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Abstract. “Percolation dimension” is introduced in this note. It characterizes cer-
tain fractals and its definition is based on the Hausdorff dimension. It is shown that
percolation dimension and “boundary dimension” are in a sense independent from
the Hausdorff dimension and, therefore, provide an additional tool for classification
of fractals.

A unifying concept of fractal was introduced by Mandelbrot to provide a family of
models for real world phenomena which cannot be understood in terms of “smooth
mathematics” (see Mandelbrot (1982)). Mandelbrot used the Hausdorff dimension
as a measure of departure of a fractal from a smooth model and as a convenient
way to classify fractals. The purpose of this note is to introduce a new number
(“percolation dimension”) characterizing fractals. This, together with the Hausdorff
dimension, may provide a more accurate classification scheme for fractals.

The impulse to write this note came from the author’s research of Brownian
paths (see e.g. Burdzy (1987 a,b)). Brownian trace seems to be an example of a
fractal with nontrivial percolation dimension.

Percolation dimension of a fractal is, roughly speaking, the size of the shortest
path (i.e. the Hausdorff dimension of a connected subset of the fractal) joining
distinct points of the fractal.

The definitions and results will be stated for subsets of the plane only. General-
izing them to higher dimensions poses no problems.

Recall that a set A ⊂ R2 has Hausdorff dimension α, dim A = α, if α is the
infimum of numbers β such that for each ε > 0, A may be covered by balls with
radii rk, k ≥ 1, and

∑
k≥1(rk)β < ε.

The following definition is adapted from Mandelbrot (1982).

Definition 1. A set A ⊂ R2 will be called homogeneous if there exists α such that
for each open set U either U ∩ A = ∅ or dim(U ∩ A) = α. This property will be
denoted !-dim A = α.

Definition 2. It will be written b-dim A = β if !-dim(∂F ) = β for every connected
component F of R2 \A.

The number b-dim A may be called, somewhat imprecisely, the “boundary di-
mension” of A.
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For a connected set A ⊂ R2 and x, y ∈ A let FA(x, y) denote the family of all
connected subsets of A which contain x and y.

Definition 3. Let
p-dimA = inf

x,y∈A

x6=y

inf
B∈FA(x,y)

dimB,

p-dim A = sup
x,y∈A

x6=y

inf
B∈FA(x,y)

dimB.

If p-dim A = p-dim A then the common value will be denoted p-dim A and called
the percolation dimension of A.

Remarks. (i) If A ⊂ R2 is closed, contains at least 2 points and !-dim A, b-dim A
and p-dim A exist then obviously

1 ≤ p-dim A ≤ b-dimA ≤ !-dim A ≤ 2.

The theorem below will show that there are no other relations between the three
dimensions. Moreover, an effort will be made to construct a set A which is com-
pact and locally connected, so that it appears quite “natural”, at least from the
topological point of view.

(ii) Let A = X([0, 1]) be the set of all points visited by a 2-dimensional Brownian
motion X between times 0 and 1. Intuition suggests that

1 < p-dim A < b-dimA < !-dim A = 2.

The last equality is well known. Mandelbrot (1982) conjectures that b-dimA = 4/3.
The author plans to prove in a future article that b-dim A ∈ [1.01, 1.6].

(iii) Fractals with simple geometric or topological structure have trivial percola-
tion dimension. For example, the percolation dimension of a Koch curve is equal
to its Hausdorff dimension; percolation dimension of the Sierpiński carpet is 1 (see
Mandelbrot (1982) for definitions of these fractals).

(iv) The idea of using several numbers to characterize a fractal model appears
in Mandelbrot (1982), see e.g. Sections 7 and 13.

Before the main result is stated, a few classical definitions will be reviewed. The
complex plane C will be identified with R2, the imaginary unit will be denoted i.
A set homeomorphic to [0, 1] will be called a Jordan arc. A set homeomorphic to
a circle will be called a closed Jordan arc. For a Jordan arc Γ, Int Γ will denote Γ
without its endpoints. An open, simply connected set whose boundary is a closed
Jordan arc will be called a Jordan domain. An analytic, one-to-one function defined
on a Jordan domain may be continuously extended to the boundary.

Theorem. For all α, β, γ satisfying

1 ≤ α ≤ β ≤ γ ≤ 2

there exists a compact, connected and locally connected set F ⊂ R2 such that

p-dimF = α, b-dimF = β and !-dimF = γ.
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Proof. The proof will consist of several steps.

