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1. INTRODUCTION AND MAIN RESULTS.

This paper is a mathematical companion to an article introducing a new economics
model, by Burdzy, Frankel and Pauzner (1997). The motivation of this paper is applied,
but the results may have some mathematical interest in their own right. Our model, i.e.,
equation (1.1) below, does not seem to be known in literature. Despite its simplicity, it
generated some interesting and non-trivial mathematical questions.

In this paper, we limit ourselves to mathematical results; those interested in their
economic motivation should consult Burdzy, Frankel and Pauzner (1997). To make this
easier, the two papers have been written using comparable notation. A related paper
by Bass and Burdzy (1997) will analyze a simplified version of our model and derive a
number of new results of a purely mathematical nature.

We will first prove existence and uniqueness for differential equations of the form
(1.1) below. These equations involve Brownian motion but they do not fall into the
category of classical “stochastic differential equations” as they do not involve the Itô
theory of integration. Typical solutions of these equations are Lipschitz functions rather
than semi-martingales. It turns out that the excursion theory for Markov processes is
the appropriate probabilistic tool for treatment of this family of equations.

We also establish several properties of the “bifurcation time,” to be defined below.
We prove that the bifurcation time for (1.1) goes to 0 as the random noise becomes
smaller and smaller. More importantly, we determine the asymptotic values for proba-
bilities of upward and downward bifurcations.

The simplicity of equation (1.1) is misleading. If the process Bt in (1.1) is not a
Brownian motion but a fractional Brownian motion, none of the results in Theorems 1
and 2 can be proved using the same methods, except the existence part of Theorem 1.
In fact, we currently do not know any method of proving results analogous to Theorems
1 and 2 for fractional Brownian motion Bt.

We say that Brownian motion Bt has drift µ and variance σ2 if E(Bt − B0) = µt
and E(Bt −B0 − µt)2 = σ2t. Recall that a function g is called Lipschitz with constant
c if |g(t)− g(s)| ≤ c|t− s| for all t and s.
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Theorem 1. Let Bt be a Brownian motion with drift µ and variance σ2. Suppose that
k > 0, x0 ∈ (0, 1) and b0 are fixed real numbers, and B0 = b0, a.s. Assume that f
is a decreasing Lipschitz function with constant c1. Consider the following differential
equation:

dX/dt =
{

k(1−Xt) if Bt > f(Xt),
−kXt if Bt < f(Xt).

(1.1)

For almost every path Bt there exists a unique Lipschitz solution {Xt, t ≥ 0} of (1.1)
which starts from x0.

Note that dX/dt is not specified by (1.1) for t such that Bt = f(Xt). A typical
solution Xt does not have a derivative for such t. If f−1 exists and is a Lipschitz function
then the function Xt = f−1(Bt) is a continuous solution of (1.1) but it is not Lipschitz.
Hence, uniqueness holds only for Lipschitz solutions. We note that k is a Lipschitz
constant for the Lipschitz solution of (1.1).

It will be shown in Bass and Burdzy (1998) that existence and uniqueness for
solutions to another, related differential equation can be proved using the results of
Engelbert and Schmidt (see Karatzas and Shreve (1988) Section 5.5). We have not
been able to apply that theory to (1.1). However, our proof of Theorem 1 seems to be
more intuitive than an application of general theorems from stochastic calculus.

The following simple results are quite useful.

Lemma 1. Suppose that X1
t and X2

t are Lipschitz solutions to equation (1.1) corre-
sponding to non-increasing Lipshitz functions f1 and f2 which satisfy f1(x) ≤ f2(x)
for all x. We assume that the solutions X1

t and X2
t are defined relative to the same

Brownian motion Bt. We also assume that X1
0 ≥ X2

0 . Then X1
t ≥ X2

t for all t ≥ 0 a.s.

Lemma 2. Suppose that Xt is the solution of (1.1). Let X̃b,x
t be the solution to (1.1)

starting from X̃b,x
0 = x0 + x and corresponding to B̃t = Bt + b (f and k remain the

same in parts (i) and (ii) of the lemma).

(i) If b, x > 0 then X̃b,0
t ≥ Xt for all t ≥ 0 a.s. and X̃0,x

t ≥ Xt for all t ≥ 0 a.s.

(ii) As b and x go to 0, the processes X̃b,x
t converge a.s. to Xt. The convergence is

uniform on every fixed interval [0, T ].
(iii) Suppose that {fn : n = 1, 2, . . .} are Lipschitz functions with the same Lip-

schitz constant. Fix some x0, b0 and k. For each n, let X̂n
t be the solution to (1.1)

corresponding to the function fn in place of f . If the functions fn converge to (neces-

sarily Lipschitz) f on every bounded interval then the solutions X̂n
t converge to Xt, the

solution of (1.1) corresponding to f .

The statement of the next theorem is rather complicated in order to be directly
applicable in Burdzy, Frankel and Pauzner (1997). We precede it with a simplified
version of the result, to help the reader grasp its meaning.

Fix some x0 ∈ (0, 1) and suppose that f is a decreasing Lipschitz function with
f ′(x0) 6= 0. Fix some µ and σ2. Let Bk

t be a Brownian motion with drift µ/k, variance



σ2/k, and starting from Bk
0 = f(x0) for every k. Let Xk

t be the solution of

dXk/dt =
{

(1−Xk
t ) if Bk

t > f(Xk
t ),

−Xk
t if Bk

t < f(Xk
t ).

Fix arbitrarily small c0 ∈ (0,min(x0, 1 − x0)), and let T k
1 = inf{t > 0 : Xk

t /∈
(c0, 1−c0)} and T k

0 = sup{t < T k
1 : Bk

t = f(Xk
t )}. Then as k →∞ (as the variance and

drift of Bk
· go to 0), the random bifurcation times T k

0 go to 0 in distribution. Moreover,
the probability of a “positive” bifurcation (defined as dXk/dt > 0 for all t ∈ (T k

0 , T k
1 ))

converges to 1 − x0 as k → ∞. The probability of a “negative” bifurcation goes to
x0. Theorem 2 proves a result that is even stronger, since the function f and other
parameters can vary with k.

Theorem 2. For each k > 0, let Bk
t be a Brownian motion with drift µk and variance

σ2
k, where limk→∞ µk = limk→∞ σ2

k = 0. Assume that for each k, we have a continu-
ously differentiable decreasing function fk. Suppose that xk

0 ∈ [0, 1] are numbers which
converge to some fixed x0 ∈ (0, 1) as k → ∞. Assume that limk→∞ f ′k(x0) 6= 0, and
the derivatives are asymptotically uniformly continuous at x0, i.e., for every ε > 0 there
exist k0 < ∞ and δ > 0 such that |f ′k(x)− f ′k(x0)| < ε for all x ∈ [x0− δ, x0 + δ] and all
k > k0. Let Xk

t be the solution to the following differential equation, with Bk
0 = fk(xk

0),
a.s.,

dXk
t /dt =

{
λk(1−Xk

t ) if Bk
t > fk(Xk

t ),
−λ̂kXk

t if Bk
t < fk(Xk

t ),
(1.2)

where limk→∞ λk = λ ∈ (0,∞) and limk→∞ λ̂k = λ̂ ∈ (0,∞).
Fix arbitrarily small c0 ∈ (0,min(x0, 1 − x0)), and let T k

1 = inf{t > 0 : Xk
t /∈

(c0, 1− c0)} and T k
0 = sup{t < T k

1 : Bk
t = fk(Xk

t )}.
(i) The random times T k

0 converge to 0 in distribution as k →∞.

