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STUDYING OBJECT-BASED ATTENTION 

Introduction 

The sensory organs slavishly transmit all of the information that they collect to the 

cortex. But only a subset of the information that is sensed is inevitably perceived. 

This phenomenon reflects two key principles of perception: 1) perception is capacity 

limited (Broadbent, 1958; Neisser, 1967; Treisman, 1960); and 2) attention provides 

a flexible means of prioritizing some sensory information at the expense of other 

sensory information (Duncan, 1980; Posner, Snyder, & Davidson, 1980; Treisman, 

1964a, 1964b). This dissertation is concerned first with whether selection is feature- 

or object-based, and second, with the capacity limits of divided attention for simple 

features like an object’s color and direction of motion. 

The study of visual attention has historically focused on either characterizing 

the nature of selective attention, or identifying the capacity limits of divided 

attention. The former is concerned with the means by which visual information is 

selected, and the effect that selection has on perception and the underlying neural 

response. The visual system flexibly allocates attention to meet the demands of 

specific behavioral goals. Visual information can be selected on the basis of spatial 

location (Eriksen & St. James, 1986; Posner et al., 1980), as when a free-throw 

shooter must focus on the hoop and ignore the crowd. Or, a particular feature can be 

selected independent of spatial location (Saenz, Buracas, & Boynton, 2002; Treue & 

Martinez-Trujillo, 1999), as when looking for an red frisbee amidst the overgrown 

green grass. Or, a collection of features can be selected in order to segment an object 

from its surroundings (Duncan, 1984; Neisser, 1967), as does the tennis umpire 

when tracking the moving yellow ball in order to call the shot in or out.  

Divided attention, on the other hand, is concerned with the perceptual 

capacity to attend to multiple things at the same time (Broadbent, 1958; 
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Kahneman, 1973; Scharff & Palmer, 2008; Townsend, 1990). In some situations 

perception has unlimited capacity (Gardner, 1973). For example, spotting a single 

office light shining through the window of a skyscraper at night is easy; regardless 

of how many floors of dark windows the skyscraper has, the lit window appears to 

pop out. In other situations capacity is limited (Palmer, 1990; Shaw, 1980; 

Sternberg, 1969). For example, in scanning a dissertation for misspelled words, the 

longer the dissertation, the longer it will take to scan every word. 

My research focuses on two aspects of object-based attention. First, I explore 

a situation in which the predictions of feature- and object-based attention conflict. 

Namely, can a single feature of an object be selected or are all the features of an 

object selected in concert even if only one feature is behaviorally relevant? I show 

evidence for the latter, which suggests that object-based selection supersedes 

features-based selection. These results motivated the following question—tested in 

the second half of this dissertation—if the features of an object are selected 

holistically, then will there be no perceptual cost in dividing attention across 

features within the same object? Furthermore, if object perception is limited in 

capacity, then dividing attention across features that belong to separate objects may 

be more difficult than attending to one at a time. 

 

Selective attention 

Selective attention research is primarily concerned with the physiological response 

to, and perception of, the selected versus non-selected information. The partially 

valid cueing paradigm, introduced by Posner (Posner, 1980), has been extensively 

used to quantify the effects of selective attention. In this paradigm, an observer is 

presented multiple stimuli on a given trial and then asked to report some 

perceptual aspect of one of the stimuli. Critically, the observer is cued to attend to a 

particular stimulus at the start of each trial. In order to compare the perceptual 

quality of the attended and unattended stimulus, the uncued stimulus is queried on 

some lesser proportion of trials. Because the cue contains valid information as to 

which stimulus is more likely to be queried, it is assumed that the observer 
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prioritizes the cued stimulus over the uncued stimulus. The difference in behavioral 

performance, or neural response, between the cued and uncued stimulus serves to 

quantify the effect of selective attention.  

The validity of the partially valid cueing paradigm depends on the 

assumption that the uncued stimulus is in fact unattended despite being 

behaviorally relevant (albeit in a lesser proportion of trials). Measuring the 

perceptual fate of an unattended stimulus is challenging because the experimenter 

faces the conflicting interest of ensuring that the subject does not attend to the very 

thing they wish to question. Although psychophysical tools have been developed to 

circumvent this issue, I will instead focus on how functional magnetic resonance 

imaging (fMRI) can covertly measure the response to a stimulus that the observer is 

told to ignore and is never asked about. Using a fully valid cue, fMRI provides a 

noninvasive means of measuring the response to an identical stimulus when it is 

relevant versus when it is irrelevant to an observer’s task. 

Functional MRI is naturally suited to measure the effects of spatial attention. 

Due to the retinotopic organization of visual cortex, spatially distinct stimuli will 

generate responses in different regions of cortex. By analyzing the associated 

regions of interest, the response to the cued and uncued stimulus can be 

simultaneously measured. This work provided surprising evidence that visual 

attention modulates responses as early as primary visual cortex (Gandhi, Heeger, & 

Boynton, 1999; Watanabe et al., 1998), and even increases baseline activity in the 

absence of visual stimulation (Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 

1999). 

Functional MRI also led the field in the study of feature-based attention. 

fMRI revealed that directing attention to a particular feature, such as a color or 

direction of motion, modulates the response to like features across visual field 

(Saenz et al., 2002; Serences & Boynton, 2007) and independent of spatial attention 

(Boynton, 2005a; Zhang & Luck, 2008).  

Finally, fMRI has also be used to investigate whether object-based selection 

occurs even when only a single feature of an object is behaviorally relevant 
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(O’Craven, Downing, & Kanwisher, 1999). Exploiting the functional specialization 

of specific cortical areas for motion, faces, and places, O’Craven et al. measured an 

enhanced response to a task-irrelevant feature (motion or face or house) while the 

subject performed a task on the other feature (object identity or motion). These 

results suggest that all of an object’s features are selected. 

In the first half of this dissertation I describe the physiological effect of 

selective attention on the activity of feature-selective neurons in visual cortex. 

Critically, the task involved attending to a particular feature of object composed of 

multiple features. If selection can be restricted to a particular feature, as predicted 

by feature-based attention, than the hemodynamic response (measured by fMRI) 

should reflect which feature was cued. However, if all of a relevant object’s features 

are selected, as predicted by object-based attention, then the hemodynamic response 

to each of the object’s features should be modulated regardless of which feature was 

cued. I provide evidence for the latter, consistent with the prediction of object-based 

selection. Following from this result is the question addressed in the second half of 

this dissertation—what are the consequences of object-based selection when 

dividing attention across features within an object? 

  

Divided attention 

Research on divided attention is concerned with the ability to attend to multiple 

sources of information at the same time. Multiple psychophysical approaches have 

been developed to study this phenomenon. The two primary methods are the set-size 

and the dual-task paradigms. In a typical set-size experiment (Treisman & Gelade, 

1980) an observer’s behavioral performance (e.g. detecting a red target letter) is 

plotted as a function of the set-size, the amount of distracting information (e.g. the 

number of irrelevant green distracter letters in the display). If performance remains 

constant as the set-size increases than it is reasoned that the observer has an 

unlimited capacity to perform the given task. However, if performance decreases 

with set-size then it is argued that the particular task is capacity limited. 

Unfortunately, these conclusions require certain assumption regarding internal 
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noise and decision error (Palmer, 1995), which complicate the interpretation. In the 

dual-task paradigm, the display size and stimulus are held constant and instead the 

number of perceptual tasks are varied (Sperling & Melchner, 1978). Again, constant 

performance across single and dual-task conditions is associated with an unlimited 

capacity process, where as a dual-task deficit is associated with a limited capacity 

process. 

The results of the fMRI experiment led us to speculate on the capacity limits 

underlying the processing of multiple features within and between objects. Because 

the attentional modulation of the hemodynamic response was equivalent across 

features within an object, we hypothesized that attending to multiple features 

within an object should reflect an unlimited capacity to process (Blaser, Pylyshyn, & 

Holcombe, 2000; Bonnel & Prinzmetal, 1998; Duncan, 1984). 

To test this prediction, we employed a dual-task paradigm in which attention 

was either divided across features within an object or across features between 

objects. We observed no cost in dual-task performance when attention was divided 

across features within an object relative to a large cost when attention was divided 

between objects. These results support our physiological observations that object-

based attention selects all features within a surface, and suggests that monitoring 

multiple features within an object is an unlimited capacity process. In addition, our 

behavioral results reveal that that attending to multiple objects is capacity limited, 

and suggests that objects might impose a perceptual bottleneck (Scharff, Palmer, & 

Moore, 2011). 
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THE SPREAD OF ATTENTION ACROSS FEATURES OF 

A SURFACE 

In collaboration with: 
Mehrdad Jazayeri & Geoffrey M. Boynton 
(In preparation) 

Contrasting theories of visual attention have emphasized selection by spatial 

location, individual features and whole objects. We used functional magnetic 

resonance imaging (fMRI) to ask whether and how attention to one feature of an 

object spreads to other features of the same object. Subjects viewed two spatially 

superimposed surfaces of random dots that were segregated by distinct color-motion 

conjunctions. The color and direction of motion of each surface changed smoothly 

and in a cyclical fashion. Subjects were required to track one feature (e.g., color) of 

one of the two surfaces and detect brief moments when the attended feature 

diverged from its smooth trajectory. To tease apart the effect of attention to 

individual features on the hemodynamic response, we used a frequency-tagging 

scheme. In this scheme, the stimulus features (color and direction of motion) are 

modulated periodically at distinct frequencies so that the contribution of each 

feature to the hemodynamics can be inferred from harmonic responses at the 

corresponding frequency. We found that attention to one feature (e.g., color) of one 

surface not only increased the response modulation to the attended feature but also 

to the other feature (e.g., motion) of the same surface. This attentional modulation 

was evident in multiple visual areas and was present as early as V1. The spread of 

attention to the behaviorally irrelevant features of a surface suggests that attention 

might automatically select all features of a single object. Accordingly, we found that 

tracking both features of a single surface simultaneously did not incur any 

additional cost in behavioral performance. These results suggest that object-based 
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attention in vision is supported by an enhancement of feature-specific sensory 

signals in the visual cortex. 
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INTRODUCTION 

Selective attention improves information processing for a subset of relevant stimuli, 

usually at the expense of irrelevant stimuli. Attention can select a region of space 

(spatial attention), a stimulus feature (feature attention), or a whole object (object 

attention). What distinguishes object- and feature-based attention is that object-

based attention improves processing of all features of a selected object with little or 

no additional cost. For example, when asked to monitor multiple features 

simultaneously, subjects are more accurate when the attended features belong to 

the same object compared to when they are from different objects (Duncan, 1984; 

Blaser et al., 2000; Rodriguez et al., 2002). Despite its importance in behavior, little 

is known about the mechanisms by which object-based attention influences the 

representation of individual features in the brain. 

A common challenge in studying the mechanisms of object-based attention in 

humans is that existing tools such as functional magnetic resonance imaging (fMRI) 

do not have the requisite resolution to tease apart the representation of individual 

features when they overlap in space and time. Pattern classification techniques 

have provided a means to circumvent this problem, by extracting information from 

the pattern of hemodynamic (BOLD) responses across voxels (Boynton, 2005b). For 

example, in occipital cortex, pattern classification can extract information about 

orientation (Kamitani and Tong, 2005), directions of motion (Kamitani & Tong, 

2006), and color (Brouwer & Heeger, 2009; Kamitani & Tong, 2005, 2006). 

Moreover, this technique has been used to demonstrate how attention to a specific 

feature can selectively and reliably modulate the pattern of fMRI responses to that 

feature (Kamitani & Tong, 2005, 2006; Serences & Boynton, 2007).  

Pattern classification methods use sophisticated algorithms to decode 

information that is not immediately accessible at the level of the spatially averaged 

BOLD signal. An alternative to this strategy, and one that we have used here, is to 

design stimuli in ways that would allow information about individual features to be 
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readily encoded by the amplitude of the BOLD signal. To do so, we employed the so-

called frequency tagging technique (Regan, 1989), which has been previously used in 

EEG recordings (Andersen, Hillyard, & Muller, 2008; Muller et al., 2006; 

Schoenfeld et al., 2007). In this technique, the presentation of each stimulus feature 

is modulated in time at a specific temporal frequency so that the evoked response 

associated with that feature could be extracted from the harmonic response at that 

frequency. Accordingly, the response evoked by multiple features can be readily 

teased apart by tagging each feature with its own unique frequency. 

We implemented this strategy in a stimulus that consisted of two 

superimposed transparent surfaces, each comprised of a field of dots with a distinct 

color–motion conjunction that changed smoothly with time. The frequency tagging 

was performed by making both the direction of motion and the color of the dots 

change periodically, and with distinct frequencies. We used this experimental 

setting to determine the effect of feature- and object-based attention on BOLD 

signals throughout visual cortex. By analyzing the amplitude of the BOLD response 

at each of the four designated frequencies, we found that attention modulated the 

response to the attended feature as well as the task-irrelevant feature associated 

with the same surface. This effect, which was present in multiple visual areas 

including V1, demonstrates that object-based attention modulates feature-specific 

representations across the visual cortex.  

  

9 
 



 
 

METHODS 

Participants 

4 male and 4 female subjects aged 20 to 28 gave written consent in accord with the 

human subjects’ protocol at the University of Washington to participate in this 

study. They all had normal or corrected-to normal vision and 6 of them were naïve 

to the purpose of the experiment. Subjects participated in two separate 

experiments: (1) an fMRI experiment that consisted of one retinotopic mapping 

session followed by two 2-hr functional scanning sessions, and (2) a psychophysical 

experiment that consisted of two 1-hr behavioral sessions. Four of the eight subjects 

participated in both experiments. For both fMRI and psychophysical experiments, 

subjects completed 1-2 hours of training to ensure that they were familiar with the 

task. 

 

Stimulus 

The stimulus used in both the fMRI and behavioral experiments consisted of two 

superimposed fields of dots. Each dot field consisted of 101 dots per frame (frame 

rate = 60 Hz) of the same color that moved coherently in a specific direction at a 

speed of 6 deg/sec. The two dot fields had distinct color-motion conjunction and 

appeared as two surfaces moving transparently across one another (Fig. 1A and 

Supplementary Movie 1). To remove a potential depth cue, the depth order of each 

dot (which dots occludes the other dots) was randomized. The two fields were 

rendered on a black background within an annulus with an inner diameter of 3° and 

an outer diameter of 16° of visual angle.  

10 
 



 
 

 

Fig. 1  A, The stimulus: two fields of superimposed dots confined 
to an annulus with a fixation cross at the center. B, the two surfaces 
have been separated in order to better illustrate the dynamic 
components of the two dot fields. Over the course of the stimulus 
movie, the direction of motion of the dots in surface 1 progresses 
counter-clockwise (white arrow). At a given point in time, t, following 
stimulus onset, the direction of motion of the dots were specified by 
θ1(t), the angle from the dotted white line (rightward motion). The 
color of the dots in surface 1 progressed from blue to red to green—
clockwise through the color space shown in the inset (black line). The 
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color of the dots was specified by φ1(t), the angle from the dotted black 
line (blueish). The direction of motion of the dots in surface 2 
progressed clockwise (white arrow), and were specified by θ2(t), similar 
to surface 1. Likewise, the color of the dots in surface 2 progressed 
from red to blue to green—counter-clockwise through the color space 
shown in the inset—specified by φ2(t). C, cosine functions of the four 
stimulus harmonics restricted to the first 28 seconds (0<t<28) of the 
stimulus movie. Each stimulus harmonic possessed a unique temporal 
period: 25 (Tm1) and 21 (Tm2) seconds for the motion of surface 1 & 2, 
respectively; 19 (Tc1) and 28 (Tc2) seconds for the color of surface 1 and 
2, respectively. 

