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Massively parallel sequencing has accelerated the cataloging of cis-regulatory elements in 

mammalian genomes. However, it remains challenging to estimate the functional effects of 

variation in cis-regulatory elements. The current methods to measure such effects are labor-

intensive and involve testing each variant separately. This dissertation describes the 

development of methods to interrogate functional effects of cis-regulatory variants in a 

massively parallel fashion. First, I present a method that takes advantage of massively parallel 

DNA synthesis and massively parallel sequencing to test the functional effects of all possible 

single nucleotide variants of a given cis-regulatory element en masse in a single assay. As a 

proof of concept, this method was applied to perform saturation mutagenesis of three 

bacteriophage core promoters and three core promoters recognized by the mammalian Pol II 

transcriptional machinery.   Microarray synthesized mutant promoters, each with a unique 20bp 

tag sequence downstream of the transcription start site were subjected to in vitro transcription 

and the resulting RNA-derived tags were sequenced. The relative abundance of each 

programmed tag provided a digital readout of the transcriptional efficiency of its cis-linked 

mutant promoter.  Next, I describe a method to generate long, accurate reads from short, error-

prone reads produced by the current massively parallel sequencing platforms. This strategy, 

referred to as “subassembly”, is of broad utility in a wide range of contexts including but not 

limited to metagenomics, de novo genome assembly and detection of rare variants in clinical 

samples. It also enables the interrogation of longer regulatory elements beyond the current 

read-lengths supported by massively parallel sequencing platforms. Finally, I present an 

improved version of the saturation mutagenesis method, including incorporation of the 



“subassembly” technique and use it to dissect mammalian enhancers up to 620bp long in a 

massively parallel in vivo assay. Development of such methods for rapid functional analysis of 

regulatory elements will not only facilitate interpretation of variation and understanding of the 

architecture and grammar of these elements, but also enable design of novel synthetic 

regulatory elements. 
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Chapter 1 Introduction 

The first human genome was sequenced just over a decade ago [1, 2], at the cost of 300 million 

US dollars and required an effort spanning ten years involving hundreds of scientists. Since 

then, there have been rapid advances in DNA sequencing technologies [3] such that the human 

genome can now be routinely sequenced in just a couple of days for a few thousand dollars, 

and this trend is expected to continue as newer and faster sequencing technologies are being 

developed. The feasibility of sequencing the entire genome of a fetus using non-invasive 

methods has also been demonstrated [4, 5]. These advances have made personal genome 

sequencing a reality. A large number of human genomes have already been sequenced [6-12], 

and with the availability of commercial whole genome sequencing services at reasonable costs, 

it might not be long before genome sequences become a standard component of our medical 

records. These sequences can pinpoint the specific set of mutations we carry. However, simply 

having access to this list of mutations is not useful. The true potential of this information can 

only be realized if we have the ability to predict the functional effects of these variants.  

Predicting these functional effects is a challenging problem [13]. Variation in the portion of the 

genome that encodes proteins (called coding regions) is easier to interpret due to our deeper 

understanding of gene structure, and the rules governing translation. As a result a majority of 

current studies looking for mutations underlying diseases tend to only focus on these variants 

and using this strategy, these studies have successfully identified the mutations responsible for 

several rare genetic disorders [14-20],  as well as for individual cases of more common but 

complex syndromes such as autism [21], schizophrenia [22] and mental retardation [23].     

However, coding regions account for only around 1% of the human genome.  Non-coding 

portions of the genome also play an important role in genome biology. In particular, regions that 

control the expression of genes, thus called regulatory elements, form a critical component of 
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the intricate logic that governs how the instructions encoded in our genome are read and 

executed. Predicting functional effects of variation in these regions is more challenging, largely 

due to our lack of understanding of the architecture of these elements as well as the lack of 

experimental methods to test the functional effects of these variants in a high-throughput 

manner.  

1.1 Organization  

This dissertation describes the development of such massively parallel methods to interrogate 

the functional effects of mutations in regulatory elements. In Chapter 2, I provide an overview of 

the current methods to identify regulatory elements in the genome and describe existing 

methods for functional analysis of these elements. In Chapter 3, I describe a method to 

interrogate the effect of all possible single-nucleotide mutations in a core promoter in a single 

experiment, and demonstrate its use on three bacteriophage core promoters, as well as three 

core promoters recognized by the mammalian Pol-II transcription machinery. In Chapter 4, I 

describe a method called “subassembly” that can generate longer and more accurate effective 

reads from short sequencing reads. This technology enables the application of massively 

parallel functional dissection method to larger regulatory elements. In Chapter 5, I present an 

improved version of the massively parallel functional assay and demonstrate its use to dissect 

mammalian enhancers. I conclude with Chapter 6 in which I speculate about the possible 

directions in which these studies can be expanded in the future. 
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Chapter 2 Background 

2.1 Regulatory elements 

A vast majority of the functions required for keeping a cell alive are performed by proteins. The 

recipe for making each protein is encoded in the DNA sequence, which specifies the exact 

sequence of amino acids that will constitute the protein. However, not all proteins are required 

at all times, and in all cell types. In order to ensure proper functioning of the cell, when and how 

much of each protein gets made has to be very carefully orchestrated. For instance, certain 

proteins are only required at very specific time points during development. A classic example is 

the switch between fetal, embryonic and adult forms of hemoglobin (reviewed in [24]). Others 

need to be expressed only in response to some environmental trigger, such as presence of 

nutrients or toxins [25]. Moreover, proteins need to be expressed in very specific quantities in 

order to maintain the stoichiometric ratios and reaction kinetics with other interacting proteins. 

Disturbances in these ratios could result in improper functioning and disease. For example, an 

imbalance in the quantities of alpha and beta globin can lead to thalassemia [26].  The 

programming required to achieve this fine-scaled control is also encoded in the genome, and is 

implemented via the interaction of specific proteins with specific regions of the genome.  These 

regions of the genome, and the specific nucleotide sequences they represent are broadly 

referred to as “regulatory regions” or “regulatory elements”, and are further classified into 

different classes such as promoters, enhancers and insulators, based on their function and 

position. These elements specifically regulate the transcription of genes into RNA, the first step 

in production of proteins.  In addition to these transcriptional regulatory elements, there are 

several other kinds of regulatory elements that control a variety of downstream steps such as 

splicing of the nascent RNA transcript into messenger RNA (mRNA), modulating the stability of 

mRNA, and the efficiency of translation of mRNA into protein. In this dissertation, I will primarily 
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refer to promoters and enhancers, and will use the rest of this chapter to introduce these two 

elements and describe the current methods for their identification and analysis. 

2.2 Promoters 

A promoter is a segment of DNA that is capable of driving the transcription of its immediate 

downstream sequence. It accomplishes this due to the presence of specific sequence features 

that are recognized by the transcriptional machinery. The position from where transcription 

begins is called the transcription start site (TSS).  

The precise sequence requirements for a functional promoter, especially in mammalian 

genomes, are still not completely understood. Initially, promoters were identified on the basis of 

the presence of a conserved A+T-rich sequence with the approximate consensus “TATAA” (and 

hence referred to as the “TATA-box”), approximately 30 bases upstream of the TSS [27, 28].  It 

was subsequently discovered that a conserved Initiator element (INR) centered over the TSS 

also played an important role in directing transcription [29], and was in fact capable of directing 

transcription in the absence of a TATA-box [30]. Studies in organisms like Drosophila 

melanogaster revealed another motif around 30 bases downstream of the TSS, named 

Downstream Promoter Element (DPE), capable of directing the transcriptional machinery to a 

precise TSS [31]. Availability of the complete human genome and the subsequent genome-wide 

computational analyses revealed that only a small percentage of human promoters contain any 

of these elements. The TATA-box for example is present in fewer than 20% of promoters and 

around 50% of the promoters lack any of these canonical elements [32, 33].  
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2.3 Enhancers 

An enhancer is a segment of DNA that can activate and up-regulate the transcription of its 

target genes. Enhancers are typically located several kilobases away from their target genes 

and can act independently of their orientation [34]. Enhancers are believed to function via 

looping of the intervening DNA such that the enhancer and its target promoter are in physical 

proximity in three-dimensional space [35-37]. Enhancers are known to bear clusters of binding 

sites for several specific proteins called transcription factors, and are often responsible for the 

tissue-specific activation of the genes they regulate. 

2.4 Discovery of regulatory elements  

Identification of cis-regulatory elements, especially enhancers in mammalian genomes is a 

challenging problem because they can be scattered several kilobases (or more) away from their 

regulatory targets. However significant progress has been made in the last few years in the 

development of methods to discover them. These include both computational as well as 

experimental techniques. 

2.4.1 Computational methods 

A majority of the computational methods to discover regulatory elements rely on evolutionary 

conservation to identify non-coding sequences under functional constraint. This is a powerful 

technique, especially given that the genome sequences of a large number of organisms are now 

available. For example, several of the ultra-conserved non-coding regions identified by Bejerano 

et al. [38] on the basis of perfect conservation across human, mouse and rat genomes proved to 

be functional enhancers [39]. More recently Lindblad-Toh et al. generated a very large list of 

constrained elements and potentially functional regulatory elements using evolutionary 

conservation across 29 mammalian genomes [40]. However methods relying on sequence 
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conservation alone miss regulatory elements in rapidly evolving regions of the genome. Another 

category of methods overcomes this problem by relying on detecting an enrichment of known 

transcription factor binding sites (TFBSs) in localized regions [41-43]. Some methods use a 

combination of evolutionary conservation and TFBS enrichment by searching for conserved 

arrangements of TFBSs [44].  Computational methods can generate a large list of candidate 

regulatory elements. However, they still suffer from relatively high false positive rates and 

cannot at present replace experimental techniques for discovery as well as validation. 

2.4.2 Experimental methods 

Several effective experimental techniques have been recently developed and successfully 

applied to identify regulatory elements throughout the genome.  

ChIP-Seq 

ChIP-seq [45, 46] can be used to identify all locations in the genome bound by a protein of 

interest. Cells or tissues are first cross-linked with formaldehyde to preserve the DNA-protein 

associations. DNA is extracted, fragmented into smaller segments, and then 

immunoprecipitated using an antibody against the protein of interest. This enriches for DNA 

fragments bound by the protein. The cross-linking is then reversed and the identity of these 

DNA fragments is learned by sequencing (or by hybridization to microarrays in an earlier version 

of ChIP-seq called “ChIP-chip” [47]). As a part of the ENCODE project [48] as well as through 

numerous independent studies, this technique has been used to identify the binding sites of 

several transcription factors, as well as regions of the genome with specific chromatin 

modifications in a wide variety of tissues and cell types. The data from these methods have 

been used to identify locations of broader classes of regulatory elements. For example, ChIP-

seq with the enhancer-associated protein p300 has been used to identify tissue-specific 

enhancers [49-51]. ChIP-chip and ChIP-seq have also been used to establish the chromatin 
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signatures associated with individual classes of regulatory elements. For example promoters 

are marked by trimethylation of lysine 4 residue of histone H3 (H3K4me3), whereas poised as 

well as active enhancers are marked by monomethylation of the same residue (H3K4me1) [52]. 

Active enhancers can further be distinguished from poised enhancers by acetylation of histone 

H3 at lysine 27 (H3K27ac) [53, 54], although it is now believed that H3K27ac more generally 

marks active elements, both enhancers as well as promoters.  In another comprehensive study, 

Ernst et al. used ChIP-seq to map nine chromatin marks across nine cell types and used 

recurrent combinations of these marks to define distinct chromatin states corresponding to 

repressed, poised and active promoters, strong and weak enhancers, putative insulators, 

transcribed regions, and large-scale repressed and inactive domains [55]. 

DNase I hypersensitivity profiling 

Functionally active regions of the genome need to be accessible to transcriptional factors and 

other proteins complexes. Hence they are more likely to have “open” chromatin, and thus likely 

to be “hypersensitive” to digestion by DNase I. DNase I hypersensitivity mapping can thus be 

used to identify potential regulatory regions in the genome [48, 56, 57]. Intact nuclei are 

extracted from lysed cells and digested with DNase I. The digested DNA, enriched in DNase I 

digested ends, is subjected to massively parallel sequencing (or in an older version, hybridized 

to tiling microarrays). Regions of the genome that are enriched for an increased number of read-

starts along consecutive positions are designated as DNase I hypersensitive regions [58]. Even 

within these hypersensitive regions, there are often dips in the number of read-starts at certain 

positions. These are referred to as DNase footprints and represent regions that are protected 

likely because they are bound by proteins. A high resolution map of DNA-protein interactions, 

including potential transcription factor binding sites can thus be obtained [59].   

DNA Calling Cards (Card-seq) 
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A technique called DNA calling cards is useful to identify all positions bound by a transcription 

factor of interest. The transcription factor is fused to a transposase of a transposon. When the 

transcription factor binds its targets in the genome, the transposase directs transposon 

insertions in the vicinity of the binding site. This transposon insertion serves as a persistent 

marker or a “calling card” recording the binding event. The locations of these insertions can be 

learned by sequencing (Card-seq) or by hybridization to an array. This method was initially 

developed in yeast making use of the Ty5 transposon as the calling card [60, 61], but has since 

also been demonstrated in human cells using the piggyBac transposon [62].  Although Card-seq 

requires introduction of an expression construct into the cells and can thus not be readily 

applied to tissues, it could serve as an alternative to ChIP-seq, especially when no antibodies 

are available against the transcription factor of interest. Due to the permanent form in which an 

interaction is recoded, Card-seq could prove particularly useful in studying differentiation. For 

example, it confers the ability to correlate transcription-factor binding events in progenitor cells 

to the final fates of their progeny cells during development.  

CAGE 

Relative to other types of regulatory elements, identification of promoters might seem 

straightforward due to their constrained location relative to genes. However compiling a 

comprehensive list of all functional promoters in the genome is not a trivial task due to several 

reasons. First, there are a large number of unannotated non-coding genes in the genome (e.g. 

microRNAs, long non coding RNAs). Second, even annotated protein-coding genes often have 

several alternative transcripts, some of which are driven by alternative promoters. Third, for any 

downstream analysis, the precise locations of TSSs provide much greater power than 

approximate locations of the promoter regions. Cap Analysis of Gene Expression (CAGE) 

enables identification of promoters and TSSs by accurately capturing and sequencing the 

capped 5’ end of transcripts [32, 63, 64].  
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2.5 Functional analysis of regulatory elements 

Techniques described in the previous section provide the coarse locations of regulatory 

elements. In this section I will describe current methods to functionally validate these candidate 

regulatory elements, discover their underlying architecture and to understand the effects of 

deviation from the wild-type sequences.  

2.5.1 Measuring transcriptional activity 

Testing whether a predicted transcriptional regulatory element is functional most commonly 

involves cloning the regulatory element to be tested upstream of a transcriptional cassette and 

subjecting it to in vitro or in vivo transcription. The next step is to detect and quantify RNA 

transcripts driven by that element. Different methods have been developed over the years for 

this purpose.  

Nuclease protection assays 

In this technique [65, 66], which was used in 1980s for many landmark studies [34, 67, 68], 

transcripts are hybridized to a molecular excess of radio-labeled complementary probe specific 

to the transcripts to be detected. The mixture is then exposed to a nuclease that digests single 

stranded RNA. Surviving RNA fragments correspond to the regions bound by the probe and 

thus a part of the transcripts of interest. These transcript fragments are run on an 

electrophoretic gel where they are detected by autoradiography and can be quantified by 

comparing the band intensity to a series of bands obtained by hybridization of the probe to 

different known quantities of the target sequence.   

Reporter genes 

The most common method to quantify activity of transcriptional regulatory elements since late 

1980s right up to the present day is using reporter genes such as CAT [69], luciferase [70] or 
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fluorescent proteins [71]. The element to be tested is used to drive transcription of the reporter 

gene. The activity of the element is measured in terms of the activity of the protein encoded by 

the reporter gene.  Reporter gene assays have been used in hundreds of studies to test 

individual regulatory elements. In recent years, the availability of the human genome sequence 

enabled characterization of much larger sets of elements using this technique. For example 

Trinklein et al. tested more than a hundred predicted human promoters for activity in four human 

cell lines using transient transfection luciferase assays [72]. Using the same approach, Cooper 

et al. expanded the study to almost 400 promoters across 16 different cell lines [73]. They also 

tested nested deletion fragments for 45 of these promoters. This led to interesting insights such 

as the presence of positive regulatory elements in the -350 to -40 region upstream of the TSS 

and repressive elements in the -500 to -1000 region. 

2.5.2 Dissection of regulatory elements  

Going a step further from validating candidate regulatory elements, functional dissection hopes 

to uncover the underlying architecture of a regulatory element by introducing variations in its 

wild-type sequence and measuring the activity of these variants. Knowing which changes lead 

to changes in activity of the element can provide clues to the functional parts of the element.  

Variants can include nested deletions, scanning deletions, single nucleotide substitutions, 

scanning block substitutions or multiple substitutions randomly scattered across the element.  

When the activities of all possible substitutions in an element are systematically tested, the 

method is referred to as “saturation mutagenesis”. The substitution variants are traditionally 

generated using site-directed mutagenesis, error-prone PCR, or chemical treatment of DNA 

[74]. 

Saturation mutagenesis can yield incredibly rich functional data at single-nucleotide resolution.  

However, only a handful of regulatory elements have been analyzed in detail using saturation 
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mutagenesis because the process has traditionally been laborious and time consuming. 

Considerable effort is needed to generate and isolate constructs representing every possible 

single-nucleotide substitution, and then to measure the transcriptional activity each of these 

constructs individually. 

One of the most well-known examples of saturation mutagenesis of a regulatory element is the 

functional dissection of the beta-globin promoter [67]. In this study, they used the in vitro 

mutagenesis method described in [74] to introduce 130 different random single base 

substitutions in the beta-globin promoter region. Briefly, this involved chemical treatment of 

single stranded DNA, synthesis of the complementary strand, separation of fragments bearing 

wild-type and mutant versions of the promoter by running them on a denaturing gel, cloning of 

these fragments into the appropriate expression vector, followed by sequencing to learn the 

identity of the mutations. Each mutant was then transiently transfected into HeLa cells and the 

transcripts harvested after 48 hours were analyzed using the S1 nuclease assay described in 

the previous section. Although laborious, this process not only allowed them to identify the three 

regions critical to the activity of the promoter (-87 to -95, -72 to -77 and -26 to -30), but also the 

precise effect of any specific substitution on promoter activity. 

Although not as comprehensive as saturation mutagenesis, scanning mutagenesis in which 

several adjacent bases are mutated at once is also a powerful technique for functional 

dissection and has been used to dissect several regulatory elements over the last several 

decades, such as the beta-globin enhancer [75]. Fine-nested deletions have also been shown to 

be useful in mapping the critical functional regions, for example in the beta-interferon enhancer 

[76] as well as the adenovirus-2 major late and chicken conalbumin promoters [29]. 

More recently, attempts have also been made to learn the rules governing architecture and 

grammar of regulatory elements using synthetic regulatory elements. This is powerful because it 
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allows sampling of a much larger space than that offered by existing genomic elements. For 

example, Gertz et al. [77] constructed and tested synthetic promoter libraries consisting of 

random arrangement of binding sites for a handful of transcription factors. They used the results 

to construct thermodynamic models of gene regulation.  In another study, basal promoters 

containing either strong, or weak or no TATA-boxes were cloned in cis with different 

combinations of TF binding sites as in Gertz et al. to generate three synthetic promoter libraries 

[78].  They were able to show that the TATA-box acts as a simple scaling factor such that gene 

expression scales with the strength of the TATA-box independent of the arrangement of 

transcriptional factor binding sites upstream of the TATA-box. 

All of the studies described above used either nuclease protection assays or reporter genes for 

readout of transcriptional activity.  While highly sensitive, these methods still suffer from a 

fundamental limitation, which is that the activity of each construct has to be measured 

separately. This makes testing of large numbers of such constructs infeasible.  In the next 

chapter I will describe a method that allows quantitative readout of the transcriptional activity of 

thousands of constructs en masse using massively parallel sequencing. 
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Chapter 3 Functional dissection of core promoters 

This chapter is based on the following published paper: 

 

Rupali P Patwardhan, Choli Lee, Oren Litvin, David L Young, Dana Pe'er and Jay Shendure. 

High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. 

Nature Biotechnology, 27, 1173 - 1175 (2009). 

 

With one significant exception noted below, Choli (Charlie) Lee and l performed all of the 

experimental work. With one significant exception, I performed all of the data analysis, in 

consultation with Jay Shendure. Jay Shendure and I wrote the manuscript. 

 

David Young performed the in vivo validation of individual synthetic T7 promoters described in 

section 3.4.3. Oren Litvin analyzed data from a pilot experiment to choose the optimal 

combinations of double mutants described in section 3.4.2.  
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3.1 Summary 

This chapter describes a method that harnesses massively parallel DNA synthesis and 

massively parallel sequencing for the high-throughput functional analysis of core promoters at 

single-nucleotide resolution. As a proof of concept, the effects of all possible single-nucleotide 

mutations for three bacteriophage promoters and three mammalian core promoters were 

assayed in a single experiment per promoter. Mutant promoters were synthesized in parallel as 

DNA oligonucleotides (oligos) on a programmable microarray and then released into solution, 

resulting in a complex library including all mutant promoters. Each synthetic promoter in the 

library included a unique 20bp sequence tag downstream of the promoter’s transcription start 

site (TSS). The synthetic promoters were subjected to in vitro transcription and the resulting 

transcripts were sequenced. The relative abundance of each programmed tag provided a digital 

readout of the transcriptional efficiency of its cis-linked mutant promoter. In addition to 

facilitating the functional analysis of core promoters already present in the genome, this method 

could also serve as a rapid screening tool for regulatory element engineering.  

3.2 Introduction 

In spite of the rapid advances in our understanding of genome biology, regulatory regions of the 

genome remain still poorly understood. One of the most systematic and high resolution methods 

to functionally characterize regulatory elements is to test the effect of every possible single 

nucleotide mutation on the function of that element. This is referred to as saturation 

mutagenesis. The traditional process of performing saturation mutagenesis involves 

constructing all the mutant versions of the element one at a time and testing each one 

separately in order to quantify the effect of that mutation on activity of the element. The mutant 

versions are generated using either site-directed or random mutagenesis methods. The effect of 

each mutation on activity of the element, at least in the context of transcriptional regulatory 



15 
 

 

elements, is quantified by having them drive the expression of a reporter gene such as 

luciferase or a fluorescent protein. To date, only a handful of regulatory elements have been 

analyzed in this manner [67, 79-82], largely due to the laborious and time-consuming nature of 

such assays.  

Here we present a high-throughput method that allows us to overcome these bottlenecks and 

systematically analyze the effect of mutations at every position in a core promoter in a single 

experiment. To accomplish this, we took advantage of the advances in DNA synthesis as well 

as sequencing technologies.  

