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1. Introduction. Let D be a domain in R2 that has a Green function gD(x, y). If x, y,
and z are in the same component of D, let

gz(x, y) =
gD(x, y)gD(y, z)

gD(x, z)
. (1.1)

If x, y, z are not all in the same component, we set gz(x, y) = 0. If z ∈ D, then gz(x, y)
is the Green function of Brownian motion conditioned to hit z before exiting D. That
is, if z ∈ D, then gD(·, z) is harmonic in D − {z}, and gz(x, y) is the Green function of
Brownian motion in D − {z}, h-path transformed by the function gD(·, z). (See [Do] for
further information on h-path transforms.)

Our main result is the following.

Theorem 1.1. Suppose D is a bounded domain in R2. Then there exists a constant c1

such that

gz(x, y) ≤ c1

(
1 + log+(1/|x− y|) + log+(1/|y − z|)

)
. (1.2)

Here log+ x = 0 ∨ log x and c1 depends only on the diameter of D.

Our motivation in proving Theorem 1.1 is to obtain the conditional gauge theorem
in arbitrary bounded planar domains. To state our result, we introduce some notation.
Let B(x, r) denote the open ball about x of radius r. A function q : R2 → R is in the Kato
class if

lim sup
ε→0

sup
x

∫
D

|q(y)|1B(x,ε)(y)(1 + log+(1/|x− y|)) dy = 0. (1.3)

Let ∆1 be the minimal Martin boundary of D (see [Do]). The conditional gauge is the
function

Eq(x, z) = Ex
z exp

( ∫ τD

0

q(Xs)ds
)
,

where x ∈ D, z ∈ ∆1, Ex
z is the expectation of Brownian motion h-path transformed to go

to z before exiting D, τD is the time to exit D, and Xt is the trajectory of the process.

Theorem 1.2. (Conditional gauge) If Eq(x0, z0) < ∞ for some pair (x0, z0) with x0 ∈ D,

z0 ∈ ∆1, it is finite for all pairs (x, z) with x ∈ D, z ∈ ∆1 and there exists c2 such that

c−1
2 ≤ Eq(x, z)/Eq(x0, z0) ≤ c2, x ∈ D, z ∈ ∆1.

The conditional gauge theorem is of great importance in the study of the Schrödinger
operator (1/2)∆u + qu. See [CFZ] for a good discussion of the history and uses of the
conditional gauge theorem and a proof in the case of Lipschitz domains in Rd, d ≥ 3. See
also [CZ]. In the case of R2, the conditional gauge theorem has been previously established
for bounded Jordan domains in [Zh], for simply connected and certain other domains in
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[McC], and for bounded domains satisfying a uniform capacity condition in [Cr]. Theorem
1.2 makes no assumptions on the domain D other than being bounded.

As will be apparent from our proof of Theorem 1.1, requiring the domain to be
bounded is too strong. Let CapB(x,r)(E) denote the capacity of the set E with respect to
the Green potential gB(x,r). (For definitions, see (1.8) below or [PS].)

Theorem 1.3. Suppose D is a domain in R2 satisfying

(a) D has a Green function.

(b) There exists c3 such that if y ∈ D, there exists r > 0 (depending on y) such that

CapB(y,20r)(D
c ∩B(y, r)) ≥ c3. (1.4)

Let

hy(x) = sup{gD(w, y) : |w − y| = 3|x− y|/2000}.

Then there exists c4 such that

gz(x, y) ≤ c4(1 + hy(x) + hy(z)), x, y, z ∈ D. (1.5)

Proposition 2.4 below is one of the main estimates needed for the proof of Theorem
1.1. One may look at this proposition as a special case of the following more general
statement, which has some interest of its own.

Suppose that Dn are connected planar domains. Fix some R > 0, α ∈ (0, 1) and
ρ ∈ (0, αR/2). Let hn be the harmonic function in B(x, ρ) ∩Dn with boundary values 1
on ∂B(x, ρ) ∩Dn and 0 elsewhere. Note that Px

hn
is the distribution of Brownian motion

starting from x and conditioned to exit B(x, ρ) before hitting Dc
n. We will write P̃x

hn
to

denote the Px
hn

-distribution of Xt − x, i.e., the process shifted so that it starts from the
origin. Let P̃x denote the distribution of Brownian motion starting from 0 and stopped
upon hitting ∂B(0, ρ). Our next result is concerned with weak convergence and for this
reason it will be more convenient to assume that conditioned processes are stopped rather
than killed at their lifetime. Note that with Px

hn
-probability 1, the left limit of the process

is well defined at its lifetime.