At stimulus onset, the dots associated with one of the dot fields (hereafter, 

surface 1) appeared blue and moved leftward within the annulus. At the same time, 

the dots of the other dot field (hereafter, surface 2) appeared red and moved 

upward. During the presentation of the stimulus, the color and direction of motion 

of both dot fields changed slowly and cyclically.  

 

Color specifications 

The color of dots in each surface and at each time point was determined by a point 

in the CIE L*a*b* space. Changes in color with time were governed by slow 

movements of this point along a circular path through the CIE L*a*b* space (Fig. 

1B,C). The CIE L*a*b* space was chosen for its perceptual uniformity in order to 

generate a color sequence that changed in chromaticity at a roughly constant rate. 

The two surfaces rotated along the same circular path but in opposite directions and 

with different temporal periods (Fig. 1B); surface 1 went from blue to red to green 

with a temporal period of 19.20 sec (Tc1), and surface 2 went from red to green to 

blue with a temporal period of 17.14 sec (Tc1). In the fMRI experiment, in which the 

stimulus was presented for a total of 8 min, surface 1 and 2 made 19 and 28 full 

rotations respectively. The circular path was defined mathematically as follows:  
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42 2  

where, i, indexes each surface (i= 1 or 2), t, represents elapsed time in 

seconds, and φι is a phase parameter which determines the surface’s initial hue, and 

n corresponds to the brief dispersions that were added during a color event (see 

Color events). The constant 42 (amplitude of a* and b*) was chosen to keep the 

colors within the dynamic range of our projector. After specifying the L*a*b* values, 

we used standard CIE XYZ coordinate transformations to compute the 

corresponding RGB values to drive the calibrated projector.  

To ensure that various colors were perceived as isoluminant, we adjusted the 

scaling of the RGB values using the so-called “minimum motion procedure” (Anstis 

& Cavanagh, 1983). Subjects viewed a stimulus that was made of two superimposed 

radial gratings, a chromatic test grating and a luminance grating. The two gratings 

were modulated sinusoidally and were in quadrature. The test grating was created 

from two phosphors modulating in anti-phase with a temporal period of 333 ms (20 

frames) and one phosphor held at a constant intermediate intensity. The luminance 

grating was made of in-phase space-time modulations of the three phosphors at a 

Michelson contrast of 0.08. This stimulus is typically perceived as having clockwise 

or counter-clockwise apparent rotational motion unless the two modulating 

phosphors in the test grating are isoluminant.  

We determined this point of isoluminance by a staircase procedure in which 

subject adjusted the ratio of the two test phosphors so as to null the apparent 

motion. On each trial, subjects fixated a central spot and used two buttons to reduce 

or increase the intensity of one of the two modulating phosphors of the chromatic 

grating (test phosphor) by a fixed amount (i.e., step size) to reverse the perceived 

direction of the apparent motion. After each reversal, the step size was halved and 
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the procedure was repeated until subjects reported that they no longer perceived a 

clear apparent motion. We quantified this point of isoluminance by the ratio of the 

intensity of the test phosphor to the other modulating phosphor. To estimate the 

points of isoluminance across the whole RGB space, we repeated the staircase 

procedure for three different pairs of modulating phosphors (R-G, B-G and B-R) and 

estimate the three corresponding ratios of phosphor intensities (R/G, B/G, B/R). 

To account for changes in isoluminance as a function of eccentricity, we 

measured RGB scale factors at three concentric non-overlapping annuli (2.167 deg 

width), spanning the spatial extent of our stimulus (1.5–8 deg in radius). For each 

subject, we made 3 independent measures of the 3 ratios (R/G, B/G, B/R) at each of 

the 3 eccentricities (total of 27 measurements), and used the corresponding 

averages as our estimate of the isoluminance ratios. The RGB scale factors did not 

change appreciably with eccentricity; nonetheless, we used the scales factors 

measured for the 3 eccentricities to derive a first order (linear) estimate of the RGB 

scale factor as a function of eccentricity, which we used to adjust the color of dots at 

different eccentricities. Each dot’s color was further jittered by a small amount of 

luminance noise to counteract any small hue-dependent luminance bias that our 

isoluminance measurements failed to account for. The luminance noise consisted of 

white noise (std of 5.5 cd/m2 low-passed filtered by a Gaussian in the frequency 

domain with std of 0.5 cycles/sec). Finally, we used the gamma curves for each 

phosphor to ensue the color outputs had the desired intensity.  

 

Motion specifications 

For each surface, the direction of motion was specified by the coherent translation of 

individual dots in a specific direction between successive monitor frames. The 

direction of motion of the two surfaces changed smoothly around the clock with 

temporal periods of 25.25 (TM1) and 21.82 sec (TM2), which for an 8-min fMRI 

session, correspond to 22 and 25 full rotations respectively. The dynamics of the 

direction of motion in the two surfaces can be mathematically formulated as follows: 
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(2) 2  

where, θ corresponds to the direction of motion in radians, t corresponds to 

the elapsed time in seconds, i indexes each surface, and φ is a phase parameter 

which determines the surface’s initial motion direction, and n corresponds to the 

dispersion added during a motion event (see Motion events bellow).  

The color and direction of motion of the dots were subject to a number of 

constraints. We use the terms “birth”, “death”, “age” and “lifetime” to refer to the 

beginning, the end, the number of elapsed frames since birth, and the duration (in 

frames) of coherent translation of a dot. At stimulus onset (t=0) each dot was 

assigned a random age from 0 to 11. The initial color and motion of each dot was 

specified by setting t=0 (Equation 1 and 2). After each monitor refresh, the age of 

every dot was incremented by 1. Each dot maintained its color, its luminance and 

its direction for the duration of its lifetime, which was fixed to 12 frames (200 ms). 

If a dot moved outside the annulus during its lifetime, then its position was 

wrapped around to the other side of the annulus. The death of each dot (age=12) led 

to the birth of a new dot (age=0) at a random position within the annulus. The color 

and direction of motion of each newly born dot were adjusted based on Equations 1 

and 2 at the new t (12 frames past the previous birth). Because the dots’ ages at 

stimulus onset were assigned randomly, at any given moment in time, each surface 

maintained a small dispersion around its average color and direction of motion. 

 

Stimulus events 

To provide a task for the subjects, each surface was subject to brief perturbations in 

color and direction, which we refer to as “color events” and “motion events” 

respectively. Each event type (color and motion) in each of the two surfaces occurred 

multiple times with an average frequency of once per 7 seconds. Each event lasted 

one second, and was followed by an absolute refractory period of 1 sec.  
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Color events 

A color event was characterized by a transient increase in the variance of the color 

in a surface, which lasted a total of 1 sec. To modulate the variance, we added noise 

to the color of individual dots that were born during the event. The additional noise 

was controlled by a random variable, n, that was added to the phase of a* and b* 

(Equation 1). In the absence of a color event, the value of n was set to zero (i.e., no 

additional variance). During a color event, n went from 0 to nmax for the first 0.5 sec 

of the event, and then went back to 0 for the second half. For each dot, nmax was 

specified by a random draw between -2π/3 and 2π/3 radians. 

 

Motion events 

Similar to the color event, when assigning a direction of motion to a dot born during 

a motion event, a random variable, n, (Equation 2) was added to the phase of the 

direction of motion. The value of n was set to zero when no motion event were 

present. During a motion event, the value of n went from 0 to nmax for the first 0.5 

sec of the event, and then went back to 0 for the second half. For each dot, nmax was 

specified by a random draw between -2π/3 and 2π/3 radians.  

 

fMRI scanning sequence 

The stimulus was identical across scans. Prior to a scan, subjects were cued to track 

one of the four surface features, or perform a demanding task at fixation. Subjects 

where scanned over two separate scanning sessions, held on separate days.  The 

sequence of tasks in a typical scanning day was as follows: (1) the fixation task; (2) 

track the motion of surface 1; (3) track the motion of surface 2; (4) repeat the 

fixation task; (5) track the motion of surface 2; (6) track the motion of surface 1. For 

half of the subjects, the direction of motion was probed on day 1 and color on day 2; 

for the other half, this sequence was reversed. 
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Behavioral task: fMRI 

For each scan, observers were cued to track a single surface and to detect events 

within a single feature, either the motion or color of that surface. We refer to this 

event as the target event and the other three event types as distractor events. For 

example, when instructed to detect events in the color of surface 1, the color events 

in surface 1 were the target events, and the motion events in surface 1 as well as 

both color and motion events in surface 2 were distractor events. Observers were 

instructed to press a response button immediately after detecting every target 

event, while ignoring all distractor events.  

 

Behavioral analysis: fMRI 

Responses were divided into (1) hits, (2) false alarms, and (3) selection errors 

(misses were separately tallied). A response was classified as a hit if the subject 

pressed the response button within a two second window after the onset of the 

target event. For each scan, the hit rate was computed by dividing the number of 

hits by the total number of target events. Target events that were not followed by a 

button press were referred to as misses. A response was classified as a false alarm if 

no event (target or distractor) preceded the response within a two second window. 

Finally, a response was classified as a distractor response if the two seconds 

preceding the response contained any distractor event but no target-event.  

 

Psychophysics experiment 

On each trial subjects were presented with a 5-sec stimulus, similar to the one we 

used in the fMRI experiment. A random initial color (φ1) and motion direction (θ1) 

was selected for the first surface on every trial. The initial color and motion 

direction of the second surface was shifted by 90 deg in color- and motion-space from 

the first surface; i.e., φ2 = φ1 + π/2 (Equation 1), and θ2 = θ1 + π/2 (Equations 2).  

There were two single-task conditions and one dual-task condition. Subjects 

were either cued to track the color, the motion, or both color and motion within one 
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of the surfaces. At 300 ms post stimulus onset, the color and/or the motion of one 

surface was cued. To cue motion, the speed of the cued surface increased; to cue 

color, the luminance of the cued surface increased. In both cases the intensity 

change was stepwise, lasting 300 ms.  

Color and motion events occurred with 50% probability within each feature. 

The onset of an event occurred randomly, and with equal probability, between 1 and 

4 seconds from stimulus onset. To prevent subjects from using a switching strategy 

in the dual-task condition, on trials when both a color and motion event occurred 

within the same surface, they were constrained to occur simultaneously. Thus, on 

25% of the trials the motion and color events co-occurred. Following stimulus offset, 

subjects reported (via the key press) whether or not there was any target event in 

the stimulus. The yes/no responses for each task were mapped to separate keys, one 

set for each hand. The response order was counter balanced across subjects in the 

dual-task condition. 

Subjects performed each condition in blocks of 30 trials. The order of the 

blocks was counterbalanced between subjects. Subjects practiced the task over one 

or two 1-hour sessions. After practice, each subject ran four blocks of 30 trials for 

each condition, for a total of 120 trials per condition. 

 

Retinotopic mapping procedure 

Retinotopic mapping was obtain in a single one hour session using a flickering 

checkerboard restricted to a rotating wedge, an expanding annulus, and an 

alternating pair of wedges covering the vertical and horizontal meridian [stimulus 

flicker 6 Hz, wedges subtended 40° of polar angle (Engel et al., 1994; Sereno et al., 

1995)]. With this procedure, V1, V2v, V2d, V3v, V3d, and hV4 were drawn by hand 

on the inflated representation of the cortical surface using BrainVoyager QX 

(version 1.9.10 Brain Innovation, Maastricht, The Netherlands). Ventral and dorsal 

areas were collapsed together for the analysis. Ventral area hV4 was defined to 

include an entire hemifield representation (Wandell et al., 2005). A functional 

localizer was used during each experimental session to define MT+. 
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fMRI data acquisition and analysis 

MRI scanning was performed on a Phillips Achieva 3-Tesla scanner, located at the 

University of Washington Magnetic Resonance Research Laboratory, equipped with 

an eight-channel head coil. Anatomical T1-weighted images were acquired at 1 x 1 x 

1 mm resolution. Whole-brain, 32 transverse slice, functional images were acquired 

at 3.438 x 3.438 x 3.5 mm resolution (repetition time, 2000 ms; echo time, 30 ms; 

flip angle, 76°; scan resolution, 64 x 64; field of view, 220 mm; slice thickness, 3.5 

mm; no gap). 

Each scan was motion corrected using BrainVoyager QX. Experimental scans 

were co-registered to the anatomical retinotopy scans. Custom software, written by 

John Serences, was used to extract the time-courses of voxels corresponding to each 

pre-defined visual area and account for the mismatch in resolution between 

functional and anatomical images.  

 

Region of interest selection 

Localizer scans were run at the beginning and end of each experimental session. A 

general linear model (GLM) was used to find voxels that responded strongly to the 

region of visual space corresponding to the extent of the stimulus. Regressors were 

created in the GLM by convolving a gamma function with the boxcar stimulus 

protocol. The functional localizer consisted of 20 second blocks of fully coherent 

moving achromatic dots (randomly reassigned one of eight possible direction of 

motion every second, 200 ms limited life time), static dots (redraw in a random 

configuration every second), and a blank screen. All other properties of the localizer 

were set to match the experimental configuration, including the dimensions of the 

stimulus aperture, as well as dot size, speed, density, etc. We selected voxels in V1, 

V2, V3, and hV4 that responded more strongly to the motion than to the blank 

condition. We defined MT+ as a contiguous patch of medial temporal cortex that 

responded more to the motion condition than the static condition (p < 0.05, 

Bonferroni corrected for multiple comparison). 
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Frequency analysis 

We quantified the periodicity of hemodynamic response at the frequencies 

associated with the color and direction of motion of the two surfaces from the 

amplitude of the corresponding harmonics in the Fourier spectrum. We measured 

the Fourier spectrum of responses in different visual areas by applying MATLAB’s 

fast Fourier transform (FFT) to the average time course of the BOLD signal in those 

areas. 
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RESULTS 

Subjects were scanned while viewing a stimulus consisting of two superimposed 

surfaces composed of dot fields with unique color and motion conjunction (Fig. 1A). 

The direction of motion and color of each surface slowly changed in a periodic 

fashion with a unique temporal period for each feature (Fig 1B,C and 

Supplementary Movie 1). Prior to a scan, subjects were cued to track the motion or 

color of one of the two surfaces and performed an ongoing task in which they were 

instructed to respond with a button press every time they detected a target event in 

the cued surface feature (while ignoring distractor events). Events were defined as 

brief dispersions in the motion or color coherence (see Methods: stimulus events). 

 

Behavioral results during fMRI data acquisition 

All six subjects were able to track the cued surface-feature in order to respond to 

target events and ignore distractor events. Table 1 shows the proportion of button 

presses following target events (target response), distractor events (distractor 

response), and no events (false alarms) for each subject. The majority of button 

presses were associated with a target event (0.91±0.04, mean ± std). There were 

relatively fewer distractor responses (0.07±0.04), and very few false alarms 

(0.02±0.02). The high ratio of target responses to distractor responses suggests that 

subjects were able to track the cued surface-feature as it modulated in feature 

space. We intentionally made the magnitude of the event transients small, so as to 

reduce distractor interference. This resulted in a difficult detection task, so even 

though most responses were target responses, the miss rate was still high  

(0.44±0.06).  
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Subject 1 2 3 4 5 6 
Target response  0.86 0.96 0.91 0.90 0.89 0.96 
Distractor response 0.13 0.04 0.07 0.09 0.05 0.03 
False alarm 0.01 0.00 0.02 0.01 0.06 0.01 

Table 1. Proportion of button responses for the detection task in the scanner for 
each subject. Target response: percentage of responses following a target event; 
distractor response: percentage of responses following a distractor event; False 
alarm: percentage of responses following no target or distractor event 

 

The harmonic hemodynamic response 

Previous work has shown that individual voxels in different visual areas could 

exhibit weak but reliable selectivity for stimulus features including color and 

direction of motion (Fig. 2A) (Brouwer & Heeger, 2009; Kamitani & Tong, 2006). 

