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Associate Professor Dan Grossman

Computer Science & Engineering

Programming languages must be defined precisely so that programmers can reason care-

fully about the behavior of their code and language implementers can provide correct and

efficient compilers and interpreters. However, until quite recently, mainstream languages

such as Java and C++ did not specify exactly how programs that use shared-memory mul-

tithreading should behave (e.g., when do writes by one thread become visible to another

thread?). The memory model of a programming language addresses such questions. The

recently-approved memory model for C++ effectively requires programs to be “data-race-

free”: all executions of the program must have the property that any conflicting memory

accesses in different threads are ordered by synchronization. To meet this requirement, pro-

grammers must ensure that threads properly coordinate accesses to shared memory using

synchronization mechanisms such as mutual-exclusion locks.

We introduce a new abstraction for reasoning about data-race-free programs: interference-

free regions. An interference-free region, or IFR, is a region surrounding a memory access

during which no other thread can modify the accessed memory location without causing a

data race. Specifically, the interference-free region for a memory access extends from the

last acquire call (e.g., mutex lock) before the access to the first release call (e.g., mutex

unlock) after the access. Using IFRs, we can reason sequentially about code that contains

synchronization operations. IFRs enable entirely thread-local reasoning, meaning we do not





need to have the whole program available in order to make useful inferences. We develop

IFRs as a abstract concept, and also present two practical applications of IFRs.

First, IFR-based reasoning can be used to extend the scope of compiler optimiza-

tions. Compilers typically optimize within synchronization-free regions, since the data-

race-freedom assumption permits sequential reasoning in the absence of synchronization.

We make the observation that this rule of thumb is overly conservative: it is safe to opti-

mize across synchronization calls as long as the calls are interference-free for the variable

in question. (We say that a variable is interference-free at a call if the call falls in the

interference-free region for an access to that variable.) We have developed two symmetric

compiler analyses for determining which variables are interference-free at each synchroniza-

tion call, thereby allowing later optimization passes to optimize in larger regions that may

include synchronization.

Second, we have developed an algorithm for dynamic data-race detection based on the

concept of IFRs. Data-race detection is an important problem to the programming lan-

guages community: programmers need to eliminate data races during software development

in order to avoid costly bugs in production systems. Our algorithm monitors active IFRs

for each thread at runtime, reporting a data race if conflicting IFRs in different threads

overlap in real time. Conservative approximations of IFRs are inferred using a static in-

strumentation pass. We compare our algorithm to two precise data-race detectors, and

determine that our algorithm catches many data races and provides better performance on

most benchmarks.

As a final step, we extend the compiler analyses used in both projects to be interproce-

dural (i.e., analyzing more than one function at a time). Specifically, we classify functions

according to their synchronization behavior, making it easier to infer when IFRs propagate

through function calls. On the compiler optimization side, this change means that we can

optimize across calls that contain internal synchronization. On the data-race detection side,

we are able to statically infer longer IFRs, meaning that we are more likely to detect data

races.
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Chapter 1

INTRODUCTION

This thesis introduces the concept of interference-free regions, and presents two distinct

and useful applications of this concept. An interference-free region is a subsection of a single

thread’s execution surrounding a memory read or write. While a thread is executing an

interference-free region, the memory location read or written by the region’s defining access

cannot be written to by another thread without inducing a data race. That is, the two

accesses, one in the interference-free region and one in another thread, will not be ordered

by synchronization.

The interference-free region for an access is defined in terms of the synchronization

operations surrounding that access in the thread’s execution trace. In particular, the inter-

ference-free region extends from the first acquire synchronization before the access to the first

release synchronization after the access. Acquire synchronizations are operations, like mutex

locks, that induce orderings with operations that happened earlier in the execution. Release

operations, like mutex unlocks, induce orderings with later operations in an execution.

Interference-free regions are a useful tool for reasoning about data-race-free programs.

The latest C and C++ language specifications—C11 [22] and C++11 [23], respectively—

require that programs be data-race-free. A program is defined to be data-race-free if all

executions of the program have no data races. The reason for this requirement is that various

hardware and software optimizations (basically any optimizations that may reorder memory

operations) can break a program if the program has data races. Even so-called “benign” data

races can lead to very subtle bugs when the program is compiled and executed. Chapter 2

will go into much more detail on the new C and C++ specifications and data-race-freedom.

Chapter 3 formally defines interference-free regions, proves their correctness, and gives

illustrative examples. This work began during the author’s internship at Hewlett-Packard

Laboratories in 2010 and was published at the MSPC workshop in 2011 [14]. In the simplest
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case, an interference-free region is simply the innermost critical section enclosing an access.

However, if an access does not take place within a critical section, then the interference-free

region may include synchronization operations besides the enclosing acquire and release.

For example, if a memory location is accessed between two critical sections, then the inter-

ference-free region for the access includes both critical sections:

mtx_lock(mtx1);

...


interference-free region for A

mtx_unlock(mtx1);

...

A: r1 = *x;

...

mtx_lock(mtx2);

...

mtx_unlock(mtx2);

In other words, the location being accessed can be assumed not to be modified by any other

threads for the duration of both critical sections. This kind of reasoning, although useful

for program optimization, is not used in any standard C and C++ compiler. This leads to

the first of two applications for interference-free regions.

Our first application for interference-free regions is compiler optimization (Chapter 4):

if we may assume data-race-freedom (as we can in C and C++), we can make existing

compiler optimizations more aggressive by identifying interference-free regions within the

program. (This application was included in the MSPC paper.) For example, suppose two

reads of the same memory location x are separated by a mutex lock operation:

r1 = *x;

mtx_lock(mtx);

r2 = *x;

Normally, the compiler will assume that the mutex lock is a memory barrier, and there-

fore that another thread could modify the location’s value in between the two reads. By

reasoning about possible executions of the program, and the interference-free regions for

the two reads in those executions, we can determine that any modification of x in another

thread would be a data race. Therefore the compiler may optimize out the second read. We

present two intraprocedural dataflow analyses that refine the modified/reference summaries



3

for acquire and release synchronization calls, and also discuss how to extend the analyses

to handle barrier synchronization.

The second application is dynamic data-race detection (Chapter 5). Programmers use

data-race detection tools to find and eliminate bugs in multithreaded programs. However,

dynamic data-race detection is very expensive, usually increasing execution time by one or

two orders of magnitude. This chapter presents a dynamic data-race detection algorithm

based on interference-free regions. The high-level description of the algorithm is that we

instrument the code with the beginnings and ends of interference-free regions (building on

one of the two algorithms described in Chapter 4), then monitor executions for overlapping,

conflicting IFRs. This algorithm permits no false positives and has desirable performance

characteristics. In particular, most instrumentation calls require no synchronization. We

compare the performance and race detection efficacy of this algorithm to two other race

detectors for C and C++. This work will be published at OOPSLA 2012 [15] and is a

collaboration with Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm.

In Chapter 6, we extend the compiler analyses used in Chapters 4 and 5 to be interpro-

cedural: analyzing more than one function at a time. The purpose of this extended analysis

is to handle functions with internal synchronization correctly. For example, the intrapro-

cedural analyses cannot handle even simple synchronization wrappers, so interprocedural

reasoning is necessary to handle more complex programs. The interprocedural analysis does

not reason about interference-free regions directly. Instead, it classifies functions according

to their synchronization behavior (e.g., no synchronization, only acquire operations, etc.).

This information is then used by the previous analyses to produce better results—more

optimization opportunities for the analyses in Chapter 4, and more precise interference-free

region boundaries for the analysis in Chapter 5.

To summarize, this thesis motivates, defines, and applies the notion of interference-free

regions in shared-memory multithreaded programs. We argue that interference-free regions

are a useful tool for reasoning about the behavior of data-race-free programs, and support

this argument by building and evaluating two applications of interference-free regions. Our

contributions improve the state of C and C++ programming in the wake of the new language

standards and the increasingly important role of multithreading.
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Chapter 2

BACKGROUND

Concurrent programs consist of multiple “threads” working together to accomplish a

task, either time-sharing one processor or (for parallel programs) using more than one pro-

cessor at a time. Concurrency is a powerful tool for improving the performance and/or

responsiveness of a program by making better use of system resources.

Concurrency is a pressing issue in the programming languages research community.

There is a massive body of research on developing concurrency mechanisms, catching con-

current bugs, and so on. Complicating this research is the fact that compiler and hardware

optimizations can change the behavior of concurrent programs in surprisingly subtle ways

[2, 35, 8]. To fix this problem, we need clear and precise documentation of how a language’s

concurrency mechanisms affect the language’s semantics.

This chapter introduces shared-memory multithreading and gives some relevant back-

ground on how concurrency is defined in the language specifications of C, C++, and Java.

As we shall see, there are numerous subtle issues that make this problem more difficult than

one might expect.

2.1 Concurrency and Parallelism in Software

This dissertation is set in the context of shared-memory multithreading, a paradigm for

writing parallel programs. In shared-memory multithreading, the program has multiple

threads of control, each of which has its own stack and registers. Threads communicate by

reading and writing memory locations in the shared heap. Figure 2.1 illustrates this idea.

When multiple threads are sharing a resource, it becomes necessary to coordinate the

actions of the threads so that they do not conflict with each other. In other words, we

need some way of making sure threads are not reading and writing the same memory loca-

tion at the same time. Programming languages therefore provide various synchronization
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Thread 1
Thread 2

Thread 3

Shared
Memory

Figure 2.1: In shared-memory multithreading, multiple threads of control communicate
with each other by reading from and writing to the shared memory. A gray box represents
a thread’s local memory. The solid lines represent the threads’ executions. The dashed lines
represent reads of and writes to the shared memory.

mechanisms for coordinating threads.

2.1.1 Mutual-Exclusion Locks

The most common mechanism, and the one we will use for examples throughout this dis-

sertation, is the mutual-exclusion lock. Mutual-exclusion locks (called “locks” or “mutexes”

interchangeably) are special resources that can be held by at most one thread at a time.

A thread can request to hold a lock by calling a lock acquire function. Once the thread is

granted the lock, it can relinquish it by calling a lock release function. We will use the C11

interface for mutual-exclusion locks [22]:

#include <threads.h> // type mtx_t defined

int mtx_lock(mtx_t *mtx);

int mtx_unlock(mtx_t *mtx);

mtx_lock acquires the lock argument, blocking until the lock is available; mtx_unlock

releases the lock. Both functions return a code indicating whether the operation succeeded.1

1These functions fail only in unusual cases—e.g., if the mutex is configured to be held only by threads of
a certain priority and the current thread’s priority is too low, or if a thread tries to release a mutex it has
not acquired [31].
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struct BankAccount {

int balance;

mtx_t lock;

...