3.3 Method overview 

An overview of the method is presented in Figure 3.1. Mutant promoters are synthesized in 

parallel as DNA oligonucleotides on a programmable microarray and released into solution [83], 

resulting in a complex library. Each oligonucleotide in the library is designed to include a unique 

sequence tag downstream of the promoter's transcription start site (TSS). The oligonucleotides 

are transcribed in vitro, and the resulting transcripts are sequenced. The relative abundance of 

each programmed tag provides a digital readout of the transcriptional efficiency of its cis-linked 

mutant promoter. 
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Figure 3.1 Overview of synthetic saturation mutagenesis.  

(a) Promoter templates are synthesized on a programmable microarray, released into solution and 
amplified by PCR (primers 1 and 2). One fraction of the amplified promoter library is subjected to in vitro 
transcription followed by reverse-transcription PCR (primers 3 and 4). Another fraction is PCR amplified 
using the same primers. Tags within RNA- and DNA-derived amplicons are sequenced separately 
(sequencing primer 5). RNA-derived tag counts provide a digital readout of the transcriptional efficiency of 
associated promoters. DNA-derived tag counts are used to normalize for any non-uniformity in the initial 
oligonucleotide concentrations. (b) For bacteriophage promoters, each 200-nt oligonucleotide consists of 
the promoter (red), 115-nt of the wild-type downstream sequence (black), a variable 20-nt tag (orange) 
and 15-nt PCR primers (blue) on either side. (c) For mammalian Pol II promoters, each 200-nt 
oligonucleotide consists of the promoter region from −100 to +50 (black), including the region subjected to 
saturation mutagenesis (red), followed by a variable 20-nt tag (orange) and 15-nt PCR primers (blue) on 
either side. 
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3.4 Synthetic saturation mutagenesis of bacteriophage core promoters 

As a proof of concept, this method was applied to three well-characterized bacteriophage 

promoters: T3 (class 3, phi13), T7 (class 3, phi10) and SP6 (SP6p32). We focused on a 35-nt 

region, spanning 23-nt upstream and 12-nt downstream of each promoter's TSS (Figure 3.1b). 

At each position, we mutated the wild-type nucleotide to every other nucleotide or introduced a 

single-nucleotide deletion. We also included several double mutation promoters, allowing us to 

compare the single mutants to their combination. Rather than including all possible pair-wise 

combinations, we only included promising candidate pairs chosen on the basis of single-base 

substitution data from a pilot experiment (See Appendix A for the criteria used).  To guard 

against the potential influence of the tag itself on transcriptional activity, we represented each 

mutant variant of each native promoter by six distinct 20-nt tags (Appendix A). Wild-type 

promoters with no mutations were also included and were each represented by 270 different 

tags. These served as positive controls and provided a baseline against which to compare 

transcriptional efficiencies of mutant promoters. Templates with random sequence in place of 

the promoter were included as negative controls (Table 3.1 and Appendix A). 

 

Table 3.1 Synthetic promoter library constituents for bacteriophage promoters. 

 

Promoter variants 
Tags per promoter 

variant 
T3 T7 SP6 

Single base substitutions 105 105 105 6 

Single base deletions 35 35 35 6 

Double base substitutions 553 453 464 6 

Wild-type 1 1 1 270 

Random 274 274 274 1 
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The promoter library was transcribed in vitro with one of three RNA polymerases (T7, T3 or 

SP6). The resulting RNA pools were reverse transcribed, PCR amplified and sequenced on an 

Illumina GAII system. Reads were then mapped back to the 20-nt tags that we had programmed 

in cis with each synthetic promoter. To control for potentially non-uniform representation of 

synthesized oligos (e.g., owing to differential synthesis efficiencies, systematic biases in PCR 

efficiency or biases inherent to the sequencer itself), we also PCR amplified the DNA library that 

served as input to the in vitro transcription reaction and sequenced it in a separate lane. A 

comparison between counts of DNA- and RNA-derived tags associated with each wild-type 

(unmutated) promoter found that although synthetic promoter concentrations varied, they 

maintained a linear relationship with transcription efficiency (Appendix A and Figure A.1). The 

RNA-based counts associated with each tag were therefore normalized by dividing by the 

corresponding DNA-based counts. 

Counts of tags corresponding to the wild-type promoter established the baseline activity of the 

wild-type promoter and an empirical null distribution for assessing significance. The effect of 

each mutation was measured as a fold-change in transcription relative to the wild-type 

promoter. Based on the variation observed within each set of 270 tags associated with each 

wild-type promoter, we were able to call changes of twofold or greater as statistically significant 

(P < 0.01, after Bonferroni correction for multiple testing) (Appendix A and Figure A.2). 

 

3.4.1 Analysis of single mutants 

The observed transcriptional profiles clearly delineated a core ‘footprint’ for each promoter, 

within which substitutions and deletions caused a drastic drop in efficiency of transcription 

(Figure 3.2). We also observed a range of position and mutation-specific effects. For example, 
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the −10 position within the SP6 promoter core region could be substituted without decreasing 

activity. In fact, a T  A substitution at this position caused a significant increase in 

transcriptional efficiency, consistent with previous studies of this promoter [82]. At certain 

positions, substitution of the wild-type nucleotide by a specific nucleotide was tolerated whereas 

other nucleotides were not. For instance, the change from A  G at position −1 on the T3 

promoter was deleterious, whereas changes A  C or A  T were benign. In general, the SP6 

promoter was more efficient than T7 and T3, and correspondingly more sensitive to the 

disruptions we introduced. Data from the SP6 mutants was also used to compute an activity 

logo (Figure A.3) to enable direct comparison with results from a previous saturation 

mutagenesis study of this promoter [82].  
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Figure 3.2 Synthetic saturation mutagenesis of bacteriophage core promoters. 

Changes in transcriptional efficiency (average of six tags) for each single-nucleotide substitution or 
deletion (D) relative to the wild-type promoter for bacteriophage promoters SP6 (a), T7 (b) and T3 (c) 
respectively. Horizontal lines mark significance cutoffs (P < 0.01). Horizontal axis denotes the position of 
the mutation relative to TSS, from −23 to +12, with wild-type nucleotides specified above. Polymerase 
binding (purple bar) and melting/initiation (orange bar) regions are also indicated above.  
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3.4.2 Analysis of double mutants and epistatic interactions 

To explore whether we could detect synergistic or antagonistic associations between point 

mutations, our library of mutant promoters also included templates with substitutions at two 

positions within the promoter. Because it was not practical to test all possible permutations of 

double mutations, we used results of a pilot experiment consisting of only single mutants (data 

not shown) to choose a subset that provided a robust sampling of mutation position and severity 

(Appendix A: Supplementary Methods). We compared the double-mutant outcomes against 

predictions based on the corresponding single mutants, assuming a log-additive model. 

Although 65–70% of the double mutants matched predicted values, the rest showed deviations 

from this model, hinting at synergistic and compensatory interactions (Figure A.4). We filtered 

double mutants for the subset where at least one of either of the single mutants or the double 

mutant satisfied our significance threshold for fold-change relative to the native promoter 

(Figure 3.3a-c). 

As expected, the effect of most double mutants was greater than either of the corresponding 

single mutants. However, there were also a number of cases where the effect of the 

combination of mutations was intermediate to the effects of the two corresponding single 

mutants, suggesting varying degrees of partial rescue. Finally, there were four SP6 double 

mutants that were less harmful than either of their corresponding single mutants. Notably, each 

of these four involved an A  T substitution at −3 as one of the mutations (Figure 3.3d). In vitro 

binding assays have shown that this mutation leads to a twofold increase in the strength of 

polymerase binding [82], which might explain the compensatory effect that we observe here. 

Although the single A  T mutation at −3 is associated with a decrease in transcriptional 

activity, we note that this is not necessarily inconsistent as we are measuring transcriptional 

activity rather than polymerase binding strength. For example, it may be that increased 
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polymerase binding directly underlies the observed decrease in transcriptional efficiency 

associated with the single A  T mutation at −3 (Figure 3.2a), whereas a second mutation 

occurring at any number of positions serves to reduce the strength of polymerase binding 

toward a more optimal level for transcription (Figure 3.3d). 

 
 

 

Figure 3.3 Classification of double-mutant templates based on their effect on transcription. 

(a-c) The templates where either the double mutant or at least one of the corresponding single mutants 
have a significant effect on transcription relative to the wild-type promoter are further classified based on 
the effect of the double mutant as compared to the two single mutants. (d) Details of the four SP6 double 

mutants whose transcriptional efficiency was higher than both the corresponding single mutants. 
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3.4.3 Validation of activity of synthetic promoters in vivo using luciferase assays  

In synthetic biology, the multiplex in vitro evaluation of large numbers of synthetic promoters 

would represent an efficient empirical strategy for identifying variants that adjust the in vivo 

activity of a promoter with predictable magnitude. We sought to evaluate whether activities of 

individual synthetic promoters determined within our multiplex in vitro assay were recapitulated 

in vivo. Six T7 promoter variants were individually inserted upstream of a bacterial luciferase 

reporter in pCS26, a low-copy number plasmid [84], and the constructs were used to transform 

a T7 polymerase–expressing Eshcerichia coli strain. In vivo activities of the promoters as 

measured by luciferase luminescence correlated well with predictions based on the in vitro 

assay (r = 0.92) (Figure 3.4 and Appendix A). 

 

Figure 3.4 Comparison between activities of synthetic promoters predicted by massively parallel 
assay and individual luciferase assays 

Correlation between the log2(fold-change) relative to the wild-type promoter for 5 T7 mutant promoters as 
seen in the tag-based in vitro assay versus individual in vivo analysis by the luciferase assay averaged 
across 9 replicates (three biological replicates, with three technical replicates each). The error bars 
indicate standard deviation. The luminescence was measured one hour after induction of the promoter. 
The differences in scaling between activities observed in the luciferase assay as compared to the in vitro 
values for low activity mutants could be due to differences in the nature of measurement as well as the 
challenges with measuring low activity levels accurately. 
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3.5 Synthetic saturation mutagenesis of mammalian core promoters 

Next we evaluated whether this approach could be extended to promoters recognized by the 

mammalian transcriptional machinery. We assayed three core promoters: the immediate early 

promoter of the human cytomegalovirus (CMV), the promoter of the human beta globin gene 

(HBB) and the promoter of human S100 calcium binding protein A4 (S100A4/PEL98). The 

promoter region included on each oligonucleotide extended 100-nt upstream and 50-nt 

downstream of the TSS. For saturation mutagenesis, we focused on a 70-nt region spanning 

45-nt upstream and 25-nt downstream of the TSS (Figure 3.1c). As previously described, we 

included six different tags per mutation. Wild-type promoters with no mutations were 

represented by 100 tags each (Table 3.2 and Table A.2). 

Table 3.2 Synthetic promoter library constituents for Pol II promoters. 

 
Promoter variants Tags per promoter 

variant CMV HBB S100A4 

Single Base Substitutions 210 210 210 6 

Single Base Deletions 70 70 70 6 

Wild-type 1 1 1 100 

Random 60 60 60 1 

 

In vitro transcription was performed using HeLa nuclear extracts. Libraries were separately 

generated from RNA and DNA and sequenced separately, and analysis was carried out as 

described for the bacteriophage promoters. In all three cases, we were able to detect changes 

in transcription that correlated with expectation (Figure 3.5).  

For example, mutations disrupting the AT-rich groove that defines the TATA box of the CMV 

promoter (TATATA, −28 to −23) led to a clear drop in transcriptional efficiency. Substitutions of 
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C  A or C  T at −29 increased transcriptional efficiency, potentially secondary to the 

formation of a more optimal TATA box (−30 to −25) with respect to distance from the TSS 

(Figure 3.5a). Mutations disrupting the initiator element (TCAGATC, +1 to +7; Appendix A: 

Supplementary Note) also caused significant drops in transcription. Single-nucleotide deletions 

at any position between the TATA box and the initiator sharply reduced transcription, likely a 

result of violation of spacing constraints [85]. The results also suggested the presence of two 

additional elements, one near +16 and another near the −45 region. 

The HBB promoter has a non-canonical TATA box (CATAAA, −32 to −27) [86], mutations in 

which have been documented in beta-thalassemia. As expected, our assay detected significant 

drops in transcription with changes to this motif (Figure 3.5b). Notably, a C  T substitution at 

−32 (creating a canonical TATA box, TATAAA) increased the strength of the promoter. 

However, we did not observe any significant effects of initiator or E-box mutations, in contrast 

with previous studies in a different cell type [87]. With the S100A4 core promoter, mutations 

disrupting both the canonical TATA box (TATAAA, −31 to −26) and the initiator element 

(CCATTCT, −2 to +5) led to drops in transcriptional efficiency (Figure 3.5c). Single-nucleotide 

deletions between the TATA box and the TSS did not show any significant effect on the HBB 

and S100A4 core promoters, in clear contrast with the CMV core promoter. 
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Figure 3.5 Mutagenesis of mammalian core promoters.  

Transcriptional fold-change (average of six tags) for each single-nucleotide substitution or deletion (D) 
relative to the wild-type promoter for CMV (a), HBB (b) and S100A4 (c). Horizontal lines mark significance 
cutoffs (P < 0.01). Horizontal axis denotes the position of the mutation relative to TSS, from −45 to +25 
with wild-type nucleotides specified above.  

 

CMV

HBB

S100A4

a

b

c

TATA

TATA

TATA

INR

INR

INR

L
o

g
2

fo
ld

 c
h

a
n

g
e

L
o

g
2

fo
ld

 c
h

a
n

g
e

L
o

g
2

fo
ld

 c
h

a
n

g
e



27 
 

 

To evaluate reproducibility, we replicated the entire experiment for all six promoters. The 

distribution of observed fold-changes in transcriptional efficiency for each mutation as compared 

to the native promoter was reproducible, with correlation coefficients of 0.98, 0.97, 0.96, 0.99, 

0.87 and 0.70 for the SP6, T7, T3, CMV, S100A4 and HBB core promoters respectively (Figure 

A.5). The lower reproducibility of S100A4 and HBB core promoters appears to be related to 

lower levels of transcriptional activity relative to the bacteriophage and CMV core promoters. 

The current experimental design required fitting the promoter, tag and other common 

sequences to the maximum available length of synthetic oligos (200 nt), whereas longer 

promoter fragments would have been likely to yield higher levels of activity [73].  

3.6 Discussion 

Synthetic saturation mutagenesis with quantitative readout by deep sequencing of cis-linked 

tags enables the measurement of the relative activities of thousands of core promoter variants 

in a single experiment. The use of programmable synthetic oligonucleotides also allows precise 

combinations of mutations to be studied in a directed fashion. Sequence tags eliminate the need 

for reporter genes or other cumbersome quantification techniques while allowing for a high level 

of multiplexing. Synthetic saturation mutagenesis may represent a useful and scalable tool for 

both regulatory element analysis and forward engineering of gene networks. 

The method presented here is a good demonstration of how regulatory elements could be 

tested using a massively parallel assay. However, several limitations still remain before it could 

be directly applicable to more complex and larger elements such as distal promoters and 

enhancers. One of the most immediate concerns is the fact that the maximum length of array-

synthesized oligonucleotides is currently 200–300 bp, whereas mammalian enhancers can be 1 

kb or longer. Elements of that scale could potentially be constructed by polymerase chain 

assembly (PCA) of shorter overlapping oligonucleotides (e.g. 50-90bp), bearing either 
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programmed or random mutations. The resulting elements will thus have different combinations 

of mutations brought together, resulting in thousands of unique “haplotypes”.  Further, these 

elements will have to be connected to tags at random, and the mapping, as well as the 

sequence of the element itself will have to be learned by sequencing the entire constructs. This 

poses a new challenge: the read-lengths on the current massively parallel sequencing platforms 

such as Illumina HiSeq and MiSeq are only 300bp, assuming 150-bp paired end reads.  The 

next chapter describes a method called “subassembly”, which will allow us to solve this 

problem.  

3.7 Notes 

Data availability: 

Raw Illumina sequencing reads have been submitted to the NCBI Short Read Archive under 

center name UWGS-JS. 
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Chapter 4 Subassembly:  Parallel, tag-directed assembly 

of locally derived short sequence reads  

This chapter is based on the following published paper: 

Joseph B Hiatt, Rupali P Patwardhan, Emily H Turner, Choli Lee and Jay Shendure. Parallel, 

tag-directed assembly of locally derived short sequence reads. Nature Methods, 7, 119 - 122 

(2010).  

 

Bold face indicates equal contributors. 

 

Emily Turner and Jay Shendure conceived the initial approach. Joseph Hiatt led the 

development of the subassembly method to its published form.  All experimental work was 

performed by Joseph Hiatt and Emily Turner. I developed the computational framework to 

perform data analysis. Joseph Hiatt, Emily Turner and I performed data analysis. Choli Lee 

performed Illumina sequencing. Joseph Hiatt and Jay Shendure wrote the manuscript with 

contributions from me and Emily Turner.  



30 
 

 

4.1 Summary 

“Subassembly” is an in vitro library construction method that extends the utility of short-read 

sequencing platforms to applications requiring long, accurate reads. A long DNA fragment 

library is converted to a population of nested sublibraries, and a tag sequence directs grouping 

of short reads derived from the same long fragment, enabling localized assembly of long 

fragment sequences. Subassembly can be applicable in a variety of contexts such as accurate 

de novo genome assembly, metagenome sequencing, rare variant detection and sequencing of 

long, randomly assembled synthetic DNA molecules. 

4.2 Introduction 

The cost and throughput advantages of massively parallel sequencing are offset by large 

tradeoffs with respect to read length and accuracy [3]. Although the availability of reference 

assemblies renders short reads sufficient for genomic re-sequencing and digital profiling [88, 

89], other areas such as metagenomics [90], de novo assembly of complex genomes [91], 

immunoglobulin diversity profiling [92] and molecular haplotyping [93] are more challenging. In 

metagenomics, for example, sequences are derived from a population of related and unrelated 

genomes with highly varying abundances and a potentially enormous effective complexity. For 

identifying new open reading frames and for resolving related sequences within such a 

population, long reads remain indispensable [90].  

As a means to deliver long reads using existing short-read massively parallel platforms, we 

developed a multiplex, in vitro strategy, termed subassembly, which is conceptually analogous 

to hierarchical shotgun genome assembly (Figure 4.1). In this approach, one of the two reads 

from a paired-end read serves as a sequence tag that identifies groups of short reads sharing a 

clonal origin, that is, deriving from the same longer DNA fragment (~500 bp). Each group of 
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short, locally derived reads is then collapsed to a long, subassembled (SA) read. To evaluate 

performance, we applied this method to two samples: genomic DNA from a (G+C)-rich 

organism, Pseudomonas aeruginosa strain PAO1, and a previously characterized metagenomic 

sample from lake sediment [94]. 

4.3 Method overview  

For subassembly, we sheared DNA to relatively long lengths (for example, ~500 bp), ligated 

'tag-adjacent' adaptors to the fragments and then diluted and PCR-amplified these fragments 

(Figure 4.1 and Appendix B). The dilution step before PCR imposed a complexity bottleneck, 

such that a limited number (~105–107) of long fragments were amplified to high abundance 

(Appendix B). The PCR amplicons were concatemerized and then sonicated, and a single 

'breakpoint-adjacent' adaptor was ligated to the sheared fragments. We performed a second 

round of PCR in which one primer corresponded to a tag-adjacent adaptor and the other primer 

corresponded to the breakpoint-adjacent adaptor. The resulting amplicons effectively comprise 

a population of nested sub-libraries derived from the original long-fragment library. The tag-

adjacent adaptor provides access to genomic sequence that corresponds to the ends of the 

long fragments. As this end sequence will be consistent across amplicons derived from the 

same long fragment, it can serve as a tag to identify molecules that are clonally derived. After 

paired-end sequencing, the read primed by the tag-adjacent adaptor identifies the original long 

DNA fragment, and the read primed by the breakpoint-adjacent adaptor represents sequence 

from a shearing-determined breakpoint in that fragment. As a relatively short read could serve 

as a unique tag identifier, we obtained paired-end reads of unequal length (20-bp 'tag read' and 

76-bp 'breakpoint read'). In the analysis, we used tag reads to group breakpoint reads and 

separately subjected each tag-defined read group (TDRG) to local assembly with phrap [95]. 
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Figure 4.1 Schematic of subassembly process. 

(a) Long DNA fragments are ligated to tag-adjacent adaptors, diluted and PCR-amplified. Dilution 
imposes a complexity bottleneck so that a limited number of long fragments are amplified. 
Concatemerized PCR products are then sheared by sonication and ligated to a breakpoint-adjacent 
adaptor. A second PCR amplification prepares amplicons for sequencing; one end of these amplicons 
corresponds to an end of a long fragment and the other end corresponds to a shearing breakpoint internal 
to that fragment. (b) Breakpoint reads are grouped in silico based on the sequence of the corresponding 
tag read. Breakpoint reads within a group, which derive from positions internal to the same parent long 
fragment, are subjected to local assembly to generate a subassembled read. (c) The metagenomic 
bottlenecked long-fragment library is subjected directly to paired-end Illumina sequencing to identify pairs 
of tag reads that were derived from opposite ends of the same original fragment. Two groups of 
breakpoint reads defined by distinct tag reads are merged and assembled together to generate one or 
more subassembled reads. In this study, this step was only applied to the metagenomic sample. 

4.4 Application of subassembly to P. aeruginosa genome assembly 

To rigorously assess performance, we applied subassembly to P. aeruginosa strain PAO1. After 

fragmenting genomic DNA, we size-selected it to ~550 bp (Figure B.1a) and processed the 

sample as illustrated in Figure 4.1. We used Illumina Genome Analyzer II (GA-II) to generate 

56.8 million read pairs. We grouped the read pairs into TDRGs by the 20-bp tag (Appendix B) 

and separately subjected 76-bp breakpoint reads in each TDRG to local assembly with phrap to 

produce SA reads (Table B.1). We discarded SA reads not derived from identically oriented 
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breakpoint reads (1.2%) and those failing subassembly entirely (2.7%). For subsequent 

analyses, we considered only the longest SA read from TDRGs with ≥10 members. 

This subset comprised 1.03 million SA reads with a median length of 338 bp (Figure 4.2a and 

Table B.2). The bimodal distribution may be due to uneven coverage of the original fragment 

secondary to imperfect size selection (Figure B.2). To assess quality, we mapped the SA reads 

to the P. aeruginosa strain PAO1 reference [96] and found that 99.82% had significant (P < 

10−6) alignments with basic local alignment search tool (BLAST) [97], with 98% of SA reads 

aligning along ≥95% of their full lengths. Although the contributing Illumina reads had an error 

rate of 2.4%, the substitution error rate of aligning SA reads was 0.25%. The longest correct SA 

read was 680 bp, likely an outlier from the gel-based size selection but nonetheless an indicator 

of the method's potential. We also estimated quality scores for bases in SA reads from the 

quality scores of contributing breakpoint reads (Appendix B). The 85% of bases in SA reads 

with the highest estimated quality scores were >99.99% accurate with respect to substitution 

errors when compared to the P. aeruginosa strain PAO1 reference (Figure 4.2b). Finally, we 

calculated the substitution error rate as a function of position along the SA read. The low overall 

error rate of one per 400 bp was maintained for hundreds of bases in the SA reads (Figure 

4.2c). 