Consequently, by changing the color and direction of motion of the stimulus in a 

circular fashion, we should be able to modulate the response of color- and direction-

selective voxels in a periodic fashion (Fig. 2B). Because the BOLD signal is sluggish 

we used relatively low frequencies (long periods) over which to modulate the 

stimulus features: 25 and 22 cycles/scan (8 minutes/scan) for the direction of 

motion, and 19 and 28 cycles/scan for the color of surface 1 and 2 respectively. We 

hypothesized that attention modulates the gain of feature-selective neurons 

(Martinez-Trujillo & Treue, 2004), leading to a change in the amplitude of the 

corresponding harmonics in the hemodynamic response (Boynton, 2005a). We 

therefore analyzed the frequency spectrum from the BOLD time course in different 

visual areas and compared the amplitude of the harmonic responses associated with 

color and direction of motion of the two surfaces across attention conditions (Fig. 

2C). 
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Fig. 2  A, A hypothetical voxel’s response to different directions 
of motion (lower left of panel A) and different hues (lower right of panel 
A). The response is illustrated as exhibiting a small bias for upward 
motion and greenish hues. Accordingly, the voxel would exhibit a 
harmonic response to stimuli whose direction of motion or color is 
modulated periodically. B, Illustrates a temporal segment of the 
independent harmonic response to each stimulus feature. A motion 
and color component for surface 1 (m1 & m2, respectively), and a 
motion and color component for sirface 2 (m2 & c2, respectively). C, 
When one surface feature is attended (e.g. the motion of surface 1: M1), 
a gain model of feature-based attention predicts an enhanced response 
to that feature (illustrated here as an increase in Am1|M1). A gain 
model of object-based attention makes the additional prediction that 
the amplitude of the harmonic response to the task-irrelevant feature 
(the color of surface 1: Ac1|M1) is also modulated by attention. 

To facilitate the presentation of results, we developed nomenclature to refer 

to the different attention conditions and different response harmonics: Am1 and Am2 

are the amplitudes of the harmonic responses associated with the motion feature in 

surface 1 and 2 respectively; Ac1 and Ac2 are the amplitudes of the harmonic 

responses associated with the color feature in surface 1 and 2 respectively; M1 and 

M2 refer to conditions in which subjects tracked the motion of surface 1 and 2 

respectively; C1 and C2 refer to conditions in which subjects tracked the color of 

surface 1 and 2 respectively.  

We collapsed the responses across all voxels within each visual area and then 

averaged across subjects to generate an average amplitude spectrum for each 
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attention condition. The between-subjects averaged amplitude spectrum for V1 is 

shown in Fig. 3 for each attention condition. Fig. 3A shows the amplitude spectrum 

when the motion of surface 1 was tracked (M1). The amplitudes labeled Am1|M1 

and Am2|M1, at 22 and 25 cycles/scan, refer to motion harmonics to surface 1 and 2 

respectively, and Ac1|M1 and Ac2|M1, at 28 and 19 cycles/scan, refer to the 

corresponding color harmonics. In this condition, the Am1|M1 was stronger than 

baseline (harmonic amplitude at the non-stimulus frequencies) suggesting that 

attention to M1 caused an enhancement of response to the corresponding feature. 

However, this effect was not due to a non-specific enhancement of direction-

selective mechanisms in V1 because the same response modulation was not present 

for the motion in surface 2 (Am2|M1). The lack of response enhancement to the 

other overlapping surface also rules out the possibility that the modulation of 

Am1|M1 was due to spatial attention. The same selective enhancement of response 

was evident in the condition in which subjects tracked the motion of the surface 2 

(M2): Am2|M2 but not Am1|M2 was stronger than baseline (Fig. 3C). These results 

indicate that, in V1, the effect of feature-based attention to the direction of motion 

was surface specific.  
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Fig. 3  Between subject average amplitude spectrum for area V1. 
The error bars encompass ±1 standard error of the mean across the 6 
subjects. A subsection of the full amplitude spectrum is shown (10–37 
cycles per scan) to focus on the amplitudes of the four stimulus 
harmonics: Am1 & Am2, highlighted in gray at 22 & 25 cycles per scan, 
respectively, and Ac2, & Ac1, highlighted in red at 19& 28 cycles per 
scan. The remainder of the frequency spectrum (in blue) corresponds to 
non-stimulus harmonics (noise response). A, B, The average amplitude 
spectrums for the M1 and C1 conditions, respectively. C, D, the 
average amplitude spectrums for the M2 and C2 conditions, 
respectively. 

In contrast, when subjects attended the color of either surface, the color 

harmonic responses in V1 (Ac1|C1 and Ac2|C2) were not different from baseline 

(Fig. 3B,D). Surprisingly however, attention to color of a given surface led to an 

enhancement of responses associated with the motion of that surface. In particular, 

in the C1 and C2 conditions respectively, Am1|C1 (Fig. 3B) and Am2|C2 (Fig. 3D) 

were significantly stronger than the noise harmonics. In fact the overall pattern of 

amplitude responses across the four stimulus frequencies looks similar regardless of 
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whether the subjects tracked the motion or color of a surface (Fig. 3, A versus B, 

and C versus D). These results suggest that the observed modulations in V1 BOLD 

responses are associated with surface specific attentional selection for the direction 

of motion.  

A similar pattern of responses was observed in visual areas V2 and V3 

(supplemental Fig. 1&2). Area V4 followed the same trend but was less reliable 

than the earlier visual areas (supplemental Fig. 3). Area MT+ did not produce a 

reliable harmonic response to our stimulus (supplemental Fig. 4). 

In a separate experiment, we attempted to measure a baseline response to 

the stimulus while subject’s attention was diverted by a fixation task. Under this 

attentional condition the stimulus failed to drive voxels at the stimulus harmonics 

across all visual area (data not shown). Attention to the stimulus was therefore 

required to drive the harmonic response above the noise. 

 

Feature-based attention 

The selective enhancement of Am1 and Am2 in M1 and M2 conditions respectively 

corresponds to the effects of feature-based attention for the direction of motion (Fig. 

3A,C). We developed a feature-based attention index (FI) to quantify the magnitude 

of feature-based attention for both motion and color in different visual areas. The 

index measures the relative change in the amplitude of the harmonic response to a 

given feature when it is attended versus when it is unattended. For example, FIm1 is 

the normalized difference between the amplitude of the harmonic response to the 

motion of surface 1 (Am1) under two different attention conditions, M1 and M2.  

(4) 
| 1 | 2
| 1 | 2 

This formulation of the FI provides a simple metric for feature attention that 

ranges between -1 and 1, with zero corresponding to no attentional effect and 1 and 

-1 corresponding to strong enhancement and suppression of responses. Figures 4A,B 

show FI for direction of motion (FIm1 and FIm2 for surface 1 and 2 respectively) for 
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each visual area. For both surfaces, the FI was positive in V1, V2, V3 and V4, but 

the effect was weak and only significant in areas V1 and V2 for one of the surfaces 

(t(6)=3.25 for V1 and 2.80 for V2, p<0.05). The effect was weakest in area MT+ 

where direction selectivity is strong (R. B. Tootell et al., 1995; Zeki et al., 1991).   
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Fig. 4  Feature-based and object-based attention indices across 
conditions and visual areas. Each panel shows the value of an 
attention-index averages across the 6 subjects for areas V1, V2, V3, V4, 
and MT+. A-F, Feature-attention indices. Feature-attention indices 
quantify the effect of attention to motion on motion harmonic 
responses (A-C), and the effect of attention to color on color harmonic 
responses (D-F). A-C, Feature-attention index for the direction of 
motion in surface 1 (FIm1), the direction of motion in surface 2 (FIm1), 
and the overall average of the two surfaces (FImot). D-F, Feature-
attention index for the color in surface 1 (FIm1), the color in surface 2 
(FIm1), and the overall average of the two surfaces (FImot). G-L, Object-
attention indices. Object-attention indices quantify the effect of 
attention to color on motion harmonic responses (G-I), and the effect of 
attention to motion on color harmonic responses (J-L). G-I, Object-
attention index for the direction of motion in surface 1 (OIm1), the 
direction of motion in surface 2 (OIm1), and the overall average of the 
two surfaces (OImot). J-L, Object-attention index for the color in surface 
1 (OIm1), the color in surface 2 (OIm1), and the overall average of the 
two surfaces (OImot). In each row, the inset shows the overall average 
attention index computed from hemodynamic responses in the right 
hemisphere (ordinate) and left hemisphere (abscissa) for each subject 
and each visual area. The error bars show standard error of the mean 
across the 6 subjects. The grey asterisk denotes the attention-index 
values that were significantly different from zero (p<0.05, one-sample 
t-test). 

 

In many cases, FI was not significant but showed a positive trend. To 

determine whether the weak positive trend in FI was reliable, we asked whether a 

similar trend was evident in both hemispheres. We first averaged FIm1 and FIm2 to 

compute a single index (FImot) for each visual area (Fig. 4C), and then compared this 

value between the two hemispheres for the 5 visual areas (V1, V2, V3, V4 and MT+) 

in the 6 subjects. This analysis (Fig. 4C, inset) showed that, across areas and 

subjects, FImot was significantly correlated between the two hemispheres 

(r(30)=0.85, p<0.001) suggesting that there was a weak but reliable feature-

attention effect for motion. 
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We defined a similar feature index to quantify the effect of feature-based 

attention for color in different brain areas. Figure 4D,E show the FI for the color of 

the two surfaces (FIc1 for surface 1 and FIc2 for surface 2) for each visual area. The 

FI was positive across all visual areas for both surfaces, but the effect was only 

significant in V1 for surface 1 and V4 for surface 2 (t(6)=2.80 for V1, and 4.88 for 

V4, p<0.05).  

We asked whether the effect of feature-based attention to color was reliable 

by comparing the FI values between hemispheres. To do so, we averaged FIc1 and 

FIc2 to compute a single index (FIcol) that quantified the effect of feature-based 

attention for color (Fig. 4F). Overall there was a positive effect of feature-based 

attention on the color response across visual areas, which reached significance in 

areas V1 and V4 (t(6)=2.36 & 1.34, p<0.05). We then compared FIcol in the left and 

right hemispheres across 5 visual areas (V1, V2, V3, V4 and MT+) in the 6 subjects 

(Figure 4F, inset), and found that FIcol was significantly correlated between the two 

hemispheres (r(30)=0.53, p<0.01), suggesting that the index is reliable. 

 

Object-based spread of attention 

The selective enhancement of the motion-driven components Am1 and Am2 in 

conditions where color was attended (C1 and C2) suggests that attention to the color 

of each surface enhanced the motion-related signals of the attended surface (Figure 

3B,D). To quantify this spread of attention to the task irrelevant features of a 

surface, we developed an object-based attention index (OI) to quantify the 

magnitude of object-based attention for both motion and color in different visual 

areas. The index measures the relative change in the amplitude of the harmonic 

response to a given feature when the other feature of that same surface is attended 

versus when the other surface is attended. For example, OIm1 is the normalized 

difference between Am1 under two different attention conditions, C1 and C2.  
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(5) 
| 1 | 2
| 1 | 2 

Like the FI, the OI ranges between -1 and 1. Figures 4G,H show OI to the 

direction of motion for each surface (OIm1 and OIm2 for surface 1 and 2 respectively) 

for each visual area. The OIm2 was positive in V1, V2, V3, and V4 for both surfaces, 

and was significantly greater than zero in V1, V2 and V3 (t(6)= 3.87, 4.39 and 2.83 

respectively, p<0.05). 

To summarize the effect of object-based attention on the motion response, we 

averaged OIm1 and OIm2 together to form OImot (Fig. 4I). OImot was positive in all five 

visual areas, and was significant in V1, V2, V3, and V4 (t(6)=3.43, 4.34, 4.66, and 

2.82 repsectively, p<0.05). To test the reliability of this statistic we compared the 

OImot between hemispheres (Fig. 4I inset) across all five visual areas. The OImot was 

significantly positively correlated between hemispheres (r(30)=0.54, p<0.01). 

Finally, we quantified the effect of object-based attention to the color 

harmonics under conditions in which the motion of each surface was cued. For these 

conditions, we found no consistent object-based attention: OIc1 and OIc2 were not 

significantly different from zero for any of the visual areas we tested. OIc1 was, on 

average, negative across visual areas (except V4) and OIc2 was positive (Fig 4J,K). 

The average effect (OIcol) across the two surfaces was positive but not significant 

(Fig. 4L), although the value of OIcol was significantly correlation between the two 

hemispheres (Fig. 4L inset; r(30)=0.58, p<0.001). 

 

No dual-task cost when tracking two features within a surface 

We conducted a separate psychophysical experiment outside the scanner to 

assess the behavioral consequences of our observed fMRI results. Subjects 

performed a yes-no detection task while viewing short 5-second segments of the 

same stimulus used in the fMRI experiment. In the single-task condition, subjects 

were either cued to track the motion or the color of one of the two surfaces. In the 
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dual-task condition, subjects were cued to track both features within one of the two 

surfaces (see Methods: Psychophysics experiment). 

We compared subjects’ performance between the single- and dual task 

conditions to see whether dividing attention across features within a surface would 

result in a cost in behavioral performance. As evidenced by the scatter plot in Fig. 5, 

individual subjects’ performance on the single- and dual-task conditions was 

comparable, with no significant difference across subjects (single-task minus dual-

task: t(6)=0.62 p=0.56 for motion and t(6)=0.20, p=0.85 for color).  

 

 

Fig. 8  Each subject’s single-task performance (abscissa) is 
plotted against their dual-task performance (ordinate) for the motion 
task (black points) and color task (grey points). The identity line 
indicates equivalent single-task and dual-task performance. The black 
and gray crosses correspond to the average performance across the 6 
subjects for the motion and color task respectively. The horizontal and 
vertical extent of each cross corresponds to the standard error of the 
mean for the single- and dual-task performance levels. 
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DISCUSSION 

Both behavioral and physiological evidence has provided support for object-based 

attention. Theories of object-based attention posit that all features of a behaviorally-

relevant object are selected. Behavioral studies support this claim showing that 

attention can be divided across multiple features within an object without a 

reduction in performance, whereas selecting features from different objects is much 

more difficult (Blaser et al., 2000; Bonnel & Prinzmetal, 1998; Duncan, 1984). 

In an early neuroimaging study of object-based attention, O’Craven et al. 

(1999) presented subjects either a moving face superimposed on a stationary house, 

or a moving house superimposed on a stationary face. They found that when 

subjects attended one attribute of the moving face (either the face or the motion), 

the neural representation of both the motion sensitive area MT+ (MT/MST) and the 

fusiform face area were enhanced. Similarly, attending attributes of the moving 

house enhanced responses in MT/MST as well as the parahippocampal place area. 