(ii) The probability that dXk/dt > 0 for all t ∈ (T k
0 , T k

1 ) converges to λ(1−x0)

λ(1−x0)+λ̂x0

as k → ∞. Consequently, the probability that the derivative of Xk is negative on the

same interval converges to λ̂x0

λ(1−x0)+λ̂x0
.

For brevity, Theorem 2 is stated only for the case x0 ∈ (0, 1). It also holds when
x0 ∈ {0, 1}, with a slight change in the definition of T k

1 . Fix any arbitrarily small c0 > 0.
If x0 = 0, let T k

1 = inf{t > 0 : Xk
t ≥ 1− c0}. If x0 = 1, let T k

1 = inf{t > 0 : Xk
t ≤ c0}.

(The definition of T k
0 is unchanged.)

In Theorem 1, we prove the existence and uniqueness of the solutions to (1.1). The
analogous results hold for the solutions of (1.2), without assuming that λk = λ̂k. We
omit the proof, which is analogous to that of Theorem 1. Note that Lemmas 1 and 2
hold as well if (1.2) is substituted for (1.1).

We note that Theorem 2 remains true if one (but only one) of the constants λ or
λ̂ is equal to zero. The proof of such modified theorem does not require any conceptual
changes.



Corollary 1 below shows that the results of Lemmas 1 and 2 and Theorems 1 and
2 continue to hold if the trend in the Brownian motion is a more general function of t
and Bt.

Corollary 1. Let the functions η(b) and ν(t, b) be Lipschitz in all arguments, and

assume that |ν(t, b)| < η(b) for all b and t. Let the diffusion process B̂ be defined

by dB̂t = dθt + µν(t, B̂t)dt, where θ is a Brownian motion with variance σ2 and zero

drift. Then Theorem 1 and Lemmas 1 and 2 hold for B̂ in place of B. Theorem 2
remains true if we replace Bk with the diffusion process B̂k, which has variance σ2

k and

drift µkν(t, B̂k
t ) and where σ2

k and µk satisfy the same properties as in the statement of
Theorem 2.

Consider a right-continuous process (At)t≥0. We will say that (At)t≥0 has i.i.d.
jumps if: (1) for some random times {ti}i≥0, t0 = 0, the process At is constant on every
interval [ti−1, ti); and (2) the random vectors (ti − ti−1, Ati

− Ati−) are independent
and identically distributed.

Consider a process At with i.i.d. jumps and A0 = b0 and the following differential
equation,

dX/dt =
{

k(1−Xt) if At > f(Xt),
−kXt if At < f(Xt).

(1.3)

Since At is constant almost everywhere, there need not be a unique Lipschitz solu-
tion to (1.3). Let Xt and Xt be the maximal and the minimal Lipschitz solutions; their
existence can be shown using the approach given in the proof of Theorem 1.

Fix a constant c > 0 and let g(b, x) be any Lipschitz function. Let A be either a
Brownian motion or a process with i.i.d. jumps and

Φ(x, b;A, f) = E

[∫ ∞

t=0

e−ctg(At, Xt)dt | (A0, X0) = (b, x)
]

,

Φ(x, b;A, f) = E

[∫ ∞

t=0

e−ctg(At, Xt)dt | (A0, X0) = (b, x)
]

.

Suppose that Aj
t is a sequence of processes with i.i.d. jumps such that the distri-

bution of (j · (ti − ti−1),
√

j · (Ati
− Ati−)) is the same for all i and j, with the mean

(1, 0) and the variance of the second component equal to 1. Then it is standard to show
(see Billingsley (1968)) that the processes Aj

t converge in distribution to the Brownian
motion with mean 0 and variance 1.

Proposition 1. Let {Ai
t}i≥1 be a sequence of processes with i.i.d. jumps that con-

verges in distribution to a Brownian motion B as i → ∞. Let f i be a sequence of
strictly decreasing Lipschitz functions that converges to f as i → ∞. Suppose that
(xi, bi) converges to (x, b). Then Φ(xi, bi;Ai, f i) and Φ(xi, bi;Ai, f i) both converge to
Φ(x, b;B, f) = Φ(x, b;B, f).

We are grateful to Haya Kaspi and Martin Barlow for the most useful comments
on the proof of existence and uniqueness of a solution to (1.1).



2. PROOFS.

We will first prove Theorem 1. The proof of existence is quite elementary and
perhaps it is an easy corollary of known results. We provide it here for completeness.
We will give a quite intuitive proof of uniqueness instead of trying to derive uniqueness
from general results on stochastic differential equations.

Proof of Theorem 1. We will give the proof for the case σ2 = 1 and µ = 0, i.e., the
standard Brownian motion. The case of arbitrary σ2 needs only minor adjustments. For
arbitrary fixed µ, the distribution of Brownian motion without drift and the distribution
of Brownian motion with drift µ are mutually absolutely continuous on any finite interval
[0, t]. Hence, the existence and uniqueness of solutions to (1.1) follows for the case of
arbitrary constant drift from the case with no drift.

The first step is to prove the existence of a solution. Consider a δ ∈ (0, k/2) and
define a δ-approximate solution Xδ

t as follows. Suppose that b0 6= f(x0). It will be
obvious from the proof how to deal with the case when b0 = f(x0). Recall that almost
all Brownian paths are continuous. This easily implies that the condition Xδ

0 = x0 and
the equation (1.1) define a continuous function Xδ

t in a unique way until the first time
t = t1 when Bt1 = f(Xδ

t1). We then let Xδ
t = Xδ

t1 +(t−t1)k(1−Xδ
t1) for all t ∈ [t1, t1+δ].

With probability 1, Bt1+δ 6= Bt1 = f(Xδ
t1+δ). Since δ < k/2, the total increment of Xδ

t

over the interval [t1, t1 + δ] is bounded by (1−Xδ
t1)/2 and so we must have Xδ

t ∈ (0, 1)
for all t ≤ t1 + δ. We extend the function Xδ

t in a unique way so that it is continuous
at time t1 + δ and it satisfies (1.1) for all t > t1 + δ until the first time t2 > t1 + δ such
that Bt2 = f(Xδ

t2). We let Xδ
t = Xδ

t2 + (t − t2)k(1 −Xδ
t2) for all t ∈ [t2, t2 + δ]. If we

continue in this way, we will define a δ-approximate solution for all t ≥ 0 since after
every time tj when the functions Bt and f(Xδ

t ) are equal, we extend the solution for δ
units of time. We note that the sequence of times tj will be infinite a.s. but we do not
need this property in our proof. The function Xδ

t takes values in (0, 1) for all t, by the
same arguement that showed this for t ≤ t1 + δ. Note that the δ-approximate solution
satisfies (1.1) for all t ∈ (tj + δ, tj+1), for all j, and it is continuous for all t. Hence, the
derivative of Xδ

t is defined almost everywhere and its absolute value is bounded by k,
in view of (1.1). It follows that the δ-approximate solution is a Lipschitz function with
the Lipschitz constant k. Next, let δ = 1/m, and for every integer m ≥ 1, consider a
1/m-approximate solution. Let Xt be defined by

Xt = lim sup
n→∞

X
1/n
t = lim

n→∞
sup
m>n

X
1/m
t .