. 
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Figure 4.2 Evaluation of subassembly performance.  

(a) Distribution of subassembled (SA) read length for P. aeruginosa sample and for methylamine 
metagenomic sample for unmerged and merged pairs of tag-defined read groups. (b) Cumulative per-
base substitution error rate of base calls binned as a function of descending base quality in raw and SA 
reads, or the error rate of the x% of bases with the highest quality scores, after using BLAST to define the 
corresponding sequence in the reference. (c) Substitution error rate of base calls as a function of base 
position in raw and SA reads (binned every 3 bases). (d) Total length in sequences longer than a variable 
cutoff produced from SA reads compared to a standard shotgun library for the 100–1,000 bp range in 
which metagenomic analyses become possible. SA reads and assembled SA reads were compared to 
assembly of 48-bp or 76-bp paired-end reads from a standard Illumina shotgun library using Velvet with 
optimized parameters and an equivalent amount of raw sequence. Assembled SA reads refers to contigs 
produced by CABOG from SA reads. 

 

Based on alignment with BLAST, SA reads covered 98.85% of the reference at a mean 
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relative to shotgun sequencing (Figure B.3), which could be mitigated by optimizing PCR 

conditions. We also observed slight systematic bias in the distribution of SA read quality scores 

across the reference that we conclude is unlikely to compromise accuracy at positions with 

adequate coverage (Figure B.3). 

To explore the utility of subassembly for de novo genome assembly, we assembled all filtered 

SA reads using CABOG [98], resulting in 708 contigs ≥1 kilobase (kb) with an N50, or the length 

x such that 50% of the genomic length is in sequences at least x long, of 15 kb (Table 4.1). The 

substitution error rate was ~1/14,000, and there was a total of 65 bp of inserted or deleted 

sequence across 31 contigs. Contigs ≥20 kb, which comprised 2.3 Mb, were more accurate, 

with a substitution error rate of ~1/250,000 and 20 bp of insertion-deletions across eight contigs. 

BLAST alignment predicted 11 contigs ranging in size from 1 to 18 kb to contain local 

misassemblies, but four of these were related to differences between the strain used here and 

the reference (Appendix B: Supplementary Note 2), leaving only seven true misassemblies. 

Six of these were very local deletions or expansions of <400 bp (within contigs <20 kb long), 

and one 1,125 bp contig displayed a more complex BLAST alignment. 

Table 4.1 De novo assembly of P. aeruginosa genome using subassembled (SA) reads 

Input 
Assembly 
strategy 

# of 
contigs / 
scaffolds 

Contig / 
scaffold 

N50 

Longest 
contig / 
scaffold 

Total 
sequence 

Reference 
coverage 

       

SA reads Celera 708 15,070 bp 160,221 bp 6.07 Mb 96.2% 

       

SA reads  
+ PE fragment 
+ jumping mate-
pair 

Celera + 
scaffolding 

32 444,483 bp 915,353 bp 6.11 Mb 99.3% 

Assembly of SA reads from P. aeruginosa using the Celera assembler produces long and accurate 
contigs and can be further extended by scaffolding contigs with short (~200 bp) and long (~2.5 kb) mate-
pairing data. Listed is the data used for assembly, the assembly strategy (we used a custom scaffolding 
algorithm), the number of contigs (for SA reads, ≥ 1 kb) or scaffolds (for SA reads with shotgun data, ≥ 5 
kb), the contig or scaffold N50, the longest contig or scaffold, and the coverage of the reference genome. 
Physical coverage (sequence covered by contigs and N’s spanning contigs) is shown for the assembly 
derived from SA reads supplemented with paired-end and mate-pair data. 
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Shotgun assembly of SA reads therefore resulted in long and highly accurate sequences with 

contiguity likely limited by sequence content biases. To facilitate scaffolding, we included 

sequencing data from one lane of a paired-end fragment library (2 × 36 bp; insert size ~200 bp) 

and one lane of a mate-paired jumping library (2 × 36 bp; insert size ~2.5 kb). Using a custom 

iterative scaffolding algorithm (Appendix B), we generated 32 scaffolds ≥5 kb, with scaffold 

N50 of 445 kb, longest scaffold of 915 kb and 99.3% physical coverage of the reference (Table 

4.1). Notably, scaffolding introduced only one misassembly, likely because of the presence of 

multiple nearly identical phage-like insertions (Appendix B: Supplementary Note 2). Our 

results, which were generated from a single platform, compare favorably to summary statistics 

of a published de novo assembly from a related organism that had been generated by 

combining long-read 454 and short-read Illumina data [99] (Appendix B: Supplementary Note 

3). 

To evaluate subassembly on a complex metagenomic sample, we used total DNA isolated from 

lake sediment and enriched for methylamine-fixing microbes [94]. We started with a slightly 

shorter long-fragment library (~450 bp; Figures B.1b, B.4) and imposed a more stringent 

complexity bottleneck by diluting the long-fragment library to ~105–106 molecules before PCR 

(Appendix B). We obtained 21.8 million read pairs, which resulted in 262,298 TDRGs, in which 

the median length of the longest SA read in filtered TDRGs was 256 bp (Table B.2 and Figure 

4.2a). 

In addition to the nested breakpoint reads that we used to produce SA reads, we also obtained 

1.8 million paired-end reads from the original long-fragment library (2 × 20 bp), allowing us to 

merge TDRGs whose tags were observed as a read pair (Figure 4.1). We merged ~68% of the 

metagenomic TDRGs in this fashion. Subjecting breakpoint reads from merged TDRGs to local 

assembly yielded SA reads with a median length of 408 bp (Figure 4.2a and Table B.2). 
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4.5 Application of subassembly to metagenomics 

We hypothesized that localized, tag-directed assembly would be particularly useful in the 

context of metagenomics, for which the highly nonuniform representation of organisms 

complicates de novo assembly from short reads. To test this, we generated a standard Illumina 

shotgun paired-end library from the same metagenomic sample and assembled reads from this 

library with Velvet [100] using optimized parameters (Table B.3 and Figure B.5). We evaluated 

shotgun assemblies from both paired-end 76-bp reads and paired-end 48-bp reads. For both 

assemblies, we used 2.2 Gb of raw sequence, which was equal to the amount of data used for 

subassembly. 

CABOG assembly of SA reads yielded considerably more total sequence data in longer contigs 

than direct assembly of shotgun reads, generating greater than twice as much sequence in 

contigs ≥200 bp (Figure 4.2d and Table B.3). Unassembled SA reads comprised greater than 

five times as much sequence ≥200 bp. Notably, shotgun assemblies did achieve greater 

contiguity at the longest lengths (Table B.3 and Figure B.5). These long contigs may be due to 

deep sampling of the most abundant genomes. However, many are likely to represent 

misassemblies, as we did not observe long BLAST alignments to the available Sanger 

sequence data [94] or to any sequence in the GenBank nt or env_nt databases. 

To conservatively estimate each method's effective coverage, we compared assembled contigs 

to 37.2 Mb of Sanger sequence data recently reported for the same sample [94] (Appendix B 

and Figure B.6). Although the complexity of the metagenomic sample likely remains 

undersampled, subassembly covered at least 45% more of the Sanger sequence reference 

when compared to contigs assembled from the paired-end short-read library. In addition, 

subassembly generated a comparable amount of total sequence as compared to Sanger 

sequencing data (39.5 Mb versus 37.2 Mb) in somewhat shorter contigs (median of 390 bp 
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versus 835 bp) but with considerably less effort (three Illumina sequencing lanes versus 

hundreds of Sanger sequencing runs). In summary, subassembly produced substantially more 

sequence at lengths necessary for accurate phylogenetic classification [101] and gene 

discovery [102] than direct assembly from shotgun short reads and did so in better agreement 

with the available Sanger sequencing data, suggesting that the quality of assembled data may 

also be higher. 

 

4.6 Discussion 

Given that we observed accurate SA reads of nearly 700 bp, optimization of this method in 

concert with the tag-pairing approach (Figure 4.1) could potentially extend the effective length 

of SA reads to ~1 kb, that is, approaching the maximum length of Sanger sequencing data. One 

potential concern about the method as described is that tag sequences from different long DNA 

fragments can occasionally be identical by chance, especially if samples contain repetitive 

elements at high abundance. A simple modification would be to use a tag-adjacent adaptor 

containing an embedded degenerate sequence (for example, a randomized 20-bp segment), as 

this would completely decouple the tag sequence from the sample composition. 

Finally, we note that subassembly offers a fundamental advantage in the way that a low error 

rate is achieved with a second-generation sequencing platform. Accurate assembly of short 

shotgun reads can be successful, provided that these reads are derived from relatively random 

sequence and that deep, uniform coverage can be obtained [100]. Platforms such as Roche 454 

offer long reads at a cost that is likely similar to subassembly (Appendix B: Supplementary 

Note 4) but have error profiles comparable to those of other second-generation sequencing 

platforms. Therefore, achieving high consensus accuracy also depends on the assumptions of 
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uniform sampling and of a common origin for nearly identical reads. In contrast, because 

subassembly samples individual long DNA fragments and separately reconstructs a consensus 

sequence for each one, the production of long, accurate SA reads is insulated from nonuniform 

representation and sequence relatedness in the sample of interest. 

4.7 Notes 

Data availability: 

Raw Illumina sequence reads have been deposited to the NCBI Short Read Archive under the 

accession number SRA010316. 
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Chapter 5 Functional dissection of enhancers 

This chapter is based on the following published paper: 

 

Rupali P Patwardhan, Joseph B Hiatt, Daniela M Witten, Mee J Kim, Robin P Smith, Dalit 

May, Choli Lee, Jennifer M Andrie, Su-In Lee, Gregory M Cooper, Nadav Ahituv, Len A 

Pennacchio and Jay Shendure. Massively parallel functional dissection of mammalian 

enhancers in vivo. Nature Biotechnology, 30, 265–270 (2012). 
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5.1 Summary 

The functional consequences of genetic variation in mammalian regulatory elements are poorly 

understood. Here we report the in vivo dissection of three mammalian enhancers at single-

nucleotide resolution through a massively parallel reporter assay. For each enhancer, we 

synthesized a library of >100,000 mutant haplotypes with 2–3% divergence from the wild-type 

sequence. Each haplotype was linked to a unique sequence tag embedded within a 

transcriptional cassette. We introduced each enhancer library into mouse liver and measured 

the relative activities of individual haplotypes en masse by sequencing the transcribed tags. 

Linear regression analysis yielded highly reproducible estimates of the effect of every possible 

single-nucleotide change on enhancer activity. The functional consequence of most mutations 

was modest, with ~22% affecting activity by >1.2-fold and ~3% by >2-fold. Several, but not all 

positions with higher effects showed evidence for purifying selection, or co-localized with known 

liver-associated transcription factor binding sites, demonstrating the value of empirical high-

resolution functional analysis. 

5.2 Introduction 

In Chapter 3, I described a method called 'synthetic saturation mutagenesis' in which 

programmable microarrays were used to synthesize variants of core promoters, each in cis with 

a downstream tag sequence. The population of core promoter variants was subjected to a cell-

free in vitro assay, after which sequencing of the transcribed tags was performed to quantify the 

relative activity of specific core promoter variants. This method is very effective in the context of 

core promoters, and potentially other small elements. However several aspects limit its broader 

application and scalability: (i) when each regulatory element variant is synthesized as a 

separate array feature, the overall cost of synthesis remains high; (ii) the separate synthesis of 

individual variants also limits how many combinations of mutations can be simultaneously 
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programmed; (iii) the maximum length of array-synthesized oligonucleotides is currently 200–

300 bp, whereas mammalian enhancers can be 1 kb or longer; (iv) access to array-derived 

oligonucleotide libraries remains restricted to a few groups; and (v) the cell-free, in vitro assay 

that we used poorly captures biological context. 

To overcome these limitations and facilitate the high-resolution dissection of mammalian 

enhancers, we developed an improved method, termed massively parallel functional dissection 

(MPFD) (Figure 5.1). We then used MPFD to assess the extent to which all possible single-

nucleotide variants (SNVs) affect the activity of three mammalian enhancers that are active in 

the liver, designated here ALDOB (hg19:chr9:104195570-104195828) [103-105], ECR11 

(hg19:chr2:169939082-169939701) [106] and LTV1 (mm9:chr7:29161443-29161744).  

5.3 Method overview 

To apply the MPFD method (Figure 5.1) to the three enhancers of interest, each enhancer was 

synthetically constructed by polymerase cycling assembly using overlapping oligonucleotides 

(~90 bp) containing a programmed level of degeneracy. At each position, 97% of molecules 

were expected to be synthesized correctly with 1% doping of each possible single-nucleotide 

substitution (Appendix C). Therefore, each synthetic enhancer molecule contained, on 

average, three mutations per 100bp, randomly distributed along its length. The population of 

molecules was inherently complex, both with respect to representation of all possible SNVs of 

the wild-type enhancer as well as myriad unique combinations. Because nearly all synthetic 

enhancers contained multiple substitutions, they are referred to here as 'enhancer haplotypes'. 
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Figure 5.1 Overview of MPFD. 

We used doped oligonucleotide synthesis and polymerase cycling assembly (PCA) to generate a highly 
complex library of enhancer haplotypes for each enhancer studied. On average, each enhancer 
haplotype diverged from wild type by ~2–3% (red circles represent mutations). These mutant enhancers, 
along with 20-bp degenerate tags, were cloned into an expression vector (pGL4.23) containing a minimal 
promoter driving transcription of luciferase (minP/Luc). We performed 'subassembly' on each library to 
determine the full sequence of each enhancer haplotype and to identify the 20-bp tag to which each 
haplotype was cloned in cis. Each library was then introduced into two mice through hydrodynamic tail 
vein injection, livers were harvested after 24 h and sequencing was performed to quantify abundance of 
transcribed 20-bp tags. These data were used to estimate the effect of each possible mutation on 
transcriptional activation. 

 

Next, a library for assessing the activity of each enhancer haplotype was created by cloning the 

synthetic enhancers into a plasmid (Promega pGL4.23), which contains a minimal promoter 

upstream of the luciferase gene. In order to uniquely tag each enhancer haplotype, we cloned 

an oligonucleotide containing a 20-bp, fully degenerate subsequence to a separate site in the 3′ 

untranslated region (UTR) of the luciferase gene. The sequences of specific 20-bp tags cloned 

in cis with specific enhancer haplotypes were determined by massively parallel sequencing. As 

PCA-synthesized 

enhancer  haplotype 

variants
Degenerate tags
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“Subassembly”
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and 
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the enhancer haplotypes were highly related sequences with lengths that exceeded the 

maximum read-length of the Illumina platform, we used tag-guided subassembly [107] to enable 

full-length, high-accuracy sequencing of individual enhancer haplotypes in association with their 

downstream tags. Each resulting library included >100,000 fully sequenced enhancer 

haplotypes, with nearly all containing multiple substitutions, and each associated with one or 

more unique tags. 

The library was then subjected to what was effectively a massively parallel in vivo reporter 

assay. For the experiments described here, we used the hydrodynamic tail vein injection assay 

[106, 108] to assess in vivo enhancer activity in the mouse liver. Mice were euthanized 24 h 

after injection, at which time total RNA was extracted from each liver, followed by RT-PCR and 

massively parallel sequencing of cDNA from transcribed tags. 

5.4 Results 

We studied three mammalian enhancers identified by diverse methods (Figure 5.2). ALDOB 

(259 bp) is a human intronic enhancer of the aldose B gene [103-105]. ECR11 (620 bp) is a 

human enhancer located in an intron of dehydrogenase/reductase SDR family member 9 

(DHRS9) [106]. LTV1 (302 bp) is a candidate mouse enhancer located on the 3′ side of zinc-

finger protein 36 (Zfp36) (Figure C.1a,b). The activity of each wild-type enhancer was 

confirmed using a conventional hydrodynamic tail vein injection assay, in which luciferase 

activity in liver tissue was measured 24 h after injection (Figure C.1c). 
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Figure 5.2 Schematics of candidate enhancer loci. 

UCSC genome browser snapshots depicting the genomic locations of each of the three enhancers. Each 
enhancer was identified by diverse methods. (a) The human ALDOB enhancer is located in the first exon 
of ALDOB. It was identified and characterized by conventional transgenic assays [103-105], and overlaps 
extensively with heavily conserved clusters of ENCODE DNase hypersensitivity sites [48] and HepG2 
ChIP-Seq peaks. (b) Human enhancer ECR11 is located in the fifth intron of DHRS9 in a region that 
overlaps with an ENCODE DNase hypersensitivity cluster on its 3` end and is conserved to mice. It was 
identified by comparative genomics and liver-specific transcription factor binding site analyses [106]. (c) 
Mouse enhancer LTV1 is located immediately downstream (3’) of Zfp36 in a conserved region and 
overlaps with DNase hypersensitivity sites [48] from liver tissue but not brain. This enhancer was first 
identified by p300 ChIP-Seq on early adult mouse liver [L.A.P., unpublished data]. Using deletion 
experiments, we isolated a functionally equivalent 302bp core element that was used for mutagenesis 
(Figure C. 1a,b). 

 

We applied MPFD to systematically dissect the functional consequences of all possible SNVs in 

these three enhancers. Sequencing with subassembly confirmed that the resulting libraries were 

complex, with a total of 641,135 distinct haplotypes associated with 1,186,696 tag sequences 

(Table 5.1). The observed number of mutations per haplotype approximated expectations, with 

~2–3 substitutions per 100 bp (Figure C.2) and were well distributed (Figure C.3). All possible 

a 

b 

c 
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substitution variants of each enhancer were represented in ≥42 uniquely tagged haplotypes. On 

average, each position was disrupted on ~4,000 distinct enhancer haplotypes. Furthermore, all 

possible pairs of positions were disrupted in ≥1 haplotype with the exception of a single pair of 

positions in LTV1. 

Table 5.1 Enhancer haplotype library characteristics 

Library 
Number of 
haplotypes 

Number 
of tags 

% of possible 
substitutions in at 

least one 
haplotype 

% of possible 
pairs of sites in at 

least one 
haplotype 

Per-base 
mutation 
rate per 

haplotype 
(mean ± 

s.d.) 

ALDOB 378,450 406,071 100%  
(777 of 777) 

100%  
(33,411 of 
33,411) 

0.021 ± 
0.010  

ECR11 105,795 105,832 100%  
(1860 of 1860) 

100%  
(191,890 of 

191,890) 
0.023 ± 
0.006 

LTV1 rep. 1 119,950 403,869 100%  
(906 of 906) 

99.99%  
(45,449 of 
45,451) 

0.031 ± 
0.010  

LTV1 rep. 2 105,188 270,924 100%  
(906 of 906) 

99.99%  
(45,449 of 
45,451) 

0.031 ± 
0.010  

For each library of enhancer haplotypes, we list the number of distinct haplotypes, the number of tags 
with which those distinct haplotypes are associated in cis, the percentage of possible single nucleotide 
substitutions that are present in at least one haplotype, the percentage of possible pairs of positions 
where both positions contain mutations together in at least one haplotype, and the per-base mutation rate 
in each library. 

 

We introduced each library (one each for ALDOB and ECR11, and two independently 

constructed libraries for LTV1) into two mice by hydrodynamic tail vein injection (Figure C.1d). 

Total RNA from each mouse liver was split into several aliquots (ALDOB: N = 39; ECR11: N = 

69; LTV1-1: N = 10; LTV1-2: N = 10), with each aliquot separately subjected to RT-PCR with 

primers flanking the 20-bp tag located in the 3′ UTR of the luciferase transcriptional cassette, 

and then to massively parallel sequencing on an Illumina GAIIx. Because target RNA was very 

scarce relative to cellular RNA, a modest number of target RNA molecules contributed to each 
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RT-PCR, leading to a complexity bottleneck. In other words, within each sequencing library, all 

reads corresponding to any single tag appeared to have been derived from amplification of a 

single RNA molecule. We therefore used the number of RNA aliquots in which a particular tag 

was observed, and not the total number of reads associated with a tag, as a measure of the 

relative transcriptional activity of its associated enhancer haplotype. 

For each position in each enhancer, we constructed a linear model to assess the extent to 

which the presence of a mutation at that position is predictive of a change in the number of RNA 

aliquots in which an enhancer haplotype was observed. This is effectively a proxy for its effect 

on transcriptional activation, that is, 'effect size' (Appendix C). Specifically, we use the term 

'effect size' to describe the log2-fold change in the predicted transcriptional activity, as 

measured by the number of RNA aliquots in which a tag-associated haplotype appeared, 

relative to the wild type. We first sought to assess reproducibility, so we calculated effect sizes 

separately for the two independently constructed LTV1 libraries (combining data from the two 

mice subjected to each of these libraries). For ALDOB and ECR11, we calculated effect sizes 

separately on the data from each mouse. For these two types of biological replicates, the effect 

sizes were highly correlated (r = 0.96 for LTV1, r = 0.93 for ALDOB, r = 0.96 for ECR11). 

Because reproducibility was high and to increase resolving power, we performed all subsequent 

analyses after combining data across mice for each enhancer haplotype library (data for one of 

the two LTV1 replicate libraries is shown in Figure C.4). 

We next recalculated effect sizes in two ways (Figure 5.3, Figure 5.4 and Figure 5.5). First, as 

for the reproducibility analysis, we constructed separate linear models for each position where 

mutational status was encoded as a single binary variable representing whether an enhancer 

haplotype was wild type or mutant at that position (Figure 5.3a, Figure 5.4a and Figure 5.5a). 

Second, we constructed separate multiple linear regression models for each position with three 

variables, each corresponding to a particular nucleotide substitution at that position (Figure 
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5.3b, Figure 5.4b and Figure 5.5b). For each enhancer, we also constructed a multiple linear 

regression model incorporating all positions. These models were also significantly predictive (P 

< 0.01) (Appendix C: Supplementary Note and Table C.1), and yielded effect-size profiles 

similar to models constructed independently for each position (Figure. C.5). As the coefficients 

from models constructed independently for each position are more naturally interpreted as 

position-specific effects, we used these models for subsequent analyses. 
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Figure 5.3 Effect size on transcriptional activity of all possible substitution mutations in ALODB 
enhancer. 