This finding provides evidence that object-based attention enhances the response of 

brain areas representing the various attributes of a relevant object. 

However, ROI-based analyses that rely on an averaged BOLD signal – like 

those used by O’Craven et al. (1999) – cannot specify whether object-based attention 

operates at the level of functional areas (e.g., area MT/MST) or at the finer level of 

feature-selective mechanisms within an area (e.g., direction selective neurons 

within MT). To overcome this limitation, several studies have exploited the 

inhomogeneities in sensory representations to decode feature-based attentional 

modulations from the pattern of hemodynamic responses (Brouwer & Heeger, 2009; 

Haynes & Rees, 2005; Kamitani & Tong, 2005, 2006; Serences & Boynton, 2007). 

For example, pattern classification has been used to predict which of two 

superimposed surfaces a subject attended (Kamitani & Tong, 2005). Pattern 

classification has also been used to classify object identity in higher visual areas 

(Kalanit Grill-Spector & Sayres, 2008; Haxby et al., 2001; O’Toole, Jiang, Abdi, & 

Haxby, 2005), and to decode the effects of selective attention on the representation 
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of object-based information in extrastriate cortex (A. J.-W. Chen et al., 2012). 

Successful decoding provides evidence that selection of a feature could bias the 

pattern of responses across voxels towards the pattern produced by the attended 

feature in isolation (Boynton, 2005b). Here, we developed a frequency-tagging 

scheme that exploits these biases in order to assess the correlate of object-based 

attention at the level of feature-selective mechanisms within different visual areas. 

 

Frequency-tagging with fMRI 

Frequency tagging has been used to study the effect of selective attention in a 

number of EEG studies (Andersen et al., 2008; Muller et al., 2006; Schoenfeld et al., 

2007; Toffanin, de Jong, Johnson, & Martens, 2009). To our knowledge, frequency 

tagging has not been used to study the effects of feature- or object-based attention 

with fMRI. But, frequency tagging is not new to fMRI; in traditional retinotopic 

mapping experiments, the spatial location of the stimulus is modulated in a circular 

fashion—both radially and tangentially—to infer the underlying retinotopic map 

from the phase of each voxel’s response at the modulation frequency. The success of 

frequency tagging in retinotopic mapping is due to the large-scale cortical 

topography of receptive field locations in the visual cortex. This topography ensures 

that the profile of a voxel’s response will oscillate at the frequency with which the 

retinal position of the stimulus is modulated.  

The novel aspect of our work was to apply frequency tagging to analyze the 

responses to the features of color and direction of motion. We found that BOLD 

signals contained harmonic responses associated with the frequencies at which the 

color and direction of motion of the two surfaces were modulated. This finding 

suggests that some of the voxels contained an inhomogeneous distribution of 

feature-selective responses—for example, a weak preference for a particular color or 

direction of motion. The source of these inhomogemeties is not fully understood, but 

several possibilities have been proposed. Fine-scale anisotropies in the cortical 

organization of feature-selective neurons may give rise to the population response 
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biases. Examples of such fine-scale anisotropies include the orientation-tuning 

columns and color-selective clusters in striate cortex (Hubel and Wiesel, 1974; Xiao 

et al., 2007), the columnar structure of direction-selective neurons in MT (Albright, 

1984), and the color-selective clusters in extra-striate cortex (Conway et al., 2007). 

More recently, response biases at the voxel-based level was attributed to larger-

scale biases in the topographic organization of the visual responses (Freeman, 

Brouwer, Heeger, & Merriam, 2011). In addition, anisotropies in the underlying 

representation of simple features across voxels could result in a measurable 

harmonic response across a population of voxels (Freeman et al., 2011; Mannion, 

McDonald, & Clifford, 2010; Op De Beeck, 2010). 

Several constraints must be satisfied in order to combine frequency tagging 

with fMRI measurements. The first constraint is related to the sluggish nature of 

the hemodynamic response. Based on a typical model of the hemodynamic impulse 

response function (Boynton, Engel, Glover, & Heeger, 1996), short temporal periods, 

like those previously used to incorporate frequency-tagging in EEG recordings 

(Morgan, Hansen, & Hillyard, 1996), would not be extractable from the BOLD 

signal. Consequently, because the BOLD signal cannot capture rapid modulations of 

the underlying neural activity, we chose relatively long temporal periods (on the 

order of tens of seconds). 

A second constraint in our design was our use of circular feature-spaces. To 

drive harmonic responses to a feature, it is important to be able to modulate that 

feature periodically. Color, direction motion, and orientation are all natural 

candidates since they can be readily represented and modulated in a circular 

fashion. It would be more difficult to use the frequency-tagging scheme to stimulus 

features that are not inherently circular such as spatial or temporal frequency. We 

chose color and direction of motion because they are natural features of dot fields, 

which can be easily superimposed.  

Finally, frequency tagging implicitly assumes a linear relationship between 

the stimulus and the evoked responses. Evidence suggests that the hemodynamic 

response is to a first approximation linearly related to the average population 
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response over time (Boynton et al., 1996). This assumption underlies a large body of 

fMRI research which uses an estimate of the hemodynamic impulse response 

function to predict the BOLD response to a time varying stimulus based on a 

general linear model (Heeger & Ress, 2002). However, the assumption of linearity is 

not without challenge (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; 

Maier et al., 2008). 

Specific to our stimulus, nonlinearities could also arise from neural 

populations tuned for specific color-motion conjunctions (Seymour et al., 2009). For 

example, if responses to the modulations of color and direction of motion interact 

multiplicatively, the harmonic responses would correspond to frequencies that are 

either higher or lower than those associated with the color and direction of motion 

in our stimulus. Consequently, our harmonic analysis was insensitive to the output 

of neurons that combine color and motion nonlinearly. 

 

Neural correlates of feature- and object-based attention  

We measured fMRI responses while subjects tracked either the color or the 

direction of motion of one of two overlapping surfaces (dot fields) segregated by their 

unique conjunctions of color and motion. We designed the stimulus such that the 

four features—two colors and two directions of motion—smoothly traversed a 

circular path through feature space with four unique temporal periods. This design 

enables us to use the corresponding harmonic responses to infer the effects of both 

feature- and object-based attention. 

We found that the feature- and object-based effects were qualitatively similar 

(compare Fig. 3A to B, and C to D). For example, Am1 (the amplitude of the harmonic 

associated with the motion of surface 1), was modulated in both the M1 and C1 

conditions (Fig. 3A,B). Our result supports the hypothesis that object-based 

attention modulates the sensory representation of all the features that comprise a 

task-relevant surface, which is consistent with previous fMRI (O’Craven et al., 

1999) and electrophysiological measurements (Fallah, Stoner, & Reynolds, 2007; 
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Katzner, Busse, & Treue, 2009; Roelfsema, Lamme, & Spekreijse, 1998; Wannig, 

Rodríguez, & Freiwald, 2007). Our application frequency tagging to fMRI data 

suggests that the mechanisms of object-based attention—previously quantified at 

the level of average BOLD signal across visual cortical areas—might operate at a 

finer level of feature-selective mechanisms within those areas. Furthermore, our 

findings extend the effects of object-based attention to the hemodynamic response in 

area V1. Although feature-based attention effects have been reported in V1 (Saenz 

et al., 2002), object-based attention effects have only been reported in extrastriate 

visual areas including MT+ (Katzner et al., 2009; O’Craven, Rosen, Kwong, 

Treisman, & Savoy, 1997), the fusiform face area, and the parahippocampal place 

area (O’Craven et al., 1997). Our results extends previous work and suggests that 

object-based attention rely on feedback signals that target the representation of 

feature-specific mechanisms throughout the visual cortex and as early as V1. 

The attention indices we used to quantify the effects of attention were based 

on comparing the hemodynamic responses to a feature under two different 

attentional states. This relative measure does not specify whether an increase in 

the attention index represents enhancement of responses to the attended feature or 

suppression of responses to the unattended feature, or a combination of both. 

Distinguishing between these possibilities requires an estimate of the baseline 

response to the stimulus. We attempted to measure a baseline response to our 

stimulus in a separate fixation scan in which subjects performed a demanding 

fixation task in order to draw their attention away from either surface. 

Interestingly, with attention directed to fixation, the peripheral stimulus failed to 

produce a reliable response at any of the stimulus harmonics; the amplitude at the 

stimulus frequencies was indistinguishable from the surrounding noise frequencies. 

Therefore, we were unable to determine the nature of attentional modulations when 

attention was oriented towards one of the two surfaces. 
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Signal-to-noise in our measurement 

The average attention index for the cued feature and the task-irrelevant feature on 

the cued surface was positive in all 5 regions of interest. However, our effect size 

was small. Several factors could have contributed to a weak overall harmonic 

response. For example, it is thought that the superimposition of competing features 

within the receptive field of feature-selective neurons could reduce sensory-evoked 

responses (Desimone, 1998; Moran & Desimone, 1985; Reynolds, Chelazzi, & 

Desimone, 1999). Such suppressive effects are likely to degrade the signal-to-noise 

of our measurements. Another contributing factor may be the nonlinearities in 

feature-selective responses. Our frequency-tagging approach is only able to extract 

signals that are driven by a linear combination of responses to individual features. 

Therefore, the inherent nonlinearities in sensory representations and the potential 

interactions between the four features in our stimuli may have further reduced the 

sensitivity of our measurements to feature- and object-based attentional 

modulations. Finally, to combine frequency tagging with the fMRI signals, it was 

important to modulate the color and direction of motion of the two surfaces using 

relatively long temporal periods. Such slow modulations could adapt central 

feature-selective mechanisms (Boynton & Finney, 2003; Liu, Larsson, & Carrasco, 

2007) and reduce the amplitude to the associated hemodynamic responses (K Grill-

Spector & Malach, 2001). 

The attention index for the motion harmonic was weaker in area MT+ than 

earlier visual areas; a surprising result given that large effects of attention have 

been previously reported in area MT+ (O’Craven et al., 1997; Saenz et al., 2002; 

Serences & Boynton, 2007; R. B. H. Tootell et al., 1998). This unexpected result 

might be related to a suppressive interaction between the two surfaces as shown by 

electrophysiological recordings in the macaque monkey (Treue, Hol, & Rauber, 

2000), which is consistent with the weak harmonic responses out stimuli evoked in 

area MT+ (Supplemental Fig. 4). 
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Across visual areas, the attention index was smaller for the color harmonics 

than for the motion harmonics. We do not know the factors that contributed to a 

weaker color response. One possibility might be that the distribution of color 

selective neurons might be more homogeneous within a voxel than the distribution 

of motion selective cells, effectively leading to a smaller color harmonic. But this 

seems unlikely since color has been successfully classified in a number of studies 

using fMRI (Brouwer & Heeger, 2009; Kamitani & Tong, 2006; Seymour, Clifford, 

Logothetis, & Bartels, 2009). Another possibility might be related to the constraints 

of creating isoluminant stimuli, which limited the range of intensities we were able 

to use to modulate the red and green channels (to balance the luminance of the 

weaker blue channel). Finally, it is possible that direction of motion is inherently 

more effective that color in segregating transparent surfaces. If so, it is possible that 

the even when subjects were asked to track the color of a surface, they still 

implicitly used the motion cue to improve their ability to segregate the two surfaces. 

 

Perceptual consequences of object-based attention 

Object-based attention allows subjects to divide attention to multiple features of an 

object with no additional cost. Our fMRI experiment showed that attention to one 

feature of a surface modulated the neural response of that feature as well as the 

other feature of the same surface, but our behavioral paradigm did not directly test 

the consequences of divided attention. We therefore used our stimuli in an 

additional psychophysical experiment to establish a more direct link between our 

fMRI experiments and the mechanisms to object-based attention. Following 

previous work (Blaser et al., 2000; Bonnel & Prinzmetal, 1998; Duncan, 1984), we 

compared subjects’ performance across two conditions. In the single-feature 

condition, subjects were required to detect changes in one of the surface features, 

and in the dual-feature condition, they detected changes in both features of the 

surface. We found that subjects’ performance was comparable between the two 

conditions (Fig. 5) suggesting that the capacity to attend multiple features of an 
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object might be mediated by the simultaneous enhancement of sensory responses to 

the features of that object. 
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SUPPLEMENTAL FIGURES 

 

Fig. 1  Between subject average amplitude spectrum for area V2. 

 

Fig. 2  Between subject average amplitude spectrum for area V3. 
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Fig. 3  Between subject average amplitude spectrum for area V4. 

 

Fig. 4  Between subject average amplitude spectrum for area 
MT+. 
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DIVIDING ATTENTION BETWEEN TWO 

TRANSPARENT MOTION SURFACES 

In collaboration with: 
John Palmer & Geoff Boynton 
Submitted to the Journal of Vision: May 4th, 2012 
(under review) 

In object-based attention, it is easier to divide attention between features within a 

single object than between features across objects. In this study we test the 

prediction of several capacity models in order to best characterize the cost to 

dividing attention between objects. Here we studied behavioral performance on a 

divided attention task in which subjects attended to the motion and luminance of 

overlapping random dot kinemategrams, specifically red upward moving dots 

superimposed with green downward moving dots. Subjects were required to detect 

brief changes (transients) in the motion or luminance within the same surface or 

across different surfaces.  

There were two primary results. First, the dual-task deficit was large when 

attention was divided across two surfaces and near zero when attention was divided 

within a surface. This is consistent with limited-capacity processing across surfaces 

and unlimited-capacity processing within a surface—a pattern predicted by 

established theories of object-based attention. Second and unexpectedly, there was 

evidence of crosstalk between features: when cued to monitor transients on one 

surface, response rates were inflated by the presence of a transient on the other 

surface. Such crosstalk is a failure of selective attention between surfaces. 
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INTRODUCTION 

More sensory information is available to the visual system than can be effectively 

processed. Due to these limits in processing, information competes for memory 

encoding, perceptual decisions, and motor responses. Visual attention helps resolve 

this competition by selecting relevant information on the basis of spatial location, 

feature, or object, which biases the sensory processing in favor of the behaviorally 

relevant information (Posner, 1980; Desimone & Duncan, 1995; Desimone, 1998; 

Kanwisher & Wojciulik, 2000). Object-based attention is hypothesized to select all 

the features of a behaviorally relevant object, serving to improve the encoding of its 

component features relative to an unattended object (Duncan, 1984; Kahneman, 

Treisman, & Gibbs, 1992; Treisman, 1998; Valdes-Sosa, Cobo, & Pinilla, 1998). 

When behaviorally relevant features belong to different objects, can observers 

selectively attend to those features, or does object-based attention interfere with the 

selection process? 

Duncan proposed that selective attention operates at the object-based level, 

limiting selection to one object at a time. Using a dual-task paradigm, subjects 

performed multiple perceptual judgments regarding features within one object or 

between two objects. Performance was better when the judgments regarded features 

belonging to the same object versus different objects (Duncan, 1984). Vecera and 

Farah (1994) later demonstrated similar divided attention costs—using Duncan’s 

stimuli—regardless of whether the two objects were superimposed or separated in 

space, lending further support that object ownership limits perception. Ideally 

spatial separation could be better controlled for within the stimulus. In addition, 

the types of feature judgments made within and between objects were not the same 

leading to the concern that task demands may have been different across 

conditions. 
Valdes-Sosa and colleagues improved the paradigm for studying object-based 

attention by superimposing two random dot fields which rotated in opposite 
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directions (Valdes-Sosa, Cobo, & Pinilla, 2000). As is typical with a random dot 

kinemategram, each dot existed for a limited number of frames before being 

randomly redrawn, forcing surface segregation to rely on the global motion of the 

dots. Surface selection is therefore exclusively feature-based since dots belonging to 

either field were spatially intermingled. Subjects’ reported the direction of two brief 

translational probes, which occurred in either surface and with a variable inter-

probe interval. Performance in reporting the direction of the second probe dropped 

when it occurred in the other surface within 600 ms or less of the first. The authors 

described the first probe as an exogenous cue, which captured object-based attention 

decreasing the subjects’ sensitivity to probes on the second surface. These results 

provide evidence that perception of objects is capacity limited. The authors describe 

the capacity limit as a “difficulty in switching attention rapidly between surfaces.”  

