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Abstract

We study two dimensional Brownian motion in a periodic system of traps using

conformal transformations. The system is periodic in the x and y directions. We

calculate the ratio of the drift along the y-axis to the drift along the x-axis. The

drift of the Brownian particle is induced by conditioning and by the asymmetry of

the system of traps. Finally we find the placement of traps which gives the maximal

drift ratio.
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I Introduction

Brownian motion in the presence of traps is a problem related to various phys-

ical phenomena, e.g., diffusion limited reaction [1-3], diffusion limited aggregation

[4,5], fluids in porous media [6,7] and diffusion of photons in a random or turbid

media [8]. Here we would like to consider a 2-dimensional (2-D) Brownian motion

in a periodic system of linear absorbing traps, as shown in Fig.1a. The period of

the system of traps is nQ in the x direction and nπ in the y direction. The distance

between the lines of traps is π and the size of a gate between the traps on a single

line is P . Here P ,Q and n are parameters, satisfying nQ > P ; we consider only

integer n in order to simplify computations. Whenever the Brownian trajectory

hits a black line (trap) it is absorbed, so it can only move through the gates. The

Brownian particle, conditioned to hit the line x = −∞ without being absorbed,

will have a steady drift induced by the conditioning and the absorbing traps. The

easy way to visualize how the absorbing traps induce drift is to consider the one

dimensional (1-D) case with one absorbing barrier on a line. In this 1-D case, the

single absorbing barrier effectively repels the center of the probability distribution

for a conditioned Brownian particle. In our 2-D system, the center of the proba-

bility distribution for a conditioned Brownian particle will move in the direction of

the solid line, indicated in Fig.1a for a particular case of n = 3.

The problem we pose here is: for a given integer value of n, what are the values

of P and Q which maximize the ratio of the drift along y-axis to the one along the

x-axis? This ratio, which we denote λ, is equal to tan θ, where the angle θ is shown

in Fig.1a. Note that in the particular case of n = 1, 2 the drift along y-axis is zero

due to the symmetry of the trap system. Thus the first nontrivial case is obtained

for n = 3. In order to study the problem we will employ the conformal invariance of

Brownian motion [9], i.e. the invariance of Brownian motion under local rotations
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and local changes of spatial and temporal scale. The conformal invariance property

has been a working tool in the case of 2-D critical systems [10] and in 2-D polymer

systems modelled as self-avoiding random walks [11]. Here we will use this property

to obtain various probability densities for our system, by applying analytic mappings

(conformal transformations) of the complex plane onto itself. In this way we can

transform a complicated system of traps onto a much simpler one, where all the

interesting probability densities are easy to obtain, and then transform it back to

our original system.

The paper is arranged as follows: In section II we will use conformal transfor-

mations to obtain the density of the hitting (probability) distribution (or density

of harmonic measure [12]) for the stripe shown in Fig. 1b. In section III, we use

this density to compute those of the hitting distribution and the stationary prob-

ability distribution for the conditioned process. The results and the discussion are

presented in section IV.

II Density of hitting distribution

From now on it will be convenient to use the complex variables z = x + iy.

From Fig.1a we see that the basic building block of our system of traps is a double

stripe with a single gate in the middle, as shown in Fig. 1b. Consider where the

Brownian trajectory, starting from any point in this gate, will for the first time hit

any of the black lines forming the boundary of the stripe. Let h(z, z′)dz′ denote the

probability that it hits in the interval z′ ± dz′/2, starting from z. Here z = x + πi

for some x ∈ (0, P ), and z′ has the form w + 2πi or w or w + πi, where w is real.

The function h so defined is called the density of the hitting distribution, or DHD.

A way of computing this density is shown in Fig.2. The simple family of conformal

transformations (analytic mappings) shown there maps the stripe onto a circle [13].