The supremum of an arbitrary family of Lipshitz functions with constant k is a Lipshitz
function with the same constant, and the same remark applies to the limit of a sequence
of such functions. Hence, for every n, the function Y n

t = supm>n X
1/m
t is Lipschitz with

constant k, and the same is true of Xt. Note that Y n
t converge in a monotone way to

Xt, uniformly on compact intervals, because all these functions are Lipschitz with the
same constant.

We will show that Xt is a solution to (1.1). Let

W (δ) =
⋃

(s,x):s≥0,Bs=f(x)

{(t, y) : y = x + (t− s)k(1− x), t ∈ [s, s + δ]}.



For δ ≤ δ1, the portion of the graph of Xδ
t which lies outside W (δ1) satisfies (1.1), by

construction.
The set of t such that Bt = f(Xt) is closed because both functions Bt and f(Xt)

are continuous. Consider any interval (s1, s2) such that Bt 6= f(Xt) for all t ∈ (s1, s2).
Choose arbitrarily small δ1 > 0. Note that as δ → 0, the open sets W c(δ) converge
to the complement of {(s, x) : s ≥ 0, Bs = f(x)}. Let δ2 > 0 be so small that the
(closed) portion of the graph of Xt between s1 + δ1 and s2 − δ1 does not intersect
W (δ2). Let s0 = s1 +δ1. Since Y n

t converge to Xt, there exists a sequence mj such that
X

1/mj
s0 → Xs0 . For sufficiently large j, the point (s0, X

1/mj
s0 ) must lie outside W (δ2)

and 1/mj < δ2. Then, for t in a neighborhood of s0, the function X
1/mj

t must be given
by X

1/mj

t = X
1/mj
s0 e−k(t−s0). We will show that Xt = Xs0e

−k(t−s0) for t ∈ (s0, s2− δ1).
Suppose that this is not true and let s3 = inf{t ∈ [s0, s2−δ1] : Xt 6= Xs0e

−k(t−s0)}.
Since (s3, Xs3) lies outside W (δ2), an argument similar to the one given above shows
that for some δ3, δ4 > 0, and all m > 1/δ2, the functions X

1/m
t must satisfy X

1/m
t =

X
1/m
s3 e−k(t−s3) for t ∈ [s3, s3 + δ3], if |X1/m

s3 − Xs3 | ≤ δ4. A straightfoward argument
now implies that for large n, Y n

t = Y n
s3

e−k(t−s3) for t ∈ [s3, s3 + δ3], and this in turn
proves that Xt = Xs3e

−k(t−s3) for t ∈ [s3, s3 + δ3]. This contradicts the definition of s3

and proves our claim.
Thus Xt satisfies (1.1) on (s1 +δ1, s2−δ1) and in view of arbitrary nature of δ1, the

same claim extends to the whole interval (s1, s2). The argument applies to all intervals
(s1, s2) such that Bt 6= f(Xt) for all t ∈ (s1, s2). This implies that Xt is a Lipschitz
solution to (1.1). The proof of existence of a Lipschitz solution is complete.

Since the functions X
1/m
t are adapted to the Brownian filtration FB

t = σ(Bv, v ≤ t),
so is their essential supremum, Xt. Moreover, the process {(Bt, Xt), t ≥ 0} is strong
Markov with respect to the filtration {FB

t , t ≥ 0}.
We will show that Xt is the largest of all Lipschitz solutions to (1.1), i.e., if X∗

t is
another Lipschitz solution then Xt ≥ X∗

t for all t. Consider any Lipschitz solution X∗
t

to (1.1) and suppose that X∗
t > Xt for some t. Then there must exist δ = 1/m such

that X∗
t > Xδ

t for some t. Fix such δ and let S be the infimum of t such that X∗
t > Xδ

t .
If S ∈ [tj + δ, tj+1) for some j, then f(X∗

S) = f(Xδ
S) 6= BS a.s., and, by continuity, the

same relationship extends to some non-degenerate interval to the right of S. On this
interval, both X∗

t and Xδ
t satisfy one of the conditions in (1.1), so they must agree, and

this contradicts the definition of S. Next suppose that S ∈ [tj , tj + δ) for some j. On
this interval, the derivative of Xδ

t is equal to k(1 − Xδ
tj

). It is is easy to see that no
Lipshitz solution to (1.1) can grow faster than that on this interval, and so S ≥ tj + δ,
a contradiction which completes the proof of our claim.

The solution Xt is consistent in the following sense. Consider a fixed path {Bt, t ≥
0} and the solution Xt. Now choose any s > 0 and suppose that Xs = z. Let {X∗

u, u ≥ s}
be the largest Lipschitz solution with constant k for the equation (1.1) on the interval
[s,∞) with X∗

s = z and the path {Bt, t ≥ 0} truncated to {Bt, t ≥ s}. Then it is easy
to see that X∗

u = Xu for all u ≥ s. It follows that the portion {Xt, t ∈ [s, u]} of the
solution to (1.1) may be defined only in terms of Xs and {Bt, t ∈ [s, u]}.

Let D = {(b, x) ∈ R2 : b = f(x)}. We will apply the results of Maisonneuve (1975)
to construct an exit system (Hb,x, dL) for the process of excursions of (Bt, Xt) from the



set D. We will briefly describe the elements of the exit system. See Blumenthal (1992),
Burdzy (1987), Maisonneuve (1975), or Sharpe (1989) for various versions of excursion
theory. The first element of an exit system, Hb,x’s, are excursion laws, i.e., Hb,x is an
infinite σ-finite measure defined on the space C∗ of functions (eB

t , eX
t ) defined on (0,∞)

(note that 0 is excluded) which take values in R2 ∪{∆}. Here ∆ is the coffin state. Let
ν be the lifetime of an excursion, i.e., inf{t > 0 : (eB

t , eX
t ) = ∆}. Then under Hb,x, we

have (eB
t , eX

t ) ∈ R2 for t ∈ (0, ν) and (eB
t , eX

t ) = ∆ for t ∈ [ν,∞), except for the set of
excursions of Hb,x-measure zero. The measure Hb,x is strong Markov with respect to
the transition probabilities of the process {(Bt, Xt), t ≥ 0} killed at the hitting time of
D. Moreover, the Hb,x-measure of the set of paths for which limt↓0(eB

t , eX
t ) 6= (b, x) is

equal to 0. The second element of the exit system, dL, denotes the measure defined by
a non-decreasing process Lt. The process Lt is a continuous additive functional which
will be referred to as the local time for (Bt, Xt) on D. The process Lt does not increase
on any interval (s, u) such that (Bv, Xv) /∈ D for v ∈ (s, u); in other words, Ls = Lu for
such intervals.