}

void deposit(struct BankAccount *b, int amt) {

mtx_lock(&b->lock);

b->balance += amt;

mtx_unlock(&b->lock);

}

...

Figure 2.2: A simple bank account application in C.

Java, C++, and other languages that support shared-memory multithreading generally

provide similar functionality (e.g., Java’s synchronized construct).

2.1.2 Example: Bank Account

This section gives a simple example of a multithreaded program, and shows how inter-thread

interference can produce unexpected results.

Consider the bank account program shown in Figure 2.2. Here, a bank account is

represented by a struct that includes the current balance of the account. The balance is

protected by a mutual-exclusion lock; in other words, when a thread reads or writes the

balance field, it must first acquire the lock.

Figure 2.3 shows a multithreaded client of the bank account application. Two threads

concurrently deposit $100 each into a bank account with initial balance 0. What are the

possible final values of the balance field?

Because the deposit() function accesses the balance only when holding the lock, there

are only two possible executions of this program, both listed in Figure 2.4. If Thread

1 gets the lock first, we get execution 2.4a; if Thread 2 gets the lock first, then we get

execution 2.4b. Both possible executions result in a final balance of 200. Therefore this is

an example of a properly-synchronized program—the threads safely coordinate access to the
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Initially, b->balance == 0.

Thread 1 Thread 2

deposit(b, 100); deposit(b, 100);

(a) Client code.

Thread 1 Thread 2
mtx_lock(&b->lock);

b->balance += 100;

mtx_unlock(&b->lock);

mtx_lock(&b->lock);

b->balance += 100;

mtx_unlock(&b->lock);

(b) Client code, with deposit() inlined.

Figure 2.3: Multithreaded client of the bank account program listed in Figure 2.2.

Thread 1 Thread 2
mtx_lock(&b->lock);

b->balance += 100;

mtx_unlock(&b->lock);

mtx_lock(&b->lock);

b->balance += 100;

mtx_unlock(&b->lock);

(a)

Thread 1 Thread 2

mtx_lock(&b->lock);

b->balance += 100;

mtx_unlock(&b->lock);

mtx_lock(&b->lock);

b->balance += 100;

mtx_unlock(&b->lock);

(b)

Figure 2.4: Possible executions of the multithreaded program listed in Figure 2.3. Note
that at most one thread holds b->lock at a time.
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struct BankAccount {

int balance;

...

}

void deposit(struct BankAccount *b, int amt) {

b->balance += amt;

}

...

Figure 2.5: Improperly-synchronized version of the bank account program listed in Figure
2.2.

shared memory.

Now consider a version of the bank account program that does not properly synchronize

accesses to balance. Figure 2.5 lists a version in which the mutex calls have been removed.

If we run the client program (Figure 2.6) with this version of the bank account instead,

what are the possible values of balance after the execution finishes?

The answer depends on the order in which the two threads access field balance. In

Figure 2.6b, we have broken the statement b->balance += 100 into three component steps:

(1) reading the value of the memory location corresponding to balance into a temporary

variable; (2) adding 100 to the temporary variable’s value; and (3) writing the temporary

variable’s value back to the balance field.

Figure 2.7 shows two of many possible executions. In Figure 2.7a, Thread 1 completes

its execution before Thread 2 reads the value of balance, resulting in the expected result of

200. Figure 2.7b shows another possible execution, in which both threads read the value of

balance before either thread writes the new value back to balance. In this case, the final

value of balance is 100 because both threads see an initial balance of 0.

Therefore this program is erroneous, because (although not formally specified) we expect

that depositing 100 twice should result in a net increase of 200. Instead, we found at least

one execution where a deposit is “lost.” This disparity is an example of how improper

synchronization of threads that access the same shared memory location(s) may interfere
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Initially, b->balance == 0.

Thread 1 Thread 2

deposit(b, 100); deposit(b, 100);

(a) Client code.

Thread 1 Thread 2
int tmp1 = b->balance;

tmp1 = tmp1 + 100;

b->balance = tmp1;

int tmp2 = b->balance;

tmp2 = tmp2 + 100;

b->balance = tmp2;

(b) Client code, with deposit() inlined and b->balance += 100 broken into component steps.

Figure 2.6: Multithreaded client of the bank account program listed in Figure 2.5.

Thread 1 Thread 2
int tmp1 = b->balance;

tmp1 = tmp1 + 100;

b->balance = tmp1;

int tmp2 = b->balance;

tmp2 = tmp2 + 100;

b->balance = tmp2;

Result: b->balance == 200.
(a)

Thread 1 Thread 2
int tmp1 = b->balance;

tmp1 = tmp1 + 100;

b->balance = tmp1;

int tmp2 = b->balance;

tmp2 = tmp2 + 100;

b->balance = tmp2;

Result: b->balance == 100.
(b)

Figure 2.7: Two possible executions of the bank account client program listed in Figure 2.6.
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with one another.

2.1.3 Data Races

We say that the executions listed in Figure 2.7 have data races: two threads access a shared

memory location (here the balance field) in such a way that the accesses are not ordered

by synchronization and at least one access is a write. For example, the statement int tmp1

= b->balance in Thread 1 forms a data race with b->balance = tmp2 in Thread 2. Note

that even the “correct” execution in Figure 2.7a has data races (e.g., b->balance = tmp1

races with b->balance = tmp2. This indicates that the execution is, in a sense, broken,

even though the memory accesses just so happened to occur in an order that produced the

correct answer.

In general, data races should be considered errors, even if they may not always produce

an incorrect result. As we have already seen, data races can result in unexpected behavior

in the event of unfortunate thread interleavings. In addition, we shall see in Section 2.2 that

data races can result in even more insidious errors as a result of unexpected interactions

with hardware and compiler optimizations.

2.1.4 Synchronizes-With Orderings

When writing multithreaded code, it is important to use proper synchronization such that

no possible executions have data races. The program in Figure 2.3 prevents data races

using mutual-exclusion locks. Neither of the possible executions in Figure 2.4 have data

races, because accesses to balance between the two threads are ordered by synchronization.

Formally, we say that a lock release synchronizes-with a later acquire of the same lock. For

example, in Figure 2.4a, Thread 1’s lock release (mtx unlock(b->lock)) synchronizes-with

Thread 2’s lock acquire (mtx lock(b->lock)). This ordering between the unlock and lock

actions induces a partial ordering over the memory accesses in the two threads: all the

actions in Thread 1’s execution “happen before” the actions in Thread 2.

This concept of synchronizes-with orderings extends to types of synchronization be-

yond mutual-exclusion locks. In general, we say that any synchronization operation that



11

Operation Synchronization type

mtx_lock Acquire

mtx_unlock Release

thrd_create Release

thrd_join Acquire

atomic_store Release

atomic_load Acquire

Table 2.1: Synchronization operations.

synchronizes-with earlier operations is an acquire operation (e.g., mtx lock is an acquire

operation because it synchronizes-with earlier release operations). Acquire operations in-

duce orderings on the operations in the same thread that come after the acquire. Similarly,

any synchronization operation that synchronizes-with later operations is a release opera-

tion (e.g., mtx unlock). Release operations induce orderings on the operations in the same

thread that come before the release.

The next few sections will have more examples of acquire and release operations; Table

2.1 lists the operations we will discuss and their synchronization types.

2.1.5 Thread Fork and Thread Join

Java, C and C++ all use the same language mechanism to create threads: a special fork

operation that spawns a new thread. In C11, the fork operation is a library function with

the following signature [22]:

#include <threads.h> // defines thrd_t and thrd_start_t

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

Here thr is a pointer to the thread ID (initialized by thrd_create), func is the function

for the new thread to execute, and arg is the argument to pass to the function.

The thread fork operation synchronizes-with the first operation of the newly-created

thread. Therefore thread fork is a release operation: it induces ordering on operations

that came before it. Practically, this means that a thread can initialize shared state before
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int worker(void *arg) {

int me = (int) arg;

... // do work

}

int main() {

thrd_t tids[NUM_THREADS];

for (int i = 1; i < NUM_THREADS; i++) {

thrd_create(&tids[i], worker, (void *) i);

}

worker(0);

for (int i = 1; i < NUM_THREADS; i++) {

int res;

thrd_join(tids[i], &res);

}

... // process result

}

Figure 2.8: An example of thread fork/join. This program spawns (NUM_THREADS - 1)

worker threads, then waits for them to complete their tasks.

forking off threads, and those initialization writes will not conflict with reads or writes in

spawned threads.

Joining a thread means waiting for the thread to complete. This is useful, for example,

if the main thread forks several worker threads, and needs to aggregate their results once all

threads have finished (a model typically called fork/join parallelism). C11 supports thread

join as follows:

#include <threads.h> // defines thr_t

int thrd_join(thrd_t thr, int *res);

thr is the thread ID and res is where the return value of the thread is stored. thrd_join

synchronizes-with the end of the joined thread, so it is an acquire operation.

Figure 2.8 gives a simple example of a multithreaded program that uses fork/join par-

allelism to farm out a large task to worker threads.
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2.1.6 Volatile Variables

The last type of synchronization we will discuss, available in Java, C and C++, is volatile

variables. By definition, concurrent accesses to volatile variables do not constitute a data

race. In C and C++, volatile variables are called atomics. They have the following interface

(here specialized for integers, but available for many types):

#include <stdatomic.h> // defines atomic_int, atomic_long, ...

void atomic_store(volatile atomic_int *object, int desired);

int atomic_load(volatile atomic_int *object);

Volatile loads synchronize-with previous volatile stores to the same location. Therefore

volatile loads are acquire operations and volatile stores are release operations.

2.2 Motivating Memory-Consistency Models

In order to make these concurrent features usable by programmers, they must be integrated

into the specification of the language such that the semantics of concurrent programs are

well-defined and straightforward to reason about. A memory-consistency model (or memory

model) is the component of the language specification that defines how threads interact

through shared memory. In particular, the memory model defines which values may be

returned by read operations. Memory models were originally defined at the hardware level;

we do not discuss hardware models in detail and instead refer the reader to Adve and

Gharachorloo’s tutorial [2].

The strongest, most intuitive semantics for multithreaded programs is sequential con-

sistency, originally described by Lamport [25]. Sequential consistency requires that the

memory actions of each thread be interleaved in a total order consistent with the program

order in each thread, such that a read always sees the most recent write to the same location

in this total order. From the programmer’s perspective, sequential consistency is the easiest

semantics to reason about and provides the optimal level of programmability. However,

modern high-level programming languages have sophisticated compilers that rely on com-

plex code transformations to achieve good performance. These code transformations may

reorder memory operations, potentially violating sequential consistency. Ubiquitous opti-

mizations like common subexpression elimination and hoisting operations out of loops are
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Initially, x == 0 and y == 0.