Estimated effect size of mutation at each position based on coefficients from univariate (gray columns, left 
axis) and trivariate (A:red, C:blue, G:green, T:purple) models are shown for ALDOB (a and b, 
respectively), Effect sizes were estimated by taking the log2 of the ratio of the number of aliquots 
predicted by the model with a mutation to the number of aliquots predicted for the wild-type nucleotide 
(total number of aliquots sequenced per library: 39). Effect sizes are shown only for positions where 
model coefficients had associated P-values ≤ 0.01. We also used multiple linear regression with sets of 
ten adjacent positions as predictors. The F-statistic of these models, representing the extent to which the 
model is predictive of the outcome, is plotted (Panel a, blue shadow, right axis). The locations of TFBS 
predictions using the MATCH web server (with restriction to TFs present in liver) are shown as horizontal 
gray bars at the top of the plot in a. 
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Figure 5.4 Effect size on transcriptional activity of all possible substitution mutations in ECR11 
enhancer. 

Estimated effect size of mutation at each position based on coefficients from univariate (gray columns, left 
axis) and trivariate (A:red, C:blue, G:green, T:purple) models are shown for ECR11 (a and b, 
respectively). Effect sizes were estimated by taking the log2 of the ratio of the number of aliquots 
predicted by the model with a mutation to the number of aliquots predicted for the wild-type nucleotide 
(total number of aliquots sequenced per library: 69). Effect sizes are shown only for positions where 
model coefficients had associated P-values ≤ 0.01. We also used multiple linear regression with sets of 
ten adjacent positions as predictors. The F-statistic of these models, representing the extent to which the 
model is predictive of the outcome, is plotted (Panel a, blue shadow, right axis). The locations of TFBS 
predictions using the MATCH web server (with restriction to TFs present in liver) are shown as horizontal 
gray bars at the top of the plot in a. The location of a partial LINE element in ECR11 is shown as an 
orange bar at the bottom of a. 
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Figure 5.5 Effect size on transcriptional activity of all possible substitution mutations in LTV1 
enhancer. 

Estimated effect size of mutation at each position based on coefficients from univariate (gray columns, left 
axis) and trivariate (A:red, C:blue, G:green, T:purple) models are shown for LTV1 (a and b, respectively). 
Effect sizes were estimated by taking the log2 of the ratio of the number of aliquots predicted by the 
model with a mutation to the number of aliquots predicted for the wild-type nucleotide (total number of 
aliquots sequenced per library: 10). Effect sizes are shown only for positions where model coefficients 
had associated P-values ≤ 0.01. We also used multiple linear regression with sets of ten adjacent 
positions as predictors. The F-statistic of these models, representing the extent to which the model is 
predictive of the outcome, is plotted (Panel a, blue shadow, right axis). The locations of TFBS predictions 
using the MATCH web server (with restriction to TFs present in liver) are shown as horizontal gray bars at 
the top of the plot in a.  
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To provide further validation, we also performed site-directed mutagenesis to individually 

introduce the six mutations in ALDOB that were predicted to have among the largest effect sizes 

(three increasing activity and three decreasing activity), and tested these individually using the 

hydrodynamic tail vein luciferase assay (Figure 5.6). Observed luciferase fold-changes were 

highly correlated with effect-size predictions from the models (R = 0.985). 

 

Figure 5.6 Validation of MPFD predictions using the hydrodynamic tail vein luciferase assay. 

Shown are mutation effect sizes (log2 fold-change in expression of mutant compared to wild-type) for six 
single nucleotide ALDOB enhancer variants compared to the wild-type sequence. Each mutant was 
injected individually in at least six mice, and luciferase activity was measured at 24 hours post injection. 
Measurements from individual mice are shown. Effect sizes determined by the massively parallel reporter 
assay described here are shown for comparison. Effect sizes calculated via hydrodynamic tail vein 
luciferase assay were highly correlated with luciferase activity (R=0.985). On average, the observed fold-
change in luciferase for individually tested mutations was ~25% greater in magnitude than the effect size 
predictions from our massively parallel reporter assay, although the predicted effect size based on the 
massively parallel reporter assay always fell within the range of effect sizes observed in the individual 
luciferase replicates. This may reflect differences between the assays or, alternatively, systematic but 
modest underestimation by our current methods. 

 

5.4.1 Co-localization of high-impact positions and known TFBSs 

Across each enhancer, the effect-size profiles exhibited spatial structure—that is, a clustering of 

positions with larger effect sizes. Positions separated by less than ~6 nucleotides had 
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significantly correlated effect sizes (P < 0.01) (Figure C.6). To further explore this, we 

performed multiple linear regression using mutational status at ten adjacent positions (that is, a 

binary variable for wild-type or mutant) at a time (Appendix C). These models remained 

predictive of transcriptional activity in a spatially resolved pattern (Figure 5.3a, Figure 5.4a and 

Figure 5.5a). We suspected that these clusters of correlated positions might represent 

transcription factor binding sites (TFBSs). Indeed, when we predict TFBSs [109] (Figure 5.3a, 

Figure 5.4a, Figure 5.5a and Table C.2), we observe striking overlap between predicted 

binding sites and clusters of highly predictive positions (Figure 5.3a, Figure 5.4a and Figure 

5.5a). For example, a predicted binding site for HNF4 in the ALDOB enhancer (bases 94–105) 

coincides with a highly predictive localized model (Figure 5.3a). Furthermore, all mutations in 

this region had negative effects on activity, with the notable exception of mutations that 

increased identity with the consensus HNF4 binding site, which were activating (e.g., 95AG 

and 105TA) (Figure 5.7a). The same pattern was observed for other predicted sites as well, 

for example, a predicted HNF1 binding site at bases 135–148 in ALDOB (Figure 5.7b). Notably, 

independent experiments have established that these two transcription factors drive this 

element in vivo [105]. The spatial patterns may also reveal or refine broader features of 

activity—for example, the boundaries of functional elements. For example, in ECR11, 

computational prediction yielded a large number of predicted liver-specific TFBSs in the 

proximal 300 bases [106], but we observed that the highest impact SNVs were largely confined 

to the distal 160 bases (Figure 5.4 and Figure C.7). 
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Figure 5.7 Profiles of mutation effect size in TFBSs. 

For a predicted HNF4 site (positions 94–105) (a) and a predicted HNF1 site (positions 135–148) (b) in 
ALDOB, the effect size for each possible substitution, with the consensus TF binding sequence (orange) 
and the enhancer sequence (gray for consensus, black for nonconsensus) is plotted. Nonconsensus 
positions where rescue is observed after mutating to consensus are shown in boldface. HNF4 binding to 
the ALDOB enhancer region in human liver has been previously demonstrated [110], whereas in vivo 

occupancy data for HNF1 at this region is not yet available. 
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5.4.2 Relationship between evolutionary and functional constraint 

Evolutionary constraint in noncoding, regulatory DNA has frequently served as a proxy for 

functional constraint [111-113]. However, recent studies have shown that many enhancers are 

evolving rapidly and that mammalian genomes contain large numbers of evolutionarily young, 

sometimes species-specific, enhancers [50, 110]. All three enhancers studied here are grossly 

conserved between human and mouse (Figure 5.2). We therefore investigated the relationship 

between functional constraint and evolutionary constraint at single-nucleotide resolution. For 

two of three enhancers, linear models, constructed to assess whether evolutionary constraint 

(that is, Genomic Evolutionary Rate Profiling (GERP) [114]) was predictive of functional 

constraint (that is, the absolute value of univariate model coefficients that we obtained), were 

significantly predictive with modest explanatory power (ALDOB: R2 = 0.1232, P = 6.31e-9; 

LTV1: R2 = 0.03911, P = 5.47e-4). For both enhancers, positions with the highest functional 

effect sizes were significantly associated with elevated evolutionary constraint scores (P < 0.01) 

(Figure C.8). However, not all positions with high GERP scores (≥4) had functional effect sizes 

in the top quartile for each enhancer (ALDOB: 33 of 61, 54%; ECR11: 5 of 25, 20%; LTV1: 0 

positions with GERP≥4). These positions might have functions unrelated to the enhancer 

activity assayed here or might be of greater functional relevance in other contexts, for example, 

other tissues or developmental time points. On the other hand, a small set of highly functional 

positions, for example, most nucleotides within the distal-most C/EBP motif in ECR11, have lo 

GERP scores, consistent with lineage or species-specific activity. 

5.4.3 Effect-size spectrum of single-nucleotide variants 

A substantial proportion of polymorphisms and new mutations in mammalian genomes are 

single-nucleotide substitutions [11]. However, the functional dissection of regulatory elements 

has historically relied on introducing nested or scanning deletions, limiting the extent to which 

they inform the interpretation of naturally occurring variation. Our results provided an opportunity 
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to examine the distribution of effect sizes of SNVs in mammalian enhancers on the magnitude 

of transcriptional activation (Figure 5.8). Notably, we observed that the majority of SNVs result 

in only a modest change in transcription relative to the wild-type enhancer. Overall, <25% of the 

mutations alter transcriptional activity by >1.2-fold. Furthermore, only a few mutations, mostly in 

ALDOB, altered activity by a factor of >2. These results suggest that these enhancers are highly 

robust to the vast majority of potential SNVs. Further application of this method will be needed 

to assess whether this is a general property of mammalian enhancers. 

 

 

Figure 5.8 Distribution of effect sizes for all possible substitution mutations in three mammalian 
enhancers. 

For the three enhancers studied (two replicate libraries for LTV1), the cumulative fraction of substitutions 
possessing a given effect size is expressed as the absolute value of the effect size of a given substitution. 
For example, across the three enhancers, between ~80% and ~95% of substitutions influence 
transcriptional activity by less than a factor of 1.5. 
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Perhaps as expected, the majority of functionally important mutations decreased activity (70% 

or 850/1,211). In general, only one substitution at a given position was activating, for example, 

substitutions that render a motif more like the consensus sequence (Figure 5.7). However, we 

observed some notable exceptions, including positions 83–93 and 272–278 in LTV1, where all 

or almost all substitutions were activating, consistent with binding of a repressive transcription 

factor. Positions 83–93 harbor a predicted binding site for NF-1, whereas there are no predicted 

sites in the immediate vicinity of positions 272–278, highlighting the value of experimental 

assessment of mutational impact. 

5.4.4 Epistatic interactions 

Finally, we sought to leverage the fact that our enhancer libraries contain multiple mutations on 

each haplotype to assess the degree of epistasis, or interaction, between positions in the 

enhancer. To obtain adequate power, we restricted our analysis to pairs of positions that were 

both mutated in at least 20 haplotypes. For each pair of positions that passed this cutoff, we 

built a multiple linear regression model consisting of three binary variables where the first two 

variables encoded mutation status (wild type or mutant) at each position independently and the 

third encoded whether both are mutant in a particular haplotype. With a false-discovery rate 

(FDR) cutoff of 0.05, we observed few pairs with a significant interaction term (ALDOB: 82 of 

33,389, 0.25%; ECR11: 199 of 184,206, 0.10%; LTV1: 45 of 43,975, 0.10%), suggesting that 

the effects of multiple SNVs on the same haplotype are generally additive, or that our study 

lacked power to identify subtle interactions. Interacting pairs were significantly enriched for 

proximity (that is, pairs within 10 bp of each other versus pairs further apart, ALDOB: P < 1e-4; 

ECR11: P < 1e-3; LTV1: P < 1e-4), and we observed several different classes of interacting 

pairs with respect to the signs of the individual position effects and the sign of the interacting 

term (Table C.3). 
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5.5 Discussion 

We developed a strategy to construct complex libraries of mammalian enhancers that contain all 

possible single-nucleotide substitutions and hundreds of thousands of distinct haplotypes. This 

method surpasses its predecessor [115] in terms of cost effectiveness, tunability, applicability to 

full-length regulatory elements and integration with an in vivo assay. We applied this method to 

empirically measure the distribution of effect sizes of all possible SNVs in three mammalian 

enhancers in an in vivo model. A key finding is that the vast majority of SNVs in these 

enhancers have highly reproducible yet remarkably modest effects on transcriptional activation. 

The distribution suggests that enhancers are highly robust to single-nucleotide changes. We 

also find that most combinations of single-nucleotide changes have additive effects on function. 

As expected, there is a clear relationship between the magnitude of functional impact and the 

location of predicted TFBSs, although not all predicted TFBSs are functional, and not all 

functional motifs are associated with predicted TFBSs. Similarly, evolutionary constraint, 

although clearly correlated with the magnitude of functional impact, does not predict it well on a 

nucleotide-by-nucleotide basis. 

There remain some limitations of the method. First, although we exploited a mouse tail vein 

assay to assess function in vivo, the regulatory elements are episomal and therefore may not be 

subject to the same mechanisms governing elements residing on chromosomes. For example, 

because of the size of the synthetic construct, we were unable to assess the effects of 

mutations that may influence long-range interactions between regulatory elements. This might 

be addressed in part by transitioning to a lentiviral system, which would facilitate use in 

additional tissues and may also enable the application of other assays, for example, ChIP-Seq, 

to enhancer variant libraries. Furthermore, our results must also be considered specific to the 

minimal promoter used here until other promoter classes are tested. Second, we have assayed 

these enhancers in a single tissue and at a single time point. The activity profile of specific 
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positions could well be different in other tissues; this is the long-standing context problem [116]. 

Third, because of the scarcity of the target transcript relative to total RNA, we observed 

complexity bottlenecking, limiting the precision of our estimates of the effect size. This can be 

addressed by optimization of the RNA isolation step, for example, by hybridization-based 

enrichment. Fourth, we restricted our analysis to enhancer haplotypes containing only 

substitutions, as this was the dominant form of variation introduced during synthesis. To 

facilitate simultaneous dissection of the functional consequences of small insertions and 

deletions (indels), one could use reduced-fidelity oligonucleotide synthesis conditions, or 

polymerase cycling assembly with oligonucleotides containing programmed indels. Current 

efforts are directed at implementing these improvements, scaling this method to more 

enhancers and applying it to other classes of noncoding regulatory elements. 

A fundamental goal of modern biology is to understand the human genome at single-nucleotide 

resolution. Single-nucleotide differences between genomes are causative for, or affect 

susceptibility to, a host of diseases, and single-nucleotide mutations are a primary source of raw 

material for evolution. We anticipate that the high-throughput, empirical measurement of the 

functional impact of single-nucleotide variants in enhancers will substantially facilitate the 

analysis of noncoding variants in genome-wide association study hits, the study of the 

mechanistic basis for enhancer activity and the engineering of enhancers with desired 

properties. Furthermore, with cost-effective, massively parallel methods for functional analysis, it 

may soon be realistic to empirically measure the functional effects of all possible single-

nucleotide changes in all noncoding regulatory elements in the human genome. 
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Chapter 6 Future directions 

In this dissertation, I presented massively parallel methods for in vitro as well as in vivo 

functional dissection of regulatory elements at single-nucleotide resolution. I demonstrated 

these methods on a small number of core promoters and distal enhancers, primarily as a proof-

of-concept. Moving forward, these assays can now be applied in several different contexts and 

to larger sets of elements.  

For example, the array-based method presented in Chapter 3 could be used to understand the 

architecture of different classes of promoters, such as the TATA-less promoters. The method 

could also be used to compare the relative strengths of all core promoters in the genome in a 

single experiment. Similarly, the functional effects of all known polymorphisms that lie in core 

promoter regions could be tested. Promoters of non-coding transcripts such as microRNAs, long 

non-coding RNAs, tRNAs and ribosomal RNAs could also be analyzed in this manner. Different 

distal and basal elements could be tested in pairs to understand the combinatorial regulatory 

logic behind regulation in a broader context.   

In addition to promoters and enhancers, insulators form an important class of transcriptional 

regulatory elements.  An enhancer can activate transcription from promoters located several 

kilobases away and in an orientation independent matter. However not all promoters within its 

vicinity might be the intended targets. Presence of an insulator between an enhancer and 

promoter sequence can protect promoters from being unintentional targets of a nearby 

enhancer, thus enforcing modularity of regulatory domains. Massively parallel functional 

dissection method presented in Chapter 5 could be used to systematically study the functional 

effects of variation in insulator sequence. 



62 
 

 

This method need not be limited to dissection of known regulatory elements. It can be used for 

massively parallel functional validation of candidate regulatory elements predicted by genome-

wide discovery methods, both empirical, as well as computational.  

Massively parallel strategies similar to the ones presented in this dissertation have recently 

been employed for dissection of transcriptional regulatory elements by several other groups 

[117-119].  

In the first study, Kinney et al. targeted the -75 to -1 region of the E. coli lac promoter. A library 

with mutations in this region was generated using a single oligonucleotide synthesized with a 

programmed level of degeneracy. Plasmids containing these mutant lac promoters driving GFP 

expression were transformed into E. coli. Induced cells were partitioned into ten expression bins 

using Fluorescence Activated Cell Sorting (FACS). The mutant promoters in each FACS bin 

were sequenced using 454 pyrosequencing. The strength of each mutant promoter was 

quantified based on the expression bin in which it was preferentially observed.  

The second group [117] used array-derived oligos, similar to the method presented in Chapter 3 

[115] to generate a library of enhancer variants, each linked to a unique programmed tag. The 

library was cloned into a plasmid and transfected into human cells. Activity of each enhancer 

variant was quantified by sequencing the RNA-derived tags. They applied this technique to two 

inducible human promoters and observed distinct activity profiles for basal versus induced 

states.  

The third group [118]  also used array-derived oligos to obtain a library of yeast promoter 

variants, but instead of a tag-based readout, they used FACS coupled with massively parallel 

sequencing, similar to Kinney et al [119]. In addition to simple scanning mutations, their library 

included synthetic constructs to analyze various aspects of promoter grammar such as 

positioning of various TFBSs relative to the TSS. 
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While each of these studies including the ones presented in this dissertation have their own 

strengths and limitations, they serve to establish the feasibility of regulatory elements analysis 

using massively parallel methods and pave the way for future improvements towards more 

realistic assays. An obvious step forward would be to move away from assaying regulatory 

elements in an extra-chromosomal context (i.e. on transiently transfected plasmids) and instead 

assay them after stable integration at fixed or random locations in the genome. This will also 

allow interrogation of the effect of sequence variation on other processes, such as chromatin 

modifications.  

In addition to dissection of transcriptional regulatory elements, massively parallel methods are 

also being developed and applied to study other functional elements in the genome. For 

example, Ke S et al. [120] tested all possible hexamers for their potential to function as exonic 

splicing elements. Pitt et. al. [121] used successive rounds of functional selection coupled with 

massively parallel sequencing to quantify the level of activity of each individual member from a 

mutagenized pool of an RNA ligase riboezyme. Fowler et. al. [122] developed a method called 

“deep mutational scanning” to evaluate the effect of every possible amino acid substitution in a 

protein domain on its ability to bind its cognate peptide. They applied this method to 

systematically quantify binding efficiencies of more than half a million sequence variants of the 

human WW protein domain and generated a high resolution map of its mutational preference. 

Recently, this method also was applied to optimize the affinity, specificity and function of two 

computationally designed inhibitors against H1N1 influenza hemagglutinin [123].  

While the ability to read and interpret the genome is crucial, the next stage of the challenge is to 

be able to design novel functional elements from scratch. Such attempts have already been 

made [124-127]. Availability of massively parallel tools to rapidly screen large numbers of 

candidate synthetic elements will make such regulatory element engineering more efficient and 

feasible. 
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In conclusion, the studies described in this section together with the methods presented in this 

dissertation provide further validation of the potential of massively parallel methods for 

functional analysis. I anticipate that the success of these proof-concept experiments, together 

with concerted efforts such as the next phase of the ENCODE project will motivate accelerated 

development of such technologies and their application to several aspects of genome biology 

that have yet to be fully understood, moving us closer to the dream of a fully interpretable 

genome. 
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Appendix A. Supplementary material for Chapter 3 

Supplementary Tables  

Table A.1: Oligonucleotide sequences used for the bacteriophage promoters 

PCR and Sequencing Primers 

Name Sequence 

BULK_AMP_FWD TGCCTAGGACCGGATCAACT 

BULK_AMP_REV GAGCTTCGGTTCACGCAATG 

RT_PCR_SP6_FWD AATGATACGGCGACCACCGA TAGATAGTCTTCTCATTGA 

RT_PCR_T3_FWD AATGATACGGCGACCACCGA ATTCTGGAAGCTGAGGCATT 

RT_PCR_T7_FWD AATGATACGGCGACCACCGA TAAAGGTGTAGTTGCTGCTG 

RT_PCR_COMM_REV GCAGAAGACGGCATACGA GAGCTTCGGTTCACGCAATG 

SEQ_SP6 ATACGGCGACCACCGAGTAGATAGTCTTCTCATTGA 

SEQ_T3 GACCACCGAATTCTGGAAGCTGAGGCATT 

SEQ_T7 ACCACCGATAAAGGTGTAGTTGCTGCTG 

200-mer oligonucleotides 

Structure of the 200-nt oligo: 
PCR primer (15) + promoter (35) + spacer (115) + tag (20) + PCR primer (15) 
Variable bases are indicated by X’s (promoter) or N’s (tag) 

SP6  

Template 

AGGACCGGATCAACTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

TCCTCCCTAACCTATCAACTTGATTTATAAGGAGATTATAATACATGTCT

ACGCCGAACAACTTGACCAACGTTGCCGTTTCCGCTTCCGGGGAAGTAGA

TAGTCTTCTCATTGANNNNNNNNNNNNNNNNNNNNCATTGCGTGAACCGA 

WT promoter TTGCCTATTTAGGTGACACTATAGAAGGGAGGTAG 

Tag seed GAAGTTCAACGGTAAGGTCA 

T3 

Template 

AGGACCGGATCAACTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

TAGATACGAAGGGGGGGGGGGGGGGTTAAAGCATTATGTATATTACAAAG

TGTTTACAAAGCCACGCTGACAGCTTTAAGCCGTCCATAGAGGACATTCT

GGAAGCTGAGGCATTNNNNNNNNNNNNNNNNNNNNCATTGCGTGAACCGA  

WT promoter GCGGTGAATTAACCCTCACTAAAGGGAGACACTAA 

Tag seed GGGTGTCGAACCTAAAGTAA 

T7  

Template 

AGGACCGGATCAACTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACA

TATGGCTAGCATGACTGGTGGACAGCAAATGGGTACTAACCAAGGTAAAG

GTGTAGTTGCTGCTGNNNNNNNNNNNNNNNNNNNNCATTGCGTGAACCGA  

WT promoter CGAAATTAATACGACTCACTATAGGGAGACCACAA 

Tag seed GAGATAAACTGGCGTTGTTC 
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Table A.2: Oligonucleotide sequences used for the Pol II promoters 

PCR and Sequencing Primers 

Name Sequence 

BULK_AMP_FWD TGCCTAGGACCGGATCAACT 

BULK_AMP_REV GAGCTTCGGTTCACGCAATG 

RT_PCR_CMV_FWD AATGATACGGCGACCACCGA TTTTGACCTCCATAGAAGAC 

RT_PCR_HBB_FWD AATGATACGGCGACCACCGA AGCAACCTCAAACAGACACC 

RT_PCR_S100A4_FWD AATGATACGGCGACCACCGA CAGCGCTTCTTCTTTCTTGG 

RT_PCR_COMM_REV CAAGCAGAAGACGGCATACGA GAGCTTCGGTTCACGCAATG 

SEQ_CMV GGCGACCACCGA TTTTGACCTCCATAGAAGAC 

SEQ_HBB GACCACCGA AGCAACCTCAAACAGACACC 

SEQ_S100A4 GACCACCGA CAGCGCTTCTTCTTTCTTGG 

200-mer oligonucleotides 

Structure of the 200 base oligo:  
PCR primer (15) + promoter (150: -100 to +50) + barcode (20) + PCR primer (15) 
Variable bases are indicated by X’s (promoter -45 to +25) or N’s (tag) 

CMV  

Template 

AGGACCGGATCAACTGACTTTCCAAAATGTCGTAATAACCCCGCCCCGTT

GACGCAAATGGGCGGTAGGCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCGCTGTTTTG

ACCTCCATAGAAGACNNNNNNNNNNNNNNNNNNNNCATTGCGTGAACCGA 

Native 
promoter 

GTGTACGGTGGGAGGTCTATATAGCAGAGCTCGTTTAGTGAACCGTCAGA

TCGCCTGGAGACGCCATCCA 

Barcode seed ACCGGGACCGATCCAGCCTC 

HBB 

Template 

AGGACCGGATCAACTTGTGGAGCCACACCCTAGGGTTGGCCAATCTACTC

CCAGGAGCAGGGAGGGCAGGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTCACTAGCAA

CCTCAAACAGACACCNNNNNNNNNNNNNNNNNNNNCATTGCGTGAACCGA 

Native 

promoter 

AGCCAGGGCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTACATT

TGCTTCTGACACAACTGTGT 

Barcode seed ATGGTGCATCTGACTCCTGA 

S100A4 

Template 

AGGACCGGATCAACTATCAGCCCACAGCAGGAAGGCAGTATCCGCTCTCC

CCTGTCCCCTGCTATGGGCAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXCTCCTCAGCG

CTTCTTCTTTCTTGGNNNNNNNNNNNNNNNNNNNNCATTGCGTGAACCGA 

Native 

promoter 

GGGCCTGGCTGGGGTATAAATAGGTCAGACCTCTGGGCCGTCCCCATTCT

TCCCCTCTCTACAACCCTCT 

Barcode seed TTTGGTGAGTTGTGTTGGCC 
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Supplementary Figures 

 

Figure A.1: Correlation between the number of times each tag was observed in the DNA and RNA-
derived sequencing libraries for wild-type (native) promoter templates for SP6, T7 and T3.   