Theorem 1.4. Let an = CapB(0,R)(Dc
n∩B(0, αR)). If an → 0 then P̃x

hn
converges weakly

to P̃x. The convergence is uniform in the following sense. Given an open set A ⊆ C[0,∞)
and β > 0, there exist a0 > 0 such that if an < a0 then P̃x

hn
(A) ≥ P̃x(A)−β for all domains

Dn and all x ∈ Dn ∩B(0, αR/2).

The point of Theorem 1.4 is that the convergence holds for all points x ∈ Dn ∩
B(0, αR/2). If an is small then for “most” x, the probability Px(τB(0,αR) < τDn) is very
close to 1 and for such x the conclusion of Theorem 1.4 follows immediately. However, if
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CapB(0,R)(Dc
n ∩ B(0, αR)) > 0 then there are necessarily some points x ∈ Dn ∩ B(0, αR)

such that Px(τB(x,ρ) < τDn) is arbitrarily small. For these points, conditioning on the
event {τB(x,ρ) < τDn

} could conceivably change the distribution of the process; we show
that this is not the case.

In the remainder of this section we introduce some further notation and present a
brief summary of some facts about capacities. In the next section we prove four propo-
sitions about capacities and hitting probabilities. The techniques used here may be of
independent interest. In Section 3 we prove Theorems 1.1, 1.2, and 1.3. We also discuss
some extensions and lack of extensions to Theorems 1.2 and 1.3. Theorem 1.4 is proved
in Section 4. An easy example supplied in Section 4 shows that Theorem 1.4 is false in
dimensions greater than 2.

If U is a domain, gU will denote the Green function and GU the corresponding
Green potential. For the ball B(0, R) we have the formula

gB(0,R)(x, y) =
1
π

log
( |x| |y −R2x/|x|2|

R|x− y|

)
, x, y ∈ B(0, R). (1.6)

If x, y ∈ B(0, R)c, then gB(0,R)c(x, y) is also given by the right-hand side of (1.6); see [PS],
p. 114. We let TE = T (E) and τE = τ(E) be the first hit to E and first exit from E,
respectively. That is

TE = inf{t : Xt ∈ E}, τE = inf{t : Xt /∈ E}.

Er will denote the set of points that are regular for E. This means x ∈ Er if and
only if Px(TE = 0) = 1. If E is a set in a domain U , the capacitary or equilibrium measure
for E is a measure µ concentrated on Er such that GUµ ≤ 1 on U and GUµ = 1 on Er.
We have the formula

GUµ(x) = Px(TE < τU ). (1.7)

The capacity of E with respect to the Green potential GU is defined to be

CapU (E) = µ(U) = µ(Er). (1.8)

(We will not be using the notion of logarithmic capacity in this paper.) For proofs and
further details, see [PS].

We will use B to denote the ball B(0, 2000).
There exists c5 such that if I is a line segment of length at most 1 and λ is linear

measure on I (i.e., one dimensional Lebesgue measure), then

GBλ(x) ≤ c5, x ∈ I. (1.9)
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To see this, by (1.6) and symmetry considerations, GBλ(x) will be largest if x = 0 and
I is of length 1 and centered at the origin. (1.9) then follows from the finiteness of∫ 1/2

−1/2
log(1/r)dr.

2. Capacity. In this section we prove a number of propositions concerning capacity. We
suppose D is an open connected domain in R2, but not necessarily simply connected.

Proposition 2.1. Let δ > 0, α ∈ (0, 1), and suppose

CapB(Dc ∩ {B(0, 110)−B(0, 10α)}) ≥ δ.

There exists c1 depending only on α such that if x ∈ ∂B(0, 200), then

Px(τD < TB(0,α)) ≥ c1δ. (2.1)

Proof. Let A = Dc ∩ {B(0, 110)−B(0, 10α)}. We show first there exists c2 such that

CapB(0,α)c(A) ≥ c−1
2 δ. (2.2)

Let µ be the capacitary measure of A with respect to gB. From the explicit formulas (1.6)
for gB(x, y) and gB(0,α)c(x, y), we conclude that there exists c2 such that gB(0,α)c(x, y) ≤
c2gB(x, y) if x, y ∈ B(0, 111)−B(0, 9α). Hence

GB(0,α)cµ(x) =
∫

gB(0,α)c(x, y)µ(dy) ≤ c2

∫
gB(x, y)µ(dy)

= c2GBµ(x) ≤ c2

for x ∈ A. By the maximum principle ([PS], p. 163), GB(0,α)cµ ≤ c2 on B(0, α)c. Conse-
quently c−1

2 µ is a measure concentrated on Ar whose GB(0,α)c potential is bounded by 1
on B(0, α)c. It follows that

CapB(0,α)c(A) ≥ c−1
2 µ(Ar) ≥ c−1

2 δ,

which is (2.2).
Next, let ν be the capacitary measure of A with respect to gB(0,α)c . Let σ(dz) be

surface measure on ∂B(0, 200), normalized to have total mass 1. By rotational symmetry,
GB(0,α)cσ = c3 on ∂B(0, 200) for some constant c3. GB(0,α)cσ is harmonic off the support
of σ and 0 on ∂B(0, α). So there exists c4 such that if x ∈ B(0, 111)−B(0, 9α), then

