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Abstract. Let X be a standard 2-dimensional Brownian motion. There exists
a.s. t ∈ (0, 1) such that X([0, t)) ∩ X((t, 1]) = ∅. It follows that X([0, 1]) is not
homeomorphic to the Sierpiński carpet a.s.

1. Introduction. Let X be a standard (i.e. continuous) n-dimensional Brownian
motion, n ≥ 1. A (random) point x ∈ Rn will be called a cut point if there exists
t ∈ (0, 1) such that X(t) = x and X([0, t)) ∩X((t, 1]) = ∅.
Question. Do cut points exist?

The answer depends on the dimension n. If n = 1 then cut points correspond
to “points of increase” or “points of decrease” of the Brownian path. Dvoretzky et
al. (1961) have shown that such points do not exist a.s. (see Adelman (1985) for a
simple proof). If n ≥ 4 then Brownian paths have no double points (Dvoretzky et
al. (1950)) and every x = X(t), t ∈ (0, 1), is a cut point.

The main result of the paper is the following

Answer. Cut points exist if and only if n ≥ 2.

One consequence of this result is that for n = 2, the random set X([0, 1]) is
not homeomorphic to the Sierpiński carpet, as has been conjectured (Mandelbrot
(1982)).

Recently, quite a few results have been proved about the geometric properties of
the 2-dimensional Brownian paths, see e.g. Burdzy (1985, 1987a,b), Cranston et al.
(1987), El Bachir (1983), Evans (1985), Le Gall (1986, 1987), Mountford (1987),
Shimura (1984, 1985, 1988).

A rigorous statement of the results and an outline of the main proof appear in
Section 2. The proofs are given in Section 4. Section 3, “Preliminaries”, introduces
some notation and presents three ideas (Lemmas 3.1-3.3) on which the proofs are
based. The readers are referred to Doob (1984) for the review of the theory of
h-processes; this may be a little unfair but even the shortest review of the basic
concepts of Brownian motion, potential theory and their relationship would take
enormous space.
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The author is grateful to Omer Adelman for the interesting discussions related
to the subject and to Martin Barlow and Benoit Mandelbrot for the most valuable
suggestions. Many thanks go to the Referee for pointing out two serious mistakes
and for other useful comments.

2. Main results. Let Ω be the set of all paths ω : [0,∞) → C ∪ {δ} which are
continuous on [0, R) and equal to δ otherwise. The lifetime R may be infinite. The
“coffin” state δ is outside C. Let X be the canonical process on Ω i.e., Xt(ω) = ω(t)
for all t and ω. Let F = σ{Xs, s ≥ 0} and let P x denote a measure on (Ω,F) which
makes X a standard Brownian motion starting from x.

The set of all complex numbers, the imaginary unit and the real and imaginary
parts of x will be denoted C, i, <x and =x, respectively.

Theorem 2.1. For every ε > 0, the following event has a strictly positive P 0-
probability:

{∃t ∈ (0, 1) such that X([0, t)) ∩X((t, 1]) = ∅,
X(s) 6= X(t) for all s ∈ [0, 1], s 6= t,

arg(X(s)−X(t)) ∈ [0, π] for all s ∈ [0, t) and

arg(X(s)−X(t)) ∈ [π − ε, 2π] for all s ∈ (t, 1]}.

Theorem 2.2. P 0-a.s., for every ε > 0 there exists t ∈ (0, ε) such that X(s) 6= X(t)
for all s ∈ [0, 1], s 6= t, and

X([0, t)) ∩X((t, 1]) = ∅.

Theorem 2.3. P 0-a.s., for every ε > 0 there exist s and t such that s ∈ (1/2 −
ε, 1/2), t ∈ (1/2, 1/2 + ε), X(s) 6= X(u) 6= X(t) for all u ∈ [0, 1], u 6= s, t, and

X((s, t)) ∩X([0, s) ∪ (t, 1]) = ∅.

Corollary 2.1. Theorems 2.2 and 2.3 hold for the 3-dimensional Brownian mo-
tion.

The Sierpiński carpet, a 2-dimensional analogue of the Cantor set is defined as
(Mandelbrot (1982)):

{z ∈ C : =z ∈ [0, 1],<z ∈ [0, 1]}

\
∞⋃

k=1

3k−1−1⋃
n=0

3k−1−1⋃
m=0

{z ∈ C :=z ∈ ((3n + 1)3−k, (3n + 2)3−k),

<z ∈ ((3m + 1)3−k, (3m + 2)3−k)}.

Corollary 2.2. The Brownian trace X([0, 1]) is not homeomorphic to the Sierpiński
carpet P 0-a.s.

Suppose that X has the distribution P 0 and Z(t) = X(t)− tX(1) for t ∈ [0, 1].
Then the process Z is the Brownian motion conditioned to return to its starting
point at time 1. Mandelbrot (1982) calls it a “Brownian loop”.
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Corollary 2.3. The trace Z([0, 1]) of the Brownian loop is not homeomorphic to
the Sierpiński carpet a.s.

Here is an outline of the main proofs. Some details are changed for the sake of
brevity and clarity.

(i) Consider an h-process X in a half-plane D, converging to a point x ∈ ∂D
(i.e. X is a Brownian motion conditioned to hit ∂D at x). Let Bk = Bk(yk, rk)
be a ball with yk ∈ ∂D, |yk − x| = 2−k, rk = c2−k where c is a small constant.
Lemmas 4.1-4.4 show that the complement of X([0, R)) contains not only Dc but
a sufficiently large (random) family of balls {Bkj}.

(ii) Let X be the 2-dimensional Brownian motion starting from 0. One would
like to know the chance of an “approximate” cut point. An “approximate” cut
point is a point X(T ) such that X([0, T ))∩X((T + ε, S]) = ∅, where ε is small and
T and S are random times.

Let L denote a horizontal line below 0 and let T be the hitting time of L by
X. The trace X([0, T )) has the property described in (i) i.e. its complement D1

contains not only the half-plane D2 below L but a sufficiently large family of balls
{Ak} analogous to Bk’s and centered at points of L close to X(T ) as well. If X(T+ε)
happens to be in D2 then X(T + ε + · ) has some chance of traveling far below L
before hitting ∂D1. Lemmas 4.5-4.7 give estimates of the expected maximum of
the vertical displacement of X(T + ε + · ) before it hits ∂D1. These estimates
indicate that the distribution of this maximum displacement has a heavy tail. In
other words, an “approximate” cut points with relatively large =(X(S) − X(T ))
are quite likely. At this point, it is crucial that D1 contains not only D2 but the
balls {Ak} as well.

(iii) An idea of Davis (1983) forms the basis of the main part of the proof of
Theorem 2.1.

Let Lk be the horizontal line below 0, dist(0, Lk) =
√

ε2−k. Let T1 be the
hitting time of L1 and let S1 be the hitting time of X([0, T1)) by X(T1 + ε + · ).
Define inductively Tk to be the hitting time of the first line Lj which lies below
X([0, Sk−1)) and let Sk be the hitting time of X([0, Tk)) by X(Tk + ε + · ). The
vertical components of X(Tk) form a process which resembles a renewal process.
The estimates mentioned in (ii) are used to show that =(X(Tk+1) − X(Tk)) are
likely to take large values even if ε → 0. This means that even for small ε, it is
likely that for some k the parts X([0, Tk)) and X((Tk + ε, Sk)) of the path are large
and, by definition, disjoint. It is easy to see that the “approximate” cut points
X(Tk) converge to the “true” cut points as ε → 0.