For each of the three promoters, the native promoter templates (n=270) were rank-ordered and grouped 
into uniformly sized bins (bin size=15) based on their DNA counts.  The mean DNA versus mean RNA 
counts were plotted for each bin. The relationship between the DNA and RNA tag counts appears 
reasonably linear across the full range, implying that individual concentrations of synthetic promoter 
templates are generally within the range of linear relationship with transcriptional efficiency. 
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Figure A.2: Distribution of effect-sizes for various categories of mutations. 

Fold change distributions for various populations of mutant promoter templates (single base substitutions 
in orange, double base substitutions in red and single base deletions in pink) contrasted against the 
empirical null distribution created from the native promoters (black). The grey lines represent significance 
cutoffs (p<0.01) determined on the basis of the empirical null. The empirical null distribution was 
generated by 100,000 samplings of 6 data-points selected randomly from the set of 270 barcodes 
associated with each native promoter sequence. 
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Figure A.3: Activity logo for SP6 promoter mutants, generated as per the method in Shin et al. [82]. 
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Figure A.4: Observed and predicted log2 (fold change) values for the SP6 (a), T7 (b) and T3 (c) double 
mutants. Predicted values were calculated as the sum of the log2(fold change) of the two single mutants.  
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Figure A.5: Correlation between fold-change values (with respect to mean value of all native promoter 
variants) for all promoter templates in replicate experiments for SP6 (a), T7 (b), T3 (c), CMV (d), HBB (e), 
and S100A4 (f). The mutant templates are shown in blue, native templates are in green and the random 
promoter sequences are in red. All correlations were highly significant with a p-value < 2.2e-16. 

 

SP6  Cor = 0.98a) T7  Cor = 0.97b)

T3  Cor = 0.96c) CMV  Cor = 0.98d)

HBB  Cor = 0.70 S100A4  Cor = 0.87e) f)
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Supplementary Note 

In a typical initiator element (PyPyAN(A/T)PyPy), transcription is believed to initiate at the A 

nucleotide. As per this expectation, the +1 site for the CMV promoter is possibly mis-annotated 

and is likely to be at what we call the +3 site. The co-ordinates we use (in the text and Figure 

3.5) correspond to the annotated start site as per the GenBank record for CMV IE promoter 

(Towne Strain). We are retaining these coordinates to be consistent with this source.  

 

Supplementary Methods 

Design of promoter templates 

The overall layout of the bacteriophage phage promoter templates is shown in Figure 3.1b. The 

promoter and downstream flanking sequence (-23 to +147) for SP6, T3 and T7 were extracted 

from the whole genome sequences of these phages present in GenBank: SP6 - GI:31880044 

(22,407-22,576), T3 - GI:17384270 (25,451-25,620), T7 - GI:431187 (22,881-23,050). 

Sequences are specified in Table A.1. 

Choice of mutants: 

Every single base substitution at all sites from -23 to +12 for each of SP6, T3 and T7 was 

included, in addition to every single-base deletion in that span. Double mutants were chosen on 

the basis of a pilot experiment consisting of only the single base substitution and deletion 

mutants. To ensure a good representation of different representative combinations in terms of 

both severity and position, we divided the promoter into sub-regions. Double mutants were 

designed to include pairs of point mutations with strong effect, one (or both) from each of the 

defined regions, selecting all possible combinations of regions. The number of double mutants 

chosen for each of SP6, T3 and T7 is specified in Table 3.1. Random promoters to be used as 

negative controls were created by emitting a string of nucleotides, all four nucleotides being 

equally likely. 

Generation of tag sequences: 

To minimize any effects that an artificial sequence might have on transcription, all tags were 

designed to be as similar as possible to the wild-type downstream sequence, but different 

enough from each other to be unambiguously identified after sequencing in spite of any 

sequencing errors. The tag was located 128 bases downstream of the transcription start site. 

We used the wild-type sequence in this position as the starting point to generate our set of tags. 

For each of the three promoters (SP6, T3 and T7), 20 bases of wild-type sequence (from +128 

to +147) was used as the seed. Slight changes were made to this sequence using a custom 

Perl script to generate a set that a) differed from the original sequence at exactly three 

positions, and b) differed from every other barcode in the set at a minimum of two positions (and 

a maximum of six positions as a consequence of the first constraint). Since we planned to 

multiplex the synthesis of T3, T7 and SP6 templates, an additional check was performed to 
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make sure that combined set of 12,972 tags still satisfied the condition of differing from each 

other at two or more positions. 

 

Synthesis of promoter templates 

12,972 custom 200 base long oligonucleotides were ordered from Agilent Technologies. They 

were synthesized in parallel on a microarray slide using their in-situ ink-jet based protocol and 

then cleaved from the surface [83]. The resulting complex oligonucleotide library was shipped to 

us lypholized in a single tube and was subsequently re-suspended in EB (Qiagen) to a stock 

concentration of 100nM. 

 

Amplification of promoter library 

10% of the100nM library template was amplified in a 1ml bulk PCR reaction with 1X Phusion 

buffer (Finnzymes), 0.2mM dNTP mixture, 0.5uM each of primers BULK_AMP_FWD and 

BULK_AMP_REV, and 0.2X Sybr Green II. The reaction was assembled on ice. Thermal cycling 

was performed on Bio-Rad MiniOpticon Real-Time PCR system under the following conditions: 

98°C for 30 seconds (for activation of the Hot Start Phusion enzyme), 20 cycles at 98°C for 10s, 

54°C for 30s and 72°C for 15s. PCR products were purified using QIAquick PCR Purification Kit 

(Qiagen), and resuspended in EB. 

 

In vitro transcription (IVT) 

A portion of the amplified promoter library was subjected to in vitro transcription using 

MAXIScript kit (Ambion). Separate reactions were performed for each of T3, T7 and SP6. The 

reactions were assembled as per manufacturer’s protocol under strict RNase-free environment, 

using 500ng of template DNA instead of 1ug stated in the protocol and incubated at 37°C for 

one hour. After the incubation, each reaction was treated with 1uL of TURBO DNase I (Ambion) 

at 37°C for 1.5 hours to destroy template DNA. The mixture was then heated to 75°C for 10 

minutes in the presence of 1uL of 0.5M EDTA to inactivate the DNase. 

 

Gel Purification of RNA 

The IVT product was mixed with Gel Loading Buffer II (Ambion) and denatured by heating to 

95°C for 2 minutes before running it on a 6% polyacryamide urea gel at 150V for one hour. The 

band corresponding to the expected size of the transcript (162 bases) was excised, re-

suspended in 200ul TE, and purified using 0.2um Nanosep column (VWR) followed by ethanol 

precipitation with 7.5M Ammonium Acetate and 100% ethanol. 0.05 mg/ml glycogen was added 

to the mixture and it was left overnight at -80°C. The pellets were collected the following day by 
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centrifuging at full speed for 30 minutes at 4°C. The pellets were washed twice with 75% 

ethanol and dried in Speed Vac at 30°C for around 5 minutes, and re-suspended in 10ul of EB. 

 

RT-PCR 

Gel-purified transcripts were reverse transcribed to cDNA and amplified by PCR using the 

Qiagen One-Step Kit. The reaction was assembled on ice in a 25uL total volume with the 

following reagents: 1X Qiagen One-Step RT-PCR buffer, 400uM of each dNTP, 0.6uM of 

relevant forward primer (RT_PCR_SP6_FWD, RT_PCR_T7_FWD or RT_PCR_T3_FWD), 

0.6uM of reverse primer RT_PCR_COMM_REV, 0.2x Sybr Green II and 2 ul of RNA template 

(T3, T7 or SP6). Thermal cycling was performed on Bio-Rad MiniOpticon Real-Time PCR 

system with the following program: 50°C for 30m (reverse transcription), 95°C for 15m 

(inactivation of reverse transcriptase and heat-activation of the DNA polymerase), then 30 

cycles of 94°C for 30s, 58°C for 30s and 72°C for 30s. Each sample was monitored and 

extracted from the PCR machine when the fluorescence began to plateau. The cDNA products 

were purified by QIAquick PCR Purification Kit (Qiagen) in 30ul EB. The primers used for the 

RT-PCR were hybrid Solexa adapters, thus the cDNA library obtained at the end of this step 

was sequencing-ready, eliminating the need for a separate sequencing library construction step. 

Control reactions to detect DNA template contamination in the RNA sample: 

The exact same RT-PCR reactions were run, but the RNA template was added to the tubes 

after the inactivation of reverse transcriptase and activation of DNA polymerase at the end of 

the RT-step (i.e. immediately after the 95°C for 15m step). No amplification was observed for 

this set of controls implying the absence of any significant amount of DNA template 

contamination. 

 

PCR of DNA templates for normalization 

A portion of the amplified promoter library was subjected to PCR using the same primers used 

for the RT-PCR reaction. The purpose of this set was to allow for the quantification of the bias in 

representation of different oligonucleotides in the library so that the counts of RNA transcripts 

obtained from each DNA template could be normalized to correct for this bias. The PCR was 

performed using the same master mixture used for the RT-PCR of RNA as described above, 

except for the use of 2ul of the DNA template instead of the RNA sample. Thermal cycling 

conditions were identical to the RT-PCR reaction except for the omission of the initial RT step of 

50°C for 30m. PCR cycling was stopped right before the signal reached the plateau. The PCR 

products were purified by QIAquick PCR Purification Kit (Qiagen) in 30ul EB to yield a 

sequencing-ready library. Separate reactions were performed for each of T3, T7 and SP6 since 

they needed different forward primers complementary to their own spacer sequences. 
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Sequencing 

T3, T7 and SP6 RT-PCR products were pooled and sequenced on a single lane on Illumina GA 

II using sequencing primers designed to read into the tag sequence. Pooling was possible 

because the tags were designed to be unique across the three promoter types as well. The 

PCR-amplified template DNA for T3, T7 and SP6 was pooled and sequenced on another lane. 

The RT-PCR products and the PCR-amplified template DNA from the replicate experiment were 

similarly sequenced on another two lanes of the flow-cell. 

 

Analysis of sequenced reads 

The first 20 bases of each read, representing the tag, were extracted and. the number of 

instances of each tag was counted, for both the DNA and RNA-derived lanes. To avoid spurious 

results due to small numbers, tags with less than five reads in the DNA lane (272 out of 12,972 

in replicate 1, and 184 out of 12,972 in replicate 2) were discarded. 

Normalization: 

To ensure that all differences observed in the RNA-derived counts of different templates were a 

result of differences in their promoter activity and not due to non-uniformity in the abundances of 

templates in the original synthetic library itself, the count of each tag from the RNA-derived lane 

was normalized by dividing with the corresponding count from the DNA lane. This strategy was 

based on the assumption that the concentrations of all the individual DNA templates were within 

the range of linear relationship with transcriptional efficiency. To make sure that this assumption 

was valid, we took advantage of the 270 tag variants associated with each of SP6, T3 and T7 

wild-type promoters. Since the promoter activity for all these tag variants should be the same, 

their RNA-derived counts should correlate linearly with abundance of their respective DNA 

templates. We verified this to be the case (Figure A.1). 

Assessing significance: 

Our null hypothesis was that there is no significant difference between the activities of a given 

mutant promoter and the wild-type (i.e. canonical or unmutated) promoter. Because the tag 

sequence itself had the potential to influence promoter activity, we sought to take an empirical 

approach to establishing significance. Specifically, we used the data from the wild-type promoter 

to establish an empirical null distribution and based our p-values for mutant promoters on this 

distribution. Each wild-type promoter was associated with 270 different tags, while each mutant 

promoter was associated with 6 tags. To arrive at an empirical distribution of expected values 

for the wild-type promoter, we picked 6 of the 270 wild-type promoter-associated tags at 

random, and calculated the mean of the activities estimated from them. We repeated this 

process 100,000 times. For each individual mutant promoter, we calculated the mean of the 

activities estimated from the six independent tags assigned to it. To translate this into a p-value, 

we compared this estimated activity against the distribution of 100,000 means that were based 

on the 6-value sampling of the wild-type promoter data. 
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Comparison of replicates 

Fold changes in efficiency of transcription for each mutation as compared to the wild-type 

promoter were compared between the two replicates. 824 of 861 mutant promoters identified as 

causing a significant change in replicate 1 were also significant in replicate 2, where 878 mutant 

promoters achieved significance 

 

Luciferase assay 

Six T7 promoter variants (-4TA, -14TC, -9CT, -2TA, -4Tdeletion, and wild-type) were 

assayed for in vivo activity and the results were compared with the results of our in vitro assay. 

Primers were used to add XhoI and BamHI restriction sites to the 35 bp region of the wild-type 

T7 promoter and to each T7 promoter mutant. These fragments were inserted into the cloning 

site 36bp upstream of a bacterial luciferase reporter (the luxCDABE operon) in pCS26, a low-

copy number (pSC101) plasmid [84]. Plasmids were transformed into TOP10 electrocompetent 

cells (Invitrogen) and colonies were screened for inserts by colony PCR. Inserts and plasmids 

were verified by Sanger sequencing. Verified constructs were then transformed into E. Cloni 

EXPRESS electrocompetent BL21 (DE3) LysS cells (Lucigen). Promoter activity was assayed 

at several time-points over the course of 10 hours after IPTG induction with a Perkin Elmer 

Victor V 1420 Multilabel Counter. Data from the early time-points (up to 3h) correlated well with 

the in vitro values, beyond which the correlation decreased, likely due to accumulation of 

luciferase inside cells and the resultant toxicity. We chose to focus on the 1 hour time-point 

since the in vitro transcription reaction was also incubated for one hour. 

 

Pol II Promoter Mutagenesis assay 

The layout of the Pol II promoter templates is shown in Figure 3.1. For each promoter, the -100 

to +70 region was extracted. CMV (Towne strain major immediate-early promoter): GI:330614 

(390 to 559), HBB (hg18): chr11: 5204748 – 5204977, and S100A4 (hg18): chr1:151784807- 

151784976. The sequences are specified in Table A.2. 

The -45 to +25 region for each of the three promoters was subjected to saturation mutagenesis. 

The +51 to +70 region was used as the tag seed. Other sites (-100 to -46, +26 to +50) remained 

unaltered. Constraints for generation of tag sequences were identical to those described for the 

bacteriophage experiment. 

Promoter templates were ordered as 200-nt synthetic oligonucleotides from Agilent 

Technologies2. The library was re-suspended in EB to 100nM stock concentration. 10% of the 

library was amplified in a 1ml bulk PCR reaction with 1X iProof Master Mix (Bio-Rad), 0.5uM 

each of primers BULK_AMP_FWD and BULK_AMP_REV, and 0.2X Sybr Green II. The reaction 

was assembled on ice. Thermal cycling was performed on Bio-Rad MiniOpticon Real-Time PCR 
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system under the following conditions: 98°C for 30 seconds (for initial denaturation), 18 cycles 

at 98°C for 10s, 60°C for 30s and 72°C for 15s. PCR products were purified using QIAquick 

PCR Purification Kit (Qiagen) and eluted in EB. 

A portion of the amplified promoter library was subjected to in vitro transcription using the 

HeLaScribe Nuclear Extract In vitro Transcription System (Promega). The reaction was 

assembled as per manufacturer’s protocol under strict RNase-free environment, in a 25uL 

reaction volume with 8 units of HeLa nuclear extract, 0.4mM of each rNTP, ~100ng of template 

DNA and 7.5 uLof 1X Transcription Buffer. The reaction was incubated at 30°C for one hour. 

After the incubation, the reaction was treated with 1uL of DNase I (Fermentas) at 37°C for one 

hour to destroy template DNA. The reaction was cleaned up using the RNeasy kit (Qiagen) as 

per manufacturer’s protocol; expect that the ethanol volume in the first step was increased to 

700uL since our expected transcripts were smaller than 200bp. RNA was eluted in 50uL of 

RNase-free water and subjected to another round of DNase I treatment using 1uL of enzyme in 

the presence of 5uL of DNase I buffer (Fermentas). The reaction was incubated at 37°C for one 

hour and followed by another around of RNeasy cleanup. The final RNA was eluted in 35uL of 

RNase-free water. 

The subsequent steps (RT-PCR, PCR of DNA templates for normalization, sequencing and 

analysis) were identical to those described for the bacteriophage library, except that a slightly 

higher annealing temperature of 61°C was used for the RT-PCR/PCR cycles, and in the 

analysis step, templates with less than 100 reads in the DNA-derived lane were discarded from 

the analysis. The primers used for RT-PCR and sequencing are specified in Table A.2. 
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Appendix B. Supplementary material for Chapter 4 

Supplementary Tables 
 
Table B.1. Phrap optimization 

 

Min 
match 

Min 
score 

Force 
level 

Index 
word 
size 

# of 
TDRGs 

Mean 
longest 
SA 
read 

Median 
longest 
SA 
read 

Fraction 
of non-
BLASTing 
SA’s 

Fraction 
of SA’s 
BLASTing 
<90% of 
length 

Fraction of 
mismatches 
among 
BLASTing 
bases 

12 12 1 10 2619 361.6 403 0.004964 0.02993 0.001513 

10 12 1 10 2619 364.4 406 0.004964 0.0284 0.001543 

10 12 1 8 2619 364.4 406 0.004964 0.0284 0.001543 

10 10 1 8 2619 369.5 409 0.004964 0.04106 0.001551 

8 10 1 8 2619 371.9 411 0.004964 0.04643 0.001579 

 
A representative subset of 10,000 Pseudomonas TDRGs was randomly selected and subjected to phrap 
assembly using different parameters and the resulting lengths and qualities of the longest subassemblies 
from each TDRG were assessed. We determined that parameters of minmatch 10, minscore 12, force 
level 1, and index word size 8, achieved the optimal balance between assembly accuracy, measured as 
the fraction of subassembled reads BLASTing across at least 90% of their length in a single BLAST hit 
(and the fraction removed because of oppositely oriented reads, not shown), and subassembled read 
length. 
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 Table B.2. Summary statistics for subassembled reads 
 

Sample 
Original fragment 

size  # of read-pairs 
# of filtered 

TDRGs Median length  

     

P. aeruginosa ~550 bp 56.8M 1,031,537 338 bp 

     

Metagenomic ~450 bp 21.8M 262,298 256 bp 

     

Metagenomic 
(merged) 

~450 bp 21.8M+1.8M 
180,008 

(90,004 pairs) 
408 bp 

     

 
For the two samples used and the two analyses performed of the methylamine-enriched metagenomic 
sample, listed is the approximate size of long fragments from which subassembly libraries were 
generated, the number of Illumina read-pairs that were used to generate subassembled (SA) reads 
(merged analysis also shows the number of  reads used to pair tags), the number of TDRGs after filtering 
for successful assembly and properly oriented contributing reads, and the median length of the longest 
SA read from each filtered TDRG. 
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Table B.3. Summary statistics from assembly of metagenomic SA reads versus assembly of a 
standard shotgun library 
 

Input Assembly strategy # of contigs 
Median contig 

length 
Sequence in 

contigs ≥ 200 bp 
Longest 
contig 

      

SA reads Celera 86,418 390 bp 35.7 Mb 6,000 bp 

      

Shotgun PE 
48 bp 

Velvet 
(exp_cov = 100) 

17,618 332 bp 9.9 Mb 
102,806 

bp 

      

Shotgun PE 
76 bp 

Velvet 
(exp_cov = 100) 

33,374 315 bp 16.0 Mb 
28,861 bp 

      

 
Comparison of assembly of short reads from a standard Illumina shotgun library prepared from the 
metagenomic sample to Celera assembly of the full complement of SA reads from the same sample. 
Listed is the assembly input, the assembly strategy used, and, for contigs at least 200 bp long, the 
number of contigs produced, the median contig length, the total amount of sequence contained in such 
contigs, and the longest contig. 76 bp paired-end (PE) reads were collected from a standard shotgun 
library and were trimmed to 48 bp reads to match the amount of sequence collected per read-pair for 
subassembly (20+76). Velvet assembly was performed using both 48 bp and 76 bp paired-end reads, but 
the same total amount of raw sequence as collected for subassembly (2.2 Gb) was used in each shotgun 
assembly. Notably, while the shotgun assemblies achieve greater contiguity at the longest lengths, 
potentially due to deep sampling of abundant genomes or to misassemblies, subassembly produces at 
least twice as much sequence at the lengths necessary for phylogenetic analysis and gene prediction. 
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Table B.4. Oligo sequences 
 

