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The purpose of this short note is to present a simple but significant — in the author’s

opinion — corollary of some very recent results on reflected Brownian motion. The result

announced in the title is related to the following model introduced in physics literature.

Amit, Parisi and Peliti defined in [1] a “True Self-Avoiding Random Walk” (TSARW) on

the d-dimensional lattice Zd parameterized by a certain coefficient g and discussed the

asymptotics when g → ∞. For g = ∞, one may describe TSARW as a process which

goes from a site to one of its nearest neighbors but cannot go to a site that has been

previously visited. At each stage the next site is chosen uniformly from the sites which

are not “forbidden.” (The process cannot make a step in such a way that it would have to

self-intersect at a future time, i.e., the process is prohibited from “trapping” itself. This

additional restriction does not arise in [1] as only the case when g < ∞ is considered.)

In view of our description of TSARW it seems that the name “Self-Reflecting Random

Walk” would be more accurate. It is argued in [1] that for d > 2, with suitable space and

time rescaling, TSARW converges to a free Brownian motion in the same manner as the

standard symmetric nearest neighbor random walk converges to free Brownian motion.

The non-rigorous argument is supported by computer simulations. At the intuitive level,

the result suggests that the “self-reflecting Brownian motion” and free Brownian motion

have the same distributions. Theorem 1 below is a rigorous statement which strongly

supports this intuitive idea.

Let D ⊂ R3 be the complement of the trace X([0,∞)) of 3-dimensional Brownian

motion X. The set D is a.s. open and connected. For a domain A, let σA be its surface

area measure (provided it is well defined). Let B(x, r) = {y ∈ R3 : |x− y| < r}.

Lemma 1. With probability 1 there exists an increasing sequence of domains Dn with

smooth boundaries whose union is equal to D and such that for each r > 0,

lim
n→∞

σDn(Dn ∩B(0, r)) = 0.

For each fixed point x0 ∈ D there is m0 such that x0 ∈ Dn for all n > m0. For each

x0 ∈ D and n > m0 there exists a reflected Brownian motion Yn in Dn with the normal

reflection on the boundary ∂Dn and starting from x0 (the reflected Brownian motion in
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smooth domains is well-understood; see, e.g., [2]) In view of our Lemma 1, Theorem 4.2

of [2] shows that the processes Yn converge weakly to a process Y as n →∞. We may call

Y a reflected Brownian motion in D. Even more is true—formulae (4.2) and (4.3) of [2]

combined with Lemma 1 prove that Y is a standard (free) Brownian motion. Hence we

have the following result.

Theorem 1. With probability 1 three-dimensional Brownian motion Y reflected on Brown-

ian motion X is a free Brownian motion.

It should be pointed out that the result is not completely obvious. Three-dimensional

Brownian paths X have positive capacity and are hit by Brownian motion Y a.s. (Another

manifestation of this phenomenon is the existence of double points on three-dimensional

Brownian paths.) It is somewhat surprising that the hitting of the path of X by the path

of Y does not introduce any drift in Y .

The proof of Lemma 1 below uses only the fact that the 2-dimensional measure of

the path of X is equal to 0. Hence, Theorem 1 may generalized as follows: 3-dimensional

Brownian motion reflected on a set whose 2-dimensional measure is 0 is a free Brownian

motion.

Proof of Lemma 1. The 2-dimensional measure of the path of three-dimensional Brownian

motion X is equal to 0 (see [4]). Hence, for each n, the set X([0,∞)) may be covered by

open balls B(zk, rk), k ≥ 1, such that

(1)
∑
k≥1

r2
k < 1/2n.

For each m, the set X([0,∞))∩B(0, 2m) \B(0, 2m−1) is compact so it has a finite subcover

Bm
j , 1 ≤ j ≤ s(m). Moreover, we can assume that Bm

j are disjoint from Bc(0, 2m+1) ∪

B(0, 2m−2). Let D∗n be the unbounded component of the complement of
⋃

m,j Bm
j . Note

that the surface area of D∗n is bounded by the sum of surface areas of the balls B(zk, rk)

and, therefore, it is less than c/2n in view of (1). Since each ball B(0, r) intersects only

a finite number of balls Bm
j , it is easy to modify the domains D∗n so that the resulting

3



domains Dn have smooth boundaries, have surface area bounded by c/n, and increase to

D as n →∞. �

The proof of Theorem 1 requires a localization argument which we have omitted. It is

discussed in [3, Section 4.4]. See also [3, Section 4.5] for a rigorous treatment of Brownian

motion reflected on the sets of measure zero.

This article is to large extent a result of discussions with Z.-Q. Chen, G. Lawler,

S.J. Taylor and R.J. Williams. I am grateful for their most useful advice.
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