Multiple groups have argued that capacity is unlimited when dividing 

attention within an object but requires switching when attempting to divide 

attention between objects (Duncan, 1984; Blaser et al., 2000; Valdes-Sosa et al., 

2000). In a dual-task paradigm where the observer is asked to divided their 

attention across multiple objects, an all-or-none switching model assumes that on a 

given trial the observer is constrained to select only one object at a time (Bonnel & 

Haftser, 1998; Sperling & Melchner, 1978) and therefore must guess when asked to 

recall the properties of a second object. Thus the all-or-none switching model 

predicts a negative trial-by-trial covariance (Bonnel & Prinzmetal, 1998) and a 

decrease in overall performance, known as a dual-task cost. In addition to the all-or-

none switching model, there are limited-capacity parallel models that also predict a 

dual-task cost, but zero trial-by-trial covariance. One specific limited-capacity model 

is the fixed capacity model which maintains a fixed amount of information 

processing when attention is divided (Shaw, 1980). These models make specific 

predictions of dual-task performance from baseline single-task performance. In this 

paper we measured dual-task performance when attention was divided within 

versus between two surfaces and compared behavioral performance to the 
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predictions of two common capacity models at either end of the capacity continuum: 

the unlimited-capacity parallel and the all-or-none switching models. 

Most capacity models assume perfect selection, but a dual-task deficit could 

also arise from selective attention errors cause by distractor interference. The 

difficulty in dividing attention between objects may arise from interaction between 

feature-channels through crosstalk (Navon & Miller, 1987). If object-based attention 

facilitates the selection of all of an object’s features, then task irrelevant features 

may interfere when attempting to select specific features from multiple objects 

(Davis, Driver, Pavani, & Shepherd, 2000). The interference due to crosstalk may 

increase when attention is divided between objects composed of competing features 

within a feature-dimension (e.g. different directions of motion). The prevalence of 

selection errors observed in our data lead us to purpose a new capacity model that 

takes into account crosstalk. 

In order to measure the capacity of divided attention within and between 

objects, we measured accuracy when attention was divided across features within 

and between two superimposed transparent motion surfaces created from random 

dot kinemategram. Following in the tradition of Duncan and Valdes-Sosa, we chose 

to focus on accuracy rather than reaction times in order to test the predictions made 

by specific capacity models. Although our model does not make specific reaction 

time predictions, dual-task deficits may also manifest in slower reaction times when 

attention is divided between surfaces (Lamy & Egeth, 2002; Watson & Kramer, 

1999). In addition, interference due to crosstalk has also been shown to affect 

reaction times (Navon & Miller, 1987; Treisman, Kahneman, & Burkell, 1983).  
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METHODS 

Participants 

Five subjects participated in this study, including the first author. All subjects gave 

written informed consent in accord with the human subject protocol at the 

University of Washington (Seattle, WA).  

 

Apparatus 

Stimuli were presented on a CRT monitor with a resolution of 1024 by 768 pixels, 

and viewed from a distance of 57 cm. Subject responses were collected by keyboard 

button presses. The code was written in MATLAB and presented using 

Psychtoolbox (Brainard, 1997; Pelli, 1997) on a computer running Windows  

 

Stimuli  

The stimuli consisted of two superimposed moving surfaces composed of randomly 

drawn dots with a unique color-motion conjunction, i.e. red-up and green-down or 

vice-versa, counter-balanced across sessions. Each surface was composed of 100 

dots. To remove a potential depth cue, the depth order of overlapping dots (which 

dots occludes the other dot) was randomized. The diameter of the dots was 0.8 deg. 

The dots were confined to annulus with an inner diameter of 3 deg, and an outer 

diameter of 16 deg (see Figure 1B). A fixation plus was placed at the center of the 

annulus. The dots moved coherently at a rate of 8 degrees per second. Each dot was 

presented with a limited lifetime of 12 frames (200 ms), and was subsequently 

redrawn at a random position. The luminance of the green dots was reduced to 

match the luminance of the red dots at the maximum intensity of the red channel 

(33 cd/m2). The (x, y) CIE 1931 xyz space coordinates for the red and green dot colors 

were (0.612, 0.331) and (0.279, 0.581), respectively. The monitor background was set 

to black with a luminance of less-than 1 cd/m2. 
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Procedure 

Prior to a block of trials, subjects received specific instructions regarding which 

feature, or pair of features, to attend in order to perform one or two detection tasks. 

There were a total of four conditions; two single-task and two dual-task conditions. 

For the single-task motion condition, subjects were cued to attend to the speed of 

one of the two surfaces (e.g. “attend to the speed of the upward moving red 

surface”). For the single-task luminance condition, subjects were cued to attend to 

the luminance of one of the two surfaces (e.g. “attend to the brightness of the red 

surface”). For the dual-task, within-surface condition, subjects were cued to attend 

to the speed and the luminance of one of the two surfaces (e.g. “attend to the speed 

AND brightness of the upward moving red surface”). For the dual-task, between-

surface condition, subjects were cued to attend to the speed of one surface and the 

luminance of the second surface (e.g. “attend to the speed of the upward moving 

surface AND the brightness of the green surface”).  

The trial structure is schematized in Figure 1. Each trial began with a 1000 

ms pre-trial-interval, consisting of a fixation plus centered on a black screen (Figure 

1A). The stimulus movie followed for 1100 ms (Figure 1B). Stimulus “transients” 

occurred 500 ms after the onset of the moving surfaces and consisted of brief (100 

ms) decrements in speed and/or the luminance of the dots within each surface 

(Figure 1B). On every trial, there was an independent 50% chance of a transient 

occurring in each of the four features. Thus, from zero to four stimulus transients 

occurred on each trial. 
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Figure 1 Trial structure. (A) Each trial commenced with a 1000 ms 
pre-trial-interval with a fixation-cross. (B) The stimulus then appeared 
for 1100 ms. At 500 ms, post stimulus onset, 0-4 100 ms 
luminance/motion transients could occur. (C) Following the stimulus, 
the observer made one or two yes/no responses without time pressure. 

Following stimulus offset, subjects were queried to indicate whether or not a 

transient occurred in the cued feature(s) by pressing one of two buttons (a yes/no 

response). There was no time pressure. To help reduce response errors, the yes-no 

responses for the motion and luminance tasks were mapped to separate pairs of 

keyboard buttons; subjects used their left and right pointer fingers to perform the 

motion and luminance tasks (e.g. “did the speed of the upward moving surface 

decrease, yes (z) or no (x)?”, and “did the brightness of the red surface decrease, yes 

(.) or no (/)”. The order of report, whether motion or luminance was queried first, 

was pseudo-randomized across trials to prevent response biases.  

Subjects practiced all four experimental conditions over the course of two to 

three one-hour sessions until they reported feeling comfortable with the task. 

Experimental data was then collected over two one-hour sessions. The magnitudes 

of the speed and luminance decrements were adjusted during the training sessions 

to ensure single-task performance levels above 80% correct but bellow ceiling. 

Intensities decrements were chosen separately for each surface (Table 1). For the 
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motion task, subject 3 exhibited much higher sensitivity for upward motion 

decrements then downward motion decrements. For the luminance task, 4 subjects 

(2–5) exhibited slightly higher sensitivity for the luminance decrements in the green 

field then in the red field.  

During the experimental sessions the magnitude of the speed and luminance 

decrements were held constant. Subjects performed blocks of 32 trials, preceded by 

specific attention instructions. Each attention condition was grouped into sets of 

four blocks. For example, for the single-task motion subjects alternated between 

attending upward motion for 32 trials, and downward motion for 32 trials. After 

four blocks (128 trials total), the subject began a new (randomly selected) cue 

condition. In this manner, 256 trials were collected for each of the four cue 

conditions in each one-hour sessions for a total of 512 trials per cue condition.  

 Speed decrement (%) Luminance decrement (%) 
Subject Upward Downward Red field Green field 
1 43 43 36 36 
2 36 36 26 29 
3 63 50 34 38 
4 45 45 33 36 
5 26 26 27 36 

Table 1  Percent of speed or luminance decrement from baseline intensity (8 
deg/sec and 33 cd/m2) for transient events. The percentages are tabulated for each 
surface feature within each subject.  

 

Analysis 

We collapsed performance across surfaces, because we were not interested in 

performance differences within a feature-dimension (e.g. upward vs. downward 

motion or red vs. green). Behavioral performance was analyzed at several different 

levels. For a coarse analysis of performance, we averaged across the hit rate and 

correct rejection rate to compute a percent correct for each condition. Going further, 

we analyzed the joint dual-task performance for signs of independence between 

tasks. At the finest level of analysis, we compared hit rates to false alarm rates 
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conditionalized on each type of stimulus transient. Finally, we fit a parametric 

model to the most informative of the three conditionalized response distributions 

(see Modeling below) 

 

Error bars 

When plotting averages across subjects, error bars error bars encompass ±1 

standard error of the mean (n=5). When plotting individual subject data, we 

resampled our data (with replacement) 10,000 times, calculating the sample mean 

after each iteration (Wichmann & Hill, 2001). Error bars enclose ±1 standard 

deviation of the sampling distribution (±34.14%). 
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RESULTS 

We began by comparing dual-task performance to single-task performance in an 

attention operator characteristic (AOC) plot (Figure 2) (Sperling & Melchner, 1978). 

AOC plots are generated by plotting dual-task performance levels against one-

another. To ease comparison between the single-task and dual-task conditions, 

single-task performance is plotted along the axes. The effect of divided attention 

within versus between-surfaces is readily apparent in the AOC which shows mean 

performance across the five subjects. 

 

Figure 2 Performance on the motion task (abscissa) is plotted 
against performance on the luminance task (ordinate). Between-
subject average single-task performance is plotted in black on the axes; 
dual-task performance, when attention was divided within a surface, is 
plotted in blue; dual-task performance, when attention was divided 
between-surfaces, is plotted in red. Error bars encompass ±1 standard 
error of the mean between-subjects (n=5). Grey lines extend from the 
single-task performance levels to aid in their comparison to dual-task 
performance levels. 
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Detecting a change in both the motion and luminance within a single surface 

yielded little to no deficit compared to detecting a change in either feature alone. 

The average within-subject difference between single-task performance and within-

surface dual-task performance (0.02±0.01 for the motion task, and −0.02±0.02 for 

the luminance task) was not statistically significant (t(4)=1.46 & 1.45; p>0.05). In 

contrast, detecting a change in the motion of one surface and the luminance of the 

other surface resulted in a significant deficit compared to single-task performance 

levels (−0.14±0.02 & −0.18±0.017). The difference was statistically significant for 

both tasks (t(4)=7.05 & 10.26; p<0.01). The pattern of dual-task performance was 

consistent across all five subjects (Figure 3). 

 

Figure 3 Individual subject performances are summarize by 
separate AOC plots. Error bars enclose ±1 standard deviation of the 
bootstrapped sampling distribution (see Methods: Error bars). 

To verify that there were no memory or order effects resulting from the order 

in which the two tasks were performed in the dual-task conditions, we separated 
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performance on the basis of response order (Figure 4). The average within-subject 

differences between performance in the motion task when motion was queried first 

versus when color was queried first (−0.013±0.005 for the within-surface condition, 

and −0.009±0.011 for the between-surface condition) was not statistically significant 

(t(4)=2.36 & 0.90; p>0.05). Likewise, the differences between performance in the 

color task when color was queried first versus when motion was queried first 

(0.00±.02 & 0.01±0.02) was not statistically significant (t(4)=0.12 & 0.71; p>0.05). 

 

 

Figure 4 AOC plots, averaged across subjects, after separating 
dual-task performance on the basis of response order. Squares denote 
performance over trials in which the luminance task was queried first, 
and circles denote performance over trials in which the motion task 
was queried first. 
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MODELING 

We next explored the predictions of two simple non-parametric models at either end 

of the processing-capacity continuum. The unlimited-capacity sharing model 

assumes that each task was performed independent of the other task, whereas the 

all-or-none switching model assumes that only one task can be performed at a given 

time. 

 

Unlimited Capacity Model 

There exists a range of models over which the amount of interference between two 

concurrent tasks varies. At one end of the spectrum resides the unlimited-capacity 

parallel model, which assumes independent and non-interfering task performance. 

Given unlimited capacity, the joint probability of two correct responses in the dual-

task condition is simply the product of the two single task performance levels: 

 

(1) ( ) ( ) ( )singlesingle& lpmplmp dual ∗=

 

where m and l represent the motion and luminance tasks, and p( x ) represents the 

probability of a correct response on task x. The unlimited-capacity sharing model 

predicts that dual-task performance should fall at the independence point at the 

intersection of the single-task performance levels.  

The results from the within-surface dual task falls very close to this 

intersection for all five subjects (Figure 3), which suggests that there is not a 

capacity limit for dividing attention across features within a single object. 

 

All-or-none Switching Model 

On the other end of the spectrum resides the all-or-none switching model, which 

assumes that only one task can be carried out at a given time. Consequentially, the 

model predicts a negative trial-by-trial correlation in dual-task performance 
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because the observer can only be in one attentional state at a time. When attention 

is directed to one task the observer must guess on the other. This model results in 

two contingency tables, one for each attention state. Since subjects were given no 

priority instructions, we assumed an even mixture of the two attention states across 

trials. If the observer attended to motion on half of the trials while guessing on the 

luminance task, and attended to luminance on the other half of the trials while 

guessing on the motion task, the joint probability of getting the luminance and 

motion task correct is: 

(2) &
0.5 0.5

2  

The all-or-none switching model predicts a trade-off between the two tasks 

confining dual-task performance along the negative diagonal connecting the two 

single-task performance levels (see Figures 1 and 2). Or more specifically, halfway 

between chance and single-task performance, given an equal combination of 

unattended trials in which the subject guessed attended trials in which the subject 

performed at the single-task level. For each of the five subjects (Figure 3), dual-task 

performance is close to the negative diagonal when attention was divided between-

surfaces. This seems at first like strong support for the all-or-none switching model 

for predicting dual-task deficits for dividing attention across surfaces. However, a 

further analysis shows that this model cannot describe the results. A key feature of 

the all-or-none switching model is that there should be a negative covariance 

between trial-by-trial performances, since attention to one task forces the subject to 

guess on the other. Note that while the AOC plots in Figures 1 and 2 provide a 

useful graphical summary of performance in divided attention experiments, because 

performance is collapsed across trials, trial-by-trial covariance cannot be observed 

in these plots.  