(iv) Statements similar to Theorems 2.2 and 2.3 are usually proved using the 0-1
law which in the present case may suggest that: “If a cut point may exist then it
must exist in every neighborhood of the starting point”. Unfortunately, the events
under consideration do not belong to the germ σ-field F0+ and, consequently, the
0-1 law cannot be applied. Instead, an elementary argument based on scaling and
the strong Markov property is supplied. It is shown that the events that a cut point
occurs in the annulus {x : 2−k < |X(0) − x| < 2−k−1} for k ≥ 1 are sufficiently
independent and have probabilities bounded away from 0 so at least one of them
must happen.

3. Preliminaries. The Doob’s theory of h-processes (i.e. conditioned Brownian
motion) will be the main tool used in the proofs. The monograph of Doob (1984)
contains a detailed review of this theory and will be quoted repeatedly below. The
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readers are advised to consult this book for the definitions of harmonic functions,
the Martin boundary, h-processes, time-reversal, Harnack inequality etc.

The set of all natural numbers (except 0) will be denoted N. For a set A ⊂ C,
the interior of A and the translation of A by x will be denoted IntA and A + x

The space Ω and the canonical process X, introduced in Section 2, will be used
most of the time as the underlying structure. Denote Ac = Ω \ A, X(R−) =
lim

t→R−
X(t) and T (A) = inf{t > 0 : X(t) ∈ A}. Let P z

h and Pµ
h denote measures

on (Ω,F) which make X an h-process starting from z or having µ as the initial
distribution. Here h is a positive superharmonic function in a Greenian subdomain
of C. The corresponding expectations will be denoted Ez

h and Eµ
h . The distribution

and expectation of Brownian motion in a Greenian set D i.e., Brownian motion
killed at the hitting time of C \D, will be denoted P z

D and Ez
D.

For A ⊂ C let

cA = {z ∈ C : ∃x ∈ A such that z = cx}.

Lemma 3.1. (Scaling property). Suppose that c ∈ (0,∞), D ⊂ C is a Greenian
domain, h is a positive superharmonic function in D, µ is a measure supported in
D, and A ∈ F . Define

hc(z) = h(c−1z) for z ∈ cD,

µc(B) = µ(c−1B) for B ⊂ cD,

Ac = {ω ∈ Ω : ∃ω1 ∈ A such that ω(t) = cω1(t/c2) for all t}.

Then Pµc

hc
(Ac) = Pµ

h (A).

Proof. The result follows immediately from the scaling properties of Brownian mo-
tion and the definition of an h-process (Doob (1984) 2 VII 2 and 2X1). ¤

A domain D ⊂ C will be called Lipschitz if every point x ∈ ∂D has a neighbor-
hood U such that ∂D ∩ U is a graph of a Lipschitz function (in some coordinate
system, depending on x).

Lemma 3.2. (Boundary Harnack principle; Dahlberg (1977)). Suppose that D1,
D2 and D3 are bounded, connected and open subsets of C, D1 ⊂ D2, D2 is Lipschitz
and the closure of D1 is a subset of D3. Then there exists a constant c > 0 such
that

h1(x)/h2(x) ≥ ch1(y)/h2(y)

for all x, y ∈ D1 and all positive harmonic functions h1 and h2 in D2 which vanish
on ∂D2 ∩D3. ¤

The Martin topology and the minimal Martin boundary may be identified with
the Euclidean topology and boundary in bounded Lipschitz domains (Hunt and
Wheeden (1970)).

Lemma 3.3. Suppose that h is a positive harmonic function in a Greenian domain
D ⊂ C, B is a closed subset of D and x ∈ D \ B. Consider the process Y =
{X(t), t ∈ [0, min(R, T (B)))} under P x

h .
(i) The process Y is an h-process in D \B.
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(ii) Conditioned on {T (B) < R}, the process Y is an h1-process in D\B, where
h1 is a harmonic function in D \B which vanishes on ∂(D \B) \B and is
equal to h on ∂(D \B) ∩B.

(iii) Conditioned on {T (B) ≥ R} (i.e. {T (B) = ∞}), the process Y is an
h2-process in D \B, where h2 = h− h1.

Proof. (i) See Doob (1984) p. 675.
(ii) and (iii) These parts of the lemma follow immediately from (i) and the

interpretation of the h-process Y as a mixture of gz-processes where {gz} is the
family of all minimal harmonic functions in D \B (see Doob (1984) p. 691). ¤

4. Proofs.

Lemma 4.1. Denote D = {z ∈ C : =z > 0} and for a ∈ (0, 1/8) and k ∈ N let

Bk = Bk(a) = {z ∈ C : | − 5 · 2−k−2 − z| ≤ a2−k}.

For k ∈ N and K ⊂ {1, 2, . . . , k − 1} let

D1 = D1(k,K, a) = {z ∈ D : |z| < 1} \
⋃

m∈K

Bm.

There exists a constant c1 < ∞ (which does not depend on k, K or a) such that for
every positive harmonic function h in D1 which vanishes on {z ∈ ∂D1 : |z| < 1}
and all x ∈ Bk ∩D1 one has

h(x) ≤ c1h(7i/8)=x.

Proof. Let D2 = {z ∈ D : 3/4 < |z| < 1} and S = {z ∈ D : |z| = 7/8}. The
functions h and z → =z are positive and harmonic in D2 so the boundary Harnack
principle implies that there exists c2 < ∞ such that

h(y)/=y ≤ c2h(7i/8)/=(7i/8)

for all y ∈ S. Thus
h(y) ≤ (8c2/7)h(7i/8)=y

for y ∈ S. This inequality holds also for y ∈ ∂D1, |y| < 1, since h vanishes for such
y. Use the averaging property of harmonic functions to see that

h(x) =
∫

∂D1∪S

h(y)P x(X(T (∂D1 ∪ S)) ∈ dy)

≤
∫

∂D1∪S

(8c2/7)h(7i/8)=y P x(X(T (∂D1 ∪ S)) ∈ dy)

= (8c2/7)h(7i/8)=x

for x ∈ D1, |x| < 7/8, in particular for x ∈ Bk ∩D1. ¤
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Lemma 4.2. Let D3 ⊂ D be such that {z ∈ D3 : |z| ≤ 1} = {z ∈ D1 : |z| ≤ 1}.
Suppose that h is positive harmonic in D3 and vanishes on {z ∈ ∂D3 : |z| ≤ 1}.
Then

P x
h (T (Bk) < ∞) ≤ c3a2−k

for all x ∈ D3, |x| > 1, and some constant c3 < ∞ (which does not depend on D3,
x, h, k, K or a).

Proof. Apply the boundary Harnack principle to positive harmonic functions h and
x → P x

D3
(T (Bk) < ∞) in D2 to obtain

(4.1)
P x

D3
(T (Bk) < ∞)

h(x)
≤ c2

P
7i/8
D3

(T (Bk) < ∞)
h(7i/8)

≤ c2

h(7i/8)

for x ∈ S. The function y → P y
D3

(T (Bk) < ∞) vanishes on {z ∈ ∂D3 : |z| ≥ 7/8},
so (4.1) holds on the whole boundary of {z ∈ D3 : |z| > 7/8} and, consequently,
inside this region. In particular, (4.1) holds for x ∈ D3, |x| > 1.