GB(0,α)cσ(x) = c3Px(T∂B(0,100) < T∂B(0,α)) ≥ c3c4. (2.3)
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By the symmetry of gB(0,α)c(x, y) in x and y and Fubini’s theorem,∫
GB(0,α)cν(y)σ(dy) =

∫
GB(0,α)cσ(x)ν(dx) ≥ c3c4ν(A) ≥ (c3c4)(c−1

2 δ). (2.4)

Finally, by the Harnack inequality, there exists c5 such that if x, z ∈ ∂B(0, 200),

Px(TA < TB(0,α)) ≥ c5Pz(TA < TB(0,α)). (2.5)

Integrating over z with respect to σ,

Px(τD < TB(0,α)) ≥ Px(TA < TB(0,α)) ≥ c5

∫
Pz(TA < TB(0,α))σ(dz)

= c5

∫
GB(0,α)cν(z)σ(dz).

Combining with (2.4) proves (2.1) with c1 = c−1
2 c3c4c5. �

Let

S = {reiθ : −π/2 < θ < 2π, 6 + θ/π < r < 7 + θ/π},
L = {reiθ : θ = 2π, 8 < r < 9},
R = {reiθ : 2π − 1/32 < θ < 2π + 1/32, 5 < r < 10}, and

W = {reiθ : 2π − 1/32 < θ < 2π + 1/32, r = 5}.

Let x0 be the point 6e−iπ/4. Let γ be linear measure (i.e., one dimensional Lebesgue
measure) on L.

Proposition 2.2. There exist ε and c6 such that if CapB(Dc ∩R) ≤ ε and

B = {x ∈ L : Px(TW < TDc∪(∂R−W )) ≥ c6}, (2.6)

then γ(B) ≥ 1/2.

Proof. Let x′ = 17/2. By the support theorem for Brownian motion, there exists c7 such
that

Px′
(TW < T∂R−W ) ≥ c7. (2.7)

By Harnack’s inequality, there exists c8 such that if x ∈ L,

Px(TW < T∂R−W ) ≥ c8Px′
(TW < T∂R−W ). (2.8)

We will show

γ{x ∈ L : Px(τD ≤ T∂R) > c7c8/2} < 1/2. (2.9)
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That this proves the proposition with c6 = c7c8/2 can be seen as follows: Recall that
γ(L) = 1. If

Px(τD ≤ T∂R) < c7c8/2,

then
Px(TW < TDc∪(∂R−W )) ≥ Px(TW < T∂R−W )− Px(τD ≤ T∂R) ≥ c7c8/2,

or x ∈ B. So it suffices to show (2.9).
Let E = Dc ∩R. Let µ be the capacitary measure of E with respect to gB. Let

H(x) = Px(TE < τB) = GBµ(x).

Let C = {x ∈ L : H(x) ≥ c7c8/2}. Then∫
C

GBµ(x)γ(dx) ≥ (c7c8/2)γ(C).

On the other hand, ∫
C

GBµ(x)γ(dx) ≤
∫

GBµ(x)γ(dx)

=
∫

GBγ(x)µ(dx).

By (1.9) there exists c9 such that if x ∈ L,

GBγ(x) ≤ c9.

By the maximum principle, GBγ is bounded by c9 on B. Hence

(c7c8/2)γ(C) ≤ c9

∫
µ(dx) = c9µ(E) = c9CapB(E) ≤ c9ε.

If we choose ε less than c7c8/4c9, then γ(C) < 1/2. Finally, note that {τD ≤ T∂R} ⊆
{TE < τB}, and so if x ∈ L and Px(τD ≤ T∂R) > c7c8/2, then x ∈ C. �

Proposition 2.3. There exist ε and c10 such that if B is any subset of L with γ(B) ≥ 1/2
and CapB(S ∩Dc) ≤ ε, then

Px0(XτS
∈ B, τS < τD) ≥ c10Px0(τS < τD). (2.10)

Proof. Let E = Dc∩S. Let H(x) = Px(TE < τB). S is a Lipschitz domain and so surface
measure and harmonic measure are mutually absolutely continuous ([Da]). There exists
c11 such that

Px0(XτS
∈ B) ≥ c11. (2.11)
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Combining this with Harnack’s inequality, there exists c12 such that if x ∈ B(x0, 1/300),
then

Px(XτS
∈ B) ≥ c12. (2.12)

Our first goal is to show that there exists u ∈ [1/900, 2/900] such that

H ≤ c12/2 on ∂B(x0, u). (2.13)