 Name Sequence 

Bottleneck 
adaptor oligos 

Ad1 TCGCAATACAGAGTTTACCGCATT 

Ad1_rc /5Phos/ATGCGGTAAACTCTGTATTGCGA 

Ad2 CTCTTCCGCATCTCACAACCTACT 

Ad2_rc /5phos/GTAGGTTGTGAGATGCGGAAGAG 

Illumina 
adaptor oligos 

Illum_rev CTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

Illum_rev_rc /5Phos/GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 

Bottleneck 
PCR primers 

Ad1_amp /5phos/TCGCAATACAGAGTTTACCGCATT 

Ad2_amp /5phos/CTCTTCCGCATCTCACAACCTACT 

TDRG merging 
PCR primer 

Illum_amp_r_Ad
2 

CAAGCAGAAGACGGCATACGAGATATCGAGAGCCTCTTCCGC
ATCTCACAACCTACT 

Sequencing 
PCR primers 

Illum_amp_f_Ad
1 

AATGATACGGCGACCACCGAGATCTACACCAATGGAGCTCGC
AATACAGAGTTTACCGCATT 

Illum_amp_f_Ad
2 

AATGATACGGCGACCACCGAGATCTACAC 
ATCGAGAGCCTCTTCCGCATCTCACAACCTACT 

Illum_amp_r CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC
TGAACCGCTCTTCCGATCT 

Oligos used in 
sequencing 

Ad1_seq CAATGGAGCTCGCAATACAGAGTTTACCGCATT 

Ad2_seq ATCGAGAGCCTCTTCCGCATCTCACAACCTACT 

Illum_seq_r CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

 
Oligos were obtained from Integrated DNA Technologies. An asterisk indicates a phosphorothioate bond. 
/5Phos/ indicates a five-prime phosphate modification. 
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Supplementary Figures 

 a                   b 

 

 

 

 

 

Figure B.1: Length of library fragments by PAGE 

(a) PAGE of NEB 100 bp ladder and nebulized and size-selected ~550 bp P. aeruginosa fragments. (b) 

PAGE of NEB 100 bp ladder and Biorupted and size-selected Methylamine metagenomic fragments. 
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Figure B.2: Length distribution of subassembly fragments by paired-end sequencing 

Histogram of mapping distance separating tag and breakpoint reads from the 450-600 bp size-selection 
performed at the end of the subassembly library construction protocol of a representative subset of the 
Pseudomonas data. Paired 20x76 bp reads were mapped to the PAO1 reference genome using maq. 
Shorter mapping distances are thought to arise from over-amplification during PCR, which causes shorter 
fragments to migrate with longer fragments during PAGE. Retained shorter fragments are then 
preferentially amplified and sequenced during the Illumina sequencing protocol. Careful PCR 
amplification is essential to prevent small fragments from completely dominating the sequencing reaction. 
The non-uniform nature of this distribution may contribute to the bimodal distribution of subassembled 
read length that we observed for this sample. 
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Figure B.3: Coverage of the PAO1 reference by SA reads 

(a) Histogram of coverage of the PAO1 reference by SA reads as determined by BLAST alignment (bin 
size 10 bp). (b) Histogram of coverage of the PAO1 reference by SA reads, a standard Illumina paired-
end 36 bp shotgun library, and the 76 bp breakpoint reads that contributed to SA reads. (c) Mean (G+C) 
content in the 100 bp window around reference positions with a given coverage on the x-axis by SA 
reads, a standard Illumina paired-end 36 bp shotgun library, and the 76 bp breakpoint reads that 
contributed to SA reads. A strong relationship between coverage and (G+C) content is observed. That is, 
reference bases in very high (G+C) content regions tend to have reduced coverage relative to the mean, 
and regions with intermediate (G+C) content are correspondingly overrepresented. This is likely due to 
(G+C) content biases present during the PCR steps of library construction, as a similar relationship is 
observed for the contributing 76 bp reads, and could likely be mitigated by PCR conditions designed to 
reduce (G+C) bias. (d) Distribution of mean quality score (and therefore predicted error rate) across the 
reference. The number of reference positions with a given mean quality score is plotted in green 
(“Actual”), while a simulated distribution was made by randomizing the full set of quality score 
assignments in SA reads and then recalculating mean quality scores for reference positions, and is 
plotted in yellow (“Random”). The standard deviation of the actual distribution was six compared to three 
for the random distribution, indicating a small systematic bias in quality score (and therefore error) 
distribution across the PAO1 genome. 
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Figure B.4: Length distribution of metagenomic fragments 

Histogram of the mapping distance separating paired tag reads from 36 bp paired-end sequencing data of 
the metagenomic library fragments (used to pair and merge TDRGs). Paired-end reads were mapped to 
the recently obtained Sanger data from the same sample using maq. Some selection for shorter 
molecules during the Illumina sequencing protocol may have taken place, shifting the peak of the 
distribution somewhat shorter than would be expected based on PAGE of the original fragments (Figure 
B.2). 
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a           b 

 
 
Figure B.5. Optimization of Velvet parameters for shotgun metagenomic assembly  

We optimized Velvet parameters for shotgun metagenomic assembly with respect to contig length and 
sequence shared with available Sanger data. (a) Maximum contig length as a function of changing Velvet 
parameters for assembly of shotgun paired-end 48 bp and paired-end 76 bp reads. Contig length was 
found to be very sensitive to the exp_cov parameter. (b) Sequence in common with the available Sanger 
data from the same sample as a function of changing Velvet parameters as in (a). Shared sequence was 
found to be somewhat sensitive to the exp_cov parameter in an unpredictable fashion, with shared 
sequence decreasing with increased exp_cov for the 48 bp reads and increasing with increased exp_cov 
for the 76 bp reads. To optimize length and coverage, we chose to perform subsequent analyses with the 
exp_cov = 100. 

0E+0

2E+4

4E+4

6E+4

8E+4

1E+5

1E+5

Shotgun PE 48 Shotgun PE 76

L
o

n
g

e
s

t 
c

o
n

ti
g

 (
b

p
)

exp_cov 1
exp_cov 20
exp_cov 60
exp_cov 100
exp_cov 150

0E+0

1E+6

2E+6

3E+6

4E+6

5E+6

Shotgun PE 48 Shotgun PE 76

S
e

q
u

e
n

c
e

 i
n

 C
o

m
m

o
n

 w
it

h
 S

a
n

g
e

r 
D

a
ta

 (
b

p
)

exp_cov 1
exp_cov 20
exp_cov 60
exp_cov 100
exp_cov 150



87 
 

 

  

 
 
Figure B.6. Coverage overlap of metagenomic sample between sequencing methods 
 
(a) Sequence shared with Sanger data for SA reads, assembled SA reads, and Velvet-assembled 
shotgun paired-end reads. Shared sequence was estimated by considering BLAST alignments with at 
least 98% identity across at least 100 bp. SA reads covered more than twice as much of the Sanger data 
as either shotgun assembly. (b) Venn diagram illustrating reciprocal coverage across data sets as 
determined by stringent BLAST analysis. Contigs produced by Celera assembly of SA reads, Velvet 
assembly of a 48 bp paired-end shotgun library with exp_cov=100, and the recently obtained Sanger 
sequencing data were compared to one another using BLAST. Coverage was defined as the best pair-
wise match between bases as determined by the bit-score of the alignment as long as the alignment had 
at least 98% identity and was at least 100 bp long. The bases in common shown here are not in exact 
agreement with those presented in (a) because, for the purposes of constructing this diagram, each base 
was only allowed to align to one corresponding base in another dataset. Circles are drawn to scale; 
regions of overlap not to scale. 
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Supplementary Note 1. The importance of a complexity bottleneck 

A complexity bottleneck is needed so that multiple overlapping, randomly-positioned breakpoint 
reads can be observed for each member of the long fragment library with a reasonable amount 
of sequencing. In other words, it is necessary to sample each nested sub-library in sufficient 
depth to reconstruct the sequence of the parent long molecule. For example, we obtained 
approximately 60 million read-pairs across six lanes of Illumina sequencing that enabled us to 
reconstruct part or all of the sequence of approximately one million long molecules. If we had 
used a library containing 100 million long molecules, we would only have observed, on average, 
less than one read-pair per long molecule, preventing any subassembly from taking place within 
most if not all sub-libraries. The only exception to this principle is in the case of a very small 
effective genome size and if the ends of molecules (and not degenerate synthetic adaptors) are 
used as tags. For example, in the case of a genome of only 500 kilobases, the maximum 
number of unique tag reads (assuming no repetitive sequence at the scale of the tag read) is 
one million, which we have shown to be a tractable library complexity. In such a situation, it 
might not be formally necessary to restrict library complexity. 
 
 
Supplementary Note 2. Filtering of predicted misassemblies 
 
Manual inspection of predicted misassemblies revealed four contigs that were incorrectly called 
misassemblies because of differences between the strain that we sequenced and the reference 
PAO1 strain. Three of these (2548, 2129 and 2115) exhibited extremely high sequence identity 
with a phage-like insertion in PAO1 that was recently added to GenBank (ID GQ141978.1) and 
that we have observed in independent shotgun sequencing data from our strain. Notably, the 
same phage-like insertion seems to have caused the lone misassembly in our scaffolds 
(Scaffold_LR7_3). The fourth contig (2622) spans a ~1 kb deletion in our strain that we have 
also observed in independent shotgun sequencing data (data not shown).  
 
 
Supplementary Note 3. Comparison of de novo assembly to hybrid 454-Illumina approach 
 
We compared the performance of our method to a recently published, high quality de novo 
assembly from a similar but significantly lower (G+C) content organism (66.6% versus 58.5%), 
which was generated by combining both long-read and long-range mate-paired 454 data with 
short distance paired-end Illumina data[99]. We find that our method compares very favorably to 
that approach with respect to N50 (445 kb versus 92 kb), longest scaffold (915 kb versus 389 
kb), substitution error rate (~1/14,000 versus ~1/7,000), and number of rearrangements (one 
versus twenty). It should be noted that the authors of that study also performed sequencing and 
assembly of a related organism without a reference genome and achieved apparently better 
performance (N50 of 532 kb, longest contig of 794 kb), which they attempted to validate with 
limited Sanger sequencing. However, it is difficult to make a direct comparison with respect to 
accuracy in the absence of a reference genome. Our method also used significantly more raw 
data than that study, but only required a single sequencing platform, which may increase its 
general utility. 
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Supplementary Note 4. Estimated cost of subassembly protocol 
 
Although it is difficult to draw firm conclusions in the face of rapidly changing costs associated 
with many second-generation sequencing platforms, it is clear that subassembly is significantly 
more expensive than standard shotgun Illumina sequencing if only the total amount of sequence 
produced is considered. However, as subassembly produces much longer reads at much higher 
per-base accuracy than the raw reads from the Illumina platform, such a comparison is not 
valid. Even the comparison to Roche/454 sequencing, which produced reads in the hundreds of 
base-pairs, is difficult because of the decreased accuracy of that method relative to the method 
we present here.  Still, we estimate that our method is roughly cost-comparable to Roche/454 
sequencing. For example, if a lane of sequencing is assumed to cost ~$2,000, from six lanes of 
sequencing we generated 405 Mb of long SA reads for the P. aeruginosa sample, which 
corresponds to a cost of ~$30/Mb, or about half that of recently published estimates of the cost 
of Roche/454 Sequencing [3]. However, the reduced error rate is a critical differentiator, making 
the cost comparison tenuous. A major advantage of subassembly is that extremely low error 
rates and long effective read length is maintained independent of sample complexity. In the 
case of short read sequencing (Illumina, AB SOLiD, Helicos), read length and error limitations 
can be overcome through the use of very high coverage. The ability to achieve high coverage 
depends implicity on sample complexity and can be complicated by relatedness of sequences 
therein. With Roche/454 sequencing, read lengths are longer, but once again, errors can only 
be overcome with high coverage, which again may be impossible in the case of either very high 
sample complexity or the presence of highly related sequences. We therefore conclude that 
subassembly produces equivalently long sequences at below or equal to the cost of Roche/454 
sequencing with length and error performance that remains independent of sample complexity 
and sequence relatedness, a feature of no other currently available second-generation 
sequencing method. 
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Supplementary Methods 
 

Subassembly library construction 

Source DNA was fragmented by sonication, end-repaired and size-selected to ~550 bp (P. 

aeruginosa) or ~450 bp (metagenomic sample). Size-selected fragments were A-tailed and 

ligated to custom adaptors (Supplementary Table 4). Real-time PCR with phosphorylated 

primers was performed using serial dilutions of adaptor-ligated fragments to impose a 

complexity bottleneck and generate many copies of a limited number of long fragments. 

Complexity was estimated from the concentration of input material, the kinetics of PCR 

amplification and gel electrophoresis of the PCR product. After PCR, the product estimated to 

have resulted from ~105–107 long fragments was concatemerized to high molecular weight and 

then fragmented by sonication. Shearing products were end-repaired, A-tailed and ligated to the 

Illumina Read 2 adaptor. PCR amplification was then performed with one primer corresponding 

to the Read 2 adaptor and a second primer corresponding to one of the two original adaptors. 

Finally, the amplification products were size-selected to obtain a uniform distribution of shearing 

products across the original fragment (Supplementary Fig. 2). For the metagenomic effort, an 

aliquot of the bottleneck PCR was subjected to an additional round of PCR to prepare the long 

fragments for paired-end sequencing and subsequently used for tag-pairing and TDRG 

merging. 

 

Shotgun library construction 

P. aeruginosa short insert (~200 bp) and long insert (~2.5 kb), and metagenomic short insert 

shotgun libraries were constructed according to manufacturer's specifications, except that 

standard oligonucleotides were obtained from IDT. For the metagenomic library, to conserve 

source material, size selection to the desired fragment length was performed before A-tailing 

and adaptor ligation rather than afterward so that the longer size range could be used for 

subassembly. 

 

Illumina sequencing 

For subassembly libraries, an Illumina GA-II instrument was used to collect paired-end reads 

according to manufacturer's specifications, except that custom sequencing primers 

(Supplementary Table 4) were used, and asymmetric read lengths were collected (20-bp first 

read and 76-bp second read). For the tag-pairing metagenomic library, paired-end 36-bp reads 

were collected according to manufacturer's specifications with custom sequencing primers. For 

shotgun libraries, paired-end reads were collected according to manufacturer's specifications. 
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Organizing breakpoint short reads into TDRGs 

For all experiments, breakpoint reads paired with identical or nearly identical tag sequences 

were grouped into TDRGs. As millions of tag reads were involved, an all-against-all comparison 

to cluster similar tags was not feasible. Instead, a two-step strategy was used to group tag 

sequences in each experiment. First, perfectly identical tags were collapsed using a simple 

hash to define a nonredundant set of clusters. From this set, clusters with four or more identical 

tags were identified as 'core' clusters and, in descending order by size, were compared to all 

other tags. Tags matching a given core cluster with up to one mismatch were grouped with that 

core cluster (and removed from further consideration if they themselves defined a smaller core 

cluster). TDRGs with more than 1,000 members were excluded from downstream analysis to 

limit analysis of adaptors or other low-complexity sequence. 

 

Subassembly of TDRGs 

Each TDRG was assembled separately using phrap with the following parameters: “-

vector_bound 0 -forcelevel 1 -minscore 12 -minmatch 10 -indexwordsize 8”. Pre-grouping reads 

into TDRGs allowed us to use less stringent parameters than the defaults used in traditional 

assemblies. Parameters were optimized to balance SA read length and accuracy 

(Supplementary Table 1). A short-read assembler, Velvet, was also tested but did not produce 

substantial gains in SA read length relative to phrap (data not shown). 

 

Trimming and filtering of SA reads and assignment of consensus quality scores 

SA reads were masked using the cross_match program provided as part of the phrap suite, 

using the following parameters: “-minmatch 5 -minscore 14 –screen”. Determination of 

consensus quality scores and further trimming was performed as follows. Because it permits 

multiple alignments per read, the Bowtie short-read alignment tool [128] was used to map 

contributing 76-bp breakpoint reads to the SA reads to generate consensus quality scores for 

SA read base calls. Only alignments within TDRGs were allowed (that is, alignments of 

breakpoint reads to SA reads from another TDRG were ignored). Bowtie was also used to map 

the 20-bp tag reads back to the SA reads to facilitate end trimming where the SA read had 

extended into adaptor sequence. Next, SA reads were trimmed using both tag read mapping 

and adaptor masking information. SA reads were first trimmed from the 3′ end using the 

mapping location of the tag read; if bases remained that had been masked by cross_match 

because of the presence of adaptor, the masked bases were removed and the longest 

remaining continuous sequence was retained. Finally, any sequence containing a base call with 

quality below 10 within 5% of the 3′ end of the SA read was discarded. 

In all subsequent analyses, only SA reads that were at least 77 bp long and were assembled 

from identically oriented short reads were considered. The read orientation filter was only 

applicable to SA reads from individual, unmerged TDRGs. In addition, for length and quality 

analyses, only the longest SA read from each TDRG was analyzed. 
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Quality assessment 

The longest SA read (after trimming as described above) from each TDRG containing at least 

10 member reads was aligned to the P. aeruginosa PAO1 reference genome using BLAST with 

the following parameters: “-p blastn -e 1e-6 -m 8 -F F -a 4”. 

Error rate as a function of quality score and position in the SA read was then determined as 

follows. BLAST alignments containing at least 95% of the length of the SA read query and 

without any gap openings were used to define the position in the reference of the SA read in 

question (the BLAST coordinates were extended to encompass the entire length of the SA 

read). Every base in an SA read whose alignment meets the above criteria was compared to the 

corresponding reference base. If less than 100% of the SA read aligned, the comparison was 

forced to extend to the ends of the SA read. From the base-by-base comparison, the error rate 

as a function of base call quality or position in the SA read was calculated. 

We did not perform a base-by-base comparison for cases in which BLAST used a gap opening 

in making an alignment, which could potentially suppress our error rates if such SA reads were 

substantially more error-laden. Accuracy of such SA reads within aligned regions was slightly 

lower (99.56% accurate compared to 99.86% in SA reads without gaps), and such sequences 

only comprised less than 1% of the sequence being analyzed. We therefore concluded that 

errors in these sequences that fall outside of aligning regions are unlikely to substantially alter 

our estimates of error rate as a function of base quality. We performed a similar analysis for SA 

reads containing larger gaps with respect to the reference (those with a BLAST alignment less 

than 95% of their length), as we did not perform a base-by-base comparison for such SA reads 

either. Once again, the accuracy with aligned regions was somewhat lower (99.4% versus 

99.86% in those with complete or nearly complete alignments). Such errors probably reflect 

larger-scale misassemblies owing to repetitive sequence in the true reference sequences. 

Notably, aggressive trimming substantially reduced the relative abundance of such sequences; 

only 1.5% of the total number of bases analyzed was contained in such sequences, and only 

2.3% of BLAST alignments fell into this category. Once again, forcing the alignment to the very 

edges of such SA reads was not likely to substantially alter the relationship between error rate 

and base call quality score. 

To analyze quality as a function of raw read base quality, maq was used to align contributing 

76-bp breakpoint reads to the reference, Illumina base calls were compared to the reference 

and, for a randomly chosen subset of 1 million bases, the error rate as a function of Illumina 

base call quality was determined. 

To analyze quality as a function of raw read position, a representative lane of contributing 76-bp 

breakpoint reads used for the subassembly process was aligned to the reference genome using 

maq, and the error rate at each position was determined by comparing read base calls to 

reference bases for each read. 
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Assembly of SA reads using the Celera assembler (CABOG) 

For P. aeruginosa and metagenomic samples, all trimmed, orientation- and length-filtered SA 

reads (not only the longest per TDRG) were subjected to assembly using the Celera assembler. 

Assembly was guided by consensus quality scores generated as described above. The Celera 

assembler (CABOG) was run with default parameters and “unitigger=bog”. 

 

Assessment of assembled SA read quality 

Contigs produced by the Celera Assembler from SA reads were aligned to the reference using 

BLAST with the following parameters: “-p blastn -e 1e-6 -m 8 -F F”. Substitution error rate was 

measured as the number of mismatches within the best BLAST alignment for each contig. To 

account for a potentially higher error rate in misassembled contigs, if a contig aligned across 

less than 95% of its length, other BLAST alignments were also considered as long as they 

comprised at least 10% of the contig length. 

 

Scaffolding of contigs for P. aeruginosa 

For de novo assembly of the P. aeruginosa genome, we used independently produced shotgun 

sequencing libraries to scaffold the contigs produced from SA reads as follows. The resulting 

contigs were scaffolded using a custom script that used 36-bp shotgun paired-end Illumina 

reads from one lane each of short-insert (~200 bp) and long-insert (~2.5 kb) libraries. The gap 

between each pair of adjacent contigs in a scaffold was dynamically estimated based on the 

distance of the read pairs connecting the two contigs from the ends of the contigs and the 

expected insert size of the library from which they were derived. Scaffolds were then 

constructed by separating the contigs by a string of unknown nucleotides (Ns) as long as the 

estimated gap size. For cases where the expected gap size was close to zero or negative 

(indicating a possible overlap), the adjacent ends of the two contigs were subjected to a Smith-

Waterman alignment and merged accordingly if a match was detected. 

 

TDRG merging algorithm 

Paired 36-bp reads were obtained from a sequencing library prepared from bottlenecked, 

adaptor-ligated metagenomic fragments, then trimmed computationally to 20 bp to correspond 

to the length of the tag reads that were obtained during sequencing of the subassembly 

libraries. 

To prevent sequencing errors at the ends of the reads from creating spurious tags and tag pairs, 

we trimmed the reads further to the first 15 bp. If multiple TDRGs (defined by 20-bp tags) could 

correspond to a single 15-bp tag from a merging read pair, the TDRG with the most members 

was chosen. In descending order of tag-pair abundance, we defined TDRG pairs, removing tags 

that had been assigned to TDRG pairs as we proceeded. 
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Velvet assembly of shotgun metagenomic library 

 

Paired-end shotgun reads constructed according to standard Illumina protocols were assembled 

using Velvet with the following parameters: “-cov_cutoff 2 -exp_cov [variable] -ins_length 250 -

unused_reads yes”. 

If exp_cov was set to 1, cov_cutoff was set to 0. As Velvet (along with all other short-read 

assemblers) is not designed for assembly of metagenomic sequences, considerable effort was 

made to optimize its performance with respect to length of sequences produced and agreement 

with the available Sanger sequencing data to make the fairest comparison possible. We found 

that contig length was sensitive to the exp_cov parameter (Figure B.5). However, we observed 

unpredictable performance with respect to agreement with the Sanger sequencing data when 

altering this parameter, as agreement improved for the paired-end 76-bp reads but degraded for 

the paired-end 48-bp reads. We therefore chose an exp_cov value of 100 as the best 

compromise of sequence length and coverage for the comparator datasets. 

Resulting scaffolds were then split into contigs that did not contain Ns, as we reasoned that key 

goals of metagenomic sequencing such as gene discovery and phylogenetic classification 

would depend solely on the length of contiguous regions of defined bases. 