Note that max
y∈Bk

=y = a2−k. This fact, formula (4.1), Lemma 4.1 and formula

(2.1) from Section 2X2 of Doob (1984) imply that

P x
h (T (Bk) < ∞) =

∫

∂Bk

[h(y)/h(x)]P x
D3

(X(T (Bk)) ∈ dy)

≤
∫

∂Bk

[c1h(7i/8)=y/h(x)]P x
D3

(X(T (Bk)) ∈ dy)

≤
∫

∂Bk

[c1h(7i/8)a2−k/h(x)]P x
D3

(X(T (Bk)) ∈ dy)

= c1a2−kP x
D3

(T (Bk) < ∞)h(7i/8)/h(x)

≤ c1a2−kc2

for x ∈ D3, |x| > 1. ¤
Lemma 4.3. Let D4 ⊂ D be such that

{z ∈ D4 : |z| ≤ 2−k} = {z ∈ D : |z| ≤ 2−k} \
⋃

m∈K

Bm

where K ⊂ {k +1, k +2, . . . , j− 1}. Suppose that h is positive harmonic in D4 and
vanishes on {z ∈ ∂D4 : |z| < 2−k}. Then

Pµ
h (T (Bj) < ∞) ≤ c3a2−j+k

for every measure µ supported in {z ∈ D4 : |z| > 2−k}.
Proof. Lemma 4.2 and the scaling property imply that

P x
h (T (Bj) < ∞) ≤ c3a2−j+k

for x ∈ D4, |x| > 2−k. The result follows by integration with respect to µ. ¤
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Lemma 4.4. Denote Ak = {T (Bk) = ∞} and let Fk be the σ-field generated by
{A1, A2, . . . , Ak}. Let h be the minimal positive harmonic function in D corre-
sponding to 0 ∈ ∂D. For sufficiently small a > 0 there exists p = p(a) > 0 such
that P x

h (Ak+1 | Fk) > p for all x ∈ D, |x| ≥ 1.

Proof. Fix k ∈ N. Every set in Fk is a disjoint union of events of the form
⋂

m∈K

Am∩
⋂

m∈J

Ac
m where J ∪K = {1, 2, . . . , k} and J ∩K = ∅. The event

⋂
m∈K

Am ∩ ⋂
m∈J

Ac
m

is in turn a disjoint union of events Fj ∩
⋂

m∈K

Am where

Fj = {T (Bj1) < T (Bj2) < · · · < T (Bjn
) < ∞}

and j = (j1, j2, . . . , jn) is a sequence of all elements of J . To prove the lemma, it is
enough to prove that

P x
h (Ak+1 | Fj ∩

⋂

m∈K

Am) > p

for every choice of K and j. Thus, fix some K and j.
See Lemma 3.3 for the results on conditioned h-processes which will be used

below.
The distribution P x

h conditioned by
⋂

m∈K

Am is equal to P x
h1

where h1 is the

minimal harmonic function in D5
df= D \ ⋃

m∈K

Bm corresponding to 0 ∈ ∂D5.

Let Q denote the distribution P x
h1

conditioned by {T (Bjn) < ∞}. By the strong
Markov property of the h1-process, the process {X(t), t ∈ [T (Bjn), R)} under Q
is an h1-process in D5 and the process {X(t), t ∈ [0, T (Bjn))} under Q is an h2-

process in D6
df= D5 \ Bjn . Moreover, the two processes are independent, given

X(T (Bjn)). It follows that if Q1 is Q conditioned by {T (Bj1) < T (Bj2) < · · · <
T (Bjn−1) < ∞} then {X(t), t ∈ [T (Bjn), R)} under Q1 is an h1-process in D5 and
{X(t), t ∈ [0, T (Bjn))} under Q1 is an h2-process in D6 conditioned by {T (Bj1) <
T (Bj2) < · · · < T (Bjn−1) < ∞}.

Repeat the same argument for {X(t), t ∈ [0, T (Bjn))} under Q in place of
{X(t), t ∈ [0, R)} under P x

h1
and then proceed by induction to see that for all

m = 1, 2, . . . , n − 1 the process {X(t), t ∈ [T (Bjm), T (Bjm+1))} under Q1 is a gm-

process in D6 = D6(m) df= D5\
⋃n

r=m+1 Bjr . The initial distribution of this process
is supported by Bjm and gm is a positive harmonic measure in D6 which vanishes
on ∂D6 \Bjm+1 . The above remains true for m = 0 if one defines j0 = 0, Bj0 = {x}
and T (Bj0) = 0.

Now Lemma 4.3 will be applied to {X(t), t ∈ [T (Bjm), T (Bjm+1))} under Q1.
Substitute min(jm, jm+1) and k + 1 for k and j in the statement of Lemma 4.3 to
obtain

Q(X(t) ∈ Bjk+1 for some t ∈ [T (Bjm), T (Bjm+1)))

≤ c3a2−k−1+min(jm,jm+1)

≤ c3a2−k−1+jm .
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Then
(4.2)

Q(T (Bjk+1) < T (Bjn
)) ≤

n−1∑
m=0

Q(X(t) ∈ Bk+1 for some t ∈ [T (Bjm
), T (Bjm+1)))

≤
n−1∑
m=0

c3a2−k−1+jm

≤ c3a2−k−1
n−1∑
m=0

2jm

≤ c3a2−k−1
k∑

m=0

2m

≤ c3a2−k−12k+1 = c3a.

Denote D7 = {z ∈ D : 3 · 2−k−2 < |z| < 2−k}, D8 = {z ∈ D : |z| < 2−k},
S1 = {z ∈ D : |z| = 7 · 2−k−3}. Recall the harmonic function h1 such that
{X(t), t ∈ [T (Bjn), R)} under Q1 is an h1-process in D5. Apply the boundary
Harnack principle in D7 to the functions h1 and x → P x

D5
(X(T (Bk+1)) ∈ dy),

where dy ⊂ Bk+1, to see that

(4.3)
P x

D5
(X(T (Bk+1)) ∈ dy)

h1(x)
≤ c2

P v
D5

(X(T (Bk+1)) ∈ dy)
h1(v)

for all x ∈ S1. Here v = 7 · 2−k−3i and c2 < ∞ is the same constant as in Lemma
4.1; it does not depend on k, by scaling.

Now apply the boundary Harnack principle in D8 to the functions h1 and y → =y
to obtain

(4.4) h1(y)/h1(v) ≤ c4=y/=v = (c42k+3/7)=y

for y ∈ S1. The constant c4 < ∞ does not depend on k.
By (4.3), (4.4) and formula 2X2 (2.1) of Doob (1984),

P x
h1

(T (Bk+1) < ∞) =
∫

Bk+1

(h1(y)/h1(x))P x
D5

(X(T (Bk+1)) ∈ dy)

≤
∫

Bk+1

(h1(y)/h1(v))c2P
v
D5

(X(T (Bk+1)) ∈ dy)

≤
∫

Bk+1

(c2c42k+3/7)=yP v
D5

(X(T (Bk+1)) ∈ dy)

≤
∫

Bk+1

(c2c42k+3/7)a2−k−1P v
D5

(X(T (Bk+1)) ∈ dy)

≤ (c2c44a/7)P v
D5

(T (Bk+1) < ∞)

≤ (c2c44/7)a.
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Use the strong Markov property at T1
df= inf{t > T (Bjn

) : X(t) ∈ S1} to obtain

Q1(X(t) ∈ Bk+1 for some t > T (Bjn
)) =

∫

S1

P x
D5

(T (Bk+1) < ∞)Q1(X(T1) ∈ dx)

≤
∫

S1

(c2c44/7)aQ1(X(T1) ∈ dx)

≤ (c2c44/7)a.