Suppose (2.13) does not hold. Let µ be the capacitary measure of E with respect to gB.
For every u ∈ [1/900, 2/900], there exists zu ∈ ∂B(x0, u) such that H(zu) > c12/2. Since
H(x) = GBµ(x) is lower semicontinuous, there exists a radial line segment containing zu on
which H > c12/2 (radial with respect to the center x0). By compactness, there exist finitely
many radial line segments such that H > c12/2 on each one and for each u ∈ [1/900, 2/900],
∂B(x0, u) intersects at least one of the radial line segments. By taking finite intersections,
we can find radial line segments I1, . . . , IN (not necessarily open intervals) that are disjoint,
on each of which H ≥ c12/2, each is contained in B(x0, 2/900) − B(x0, 1/900), and for
each u ∈ [1/900, 2/900], ∂B(x0, u) intersects exactly one Ii. Let I = ∪N

i=1Ii and let λ be
arc length measure (i.e., linear measure) on I.

Since H ≥ c12/2 on I,

(c12/2)(1/900) ≤
∫

I

GBµ(x)λ(dx) =
∫

GBλ(y)µ(dy). (2.14)

For any fixed y ∈ B(x0, 2/900)−B(x0, 1/900), let Iy consist of a single radial line segment
passing through y, that is, Iy = x0 +{(r, θ0) : 1/900 ≤ r ≤ 2/900}, where θ0 = arg(y−x0).
By (1.9) there exists c13 such that if λy is linear measure on Iy, GBλy(y) ≤ c13. On
∂B(x0, v), gB(y, z) is largest when z ∈ Iy. Thus

GBλ(y) =
∫

I

gB(y, z)λ(dz) ≤
∫

Iy

gB(y, z)λy(dz)

= GBλy(y) ≤ c13.

Thus GBλ(y) ≤ c13 for y ∈ I. By the maximum principle, GBλ ≤ c13 for all y ∈ B. Hence
the right hand side of (2.14) is bounded by

c13µ(E) = c13CapB(E) ≤ c13ε.

If we take ε ≤ c12/3600c13, then (2.13) is proved.
Next, suppose x ∈ ∂B(x0, u). Combining (2.13) and (2.12),

Px(XτS
∈ B, τS < TE) ≥ c12/2. (2.15)
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By the strong Markov property,

Px0(XτS
∈ B, τS < τD) = Ex0

[
PXT (∂B(x0,u))(XτS

∈ B, τS < τD);T (∂B(x0, u)) < TE

]
≥ (c12/2)Px0(T (∂B(x0, u)) < TE). (2.16)

Another application of the strong Markov property yields

Px0(τS < τD) ≤ Px0(T (∂B(x0, u)) < TE). (2.17)

Combining (2.16) and (2.17) proves (2.10) with c10 = c12/2. �

Let us say that “Xt makes a a loop around B(0, R)” if the graph {Xs : 0 ≤ s ≤
τD ∧T (∂B(0, 5R/4))∧T (∂B(0, 5R/2))} contains a closed curve with B(0, R) contained in
its interior.

Proposition 2.4. There exist ε and c14 such that if CapB(Dc ∩B(0, 100)) < ε, then

Px0(Xt makes a loop around B(0, 4)) ≥ c14Px0(T (∂B(0, 4)) < τD). (2.18)

Proof. Using Proposition 2.2, there exist ε and c6 such that if B ⊆ L is defined by (2.6),
γ(B) ≥ 1/2 and

Px(TW < TDc∪(∂R−W )) ≥ c6

if x ∈ B. Taking ε smaller if necessary, we use Proposition 2.3 to see that there exists c10

such that (2.10) holds. If Xt starts at x0, exits S in B before hitting Dc, and then exits
R in W before hitting Dc, then Xt must make a loop around B(0, 4) before hitting time
τD. Hence the left hand side of (2.18) is bigger than

Px0(XτS
∈ B, τS < τD, XτR

◦ θτS
∈ W, τR ◦ θτS

< τD ◦ θτS
).

By the strong Markov property, the choice of B, and (2.10), this is equal to

Ex0

[
PXτ(S)(XτR

∈ W, τR < τD);XτS
∈ B, τS < τD

]
≥ c6Px0(XτS

∈ B, τS < τD)

≥ c6c10Px0(τS < τD)

≥ c6c10Px0(T (∂B(0, 4)) < τD).

�

3. Green functions. About each point y ∈ D we will determine a radius r such that
B(y, 2000r) contains at least some of Dc but not too much. Let

η = CapB(B(0, 100)−B(0, 50)).