Thread 1 Thread 2
r1 = x;

if (r1 != 0)

y = 42;

r2 = y;

if (r2 != 0)

x = 42;

r1 == 42 and r2 == 42 is illegal.

Figure 2.9: Data-race-free programs must have sequentially-consistent semantics.

essentially forms of memory reordering. Therefore, modern languages have adopted relaxed

memory-consistency models, which provide weaker guarantees than sequential consistency

so that key compiler optimizations are legal.

The memory-consistency model of a language acts as a contract between the programmer

and the compiler. The approach taken by the vast majority of models is for correctly

synchronized code to behave as if the language supported sequential consistency, while

incorrectly synchronized programs may have weaker semantics. A program is correctly

synchronized if no sequentially consistent executions of the program have data races (i.e., two

threads accessing the same location at the same time where at least one access is a write). As

long as a program is data-race-free, the compiler guarantees that any optimizations will not

change the semantics of the program. This compromise, called the data-race-free guarantee,

exploits the fact that most compiler optimizations are safe for data-race-free programs.

Specifically, compilers must avoid optimizing across synchronization calls or introducing

new data races.

For example, consider the program in Figure 2.9 (reprinted from the Java Memory Model

paper [35]). Although the program contains writes to x and y, they will never occur in a

sequentially consistent execution of the program. Therefore the program is data-race-free,

and the only legal outcome is r1 == 0 and r2 == 0. The compiler must be careful not to

move either write earlier, because such a transformation could violate the semantics of the

program.

In the last decade, three popular mainstream languages have defined precise memory-



15

Initially, x == 0 and y == 0.

Thread 1 Thread 2
r1 = x;

y = 1;

r2 = y;

x = r2;

r1 == 1 and r2 == 1 is legal.

Figure 2.10: Legal compiler optimizations may introduce non-sequentially-consistent be-
havior.

Initially, x == 0 and y == 0.

Thread 1 Thread 2
r1 = x;

y = r1;

r2 = y;

x = r2;

Incorrectly synchronized, but we want to disallow r1 == 42 and r2 == 42.

Figure 2.11: In safe languages like Java, compiler optimizations must not introduce values
out of thin air.

consistency models: Java [35, 19], C, and C++ (both of which use the same underlying

model) [11, 22, 23]. The existence of these two models, as well as the considerable com-

munity effort that went into developing both of them, stresses the importance of this prob-

lem. Both models take the data-race-free approach to provide programmability while also

allowing reasonable compiler optimizations. Given that both models support the data-race-

free guarantee, the differences between the two models define a clear design space. The

Java memory model must support Java’s strong language guarantees of security and safety.

Therefore the model provides reasonably strong semantics even to programs that are not

correctly synchronized. C++ is an unsafe language, so its model does not define any se-

mantics for incorrectly synchronized programs, focusing instead on simplicity and flexibility.

The C++ model has the advantage of having a concise specification, as well as allowing

more compiler optimizations than Java. We discuss these and other models in Section 2.3.
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2.2.1 Compiler Optimizations

We illustrate how compiler optimizations can affect the semantics of multithreaded programs

via two simple examples. Consider the program shown in Figure 2.10, which is reprinted

from the JMM paper [35]. Here x and y are shared variables, and r1 and r2 are local

variables. In a sequentially consistent language, the outcome r1 == 1 and r2 == 1 is not

legal, because at least one of the reads must execute before either of the writes. But an

optimizing compiler may reorder independent operations in a single thread; if the compiler

reorders the read and the write in Thread 1, the outcome r1 == 1 and r2 == 1 is possible.

Because this optimization is entirely standard and the spurious result does not violate any

safety guarantees, this example should be legal for any reasonable language-level memory

model.

In the context of a safe language like Java, compiler optimizations can have profound

implications for security. Consider Figure 2.11, also from [35]. This example is similar to

Figure 2.10, except that the values written to x and y are now the values read from y and

x, respectively. Now, consider a compiler optimization that transforms Thread 1 as follows:

y = 42;

r1 = x;

if (r1 != 42) {

y = r1;

}

If Thread 2 is transformed symmetrically, the outcome r1 == 1 and r2 == 42 is allowed.

Note that the transformed code is safe in a single-threaded setting, so a compiler could

theoretically implement this transformation (although in practice it is very unlikely). The

problem here is that the value 42 appeared “out of thin air”: 42 is never assigned to x or

y in the original program. Practically, the issue is that the compiler added a speculative

write whose value was not justified by the original program.

Out of thin air (OoTA) reads are a potential security hole in a safe language like Java.

Hypothetically, untrusted code could gain access to thread-local objects or confidential data

(e.g., a user’s password). Therefore, Manson et al. (the authors of the Java memory model)

concluded that such optimizations, no matter how unlikely, must be explicitly disallowed
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by the memory model [35]. In contrast, C and C++ are unsafe languages, so they make no

guarantees about OoTA reads [11].

2.3 Programming-Language Memory Models

This section discusses the design of memory-consistency models for programming languages

in the context of two important examples: the Java memory model [35] and the C/C++

memory model [11]. These models represent two extremes on the design spectrum for

memory models. We will describe the Java and C/C++ models using a hybrid of both

models’ formalizations [35, 11].

2.3.1 Definitions

A running program emits a series of actions. The kinds of possible actions vary depending

on the synchronization mechanisms provided by the language. For the moment, we will

assume that the language supports shared mutable variables x and non-reentrant mutual-

exclusion locks l.2 For brevity, we omit synchronization mechanisms other than locks; we

address volatile variables briefly in Section 2.3.2.

Let A be a set of actions, where each action is a triple of a thread ID t, a kind of action

k, and a UID (unique ID) u: (t, k, u). Kinds of actions include reads and writes to shared

variables and acquires and releases of non-reentrant locks:

Kinds k ::= read(x) | write(x) | mtx lock(l) | mtx unlock(l)

We specify the memory model for a language by giving a set of constraints, or axioms,

over executions. Some models are concise and easy to state (e.g., sequential consistency)

while models like the JMM are considerably more complex. This axiomatic approach is not

the only way to specify a memory model, but it is the most prevalent in the literature, both

because the initial formulations of memory models for hardware took this approach [2] and

because it is versatile enough to describe a large variety of models.

2Non-reentrant locks cannot be reacquired by the thread holding the lock.
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We describe several axioms shared by all the memory models we will discuss. These

axioms rely on several auxiliary structures, which we shall summarize after defining the

axioms.

1. Let the writes-seen function W be a map from UIDs of read actions in A to UIDs of

write actions in A, and let the values-written function V be a map from UIDs for write

actions in A to values. These two functions must be defined properly: W is defined on

UID u if and only if there exists (t, k, u) ∈ A and k is a read, and V is defined on UID

u if and only if there exists (t, k, u) ∈ A and k is a write. Moreover, for all (t, k, u) ∈ A

where k is a read and (t′, k′,W (u)) ∈ A, k and k′ must access the same variable and

k′ must be a write. (This formulation is used by the Java Memory Model; in the C++

model, all read and write actions include the value read or written.)

2. The synchronization operations in A must obey mutual exclusion. Assume there is a

strict total order <so over UIDs for synchronization operations (that is, acquire and

release operations) in A. Then mutual exclusion imposes the following constraints:

acquires and releases of each lock must alternate in the total order <so; the first action

for each lock in <so must be an acquire; and the thread that releases a lock must also

have been the most recent thread (according to <so) to have acquired that lock.

3. The execution must satisfy intra-thread consistency. Let the program order ≤po be a

partial order over UIDs such that u1 ≤po u2 only if u1 and u2 correspond to the same

thread ID. Note that the actions of a single thread need not be totally ordered by ≤po;

for example, C and C++ leave undefined the order of evaluation of function arguments

[11]. Then the program (we assume there is some program P associated with A) must

be able to produce the actions in A in the order given by ≤po, according to the

sequential (i.e., “intra-thread”) semantics of the language. The sequential semantics

uses the functions W and V to get a value for each read operation: the value returned

by a read u is V (W (u)). Similarly, for every write action u, the value written by the

sequential semantics must match the value given by V (u).
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4. The program order and synchronization order must be consistent. That is, the reflexive

transitive closure of the union of ≤po and <so is antisymmetric.

The Java and C/C++ models include other axioms (e.g., for variable initialization), but

these four axioms are the most broadly relevant. Gathering the various definitions together,

we say that an execution E consists of a program P , a set of actions A, a program order

≤po, a synchronization order <so, a writes-seen function W , and a values-written function V :

E = (P,A,≤po, <so,W, V ). Furthermore, executions satisfying the four constraints listed

above are well-formed.

The intra-thread consistency requirement is interesting in that it is unique to language-

level memory models. This requirement is the only link between the sequential and concur-

rent features of the language, so it is crucial in determining the possible legal executions of

a program. Hardware memory models may include constructs for data or control dependen-

cies, but they generally ignore details like values being read and written or the semantics of

non-memory instructions (e.g., [3]). (An exception is the x86-CC model [41], which includes

an instruction semantics as well as an axiomatic model.) We omit the syntax and sequential

semantics of the program P ; for our purposes, the program is effectively a predicate over

executions. (This observation is due to Aspinall and Ševč́ık [5], who proved the DRF guar-

antee for the JMM without having to define a sequential semantics.) However, defining the

program syntax and semantics is crucial when reasoning about the correctness of compiler

optimizations [8, 46].

We will use the notion of a well-formed execution to describe sequential consistency,

the Java memory model, and the C++ memory model. For the purposes of exposition,

we discuss the C++ model before the Java model, which is considerably more complex.

The Java model actually predates the C++ model. The Java section is not necessary for

understanding the remainder of this dissertation.

2.3.2 Volatile Variables

We can add volatile variables to our semantics by augmenting the syntax of actions:

Kinds k ::= ::= . . . | readv(t, v) | writev(t, v)
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Volatile reads and writes are included in the synchronization order, and we extend the

definition of well-formedness to require that volatile reads and writes exhibit sequentially-

consistent semantics. The happens-before order (defined in Section 2.3.4) is extended to

include edges from writes to reads of volatile variables.

Volatiles differ from normal variables in that they define ordering constraints. In partic-

ular, the compiler cannot optimize away volatile operations using, for instance, redundant

read elimination, because removing a volatile operation also changes the happens-before

relation of an execution [35].