 

Comparison to Sanger sequencing data with BLAST 

Contigs produced from SA reads with CABOG and contigs produced from shotgun short reads 

with Velvet were aligned to one another and to the recently collected Sanger sequencing data 

from the same sample (JGI IMG/M Taxon Object ID 2006207002, NCBI accession number 

ABSR01000000) using BLAST with the following parameters: “-p blastn -e 1e-6 -m 8 -F F”. Two 

bases were considered to be a shared position between two datasets if they were contained in a 

BLAST alignment at least 100 bp long and with at least 98% identity. For the Venn diagram 

(Supplementary Fig. 6), an additional restriction was added so that mappings between the three 

datasets were not ambiguous: the two bases were required to be in the BLAST alignment with 

the highest bit score of all the BLAST alignments between the two datasets involving either 

base. 
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Appendix C. Supplementary material for Chapter 5 

Supplementary Tables 

 

Table C.1. Predictive power and significance of multiple linear regression models 

Library 

 

n term model 3n term model 

R
2
 p R

2
 p 

ALDOB 0.03 < 0.005 0.05 < 0.01 

ECR11 0.12 < 0.005 0.19 < 0.01 

LTV1 rep. 1 0.21 < 0.005 0.29 < 0.01 

LTV1 rep. 2 0.22 < 0.005 0.30 < 0.01 

 

Multiple linear regression models taking into account all positions (n term model, where n is the length of 

the enhancer) or all mutations at all positions (3n term model), were constructed for each of the 

enhancers. Listed here are R
2
 values and p-values (computed by constructing models for 200 or 100 

random permutations of the outcome vector and comparing mean squared errors from the permuted data 

models to the actual data model).  
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Table C.2. Predicted transcription factor binding sites. 

Enhancer Start 
pos. 

End 
pos. 

Strand Factor Core 
Match 

Matrix 
Match 

Enhancer Start 
pos. 

End 
pos. 

Strand Factor Core 
Match 

Matrix 
Match 

aldob 16 29 - C/EBPbeta 0.833 0.799 ecr11 212 226 - HNF-3beta 1 0.842 

aldob 17 27 + AP-1 1 0.975 ecr11 217 230 - C/EBPbeta 0.829 0.786 

aldob 41 52 + Oct-1 1 0.91 ecr11 219 228 + GATA-3 0.977 0.886 

aldob 45 58 - C/EBPbeta 0.833 0.776 ecr11 221 236 + GR 1 0.848 

aldob 92 105 - HNF-4 0.825 0.811 ecr11 247 259 - CHOP - 
C/EBPalpha 

0.778 0.819 

aldob 112 125 - C/EBPbeta 0.821 0.762 ecr11 249 262 + C/EBPbeta 0.833 0.863 

aldob 120 130 - AP-1 0.935 0.868 ecr11 249 262 - C/EBPbeta 0.816 0.861 

aldob 135 151 + HNF-1 1 0.795 ecr11 264 273 + USF 0.918 0.868 

aldob 140 149 + TATA 1 0.888 ecr11 272 281 + USF 0.918 0.873 

aldob 141 155 - HNF-3beta 1 0.835 ecr11 361 371 + AP-1 0.935 0.854 

aldob 148 158 - AP-1 0.935 0.866 ecr11 382 401 - YY1 1 0.855 

aldob 149 166 - NF-1 1 0.983 ecr11 390 407 + NF-1 0.911 0.878 

aldob 150 163 - HNF-4 0.796 0.802 ecr11 394 403 + USF 0.905 0.88 

aldob 153 162 + USF 0.945 0.932 ecr11 407 420 - C/EBPbeta 0.816 0.787 

aldob 157 170 - HNF-4 0.988 0.892 ecr11 429 438 + USF 0.905 0.854 

aldob 170 179 + USF 0.931 0.852 ecr11 438 447 + TATA 1 0.882 

aldob 201 217 + HNF-1 0.942 0.706 ecr11 460 474 - HNF-3beta 1 0.894 

aldob 205 215 + AP-1 0.935 0.922 ecr11 465 478 - C/EBPbeta 0.829 0.786 

aldob 209 225 - HNF-1 0.771 0.632 ecr11 465 481 - HNF-1 0.829 0.712 

aldob 217 230 + C/EBPbeta 0.859 0.784 ecr11 467 476 + GATA-3 0.977 0.886 

aldob 247 256 + GATA-3 1 0.935 ecr11 474 487 + C/EBPbeta 0.883 0.815 

aldob 247 256 - GATA-3 1 0.946 ecr11 489 498 + GATA-3 0.945 0.91 

ecr11 18 27 + GATA-3 0.968 0.912 ecr11 520 533 + C/EBPbeta 0.865 0.78 

ecr11 25 41 + HNF-1 0.92 0.657 ecr11 521 537 - HNF-1 0.874 0.71 

ecr11 31 47 - HNF-1 1 0.647 ecr11 545 561 - HNF-1 0.835 0.732 

ecr11 44 53 + USF 0.918 0.865 ecr11 549 562 - C/EBPbeta 0.883 0.829 

ecr11 51 64 + C/EBPbeta 0.854 0.811 ecr11 567 580 + C/EBPbeta 0.833 0.788 

ecr11 62 71 + TATA 1 0.952 ecr11 571 585 + HNF-3beta 1 0.907 

ecr11 64 78 - HNF-3beta 1 0.85 ecr11 573 585 - CHOP - 
C/EBPalpha 

0.882 0.81 

ecr11 71 87 - HNF-1 0.771 0.706 ecr11 603 619 + HNF-1 0.796 0.657 

ecr11 74 88 + HNF-3beta 1 0.832 ltv1 6 16 + AP-1 0.935 0.892 

ecr11 87 100 - C/EBPbeta 0.816 0.84 ltv1 8 21 + HNF-4 1 0.873 

ecr11 87 101 - HNF-3beta 1 0.836 ltv1 13 23 + AP-1 0.935 0.847 

ecr11 87 104 - NF-1 1 0.961 ltv1 18 35 + NF-1 0.921 0.88 

ecr11 87 96 - TATA 1 0.9 ltv1 36 49 + C/EBPbeta 0.848 0.789 

ecr11 98 107 - USF 0.945 0.931 ltv1 43 58 + GR 0.978 0.85 

ecr11 102 118 + HNF-1 0.829 0.818 ltv1 86 103 + NF-1 1 0.952 

ecr11 102 112 + AP-1 0.811 0.825 ltv1 91 100 - USF 0.931 0.911 

ecr11 106 116 + AP-1 1 0.969 ltv1 101 115 - HNF-3beta 1 0.879 

ecr11 108 124 - HNF-1 1 0.78 ltv1 126 139 - C/EBPbeta 0.828 0.804 
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ecr11 116 129 - C/EBPbeta 0.842 0.859 ltv1 127 137 - AP-1 0.935 0.889 

ecr11 120 134 - HNF-3beta 0.93 0.868 ltv1 159 176 - NF-1 0.921 0.88 

ecr11 144 153 + GATA-3 0.981 0.908 ltv1 163 176 + C/EBPbeta 0.888 0.837 

ecr11 146 155 - GATA-3 0.981 0.908 ltv1 199 209 + AP-1 0.935 0.887 

ecr11 147 163 - HNF-1 0.795 0.682 ltv1 202 219 - NF-1 0.905 0.864 

ecr11 167 182 - GR 1 0.886 ltv1 213 222 + USF 0.987 0.857 

ecr11 175 189 - HNF-3beta 1 0.926 ltv1 223 232 - USF 0.926 0.883 

ecr11 187 204 + NF-1 0.921 0.875 ltv1 243 254 - CREB 1 0.975 

ecr11 191 207 - HNF-1 0.794 0.672 ltv1 244 254 - AP-1 0.935 0.868 

ecr11 196 205 - GATA-3 0.896 0.881 ltv1 248 265 - NF-1 0.921 0.898 

ecr11 198 211 - C/EBPbeta 0.996 0.885 ltv1 285 298 - C/EBPbeta 0.854 0.781 

 

We used the MATCH web server[109] to predict transcription factor binding sites (TFBS) in the three 

enhancers under study using liver-specific profiles and cutoff selection set to minimize false negatives.  
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Table C.3: Characteristics of interacting positions from pairwise multiple regression models. 

 

For pairs of positions that were mutated together in at least 20 haplotypes, we built multiple linear 

regression models with three binary variables to predict the number of RNA aliquots in which a haplotype 

was observed. Two variables encoded whether each position was mutant or wild-type in a given 

haplotype and the third encoded whether both were mutant together. We then compared whether pairs of 

positions with significant interaction terms (FDR<0.05) were enriched for nearby pairs (separated by ≤10 

nt) compared to those with non-significant interaction terms (p-value obtained by comparing the number 

of nearby pairs with significant interaction terms to the null distribution of this quantity, obtained by 

randomly permuting the position vector 10,000 times and each time computing the number of nearby 

pairs with significant interaction terms). We also classified models on the basis of the sign (positive or 

negative) of the coefficient from the univariate position-by-position models (“Univar. model coeff. signs”), 

the interaction term sign, and whether or not the interaction term was significant in the pairwise model 

(note that non-significant interactions terms cannot be distinguished from zero and therefore do not have 

a sign). 

  

  
ALDOB ECR11 LTV1 

  
<=10 nt >10 nt <=10 nt >10 nt <=10 nt >10 nt 

Not significant 2509 30798 5706 178301 2787 41143 
Significant 22 60 17 182 28 17 

p-value < 1e-4 < 1e-3 < 1e-4 

  ALDOB ECR11 LTV1 
Univar. 
model 
coeff. 
signs 

Interaction 
term sign Not significant Significant Not significant Significant Not significant Significant 

-/- - 7378 0 4195 0 9690 0 

-/- + 2 4 18 

+/- - 4471 36 5387 20 8315 4 

+/- + 6 1 4 

+/+ - 654 0 1682 1 1760 5 

+/+ + 12 23 3 
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Table C.4 Sequences of oligonucleotides and primers 

Oligonucleotides used for PCA 

ALDOB_PCA_OLIGO1 AGGACCGGATCAACTTCTTCA 

ALDOB_PCA_OLIGO2 
TCCCTGTAAACAGTATTAGTTTGAATTATCATTTTCACTGTTATTCTGGTTGAGTCAGCATAC

CCAGATTGAAGAAGTTGATCCGGTCCT 

ALDOB_PCA_OLIGO3 
ATAATTCAAACTAATACTGTTTACAGGGAGTTAAACTTCTACAGTGGGATTAAAGGTCTGTAC

CACGTTAGCACAAATGTCACCTCTCTG 

ALDOB_PCA_OLIGO4 
CCATCCCAGGTTGTCCTCCTGTCTCCTTGTGGTGAACATTGGCCTGTGACCCTGTTTTATGA

TTAACAGAGAGGTGACATTTGTGCTAAC 

ALDOB_PCA_OLIGO5 
GGAGGACAACCTGGGATGGGTAATGACAAAGAACGATTTCCGTACTCCTAAGCCTCTGCTC

TCTCAGATCTCAAGCCATTGCGTGAACCG 

ALDOB_PCA_OLIGO6 TCGGTTCACGCAATGGCTTG 

ECR11_PCA_OLIGO1 AGGACCGGATCAACTCTCTGAAGCTCAAAAGCAATG 

ECR11_PCA_OLIGO2 
AAACATTTAGTATTTTTAAAGGTGTTGGAATTCAAGTGTTAAAAATCGAAGCCTTATCAAATCA

TTGCTTTTGAGCTTCAGAGAGT 

ECR11_PCA_OLIGO3 
ATTCCAACACCTTTAAAAATACTAAATGTTTCCCATTTTAAACAAGCCAAGTGAATGACTGAA

TTCTTAACCAAAAATAAATGTGA 

ECR11_PCA_OLIGO4 
GGCCAGAGAATATTTATATAATGTTCTGTATGGACAAAGAGTGATATCAATCTACTTCACATT

TATTTTTGGTTAAGAATTCAGTC 

ECR11_PCA_OLIGO5 
ACAGAACATTATATAAATATTCTCTGGCCTTACTATCTAGCAAGGCAGGAAAAATAGATCAAT

TTGTTCTCACTCATAGGTGGGAA 

ECR11_PCA_OLIGO6 
CCCCACAACAGGCCCCGATGTGTGATGTTCCCCTTCCTGTGTCCATGTGTTCTCATTGTTCA

ATTCCCACCTATGAGTGAGAACAA 

ECR11_PCA_OLIGO7 
GGGGCCTGTTGTGGGGTGGGGGGAGGGGGGAGGGATAGCATTAGGAGATATATCTAACGT

TAAATGACGTGTTAATGGGAGCAGCA 

ECR11_PCA_OLIGO8 
TAAGTTTTAGGGTACATGTGCACAACATGCAGTTTGTTACATATGTATACATGTGCCATGTTG

GTGTGCTGCTCCCATTAACACGT 

ECR11_PCA_OLIGO9 
TTGTGCACATGTACCCTAAAACTTAAAGTATAATAAGAAAAATAGATCAATTTACTCTACATCT

GAGATTAAAAAGCAGAAAGACT 

ECR11_PCA_OLIGO10 
TTCTCGCTGTTACTCTATTTCTGGTTCTGAATGTCAAATACTGAAACTCTGTGAGTGAGTCTT

TCTGCTTTTTAATCTCAGATGTA 

ECR11_PCA_OLIGO11 
ACCAGAAATAGAGTAACAGCGAGAACTTGAACTATTTCAGTTTAGCCTCCCACCCTCTCTGC

TATCACTTCCCAAAACATTGCGTG 

ECR11_PCA_OLIGO12 TCGGTTCACGCAATGTTTTGGGAAGTG 

LTV1_PCA1_OLIGO1 
ATCACAAGTTTGTACAAAAAAGCAGGCTCCGCGGCCGCCCCCTTCACCTTTGGGTGACCCC

TGACCCTGGCCGCCTGGGCTC 

LTV1_PCA1_OLIGO2 
ACAGGGCCAAGGAAGGAGGGCGGGGTGGGGCGGGGCGGCGAGGACGGAATGTGCGGGA

AGGCGAGCCCAGGCGGCCAGGGTC 

LTV1_PCA1_OLIGO3 
CCCTCCTTCCTTGGCCCTGTGGGGACGGAAACATCCCGTTCCTGCCCAAGCTGGGTCAAGA

GCCGGAGGGACAGGACCAGAG 

LTV1_PCA1_OLIGO4 
AGGCGTGGCGAGATGAGGTCACCCAGTAGGAACAAGGAGAGCTAGTTCTGGCGTAAGGGG

TGCTCTGGTCCTGTCCCTCCGG 

LTV1_PCA1_OLIGO5 GACCTCATCTCGCCACGCCTCCTCAGGTGAACACCCGGGCTGGTAACGTCACTTCCTGCCA
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GGTAAGCGCCCCCAGGCAGCA 

LTV1_PCA1_OLIGO6 
ATCACCACTTTGTACAAGAAAGCTGGGTCGGCGCGCCCACCCTTCAGACCTTTCCGTGAGC

AGTGCTGCCTGGGGGCGCTTAC 

LTV1_PCA2_OLIGO1 
AGCAGGCTCCGCGGCCGCCCCCTTCACCTTTGGGTGACCCCTGACCCTGGCCGCCTGGGC

TCGCCTTCCCGCACATTCCG 

LTV1_PCA2_OLIGO2 
GGATGTTTCCGTCCCCACAGGGCCAAGGAAGGAGGGCGGGGTGGGGCGGGGCGGCGAG

GACGGAATGTGCGGGAAGGCGA 

LTV1_PCA2_OLIGO3 
CTGTGGGGACGGAAACATCCCGTTCCTGCCCAAGCTGGGTCAAGAGCCGGAGGGACAGGA

CCAGAGCACCCCTTACGCCA 

LTV1_PCA2_OLIGO4 
GTTCACCTGAGGAGGCGTGGCGAGATGAGGTCACCCAGTAGGAACAAGGAGAGCTAGTTC

TGGCGTAAGGGGTGCTCTGG 

LTV1_PCA2_OLIGO5 
CCACGCCTCCTCAGGTGAACACCCGGGCTGGTAACGTCACTTCCTGCCAGGTAAGCGCCC

CCAGGCAGCACTGCTCACGG 

LTV1_PCA2_OLIGO6 
ATCACCACTTTGTACAAGAAAGCTGGGTCGGCGCGCCCACCCTTCAGACCTTTCCGTGAGC

AGTGCTGCCTGG 

LTV1_PCA1_P1 GCTAGCCTCGAGGATATCACAAGTTTGTACAAAAAAGCAGGCTCCG 

LTV1_PCA1_P2 ACGGGCCAAGGAAGGAGGGC 

LTV1_PCA1_P3 CCCTCCTTCCTTGGCCCTGTGG 

LTV1_PCA1_P4 AGGCGTGGCGTGATGAGGTCAC 

LTV1_PCA1_P5 GACCTCATCTCGCCACGCCTCC 

LTV1_PCA1_P6 AGGCCAGATCTTGATATCACCACTTTGTACAAGAAAGCTGGGTCG 

LTV1_PCA2_P1 GCTAGCCTCGAGGATATCACAAGTTTGTACAAAAAAGCAGGCTCCGCGGCC 

LTV1_PCA2_P2 GGATGTTTCCGTCCCCACAGGG 

LTV1_PCA2_P3 CTGTGGGGACGGAAACATCCCG 

LTV1_PCA2_P4 GTTCACCTGAGGAGGCGTGGCG 

LTV1_PCA2_P5 CCACGCCTCCTCAGGTGAACAC 

LTV1_PCA2_P6 AGGCCAGATCTTGATATCACCACTTTGTACAAGAAAGCTGGGTC 

LTV1_OUTER_F GCTAGCCTCGAGGAT 

LTV1_OUTER_R AGGCCAGATCTTGAT 

Oligonucleotides used for cloning, tagging  and sequencing 

VH_F GCTAGCCTCGAGGATTGCCTAGGACCGGATCAACT 

VH_R AGGCCAGATCTTGATGAGCTTCGGTTCACGCAATG 

ENHANCER_FWD AATGATACGGCGACCACCGAGATCTACACTGCCTAGGACCGGATCAACT 

LTV1_F GGGAGGTATTGGACAGGCCGC 

Nextera Adapter1 AATGATACGGCGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAG 

Nextera BP1 AATGATACGGCGACCACCGA 

BARCODE_PE_F AATGATACGGCGACCACCGAGATCTACACAGTCGCCTATACGGTGATGG 

BARCODE_PE_R CAAGCAGAAGACGGCATACGAGATATGGGATTAAACGGGGAGAC 

BARCODE_PE_R_ILMNINDX1 
CAAGCAGAAGACGGCATACGAGATCGTGATTCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_PE_R_ILMNINDX2 CAAGCAGAAGACGGCATACGAGATGCCTAATCGACTCTAGATGGGATTAAACGGGGA
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GAC 

BARCODE_PE_R_ILMNINDX3 
CAAGCAGAAGACGGCATACGAGATCACTGTTCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_PE_R_ILMNINDX4 
CAAGCAGAAGACGGCATACGAGATATTGGCTCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_PE_R_ILMNINDX5 
CAAGCAGAAGACGGCATACGAGATTCAAGTTCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_PE_R_ILMNINDX6 
CAAGCAGAAGACGGCATACGAGATCTGATCTCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_PE_R_ILMNINDX7 
CAAGCAGAAGACGGCATACGAGATAAGCTATCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_PE_R_ILMNINDX8 
CAAGCAGAAGACGGCATACGAGATGTAGCCTCGACTCTAGATGGGATTAAACGGGGA

GAC 

BARCODE_SEQ_F GACCACCGAGATCTACACAGTCGCCTATACGGTGATGG 

BARCODE_SEQ_INDEX GTCTCCCCGTTTAATCCCATCTAGAGTCGA 

TAG_OLIGO 
GTGTAATAATTCTAGAAGCTTAGTCGCCTATACGGTGATGGNNNNNNNNNNNNNNNN
NNNNGTCTCCCCGTTTAATCCCATCTAGAGTCGGGGCGG 

TAG_EXTEND CCGCCCCGACTCTAGATG 
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Supplementary Figures 

 

Figure C.1. Activity of wild-type enhancers and variant pools by tail vein luciferase assay. 

(a) Identification of LTV1 based on p300 ChIP-Seq from early adult mouse liver and position of deletion 

fragments constructed to refine enhancer position. The labels indicate the name and size (bp) of each 

fragment (b) Relative luciferase activity driven by the various LTV1 fragments compared to the APOE liver 

enhancer and minimal promoter only (pGL4.23). *:p<0.05, **:p<0.01, One way analysis of variance 

(ANOVA) with Tukey post-hoc test to compare groups. (c) Relative luciferase activity driven by the three 

wild-type enhancers used in this study compared to the APOE liver enhancer and minimal promoter only 

(pGL4.23). *:p<0.05, **:p<0.01, Student’s unpaired two tailed t-test (d) Aggregate relative luciferase 

activity driven by a pool of all the enhancer haplotypes for each of the three enhancers under study and 

compared to the ApoE liver enhancer and minimal promoter only (pGL4.23).  

c d

b

a
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Figure C.2. Distribution of mutations per enhancer haplotype. 
 
The fraction of enhancer haplotypes containing a given number of mutations (a) and the fraction of 
enhancer haplotypes with a given per-base mutation rate (b). 
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Figure C.3. Distribution of mutations by position in enhancer haplotypes. 
 
Per-base mutation rate as a function of position in the enhancer for ALDOB (a), ECR11 (b), and the two 
replicates of LTV1 (c, d). As would be expected, dips in mutation rate correspond to overlap regions 
during the PCA process (horizontal gray bars). Nonetheless, all possible substitution mutations were 
observed in at least 42 distinct enhancer haplotypes and all pairs of positions were disrupted together in 
at least one haplotype with the exception of a single pair of positions in LTV1. 
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Figure C.4. Mutation effect size in the second replicate of LTV1. 
 
Position-specific mutation effect sizes based on coefficients from univariate (grey columns, left axis) (a) 
and trivariate models (A:red, C:blue, G:green, T:purple) (b) are plotted here. Effect sizes were calculated 
by taking the log2 of the ratio of the number of aliquots predicted by the model with a mutation to the 
number of aliquots predicted for the wild-type nucleotide. Effect sizes are only shown for positions where 
model coefficients had associated p-values less than or equal to 0.01. Multiple linear regression was used 
to predict the number of aliquots in which a given enhancer haplotype was observed, using sets of 10 
adjacent positions (coded as binary vectors based on whether a mutation was present in each enhancer 
haplotype) as predictors. The F-statistic of these models, representing the extent to which the model is 
predictive of the outcome, is plotted (blue shadow, right axis) (a). The locations of TFBS predictions using 
the MATCH web server are shown as horizontal grey bars at the top of the plot. 
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Figure C.5. Comparison between univariate and multivariate linear regression coefficients. 