8



Lemma 3.1. Let y ∈ D and ε < η. There exists α ∈ (0, 1) (depending on ε but not y)

and r > 0 (depending on ε and y) such that

CapB(y,2000r)(D
c ∩B(y, 100r)) < ε (3.1)

and

CapB(y,2000r)(D
c ∩ {B(y, 110r)−B(y, 10αr)} > ε/2. (3.2)

Proof. Fix y and ε and let

Ay = {s : CapB(y,2000s)(D
c ∩B(y, 100s)) ≥ ε}.

This set is not empty, for if s is sufficiently large, D ⊆ B(y, 50s). Then

CapB(y,2000s)(D
c ∩B(y, 100s)) ≥ CapB(y,2000s)(B(y, 100s)−B(y, 50s)) = η

by scaling and translation invariance. Thus for s sufficiently large, s ∈ Ay.
On the other hand, since D is open, for s sufficiently small, Dc ∩B(y, 100s) = ∅. If

s0 = inf Ay, then s0 > 0.
Choose r ∈ (21s0/22, s0). Since r < s0, r /∈ Ay, and (3.1) holds. Choose

t ∈ (s0, 21s0/20) ∩ Ay. Then CapB(y,2000t)(Dc ∩ B(y, 100t)) > ε. By our choice of
t, B(y, 110r) ⊇ B(y, 100t). Then CapB(y,2000t)(Dc ∩ B(y, 110r)) ≥ ε. Let µ be the
capacitary measure of Dc ∩ B(y, 110r) with respect to gB(y,2000t). Since t > r, then
gB(y,2000t) ≥ gB(y,2000r) pointwise, and hence GB(y,2000r)µ ≤ 1 in B(y, 2000r). It follows
that

CapB(y,2000r)(D
c ∩B(y, 110r)) ≥ µ(Dc ∩B(y, 110r)) ≥ ε. (3.3)

Finally, choose α < 1 small so that CapB(B(0, 10α)) < ε/2. By scaling and trans-
lation invariance, CapB(y,2000r)(B(y, 10αr)) < ε/2. (3.2) follows from this and (3.3). �

Lemma 3.2. Let y ∈ D, ε < η, and let α and r be chosen as in Lemma 3.1 so that (3.1)

and (3.2) hold. Suppose w ∈ ∂B(y, 3r). Then there exists c2, depending on ε and α, but

not y or r, such that

gD(w, y) ≤ c2. (3.4)

Proof. Let E = D ∪B(y, 2αr). Since D ⊆ E, it suffices to obtain the bound

gE(w, y) ≤ c2, w ∈ ∂B(y, 3r). (3.5)

We use a renewal argument. Let

A = sup
v∈∂B(y,200r)

Ev

∫ τE

0

1B(y,αr)(Xs)ds,

ρ = sup
v∈∂B(y,200r)

Pv(TB(y,αr) < τE).
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By Proposition 2.1 and (3.2), ρ < 1. By the strong Markov property, if v ∈ ∂B(y, 200r),

Ev

∫ τE

0

1B(y,αr)(Xs)ds = Ev
[
EXT (B(y,αr))

∫ τE

0

1B(y,αr)(Xs)ds;TB(y,αr) < τE

]
≤ Ev

[
EXT (B(y,αr))

∫ τB(y,200r)

0

1B(y,αr)(Xs)ds
]

+ Ev
[
EXT (B(y,αr))

∫ τE

τB(y,200r)

1B(y,αr)(Xs)ds;TB(y,αr) < τE

]
. (3.6)

The first term on the right hand side of (3.6) is bounded by c3r
2 for some constant c3 since

supz∈R2 EzτB(y,200r) ≤ c3r
2. If u ∈ ∂B(y, αr), by the strong Markov property

Eu

∫ τE

τB(y,200r)

1B(y,αr)(Xs)ds = Eu
[
EXτ(B(y,200r))

∫ τE

0

1B(y,αr)(Xs)ds
]
≤ A. (3.7)

Hence the second term on the right hand side of (3.6) is bounded by

APv(TB(y,αr) < τE) ≤ ρA.

Substituting these bounds in (3.6) and then taking the sup over v ∈ ∂B(y, 200r),

A ≤ c3r
2 + ρA.

A is finite, since
EvτE ≤ EvτB(0,M) < ∞. (3.8)

Hence
A ≤ c3r

2/(1− ρ). (3.9)

Since w ∈ ∂B(y, 3r), B(y, 2αr) ⊆ E, and gE(w, ·) is harmonic in E, by the Harnack
inequality there exists c4 such that

gE(w, y) ≤ c4gE(w, z), z ∈ B(y, αr).

Integrating over B(y, αr),

gE(w, y) ≤ c4|B(y, αr)|−1

∫
B(y,αr)

gE(w, z)dz = c5r
−2Ew

∫ τE

0

1B(y,αr)(Xs)ds.