Next we will study the excursion laws Hb,x. Note that we need to consider only
Hb,x with b = f(x). It is clear that eB

t 6= f(eX
t ) for t ∈ (0, ν). Hence, Xt is governed by

one and only one of the formulae given in (1.1), on the whole interval (0, ν). In either
case, eX

t is an exponential function or a linear transformation of an exponential function
for the duration of an excursion. Consider the process {(ξt, e

X
t )} := {(eB

t − f(eX
t ), eX

t )}
under the measure Hb,x. Let Ĥ0,x be its distribution (b will be suppressed in the
notation). Since Hb,x is strong Markov with respect to the transition probabilities
of the process {(Bt, Xt), t ≥ 0} killed at the hitting time of D, it follows that the
distribution of ξt is an excursion law from 0 whose transition probabilities are those
for Brownian motion with drift −f(Xt) killed upon returning to 0. Let H̃0,x be the
excursion law on the paths {(ξt, e

X
t )} such that eX

0 = x, the function eX
t is governed by

the same deterministic equation as in the case of Ĥ0,x, and the distribution of ξt is an
excursion law from 0 whose transition probabilities are those for Brownian motion with
no drift killed upon returning to 0. The only difference between H̃0,x and Ĥ0,x is the
absence of the drift in the former one.

Let S(λ) be the amount of time spent by ξt within (0, λ), for small λ > 0. Since
the drift −f(Xt) under Ĥ0,x is bounded, it is not hard to see that the local properties
of excursions under Ĥ0,x are similar to those of H̃0,x. In particular, we have for some
β1 ∈ (0,∞),

lim
λ→0

Ĥ0,x(S(λ))/λ = β1,

since a similar result is true for H̃0,x.
Note that Ĥ0,x is the sum of two measures; the first one is supported on paths for

which ξt stays above 0 and the other one is supported on the paths below 0. Let S−(λ)
be the amount of time spent by ξt within (−λ, 0). By analogy,

lim
λ→0

Ĥ0,x(S−(λ))/λ = β2,

where β2 is another normalizing constant. We will show that β2 = β1; this claim requires
a proof since the normalizations for the “positive” and “negative” parts of Ĥ0,x, relative
to H̃0,x, might not agree.



Suppose that T ∗ is any stopping time for the filtration generated by Lt, for example,
we may take ` > 0 and let T ∗ be the stopping time inf{t > 0 : Lt ≥ `}. Since Lt does
not increase when Bt is away from f(Xt), we must have BT∗ = f(XT∗). In view of the
Lipschitz property of f , we have |f(XT∗+t) − f(XT∗)| ≤ c1kt, and so for small t we
have |f(XT∗+t)− f(XT∗)| ≤ t5/6. Let A1 = A1(s) be the event that the first excursion
of (Bt, Xt) from the set D after the time T ∗ with |eB

t − f(eX
t )| > t3/4 for some t < ν,

is such that eB
t > f(eX

t ) for t < ν. Let A2 be the analogous event with eB
t < f(eX

t ) for
t < ν. Let T (a) be the hitting time of a for Bt and let θ be the usual Markovian shift.
We have for small s,

{T (BT∗ + s3/4 + s5/6) ◦ θT∗ < T (BT∗ − s3/4 + s5/6) ◦ θT∗ < T ∗ + s} ⊂ A1,

and

{T (BT∗ − s3/4 − s5/6) ◦ θT∗ < T (BT∗ + s3/4 − s5/6) ◦ θT∗ < T ∗ + s} ⊂ A2.

It is easy to see that

lim
s→0

P (T (BT∗ + s3/4 + s5/6) ◦ θT∗ < T (BT∗ − s3/4 + s5/6) ◦ θT∗ < T ∗ + s)

= lim
s→0

P (T (BT∗ − s3/4 − s5/6) ◦ θT∗ < T (BT∗ + s3/4 − s5/6) ◦ θT∗ < T ∗ + s) = 1/2.

It follows that
lim
s→0

P (A1(s)) = lim
s→0

P (A2(s)) = 1/2.

Hence, as s goes to 0, the probability that the first excursion of ξ after T ∗ which hits
s3/4 will come before the excursion which hits −s3/4 converges to 1/2. Since T ∗ is an
arbitrary stopping time for Lt, the normalizations for the “positive” and “negative”
parts of Ĥ0,x, relative to H̃0,x, must agree for almost all x (strictly speaking, they must
agree only on the set that may be charged by dLt but we can make them always equal
without loss of generality). This completes the proof that β1 = β2.

Even though we already know that both parts of Ĥ0,x have identical normalizations
relative to H̃0,x, the value of β1 is not yet determined. At this point we choose the
normalization so that we have

lim
λ→0

Ĥ0,x(S(λ))/λ = lim
λ→0

Ĥ0,x(S−(λ))/λ = 1.

We choose the normalization of the local time to match that of the excursion laws so
that we can apply the excursion system theory. The last formula implies, just like for
the standard local time of Brownian motion at 0, that

lim
λ↓0

1
λ

∫ t

0

1{Bs−f(Xs)∈(0,λ)}ds = Lt, (2.1)

with probability 1, for every t ≥ 0.



Now we apply the results from excursion theory proved above to show the unique-
ness of Xt. Suppose that X∗

t is another Lipschitz solution starting from the same point
X∗

0 = x0 = X0. First we prove that the set Q of times t such that Bt = f(X∗
t ) has zero

Lebesgue measure. Fix arbitrarily small a > 0. Consider η > 0, to be specified later.
Note that for any integer j,

|f(X∗
jη+s)− f(X∗

jη)| ≤ c1ks.

By conditioning on the values of Bjη and X∗
jη, and by using Brownian scaling, we obtain

for all integer j ≥ 0,

P (Bjη+s ∈ [f(X∗
jη+s)− c1ks, f(X∗

jη+s) + c1ks]) < a,

provided s < η and η is sufficiently small. Hence, the expected value of
∫ t

0
1{Bs=f(X∗

s )}ds
is less than at. The estimate holds for arbitrarily small a and so the expected value of
the integral is 0. By the Fubini theorem, the set Q has zero Lebesgue measure, with
probability 1. Let Q̂ be the set of all t such that Bt = f(X∗

t ) or Bt = f(Xt). Clearly,
the same argument shows that Q̂ has zero measure.

For every s ∈ [0, t] \ Q̂, the derivatives ∂
∂sX∗

s and ∂
∂sXs exist and are defined by

(1.1). Recall that Xt is the maximal Lipschitz solution and so Xt ≥ X∗
t for all t. It

follows directly from (1.1) that if Bt < f(Xt) ≤ f(X∗
t ) or f(Xt) ≤ f(X∗

t ) < Bt then
∂
∂tX

∗
t > ∂

∂tXt. On the other hand, the condition f(Xt) < Bt < f(X∗
t ) implies that

∂
∂tX

∗
t < ∂

∂tXt. However, we always have ∂
∂tXt − ∂

∂tX
∗
t ≤ 2k. In view of the fact that Q̂

has zero measure, we do not need to analyze other cases for the relative position of Bt,
f(Xt) and f(X∗

t ). We obtain

(Xt −X∗
t )− (Xs −X∗

s ) ≤
∫ t

s

1{f(Xu)<Bu<f(X∗
u)}2kdu.