Coefficients calculated via univariate linear regression (i.e. only considering mutational status at a single 
position) are plotted against coefficients calculated via multivariate linear regression (simultaneously 
considering mutational status at all sites in the enhancer) for ALODB (a), ECR11 (b), and LTV1 (c). The 
line y=x is shown in gray in all three plots.  
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Figure C.6. P-value for the similarity of effect sizes of nearby positions. 

To assess the similarity of the effect sizes of mutations at nearby positions in each enhancer, we summed 
the absolute difference between effect sizes at all positions separated by a fixed “lag” distance. We then 
recalculated this quantity 1000 times after randomly permuting the effect sizes. We obtained a p-value by 
calculating the fraction of times that the quantity computed on the permuted effect sizes was at least as 
small as the quantity computed on the real data. This was repeated for a range of values of the lag 
distance. The p-value is plotted here as a function of the lag distance. Positions separated by ~5 
nucleotides or fewer show substantially similar effect sizes (p<0.01) across all three enhancers assayed. 
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Figure C.7. Mutation effect size in the distal 160 nt of ECR11. 

Position-specific mutation effect sizes based on coefficients from univariate (grey columns, left axis) (a) 
and trivariate models (A:red, C:blue, G:green, T:purple) (b) are plotted here. Effect sizes were calculated 
by taking the log2 of the ratio of the number of aliquots predicted by the model with a mutation to the 
number of aliquots predicted for the wild-type nucleotide. Effect sizes are only shown for positions where 
model coefficients had associated p-values less than or equal to 0.01. Multiple linear regression was used 
to predict the number of aliquots in which a given enhancer haplotype was observed, using sets of 10 
adjacent positions (coded as binary vectors based on whether a mutation was present in each enhancer 
haplotype) as predictors. The F-statistic of these models, representing the extent to which the model is 
predictive of the outcome, is plotted (blue shadow, right axis) (a). The locations of TFBS predictions using 
the MATCH web server are shown as horizontal grey bars at the top of the plot. 



109 
 

 

  

Figure C.8. Single nucleotide relationships between evolutionary and functional constraint. 

Positions were rank-ordered based on the absolute vale of their effect size (from position-based, i.e. 
univariate, linear models) and the difference in the mean conservation score for the top x percent of 
positions versus the mean conservation score for the bottom 100-x percent of positions is shown (a). For 
example, a cutoff at the tenth percentile separates the highest impact ten percent of positions from the 
lowest impact ninety percent. A t-test was then performed to compare the means of the two distributions 
of conservation scores for a given impact threshold cutoff and the p-values associated with each test are 
shown in (b). The highest impact mutations tend to be significantly more conserved than the remainder of 
positions for ALDOB and ECR11. 

a

b
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Supplementary Note 1: Multiple linear regression on entire haplotypes 

 

While linear models constructed on a position-by-position basis best represent the effect size of 

individual mutations, they may not perform optimally as predictors of the transcriptional activity 

of entire haplotypes, which contain many such mutations. To assess the ability of models 

constructed from our data to predict overall haplotype activity, we built two multiple linear 

regression models for each enhancer. The first model was composed of n binary variables 

(where n is the length of the enhancer) for whether or not a position was wild-type in an 

enhancer haplotype, and the second model was composed of 3n binary variables for whether a 

position was a particular mutant nucleotide in an enhancer haplotype (Table C.1). While all the 

models were significant as measured by comparison of mean squared error calculated from 

actual versus data versus data with the outcome vector permuted (p<0.01), the explanatory 

power of these models (R2) ranged from 0.03 to 0.3, suggesting that complexity bottlenecking 

has limited the ability of our models to explain large fractions of the observed variation for entire 

haplotypes. Specifically, the relatively few numbers of tags with which individual haplotypes are 

associated, and the relatively few aliquots in which individual tags are observed, adds 

considerable stochastic noise to the system.  
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Supplementary Methods 

 

Construction of enhancer haplotypes from short, doped oligonucleotides using PCA 

Sets of overlapping oligonucleotides for each enhancer were designed either by manual 

inspection (LTV1) or using the program DNAWorks (ALDOB and ECR11). Common flanking 

sequences were included on either side to allow for amplification of the full-length enhancer 

haplotypes during PCA. For LTV1, two versions of overlapping oligonucleotides were designed, 

such that the overlap region in each was different. Oligonucleotides were synthesized by 

Integrated DNA Technologies (IDT). All positions corresponding to the enhancer region were 

synthesized using a hand-mix doped at a ratio of 97:1:1:1 (that is, designated base at a 

frequency of 97%, and every other base at a frequency of 1%). Sequences of all 

oligonucleotides are listed in Table C.5. 

For ALDOB as well as ECR11, the full-length haplotypes were assembled in a single step. We 

used 50 fmol of each oligonucleotide (ALDOB_PCA_OLIGO[1...6] or 

ECR11_PCA_OLIGO[1...12]) in a 25 μl PCR reaction volume with 1× KapaHiFi Hot Start Ready 

Mix (Kapa BioSystems), and 0.5× SYBR Green II, with the following cycling conditions: 95 °C 

for 3 min; followed by 30 cycles of 98 °C for 20 s, 65 °C for 15 s, 72 °C for 15 s. Each sample 

was monitored and extracted from the PCR machine when fluorescence began to plateau. Four 

such reactions were carried out in parallel and then pooled together for each enhancer. The 

PCR product representing a complex pool of enhancer haplotypes was purified using QIAquick 

columns (Qiagen). The assembled enhancer haplotypes were then subjected to an additional 

around of PCR to add 15 bp of vector homology on either side to render them competent for 

cloning using InFusion (Clontech). We used 20 ng of template in a 25 μl PCR reaction volume 

with 1× KapaHiFi Hot Start Ready Mix, 0.5× SYBR Green II, and each primer (VH_F and VH_R) 

at 0.3 μM final concentration. Thermal cycling was done with the following program: 95 °C for 3 

min; followed by 30 cycles of 98 °C for 20 s, 65 °C for 15 s, 72 °C for 15 s. Each sample was 

monitored and extracted from the PCR machine when fluorescence began to plateau. Sixteen 

such reactions were carried out in parallel and then pooled together for each enhancer. The 

PCR product was purified using QIAquick columns (Qiagen). 

The two LTV1 designs were assembled separately. For each design, pairs of oligonucleotides, 

that is, oligonucleotides 1 and 2, oligonucleotides 3 and 4, and oligonucleotides 5 and 6, were 

each assembled in parallel and the products of the three reactions were then assembled 

together into the final product in a single reaction as follows: 

 Templates Primers 

Step 1, Reaction 1 LTV1_PCA[1/2]_OLIGO1, 
LTV1_PCA[1/2]_OLIGO2 

LTV1_PCA[1/2]_P1, 
LTV1_PCA[1/2]_P2 

Step 1, Reaction 2 LTV1_PCA[1/2]_OLIGO3, 
LTV1_PCA[1/2]_OLIGO4 

LTV1_PCA[1/2]_P3, 
LTV1_PCA[1/2]_P4 

Step 1, Reaction 3 LTV1_PCA[1/2]_OLIGO5, 
LTV1_PCA[1/2]_OLIGO6 

LTV1_PCA[1/2]_P5, 
LTV1_PCA[1/2]_P6 

Step 2  Products of reactions 1, 2, and 3 LTV1_OUTER_F, LTV1_OUTER_R 
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Each 50 μl PCR reaction was prepared on ice with 1× iProof Ready Mix (Bio-Rad), 0.5× SYBR 

Green II, forward and reverse primers each at 0.5 μM final concentration and 50 fmol of each 

template oligo. Thermal cycling was done in a MiniOpticon Real-time PCR system (Bio-Rad) 

with the following program: 98 °C for 30 s, followed by 30 cycles of 98 °C for 10 s, 62 °C for 30 s 

and 72 °C for 15 s. Each sample was monitored and extracted from the PCR machine when 

fluorescence began to plateau. PCR products were purified on a QIAquick column (Qiagen). 

The haplotypes obtained from each of the two LTV1 designs were pooled after the PCA step. 

Two aliquots were drawn from this pool, and then carried through subsequent steps as two 

independent samples and were associated with entirely different sets of tags. 

 

Cloning of enhancer haplotypes and the degenerate tag into pGL4.23 plasmid 

For ALDOB and ECR11, we first cloned in the degenerate tag to create a complex library of 

tagged pGL4.23 plasmids. We then cloned in the enhancer haplotypes into these tagged 

pGL4.23 plasmids. For LTV1, we first cloned in the enhancer haplotypes and then cloned in the 

degenerate tag. Details of each cloning step remained the same, irrespective of the order in 

which they were carried out, and are described below. 

Cloning of degenerate tag into pGL4.23 plasmid 

The tag oligonucleotide (TAG_OLIGO) was made double-stranded using primer extension in a 

50 μl reaction volume with 1× iProof Master Mix, 0.5 μg single-stranded tag oligo, 0.5 μg 

reverse primer (TAG_EXTEND). The reaction was incubated at 95 °C for 3 min, 61 °C for 10 

min and then 72 °C for 5 min. The product was purified using a QIAquick column and eluted in 

50 μl EB. It was further subjected to ExoI treatment in 40 μl reaction volume for 1 h at 37 °C to 

degrade any remaining single-stranded DNA, and purified again using QIAquick columns. The 

resulting double-stranded tag oligo was then cloned into pGL4.23 at the XbaI site (at 1,799 bp) 

using standard InFusion (Clontech) protocol. The InFusion reaction was diluted to 100 μl using 

TE8. We used 1.5 μl of this diluted cloning reaction to transform 50 μl of chemically competent 

FusionBlue cells (Clontech) using the standard protocol. When the tag was being cloned in first, 

16 such transformation reactions were pooled and grown overnight in four 50-ml liquid cultures 

at 37 °C in a shaking incubator. DNA was extracted using the Invitrogen Charge Switch Mini 

Prep Kit for ALDOB and ECR11, and the Invitrogen Charge Switch Midi Prep Kit for LTV1. 

Cloning enhancer haplotypes into pGL4.23 vector 

The enhancer haplotypes were cloned into the EcoRV site (at 42 bp) of the pGL4.23 plasmid, 

using standard InFusion protocol. We used 1.5 μl of the cloning reaction to transform 50 μl of 

chemically competent FusionBlue cells using standard protocol. Five transformations reactions 

were pooled and grown overnight in 50 ml liquid cultures at 37 °C in a shaking incubator. DNA 

was extracted using the Invitrogen Charge Switch Mini Prep Kit for ALDOB and ECR11, and the 

Invitrogen Charge Switch Midi Prep Kit for LTV1. 
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Tail vein injections 

Enhancers were injected using methods as previously described [106]. Briefly, each library was 

injected into mice using the TransIT EE Hydrodynamic Gene Delivery System (Mirus Bio) 

following the manufacturer's protocol. We injected 10 μg of each library, alongside 2 μg of 

pGL4.74[hRluc/TK] vector to correct for injection efficiency, into the tail vein of CD1 mice 

(Charles River). After 24 h, mice were euthanized and livers were harvested. 

 

Measurement of luciferase activity 

Firefly and renilla luciferase activity were measured on a Synergy 2 Microplate Reader (BioTek 

Instruments) for each liver using the Dual Luciferase Reporter Assay System (Promega). The 

firefly luciferase to renilla luciferase ratios were determined and expressed as relative luciferase 

activity. All mouse work was approved by the UCSF Institutional Animal Care and Use 

Committee. 

 

Isolation of RNA from mouse livers 

Fresh liver tissue was immediately stabilized in RNAlater solution (Ambion). Samples were 

homogenized in TRIzol reagent (Invitrogen) and RNA was isolated from the samples according 

to the manufacturer's instructions. 

 

DNase treatment of RNA 

To remove any DNA contamination in the RNA extracted from mouse livers, it was subjected to 

DNaseI treatment using DNA-free (Ambion). Each reaction was prepared with 1× DNA-free 

buffer, 1 μl of rDNaseI enzyme, 10 μg of RNA and RNase-free water to 50 μl. The reactions 

were incubated at 37 °C for 1 h, with an additional 1 μl of enzyme added mid-way through the 

incubation. The reaction was stopped by adding 7 μl of the inactivation reagent and incubating 

for 2 min at 25 °C with frequent shaking. The reaction was centrifuged in a microcentrifuge at 

10,000g for 1.5 min, and the supernatant containing RNA was carefully transferred to a fresh 

tube. 

 

RT-PCR 

Aliquots of RNA obtained after DNase treatment were reverse transcribed to cDNA and 

amplified by PCR using the Qiagen One-Step Kit. The PCR sought to amplify the 20-bp 

degenerate tag encoded at the 3′ end of the luciferase transcript. The reactions were assembled 

on ice in a 25 μl total volume with the following reagents: 1× Qiagen One-Step RT-PCR buffer, 

400 μM of each dNTP, 0.6 μM of forward primer (BARCODE_PE_F), 0.6 μM of relevant reverse 
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primer (BARCODE_PE_R_ILMN_INDEX[1-8]), 0.5× SYBR Green II and 5 μl (~1 μg) of RNA 

template. Thermal cycling was done on a Bio-Rad MiniOpticon Real-Time PCR system with the 

following program: 50 °C for 30 min (reverse transcription), 95 °C for 15 min (inactivation of 

reverse transcriptase and heat-activation of the DNA polymerase), then 30 cycles of 94 °C for 

30 s, 65 °C for 30 s and 72 °C for 30 s. Each reaction was monitored and extracted from the 

PCR machine when the fluorescence began to plateau. The cDNA products were purified using 

the QIAquick PCR Purification Kit (Qiagen) and eluted in 35 μl EB. The primers used for the RT-

PCR contained the necessary sequences for compatibility with the Illumina flow-cell. Thus, the 

cDNA library obtained at the end of this step was ready for sequencing, eliminating the need for 

a separate sequencing-library construction step. The reverse primer additionally included 6 bp 

barcodes allowing for several RT-PCR reactions to be pooled into a single lane for sequencing. 

 

Sequencing of RNA-derived tags 

The pooled RT-PCR reaction products were sequenced on an Illumina GAIIx using a 

sequencing primer (BARCODE_SEQ_F) designed to read into the tag sequence. Each run was 

36 cycles with an additional 6 cycles to read the indexing barcode using the index sequencing 

primer (BARCODE_SEQ_INDEX). 

For each aliquot, reads were filtered based on the quality scores for the first 20 bases, which 

correspond to the degenerate tag. The numbers of occurrences of each tag were counted and 

tags that were supported by at least ten reads were classified as being 'present' in that aliquot. 

 

Associating tags with enhancer haplotypes 

The enhancer haplotypes and tags were situated more than 1,000 bp away from each other on 

the pGL4.23 plasmid. To bring them adjacent and facilitate the subassembly method, we 

digested the pGL4.23 plasmids using HindIII, which had two cut sites, one just 3′ of the 

enhancer, and one just 5′ of the tag, thus resulting in excision of the intervening region. Cut site 

1 was already a part of the pGL4.23 backbone. Cut site 2 was engineered in as a part of the tag 

oligo. The digest was carried out in a 50 μl volume with 1× NEB Buffer 2, 1 μg of plasmid and 1 

μl of HindIII Enzyme (New England BioLabs) and incubated at 37 °C for 3 h. The digested 

plasmid was purified using a QIAquick column. 

The digested plasmids were then recircularized using intramolecular ligation, resulting in the tag 

becoming adjacent to the 3′ end of the enhancer. Ligation was performed using T4 DNA ligase 

(New England BioLabs) in a 20 μl reaction with 15 ng of template per reaction. The reaction was 

incubated for 15 min at 25 °C, followed 20 min at 65 °C to inactivate the ligase. 

The enhancer and tag region were amplified from recircularized plasmids using PCR with the 

forward primer targeting the region immediately 5′ of the enhancer (ENHANCER_F for ALDOB 

and ECR11, and LTV1_F for LTV1) and the reverse primer targeting the region immediately 3′ 

of the tag (BARCODE_PE_R). The reaction was carried out in a 25 μl volume with 1× KapaHiFi 
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Hot Start Ready Mix (Kapa BioSystems), 0.5× SYBR Green II, 5 μl of the ligation reaction, and 

each primer at 0.3 μM final concentration. Thermal cycling was done using Bio-Rad MiniOpticon 

Real-Time PCR system using the following program: 95 °C for 3 min; and then 30 cycles of 98 

°C for 20 s, 65 °C for 15 s, 72 °C for 15 s. Each reaction was monitored and removed from the 

PCR machine when the fluorescence began to plateau. The reactions were then pooled and 

purified using QIAquick columns. 

The amplicons were then subjected to the subassembly protocol as conceptually described in 

[107] with some modifications as follows. The random fragmentation step was carried out using 

the Nextera Tn5 transposase (EpiCentre) instead of mechanical shearing. The Nextera reaction 

was purified using MinElute column (Qiagen) and size-selected by PAGE (LTV1: 100+; 

ECR11:100-300,300+; ALDOB: no size-selection performed). The size-selected fragments were 

subjected to PCR in a 25 μl reaction volume with 1× KapaHiFi Hot Start Ready Mix (Kapa 

BioSystems), 0.5× SYBR Green II, 5 μl of the ligation reaction, Nextera Adaptor 1 at 10 nM final 

concentration, and primers Nextera BP1 and BARCODE_PE_R at 0.3 μM final concentration 

each. Thermal cycling was carried out using BioRad Mini Opticon System using the following 

program: 95 °C for 3 min; and then 30 cycles of 98 °C for 20 s, 65 °C for 15 s, 72 °C for 15 s. 

Each reaction was monitored and removed from the PCR machine when the fluorescence 

began to plateau. The PCR products were purified using a QIAquick column and then 

sequenced on either an Illumina GAIIx or a Hi-Seq 2000. Read1 collected 76 bp/101 bp of the 

enhancer sequence staring at random breakpoints along the enhancer. Read 2 collected the 20-

bp tag sequence. 

The reads were then grouped by tag. Reads belonging to each group were then aligned to the 

wild-type enhancer sequence to identify the mutations on the haplotype associated with that tag 

using a custom analysis framework. 

 

Estimation of effect size of mutation at each position along the enhancer (univariate 

model) 

All linear regression analyses were done using the lm() or lsfit() functions available in the R 

Statistical Package. To quantity the effect of mutation at any given position on the number of 

aliquots in which an enhancer haplotype was observed, we built a separate linear regression 

model at every position along the enhancer, with a single predictor representing whether the 

given position was wild type or mutant. The predictor was thus a binary variable representing 

presence (1) or absence (0) of a mutation at that position. 

                 

where, 

y
i
 = number of aliquots in which the ith haplotype was observed (referred to as aliquot counts), 

and  
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X
ij 
= 1 if position j was mutant and 0 if position j was wild type in the ith haplotype. 

To facilitate comparison between positions and between enhancers, we calculated the effect 

size of mutation at a position j as 

    (
       

   
) 

The P-value reported by the model for β1j was used to judge whether the effect size was 

significant. 

 

For LTV1, as a single haplotype was typically associated with multiple tags, we normalized the 

aliquot counts for a given haplotype by dividing by the number of tags associated with that 

haplotype. In the case of ALDOB and ECR11, as the enhancer haplotypes were cloned in 

second, almost all haplotypes were associated with single tags, and thus the aliquot counts for 

tags were used directly as the aliquot counts of their linked haplotypes. 

 

Estimation of effect size of each specific nucleotide change at each position along the 

enhancer (trivariate model) 

To explore whether the estimated effect sizes for each position were being driven by specific 

nucleotide substitutions, we modified the model just described to include three predictors, each 

representing one of the three possible nucleotide substitutions at that position. The factors were 

set up as binary variables representing the presence (1) or absence (0) of the particular change 

at that position. 

                                    

Effect sizes were then calculated from the coefficients produced by the models as follows (for k 

= 1,2,3): 

    (
       

   
) 

The P-value reported by the model for βkj was used to judge whether the effect of a given 

nucleotide substitution at a given position was significant. 

 

Spatial structure 

To quantify whether nearby positions tend to have similar effect sizes, we calculated the sum of 

the absolute values of the differences in effect sizes between positions located at a given 

distance (lag) from each other. In other words, we calculated 
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 ( )   ∑           
 
     , 

where k = 1, 2, ..., 20 denotes the lag, N denotes the length of the enhancer, and ri is the effect 

size of position i. 

For each value of the lag k, we also calculated S1*(k),...,S1000*(k), each of which measures the 

sum of the absolute values of the differences in effect sizes between positions at a distance k 

from each other, after permuting the effect sizes (r1,...,rN). We then calculated a P-value 

associated with each value of the lag k as the fraction of the S1*(k),...,S1000*(k) that was as small 

or smaller than S(k). 

 

Models to estimate combined predictive power of blocks of adjacent positions 

To further characterize the nature of the spatial structure of the effect sizes and to explore 

whether certain regions along the enhancer were enriched for positions with larger effect sizes, 

we focused on blocks of adjacent positions in a 10-bp sliding window along the length of the 

enhancer. For each window, we built a multiple linear regression model with one predictor for 

each position within the window. Each predictor was set up as a binary variable denoting the 

presence (1) or absence (0) of mutation at that position. The response variable y was the 

number of aliquots in which a given haplotype was seen. 

                    (   )           (   ) 

The F-statistic from each model was used as a measure of the collective predictive power of 

positions within each window. 

 

Multiple linear regression models based on the entire haplotype 

The multiple linear regression model included one predictor for each position along the 

enhancer, encoded as a 1 or 0 to indicate presence or absence of a mutation at that position on 

a given haplotype, and the response variable y represented the number of aliquots in which the 

haplotype was observed. Here N is the number of positions within a given enhancer. 

                                 

A P-value for the model was calculated by comparing the mean squared error (MSE) of the 

model to MSEs of 200 models built using randomly shuffled versions of the response variable. A 

P-value for the model was estimated by calculating the fraction of times that the MSE for models 

built using a shuffled response vector was at least as small as the MSE computed using real 

data. 

We then expanded the model, such that each position was represented by three predictors to 

indicate which of the three possible nucleotide substitutions was observed at that position. 
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A P-value for the model was calculated by repeatedly permuting the outcome vector as 

described immediately above; however, only 100 permutations were used, due to the high 

computational burden of constructing this model. 

 

Identification of epistatic interactions (that is, nonadditive effects) among pairs of 

mutations 

For each pair of positions, we built a linear multiple regression model with three predictors: one 

predictor each to indicate the presence (1) or absence (0) of a mutation at each of the two 

positions and a third (referred to as the “interaction term”) whose value was set to 1 if both 

positions were mutant on the given haplotype and 0 otherwise. Only pairs of positions that were 

both mutant on at least twenty haplotypes were considered. 

                                        

We used the P-values for the interaction terms for the resulting models to calculate a FDR for 

each interaction term (using the p.adjust() function in R, with method = “BH”). Interaction terms 

with FDR < 0.05 were considered significant and used for downstream analyses of epistatic 

interactions. 
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