This and (4.2) imply that

Q1(T (Bk+1) < ∞) ≤ c3a + (c2c44/7)a.

Now choose a > 0 so that the last expression is less than 1/2. Recall the definition
of Q1 to see that the last inequality may be rewritten as

P x
h (Ak+1 | Fj ∩

⋂

m∈K

Am) > 1/2

and this completes the proof. ¤
Lemma 4.5. Fix some k ∈ N and K ⊂ N and let

D9 = {z ∈ C : =z < 0} ∪ IntBk ∪
⋃

m∈K

IntBm.

Denote M(n) = {z ∈ C : =z = −2−n}. Then

P x
D9

(T (M(k − 2)) < ∞) ≥ bP x
D9

(T (M(k − 1)) < ∞)/2

for all x ∈ D9, |x| ≤ 2−k−1, and a constant b = b(a) > 1 which does not depend on
k or K.

Proof. Denote

S2 = S2(k) = {z ∈ D9 : |z| = 7 · 2−k−3},
D10 = D10(k) = {z ∈ D9 : 3 · 2−k−2 < |z| < 2−k},

A = A(k) = {z ∈ C : =z > 0, 3 · 2−k−2 < |z| < 2−k},
D11 = D11(k) = {z ∈ C : =z < 0, |z| < 2−k+2}.

By the boundary Harnack principle applied in D10, one has

(4.5)

P x(T (M(k − 1)) < T (∂D11))
P x(T (M(k − 1)) < T (A))

≥ c5
P v(T (M(k − 1)) < T (∂D11))

P v(T (M(k − 1)) < T (A))
df= c5c6

for x ∈ S2 and v = −7 · 2−k−3i. Note that c5c6 > 0 and these constants do not
depend on k, by scaling. Observe that, for x ∈ S2,

P x
D9

(X(T (M(k − 1))) ∈ D11) ≥ P x(T (M(k − 1)) < T (∂D11))
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and
P x

D9
(T (M(k − 1)) < ∞) ≤ P x(T (M(k − 1)) < T (A)).

This and (4.5) imply that

(4.6)
P x

D9
(X(T (M(k − 1))) ∈ D11)

P x
D9

(T (M(k − 1)) < ∞)
≥ c5c6

for x ∈ S2. This inequality holds also for x ∈ D9, |x| < 2−k−1, by the strong Markov
property applied at T (S2). Denote D12 = {z ∈ C : =z < 0} and D13 = D12∪IntBk.
Then

z → P z
D13

(T (M(k − 2)) < ∞)− P z
D12

(T (M(k − 2)) < ∞)

is a strictly positive harmonic function for z ∈ D12, −2−k+2 < =z < 0, and,
therefore, it has a strictly positive minimum ε1 on M(k − 1) ∩D11. The constant
ε1 does not depend on k, by scaling. It follows that for x ∈ M(k − 1) ∩D11,

P x
D9

(T (M(k − 2)) < ∞) ≥ P x
D13

(T (M(k − 2)) < ∞)

≥ ε1 + P x
D12

(T (M(k − 2)) < ∞)

= ε1 + 1/2.

This, the strong Markov property applied at T (M(k − 1)) and (4.6) imply for
x ∈ D9, |x| ≤ 2−k−1,

P x
D9

(T (M(k − 2)) < ∞)

=
∫

M(k−1)∩D11

P y
D9

(T (M(k − 2)) < ∞)P x
D9

(X(T (M(k − 1))) ∈ dy)

+
∫

M(k−1)\D11

P y
D9

(T (M(k − 2)) < ∞)P x
D9

(X(T (M(k − 1))) ∈ dy)

≥
∫

M(k−1)∩D11

(ε1 + 1/2)P x
D9

(X(T (M(k − 1))) ∈ dy)

+
∫

M(k−1)\D11

P y
D12

(T (M(k − 2)) < ∞)P x
D9

(X(T (M(k − 1))) ∈ dy)

=
∫

M(k−1)∩D11

(ε1 + 1/2)P x
D9

(X(T (M(k − 1))) ∈ dy)

+
∫

M(k−1)\D11

1/2P x
D9

(X(T (M(k − 1))) ∈ dy)

= (ε1 + 1/2)P x
D9

(T (M(k − 1)) ∈ D11) + 1/2P x
D9

(T (M(k − 1)) /∈ D11)

= 1/2P x
D9

(T (M(k − 1)) < ∞) + ε1P
x
D9

(T (M(k − 1)) ∈ D11)

≥ 1/2P x
D9

(T (M(k − 1)) < ∞) + ε1c5c6P
x
D9

(T (M(k − 1)) < ∞)

= (1/2 + ε1c5c6)P x
D9

(T (M(k − 1)) < ∞). ¤

Lemma 4.6. Let

D14 = {z ∈ C : −1 < =z < 0} ∪
∞⋃

k=1

IntBjk
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where 2 = j0 < j1 < j2 < . . . Then

Ex
D14

(| min
t∈(0,R)

=X(t)|)
P x

D14
(=(X(R−)) = −1)

≤ c7(8 + 2
∞∑

n=0

bn(jn+1 − jn))

for all x ∈ {z ∈ C : | − 2−mi − z| ≤ 2−m−1} df= D15 = D15(m), and all m ≥ 3,
m ∈ N. The constant b = b(a) > 1 is the same as in Lemma 4.5. The constant
c7 < ∞ does not depend on a, b, m or j’s.

Proof. Fix an m ≥ 3, m ∈ N and x = −2−mi. Denote pk = P x
D14

(T (M(k)) < ∞),
k ∈ N, p0 = P x

D14
(=(X(R−)) = −1). Let D16 = {z ∈ C : −1 < =z < 0}. Then

pk =
∫

M(k+1)

P y
D14

(T (M(k)) < ∞)P x
D14

(X(T (M(k + 1))) ∈ dy)

≥
∫

M(k+1)

P y
D16

(T (M(k)) < ∞)P x
D14

(X(T (M(k + 1))) ∈ dy)

=
∫

M(k+1)

1/2 P x
D14

(X(T (M(k + 1))) ∈ dy)

= pk+1/2

for 1 ≤ k ≤ m− 1; the inequality is valid for k = 0 for similar reasons.
By Lemma 4.5, pk ≥ bpk+1/2 if k + 2 = jn for some n ≥ 1, k ≤ m− 3.
Let s(k) = n if jn−1 ≤ k < jn+1−1. Then pk/p0 ≤ 2kb−s(k) for 1 ≤ k ≤ m−3.
The Harnack principle applied in {z ∈ C : |x − z| < 2−m} shows that for some

constant c8 < ∞

P y
D14

(T (M(k)) < ∞) ≤ c8P
x
D14

(T (M(k)) < ∞) = c8pk

and

P y
D14

(=X(R−) = −1) ≥ P x
D14

(=X(R−) = −1)/c8 = p0/c8

for k ≤ m− 2 and y ∈ D15. One has, for y ∈ D15,

Ey
D14

(| min
t∈(0,R)

=X(t)|) ≤
m−2∑

k=0

2 · 2−kP y
D14

(T (M(k)) < ∞)