Let U(s) = inf{t > 0 : Lt ≥ s}. In view of (2.1) we can find small λ > 0 such that

1
2λ

∫ U(1/16c1k)

0

1{Bs−f(Xs)∈(0,2λ)}ds ≤ 2LU(1/16c1k) = 1/(8c1k).

Let V = U(1/(16c1k)) ∧ inf{t > 0 : |f(Xt)− f(X∗
t )| ≥ 2λ}. Then

(XV −X∗
V )− (X0 −X∗

0 ) ≤
∫ V

0

1{f(Xu)<Bu<f(X∗
u)}2kdu

≤
∫ V

0

1{Bu−f(Xu)∈(0,2λ)}2kdu

≤
∫ U1/16k

0

1{Bu−f(Xu)∈(0,2λ)}2kdu

≤ 4λk/(8c1k) = λ/(2c1).

Since XV −X∗
V ≤ λ/(2c1), we must have |f(Xt)−f(X∗

t )| ≤ λ/2, and so V = U(1/16c1k).
Since this is true for arbitrarily small λ > 0, we conclude that Xt = X∗

t for t ≤



U(1/16c1k). An induction argument based on the strong Markov property applied at the
stopping times U(j/16c1k), j = 1, 2, . . ., shows that Xt = X∗

t for t ≤ U((j + 1)/16c1k)
and every j ≥ 1. This implies that Xt = X∗

t for all t.

Proof of Lemma 1. Assume first that X1
0 = x1 > x2 = X2

0 . Let T be the first time t
when X1

t = X2
t . We will argue that T = ∞. On the interval [0, T ) we have X1

t > X2
t .

Hence, for any t ∈ [0, T ), except a set of measure zero, we have either
(i) Bt < f1(X1

t ) ≤ f1(X2
t ) ≤ f2(X2

t ); or
(ii) f1(X1

t ) ≤ f1(X2
t ) ≤ f2(X2

t ) < Bt; or
(iii) f1(X1

t ) < Bt < f2(X2
t ).

In cases (i) and (ii), we have

d(X1 −X2)
dt

= −k(X1
t −X2

t ),

while in case (iii),

d(X1 −X2)
dt

= k(1−X1
t ) + kX2

t > −k(X1
t −X2

t ).

It follows that X1
t −X2

t ≥ (x1 − x2)e−kt for t < T , and so T = ∞.
Now consider the case when X1

0 = X2
0 = x0. Let Xn

t be the solution of (1.1) defined
relative to f1, the same Brownian motion Bt, and such that Xn

0 = x0 + 1/n. By the
first part of the proof, Xn

t ≥ X2
t for all t a.s. Now let n go to infinity. Let X∗

t be the
limit of a subsequence of Xn

t . The limit exists for a subsequence because all functions
Xn

t are Lipschitz with constant k. One can prove that X∗
t is a solution to (1.1) starting

from x0 just like in the proof of Theorem 1. By uniqueness, X∗
t = X1

t . Since all the
functions Xn

t are greater than or equal to X2
t , we must have X1

t ≥ X2
t a.s.

Proof of Lemma 2. We will deduce part (i) from Lemma 1. The condition B̃t > f(Xt)
is equivalent to Bt > f(Xt) − b, and this may be rewritten as Bt > f1(Xt), where
f1(x) = f(x)− b. Since f1(x) ≤ f(x), Lemma 1 implies that X̃b,0

t ≥ Xt. The assertion
X̃0,x

t ≥ Xt follows directly from Lemma 1.
For part (ii), take any sequence {(bn, xn)} such that bn → 0 and xn → 0 as n goes

to infinity. For a fixed t, there exists a subsequence {(bnj
, xnj

)} such that X̃
bnj

,xnj

t

converges. By extracting further subsequences and then using the diagonal method
we can obtain a subsequence {(b′n, x′n)} of the original sequence {(bn, xn)} such that
X̃

b′n,x′n
s converges to a limit X∗

s for every rational s > 0. The convergence is uniform on
compact sets because all functions X̃

b′n,x′n
s are Lipschitz with constant k. We see that

X∗
s must be a solution to (1.1) by the same argument as in the proof of Theorem 1. By

uniqueness, X∗
s = Xs for all s. Since the same is true for any initial sequence {(bn, xn)},

we conclude that X̃b,x
t converge to Xt a.s., uniformly on compacts.

The proof of part (iii) is completely analogous to that for part (ii). One can show
that for every subsequence of X̂n

t , there is a further subsequence which converges and,



moreover, it converges to a solution of (1.1). The argument is finished by invoking the
uniqueness of the solution.

Lemma 3. Let excursion laws Hb,x be defined as in the proof of Theorem 1 but relative
to the solution of (1.2) in Theorem 2. Fix arbitrarily small ε > 0 and x ∈ (0, 1 − ε).
Let A be the event that for the excursion (eB

t , eX
t ) with lifetime ν under Hb,x, we

have limt→ν− eX
t ≥ 1 − ε. Assume that the derivatives f ′k of the functions in (1.2) are

uniformly continuous, with the modulus of continuity independent of k. Moreover, we
assume that |f ′k(x)| > c0, where c0 > 0 is independent of x and k. Suppose bk = fk(x).
There exists an absolute constant α ∈ (0,∞) such that

lim
k→∞

Hbk,x(A)
α|f ′k(x)|λk(1− x)

= 1.

The convergence is uniform in x on every interval (0, 1− ε1) ⊂ (0, 1− ε).

Proof. To simplify the proof, we will consider only the case when λ = limk→∞ λk = 1.
Let gx,k

t = fk(1 − (1 − x) exp(−λkt)). The function gx,k
t may be represented as

fk(Xk
t ) where Xk

t is the solution to (1.2) starting from Xk
0 = x, and assuming that the

first condition in (1.2) is always satisfied, i.e., Bk
t > fk(Xk

t ) for all t ≥ 0. The derivative
of gx,k

t is a continuous function of t and its value at t = 0 is f ′k(x)λk(1 − x). Let Tb,y

be the first time t ≥ 0 with Bk
t = fk(Xk

t ), assuming Bk
0 = b and Xk

0 = y. Let τk be the
first time t when Xk

t ≥ 1− ε.
Fix an arbitrarily small ξ > 0. We will show that there exists η > 0 such that when

|y − x| ≤ η, k > 1/η, and σ6
k < b− fk(y) < σ4

k, then

(1− ξ)(b− fk(y))β ≤ P (Tb,y > τk) ≤ (1 + ξ)(b− fk(y))β, (2.2)

where
β = β(k, x, σ2) = 2|f ′k(x)|(1− x)/σ2

k.

Consider a small ζ > 0 whose value will be chosen later in the proof. Assume that
|y − x| is sufficiently small so that one can find small u > 0 (not depending on k) such
that for any t1 ∈ (0, u),∣∣∣ ∂

∂t
gy,k

t |t=t1

∣∣∣ <
∣∣∣(1 + ζ/2)

∂

∂t
gy,k

t |t=0

∣∣∣ <
∣∣∣(1 + ζ)

∂

∂t
gx,k

t |t=0

∣∣∣
= (1 + ζ)|f ′k(x)|λk(1− x) ≤ (1 + ζ)|f ′k(x)|(1− x).