The density of the hitting distribution must transform accordingly since Brownian
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motion is conformally invariant [14]. For the circle, we know by symmetry that

h(z, z′) = 1/(2π|z− z′|), where |z− z′| = r is the radius of the circle, z corresponds

to the center of the circle and z′ lies on its circumference. In general, if the DHD for

system 0 is f0(z, z′), and the transformation w = g(z) maps system 1 onto system

0, then the DHD for system 1 is

f1(z, z′) = f0(g(z), g(z′))
∣∣∣∣dg(z′)

dz′

∣∣∣∣ . (2.1)

Using the transformations shown in Fig.2 and some elementary scaling we arrive at

the following formula for h(z, z′), for the stripe shown in Fig.1b (here x ∈ (0, P )):

h(x + πi, w + 2πi) = h(x + πi, w) = f4(x,w), (2.2)

h(x + πi, w + πi) =
{

2f̃4(x,w), if w < 0 ;
2f̃4(P − x, P − w), if w > P ,

(2.3)

where

f4(x,w) =
exp w

√
−1 + exp x

√
1− exp x + c2

2π(exp x + exp w)
√

1 + exp w
√

1 + exp w + c2
, (2.4)

f̃4(x,w) =
exp w

√
−1 + exp x

√
1− exp x + c2

2π(exp x− exp w)
√

1− exp w
√

1− exp w + c2
, (2.5)

and

c =
√

exp P − 1. (2.6)

The factor of 2 in Eq(2.3) comes from the fact that the trajectory can reach the

middle line in the stripe shown in Fig.1b from two sides.

A more physical interpretation of DHD, h(x + 2πi, w + 2πi), is that as the

solution of the diffusion equation for a density with a single source inside the gate

at x + 2πi, and with the boundary condition of zero density at the black lines (this

is analogous to the problem discussed in [3]). Our function h(x + 2πi, w + 2πi) is

proportional to the norm of the current at the boundary at w + 2πi, which is equal

to the gradient of the density field [15] at this point.

4



In the next section we will use the DHD to calculate the density of the condi-

tional hitting distribution (DCHD). The process is conditioned in such a way that

all its trajectories reach the line x = −∞ without hitting a trap.

III Density of conditional hitting distribution

The renormalized probability that the Brownian trajectory starting at z will

eventually reach the line x = −∞ without hitting the trap is denoted µ(z). This

function satisfies the following equation involving the DHD (see Fig.1):

µ(x + πi) =
∞∑

k=−∞

∫ P

0

dwh(x + πi, w −Q + nkQ)µ(w −Q + nkQ)

+
∞∑

k=−∞

∫ P

0

dwh(x + πi, w + Q + nkQ + 2πi)µ(w + Q + nkQ + 2πi)

+
∞∑

k=−∞
k 6=0

∫ P

0

dwh(x + πi, w + nkQ + πi)µ(w + nkQ + πi).

(3.1)

This equation can be interpreted as follows: The trajectory, which starts at a gate

at point z = x + πi, will reach infinity without hitting a trap, only if it first

reaches one of the gates located on the neighbouring lines or on the same line. The

chance of reaching the line x = −∞ without hitting another gate is negligible. The

probability of reaching a point z′ in a new gate is given by h(z, z′). Once in the new

gate the trajectory has a new probability µ(z′) of reaching infinity, which depends

on the location of the hitting point z′ in the new gate. The traps and the starting

gate (corresponding to k = 0 in the third term of the left hand side of Eq.(3.1))

are of course excluded from the sums. Let x, y ∈ (0, P ). The ratio of µ(z) at

z = x + nkQ + πi to µ(z′) at z′ = y − Q + nk′Q or z′ = y + Q + nk′Q + 2πi or

z′ = y + nk′Q + πi is given as follows:

µ(z)
µ(z′)

=
γ(x)
γ(y)

exp (A(Re(z − z′)). (3.2)
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Eq(3.2) constitutes a definition of the function γ(x) and the constant A. Because

γ(x) is defined up to a multiplicative constant, we additionally impose a normal-

ization condition on γ(x), i.e., ∫ P

0

dxγ(x) = 1. (3.3)

Both the constant A and the normalized function γ(x) have to be determined from

Eq(3.1). If A satisfies Eq(3.1) together with some γ(x) so does −A. We choose the

negative A because the system is conditioned to reach line x = −∞. The positive

solution corresponds to the trajectories which reach x = ∞. This symmetry is due

to the inverse symmetry of h. Eq(3.2) can be justified rigorously; here we only note

that this equation implies the exponential spatial rate of absorption. Finally the

density of the conditional hitting distribution is

hµ(z, z′) =
µ(z′)
µ(z)

h(z, z′). (3.4)