As in (3.6),

Ew

∫ τE

0

1B(y,αr)(Xs)ds ≤ EwτB(y,200r) + EwEXτ(B(y,200r))

∫ τE

0

1B(y,αr)(Xs)ds ≤ c3r
2 + A,
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hence
gE(w, z) ≤ c5r

−2[c3r
2 + A].

With (3.9) this proves (3.5). �

Proof of Theorem 1.1. Let x, y, z be distinct points in D. Fix y. Choose ε less than
η and sufficiently small so that the conclusion of Proposition 2.4 holds. Choose r as in
Lemma 3.1.

Suppose for now that x, z /∈ B(y, 2000r). We want an upper bound on gz(x, y),
and by the maximum principle for functions that are harmonic with respect to h-path
transformed Brownian motion (see [Do]), it suffices to get an upper bound on gz(w, y),
w ∈ ∂B(y, 6r). Let λ = gD(y, z). Since gD(·, z) is lower semicontinuous, the set {v :
gD(v, z) > λ/2} is open. Since gD(·, z) is harmonic in D − {z}, y must be in the same
component of {v : gD(v, z) > λ/2} as z by the maximum principle. Therefore there exists
a curve C contained in D and connecting y and z such that gD(v, z) ≥ λ/2 for all v ∈ C.

Fix w ∈ ∂B(y, 6r), and let a = Pw(T∂B(y,4r) < τD). By Proposition 2.4, translation
invariance, rotation invariance, and scaling, there exists c6 such that

Pw(Xt makes a loop around B(y, 4r) ) ≥ c6a.

If Xt makes a loop around B(y, 4r), the path of Xt must intersect C, and thus

Pw(TC < τD ∧ TB(y,4r)) ≥ c6a.

By the strong Markov property and the fact that gD(·, z) is harmonic in D − {z},

gD(w, z) ≥ Ew[gD(XTC
, z);TC < τD ∧ TB(y,4r)] ≥ (c6a)λ/2. (3.10)

Now let us look at gD(w, y). By the strong Markov property and Lemma 3.2,

gD(w, y) ≤ Ew[gD(XT (B(y,3r)), y);TB(y,3r) < τD] ≤ c2Pw(TB(y,4r) < τD) ≤ c2a. (3.11)

Substituting in the formula for gz(w, y),

gz(w, y) =
gD(w, y)gD(y, z)

gD(w, z)
≤ (c2a)λ

c6aλ/2
=

2c2

c6
, (3.12)

as desired.
It remains to consider the case when x or z is in B(y, 2000r). Suppose |x−y| ≤ |z−y|

and |x − y| ≤ 2000r. Let us set r′ = |x − y|/2000. By the construction of Lemma 3.1,
(3.1) still holds with r′ in place of r. The argument we have just given in the first part of
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the proof still holds, except that we cannot use Lemma 3.2 and we need a substitute for
(3.11).

Choose M so that D ⊆ B(0,M). If v ∈ ∂B(y, 3r′),

gD(v, y) ≤ gB(0,M)(v, y) ≤ c7(1 + log+(1/|v − y|)) ≤ c8(1 + log+(1/r′)) (3.13)

for some constants c7 and c8 by the formula for gB(0,M). Since r′ = |x− y|/2000,

gD(v, z) ≤ c9(1 + log+(1/|x− y|)). (3.14)

As in (3.11), if w ∈ ∂B(y, 6r′),

gD(w, y) ≤ c9a(1 + log+(1/|x− y|)). (3.15)

If we use (3.15) in place of (3.11), we get

gz(w, y) ≤ 2c9(1 + log+(1/|x− y|))
c6

. (3.16)

Finally, suppose |z − y| < |x − y|. Since gz(x, y) = gx(z, y), we simply reverse the
roles of x and z.

Checking where the constants come from, we see that they all depend only on the
diameter of D. �

Remark. We learned the idea of using loops to estimate occupation times from [Dv].

Proof of Theorem 1.2. Let x0 ∈ D. If z is in the Martin boundary of D, there exist
zn ∈ D converging to some point z0 ∈ ∂D such that gD(x, zn)/gD(x0, zn) → M(x, z), the
Martin kernel with pole at z, and the convergence is uniform over x in compact subsets
of D − {x0}. If we replace z in (1.1) by zn, divide the numerator and denominator by
gD(x0, zn), and then let n →∞, we get from (1.2) that

gD(x, y)M(y, z)
M(x, z)

≤ c10(1 + log+(1/|x− y|) + log+(1/|z0 − y|)).

The argument of [Cr], Theorem 6, now applies and gives Theorem 1.2. �

Proof of Theorem 1.3. We obtain Theorem 1.3 by examining where in the proof of
Theorem 1.1 we used the fact that D was a bounded domain. There are three places.
First, in the proof of Lemma 3.1 we needed to know that the set Ay was nonempty. This
is implied by (1.4). Second, let y ∈ D. Since D has a Green function, it is easy to see that
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E = D ∪ B(y, 2αr) does also, provided α ∈ (0, 1) and r is chosen as in Lemma 3.1. Since
the Green function is locally integrable, a compactness argument shows that

sup
v∈∂B(y,200r)

∫ τE

0

1B(y,αr)(Xs)ds = sup
v∈∂B(y,200r)

∫
B(y,αr)

gE(v, z)dz < ∞.