The amount of negative covariance predicted by the all-or-none switching 

model depends on the single-task performance level. Plotted in Figure 5 is the 

observed dual-task covariance between the motion and luminance task, along with 
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the prediction curve of the all-or-none switching model as a function of single-task 

performance (Equation 3): 

(3) & & &~ & ~ &  

where p(m&l) corresponds to the joint probability of correct response on both task 

described by Equation (2). To reduce the dimensionality of the space we set p(m)single 

equal to p(l)single for each point along the abscissa. The “~” in Equation (3) signifies 

the probability of an incorrect response—otherwise one minus the probability of a 

correct response. The between-subject average covariance (0.001 ± 0.003) was 

statistically indistinguishable from zero (t(4)=0.56; p>0.05). In addition, there was 

plenty of power to reject the prediction of the all-or-none, switching model. The 

average within-subject difference between the observer covariance and the model 

prediction (0.041±0.002) was statistically significant (t(4)=16.93; p<0.001). 

 

Figure 5 Single-task performance is plotted on the abscissa, and 
trial-by-trial covariance between the motion and luminance task is 
plotted on the ordinate. The red data points correspond to observed 
single-task performance and dual-task covariance for when attention 
was divided between surfaces. To reduce the dimensionality, single-
task performance was averaged across the two tasks. Error bars 
enclose ±1 standard deviation of the bootstrapped distribution 
(horizontal error bars fall within the extent of the data points). The red 
curve traces the covariance predicted by the all-or-none switching 
model as a function of single-task performance. 
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Conditionalizing Responses on Target and Distracter Transients:  

Dividing attention across surfaces led to a decrease in performance, but without a 

corresponding negative trial-by-trial covariance. Instead, some other mechanism 

besides switching must be causing this performance deficit. One possibility is a 

phenomenon called crosstalk (Navon & Miller, 1987) which is when subjects 

inadvertently respond to the presence of distractors. For example, subjects may be 

more likely to respond ‘yes’ to an upward speed decrement when a speed decrement 

occurs on the uncued downward moving surface. 

To further investigate the crosstalk hypothesis, we conditionalized hits and 

false alarms on the presence or absence of uncued transients, or distractors. If there 

is crosstalk between channels, then distractors will not be properly filtered and an 

increase in hits and false alarms on trials containing distractors would occur. For 

each task there were three categories of distractors: same feature / different surface, 

different feature / same surface, and different feature / different surface. For 

example, when the motion of surface 1 was cued a distractor transient may occur in 

the, motion of surface 2, the color of surface 1, and/or the color of surface 2. 

To begin, we considered distractors within the same feature-dimension 

(Figure 6A,B), e.g. for the motion task, a downward motion transient on trials 

where upward motion is cued (Figure 6A). The presence of these distractors 

increased the proportion of ‘yes’ responses, and therefore both the proportion of hits 

and false alarms (solid points)—for both tasks and across all conditions—relative to 

trials containing no distractors (open points). For the motion task (Figure 6A), the 

average within-subject increase in proportion of yes-responses (0.06±0.02 for the 

single-task, 0.07±0.01 for the dual-task within, and 0.17±0.03 for the dual-task 

between), was statistically significant across all conditions (t(4)=3.40, 5.06, & 5.93; 

p<0.05, <0.01, & <0.01). For the luminance task (Figure 6B), the average within-

subject increase in proportion of yes-responses (0.23±0.02, 0.20±0.02, & 0.31±0.03), 

was statistically significant across all conditions (t(4)=13.74, 8.42, & 10.13; p<0.01). 
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Figure 6 Between-subject average false alarm rate (abscissa) and 
hit rate (ordinate) contingent on distractor transients. Open points 
correspond to trials with no distractor transients, and filled points 
correspond to trials with distractor transients. Isosensitivity curves 
(assuming zero bias) are drawn through the open points (Green & 
Sweets, 1974). False alarm and hit rates for (A) the motion task, 
contingent on motion transients in the other surface; (B) the luminance 
task, contingent on luminance transients in the other surface; (C) the 
motion task contingent on luminance transients in the same surface; 
(D) the luminance task contingent on motion transients in the same 
surface; (E) the motion task contingent on luminance transients in the 
other surface; (F) the luminance task contingent on motion transients 
in the other surface. 
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Based on signal detection theory, (Green & Sweets, 1974), we drew 

isosensitivity curves (constant d-prime) through the open points to help visualize 

changes in sensitivity from changes in response bias due to the distractors. For the 

motion task, the difference in d-prime (−0.4±0.4, 0.3±0.3, & 0.4±0.3) was not 

statistically significant (t(4)=0.93, 1.22, 1.57; p>0.05). For the luminance task, the 

difference in d-prime (−0.2±0.3, 0.4±0.3, & 0.5±0.2) was also not statistically 

significant (t(4)=0.61, 1.54, 2.10; p>0.05).  

Next, we considered distractors within the other feature-dimension on the 

same surface (Figure 6C,D), e.g. for the motion task, a luminance transient in the 

same surface as the cued motion direction. Luminance transients decreased the 

accuracy of motion judgments within the same surface across all three cue 

conditions (Figure 6C). The decrease in sensitivity (by a d-prime of 1.1±0.2, 1.8±0.2, 

& 0.6±0.1) was statistically significant across all three conditions (t(4)=4.68, 10.00, 

& 4.17; p<0.01, 0.01, & 0.05). This suggests that luminance transients masked 

target-motion transients within the same surface. The complementary effect was 

not observed in the luminance task (Figure 6D); motion transients did not appear to 

mask target luminance transient within the same surface. The change in sensitivity 

to luminance targets when motion distractors occurred in the same surface 

(−0.5±0.2, −0.3±0.2, & 0.1±0.1) was not statistically significant (t(4)=2.68, 1.54, & 

0.83; p>0.05). 

Finally, we considered the effect of distractors within the other feature-

dimension, on the other surface (Figure 6E,F), e.g. for the motion task, a luminance 

transient in the surface moving in the uncued motion direction (Figure 6E). These 

distractors had no measurable effect on responses in either task across all three cue 

conditions. The change in sensitivity for motion transients when luminance 

distractors occurred (Figure 6E) in the other surface (0.1±0.1, 0.3±0.2, & −0.1±0.2) 

were not statistically significant (t(4)=1.21, 0.15, 0.74; p>0.05). Likewise, the change 

in sensitivity for luminance transients when motion distractors (Figure 6F) 

occurred in the other surface (0.1±0.1, 0.00±0.1, & 0.1±0.1) were not statistically 

significant (t(4)=1.12, 0.03, 1.46; p>0.05). 

60 
 



 
 

The two main effects captured by the AOC plot (Figure 5) are also present in 

all of the ROC plots (Figure 6). First, the conditionalized responses are similar 

between the single-task (black) and dual-task within (blue) surface conditions. 

Second, when attention was divided between surfaces (red), there was a decrease in 

sensitivity compared to the other two conditions (i.e. the red points fall closer to the 

diagonal than the other two conditions). Distractors within the same feature-

dimension increased the proportion of yes-responses across both task and in all 

three conditions (Figure 6A,B). Decrements in luminance masked decrements in 

motion (decreasing sensitivity) within the same surface (Figure 6C), but not vice-a-

versa (Figure 6D). However, luminance events in the other surface had no masking 

effect on the motion task (Figure 6E). 

 

A Limited-capacity Sharing Model with Crosstalk 

One way to describe how crosstalk interferes with selection is to imagine that some 

proportion of the output from the distractor channel is leaked into the output of the 

target channel. Poor selection can be exemplified by the extent to which the 

probability of a yes-response is greater when: 1) a distractor alone occurred 

compared to no transients at all, and/or 2) both a target and distractor occurred 

compared to a target alone.  

We formalized this crosstalk concept into a model called the limited-capacity 

sharing model with crosstalk. The term, limited capacity refers to the fact that we 

allowed sensitivity to vary freely across conditions, in contrast to the specific 

limited-capacity model which assumes a fixed rate of information processing (Shaw, 

1980). The term sharing refers to the assumption that both tasks are performed 

independently but with limited capacity. The model begins with an encoding stage: 

each feature is encoded by an independent sensory channel, the output of which is a 

normally distributed random variable. We assumed that on a transient-absent trial 

the output of the channel was drawn from a “noise” distribution: a normal 

distribution with a mean of zero and a standard deviation of one. On transient-

present trial the output of the channel was drawn from a “signal” distribution: a 
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normal distribution with a mean greater than or equal to zero and a standard 

deviation of one. Finally, we assumed that the sensitivity of the two 

motion/luminance channels were the same (e.g. the sensitivity to upward and 

downward motion is equivalent). 

To illustrate the model, consider the motion-task for a given trial in which 

upward motion is cued (Figure 7). Figure 7A depicts the probability density 

functions (PDF) for the outputs of the upward and downward motion channels 

(above and below respectively). The random variable x1 denotes the internal 

evidence for an upward motion transient (target), and the random variable x2 

denotes the internal evidence for a downward motion transient (distractor). In the 

absence of a transient, the output of either channel is drawn from the noise 

distribution (with a mean equal to zero). On trials containing a target or distractor 

transient the output is drawn from the signal distribution (with a mean shifted 

from zero). Based on the assumption that attention has no effect on the stimulus 

encoding stage, the mean of the signal distribution for target and distractor 

transients are the same. The mean of the signal distribution is equal to the 

sensitivity (d-prime). As sensitivity decreases the overlap between the two 

distributions increases making the perceptual discrimination between stimuli 

present/absent more difficult.  
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Figure 7 Schematic for the limited-capacity sharing model with 
crosstalk. (A) The output of two opposing channels (e.g. upward and 
downward motion selective channels) is assumed to be normally 
distributed random variables with unit standard deviation. Trials 
containing a target transient (above) generate a larger mean response 
within the cued channel, represented by the shifted PDF. Trials 
containing a distractor transient (below) generate a larger mean 
response within the uncued channel, represented by the shifted PDF. 
A yes-no decision is based on the output of the cued channel plus some 
leak, or crosstalk, from the uncued channel. There are four possible 
target/distractor combinations resulting from the two channels. Based 
on the amount of crosstalk, the means and standard deviations of the 
four evidence distributions will vary. (B) The four pooled response 
distribution are shown for a moderate level of crosstalk. The 
distributions are colored coded as follows: no target or distractor 
transient (blue), distractor transient alone (cyan), target transient 
alone (yellow), and both target and distractor transients (red). The 
dotted gray line represents a possible decision boundary, or criterion, 
above which a yes-response is made. (C) The amount of crosstalk will 
change the conditional probability of a yes-response. Three example 
distributions are shown for a fixed sensitivity and response criterion 
given, no crosstalk (top), moderate crosstalk (middle), and max 
crosstalk (bottom). 

Following stimulus encoding, a decision is based on the output of the cued 

channel (x1), plus some amount of leak, or crosstalk, from the uncued channel (x2). 

The amount of crosstalk is controlled by a gain term. If selection were perfect then 
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the value of the gain parameter would equal zero and the distractor would have no 

effect on the decision. If the subject was unable to differentiate the target from the 

distractor—a complete failure of selective attention—then the gain parameter 

would equal one. A yes-response is made if the pooled output of the two channels is 

greater than a criterion value (Figure 7B). The proportion of yes-responses 

increases as a function of crosstalk (Figure 7C). If selection were perfect (a crosstalk 

gain parameter equal to zero), then distractors should have no effect on responses 

(Figure 7C, top). Given a moderate level of crosstalk (gain=0.5), distractors will 

increase the proportion of yes-responses (Figure 7C, middle). Given a complete 

failure of selective attention (gain=1.0), the proportion of yes-responses given a 

distractor alone will equal the proportion of yes-responses given a target alone, and 

will increase to the combined probability of a yes-response when both a target and 

distractor occur (Figure 7C, bottom). 

The model contains three parameters; sensitivity, which defines the mean 

channel output corresponding to a transient-present trial (signal distribution); a 

gain term, which controls the amount of leak from the uncued channel; and a 

decision criterion, which determines how large the pooled output from the two 

channels must be in order to produce a yes-response. We used a maximum 

likelihood procedure to estimate the parameter values that yielded the greatest 

probability of generating our observed data set. In order to take full advantage of 

the information in our data set, we divided trials into four categories based on the 

pairwise combination of target and distractor transients, and tallied the number of 

yes-responses in each category. We then fit the model to these four yes-response 

probabilities. The motion and luminance tasks for each of the three cue conditions 

were fit separately. 

To visualize the model predictions to the data, we re-plotted in Figure 8 the 

values from each pair of ROC points from Figure 6A,B on a common axis – the 

proportion of yes-responses. Three general patterns are immediately apparent when 

inspecting the proportion of yes-responses for each task across the three cue 

conditions. (1) The distribution of yes-responses was nearly identical between the 
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single-task condition and the dual-task, within-surface condition. (2) Crosstalk was 

more evident for the luminance task than for the motion task across all three cue 

conditions (compare the proportion of yes-responses with and without distractors: 

cyan vs. blue & red vs. yellow). (3) Performance dropped, and selection errors 

became more prevalent when attention was divided between-surfaces. 

 

Figure 8 Bars represent the between-subject average proportion of 
yes-responses conditionalized on the four target/distractor 
combinations (re-plot of data from Figure 6A,B). Error bars enclose ±1 
standard error of the mean. Model predictions are plotted in cyan. 
Because single-task and dual-task within conditions were 
simultaneously fit, the cyan points are identical between the two cue 
conditions. (A) Proportion of yes-responses in the motion task given—
from blue-to-orange—no motion transients in either surface; one 
motion transient in the uncued surface (distractor); one motion 
transient in the cued surface (target); motion transients in both 
surfaces (target + distractor). (B) Proportion of yes-responses in the 
luminance task given—from blue-to-orange—no luminance transients 
in either surface; one luminance transient in the uncued surface 
(distractor); one luminance transient in the cued surface (target); 
luminance transients in both surfaces (target + distractor). 
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The difference in the observed probability distributions between the single-

task and the dual-task, within-surface conditions (Figure 8) was statistically 

indistinguishable (chi-squared(3,4)=51.81 & 28.87 for the luminance and motion 

task respectively; p>0.05). Fitting the model separately to these two conditions 

improved the fit by less than 3% (increase in maximum likelihood) for the motion 

condition and less than 1% for the color condition. Thus, we reduced our parameters 

by fitting the combined data for the two conditions (single-task and dual-task 

within), hitherto referred to as the baseline condition. None of the residual 

differences between the model predictions and the observed proportion of yes-

responses were not statistically different from zero (p>0.05 for all 24 t-tests) (Figure 

9). 

 

Figure 9 Between-subject residual error; difference scores between 
the limited-capacity sharing model predictions and the observed 
proportion of yes-responses for the motion task (A) and luminance task 
(B). 

The average parameter values for the baseline and the dual-task, between-

surfaces conditions, are displayed in Table 2. Considering the baseline condition 
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alone (Table 2, first column), the model describes behavioral performance as follows. 