Eq(3.4) follows from the definition of conditional probability [16]. This new density,

hµ(z, z′), corresponds to the class of all trajectories (conditioned Brownian process

[17]) which reach infinity without hitting a trap. The conditioned Brownian process

has a stationary probability distribution for hitting points in any single gate. Its

density α(z) satisfies the following equation:

α(w + πi) =
∫ P

0

dx

( ∞∑
k=−∞

hµ(x + πi, w −Q + nkQ)

+
∞∑

k=−∞

hµ(x + πi, w + Q + nkQ + 2πi)

+
∞∑

k=−∞
k 6=0

hµ(x + πi, w + nkQ + πi)

)
α(x + πi)

(3.5)

together with the normalization condition for α(z), i.e.,∫ P

0

dxα(x + πi) = 1. (3.6)
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This quantity tells us how the hitting points of the trajectories of the conditioned

Brownian process are distributed in a gate. Then the drift λ = tan θ (Fig. 1a) is

defined as:

λ =
V

H
, (3.7)

where V is the drift along y and H is the drift along x. They are defined as averages

over the trajectories of the conditioned Brownian process between consecutive hits

of the gates, namely,

V = −π
∞∑

k=−∞

∫ P

0

∫ P

0

dxdwhµ(x + πi, w −Q + nkQ)α(x + πi)

+π
∞∑

k=−∞

∫ P

0

∫ P

0

dxdwhµ(x + πi, w + Q + nkQ + 2πi)α(x + πi),

(3.8)

and

H =
∞∑

k=−∞

∫ P

0

∫ P

0

dxdwhµ(x + πi, w −Q + nkQ)α(x + πi)(w −Q + nkQ− x)

+
∞∑

k=−∞

∫ P

0

∫ P

0

dxdwhµ(x + πi, w + Q + nkQ + 2πi)

×α(x + πi)(w + Q + nkQ− x)

+
∞∑

k=−∞
k 6=0

∫ P

0

∫ P

0

dxdwhµ(x + πi, w + nkQ + πi)α(x + πi)(w + nkQ− x).

(3.9)

Of course the summation as in the case of Eq(3.1) runs over all the gates except

for one (k 6= 0). In the next section we present the results of numerically solving

Eqs.(3.1-9).

IV Results and discussion

We performed calculations from n = 3 to n = 50 in increments of 1 and from

n = 50 to n = 200 in increments of 10. For larger values of n the numerical

difficulties vitiated the calculations. For each n we found the values of P and Q

7



for which the ratio λ was maximal. The results are summarized in Fig.3 (Fig3-

5 refer to the case of the maximal drift ratio). In Fig.3a the maximal value of

λ = tan θ, minus tan θ0 = π/Q, is plotted versus n. For large n we find the following

asymptotic relation for θ and Q corresponding to the maximal drift ratio:

tan θ =
π

Q
− δ, (4.1)

δ = 0.075± 0.008. (4.2)

Note that tan θ (Fig.1a) is almost equal to tan θ0 (the angle θ0 is shown in Fig.1b).

Eq(4.1-2) and Fig.3a show the correction to this equality. For large n, Q is rather

small and when n goes to infinity, Q goes to zero (Fig.3b). Thus in this limit

(n = ∞) δ constitutes a negligible correction. This correction cannot be neglected

for small n as can be seen from Fig.1a, where the system of traps and the line of

drift have been presented for the case of n = 3. Without the correction the drift

would follow a channel of gates without crossing the traps. In Fig.3c P versus n is

shown for the distribution of traps which give the maximal drift ratio. Finally Fig.