2.3.3 Sequential Consistency

Sequential consistency is our most basic memory model, defining the most intuitive seman-

tics possible for a multithreaded program. In short, the actions of each thread are interleaved

in a global order. This global order must be consistent with the program and synchroniza-

tion orders, and each read must see the most recent write in the global order. Formally,

we say a well-formed execution E = (P,A,≤po, <so,W, V ) is sequentially consistent if there

exists a total order ≤ over the UIDs in A such that:

1. u1 ≤po u2 implies that u1 ≤ u2;

2. u1 <so u2 implies that u1 < u2;

3. For all reads ur ∈ A, there does not exist a write uw ∈ A such that uw and ur access

the same variable and W (ur) < uw < ur.

This axiomatic specification of sequential consistency is somewhat oblique, but the intuition

is for the actions of all threads to interleave in the natural way.

2.3.4 Data Races

Most memory models provide the data-race-free guarantee: programs that are “correctly

synchronized” will have simple semantics (i.e., sequential consistency). We have already

defined sequential consistency; now we must define the notion of a correctly synchronized

program. In short, a correctly synchronized program is a program that has no data races.

As discussed in Section 2.1.3, a data race occurs when two threads access the same
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location concurrently, and at least one of those accesses is a write. It is difficult to reason

about the semantics of a program in the presence of data races, even if the language supports

a strong memory model such as sequential consistency. Therefore, most memory models

consider a program with data races to be fundamentally erroneous. Following Boehm and

Adve [11], we distinguish between two competing definitions of data race, one of which

formalizes the intuitive definition given earlier and one of which departs from that intuition.

For many languages, these two definitions are equivalent.

A type 1 data race is defined in terms of actions that could have happened at the same

time in a sequentially consistent execution. Let E = (P,A,≤po, <so,W, V ) be a sequentially

consistent execution with total order ≤. Then E contains a type 1 data race if there exist

two read/write actions (t1, k1, u1) and (t2, k2, u2) ∈ A such that t1 6= t2, k1 and k2 access

the same location, at least one of k1 and k2 is a write, and u1 and u2 are consecutive in the

sequential order.

A type 2 data race is defined in terms of a partial order on a program execution called the

happens-before order. Following the Java memory model [35], we can define the happens-

before order as follows (the C++ definition is similar). Two UIDs u1 and u2 in a well-formed

execution (P,A,≤po, <so,W, V ) are ordered by the synchronizes-with order <sw if u1 <so u2

and there exists a lock l such that u1’s corresponding action is mtx unlock(l) and u2’s

corresponding action is mtx lock(l). The happens-before order ≤hb is then defined as the

reflexive transitive closure of the union of ≤po and <sw. Finally, two read/write actions u1

and u2 form a type 2 data race if u1 and u2 are performed by different threads, the actions

corresponding to u1 and u2 access the same location, at least one of u1 and u2 is a write,

and u1 and u2 are not ordered by happens-before; that is, neither u1 ≤hb u2 nor u2 ≤hb u1.

Note that type 2 data races are more general than type 1 data races. If an execution has

a type 1 data race, the two actions in question are clearly not ordered by happens-before,

and therefore also form a type 2 data race. However, an execution may have a type 2 data

race but no type 1 data race (if the racy actions do not happen to occur consecutively in

the total order).

For many languages, the distinction between type 1 and type 2 data races is moot,

because they can be proved equivalent (a proof for C/C++ is given in Theorem 8.2 of
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the PLDI paper introducing the C++11 model [11]). Proving this equivalence consists of

finding an execution of the program P in which the actions forming the type 2 data race

are consecutive. As we shall see in Section 2.3.5, some types of synchronization invalidate

this equivalence. In such instances, the memory model is defined in terms of type 2 data

races, making the language less usable to the programmer.

We highlight the difference between type 1 and type 2 data races because they illustrate a

design choice where the programmer and the compiler have different demands. Programmers

can more easily reason about type 1 data races, because the idea of two actions occurring

simultaneously is simple and intuitive. Compiler designers require the precision of the

happens-before relation to reason carefully about code transformations. Therefore it is

ideal for languages to support type 1/type 2 data race equivalence if possible.

2.3.5 The C++ Memory Model

Given the definition of a type 1 data race, the C/C++ memory model is simple [11]:

1. If a program is type 1 data-race-free, then all executions of that program are sequen-

tially consistent.

2. If a program is not type 1 data-race-free, then the program’s semantics is undefined.

In effect, the model declares that “there are no benign data races” in C and C++

[11]. A program that includes a data race could (figuratively) set the computer on fire.

Drawbacks of this approach include that debugging racy programs is difficult, and of course

that we have none of the safety or security guarantees provided by Java’s model. Boehm

and Adve, in their overview of the model [11], argue that data races are too difficult to

deal with in an unsafe language like C++, and give an example in which a data race

effectively causes the program to start executing code at an arbitrary address. Leaving the

semantics of incorrectly synchronized programs undefined significantly simplifies the work

of the compiler. For example, eliminating a redundant read is safe as long as there are no

synchronization operations between the two reads, because no other thread could possibly

update the value of the location without causing a data race. (This insight will be crucial

to our work on compiler optimization in Chapter 4.)
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Complications

As observed by Boehm [8], adding a mtx_trylock primitive (which attempts to acquire a

lock and succeeds if and only if the lock is available) to the set of synchronization primitives

available to the language impacts the semantics of the memory model. To be precise, the

use of mtx_trylock invalidates the equivalence of type 1 and type 2 data races, unless we

strengthen the happens-before relation to include edges between acquire and trylock oper-

ations. However, this change would disallow a key compiler optimization, namely moving

memory actions into critical sections by reordering them with lock acquires (i.e., roach-motel

reordering [35]). The C/C++ model instead redefines the semantics of mtx_trylock such

that it can spuriously fail to acquire the lock even if the lock is available, neatly sidestepping

this semantic issue [11].

The C/C++ model is further complicated by the assumption that there is a total order

over all synchronization operations in an execution (<so in our formalism). Some archi-

tectures do not support this requirement, which makes it impossible to reason about the

semantics of a program with respect to a sequentially consistent execution. Instead, the

C/C++ memory model provides an “expert” version in which synchronization operations

(or, in their terminology, “low-level atomics”) do not have a total global order. This model

is considerably more complicated than the model without low-level atomics, but allows for

finely-tuned optimization of low-level concurrent code [11, 22, 23].

Despite these complications, the C/C++ model is, for the vast majority of programmers,

very simple. Most programmers must simply avoid type 1 data races, and the compiler will

guarantee sequentially consistent semantics. This model represents an interesting point

in the design space of memory models, where we sacrifice security and safety in favor of

simplicity and flexibility.

2.3.6 The Java Memory Model

This section discusses the Java memory model. Although the information presented provides

useful background, it is not essential since the rest of the dissertation focuses on C and C++.

The Java memory model (JMM), developed by Manson, Pugh, and Adve with the input
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of the Java community [35], differs from the C/C++ model in that the Java model defines

the semantics of all programs, even those with races. This requirement comes from Java’s

status as a type-safe language with strong security guarantees. The JMM is the state of the

art for defining a precise and secure memory model for a type-safe language.

The JMM is a data-race-free model, guaranteeing sequentially consistent semantics for

correctly synchronized programs. (Unlike C and C++, the JMM defines data races using

the type 2 definition; type 1 and type 2 data races are not equivalent in Java [9].) The main

hurdle in formulating the JMM was to define safe but efficient semantics for incorrectly

synchronized code.

Out of Thin Air Reads

In order to maintain Java’s security guarantees, the memory model goes to great lengths

to disallow so-called out of thin air (OoTA) reads. OoTA reads (as in Figure 2.11) return

values that do not occur in any reasonable interpretation of the program semantics, even

when allowing for standard compiler transformations. If values were permitted to appear

out of thin air, it could theoretically result in threads getting access to confidential data

by exploiting incorrectly synchronized programs. Although real compilers are unlikely to

compile programs such that values appear out of thin air, it is critical that the memory

model explicitly disallow such behavior.

An intuitive but imprecise definition of Java’s OoTA restriction is as follows: a thread

must never see a value for a read that could never be written to that location in a sequentially

consistent execution. However, the JMM’s definition of OoTA is somewhat more restrictive:

it states that “early execution of an action does not result in an undesirable causal cycle

if its occurrence is not dependent on a read returning a value from a data race” [35]. This

definition is confusing, but the intuition is that that speculative executions (which are used

to justify early writes) should not rely on one possible outcome of a data race if the final

execution relies on a different outcome.
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Overview of the JMM

The JMM disallows causal cycles by requiring that every execution be justified by a series

of intermediate executions. Formally, in order to justify a well-formed execution E, we

must build up a series of executions E0 . . . En where E = En and each execution has the

same program P .3 Execution Ei “commits” a set of actions Ci ⊆ Ai, such that C0 = {},

C0 ⊂ C1 ⊂ . . . ... ⊂ Cn and Cn = A. In other words, each successive execution in the series

justifies one or more of the actions in the final execution, cumulatively justifying the entire

execution.

Given this notion of a set of justifying executions, we can characterize the JMM as

follows: the JMM is a set of axioms which, when taken together, describe all legal series of

justifying executions. A (very) simplified explanation of the axioms is that each justifying

execution must be both well-formed (as defined in Section 2.3.1) and well-behaved, which

means that all reads see writes that happen-before them. However, committed reads do not

need to be well-behaved, which allows executions to have read-write data races. The JMM,

then, defines a commit procedure wherein we iteratively commit non-well-behaved reads,

fixing the write seen by the committed read in order to disallow causal cycles. (We must

also commit all other actions in the execution, including writes, synchronization operations

and well-behaved reads, but the trick is in committing non-well-behaved reads.)

An alternative formulation of the model, due to Aspinall and Ševč́ık [6], is to characterize

the JMM’s commit procedure as a process in which we commit data races one at a time.

For each intermediate execution in the series of justifying executions, we choose a data race

to commit, and commit all actions involved in the data race. For example, Figure 2.10 has

two data races: Threads 1 and 2 have read-write data races on x and y. We can justify

the behavior r1 == 1 and r2 == 1 as follows. First, we commit the data race on y (i.e.,

Thread 1’s write and Thread 2’s read) using an execution in which Thread 2 reads Thread

1’s write of 1 to y. (Note that we could not use the commit procedure to commit a write of

42 to y in Figure 2.11, because we must justify the value for the write using a well-behaved

execution.) Then we commit the data race on x (i.e., Thread 1’s read and Thread 2’s

3Assume for simplicity that the executions are finite; the formalism extends to infinite executions.
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write), also using value 1. The commit procedure therefore allows some non-sequentially-

consistent executions, but only those in which the values returned by reads can be justified

in a non-cyclic way, giving us a notion of causality.