First, detection sensitivity was high for both tasks (d-prime of 3.4±0.2 for the motion 

task and 3.8±0.2 for luminance task). Second, the crosstalk gain parameter 

determines how well the subjects were able to select the cued feature and ignore 

distractor transients within the same feature-dimension. The crosstalk gain 

parameter was significantly greater than zero in both cases (t(4)=6.95 & 17.75, 

p<0.01), suggesting that even in the baseline condition subjects were not able to 

completely filter out distractors. There was more crosstalk in the luminance task 

then in the motion task (0.50±0.03 versus 0.17±0.02, for the luminance and motion 

task respectively). This difference is reflected in the data by the increase in the false 

alarm rate when a distractor transient occurred (0.21±0.05 vs. 0.04±0.02, Figure 8 

difference between cyan and dark blue bars), and an increase in the hit rate when a 

distractor transient co-occurred with a target transient (0.26±0.06 vs. 0.08±0.02, 

Figure 8 difference between orange and yellow bars). Finally, the response criterion 

determines the trade-off between false alarms and misses. A response criterion 

equal to half an observer’s sensitivity—zero bias—predicts an equivalent false 

alarm and miss rate. The higher the criterion—a conservative bias greater than 

zero—the more sensory evidence the observer requires to make a yes-response. A 

conservative observer with a high criterion will commit more misses in order to 

avoid false alarms. Subjects tended to be conservative in both tasks (bias of 

0.45±0.04 & 1.02±0.20, for the motion and luminance tasks respectively), 

committing fewer false alarms than misses. This parameter is reflected in the data 

by a very low false alarm rate when no distractor occurred (0.037±0.012 & 

0.009±0.004, Figure 8 dark blue bars). 
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 Baseline Dual-task between Log parameter ratio 
 motion luminance motion luminance motion luminance 

Sensitivity 3.4 
(0.2) 

3.8 
(0.2)  

2.2 
(0.3) 

1.6 
(0.1) 

−0.21* 

(0.04) 
−0.37* 

(0.03) 
Crosstalk 
gain 

0.17 
(0.02) 

0.50 
(0.03) 

0.39 
(0.07) 

0.84 
(0.09) 

0.35* 

(0.09) 
0.21* 

(0.04) 
Response 
criterion 

2.14 
(0.08) 

2.92 
(0.22) 

1.8 
(0.1) 

1.9 
(0.2) 

0.20* 

(0.03) 
0.03 
(0.10) 

Table 2 Average between-subject parameter values for baseline condition 
(combined single-task & dual-task within), dual-task between surface condition, and 
the log10 of the ratio between the two (dual-task between divided by baseline). 
Standard error of the mean are printed below in parentheses. Parameter values 
were fit to each subjects’ data set using a maximum likelihood procedure that 
maximized the likelihood of the observed conditional proportion of yes-responses. 
The sensitivity and response criterion are in units of d-prime. The crosstalk gain 
parameter ranges between zero (no crosstalk) and one (maximal crosstalk). Within-
subject t-tests were conducted on the log of the parameter ratios; red font denotes a 
log ratio significantly greater than zero (p<0.05).  

The effect of dividing attention between surfaces is captured in the model by 

the ratio of the parameter values for the dual-task, between surface and baseline 

conditions. The log10 of this ratio is tabulated in the third column of Table 2. 

Dividing attention between surfaces results in: (1) a significant decrease in 

sensitivity shown by a log sensitivity ratio of −0.21±0.04 for the motion task, and 

−0.37±0.03 for the luminance task (t(4)=4.96 & 12.97, p<0.01), plotted on the left in 

Figure 10; (2) A significant increase in crosstalk shown by a log of the crosstalk gain 

ratio of 0.35±0.09 for the motion task and 0.21±0.04 for the luminance task 

(t(4)=4.09 & 5.30, p<0.05), plotted on the right in Figure 10. In addition, there was 

also a conservative shift in bias (corresponding to a change in d-prime units of 

0.26±0.04 & 0.05±0.21) shown by a log criterion ratio of 0.20±0.03 for the motion 

task, and 0.03±0.10 for the luminance task. However, this effect was only significant 

for the motion task (t(4)=5.8, p<0.05), and not for the luminance task (t(4)=0.29; 

p>0.05). For the luminance task, 2 of the 5 subjects showed a liberal shift in bias. 
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Figure 10  Log10 of the ratio between the dual-task between and the 
combined single/dual-task within parameters (see Table 2) for the 
motion task (gray) and luminance task (light blue). 

An observer may choose to implement a transient detection strategy by 

ignoring the cue and responding to transients in either surface (e.g. upward or 

downward speed changes for the motion task; or luminance changes across the red 

or green dots for the luminance task). When asked to divide attention between-

surfaces, did the subjects choose to pursue a transient detection strategy or were 

they unable to simultaneously select features from competing surfaces? A transient 

detection strategy would result in poor performance since observer’s false alarm 

rate would equal their hit rate. Such a strategy would place an observer’s 

performance on the negative diagonal in the AOC plots (Figure 3), equivalent to 

ignoring one of the two cues (as predicted by the all-or-none switching model). Only 

one subject (S4) demonstrated that level of dual-task deficit. The other four subjects 

outperformed the theoretical low limit of dual-task performance. In addition, a pure 

transient strategy would result in a crosstalk gain parameter value of 1. The 

maximum likelihood estimate for the crosstalk gain parameter was below 1 for both 

tasks (0.84±0.09 & 0.39±0.07). This suggests that even though selection was poor, 

subjects were, at the very least, attempting to ignore the distractor transients. 

 To summarize, the proportion of yes-responses conditionalized on 

target and distractor transients (within the same feature-dimension) were 
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statistically identical between the single-task and the dual-task, within surface 

conditions. Our limited-capacity model with crosstalk adequately fit our data set 

(Figure 8) with no consistent residual error (Figure 9). Dividing attention between 

surfaces resulted in a dual-task deficit described by the model as a decrease in 

detection sensitivity paired with an increase in crosstalk (Figure 10). The increase 

in crosstalk in the luminance task approached a complete failure of selective 

attention.  

Overall, performance was statistically indistinguishable between the single-

task conditions (motion or luminance task) and the dual-task within surface 

condition (motion and luminance task). In contrast, dividing attention between 

surfaces to perform the motion and luminance tasks resulted in a significant dual-

task deficit. Performance across the two tasks was statistically independent 

(uncorrelated), contrary to the predictions of an all-or-none switching model. In 

addition, distractors within the same feature-dimension on the other surface 

increased the proportion of yes-responses, indicative of crosstalk. Although 

crosstalk was observed in all conditions, it was greatest when attention was divided 

between surfaces (Figure 6). Although distractors in the other feature on the other 

surface were successfully filtered (Figure 8), luminance distractors masked motion 

transients within the same surface (Figure 7). We constructed a limited-capacity 

sharing model that includes a crosstalk gain parameter to account for crosstalk 

within the feature-dimension. Our model successfully fit the observed proportion of 

yes-responses conditionalized on targets and distractors. 
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DISCUSSION 

We used transparent motion to investigate the capacity limits in divided attention 

within and between objects. Transparent motion provides a useful stimulus for 

studying object-based attention because it allows for multiple surfaces to be 

superimposed, isolating object- and feature-based selection from spatial selection. 

Despite randomizing the depth order of overlapping dots so that neither surface 

consistently occluded the other, it is possible that the visual system segments the 

two surfaces in perceived depth. It is rare for natural stimuli to slide past one 

another without interacting and thus the visual system may interpret 

superimposed dot fields as occupying separate planes in depth. Despite this 

possibility, random dot motion remains a good way of controlling for spatial 

attention. In addition our paradigm possessed two key features that are important 

for studying attention. First, our stimulus was identical across conditions. 

Therefore, changes in performance result from capacity-limits in dividing attention 

rather than sensory encoding effects. Second, the task was held constant between 

the two divided attention conditions—in both cases the observer performed a motion 

and luminance task—so changes in performance result from capacity limits in 

object-based attention rather than task-based effects. 

Understanding the effects of divided attention on the processing of multiple 

features within and between objects is central to models of object-based attention. 

In this study, we have shown evidence that all features within a relevant surface 

can be selected with unlimited capacity for the detection of motion and luminance 

transients. Unlimited capacity for features within an object has also been shown for 

a wide range of stimuli including: the tilt & texture of a line (Duncan, 1984), the 

color and shape of a letter (Bonnel & Prinzmetal, 1998), and the orientation, spatial 

frequency, and color of a Gabor patch (Blaser et al., 2000). This evidence further 

supports the hypothesis that object-based attention allows unlimited capacity 

processing of multiple features within an object.  
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We also showed evidence that dividing attention across two surfaces reduced 

performance. A deficit in dual-task performance when dividing attention across 

objects has been reported in a variety of studies across a range of superimposed 

stimuli (Duncan, 1984; Blaser et al., 2000; Scholl, 2001). Duncan proposed that 

object-based selection is all-or-none, limiting selection to one object at a time. If 

selection were all-or-none, then we should expect a negative correlation between a 

subjects’ motion and luminance performance. Instead, we observed no significant 

negative correlation, and there was enough power (based on high single-task 

performance levels) to reject the prediction of the all-or-none switching model 

(Figure 5). Duncan’s stimuli involved some degree of spatial segregation which 

could have contributed to the all-or-none switching effect that he argued for. 

Consistent with this explanation, subjects’ dual-task performance was negatively 

correlated when they were cued to attend to the shape of one object and the color of 

a second displaced object (Bonnel & Prinzmetal, 1998). Because we controlled for 

spatial separation we cannot directly compare our results to Bonnel & Prinzmetal’s. 

Valdes-Sosa also argued that object-based attention was all-or-none (Valdes-

Sosa et al., 2000) using a transparent motion stimulus similar to the one used in 

this study. However, they manipulated the temporal asynchrony (SOA) between the 

presentations of the two target probes. It is possible that the first probe exogenously 

captured attention, leading to the prioritization of information processing from that 

channel (Shomstein & Yantis, 2004). The time given by the SOA may have 

encourages subjects to switch attention between surfaces. We presented targets and 

distractors simultaneously in order to discourage such a strategy. Our limited-

capacity sharing model could be modified to account for differences in task priority, 

but since we did not manipulate task priority in this study, our model remains 

ambivalent to the possibility that attention can be flexibly allocated between tasks 

(but see, Bonnel & Prinzmetal, 1998; Sperling & Melchner, 1978, for evidence of 

flexible allocation).  

For each task there were three types of possible distractors. In order to 

address the influence of these distractors on responses, we analyzed hits and false 
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alarms, contingent on each type of distractor. Begin by considering transient in 

different features. Distractors within the same surface had an asymmetrical effect 

on responses. Luminance transients interfered in the detection of motion transients 

(Figure 6C), but motion transient had no effect on sensitivity to luminance 

transients (Figure 6D). The masking of motion transients by luminance was 

observed across all three cue-conditions suggesting that a one way sensory 

interaction occurs between luminance and motion when a dot field simultaneously 

decreases in speed and luminance. Motion detectors (like those found in area MT+) 

conceived of as spatiotemporal filters (Adelson & Bergen, 1985) may respond to 

brief luminance changes. A luminance transient produces equal motion energy in all 

direction and would thus increase the noise across the population of direction 

selective neurons, effectively reducing the detectability of motion transients. But 

contrary to this hypothesis, luminance transients in the other surface had no effect 

on the sensitivity to motion transients (Figure 8). Regardless of the explanation for 

this masking phenomenon, it occurred even in the single-task condition and thus 

does not change our conclusion that processing multiple features within a surface 

has unlimited capacity. 

Next consider transient in the same feature. Same feature distractors on the 

other surface had the greatest influence on yes-responses (Figures 6 & 10). Whereas 

the masking effect discussed above may be due to input interference, the failure of 

selection that occurred within a feature-dimension is possibly due to output 

interference, or crosstalk between channels. Crosstalk and masking are 

distinguished by the effect of the distractor on the probability of a yes response 

rather than on the probability of a correct response. Crosstalk was greatest when 

attention was divided between-surfaces as compared to either the single-task or 

dual-task, within-surface conditions (Figure 8). This failure of selective attention 

was particularly prevalent in the luminance task—subjects responded with equal 

probability on trials with a single target or distractor transients. In addition, the 

probability of a yes-response was highest when both a target and distractor 

transient occurred. This suggests that some portion of the output from the channel 
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encoding information regarding the distractor was leaking into the output of the 

channel carrying the cued feature information. Crosstalk was present in all 

conditions (Figure 6), but was most extreme when attention was divided between 

surfaces.  

Could the failure of selective attention that we observed in our data be 

specific to transparent motion? The answer is probably “no.” For example, crosstalk 

has been reported for simultaneous binaural stimulus presentation (Gilliom & 

Sorkin, 1974), which, like our paradigm, presents multiple stimuli at the same time. 

One simple manipulation to explore would be to separate the two surfaces in space, 

like Vercera and Farah (1994) did with Duncan’s stimuli. Vercera and Farah found 

no effect of spatial separation on the dual-task deficit between objects, but whether 

or not we would see an effect on the level of crosstalk using our stimuli remains an 

open question. A second interesting manipulation that would likely effect the level 

of crosstalk, would be to parametrically vary the heterogeneity between target and 

distractor features (Lo, Howard, & Holcombe, 2012).  

In our experiment, selection was worse for the luminance task then for the 

motion task. In the baseline conditions, sensitivity was estimated at 3.4 for motion 

and 3.8 for luminance. In contrast, the crosstalk gain was estimated at 0.17 for 

motion and 0.50 for luminance. The discrepancy for the two dimensions observed 

between crosstalk gains seems larger than the discrepancy observed between 

sensitivities. Thus, this asymmetry seems to be something to take seriously. It is 

possible that our chromatic feature pairs were less distinguishable than the two 

motion directions.  

Now turn to the larger question of why might selection fail between objects. 

We suggest two possibilities. First, selecting two objects may result in all of the 

features of both objects being selected (Z. Chen & Cave, 2006; Egly, Driver, & Rafal, 

1994; Yeari & Goldsmith, 2010). In this automatic selection hypothesis, object-based 

selection is less helpful in selecting the task relevant information in the between 

surface condition compared to the within surface condition. In particular, none of 

the irrelevant features within an object are from the same dimension as the 
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relevant feature (e.g. motion-motion). That is not the case for the between surface 

condition. A second possibility is that one cannot select 2 surfaces at once and 

instead selects the entire stimulus. Again, this allows features from the same 

dimensions to interfere in the between surface condition and not in the within 

surface condition. These two possibilities might be distinguished by experiments in 

which there are 3 surfaces. Can one select 2 surfaces to prevent interference from a 

third? 
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CONCLUSION 

Changes to target features within a cued surface were detected independently and 

without dual-task cost, consistent with an unlimited-capacity model. By contrast, 

when the same two target features belonged to different surfaces, detection 

sensitivity decreased and selection errors increased. Subjects were worse at 

selecting the cued feature and instead responded to changes in overall intensity, 

within the feature-dimension, irrespective of surface. Dividing attention across 

objects interferes with the ability to filter irrelevant features. 
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FROM PHYSIOLOGY TO PERCEPTION 

Summary & conclusion 

I began with this question: can attention select a single feature within an object or 

is selection of the whole object compulsory? Two general theories of selective 

attention make competing predictions. Feature-based attention posits that an 

observer can select a single feature, like a particular direction of motion or color. In 

contrast, object-based attention posits that the entire object, both its direction of 

motion and color, is selected (Duncan, 1984). The conflict arises when a single 

feature within an object is relevant to an observer. Feature-based attention predicts 

that attentional effects will be confined to the task-relevant feature, whereas object-

based attention predicts that attentional effects will spread across the features of an 

attended object. My research suggests that the rules of feature-based attention do 

not apply when those features are bound within an object. 

Differentiate between feature- and object-based selection requires a model of 

how attention modulates the neural response. The neural correlate of selective 

attention can be quantified by the response of feature-tuned neurons. According to 

the feature-similarity gain model—a well supported mechanistic description of 

feature-based attention (Boynton, 2005a; Martinez-Trujillo & Treue, 2004)—

attention to a particular feature increases the response of neurons tuned to that 

feature while inhibiting the sensory response to irrelevant features. Evidence for 

object-based selection has also been shown with single-unit recordings in primates, 

by an increased response to both relevant and irrelevant features of an object 

(Fallah et al., 2007; Roelfsema et al., 1998; Wannig et al., 2007). 