Let K be the line passing through (0, fk(y)) with the slope (1 + ζ)f ′k(x)(1 − x).
Let A1 denote the event that the process t → (t, Bk

t ) intersects K for some t > 0, and
let A2 be the event that the process (t, Bk

t ) intersects K at some time t greater than
u. In view of our assumptions on the derivatives of fk’s, we must have τk > u, if u is
sufficiently small. This and the fact that K lies below the graph of gy,k

t for t ∈ (0, u)
imply that the event {Tb,y ≤ τk} contains A1 \A2.



The probability that Brownian motion Bt with drift µ > 0, variance σ2 > 0,
starting from Bt = b > 0, will ever hit 0 is equal to

exp(−2bµ/σ2), (2.3)

by a formula from page 362, Section 7.5, of Karlin and Taylor (1975). In particular, the
probability of this event is strictly between 0 and 1. The formula (2.3) applies also to
lines with a constant slope, with the drift of Brownian motion being increased by the
slope of the line.

Assume that k is so large that |µk| < (1 + ζ)|f ′k(x)|(1 − x)/4. An application of
(2.3) gives

P (A1) = exp(−2(b− fk(y))[|(1 + ζ)f ′k(x)(1− x)|+ µk]/σ2
k).

In order to estimate the probability of A2, we will apply the Markov property at time
u. Either the Brownian motion decreases by more than |u(1 + ζ)f ′k(x)(1 − x)/2| units
over the interval (0, u) or its distance from K at time u is greater than this quantity.
A standard estimate shows that for v > 1, the probability that the normal distribution
deviates by more than v standard units from its mean is bounded above by exp(−v2/2).
We have assumed that k is so large that the absolute value |µk| of the drift of Bk

t is less
than |(1 + ζ)f ′k(x)(1−x)/4|. Hence if the Brownian motion Bk

t decreases by more than
|u(1 + ζ)f ′k(x)(1 − x)/2| units over the interval (0, u) then its value at time u is more
than

|u(1 + ζ)f ′k(x)(1− x)/4|√
uσk

standard units away from its center. The probability of this event is bounded by

exp(−u[(1 + ζ)f ′k(x)(1− x)]2/(32σ2
k)). (2.4)

If Bk
u is more than u(1 + ζ)|f ′k(x)|(1− x)/2 units above K then the probability that it

will ever hit K after time u is bounded by

exp(−2(u(1 + ζ)|f ′k(x)|(1− x)/2)[|(1 + ζ)f ′k(x)(1− x)|+ µk]/σ2
k), (2.5)

by (2.3). The probability of A2 is bounded by the sum of (2.4) and (2.5). Since
σ6

k < b− fk(y) < σ4
k, it is elementary to check that for x < 1− ε and large k, the sum

of (2.4) and (2.5) is less than ζ(1− P (A1)). It follows that

P (Tb,y > τk) ≤ 1− (P (A1)− P (A2)) ≤ (1 + ζ)(1− P (A1)).

Thus

P (Tb,y > τk) ≤ (1 + ζ)(1− exp(−2(b− fk(y))[|(1 + ζ)f ′k(x)(1− x)|+ µk]/σ2
k)).

In view of σ6
k < b− fk(y) < σ4

k, this gives for large k,

P (Tb,y > τk) ≤ (1 + ζ)2(2(b− fk(y))(1 + 2ζ)|f ′k(x)|(1− x)/σ2
k).



Since ζ can be arbitrarily small, we obtain for any ξ > 0 and large k,

P (Tb,y > τk) ≤ (1 + ξ)2(b− fk(y))|f ′k(x)|(1− x)/σ2
k.

This proves the upper bound in (2.2).
The proof of the lower bound in (2.2) proceeds along similar lines. We consider a

small ζ > 0. Suppose that k is sufficiently large so that λk > (1− ζ)/(1− ζ/2). Assume
that |y − x| is sufficiently small so that one can find small u > 0 (not depending on k)
such that for t1 ∈ (0, u),∣∣∣ ∂

∂t
gy,k

t |t=t1

∣∣∣ >
∣∣∣(1− ζ/4)

∂

∂t
gy,k

t |t=0

∣∣∣ >
∣∣∣(1− ζ/2)

∂

∂t
gx,k

t |t=0

∣∣∣
= |(1− ζ/2)f ′k(x)λk(1− x)| > (1− ζ)|f ′k(x)|(1− x).

Let K1 be the line passing through (0, fk(y)) with the slope (1 − ζ)f ′k(x)(1 − x) and
let K2 be the horizontal line passing through the point (u, gy,k

u ). Let A1 denote the
event that the process (t, Bk

t ) intersects K1 for some t > 0, and let A2 be the event
that (t, Bk

t ) intersects K2 at some t ∈ [u, τk]. Since K1 lies above the graph of gy,k
t for

t ∈ (0, u) and K2 lies above the graph of gy,k
t for t ∈ (u, τk), the event {Tb,y ≤ τk} is

contained in A1 ∪A2. We have, by (2.3),

P (A1) = exp(−2(b− fk(y))[(1− ζ)|f ′k(x)|(1− x) + µk]/σ2
k).

In order to estimate the probability of A2, we will apply the Markov property at time
u. Either the Brownian motion decreases by more than u(1 − ζ)|f ′k(x)|(1 − x)/2 units
over the interval (0, u) or its distance from K2 at time u is greater than this quantity.
Suppose that k is so large that the absolute value |µk| of the drift of Bk

t is less than
(1 − ζ)|f ′k(x)|(1 − x)/4. Then if the Brownian motion decreases by more than u(1 −
ζ)|f ′k(x)|(1− x)/2 units over the interval (0, u) then its value at time u is more than

u(1− ζ)|f ′k(x)|(1− x)/4√
uσk

standard units away from its center. The probability of this event is bounded by

exp(−u[(1− ζ)f ′k(x)(1− x)]2/(32σ2
k)). (2.6)

Note one can find a constant t1 < ∞ which depends on ε but does not depend on k
or x and such that if Xk

t = gy,k
t for all t < τk then τk < t1 a.s. Let K3 be the horizontal

line which is u(1 − ζ)|f ′k(x)|(1 − x)/8 units above K2. Assume that k is so large that
the absolute value |µk| of the drift of Bk

t is less than u(1− ζ)|f ′k(x)|(1− x)/(8t1). Then
the absolute value of the integral of the drift µk over the interval (u, τk) is bounded
by u(1 − ζ)|f ′k(x)|(1 − x)/8. It follows that the probability that the Brownian motion
with drift µk and starting from B0 = b, will hit K2 after time u but before time τk is
bounded by the probability that Brownian motion with no drift starting from the level
Bk

u will hit the line K3 before time t1. This probability is in turn bounded by two times



the probability that the Brownian motion with no drift starting from the level Bk
u at

time u will be below K3 at time u+ t1. If Bk
u is more than u(1−ζ)|f ′k(x)|(1−x)/2 units

above K2 then it is at least u(1 − ζ)|f ′k(x)|(1 − x)/4 units above K3. If this condition
is fulfilled, the probability that the Brownian motion with no drift is below K3 at time
u + t1 is bounded above by

exp(−(1/2)[u(1− ζ)f ′k(x)(1− x)/4]2/(t1σ2
k)). (2.7)

In view of our previous remarks, a bound for the probability of A2 may be obtained
by multiplying (2.7) by 2 and adding it to (2.6). If b − fk(y) ∈ [σ6

k, σ4
k] and k is large

then the sum of (2.6) and two times (2.7), and so the probability of A2, is less than
ζ(1− P (A1)). It follows that

P (Tb,y > τk) ≥ 1− (P (A1)+P (A2)) ≥ 1−P (A1)− ζ(1−P (A1)) ≥ (1− ζ)(1−P (A1)).