≤
m−2∑

k=0

2 · 2−kc8P
x
D14

(T (M(k)) < ∞)

=
m−2∑

k=0

2 · 2−kc8pk

≤
m−3∑

k=0

c82−k+1pk + c82−m+3.
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Note that p0 ≥ 2−m and, therefore, 2−m+3/p0 ≤ 8. Thus, for y ∈ D15,

Ey
D14

(| min
t∈(0,R)

=X(t)|)
P y

D14
(=X(R−) = −1)

≤
∑m−3

k=0 c82−k+1pk + c82−m+3

p0/c8

≤
m−3∑

k=0

c2
82
−k+1pk/p0 + 8c2

8

≤ 8c2
8 +

m−3∑

k=0

c2
82
−k+12kb−s(k)

≤ 8c2
8 + c2

8

m−3∑

k=0

2b−s(k)

≤ 8c2
8 + c2

8

∞∑

k=0

2b−s(k)

≤ c2
8(8 + 2

∞∑
n=0

bn(jn+1 − jn)). ¤

Lemma 4.7. Denote W (d) = {z ∈ C : =z = d} and D17 = D17(x, ρ) = {z ∈ C :
|x− ρi− z| < ρ/2}. If a domain D contains D17 then let

G(x, ρ, D) = max
y∈D17




Ey
D(| min

t∈(0,R)
=X(t)|)

P y
D(=X(R−) = −1)


 .

Define

D18(d) = {z ∈ C : d− 1 < =z < d} ∪
⋃

k∈K

Int(Bk + X(T (W (d))))

where
K = {k ∈ N : T (Bk + X(T (W (d)))) > T (W (d))}.

For sufficiently small a > 0 and all d ≤ −1, m ≥ 3, m ∈ N, q > 0 one has

E0(G(X(T (W (d))), 2−m, D18(d))) ≤ c9

and, consequently,

P 0(G(X(T (W (d))), 2−m, D18(d)) ≤ q) ≥ 1− c9/q.

The constant c9 = c9(a) < ∞ does not depend on d or m.

Proof. Fix some d ≤ −1 and let D19 = {z ∈ C : =z > d}. Let hx denote the
minimal harmonic function in D19 corresponding to x ∈ ∂D19.

The process {X(t), t ∈ [0, T (W (d)))} under P 0 is a mixture of hx-processes in
D19 (see Doob (1984) 2X8). Thus, it will suffice to prove the lemma for each
hx-process separately.
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Fix an x ∈ ∂D19 and let 3 ≤ j1 < j2 . . . be the sequence of all integers greater
than 2 such that {T (Bjk

+ x) = ∞}.
Choose an a > 0 so that Lemma 4.4 holds for some p > 0. Lemma 4.4 says that

no matter which balls B3 + x, B4 + x, . . . , Bk−1 + x were hit by X, the conditional
P 0

hx
-probability of {T (Bk + x) = ∞} is at least p. Thus, for each n ∈ N, the

distribution of jn+1 − jn is stochastically smaller than the geometric distribution
with the parameter p and, consequently, the expectations of jn+1 − jn, n ∈ N, are
uniformly bounded, say,

E0
hx

(jn+1 − jn) ≤ c10 < ∞

for n ∈ N and also n = 0 (here j0 = 2). Let

D20 = {z ∈ C : d− 1 < =z < d} ∪
∞⋃

k=1

Int(Bjk
+ x).

Lemma 4.6 implies that

E0
hx

(G(x, 2−m, D20)) ≤ E0
hx

(c7(8 + 2
∞∑

n=0

bn(jn+1 − jn)))

= 8c7 + 2
∞∑

n=0

bnE0
hx

(jn+1 − jn)

≤ 8c7 + 2
∞∑

n=0

bnc10

= 8c7 + 2c10/(1− b) df= c9 < ∞. ¤

Proof of Theorem 2.1. Fix ε > 0 and choose a > 0 so that Lemma 4.4 holds with
some p > 0 and Bk ⊂ {z ∈ C : arg z ∈ (π − ε, 2π)} for k ∈ N.

Fix an m ∈ N. Recall that W (d) = {z ∈ C : =z = d}. Let

D21(k) = {z ∈ C : |X(T (W (−1− k2−m)))− 2−m−1i− z| ≤ 2−m−2},
D22(k) = {z ∈ C : −2− k2−m < =z < −1− k2−m}

∪
⋃

(Bn + X(T (W (−1− k2−m))))

where the union is taken over n such that

(Bn + X(T (W (−1− k2−m)))) ∩X([0, T (W (−1− k2−m))]) = ∅.

G(k) = max
y∈D21(k)




Ey
D22(k)(| min

t∈(0,R)
=X(T ) + 1 + k2−m|)

P y
D22(k)(=X(R−) = −2− k2−m)


 ,

Ak = {G(k) ≤ q, T (W (−1− (k + 1)2−m)) ≥ T (W (−1− k2−m) + 2−2m,

and X(T (W (−1− k2−m)) + 2−2m) ∈ D21(k)},
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j1 = inf{k ∈ N : Ak holds },
S1 = T (W (−1− j12−m)) + 2−2m,

T1 = inf{t > S1 : X(t) ∈ ∂D22(j1)},
N1 = min

t≤T1
=X(t).

Define by induction

j̃k = inf{n > jk−1 : −1− n2−m < Nk−1},
jk = inf{n > jk−1 : −1− n2−m < Nk−1 and An holds},
Sk = T (W (−1− jk2−m)) + 2−2m,

Tk = inf{t > Sk : X(t) ∈ ∂D22(jk)},
Nk = min

t≤Tk

=X(t).

Let γ = P 0(T (W (−2−m)) ≥ 2−2m, |X(2−2m) + 2−m−1i| < 2−m−2). The con-
stant γ > 0 does not depend on m, by scaling. Apply the strong Markov property
at T (W (−1− k2−m)) and use Lemma 4.7 to see that

P 0(Ak) ≥ (1− c9/q)γ

and
P 0(Ac

k) ≤ 1− (1− c9/q)γ.

It follows that

E0
2m∑

k=1

1Ac
k
≤ 2m(1− (1− c9/q)γ)

= 2m(1− γ + c9γ/q)

and

P 0(
2m∑

k=1

1Ac
k
≥ 2m(1− γ + c9γ/q)α) ≤ 1/α.

Choose some α > 1 and q < ∞ so that β
df= (1− γ + c9γ/q)α < 1. Then

(4.7) P 0(
2m∑

k=1

1Ac
k
≤ 2mβ) ≥ 1− 1/α.

Denote Vk = −1− jk2−m −Nk + 2−m and note that Vk ≤ 2 · 2−m +=X(Sk)−Nk.
Let

D23(jk) = {z ∈ C : =z > −2− jk2−m}
\ {z ∈ C : =z ≥ −1− jk2−m,<z = <X(T (W (−1− jk2−m)))}.

Then D22(jk) ⊂ D23(jk) and

E0Vk ≤ 2 · 2−m + E0(=X(Sk)−Nk)

≤ 2 · 2−m + E
X(Sk)
D23

(=X(Sk)− min
t∈(0,R)

=X(t))

≤ 2 · 2−m + max
z∈D21(jk)

Ez
D23

(=z − min
t∈(0,R)

=X(t))

= c10.
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The constant c10 does not depend on k and it is easy to see that c10 → 0 as m →∞.
Observe that the constants c9 and γ and, consequently, α and β, may be chosen
independently of m. Thus, for sufficiently large m there exists n1 = n1(m) such
that

(4.8)
(

1− β

2

)
·
(

α− 1
4α

)
≤

n1∑

k=1

E0Vk ≤
(

1− β

2

)
·
(

α− 1
2α

)

and, therefore,

(4.9) P 0(
n1∑

k=1

Vk ≤ (1− β)/2) ≥ 1− (α− 1)/(2α) = (α + 1)/(2α).