Step 1. For each α ∈ [1, 2] there exists a Jordan arc Γ with endpoints 0 and 1, such
that !-dimΓ = α and

Int Γ ⊂ E0 df= {z ∈ C : <z ∈ (0, 1),=z ∈ (−1, 1)}.
Proof. The construction is given in Mandelbrot (1982) Section 6. A few more
details will be supplied here.

It is easy to see that for k ≥ 1 one can choose positive integers Nk and nk and
closed line segments ∆m

k , m = 1, 2, . . . , Nk, so that
(i) |α− log Nk/ log nk| < 2−k,
(ii) ∆m

k has endpoints

p/nk + iq/nk and (p + 1)/nk + iq/nk

or
p/nk + iq/nk and p/nk + i(q + 1)/nk

for some integers p and q,

(iii) Tk
df=

Nk⋃
m=1

∆m
k is a Jordan arc with endpoints 0 and 1,

(iv) Tk ⊂ {z ∈ C : |=z| ≤ <z/2, |=(1− z)| ≤ <(1− z)/2}.
Let Γ2 be a Jordan arc obtained from T1 by replacing every line segment ∆m

1

with a rescaled copy of T2 so that the endpoints of the rescaled (and rotated, if
necessary) T2 coincide with the endpoints of ∆m

1 . By induction, Γk is obtained from
Γk−1 by replacing every line segment in Γk−1 (which has length (n1 ·n2 ·. . .·nk−1)−1)
with a rescaled copy of Tk.

It is easy to check that Γk’s converge to a Jordan arc Γ with endpoints 0 and 1,
Int Γ ⊂ E0.

Observe that Γk (and Γ as well) may be covered by N1 · N2 · . . . · Nk balls of
radius (n1 · n2 · . . . · nk)−1 centered at the endpoints of line segments constituting
Γk. Standard techniques show that

!-dimΓ = lim
k→∞

log(N1 ·N2 · . . . ·Nk)/ log(n1 · n2 · . . . · nk) = α.

Step 2. Suppose that D ⊂ C is a Jordan domain, x, y ∈ ∂D, x 6= y, and α ∈ [1, 2].
Then there exists a Jordan arc Γ with endpoints x and y, such that Int Γ ⊂ D and
!-dimΓ = α.

Proof. Let f : E0 → D be analytic, one-to-one and onto. Moreover, choose f so
that it maps 0 and 1 onto x and y. Let Γ1 be a Jordan arc with endpoints 0 and
1, !-dimΓ1 = α, Int Γ1 ⊂ E0. Define Γ = f(Γ1).

It is elementary to check that the Hausdorff dimension is conformal invariant.
Thus !-dim Γ = α and Γ has all the desired properties.

Step 3. Let M0 = E0, B0 = ∂E0, C0 = {z ∈ M0 : =z = 0},

A0 =
⋃

m=−1,0,1

∞⋃
n=1

∞⋃

k=0

{z ∈ M0 : |z − k2−n − im| = 2−n}

∪
⋃

m=0,1

∞⋃
n=1

∞⋃

k=−∞
{z ∈ M0 : |z − ik2−n −m| = 2−n},

D0 =A0 ∪B0 ∪ C0.
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It is evident from the definition that A0 =
∞⋃

k=1

A0
k for some Jordan arcs A0

k, which

have only countably many intersection points.
There exists a homeomorphism h : M0 → M1 such that if h(A0

k) = A1
k, h(B0) =

B1, h(C0) = C1, h(D0) = D1, and h(E0) = E1 then !-dim A1
k = α, !-dim B1 = β

and !-dim C1 = γ.

Proof. First, use the method of Step 1 to find a closed Jordan arc B1 with !-dimB1 =
β. Then use Step 2 to find a Jordan arc C1 so that B1 ∪ C1 is homeomorphic to
B0 ∪C0 and !-dim C1 = γ. Add sets A1

1, A
1
2, . . . one by one, each time choosing A1

k

so that B1 ∪ C1 ∪
k⋃

n=1
A1

n is homeomorphic to B0 ∪ C0 ∪
k⋃

n=1
A0

n and !-dim A1
k = α.

It is easy to see that A1
k’s may be chosen so that D1 df= B1 ∪C1 ∪

∞⋃
k=1

A1
k is homeo-

morphic to D0 and, moreover, there exists a homeomorphism h with the properties
specified above.