Thus

P (Tb,y > τk) ≥ (1− ζ)(1− exp(−2(b− fk(y))[(1− ζ)|f ′k(x)|(1− x) + µk]/σ2
k)).

For b− fk(y) < σ4
k and large k, this gives

P (Tb,y > τk) ≥ (1− ζ)2(2(b− fk(y))(1− 2ζ)|f ′k(x)|(1− x)/σ2
k).

Since ζ can be arbitrarily small, we obtain for any ξ > 0 and large k,

P (Tb,y > τk) ≥ (1− ξ)2(b− fk(y))|f ′k(x)|(1− x)/σ2
k.

This proves the lower bound in (2.2) and so the proof of (2.2) is complete.
We will use (2.2) to estimate the Hb,x-measure of excursions whose second com-

ponent exits the interval [0, 1− ε] before the lifetime of the excursion. By the abuse of
the notation, we will refer only to the first component and ignore the second compo-
nent of the excursion (eB

t , eX
t ) under the excursion laws. We recall from the proof of

Theorem 1 that locally near the starting point, the excursion laws Ĥ0,x may be approx-
imated by the excursion laws H̃0,x of Brownian motion with no drift. The renormalized
H̃0,x-distribution of the excursion at time t > 0, truncated to excursions with lifetimes
exceeding t, is the same as the distribution of Brownian motion starting from 0 and con-
ditioned not to return to 0 before time t. By scaling, this distribution is the same for any
t, up to the usual Brownian scaling factor, and so it has a density q(z/σk

√
t)/(σk

√
t).

The H̃0,x-mass of excursions which have lifetimes greater than t > 0 is a constant times
σk/

√
t, assuming that for any σk we normalize the local time to be the density of the

occupation measure. It follows that, for small t, we can approximate the density of
H̃0,x-excursions and also of Ĥ0,x-excursions by q(z/σk

√
t)/t. We will apply the Markov

property at t = σ10
k because a typical excursion position at the time t = σ10

k is σ5
k away

from the starting point, and so we can apply formula (2.2). By applying the Markov
property at time t = σ10

k we see that the ratio of Hb,x(A) and∫ ∞

0

[2z|f ′k(x)|(1− x)/σ2
k] · [q(z/σ6

k)/σ10
k ]dz



converges to 1 as k →∞. The last quantity is equal to

|f ′k(x)|(1− x)
∫ ∞

0

(2z/σ2
k) · [q(z/σ6

k)/σ10
k ]dz = α|f ′k(x)|(1− x).

Recall that we considered only the case when λk → λ = 1 to see that this completes
the proof.

Proof of Theorem 2. (i) In order to simplify the notation, we will assume in part (i)
that λ = limk→∞ λk = λ̂ = limk→∞ λ̂k = 1.

Fix some arbitrarily small p1 > 0 and t0 > 0. We will show that for large k the
random time T k

0 is less than t0 with probability greater than 1 − p1. Suppose that
M > 1 is a large integer whose value will be specified later. Recall the meaning of c0

from the statement of the theorem and let t1 = t0/(2M). If Bk
s 6= fk(Xk

s ) for all s in
some interval (s1, s2) then s → Xk

s is monotone on this interval and it is an exponential
function or a linear transformation of an exponential function. It is easy to see that
for any given t1 we can find k0 < ∞ such that for k > k0, if Bk

s 6= fk(Xk
s ) for all

s ∈ (s1, s1 + t1) then we must have T k
1 < s1 + t1, no matter what the value of Xk

s1
is.

From now on we will assume that k > k0(t1).
Find c1 > 0 and c2 ∈ (0,min(x0 − c0, 1 − c0 − x0)), such that |f ′k(x)| ∈ (c1, c

−1
1 )

for x ∈ [x0 − c2, x0 + c2] and k greater than some k0. We will assume without loss of
generality that t1 < c2/2. Recalling that xk

0 → x0 we see that the endpoints of the
interval [fk(x0 + c2/2), fk(x0 − c2/2)] are at least c1c2/4 units away from fk(xk

0), for
large k.

Let S0 = 0, and for j ≥ 1, let Sj be the smallest t ∈ [Sj−1 +σ2
k, Sj−1 +σ2

k + t1] with
Bk

t = fk(Xk
t ). If there is no such t, we let Sj = Sj−1 + σ2

k + t1. Let Aj = {T k
1 ≥ Sj}

and Cj = {Bk
Sj
∈ [fk(x0 + c2/2), fk(x0 − c2/2)]}. We have

P (Aj) = P (Aj ∩Aj−1 ∩ . . . ∩A0) (2.8)
≤ P (Aj ∩ Cj ∩Aj−1 ∩ Cj−1 ∩ . . . ∩A0 ∩ C0) + P ([Cj ∩ Cj−1 ∩ . . . ∩ C0]c)

=
j∏

m=1

P (Am ∩ Cm | Am−1 ∩ Cm−1 ∩ . . . ∩A0 ∩ C0) + P ([Cj ∩ Cj−1 ∩ . . . ∩ C0]c)

≤
j∏

m=1

P (Am | Am−1 ∩ Cm−1 ∩ . . . ∩A0 ∩ C0) + P ([Cj ∩ Cj−1 ∩ . . . ∩ C0]c).

Recall that Bk
0 = fk(xk

0), the points xk
0 converge to x0, and

[fk(xk
0)− c1c2/4, fk(xk

0) + c1c2/4] ⊂ [fk(x0 + c2/2), fk(x0 − c2/2)],

for large k. As k goes to infinity, the variance and drift of Bk
t go to zero. Hence we may

and will assume that k is so large that the probability that Bk
s is outside the interval

[fk(x0 + c2/2), fk(x0 − c2/2)] for some s ∈ (0, t0) is less than p1/2. This implies that

P ([Cj ∩ Cj−1 ∩ . . . ∩ C0]c) ≤ p1/2. (2.9)



Next we will estimate P (Am | Am−1 ∩ Cm−1 ∩ . . . ∩ A0 ∩ C0). Let us assume
that the event Am−1 ∩ Cm−1 ∩ . . . ∩ A0 ∩ C0 holds. We will further condition on the
value of Bk

Sm−1
and Xk

Sm−1
. Since we are assuming that Cm−1 holds, we must have

Bk
Sm−1

∈ [fk(x0 + c2/2), fk(x0 − c2/2)]. We will assume without loss of generality that
Bk

