈ (t, t + ε1).
The last event has probability 0, so w.p.1 BF

t (a, b) is dense in ∂Ft for all t > 0.
This completes the proof of Theorem 2.4 (i).
ii) Theorem 2.4 (ii) follows from Corollary 2 (ii) of Evans (1985). ¤

Proof of Theorem 2.5. i) Theorem 2.5 (i) follows from the results of Le Gall (1987).
For b− a ∈ [0, π], it is an immediate consequence of Theorem 2.4 (i).
ii) Part (ii) of Theorem 2.5 follows easily from the results of Burdzy (1985) and
Shimura (1985). ¤
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7. Twist points.

Proof of Theorem 2.6. i) Here is the outline of the proof.
(A) Each point of x ∈ ∂Ft which is “nice” corresponds to a special set J .
(B) It suffices to show that every set J corresponds to a negligible set of “nice”
points.
(C) The assumption that J corresponds to a nonnegligible set of “nice” points leads
to a contradiction.
(D) McMillan’s Theorem is used to show that almost all points of ∂Ft are “twist
points”.

(A) Fix t > 0. First, some more notation will be introduced. For a set D ⊂
C, x ⊂ C and ε > 0 let h : R → [−∞,∞) be the smallest Lipschitz function with
constant 3 such that

{y ∈ ∂D :|<x−<y| ≤ ε, |=x−=y| ≤ ε}
⊂ {y ∈ C :|<x−<y| ≤ ε, |=x−=y| ≤ ε,<y ≤ h(=y)}.

To see that such a function exists, notice that for a large c, the constant function
h ≡ c satisfies the above condition. Then h may be defined as the infimum of the
family of all Lipschitz functions with constant 3 satisfying the condition (notice
that the Lipschitz constant is preserved under this operation). The function h may
be identically −∞. With the above definition of h, let

J1(x, ε, D) = {y ∈ C : |<x−<y| < ε, |=x−=y| < ε,<y > h(=y)},
J(x, ε, c) = e−icJ1(eicx, ε, eicFt), c ∈ R.

Recall from Section 3(ii) the idea of the (partial) identification of the Euclidean
and Martin boundaries of Ft. Let f : D∗ → Ft be analytic, one-to-one and onto
(D∗ = {z ∈ C : <z > 0}). Consider a point x ∈ ∂D∗ such that mf-f ′(x) = a ∈
C \ {0}. Choose ε > 0 so that | arg y − arg a| < π/12 for |a − y| < ε and let
A = {y ∈ D∗ : |f ′(y) − a| < ε}. The set A is simply connected, by the maximum
principle. It is a minimal fine neighborhood of x in D∗, by the assumption that
mf-f ′(x) = a. Thus there exists a Lipschitz function h : R → R with constant 1
such that h(r) > 0 for r 6= =x,

B
df= {y ∈ C : |y − x| < ε1,<y > h(=y)} ⊂ A

for some ε1 > 0, and B is a minimal fine neighborhood of x in D∗ (see Section 3
(ii)). Observe that | arg f ′(y)− arg a| < π/12 for y ∈ ∂B, y 6= x. It follows that for
some neighborhood U of f(x), f(∂B)∩U is the graph of a Lipschitz function with
constant 2 (in a suitable coordinate system). Easy geometry shows that z = f(x)
satisfies the following condition

(7.1) there exist y ∈ C, ε2 > 0, c ∈ R and a neighborhood U1 of z such that
a) |z − y| ≤ ε2/2,
b) <y,=y, ε2 and c are rational,
c) f(B) ∩ U1 ⊂ J(y, ε2, c) ∩ U1 and
d) J(y, ε2, c) ⊂ Ft.

The condition (7.1c) implies that J(y, ε2, c) is a minimal fine neighborhood of f(x)
in Ft (see Section 3 (ii)).
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(B) Now it will be proved that the set N of all points x ∈ ∂D∗ with mf-f ′(x) ∈
C \ {0} has null harmonic measure in D∗. By the conformal invariance of the
harmonic measure, it is enough to show that f(N) ⊂ ∂Ft has null harmonic measure
in Ft. The first part of the proof has shown that it is enough to prove that the
set of points z ∈ ∂Ft satisfying (7.1) has null harmonic measure in Ft. The family
of sets J(y, ε2, c) considered in (7.1) is countable, so the problem may be further
reduced to showing that for fixed y, ε2, c, w.p.1 the set of points z ∈ ∂Ft, for which
J(y, ε2, c) satisfies (7.1), has null harmonic measure in Ft.