Step 4. In this step, the set F will be constructed.
The set M1 \ D1 consists of a countable number of Jordan domains. Denote

them G1
k, k ≥ 1.

Now it will be shown how to obtain inductively An+1, Bn+1, Cn+1, Dn+1 and
{Gn+1

k }k≥1 given An, Bn, Cn, Dn and {Gn
k}k≥1.

The set A1 has dimension α, by Step 3. It will follow, by induction, that
dim An = α for every n. Cover the set An with balls P ′k with radii r′k so that∑

k(r′k)αn < 2−n2−αn where αn = α+2−n. Let Pk be an open ball concentric with
P ′k and radius rk = 2r′k, and let Un =

⋃
k

Pk. Thus, An has an open superset Un

which may be covered by balls which have radii rk and
∑
k

(rk)αn < 2−n.

Consider a set Gn
k and choose a sequence of distinct points xm ∈ ∂Gn

k , m ≥ 1,
which is dense in ∂Gn

k . Note that ∂Gn
k ⊂ An ⊂ Un. Therefore, there exists a

Jordan domain J ⊂ U ∩Gn
k such that J ∩ ∂Gn

k = {x1}. Let K be a Jordan domain
containing E1 and such that ∂K∩D1 = {y}. Find an analytic, one-to-one function
f which maps K onto J and y onto x1. Let f(A1) = An+1

k,1 , f(B1) = Bn+1
k,1 , f(C1) =

Cn+1
k,1 , f(D1) = Dn+1

k,1 , f(M1) = Mn+1
k,1 . Repeat the construction for each point xm

and make sure that Mn+1
k,m and Mn+1

k,j (which correspond to xm and xj) are disjoint
for j 6= m. Then repeat the whole construction for each Gn

k , k ≥ 1. As a result, one

obtains analytic, one-to-one functions fk,m : K → Gn
k and sets An+1

k,m
df= fk,m(A1),

Bn+1
k,m

df= fk,m(B1), Cn+1
k,m

df= fk,m(C1), Dn+1
k,m

df= fk,m(D1), Mn+1
k,m

df= fk,m(M1) with
the following properties:

(i) Mn+1
k,m ⊂ Gn

k ∩ Un,
(ii) Mn+1

k,m ∩Mn+1
j,p = ∅ if (k,m) 6= (j, p),

(iii) Dn+1
k,m ∩ ∂Gn

k = {yk,m} and yk,m’s are dense in ∂Gn
k ,

(iv) !-dim An+1
k,m = α, !-dim Bn+1

k,m = β, and !-dim Cn+1
k,m = γ.

Let An+1 =
⋃

k,m

An+1
k,m , Bn+1 =

⋃
k,m

Bn+1
k,m , Cn+1 =

⋃
k,m

Cn+1
k,m , Dn+1 =

⋃
k,m

Dn+1
k,m ,

Mn+1 =
⋃

k,m

Mn+1
k,m , Hn

k = Gn
k \

⋃
m

Mn+1
k,m .
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In the above construction, choose functions fk,m so that the diameter of Mn+1
k,m

is less than 2−n−m−k. Then the set M1 \Dn+1 will consist of a countable family of
Jordan domains. Some of them are Hn

k ’s. Label the remaining ones Gn+1
k , k ≥ 1.

This ends the inductive step of the definition.
Let F be the closure of

⋃
n≥1

Dn. Since the diameter of Mn+1
k,m is less than 2−n−m−k

for each n and m, the set F is contained in Mk+1 ∪ ⋃
n≤k

Dn, for each k.

Step 5. It will be proved that the set F constructed in the previous step satisfies
the theorem.

(i) The set F is bounded and closed so it is compact. It is easy to see that it is
connected (even arc-connected) and locally connected.

(ii) It will be proved that !-dim F = γ. Note that F ⊂ Un ∪
∞⋃

k=1

(Bk ∪ Ck)

for every n. Fix some n. Since the set
∞⋃

k=1

(Bk ∪ Ck) has dimension γ, it can be

covered by balls with the radii ρm such that
∑
m

(ρm)γn < 2−n where γn = γ + 2−n.