If
∑2m

k=1 1Ac
k
≤ 2mβ then

∑
jk≤2m(jk − j̃k) ≤ 2mβ. It follows from (4.7) that

(4.10) P 0(
∑

jk≤2m

(jk − j̃k) ≤ 2mβ) ≥ 1− 1/α.

One has 2−m(j̃k−jk−1) ≤ Vk−1 so
∑n1

k=2 (j̃k−jk−1) ≤
∑n1

k=2 2mVk−1 and, by (4.9),

P 0(
n1∑

k=2

(j̃k − jk−1) ≤ 2m(1− β)/2) ≥ (α + 1)/(2α).

This and (4.10) imply that

P 0(
∑

jk≤2m

(jk − j̃k) ≤ 2mβ and
n1∑

k=2

(j̃k − jk−1) ≤ 2m(1− β)/2) ≥ (α− 1)/(2α).

The event appearing in the above expression implies that jn1 < 2m and, conse-
quently, =X(Sk) ≥ −2 for k ≤ n1. Thus P 0(=X(Sk) ≥ −2) ≥ (α − 1)/(2α) for
k ≤ n1.

Recall that, by definition, Ajk
holds, X(Sk) ∈ D21(jk) and G(jk) ≤ q. Note

that =X(Sk) ≤ −1 − jk2−m − 2−m−2 so Nk ≤ −1 − jk2−m − 2−m−2 and Vk ≤
8(−1−jk2−m−Nk). These facts, together with the strong Markov property applied
at Sk imply that

P 0(=X(Sk) ≥ −2 and − 1− jk2−m −Nk = 1)

≥ (α− 1)/(2α)P 0(−1− jk2−m −Nk = 1)

= E0((α− 1)/(2α)PX(Sk)
D22(k)(=X(R−) = −2− jk2−m))

≥ E0((α− 1)/(2α)q−1E
X(Sk)
D22(k)(| min

t∈(0,R)
=X(t) + 1 + jk2−m|))

≥ (α− 1)/(2α)q−1(1/8)E0Vk.

Denote
Fk = {=X(Sk) ≥ −2 and − 1− jk2−m −Nk = 1}.
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The events Fk are disjoint. Thus, by the left hand side of (4.8),

P 0(
n1⋃

k=1

Fk) =
n1∑

k=1

P 0(Fk)

≥
n1∑

k=1

E0Vk(α− 1)/(16αq)

≥
[(

1− β

2

)
·
(

α− 1
4α

)]
· α− 1

16αq

df= c11 > 0.

Note that c11 does not depend on m, at least for m large enough so that n1(m) is
well-defined. The event

⋃n1
k=1 Fk implies the following event

H(m) = {∃s ≤ 2−2m ∃d ∈ [−2,−1] such that

X([0, T (W (d))]) ∩X([T (W (d)) + s, T (W (d− 1))]) = ∅ and

X([T (W (d)) + s, T (W (d− 1))]) ⊂ D24(X(T (W (d))))}

where
D24(x) = {z ∈ C : arg(z − x) ∈ [π − ε, 2π]} ∪ {x}.

The events H(m) are decreasing as m → ∞ and they all have P 0-probabilities
greater or equal to c11, so the same may be said about their intersection.

Let sm and dm be some random numbers (if they exist) which satisfy the def-
inition of H(m). By compactness, a subsequence of {dm} converges to a point
d∞ ∈ [−2,−1]. This and the continuity of Brownian paths imply that

∞⋂
m=1

H(m) ⊂ {∃d∞ ∈ [−2,−1] ∃t > 0 such that =X(t) = d∞,

=X(s) ≥ d∞ for all s < t,

X([0, t)) ∩X((t, T (W (d∞ − 1))]) = ∅ and

X((t, T (W (d∞ − 1))]) ⊂ D24(X(t))}
df= H(∞)

and P 0(H(∞)) ≥ c11 > 0.
Suppose that H(∞) holds and X(s) = X(t) for some s 6= t, s ∈ [0, T (W (d∞−1))].

Then, for some ε1 > 0, each set X([s − ε1, s]), X([s, s + ε1]), X([t − ε1, t]) and
X([t, t+ ε1]) would lie in a cone with the vertex X(t) and opening not greater than
π + ε < 2π. It follows easily from Theorem 1 of Evans (1985) that this event has
probability 0. Thus P 0(H(∞) and X(t) 6= X(s) for all s ∈ [0, T (W (d∞ − 1))], s 6=
t) ≥ c11 > 0 and this essentially completes the proof.

In order to translate this result into the statement given in Theorem 1, one may
use standard techniques, such as scaling and the strong Markov property. ¤
Proof of Theorem 2.2. A statement somewhat stronger than Theorem 2.2 will be
proved, in preparation for the proof of Theorem 2.3.

Let D1 = {z ∈ C : |z| < 1}. The distribution of the process

{Y (t) df= X(T (∂D1 − t)), t ∈ (0, T (∂D1))}
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under P 0 will be called Q. By the time-reversal, the process Y is an h-process
in D1 with h(x) = − log |x| and with the initial distribution uniform on ∂D1 (see
Doob (1984) 3 III 2).

Fix some a ∈ (0, 1) and denote

D2(x) = {z ∈ C : |x|/4 < |z| < 2|x|, | arg x− arg z| < π/4},
T1 = inf{t > 0 : |Y (t)| = a/2},
U1 = inf{t > 0 : |Y (t)| = a/8},

A1 = {Y ([T1, U1)) ⊂ D2(Y (T1)),

∃t ∈ (T1, U1) such that |Y (t)| ∈ (a/4, a/2),

Y ([T1, t)) ∩ Y ((t, U1]) = ∅,
Y −1(Y (t)) ∩ [T1, U1] = {t},
|Y (s)| > a/4 for s ∈ [T1, t],

|Y (s)| < a/2 for s ∈ [t, U1]}.
If A1 holds then let

V1 = inf{t > U1 : |Y (t)| = a/4}
and if V1 < ∞ then let

M1 = inf
t∈(U1,V1)

|Y (t)|/2.

If A1 does not hold then let M1 = a/16.
Now define some more objects inductively, for k ≥ 1. If Vk = ∞ then do not

define any new objects with the subscript k + 1. Otherwise, let

Tk+1 = inf{t > 0 : |Y (t)| = Mk/2},
Uk+1 = inf{t > 0 : |Y (t)| = Mk/8},

Ak+1 = {Y ([Tk+1, Uk+1)) ⊂ D2(Y (Tk+1)),

∃t ∈ (Tk+1, Uk+1) such that |Y (t)| ∈ (Mk/4,Mk/2),

Y ([Tk+1, t)) ∩ Y ((t, Uk+1]) = ∅,
Y −1(Y (t)) ∩ [Tk+1, Uk+1] = {t},
|Y (s)| > Mk/4 for s ∈ [Tk+1, t],

|Y (s)| < Mk/2 for s ∈ [t, Uk+1]}.
If Ak+1 holds then let

Vk+1 = inf{t > Uk+1 : |Y (t)| = Mk/4}

and if Vk+1 < ∞ then let

Mk+1 = inf
t∈(Uk+1,Vk+1)

|Y (t)|/2.