Given the definition of the JMM, it is possible to show that type 2 data-race-free pro-

grams exhibit sequentially-consistent semantics [35] (and mechanized in [21, 5]). Unlike

C++, in which the memory model and the DRF guarantee are one and the same, the DRF

guarantee is merely a consequence of the Java model. In other words, the DRF guarantee

is not part of the language definition; instead, given the language definition, one can prove

a theorem stating that the model satisfies the DRF guarantee.

Problems with the JMM

The JMM is difficult to understand. The commit procedure is considerably more complex

than the simplified explanation given in the previous section. For example, there are several

axioms that constrain the ≤hb and <so orders for the various intermediate executions. More-

over, the intermediate executions are not actually sequentially consistent—they instead use

a model similar to weak ordering [3] called happens-before consistency. It appears that only

a few people fully understand the JMM, which lessens the likelihood that compiler writers

will implement it correctly. One difficulty is that the JMM defines which executions are

legal, but it is unclear how to reverse this definition in order to show that a given execution

is not legal.

A more concrete problem is that a number of bugs in the JMM have been identified in the

seven years since its release as part of Java 5.0. The JMM was designed to support a variety

of common compiler optimizations. The JMM paper [35] includes a proof that independent

reordering of operations is legal, but a counterexample was given by Cenciarelli et al. [13].

A fix for this bug was proposed by Aspinall and Ševč́ık [6], but the same authors also

uncovered issues with roach-motel reorderings and other important optimizations [46] which

had previously been assumed to be legal by Java compiler experts [28]. These problems with

the JMM definition were one of the reasons the C++ model chose not to give semantics

to racy programs [11]. The Java Language Specification has yet to address any of these
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problems [19].

2.4 Conclusion

We have now reviewed the C/C++ and Java memory-consistency models. The two models

are of great practical importance and also nicely illustrate the current spectrum of language

memory models. The rest of this dissertation concentrates on the C/C++ model, which (as

discussed) requires program to be data-race-free. We will address two research questions

raised by the new model:

1. How can the compiler take advantage of the DRF assumption to optimize programs

more effectively?

2. How can the programmer ensure that their program is data-race-free?

In the remaining chapters, we introduce our key insight (interference-free regions), and

apply this insight to compiler optimization and data-race detection.
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Chapter 3

INTERFERENCE-FREE REGIONS

This chapter introduces a simple but powerful abstraction called interference-free re-

gions. The observation we make is that when a variable x is accessed, its value cannot be

changed by another thread between the immediately preceding acquire synchronization call

and the immediately following release synchronization call. A powerful consequence of this

generalization is that the interference-free regions for different accesses to the same variable

may overlap, revealing previously unrecognized optimization opportunities.

Our analysis is straightforward, but general and applicable to a number of interesting

cases. We hope that the discussion sheds light on issues that have not been well understood

prior to our work.

3.1 Interference-Free Regions

It is well-known that, in the absence of data races, when a variable x is accessed, its value

cannot be changed by another thread between the immediately preceding and immediately

following synchronization operations. If another thread could modify the variable between

those two points (i.e., within a synchronization-free region), then the two accesses of x would

not be ordered by synchronization, and therefore they would form a data race. Similarly, if

x is written within a synchronization-free region, it cannot be read or written by another

thread within that region.

These observations are fundamental to code optimization in current compilers. They

allow compilers for languages like C and C++ to largely ignore the presence of threads

when transforming synchronization-free code. No other thread can detect such transforma-

tions without introducing a data race. As long as synchronization operations are treated as

“opaque” (i.e., as potentially modifying any memory location), and no speculative opera-

tions, and hence no new data races, are introduced, safe sequential transformations remain
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correct in the presence of multiple threads.

We concern ourselves with regions of code that are not synchronization-free. Can we

regain some sequential reasoning even in the presence of synchronization? To illustrate the

problem we are trying to address, consider:

mtx_lock(*mtx_p);

...

mtx_unlock(*mtx_p);

where mtx_p is a shared global pointer of type mtx_t **.1 We will also assume, for purposes

of the examples, that ellipses represent synchronization-free code that does not modify any

of the variables mentioned in the example. Is it the case that both instances of mtx_p always

refer to the same lock? Or could another thread modify mtx_p in the interim?

The prohibition against data races often allows us to answer such questions, without

analyzing code that might be run by other threads. Without such a prohibition, and without

knowledge about other threads in the system, we clearly could not guarantee anything about

concurrent updates of mtx_p. Moreover, reasoning about synchronization-free regions is

insufficient in this case: the lock is acquired between the first and second load of mtx_p, and

hence the two references are not in the same synchronization-free region. Nevertheless, we

argue that the data-race-freedom assumption is strong enough to establish, for this example,

that another thread cannot concurrently modify mtx_p.

We make an easily provable, but foundational, and apparently normally overlooked

observation: the region of code during which other threads cannot modify a locally ac-

cessed variable may often be extended in both directions beyond the access’s enclosing

synchronization-free region. In particular, we can extend the boundary of the region back-

wards in the trace past any earlier release operations, such as mtx_unlock() calls, and

forwards through any later acquire operations, such as mtx_lock() calls. To put it another

way, the variable cannot be modified by other threads in the region between the most re-

1Typically, a global mutex variable will have type mtx_t or mtx_t *. However, LLVM (the compiler we
will use in Chapters 4–6) transforms the program during compilation by adding an extra level of indirection
to the type of all global variables, so the mutexes become constant variables of type mtx_t * or mtx_t **,
respectively. We assume in our code examples that all globals have been transformed in this way. This
also means that loads and stores are easily identifiable, since they use the * operator.
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cent acquire operation and the next release operation. We call this extended region the

interference-free region for an access.

Thus, in our example, the interference-free region corresponding to the initial load of

mtx_p extends through the immediately following mtx_lock() call, and includes the second

load of mtx_p, guaranteeing that both loads must yield the same pointer. Here we have

separated the loads of mtx_p from the synchronization operations and labeled the first load,

but the idea is the same:

A: mtx_t *tmp1 = *mtx_p;
interference-free region for A

mtx_lock(tmp1);

...

mtx_t *tmp2 = *mtx_p;

mtx_unlock(tmp2);

We believe that the notion of an interference-free region is a fundamental observation

about the analysis of multithreaded code, in that it gives us a much better characteriza-

tion of the applicability of single-threaded techniques. This is strictly more general than

synchronization-free regions, which do not discern between different types of synchroniza-

tion operations. Note that we make these deductions with no specific information about

other threads in the execution; we are relying only on the data-race-freedom requirement

imposed by the language.

Given a memory access in an execution, we can infer the interference-free region for that

access. In the execution trace for a single thread in Figure 3.1, the IFR for access X extends

backwards through line A and forwards through line B. Any conflicting write must happen-

before the lock of mtx1 or happen-after the unlock of mtx6. The identity of the locks being

acquired or released is irrelevant; we simply identify acquire and release operations.

3.1.1 Overlapping Regions

We extend our reasoning about interference-free regions by considering cases in which two

or more regions for the same variable overlap. If x cannot be changed in either interval a

or interval b, and a and b overlap, then clearly it cannot change in a ∪ b.

For example, suppose there is a critical section nested between two accesses, as in Figure

3.2. In this case, the interference-free region for load A extends forwards into region B. The
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mtx_lock(mtx1);

A: ...
no acquires



interference-
free region

mtx_unlock(mtx2);

...

mtx_unlock(mtx3);

...
synchronization-

free region
X: int tmp = *x;

...

mtx_lock(mtx4);
no releases

...

mtx_lock(mtx5);

B: ...

mtx_unlock(mtx6);

Figure 3.1: An interference-free region in a thread trace. Ellipses are synchronization-free
code.

A: mtx_t *tmp1 = *mtx_p;
interference-free region for A

mtx_lock(tmp1);

...

mtx_lock(mtx2);

B: ...
interference-free region for C

mtx_unlock(mtx2);

...

C: mtx_t *tmp2 = *mtx_p;

mtx_unlock(tmp2);

Figure 3.2: The interference-free regions for accesses A and C overlap, despite the interven-
ing critical section.
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A: struct foo *tmp1 = *p;
interference-free region for A

mtx_lock(&tmp1->mtx);

...

mtx_lock(mtx2);

B: ...


interference-free region for C

mtx_unlock(mtx2);

...

C: struct foo *tmp2 = *p;

data_t local = tmp2->data;

...

mtx_lock(mtx3);

D: ...
interference-free region for E

mtx_unlock(mtx3);

...

E: struct foo *tmp3 = *p;

mtx_unlock(&tmp3->mtx);

Figure 3.3: Here, the load of p at line C means that p is interference-free during both nested
critical sections.

interference-free region corresponding to load C extends backwards, past the unlock into the

region B. Thus mtx_p must be interference-free for the entire region, and we can conclude

that all locks acquired are released.

The above reasoning does not generally apply if there is more than one nested critical

section in a row. However, there are cases for which we can derive similar results even

then. Consider the common case in which, rather than mtx_p, we have a pointer p to a

structure that includes both a mutex and some data, with the program as shown in Figure

3.3. The program includes three loads of p, at lines A, C, and E. The interference-free

region from the load of p at line A extends forward through region B. The interference-free

region from the load of p at line C extends backwards through B and forwards through D.

The interference-free region from the load of p at line E extends backwards through region

D. Thus we conclude that p cannot be modified by another thread.

More generally, we may conclude a variable x is interference-free along a section of

the execution trace if it is accessed between every pair of release and subsequent acquire
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while (...) {

A: r1 = *x;

...

mtx_lock(mtx);

...

mtx_unlock(mtx);

}

Figure 3.4: The access at line A is loop-invariant.

if (...) {

r1 = *x;

...

mtx_lock(mtx);

...

mtx_unlock(mtx);

while (...) {

...

mtx_lock(mtx);

...

mtx_unlock(mtx);

}

}

Figure 3.5: Figure 3.4 with the load hoisted out of the loop.

operations.

3.1.2 Loop Invariance

We can also use interference-free regions to determine loop-invariant references for loops

that contain synchronization. The loop in Figure 3.4 is again not a simple synchronization-

free region, so it is not immediately clear whether the load of x can be moved out of the

loop. However, x is guaranteed to be accessed between every lock release and the next lock

acquire operation. Hence the interference-free region for each access of x must overlap with

the previous and next one, if they exist. Therefore, all loaded values of x must be the same,

so it is safe to move the load out of the loop, taking care to guard the load so as not to

introduce a data race (Figure 3.5).