Sm−1
≥ fk(Xk

Sm−1
); the opposite case may be treated in an analogous way. Recall

that s → Xk
s is a Lipschitz function with constant 1, and the Lipschitz constant for fk

is c−1
1 , on the interval [x0 − c2, x0 + c2]. Thus,

fk(Xk
Sm−1+s) ≤ fk(Xk

Sm−1
) + c−1

1 s,

for s ≤ c2/2. If k is large enough so that σ2
k < c2/2 then

fk(Xk
Sm−1+σ2

k
) ≤ fk(Xk

Sm−1
) + c−1

1 σ2
k. (2.10)

Suppose that k is sufficiently large so that and |µk| < 1. The variance of Bk
t is

equal to tσ2
k, so

P (Bk
Sm−1+σ2

k
−Bk

Sm−1
> 2c−1

1 σ2
k) > p2 > 0,

provided k is sufficiently large. This and (2.10) yield

P (Bk
Sm−1+σ2

k
− fk(Xk

Sm−1+σ2
k
) > c−1

1 σ2
k) > p2. (2.11)

For sufficiently large k we obtain from (2.10),

fk(Xk
Sm−1+σ2

k
) ≤ fk(Xk

Sm−1
) + c−1

1 σ2
k ≤ Bk

Sm−1
+ c−1

1 σ2
k

≤ fk(x0 − c2/2) + c−1
1 σ2

k ≤ fk(x0 − c2),

and so Xk
Sm−1+σ2

k

≥ x0 − c2. Note that for large k we have∣∣∣∣ ∂

∂t
fk(Xk

t )
∣∣∣∣ > (c1/2) min(x0, 1− x0) = c3,

provided Xk
t ∈ [x0 − c2, x0 + c2] and Bk

t 6= fk(Xk
t ). Let K be the straight line passing

through the point (Sm−1 + σ2
k, fk(Xk

Sm−1+σ2
k

)) with the slope c4 = −c3/2. Recall that

we have assumed that t1 < c2, that s → Xk
s is Lipschitz with constant 1, and that the

absolute value of the derivative of fk on [x0 − c2, x0 + c2] is greater than c1. All these
facts imply that if Xk

Sm−1+σ2
k

∈ [x0−c2, x0+c2/2] and if Bk
Sm−1+σ2

k
+s

> fk(Xk
Sm−1+σ2

k
+s

)

for all s ∈ (0, t1) then Xk
Sm−1+σ2

k
+s

∈ [x0 − c2, x0 + c2] for s ∈ (0, t1) and so the graph

of the function fk(Xk
s ) stays below the line K for s ∈ (Sm−1 + σ2

k, Sm−1 + σ2
k + t1). By

monotonicity, the same is true if we relax the assumption Xk
Sm−1+σ2

k

∈ [x0−c2, x0+c2/2]

and suppose instead that Xk
Sm−1+σ2

k

≥ x0 − c2. It follows that if the Brownian motion

Bk
Sm−1+σ2

k
+s

stays above the line K for all s > 0 then it cannot cross the graph of

fk(Xk
s ) before the time Sm−1 + σ2

k + t1. This would imply that T k
1 < Tm. Hence, the



(conditional) probability of Am is less than the probability of hitting K at any time
greater than Sm−1 + σ2

k. We estimate the last probability using (2.3). Let us assume
that

Bk
Sm−1+σ2

k
− fk(Xk

Sm−1+σ2
k
) > c−1

1 σ2
k,

as in (2.11). For large k, the absolute value of drift of Bk is bounded by |c4|, the same
quantity as the slope of K. The probability of hitting K is therefore less or equal to

exp
(
− 2(c−1

1 σ2
k)|2c4|

σ2
k

)
= p3 < 1.

This and (2.11) give,

P (Am | Am−1 ∩ Cm−1 ∩ . . . ∩A0 ∩ C0) ≤ (1− p2) + p2p3 = p4 < 1.

Combining this with (2.8) and (2.9) yields

P (AM ) ≤ pM
4 + p1/2.

We now choose M so that pM
4 < p1/2 and then we choose large k so that Mσ2

k < t0/2
to obtain

P (T k
1 ≥ t0) ≤ P (T k

1 ≥ M(σ2/k + t1)) ≤ P (T k
1 ≥ SM ) = P (AM ) ≤ p1.

This completes the proof of part (i) of Theorem 2.
(ii) We have just proved that the bifurcation time T k

0 converges to 0 in distribution,
as k goes to infinity. By the continuity of Brownian paths, the position of the Brownian
motion at the bifurcation time converges to x0, in distribution. Lemma 3 shows that
the ratio of the mass that the excursion laws give to excursions bifurcating upward to
the mass given to excursions going downward and starting from the same point x has
the same limit as

α|f ′k(x0)|λk(1− x0)

α|f ′k(x0)|λ̂kx0

which is
λ(1− x0)

λ̂x0

, (2.12)

assuming that x → x0 and k →∞. The processes of upward excursions and downward
excursions are independent Poisson processes with random intensities. The ratio of the
intensities converges to the quantity in (2.12), in distribution, on the whole interval
[0, T k

0 ]. This implies that the ratio of the probability of having an upward bifurcation
to the probability of having a downward bifurcation converges to λ(1− x0)/λ̂x0.

Proof of Corollary 1. By the Girsanov theorem, the distribution of B̂t on any finite
interval [0, t0] is mutually absolutely continuous with the distribution of Bt (see Karatzas



and Shreve (1988)). The properties of solutions to (1.1) proved in Theorem 1 and
Lemmas 1 and 2 hold with probability 1, so they hold when we replace Bt with B̂t.

The argument used to prove the original Theorem 2 can be used to prove its new
version, when we replace Bk by B̂k. We will limit ourselves to the observation that
the drift of B̂k is a continuous function of the value of the process and is effectively
bounded on a bounded time interval as the values for the drift when B̂k is outside a
finite interval are irrelevant to the estimates. With this fact in hand it is not hard to
modify the original proof but the details are left to the reader.

Proof of Proposition 1. We will only sketch the proof as it is quite standard. See
Billingsley (1968) for the methods applied below. We will only deal with the maximal
solution X

i

t to (1.3) with A and f replaced by Ai and f i, and Ai
0 = bi, X

i

t = xi.
Let Pi be the joint distribution of the pair of processes (Ai

t, X
i

t). It is easy to prove
the tightness of the sequence of measures Pi as Ai

t converge to Brownian motion by
assumption and X

i

t are Lipschitz. Let P be the limit of some convergent subsequence of
Pi. The first component of the process under P is a Brownian motion and the second
one is a process with Lipschitz trajectories. We can prove that they satisfy the equation
(1.1) by using the same argument as was used for sequences of approximate solutions
in the proof of Theorem 1. By uniqueness of the solutions to (1.1) (see Theorem 1), the
whole sequence Pi converges to P.

In order to finish the proof, it remains to check the uniform integrability of
Φ(xi, bi;Ai, f i). This is a standard excercise in view of the Gaussian estimates for the
tails of the one-dimensional distributions of Brownian motion and the Lipshitz character
of both X

i

t and g.
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