If Ak+1 does not hold then let Mk+1 = Mk/16.
The scaling property implies that Q(Ac

k or Vk < ∞ | Vk−1 < ∞) does not
depend on k. It follows easily from Theorem 2.1 that this conditional probability is
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strictly less than 1, equal to, say, p < 1. The random times Tk are stopping times
with respect to the filtration generated by Y . Apply the strong Markov property
at these stopping times to see that

Q(
n⋂

k=1

(Ac
k or Vk < ∞)) = pn.

Let n →∞ to obtain

Q(∃k ∈ N : Ak and Vk = ∞) = 1.

The event (Ak and Vk = ∞) implies that there exist t and x ∈ D1 such that

|x| < a(4.11)

|Y (t)| ∈ (|x|/2, |x|),
Y ([0, t)) ∩ Y ((t, ρ)) = ∅
Y −1(Y (t)) ∩ [0, ρ] = {t},

|Y (s)| > |x|/2 for s ∈ [0, t],

|Y (s)| < |x| for s ∈ [t, ρ),

Y ([0, ρ)) ∩ {z ∈ C : |x|/2 < |z| < |x|} ⊂ {z ∈ C : | arg z − arg x| < π/4},

where ρ = T (∂D1). With Q-probability 1, simultaneously for all rational a ∈ (0, 1),
such pairs (t, x) exist. The continuity of Brownian paths shows that for small a > 0,
t is arbitrarily close to ρ. In terms of the original process X, this says that P 0-a.s.,
for every ε > 0 there exists t ∈ (0, ε) such that X−1(X(t)) ∩ [0, T (∂D1)] = {t} and

X([0, t)) ∩X((t, T (∂D1)]) = ∅.

By scaling, a similar result holds for each hitting time Tk = inf{t > 0 : |X(t)| = k}
in place of T (∂D1). Since 1 < Tk for some k ∈ N P 0-a.s., the theorem follows. ¤
Proof of Theorem 2.3. Let D1 = {z ∈ C : |z| < 1} and suppose that xn ∈ D1 for
n ∈ N, |xn+1| < |xn|/2. Denote

Sn = {z ∈ C : |z| = |xn|},

S̃n = {z ∈ Sn : | arg z − arg(−xn)| < π/4}.
First it will be proved that for every y ∈ D1, y 6= 0,

(4.12) P y
h (∃n : T (Sn) = T (S̃n), |xn| < |y|) = 1

where h(z) = − log |z| for z ∈ D1.
Fix some y ∈ D1, y 6= 0, and find m such that |xm| < |y|/2. Let µ be the uniform

probability distribution on S = {z ∈ C : |z| = |y|}. Then Pµ
h (T (Sm) = T (S̃m)) =

1
4
, by symmetry. It follows that P x

h (T (Sm) = T (S̃m))| ≥ 1/4 for some x ∈ S. The

Harnack inequality applied in {z ∈ C : |y|/2 < |z| < 2|y|} implies that

P y(T (Sm) = T (S̃m)) ≥ c1P
x(T (Sm) = T (S̃m))
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and
P y(T (Sm) < T (∂D1)) ≤ (1/c1)P x(T (Sm) < T (∂D1))

where c1 > 0 may be chosen independently of y, x and m. Then

P y
h (T (Sm) = T (S̃m)) = P y(T (Sm) = T (S̃m))/P y(T (Sm) < T (∂D1))

≥ c2
1P

x(T (Sm) = T (S̃m))/P x(T (Sm) < T (∂D1))

= c2
1P

x
h (T (Sm) = T (S̃m))

≥ c2
1/4 > 0.

By analogy, P x
h (T (Sn) = T (S̃n)) ≥ c2

1/4 for x ∈ Sn−1, n−1 > m. Apply the strong
Markov property at the hitting times of Sn’s to see that

P y
h (

n⋂

k=m

{T (Sk) 6= T (S̃k)}) ≤ (1− c2
1/4)n−m.

Let n →∞ to obtain (4.12).
Suppose that X has the distribution Pµ

h and Z is an independent, standard 2-
dimensional Brownian motion, starting from 0. Denote TZ = inf{t > 0 : |Z(t)| =
1}. It has been shown in the proof of Theorem 2.2 (see 4.11) that a.s. there exist
sequences {xn} and {tn} such that

|xn+1| < |xn|/2,

|Z(tn)| ∈ (|xn|/2, |xn|),
Z([0, tn)) ∩ Z((tn, TZ ]) = ∅,
Z−1(Z(tn)) ∩ [0, TZ ] = {tn},
|Z(s)| < |xn| for s ∈ [0, tn],

|Z(s)| > |xn|/2 for s ∈ [tn, TZ ],

Z([0, TZ ]) ∩ {z ∈ C : |xn|/2 < |z| < |xn|} ⊂ {z ∈ C : | arg z − arg xn| < π/4}.
Fix a “typical” path of Z, such that there exist sequences {xn} and {tn} satisfying
the above conditions. Choose some a ∈ (0, 1) and recall the definitions of Sn and
S̃n from the beginning of the proof.

The next part of the proof is very similar to the proof of Theorem 2.2. Let

D2(x) = {z ∈ C : |x|/4 < |z| < 2|x|, | arg x− arg z| < π/4},
T1 = inf{t > 0 : t = T (Sn) = T (S̃n), |xn| < a/2}.

Let n1 be defined simultaneously with T1 by |X(T1)| = |xn1 |.
U1 = inf{t > T1 : |X(t)| = |xn1 |/4},

A1 = {X([T1, U1)) ⊂ D2(X(T1)),

∃t ∈ (T1, U1) such that |X(t)| ∈ (|xn1 |/2, |xn1 |),
X([T1, t)) ∩X((t, U1]) = ∅,
X−1(X(t)) ∩ [T1, U1] = {t},
|X(s)| > |xn1 |/2 for s ∈ [T1, t],

|X(s)| < |xn1 | for s ∈ [t, U1]}.
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If A1 holds then let

V1 = inf{t > U1 : |X(t)| = |xn1 |/2}

and if V1 < ∞ then let
M1 = inf

t∈(U1,V1)
|X(t)|/2.

If A1 does not hold then let M1 = |xn1 |/8.
Make the following inductive definitions for k ≥ 1, unless Ak and {Vk = ∞}

hold.

Tk+1 = inf{t > 0 : t = T (Sn) = T (S̃n), |xn| < Mk},
nk+1 is defined by |xnk+1 | = |X(Tk+1)|,

Uk+1 = inf{t > Tk+1 : |X(t)| = |xnk+1 |/4},

Ak+1 = {X([Tk+1, Uk+1)) ⊂ D2(X(Tk+1)),

∃t ∈ (Tk+1, Uk+1) such that |X(t)| ∈ (|xnk+1 |/2, |xnk+1 |),
X([Tk+1, t)) ∩X((t, Uk+1]) = ∅,
X−1(X(t)) ∩ [Tk+1, Uk+1] = {t},
|X(s)| > |xnk+1 |/2 for s ∈ [Tk+1, t],

|X(s)| < |xnk+1 | for s ∈ [t, Uk+1]}.
If Ak+1 holds then let

Vk+1 = inf{t > Uk+1 : |X(t)| = |xnk+1 |/2}

and if Vk+1 < ∞ then let

Mk+1 = inf
t∈(Uk+1,Vk+1)

|X(t)|/2.