34

Similar observations apply to loops that access C11 [22] atomic objects (see Section

2.1.6). If we consider the loop below where a has type volatile atomic_int *, we can

deduce that the loop contains only acquire operations, and therefore the interference-free

region of any access in the loop includes all later iterations of the loop.

do {

r1 = *x;

...

} while(atomic_load(a));

Thus the read of x can safely be hoisted out of the loop.

3.2 Formalism

Memory models are delicate and must be reasoned about in a formal setting. This section

formally defines the interference-free regions described in Section 3.1 and proves their cor-

rectness: if one thread writes to a location while another thread is in an interference-free

region for that location, there is a data race.

3.2.1 Model

Recall from Section 2.3 that an execution E consists of a program P , a set of actions

A, a program order ≤po, a synchronization order <so, a writes-seen function W , and a

values-written function V : E = (P,A,≤po, <so,W, V ). We ignore P , W , and V because

they are irrelevant to IFRs. We also assume a synchronizes-with relation <sw instead of a

synchronization order <so. Note that if we assume some concrete type of synchronization

(e.g., mutexes), it is trivial to infer the synchronizes-with relation from the synchronization

order. Starting with the synchronizes-with order instead means we do not have to specify

what types of synchronization may be used. Instead, we assume that if u1 <sw u2, then u1

corresponds to a release action and u2 corresponds to an acquire action. We assume that

actions include reads and writes of shared variables as well as unspecified synchronization

actions:

Kinds k ::= read(x) | write(x) | . . .

Therefore an execution E is the triple (A,≤po, <sw).
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As in Section 2.3, the happens-before order is the reflexive transitive closure of the union

of the program order and the synchronizes-with order.2 More formally, u1 ≤hb u2 if (1)

u1 ≤po u2, (2) u1 <sw u2, or (3) there exists u3 such that u1 ≤hb u3 and u3 ≤hb u2. We

assume that the execution is well-formed and therefore that ≤hb is antisymmetric. We also

assume that ≤po totally orders all actions in a given thread; that is, for all (t, k1, u1), (t, k2,

u2) ∈ A, either u1 ≤po u2 or u2 ≤po u1.

3.2.2 Incoming and Outgoing Edges

We define the notion of incoming and outgoing edges: happens-before edges that start in

one thread and end in another. An action has an outgoing edge if it synchronizes-with an

action in another thread. An action has an incoming edge if an action in another thread

synchronizes-with that action. The intuition is that by establishing that a subsection of a

single thread’s execution does not have any incoming or outgoing edges, we can convince

ourselves that no other thread could interfere with that thread’s execution.

Definition 3.1 (Outgoing Edge). Let (t1, k1, u1) ∈ A. u1 has an outgoing happens-before

edge if there exists (t2, k2, u2) ∈ A such that u1 <sw u2 and t1 6= t2.

Definition 3.2 (Incoming Edge). Let (t2, k2, u2) ∈ A. u2 has an incoming happens-before

edge if there exists (t1, k1, u1) ∈ A such that u1 <sw u2 and t1 6= t2.

If there is a happens-before edge between two actions in two different threads, then there

must be an action in the first thread with an outgoing happens-before edge.

Lemma 3.1 (Existence of Outgoing Edge). Let (t1, k1, u1), (t2, k2, u2) ∈ A such that u1 ≤hb

u2 and t1 6= t2. Then there exists u3 such that u1 ≤po u3, u3 ≤hb u2, and u3 has an outgoing

edge.

Proof. The proof is a straightforward inductive case analysis on u1 ≤hb u2. Intuitively, as

happens-before is the closure of the program order and synchronizes-with relations, clearly

2The actual C/C++ happens-before relation is not transitively closed, so that memory order depends can
be supported [23]. The effect is to prevent ≤po from contributing to ≤hb in certain contexts. This does
not affect our arguments.
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any chain of happens-before edges that crosses threads must include an outgoing synchro-

nizes-with edge.

Formally, we can prove this by induction on u1 ≤hb u2:

• Clearly ¬(u1 ≤po u2), as t1 6= t2.

• If u1 <sw u2, then let u3 = u1. As t1 6= t2, u1 has an outgoing edge. By reflexivity,

u1 ≤po u1. By assumption, u1 ≤hb u2.

• Now suppose u1 ≤hb u4 and u4 ≤hb u2, where (t4, k4, u4) ∈ A. Either t1 = t4 or

t1 6= t4.

– If t1 = t4, then either u1 ≤po u4 or u4 ≤po u1 by the definition of ≤po. If

u4 ≤po u1, then u4 = u1 because ≤hb is antisymmetric, so u1 ≤po u4 as well. Use

the inductive hypothesis to find u3 such that u4 ≤po u3, u3 ≤hb u2, and u3 has

an outgoing edge. Then u3 is the witness because u1 ≤po u3 by transitivity.

– If t1 6= t4, then use the inductive hypothesis to find u3 such that u1 ≤po u3,

u3 ≤hb u4, and u3 has an outgoing edge. By transitivity, u3 ≤hb u2.

Lemma 3.2 (Existence of Incoming Edge). Let (t1, k1, u1), (t2, k2, u2) ∈ A such that u1 ≤hb

u2 and t1 6= t2. Then there exists u3 such that u1 ≤hb u3, u3 ≤po u2, and u3 has an incoming

edge.

The proof is omitted as it is entirely symmetric to the proof of Lemma 3.1.

We now establish our key result: if a region of code after a normal memory access has

no outgoing happens-before edges, then any writes to the same location in other threads

must happen-after that region of code. This result depends crucially on the fact that in an

execution of a data-race-free program, conflicting accesses to the same variable are ordered

by happens-before.

Theorem 3.1 (Forwards Interference-Free). Assume (t1, read(x), u1), (t1, k2, u2) ∈ A such

that u1 <po u2. Assume further that for all u3 such that u1 ≤po u3 <po u2, u3 does not have

an outgoing edge. Finally, assume there is some write (t4,write(x), u4) such that u1 ≤hb u4

and t1 6= t4. Then u2 ≤hb u4.

Proof. By Lemma 3.1, there exists u3 such that u1 ≤po u3, u3 ≤hb u4, and u3 has an
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outgoing edge. Clearly u2 ≤po u3, because otherwise u3 would violate an assumption. Then

u2 ≤hb u4 by transitivity of happens-before.

Symmetrically, we can show that a variable is interference-free for a region in which

there are no incoming happens-before edges.

Theorem 3.2 (Backwards Interference-Free). Assume (t1, k1, u1), (t1, read(x), u2) ∈ A such

that u1 <po u2. Assume further that for all u3 such that u1 <po u3 ≤po u2, u3 does not have

an incoming edge. Finally, assume there is some write (t4,write(x), u4) such that u4 ≤hb u2

and t1 6= t4. Then u4 ≤hb u1.

Proof. By Lemma 3.2, there exists u3 such that u4 ≤hb u3, u3 ≤po u2, and u3 has an

incoming edge. Clearly u3 ≤po u1, because otherwise u3 would violate an assumption.

Then u4 ≤hb u1 by transitivity of happens-before.

By applying Theorems 3.1 and 3.2, we can conclude that any write must happen-before

or happen-after the entire interference-free region for an access. We can also state similar

theorems for the interference-free regions around writes:

Theorem 3.3 (Forwards Interference-Free (Write Case)). Assume (t1,write(x), u1), (t1, k2,

u2) ∈ A such that u1 <po u2. Assume further that for all u3 such that u1 ≤po u3 <po u2, u3

does not have an outgoing edge. Finally, assume there is some memory access (t4, k4, u4)

such that k4 = read(x) or write(x), u1 ≤hb u4, and t1 6= t4. Then u2 ≤hb u4.

Theorem 3.4 (Backwards Interference-Free (Write Case)). Assume (t1, k1, u1), (t1,write(x),

u2) ∈ A such that u1 <po u2. Assume further that for all u3 such that u1 <po u3 ≤po u2, u3

does not have an incoming edge. Finally, assume there is some memory access (t4, k4, u4)

such that k = read(x) or write(x), u4 ≤hb u2, and t1 6= t4. Then u4 ≤hb u1.

3.3 Barriers

This section extends our analysis to handle rendezvous-style barriers (e.g., the pthread bar-

rier t type [30]). Barriers allow threads to stop and wait for other threads to reach a certain

point in their execution before continuing. Treating barriers as release and acquire actions
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struct global_info *global;

void worker(int pid, pthread_barrier_t *barrier) {

(*global).threads[i] = pthread_self();

if (pid == 0) { /* master thread */

(*global).data = ... /* prepare data to be processed */

}

pthread_barrier_wait(barrier);

data mydata = (*global).data[i];

... /* first stage of processing */

pthread_barrier_wait(barrier);

... /* more pipeline stages, separated */

... /* by calls to pthread_barrier_wait */

}

Figure 3.6: A typical use of barriers within a program.
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is too imprecise, so we handle them specially. Our key observation is that even though

barriers act like a release operation followed by an acquire action, effectively cutting off

interference-free regions in both directions, we can still reason about interference-freedom

if there are accesses to a variable both before and after a given invocation of a barrier.

For example, Figure 3.6 shows a typical use of barriers in a multi-stage input processing

program. All threads execute the worker() function, including the master thread. The

threads update a global struct with bookeeping information, then all non-master threads sit

at a call to pthread_barrier_wait, waiting until the master thread has initialized the input

data. All threads then process the input data in parallel, calling pthread_barrier_wait()

when the first stage is complete. In this way, threads can coordinate so that no thread gets

ahead of another.

Note that in the example, the variable global is read both before and after the first

call to pthread_barrier_wait(). We are interested in whether global is interference-free

between the two reads—i.e., if another thread could write to global without causing a data

race. Intuitively, it seems like global should be interference-free. It is clearly interference-

free before the barrier call and after the barrier call. Any writes to global would therefore

have to (1) happen-after the code before the barrier call and (2) happen-before the code

after the barrier call. In other words, the other thread would have to modify global during

its own call to pthread_barrier_wait, which is not possible. This intuition proves to be

correct: if a variable is accessed both before and after a call to the barrier wait function,

then we can extend the interference-free regions for both accesses through the call.