In humans, the effects of attention on the processing of visual stimuli can be 

measured non-invasively using fMRI. The hemodynamic response—measured by 

fMRI—in early visual cortex results from the population response of many feature-
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selective neurons averaged over a period of time (Boynton et al., 1996). Since our 

goal was to measure the response to multiple, simultaneously presented, stimulus 

features, disaggregating the responses to each stimulus feature from the overall 

fMRI time course presented a considerable methodological constraint. In order to 

overcome this constraint, we modulated each stimulus feature periodically through 

feature-space. We frequency tagged each stimulus component by modulating the 

features with unique temporal periods. By analyzing the frequency spectrum of the 

fMRI time course, we quantified the response to each feature via its corresponding 

harmonic amplitude. 

Our stimulus consisted of two superimposed random dot surfaces, each 

defined by a unique color-motion conjunction. For every scan the subject was cued to 

track one of the surface’s features (color or motion direction). Consistent with object-

based selection, a similar attentional modulation was observed across both of the 

surface’s features, regardless of which feature was cued. This result lead to a second 

testable prediction: if object-based attention selects all of a surface’s features, then 

an observer should have no difficulty in dividing their attention across those 

features.  

The dual-task paradigm is a common psychophysical method for measuring 

the effects of divided attention (Sperling & Melchner, 1978). If behavioral 

performance is unaffected when two tasks are performed simultaneously, then the 

process is said to have unlimited capacity. If object-based attention selects all of a 

surface’s features, then there should be no cost to dividing attention across features 

within a surface, and perceiving changes in either feature should have unlimited 

capacity. 

To test this hypothesis we again superimposed two dot fields; but this time 

the direction of motion (up/down) and the color (red/green) of each field was held 

constant. For each block of trials, the subject either monitored a single surface-

feature, or both surface-features. Their task was to detect brief decrements in the 

speed or luminance (single task) or both speed and luminance (dual task) of the 

cued surface. Performance in the dual-task condition was equivalent to performance 
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in the single-task condition. Consistent with object-based selection, these results 

suggest that an observer has unlimited capacity to detect changes in the features of 

an attended surface. 

However, these results are also consistent with the alternative hypothesis 

that detecting changes in simple features, like speed and luminance, has unlimited 

capacity regardless of whether those features belong to the same object or not. To 

test this alternative, we again instructed subjects to divide their attention in order 

to perform the same motion and luminance detection task, except they were now 

asked to monitor the motion of one surface and the luminance of a second 

superimposed surface. Dividing attention between surfaces resulted in large costs to 

behavioral performance, consistent with a limited capacity model of object 

processing. Thus object-based attention selects all of an object’s features but is 

limited in capacity when selecting multiple objects. 

How is capacity limited when attention is divided between objects? In the 

most extreme case only one object could be selected at a time. If this were the case, 

then observers would be unable to divide their attention at all and would instead be 

forced to switch back-and-forth between the two objects. Because the target events 

occurred simultaneously in both surfaces, performance on the two tasks would be 

negatively correlated. Instead, we observed no correlation in performance between 

the two tasks, suggesting that the two tasks were performed independently. 

Dividing attention between objects is limited capacity, but resources are shared 

between the two tasks. 

Surprisingly, when attention was divided between surfaces an increase in 

selection errors accounted for a significant portion of the reduction in dual-task 

performance. Selection errors were revealed by an increase in response rate 

conditional on same feature distractors in the wrong surface. We modeled this 

selective attention failure as an increase in crosstalk between the two motion/color 

channels. As crosstalk increases, the probability of successfully filtering a distractor 

signal on a given trial decreases.  
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Crosstalk likely depends on the level of target/distractor similarity. The more 

overlap in neural representation between the two, the more difficult filtering 

becomes. Superimposing two surfaces in space likely increases crosstalk, because 

targets and distractors coexist in space. But surprisingly, selection errors persisted 

in a pilot version of the dual-task experiment in which the two surfaces were 

separated in space. This result suggests that failure of selection is not an 

epiphenomenon of transparent motion, but an important limiting factor in divided 

attention. Indeed, we borrowed the term crosstalk from Navon & Miller (1987), who 

reported failures of selective attention in a binaural divided attention task. I can 

only speculate as to the ubiquity of selection errors in other divided and selective 

attention studies. Based on these findings, it behooves future researchers to analyze 

responses contingent on distractors. Crosstalk may be lurking behind the 

performance deficits reported in other attention studies. 

In this dissertation I have provided evidence that object-based attention 

selects all features of a relevant object, and have shown that it is possible to 

simultaneously divide attention between two objects, but with limited capacity. The 

stimuli in both of these studies were constrained to simple features, such as motion 

and color, and the objects were constrained to two-dimensional surfaces. Random 

dot fields, along with gratings, have been widely used in vision science because their 

statistics are easily quantified and controlled, and because much is known about the 

response properties of feature-selective neurons—tuned for simple features like 

motion and color—found in early visual cortex. Extending this work will require a 

better understanding of how simple features, processed in parallel by neurons early 

in the visual system, are recombined later in the visual system to form the unitary 

perception of objects. Attention plays an important role in this process. The 

selective attention effects that are detailed in this dissertation are likely the tip of 

an iceberg of complex interactions between bottom-up sensory processing and top-

down attentional modulation. With this work we move one small step closer to the 

ultimate goal: understanding the link between physical sensation, physiological 

processing, and subjective perception.   
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	Fig. 1  A, The stimulus: two fields of superimposed dots confined to an annulus with a fixation cross at the center. B, the two surfaces have been separated in order to better illustrate the dynamic components of the two dot fields. Over the course of the stimulus movie, the direction of motion of the dots in surface 1 progresses counter-clockwise (white arrow). At a given point in time, t, following stimulus onset, the direction of motion of the dots were specified by 1(t), the angle from the dotted white line (rightward motion). The color of the dots in surface 1 progressed from blue to red to green—clockwise through the color space shown in the inset (black line). The color of the dots was specified by 1(t), the angle from the dotted black line (blueish). The direction of motion of the dots in surface 2 progressed clockwise (white arrow), and were specified by 2(t), similar to surface 1. Likewise, the color of the dots in surface 2 progressed from red to blue to green—counter-clockwise through the color space shown in the inset—specified by 2(t). C, cosine functions of the four stimulus harmonics restricted to the first 28 seconds (0<t<28) of the stimulus movie. Each stimulus harmonic possessed a unique temporal period: 25 (Tm1) and 21 (Tm2) seconds for the motion of surface 1 & 2, respectively; 19 (Tc1) and 28 (Tc2) seconds for the color of surface 1 and 2, respectively.
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	RESULTS
	Behavioral results during fMRI data acquisition
	The harmonic hemodynamic response
	Fig. 2  A, A hypothetical voxel’s response to different directions of motion (lower left of panel A) and different hues (lower right of panel A). The response is illustrated as exhibiting a small bias for upward motion and greenish hues. Accordingly, the voxel would exhibit a harmonic response to stimuli whose direction of motion or color is modulated periodically. B, Illustrates a temporal segment of the independent harmonic response to each stimulus feature. A motion and color component for surface 1 (m1 & m2, respectively), and a motion and color component for sirface 2 (m2 & c2, respectively). C, When one surface feature is attended (e.g. the motion of surface 1: M1), a gain model of feature-based attention predicts an enhanced response to that feature (illustrated here as an increase in Am1|M1). A gain model of object-based attention makes the additional prediction that the amplitude of the harmonic response to the task-irrelevant feature (the color of surface 1: Ac1|M1) is also modulated by attention.
	Fig. 3  Between subject average amplitude spectrum for area V1. The error bars encompass ±1 standard error of the mean across the 6 subjects. A subsection of the full amplitude spectrum is shown (10–37 cycles per scan) to focus on the amplitudes of the four stimulus harmonics: Am1 & Am2, highlighted in gray at 22 & 25 cycles per scan, respectively, and Ac2, & Ac1, highlighted in red at 19& 28 cycles per scan. The remainder of the frequency spectrum (in blue) corresponds to non-stimulus harmonics (noise response). A, B, The average amplitude spectrums for the M1 and C1 conditions, respectively. C, D, the average amplitude spectrums for the M2 and C2 conditions, respectively.

	Feature-based attention
	Fig. 4  Feature-based and object-based attention indices across conditions and visual areas. Each panel shows the value of an attention-index averages across the 6 subjects for areas V1, V2, V3, V4, and MT+. A-F, Feature-attention indices. Feature-attention indices quantify the effect of attention to motion on motion harmonic responses (A-C), and the effect of attention to color on color harmonic responses (D-F). A-C, Feature-attention index for the direction of motion in surface 1 (FIm1), the direction of motion in surface 2 (FIm1), and the overall average of the two surfaces (FImot). D-F, Feature-attention index for the color in surface 1 (FIm1), the color in surface 2 (FIm1), and the overall average of the two surfaces (FImot). G-L, Object-attention indices. Object-attention indices quantify the effect of attention to color on motion harmonic responses (G-I), and the effect of attention to motion on color harmonic responses (J-L). G-I, Object-attention index for the direction of motion in surface 1 (OIm1), the direction of motion in surface 2 (OIm1), and the overall average of the two surfaces (OImot). J-L, Object-attention index for the color in surface 1 (OIm1), the color in surface 2 (OIm1), and the overall average of the two surfaces (OImot). In each row, the inset shows the overall average attention index computed from hemodynamic responses in the right hemisphere (ordinate) and left hemisphere (abscissa) for each subject and each visual area. The error bars show standard error of the mean across the 6 subjects. The grey asterisk denotes the attention-index values that were significantly different from zero (p<0.05, one-sample t-test).

	Object-based spread of attention
	No dual-task cost when tracking two features within a surface
	Fig. 8  Each subject’s single-task performance (abscissa) is plotted against their dual-task performance (ordinate) for the motion task (black points) and color task (grey points). The identity line indicates equivalent single-task and dual-task performance. The black and gray crosses correspond to the average performance across the 6 subjects for the motion and color task respectively. The horizontal and vertical extent of each cross corresponds to the standard error of the mean for the single- and dual-task performance levels.
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	Frequency-tagging with fMRI
	Neural correlates of feature- and object-based attention 
	Signal-to-noise in our measurement
	Perceptual consequences of object-based attention

	SUPPLEMENTAL FIGURES
	Fig. 1  Between subject average amplitude spectrum for area V2.
	Fig. 2  Between subject average amplitude spectrum for area V3.
	Fig. 3  Between subject average amplitude spectrum for area V4.
	Fig. 4  Between subject average amplitude spectrum for area MT+.
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	Figure 1 Trial structure. (A) Each trial commenced with a 1000 ms pre-trial-interval with a fixation-cross. (B) The stimulus then appeared for 1100 ms. At 500 ms, post stimulus onset, 0-4 100 ms luminance/motion transients could occur. (C) Following the stimulus, the observer made one or two yes/no responses without time pressure.

	Analysis
	Error bars

	RESULTS
	Figure 2 Performance on the motion task (abscissa) is plotted against performance on the luminance task (ordinate). Between-subject average single-task performance is plotted in black on the axes; dual-task performance, when attention was divided within a surface, is plotted in blue; dual-task performance, when attention was divided between-surfaces, is plotted in red. Error bars encompass ±1 standard error of the mean between-subjects (n=5). Grey lines extend from the single-task performance levels to aid in their comparison to dual-task performance levels.
	Figure 3 Individual subject performances are summarize by separate AOC plots. Error bars enclose ±1 standard deviation of the bootstrapped sampling distribution (see Methods: Error bars).
	Figure 4 AOC plots, averaged across subjects, after separating dual-task performance on the basis of response order. Squares denote performance over trials in which the luminance task was queried first, and circles denote performance over trials in which the motion task was queried first.

	MODELING
	Unlimited Capacity Model
	All-or-none Switching Model
	Figure 5 Single-task performance is plotted on the abscissa, and trial-by-trial covariance between the motion and luminance task is plotted on the ordinate. The red data points correspond to observed single-task performance and dual-task covariance for when attention was divided between surfaces. To reduce the dimensionality, single-task performance was averaged across the two tasks. Error bars enclose ±1 standard deviation of the bootstrapped distribution (horizontal error bars fall within the extent of the data points). The red curve traces the covariance predicted by the all-or-none switching model as a function of single-task performance.

	Conditionalizing Responses on Target and Distracter Transients: 
	Figure 6 Between-subject average false alarm rate (abscissa) and hit rate (ordinate) contingent on distractor transients. Open points correspond to trials with no distractor transients, and filled points correspond to trials with distractor transients. Isosensitivity curves (assuming zero bias) are drawn through the open points (Green & Sweets, 1974). False alarm and hit rates for (A) the motion task, contingent on motion transients in the other surface; (B) the luminance task, contingent on luminance transients in the other surface; (C) the motion task contingent on luminance transients in the same surface; (D) the luminance task contingent on motion transients in the same surface; (E) the motion task contingent on luminance transients in the other surface; (F) the luminance task contingent on motion transients in the other surface.

	A Limited-capacity Sharing Model with Crosstalk
	Figure 7 Schematic for the limited-capacity sharing model with crosstalk. (A) The output of two opposing channels (e.g. upward and downward motion selective channels) is assumed to be normally distributed random variables with unit standard deviation. Trials containing a target transient (above) generate a larger mean response within the cued channel, represented by the shifted PDF. Trials containing a distractor transient (below) generate a larger mean response within the uncued channel, represented by the shifted PDF. A yes-no decision is based on the output of the cued channel plus some leak, or crosstalk, from the uncued channel. There are four possible target/distractor combinations resulting from the two channels. Based on the amount of crosstalk, the means and standard deviations of the four evidence distributions will vary. (B) The four pooled response distribution are shown for a moderate level of crosstalk. The distributions are colored coded as follows: no target or distractor transient (blue), distractor transient alone (cyan), target transient alone (yellow), and both target and distractor transients (red). The dotted gray line represents a possible decision boundary, or criterion, above which a yes-response is made. (C) The amount of crosstalk will change the conditional probability of a yes-response. Three example distributions are shown for a fixed sensitivity and response criterion given, no crosstalk (top), moderate crosstalk (middle), and max crosstalk (bottom).
	Figure 8 Bars represent the between-subject average proportion of yes-responses conditionalized on the four target/distractor combinations (re-plot of data from Figure 6A,B). Error bars enclose ±1 standard error of the mean. Model predictions are plotted in cyan. Because single-task and dual-task within conditions were simultaneously fit, the cyan points are identical between the two cue conditions. (A) Proportion of yes-responses in the motion task given—from blue-to-orange—no motion transients in either surface; one motion transient in the uncued surface (distractor); one motion transient in the cued surface (target); motion transients in both surfaces (target + distractor). (B) Proportion of yes-responses in the luminance task given—from blue-to-orange—no luminance transients in either surface; one luminance transient in the uncued surface (distractor); one luminance transient in the cued surface (target); luminance transients in both surfaces (target + distractor).
	Figure 9 Between-subject residual error; difference scores between the limited-capacity sharing model predictions and the observed proportion of yes-responses for the motion task (A) and luminance task (B).
	Figure 10  Log10 of the ratio between the dual-task between and the combined single/dual-task within parameters (see Table 2) for the motion task (gray) and luminance task (light blue).
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