By definition, the set Un may be covered by balls with radii rk,
∑
m

(rm)αn < 2−n,

αn = α + 2−n ≤ γ + 2−n. It follows that F may be covered by balls with radii pm,∑
m

(pm)γn < 2−n+1. Since n is arbitrary, dim F ≤ γ.

To see that !-dim F = γ, observe that the set
∞⋃

k=1

Ck df= C∞ is dense in F and

!-dim C∞ = γ.
(iii) The complement of F is the disjoint union of the complement of M1 and

Hn
k ’s for k, n ≥ 1. By construction, !-dim ∂M1 = β. Suppose that S is an open set

which has a nonempty intersection with ∂Hn
k . Then it has a nonempty intersection

with ∂Mn+1
k,m for some m. Since !-dim ∂Mn+1

k,m = β, it follows that dim(S∩∂Hn
k ) ≥ β.

Note that ∂Hn
k ⊂ ∂Gn

k∪
⋃

m≥1

∂Mn+1
k,m . Since dim ∂Gn

k = α and dim ∂Mn+1
k,m = β, it

follows that dim ∂Hn
k ≤ β. This and the previous inequality prove that b-dimF =

β.
(iv) Finally, it will be shown that p-dimF = α.

The set A∞ df=
⋃

k≥1

Ak is connected (even arc-connected) and dense in F . Thus,

for any x, y ∈ F , the set {x, y} ∪A∞ is connected and has dimension α; therefore,
p-dim F ≤ α.

To prove that p-dimF ≥ α, consider first x, y ∈ D1, x 6= y. Let Z be a
connected set such that Z ⊂ F and x, y ∈ Z. It is easy to see that Z1 df= Z ∩D1

is also connected and x, y ∈ Z1. It will be shown that Z1 contains a Jordan arc
which is a subset of B1, C1 or A1

k.
Suppose otherwise. Find a closed Jordan arc Γ which partitions the plane into

two open sets, with points x and y in the differential parts. The arc Γ may be chosen
so that it does not intersect B1 ∩Z1 or C1 ∩Z1, because these sets do not contain
arcs. Moreover, Γ need not pass through intersection points of A1

k’s, i.e. points
in A1

k ∩ A1
j , k, j ≥ 1, since there are only countably many such points. Finally,

modify Γ to obtain Γ′, a closed Jordan arc passing through the same sequence of
G1

k’s and not intersecting A1 ∩ Z1 (again, this is possible since A1 ∩ Z1 does not
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contain arcs). The arc Γ′ can still separate x and y and not intersect Z1. Therefore
Z1 is not connected, which is a contradiction. This proves that Z1 must contain
an arc of A1, B1 or C1 and dim Z ≥ dim Z1 ≥ α.

A similar argument shows that if x, y ∈ Dn
k,m, x 6= y, then for every connected

set Z such that x, y ∈ Z ⊂ F one has dim Z ≥ α.
Now consider x, y ∈ F , x 6= y, and suppose that there is no Dn

k,m such that
x, y ∈ Dn

k,m. Let n be the largest integer such that x, y ∈ Mn
k,m for some k,m

(M1
k,m

df= M1). Note that such an integer must exist, otherwise x and y would
belong to Mn

k,m for arbitrary large n and would have to be equal.
If x, y ∈ Mn

k,m but there is no Mn+1
k,m which contains x and y, three things may

happen. The first one is that x, y ∈ Dn
k,m, which is ruled out. The other two are

(i) x ∈ Dn
k,m, y ∈ Mn+1

j,p , y /∈ Dn
k,m, and x /∈ Mn+1

j,p

or
(ii) x, y /∈ Dn

k,m, so x ∈ Mn+1
j,p , y ∈ Mn+1

r,s , (j, p) 6= (r, s).

The roles of x and y may be interchanged in (i).
Suppose that Z ⊂ F is a connected set containing x and y. In case (i), Z must

contain z, where {z} = Mn+1
j,p ∩Dn

k,m. Note that z 6= x and x, z ∈ Dn
k,m ∩ Z. An

earlier part of the proof shows that dimZ ≥ α. In case (ii) let {z1} = Mn+1
j,p ∩Dn

k,m,
{z2} = Mn+1

r,s ∩Dn
k,m. Again, z1 6= z2, z1, z2 ∈ Dn

k,m∩Z, so dim Z ≥ α. This finishes
the proof that for every x, y ∈ F and every connected set Z containing x and y,
dim Z ≥ α. It follows that p-dim Z = α. ¤
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