3d shows the ratio of the size of the gate, P , to the size of the trap, nQ−P for the

maximal drift ratio. For all n studied, we find the maximal drift ratio when the size

of a trap is about ten percent larger than the size of a gate. This gate size—trap

size ratio is a nonmonotonic function of n. First, it grows for 3 < n < 7, attaining a

local maximum at n = 7. Then it decreases down to the local minimum at n ≈ 30

and finally it grows very slowly for 33 < n < 200. Numerical uncertainty does

not allow us to draw conclusions regarding the exact dependence of this growth on

n. Fig.4 and Fig.5 show the constant A (Eq(3.2)) and the density function α for a

single gate, respectively. The constant A is negative and is a nonmonotonic function

of n. It has a local maximum at n ≈ 30, at the same place as the minimum of gate

size–trap size ratio P/(nQ − P ) (Fig.3d). Then it decreases very slowly with n.
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The density function α(x) is very asymmetric with respect to the center of the gate

for small n, but evolves quickly towards a symmetric distribution. It is essentially

symmetric by n = 100.

In summary we have studied two dimensional conditioned Brownian motion

in a periodic system of traps. We have determined the distribution of traps which

maximizes the ratio of the drift along y to the drift along x. In order to do so we had

to calculate the densities of various probability distributions, using conformal trans-

formations. We hope that both our results and the presented method will be helpful

for future studies of 2-D Brownian motion in various systems of traps. In particular

we hope that our results will find applications in the physical problems mentioned in

the introduction. Diffusion limited aggregation, percolation, and diffusion in porous

media are all situations in which particles are moving in some region with micro-

scopic (local) barriers either absorbing or reflecting or the combination of both [15].

In models where the distribution of traps is completely random as we believe would

be the case for porous media, it is hard to calculate the stochastic properties of

the system. We give here a simpler model where the system of traps is distributed

periodically in space and where certain theoretical predictions can be made. We

hope to extend our analysis to more complicated distributions of traps including

random distributions. Then we hope to make some definitive predictions for the

physical systems such as diffusion limited aggregation or diffusion in porous media.
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Figure Caption

[1] (a) The periodic system of traps with period nQ along the x-axis and period

nπ along y-axis for a particular case with n = 3. The size of the gate is P

whereas the distance between two neighbouring lines of gates is π. The solid

line denotes the direction of the drift of the conditioned Brownian particle.

(b) The basic unit of the structure shown in Fig. 1a. A double stripe with a

single gate in the middle. The dashed lines indicate the channel formed by the

gates shown in Fig 1a. θ0 is the inclination of the channel formed by the gates

(tan θ0 = π/Q).

[2] A family of conformal transformations mapping the double stripe with a single

gate in the middle onto a circle. Only the case P = log 2 is illustrated. Other

cases may be treated in a similar way. We choose the branch of the square

root for which we have
√

z = exp((1/2) log z) and Im log z ∈ (0, 2π). The point

A is mapped successively onto A1, A2, A3, A4 and the same remark applies to

B,C, etc. We have B = x + πi, B1 =
√

1− ex, B2 =
√

(1− ex)(2− ex),

ImB2 =
√

(ex − 1)(2− ex), E1 = 1, E2 = 1/
√

2, E3 = 1/
√

2(ex − 1)(2− ex),

E4 = −1/(i+1/
√

2(ex − 1)(2− ex)), G2 = 1, G3 = 1/
√

(ex − 1)(2− ex), G4 =

−1/(i + 1/
√

(ex − 1)(2− ex)). Other values may be obtained by symmetry.

[3] (a) The maximal drift ratio, tan θ, (angle θ shown for n = 3 in Fig.1a) minus

tan θ0 (angle θ0 shown in Fig.1b) versus n. Their difference reaches asymptotic

value of δ = 0.075±0.008 for very large n. For eye guidance the discrete points

(n is integer) have been joined by a continuous line. (b) The ratio of Q to the

distance between the lines of traps, π, versus n for the maximal drift ratio, (c)

The ratio of the size of the gate, P , to the distance between the lines of traps,

π, versus n for the maximal drift ratio, (d) The ratio of the size of the gate,

P , to the the size of the trap, nQ− P , versus n for the maximal drift ratio.
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[4] The parameter A versus n for the maximal drift ratio.

[5] The evolution, with n, of the stationary distribution for the conditioned Brow-

nian process in a single gate for the maximal drift ratio (Fig.3,4). Here x

measures distance within the gate and P , for a given n, is equal to its value

shown in Fig. 3c. Dotted line n = 3, dashed line n = 10 and solid line n = 100.
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