This substitutes for (3.8). Finally, in place of (3.13) we use the definition of hy(x). �

Remarks. 1. If D is contained in an infinite strip, then D satisfies the hypotheses of
Theorem 1.3. It is not hard, using a renewal argument, to see there exists c11 such that

hy(x) ≤ c11(1 + log+(1/|x− y|)).

(1.4) is proved the same way as in Lemma 3.1, and so (1.2) holds for domains contained
inside strips.

2. The half plane is an example of a domain where Theorem 1.3 (a) and (b) hold
but (1.2) does not. To see this, set z = i, xN = Ni, yN = 1/2 + Ni, and let N →∞.

3. One might ask whether in Theorem 1.2 one can weaken the conditions on q. For
example, suppose D is bounded and suppose that we only require that

lim sup
ε→0

sup
x

∫
D

|q(y)|1B(x,ε)(y)gD(x, y)dy = 0.

Does the conclusion of Theorem 1.2 still hold? (This is suggested by some results in [CFZ]
and [McC].) It turns out the answer is no. The counterexample is rather lengthy and we
do not present it here.

4. Weak convergence.

Proof of Theorem 1.4. We drop the subscript n throughout the proof. Suppose b < 1
and r ∈ (0, ρ/6). Let K = Dc ∩B(0, αR) and

N = {y ∈ B(x, 3r) : Px(τB(0,R) < TK) > b}.

Let y0 = (0, (1 + α)R/2). It follows from (1.6) that gB(0,R)(y0, y) < c1 < ∞ for all
y ∈ B(0, αR). Let µ be the capacitary measure for K in B(0, R). Note that the mass of
µ is equal to a. Hence

Py0(TK < τB(0,R)) = GB(0,R)µ(y0) ≤ ac1. (4.1)

There exists c2 such that if A ⊆ B(0, αR), then

Py0(TA < τB(0,R)) ≥ Py0(XR2∧τ(B(0,r)) ∈ A) > c2|A|,
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where |A| stands for the area of A. This, (4.1), the strong Markov property applied at TNc

and the definition of N imply that

|N c|c2 < Py0(TNc < τB(0,R)) ≤ Py0(TK < τB(0,R))/(1− b) ≤ ac1/(1− b).

Thus |N c| < ac1/c2(1 − b). Fix b and r for the moment. If δ > 0, we may choose a so
small that

|N ∩B(x, 3r)| > (1− δ)|B(x, 3r)| (4.2)

and N ∩ (B(x, 2r)−B(x, r)) 6= ∅.
Suppose that b1 < 1 and let

V = {y ∈ B(x, 2r)−B(x, r) : Px
h(TN < τB(x,3r)) > b1}.

We will argue that for a fixed b1 and suitable choice of a, b and δ, every continuous path Γ
starting at x and ending at a point of ∂B(x, 2r) must intersect V . Suppose to the contrary
that there is a path Γ ⊆ V c. Choose any y1 ∈ N ∩ (B(x, 2r)−B(x, r)) (recall that this set
is non-empty). In view of (4.2),

Py1(TN < τB(x,3r)) > c3

where c3 < 1 may be chosen as close to 1 as we like provided δ is taken sufficiently small.
The last inequality and the fact that y1 ∈ N imply in view of the definition of N that

Py1
h (TN < τB(x,3r)) > c3 − (1− b) = c4. (4.3)

Here c4 < 1 can be taken as close to 1 as we like if b is chosen close to 1 and δ small.
The probability that a Brownian path starting from y1 will make a closed loop around
B(x, r) before leaving B(x, 2r)−B(x, r) is greater than c5 > 0. The Py1

h -probability of the
same event is greater than or equal to c5 − (1 − b) = c6 and we may assume that c6 > 0
by choosing a sufficiently large b. A path containing a closed loop around B(x, r) within
B(x, 2r) − B(x, r) must intersect Γ, and therefore it must intersect V c. By the strong
Markov property applied at the hitting time of V c,

Py1
h (T∂B(x,3r) < TN ) ≥ c6(1− b1). (4.4)

If c4 is sufficiently close to 1 then c6(1−b1) > 1−c4, and therefore (4.3) and (4.4) contradict
each other. This proves that every continuous path Γ starting at x and ending at a point
of ∂B(x, 2r) must intersect V .