If Ak+1 does not hold then let Mk+1 = |xnk+1 |/8.
Theorem 2.1 and (4.12) imply that

Pµ
h (Ac

k or Vk < ∞ | Vk−1 < ∞) = p < 1

where p does not depend on k, by scaling. This implies, as in the proof of Theorem
2.2, that

Pµ
h (∃k ∈ N : Ak and Vk = ∞) = 1.

It is elementary to check that the event (Ak and Vk = ∞) implies that there exist
s and t such that |Z(s)| < a, |X(t)| < a, Z−1(Z(s)) ∩ [0, TZ ] = {s}, X−1(X(t)) ∩
[0, R) = {t} and

(Z([0, s)) ∪X((t, R))) ∩ (Z((s, TZ ]) ∪X((0, t))) = ∅.

By the time-reversal applied to X, as in the proof of Theorem 2.2, one obtains the
following result.
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Let Y1 and Y2 be independent standard Brownian motions, Y1(0) = Y2(0) = 0.
Let

T k
1 = inf{t > 0 : |Y1(t)| = k},

T k
2 = inf{t > 0 : |Y2(t)| = k}.

Then with probability 1, for every rational a > 0 there exist s > 0 and t > 0 such
that |Y1(s)| < a, |Y2(t)| < a, Y −1

1 (Y1(s)) ∩ [0, T 1
1 ] = {s}, Y −1

2 (Y2(t)) ∩ [0, T 1
2 ] = {t}

and

(4.13) (Y1([0, s)) ∪ Y2([0, t))) ∩ (Y1((s, T 1
1 ]) ∪ Y2((t, T 1

2 ])) = ∅.

The same holds if T 1
1 and T 1

2 are replaced by T k
1 and T k

2 , by scaling.
Now let X have the distribution P 0 and let

Ỹ1(t) = X(1/2 + t)−X(1/2),

Ỹ2(t) = X(1/2− t)−X(1/2).

The processes (Ỹ1(t), t ∈ [0, 1/2]) and (Ỹ2(t), t ∈ [0, 1/2]) are independent standard
Brownian motions, Ỹ1(0) = Ỹ2(0) = 0. With probability 1, T k

1 ≥ 1/2 and T k
2 ≥ 1/2

for some k ∈ N. Thus (4.13) applies also to Ỹ1 and Ỹ2. In other words, with
P 0-probability 1, for every rational a > 0 there exist s > 0 and t > 0 such that
|Ỹ1(s)| < a, |Ỹ2(s)| < a, Ỹ −1

1 (Ỹ1(s)) ∩ [0, 1/2] = {s}, Ỹ −1
2 (Ỹ2(t)) ∩ [0, 1/2] = {t}

and
(Ỹ1([0, s)) ∪ Ỹ2([0, t))) ∩ (Ỹ1((s, 1/2]) ∪ Ỹ2((t, 1/2])) = ∅.

By continuity of Brownian paths and their point non-recurrence, the times s and t
are arbitrarily close to 0, for small a > 0. This completes the proof. ¤
Proof of Corollary 2.1. The corollary follows immediately from Theorems 2.2 and
2.3 and the fact that the orthogonal projection of the 3-dimensional Brownian
motion on a plane is a 2-dimensional Brownian motion. ¤
Proof of Corollary 2.2. It is elementary to check that the Sierpiński carpet has no
cut points (see Mandelbrot (1982) Section 14). The result follows from Theorem
2.2. ¤
Proof of Corollary 2.3. Let X have the distribution P 0 and Z(t) = X(t)− tX(1).
It is easy to see that the distributions of {X(t), t ∈ [1/4, 3/4]} and {Z(t), t ∈
[1/4, 3/4]} are mutually absolutely continuous. By Theorem 2.3, for each ε > 0
there exist s ∈ (1/2−ε, 1/2) and t ∈ (1/2, 1/2+ε) such that Z−1(Z(s))∩[0, 1] = {s},
Z−1(Z(t)) ∩ [0, 1] = {t} and

Z([1/4, s) ∪ (t, 3/4]) ∩ Z((s, t)) = ∅.

With probability 1, the distance between Z(1/2) and Z([0, 1/4]∪ [3/4, 1]) is greater
than 0. It follows easily that there exist s and t, 0 < s < 1/2 < t < 1, such that
Z−1(Z(s)) ∩ [0, 1] = {s}, Z−1(Z(t)) ∩ [0, 1] = {t} and

Z([0, s) ∪ (t, 1]) ∩ Z((s, t)) = ∅.

This means that with probability 1, the set Z([0, 1]) becomes disconnected after
removing certain two points. The Sierpiński carpet does not have this property. ¤
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Remarks. i) The above results raise many questions.
a) Is the set of all cut points uncountable? What is the Hausdorff dimension

of this set? The Associate Editor suggested that the methods of Orey and
Taylor (1974) are likely to give the affirmative answer to the first question.

b) Are there any cut points which are not two-sided cone points at the same
time? The common sense suggests that such points exist, since by relaxing,
in a sense, the condition one makes it more likely for a point to exist.
Supplying a rigorous proof, however, does not seem trivial.

c) One cannot extend Theorem 2.1 to ε = 0 because this would mean that the
1-dimensional Brownian motion =X(t) had a point of decrease, which is
impossible (Dvoretzky et al. (1961)). One may ask, however (Taylor (1986)
Problem 8), whether there exist a random straight line L and s ∈ (0, 1) such
that X([0, s)) and X((s, 1]) lie on the opposite sides of L. Shimura (1988)
has some results related to this problem.

d) Theorem 2.3 implies that for every t ∈ (0, 1), the ramification order of the
point X(t) of the set X([0, 1]) is equal to 2 a.s. (see Blumenthal and Menger
(1970) Section 13.2 or Mandelbrot (1982) Section 14 for the definition of
the ramification order). This implies that the Hausdorff dimension of the
set of all points of order 2 is 2 a.s. It seems that X([0, 1]) contains a.s.
points with ramification order greater than 2, even uncountably infinite.
For k > 2, what is the Hausdorff dimension of the set of all points of order
k?

e) A related, possibly much more difficult task is to find a nice topological de-
scription of the Brownian trace X([0, 1]). Is it possible to find a nonrandom
set A with a simple geometric definition such that X([0, 1]) is homeomorphic
to A a.s.? It is not obvious whether any nonrandom set A (not necessarily
“simple”) has this property.

f) Does the Brownian path contain any double cut points i.e. are there s and
t, 0 < s < t < 1, such that X(s) = X(t) and X([0, s)∪(t, 1])∩X((s, t)) = ∅?
This is related to the question whether the “self-avoiding Brownian motion”
is self-avoiding i.e., whether it is homeomorphic to a circle. Mandelbrot
(1982) defines a “self-avoiding Brownian motion” as the boundary of the
unbounded connected component of the complement of the Brownian loop.

ii) The existence of cut points is closely related to the problem of non-intersection
of two independent Brownian motions X and Y starting at a close distance, say
|X(0) − Y (0)| = ε. One may be interested in the rate with which the probability
of {X([0, 1]) ∩ Y ([0, 1]) = ∅} goes to 0 as ε → 0. Greg Lawler has many results in
this area, see e.g. Lawler (1985, 1986).
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