Barriers are not included in the C/C++ memory model, so this section makes an edu-

cated guess on how they would be modeled if added to the standard. Our model is similar

to that of Unified Parallel C [47]. We model each barrier wait call as two actions: a “notify”

action, which tells other threads that the current thread has arrived at the barrier, and a

“wait” action, which waits for other threads to reach the barrier. Notifies are releases and

waits are acquires. Assume that the possible types of actions include notify and wait actions

on barrier identifiers b:

Kinds k ::= notify(b) | wait(b) | . . .
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Notify and wait actions have the following behavior:

Notify synchronizes-with wait: If (t1, notify(b), u1), (t2,wait(b), u2) ∈ A, then u1 <sw

u2.

Notify and wait only synchronize-with each other: If (t1, k1, u1), (t2, k2, u2) ∈ A

and u1 <sw u2, then k1 = notify(b) if and only if k2 = wait(b).

Notify and wait are called in the proper order with no intervening synchro-

nization: If a thread t calls notify and wait on a barrier b ((t, notify(b), un1 ), (t,wait(b),

uw1 ) ∈ A), then notify is called before wait (un1 ≤po uw1 ), and t does not perform any

synchronization actions between the calls to notify and wait.3

Note that each barrier is invoked only once per thread; else it would not always be

the case that a notify always synchronizes-with a wait on the same barrier, or that notify

is always called before wait with no intervening synchronization. Although real programs

may wait on the same barrier multiple times, this is simply a convenience; it is possible

to allocate a new barrier for every invocation. Moreover, we could make our formalism

more realistic by tagging notify and wait actions with a generation that indicates how many

times a thread has invoked this particular barrier, but such a change would not increase the

expressiveness of the model.

Our key insight is that nothing can happen-between a notify and a wait. First, we prove

two lemmas. The first lemma establishes that, if an action in another thread happens-after

a notify, then either the action also happens-after the subsequent wait, or the happens-

before chain between the notify and the remote action includes a synchronizes-with edge

originating from the notify.

Lemma 3.3 (Inversion of Happens-After-Notify). Suppose (t1, notify(b), un1 ), (t1, k1, u1), (t1,

wait(b), uw1 ), (t2, k2, u2) ∈ A such that t1 6= t2, un1 ≤po u1 ≤po uw1 , and u1 ≤hb u2. Then

either (1) uw1 ≤hb u2 or (2) un1 = u1 and there exists u3 such that un1 <sw u3 ≤hb u2.

3Formally, if ∃u2, u3 such that un
1 ≤po u2 ≤po uw

1 and u2 <sw u3, then u2 = un
1 ; if un

1 ≤po u2 ≤po uw
1 and

u3 <sw u2, then u2 = uw
1 .
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r1 = x;

...

pthread_mutex_lock(...);

...

pthread_mutex_lock(...);

...

pthread_barrier_wait(b);

...

pthread_mutex_unlock(...);

...

pthread_mutex_unlock(...);

...

r2 = x;

Figure 3.7: Interference-free region around a barrier wait call.

Proof. Proof by induction on u1 ≤hb u2.

• Clearly ¬(u1 ≤po u2), as t1 6= t2.

• If u1 <sw u2, then by the assumption that there is no synchronization between a notify

and a wait, un1 = u1. Let u3 = u2. Then un1 <sw u3, and also u3 ≤hb u2 by reflexivity

of happens-before.

• Now suppose u1 ≤hb u4 ≤hb u2 where (t4, k4, u4) ∈ A. Either t1 = t4 or t1 6= t4.

– Suppose t1 = t4. Then by the definition of ≤po, either u1 ≤po u4 or u4 ≤po u1.

If u4 ≤po u1, then by antisymmetry of happens-before u4 = u1, so u1 ≤po u4

by reflexivity of ≤po. Also by assumption, either uw1 ≤po u4 or u4 ≤po uw1 . If

uw1 ≤po u4, then uw1 ≤hb u2 by transitivity of happens-before. If u4 ≤po u
w
1 , then

use the inductive hypothesis on u4 ≤hb u2. There are two possible cases:

∗ uw1 ≤hb u2. Then we are done.

∗ un1 = u4 and there exists u3 such that un1 <sw u3 ≤hb u2. Since un1 = u4 and

un1 ≤po u1 ≤po u4, u
n
1 = u1 also.

– Suppose t1 6= t4. Apply the inductive hypothesis to u1 ≤hb u4. There are two

possible cases:

∗ uw1 ≤hb u4. Then uw1 ≤hb u2 by transitivity.

∗ un1 = u1 and there exists u3 such that un1 <sw u3 ≤hb u4. Again, u3 ≤hb u2
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by transitivity.

A symmetric lemma establishes that if a remote action happens-before a wait, then

either the action also happens-before the notify, or the happens-before chain includes a

synchronizes-with edge terminating at the wait.

Lemma 3.4 (Inversion of Happens-Before-Wait). Suppose (t1, notify(b), un1 ), (t1, k1, u1), (t1,

wait(b), uw1 ), (t2, k2, u2) ∈ A such that t1 6= t2, un1 ≤po u1 ≤po uw1 , and u2 ≤hb u1. Then

either (1) u2 ≤hb un1 or (2) uw1 = u1 and there exists u3 such that u2 ≤hb u3 <sw uw1 .

The proof is omitted as it is entirely symmetric to the proof of Lemma 3.3.

Given these two lemmas, the key theorem follows easily:

Theorem 3.5 (Nothing Happens-Between Notify and Wait). Suppose (t1, notify(b), un1 ), (t1,

wait(b), uw1 ), (t2, k2, u2) ∈ A such that t1 6= t2. Then ¬(un1 ≤hb u2 ≤hb uw1 ).

Proof. Assume un1 ≤hb u2 ≤hb uw1 . We will establish a contradiction by proving that ≤hb

is no longer antisymmetric. By Lemma 3.3, either uw1 ≤hb u2 or there exists u3 such that

un1 <sw u3 ≤hb u2. The first case is a violation of the antisymmetry of ≤hb, as we have that

u2 ≤hb uw1 , and we know uw1 6= u2 because they are from different threads. Similarly, we

can rule out the first case for Lemma 3.4. Therefore (using u4 as the witness for the second

case of Lemma 3.4), we have that un1 <sw u3 ≤hb u2 ≤hb u4 <sw uw1 . By assumption, u3 is

wait(b) and u4 is notify(b). Therefore u4 <sw u3, which creates a cycle in ≤hb: u3 ≤hb u4

and u4 ≤hb u3. We know that u3 6= u4 as they are notify and wait actions, respectively, so

the theorem is proved.

We can combine Theorem 3.5 with Theorems 3.1 and 3.2 to infer larger interference-free

regions. For instance, consider the code in Figure 3.7. The call to pthread_barrier_wait

performs both the notify and wait actions, satisfying the requirement that these actions

occur in the proper order with no intervening synchronization. Suppose a remote write to

x were to happen-after the first read and happen-before the second. By Theorem 3.1, the

write must happen-after the notify; by Theorem 3.2, the write must happen-before the wait.

Therefore, by Theorem 3.5, no such write exists, so the two reads see the same value. In
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effect, the interference-free region for x extends across the call to pthread_barrier_wait—

but only because there are reads of x before and after the barrier. Else the remote write

could happen-before or happen-after the barrier.

3.4 Other Applications

Interference-free regions are useful for understanding the behavior of functions that contain

internal synchronization. For example, the C++ draft specification defines malloc() and

free() as acquire and release synchronization operations, respectively [23]. We can use

interference-free regions in the code below to establish that global variables p and q are not

modified by other threads, and therefore that the two free() operations properly deallocate

the memory allocated by the two malloc operations.

p = malloc(...);

q = malloc(...);

free(p);

free(q);

This kind of reasoning is applicable not just to compilers, but also to static analysis tools,

where reasoning about properties such as deadlock freedom or memory allocation often

requires knowledge about variables that might conceivably be changed by other threads.

3.5 Conclusion

We have developed interference-free regions as a new way of reasoning about data-race-

free programs. Since our analysis is based heavily on data-race-freedom, it requires only

information about a single thread. Our approach enables new kinds of inferences about

program behavior that had not previously been considered. The next two chapters explore

two interesting applications of interference-free regions.
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Chapter 4

INTRAPROCEDURAL COMPILER OPTIMIZATION USING
INTERFERENCE-FREE REGIONS

This chapter covers the first of two practical applications of interference-free regions:

using IFRs to extend the scope of compiler optimizations. Specifically, we can remove

redundant reads across synchronization calls, as long as the calls are interference-free for

the variable in question. This application was the original motivation of our work on inter-

ference-free regions and is a natural consequence of IFR-based reasoning.

We have implemented a pass in the LLVM compiler framework [26] that uses interference-

free regions to refine side effect information for synchronization calls. Because we do not

know which path through a program a given execution will take, we must be conservative:

we identify synchronization calls that, no matter which path is taken, fall into some interfer-

ence-free region for a given variable. We then remove the variable from the set of variables

modified by each identified synchronization call. This change allows later optimization

passes to ignore the side effects of the call with respect to the interference-free variable.

4.1 IFR-Based Optimization

Consider our original motivating example for interference-free regions, from Chapter 3:

mtx_lock(*mtx_p);

...

mtx_unlock(*mtx_p);

Again, ellipses represent code that neither performs synchronization nor modifies mentioned

variables. We observed that the call to mtx_lock() is interference-free for mtx_p, because

it falls in the interference-free region for the first read of mtx_p. Below we have separated

the reads into their own statements and bracketed the IFR for the first read:
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A: mtx_t *tmp1 = *mtx_p;
interference-free region for A

mtx_lock(tmp1);

...

mtx_t *tmp2 = *mtx_p;

mtx_unlock(tmp2);

Therefore the second read of mtx_p is redundant and can be removed. This chapter tackles

how to implement an analysis that is capable of recognizing this redundancy and eliminating

the second read.

Currently, no mainstream compiler will eliminate the second read, because the two reads

are separated by a synchronization call, and compilers generally assume that external calls

such as synchronization calls are opaque: they might modify any variable. More precisely,

the compiler assumes that synchronization calls might modify any variables that are thread-

shared.

As a clarification, the synchronization calls themselves do not actually modify anything.1

Rather, memory accesses may be taking place concurrently in other threads. Since we as-

sume data-race-freedom, we can assume that if another thread is concurrently modifying

a variable that the current thread also accesses, the threads must use some form of syn-

chronization to coordinate their memory accesses. Therefore the compiler can (for the most

part) ignore memory accesses in other threads by assuming that all such accesses take place

during synchronization calls.

This assumption—that synchronization calls are opaque—means that optimizations are

performed only within synchronization-free regions. We make the simple observation that

this assumption is unnecessarily conservative: it is safe to optimize within interference-free

regions, rather than within synchronization-free regions.