The last remark implies that every trajectory of the Px
h-process must hit V and so by

the strong Markov property it hits N before hitting ∂B(x, 3r) with probability greater than

14



b1. The process {Xs, s ≤ TN} under Px
h conditioned by {TN < τB(x,3r)} is a conditioned

Brownian motion in a subset of B(x, r), so by the results of [CM] its expected lifetime
is bounded by c7r

2. If we choose r sufficiently small, we can make this expected lifetime
arbitrarily small. Note that the diameter of the trace of {Xt, t ≤ TN} is bounded by 6r

provided the event {TN < τB(x,3r)} holds. The estimates of the diameter and TN do not
depend on the shape of D or x — they only depend on r. The process {Xs − x, s ≥ TN}
under Px

h is an h-process in D−x starting from a point of N −x. It is easy to see that for
any open set Ã ⊆ C[0,∞) and γ > 0, this process will take values in Ã with probability
greater than P̃x(Ã)− γ if we choose a suitably small r and large b in the definition of N .

One can easily prove the following remark about weak convergence. Suppose A ⊆
C[0,∞) is an open set and β > 0. Then one can find γ > 0 with the following properties.
Let Aγ be the family of all functions in A whose Skorohod distance from Ac is greater than
γ. Assume that for some process Y and a random time S, the trajectory of the process
{Y (s), s ≥ S} is in Aγ with probability greater than P̃x(Aγ) − γ. Moreover, assume that
S < γ and maxs≤S |Y (s) − Y (0)| < γ with probability greater than 1 − γ. Then the
probability that {Y (s), s ≥ 0} is in A is greater than P̃x(A) − β. This lemma applies to
Xt − x under Px

h when a → 0 according to the facts listed in the previous paragraph (TN

plays the role of S and Aγ plays the role of Ã). This completes the proof. �

Theorem 1.4 may be used to give an alternative proof of Proposition 2.4.

Proof of Proposition 2.4. The event B = {T (∂B(0, 4)) < τB(x0,30)} is a closed set in
C[0,∞).

In this proof, “Xt makes a a loop around B(0, R)” will refer to the event “the graph
{Xs : 0 ≤ s ≤ T∂B(0,5R/4) ∧T∂B(0,5R/2)} contains a closed curve with B(0, R) contained in
its interior” (we do not require that the loop is made before hitting Dc). It is easy to see
that this event contains an open event A ⊆ C[0,∞) with Px0(A) > 0.

Let Px0
h denote the distribution Px0 conditioned by {T∂B(x0,30) < τD}. Since A

is open and B is closed, Theorem 1.4 shows that for a fixed β > 0, we may find ε > 0
sufficiently small so that CapB(Dc ∩B(0, 100)) < ε implies that Px0

h (A) ≥ Px0(A)− β and
Px0(B) ≥ Px0

h (B)− β.
Note that B1 = {T (B(0, 3)) < τB(x0,30)} is an open set in C[0,∞) and B1 ⊆ B.

For β sufficiently small we have

Px0
h (B) ≥ Px0

h (B1) ≥ Px0(B1)− β > 0.

Hence, it is possible to choose c1 > 0 such that Px0(A) ≥ c1Px0(B) and c2, β > 0 so that
c1(Px0

h (B)− β)− β ≥ c2Px0
h (B) (we may have to adjust ε).
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Then

Px0(Xt makes a loop around B(0, 4) before τD)

≥ Px0(Xt makes a loop around B(0, 4) and T∂B(x0,30) < τD)

= Px0
h (Xt makes a loop around B(0, 4))Px0(T∂B(x0,30) < τD)

≥ Px0
h (A)Px0(T∂B(x0,30) < τD)

≥ (Px0(A)− β)Px0(T∂B(x0,30) < τD)

≥ (c1Px0(B)− β)Px0(T∂B(x0,30) < τD)

≥ (c1(Px0
h (B)− β)− β)Px0(T∂B(x0,30) < τD)

≥ c2Px0
h (B)Px0(T∂B(x0,30) < τD)

= c2Px0
h (T (∂B(0, 4)) < τB(x0,30))Px0(T∂B(x0,30) < τD)

= c2Px0(T (∂B(0, 4)) < τB(x0,30), T∂B(x0,30) < τD)

≥ c2Px0(T (∂B(0, 4)) < τD).

�

Example 4.1. Let D = D(ε) = Kc where

K = {x = (x1, x2, x3) ∈ R3 : |x1| ≤ 1, x2
2 + x2

3 = ε}.

The capacity of K in B(0, 20) can be made arbitrarily close to 0 by taking ε small enough.
However, Brownian motion starting from 0 and conditioned to hit ∂B(0, 2) before hitting
Dc does not converge in distribution to standard Brownian motion as ε goes to 0 because
it has to travel a distance 1 within a very thin tube. This shows that Theorem 4.1 cannot
be generalized to higher dimensions.
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