Fix y, ε2, c and let J = J(y, ε2, c). By the rotation invariance of Brownian motion,
it may be assumed without loss of generality that c = 0. Let K denote the set of all
points z ∈ ∂Ft such that z and J satisfy (7.1). Assume that the harmonic measure
of K in Ft is strictly positive. It will be shown that this assumption leads to a
contradiction.

(C) For each z ∈ K, J is a minimal fine neighborhood of z in Ft, so K ⊂ ∂J .
The probabilistic interpretation of the minimal fine topology (Section 3 (iii) (C))
implies that for all x ∈ Ft and y ∈ K,

P̃ x
y (sup{s ≥ 0 : Ys ∈ Jc} < R) = 1

and

(7.2) P̃ x(sup{s < TK : Ys ∈ Jc} < TK | TK = T∂Ft) = 1.

The symbols with a “wave” refer to a Brownian motion Y independent from X
which has been used to define Ft, K and J . The hitting times are defined relative
to Y . Observe that P̃ x(TK = T∂Ft) > 0, by assumption.

Let g(y) = P̃ y(TK ≤ TJc). The function g is nonnegative and harmonic in J so
it is either strictly positive in J or identically 0 in J . Suppose that g(y) ≡ 0 in J .
Then g(y) = 0 for all y ∈ C. The Markov property implies that for x ∈ Ft and
u > 0,

P̃ x(TK ◦ θu ≤ TJc ◦ θu) = P̃ x[P̃Yu(TK ≤ TJc)] = Ẽxg(Yu) = 0.

Since
{sup{s < Tk : Ys ∈ Jc} < TK} ⊂

⋃

rational u

{TK ◦ θu ≤ TJc ◦ θu},

it follows that

P̃ x(sup{s < TK : Ys ∈ Jc} < TK | TK = T∂Ft) = 0,

contrary to (7.2). This contradiction implies that g(y) > 0 for y ∈ J .
Let W (a) be the left endpoint of the maximal interval of (R+ai)∩Ft which has

a nonempty intersection with J , for a ∈ (=y − ε2,=y + ε2)
df= (b1, b2). For a fixed

a,w.p.1 W (a) ∈ BF
t (0, 0) (see the proof of Theorem 2.4 (i)). Thus

E0

∫ b2

b1

1{W (a)/∈BF
t (0,0)}da =

∫ b2

b1

P 0(W (a) /∈ BF
t (0, 0))da = 0.

In other words, w.p.1 the set

Z1
df= {x ∈ C : <x = 0,=x ∈ (b1, b2),W (=x) /∈ BF

t (0, 0)}
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has (1-dimensional) Lebesgue measure 0. Let Z2 be the projection of Z1 onto the
boundary of J in the direction of the real axis. Since the boundary of J is (locally)
a graph of a Lipschitz function, it follows that the linear measure of Z2 ⊂ ∂J is 0.
By a theorem of Dahlberg (1977), the harmonic measure of Z2 in J is null.

If z ∈ K then W (=z) ∈ ∂J and W (=z) /∈ BF
t (0, 0). Thus K ⊂ Z2, the harmonic

measure of K in J is 0, and, consequently g(y) = P̃ y(TK ≤ TJc) = 0 for y ∈ J .
This is a contradiction which proves that the assumption that K has a non-zero
harmonic measure in Ft must be false. According to previous remarks, this shows
that the set of all points x ∈ ∂D∗ with mf-f ′(x) ∈ C\{0} has null harmonic measure
in D∗.

(D) McMillan’s Theorem (see Section 3(ii)) shows that almost all points x ∈ ∂D∗
are f -twist points. Hence, for a fixed t > 0, w.p.1 all points of ∂Ft are twist points,
except a set of null harmonic measure.

To strengthen the result to floating t > 0, use the same method as at the end of
the proof of Theorem 2.4 (i).
ii) Part (ii) of Theorem 2.6 is an obvious corollary of part (i). ¤
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