As a concrete example, the LLVM compiler framework [26], which we use in this chapter

to implement our analysis, uses the internal AliasAnalysis interface to record the side

effects of calls. Figure 4.1 shows the relevant part of the AliasAnalysis interface: the

function getModRefInfo(), which, given a call site and a “location” (i.e., a variable), returns

a code indicating if and how that call accesses that location. This interface can be used by

1The bodies of the synchronization functions may modify some variables—e.g., thrd create, a synchro-
nization operation with release behavior, modifies the new thread ID—so we must take care to distinguish
these (non-racy) writes from writes in other threads.
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enum ModRefResult { NoModRef = 0,

Ref = 1,

Mod = 2,

ModRef = 3 };

virtual ModRefResult getModRefInfo(ImmutableCallSite CS,

const Location &Loc);

Figure 4.1: Subset of LLVM’s AliasAnalysis interface related to call side effects.

other analyses to discover the side effects of a call. For synchronization calls, this function

always returns ModRef, indicating that the call may read or write the variable. Our approach

will be to reimplement getModRefInfo() so that it is more precise for synchronization calls.

4.2 Algorithm

We identify synchronization calls whose side effect information can be refined by exploiting

two symmetric insights:

1. If, on a path through a function that passes through an acquire call C, there is an

access A to a variable x such that A precedes C and there are no release calls between

A and C, then C is in the interference-free region for A for that path. Therefore, if

such an access A exists for every path through C, C does not modify x.

2. If, on a path through a function that passes through a release call C, there is an access

A to a variable x such that A follows C and there are no acquire calls between C and

A, then C is in the interference-free region for A for that path. Therefore, if such an

access A exists for every path through C, C does not modify x.

Our analysis determines two pieces of information. First, for each acquire call, we need the

set of variables that must have been accessed since the last release call (ASLR). Second,

for each release call, we need the set of variables that must be accessed before the next

acquire call (ABNA). The former is a simple forward dataflow analysis; the latter is a

simple backward dataflow analysis.
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Statement type Statement form ASLR[p′]

Load p : r = ∗x; ASLR[p] ∪ {x}
Store p : ∗x = r; ASLR[p] ∪ {x}

Acquire p : mtx lock(m); ASLR[p]

Release p : mtx unlock(m); {}
Call p : f(...); {}

Other p : . . . ; ASLR[p]

Figure 4.2: Summary of the forwards ASLR analysis used to identify variables that are
interference-free at acquire calls. p′ is the program point after the statement at point p.

4.2.1 Forwards ASLR Analysis

Figure 4.2 gives the forwards dataflow analysis that infers the ASLR sets for acquire calls.

The set is initialized to be empty at the start of each function. The set propagates through

acquire calls and is killed at other calls. (See Section 6.4 for an improved version of the

analysis in which the set may propagate through other calls.) At memory accesses, we add

the accessed variable to the ASLR set.

The ASLR and ABNA analyses assume that the code is in single static assignment form

(SSA) [4]—i.e., that any named variables are constant. Else we could infer that a location

is interference-free when it is not; e.g., in the code below, we would infer that the location

pointed-to by x is interference-free at the acquire call, when in fact the first load accessed

a different location:

int tmp = *x;

x = &y;

mtx_lock(&mtx);

Using SSA form means we can conflate the terms “variable” and “location,” as every named

variable refers to a single location at runtime. LLVM bytecode is in SSA form, so this

assumption holds.

Figure 4.3 lists the code for an example program on which we will run the ASLR and

ABNA analyses. This program includes a for loop that loads variable x on every iteration
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for (int i = 0; i < *x; i++) {

mtx_lock(m);

...

mtx_unlock(m);

}

Figure 4.3: Code for the example in Figures 4.4 and 4.6.

int x_1 = load x

if 0 < x_1 goto bb2 else goto bb3

int i_1 = phi [ 0, bb1 ], [ i_2, bb2 ]

bb1

bb2

int ret_1 = call mtx_lock(m)

...

int ret_2 = call mtx_unlock(m)

int i_2 = i_1 + 1

int x_2 = load x

if i_2 < x_2 goto bb2 else goto bb3

...

bb3

{ }

{ x }

ASLR:

{ x }

{ x }

{ x }

{ x }

{ x }

{ x }

{ x }

{ }

{ }

{ x }

{ x }

{ x }

{ x }

{ x }

Figure 4.4: Running the ASLR analysis on a program with a loop.
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Statement type Statement form ABNA[p]

Load p : r = ∗x; ABNA[p′] ∪ {x}
Store p : ∗x = r; ABNA[p′] ∪ {x}

Acquire p : mtx lock(m); {}
Release p : mtx unlock(m); ABNA[p′]

Call p : f(...); {}
Other p : . . . ; ABNA[p′]

Figure 4.5: Summary of the backwards ABNA analysis used to identify variables that are
interference-free at release calls. p′ is the program point after the statement at point p.

for the termination check. We should be able to hoist this load out of the loop, even though

the loop contains synchronization.

Figure 4.4 shows the control-flow graph for the program and the final ASLR sets once

the algorithm is run to a fixpoint. The key inference is that the ASLR set at the call to

mtx_lock() is {x}, meaning that x is interference-free at the call. This is true only because

there is a load of x on all paths to the call: one load in bb1, and another at the end of bb2.

Therefore the call will always be in an interference-free region for x when it executes.

4.2.2 Backwards ABNA Analysis

Figure 4.5 gives the backwards dataflow analysis that infers the ABNA sets for release calls.

The set is initialized to be empty at the end of each function. The ABNA sets propagate

up through release calls and are killed at all other calls. At memory accesses, we add the

variable being accessed to the ABNA set.

Figure 4.6 shows the results of the ABNA analysis after it reaches a fixpoint on the

program in figure 4.3. Because ABNA is a backwards analysis, we have reversed the control-

flow edges to indicate the direction of data flow. The key inference is that the call to

mtx_unlock() has ABNA set {x}. This inference is trivial, since x is accessed immediately

after the release call.

Combining Figures 4.4 and 4.6, we can see that x is interference-free for the entire loop.
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int x_1 = load x

if 0 < x_1 goto bb2 else goto bb3

int i_1 = phi [ 0, bb1 ], [ i_2, bb2 ]

bb1

bb2

int ret_1 = call mtx_lock(m)

...

int ret_2 = call mtx_unlock(m)

int i_2 = i_1 + 1

int x_2 = load x

if i_2 < x_2 goto bb2 else goto bb3

...

bb3

{ x }

{ }

ABNA:

{ }

{ }

{ }

{ }

{ }

{ x }

{ x }

{ x }

{ x }

{ }

{ }

{ }

{ }

{ }

Figure 4.6: Running the ABNA analysis on a program with a loop. Since this is a backwards
analysis, the control flow edges have been reversed to indicate the direction of data flow.
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Algorithm 4.1 getModRefInfo(ImmutableCallSite CS, const Location &Loc)

if CS is an acquire call AND ASLR(CS) contains Loc then
return Ref

end if
if CS is a release call AND ABNA(CS) contains Loc then

return Ref
end if
if CS is a barrier call AND ASLR(CS) contains Loc AND ABNA(CS) contains Loc then

return Ref
end if
... /* Fall back on existing alias analysis */

Removing x from the set of variables modified by both synchronization calls will allow a

later optimization to hoist x out of the loop.

4.2.3 LLVM Implementation

The analysis extends the LLVM AliasAnalysis interface, specifically by overriding the

method getModRefInfo(). A high-level outline of the implementation appears in Algorithm

4.1. LLVM allows alias analyses to compose, so we chain our analysis into the existing alias

analysis pipeline. For acquire calls, any variables in the ASLR set are listed as not being

modified; for release calls, any variables in the ABNA set are listed as not being modified.

A call to pthread_barrier_wait is interference-free for a given variable if that variable is

in both the ASLR and ABNA sets for the call.2

As an example, in Figure 3.2, mtx_p is found not to be modified for the first three

synchronization calls, although not the last because it is a release action and its ABNA

set is empty. A redundant load analysis will therefore find that the second load can be

eliminated. Figure 3.4 is an example of conservatism in our analysis: x is not in the ABNA

set for the mtx_unlock call (because there is a path that does not access x after the unlock),

so access A will not be hoisted out of the loop.

In order to improve the accuracy of the analysis, we distinguish between read and write

accesses in the implementation. For example, if a variable x must be modified (not just

2To be more precise, the variable must be in the ASLR set for the program point just before the call,
and in the ABNA set for the program point just after the call.
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accessed) before an acquire call, then we may assume that the call neither reads nor writes

x. We will discuss a similar analysis in Chapter 5, where distinguishing between reads and

writes is crucial for detecting data races.

4.2.4 Imprecision of the ASLR/ABNA Approach

As mentioned above, Figure 3.4 is an example of our analysis being overly conservative:

we cannot hoist the load of x out of the loop, because x is not interference-free at the

call to mtx_unlock(). Specifically, on the last iteration of the loop, the release call is not

interference-free for x because x is not accessed after the call.

Another example of imprecision is the example below:

A: int tmp = *x;

mtx_lock(&m);

...

mtx_unlock(&m);

if (b) {

B: int tmp2 = *x;

...

}

Here it is clear that the second load of x is redundant, since in executions where the if

statement is taken, the interference-free regions of the two loads overlap:

A: int tmp1 = *x;
interference-free region for Amtx_lock(&m);

...
interference-free region for Cmtx_unlock(&m);

B: int tmp2 = *x;

...

However, the ABNA analysis infers that the ABNA set for the call to mtx_unlock is {},

because in executions where the if statement is not taken, there is no load of x after the

call:

A: int tmp1 = *x;
interference-free region for Amtx_lock(&m);

...

mtx_unlock(&m);
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In Chapter 6, we discuss an alternate approach that handles these cases. Specifically, instead

of refining the side effect information for synchronization calls, we analyze the paths between

memory accesses. A path is interference-free for the variable being accessed if it does not

have a release call and an acquire call, in that order. In the example above, the path from

A to B has an acquire call followed by a release call, so it is interference-free for x.

4.3 Data-Race-Freedom

Since we assume data-race-freedom, programs with data races may be transformed in hard-

to-predict ways, complicating debugging. This is already true for current compilers; oth-

erwise current sequential techniques could not even be applied within synchronization-free

regions [11]. We are not qualitatively changing the situation, and it does not appear to be

a major problem in practice. Even if a compiler does not use our analysis, programmers

should debug using a data-race detector (see Chapter 5) in order to avoid unpredicatable

behavior due to incorrect optimizations and to catch data races immediately rather than

after data structure corruption.

We expect this analysis might be useful on an opt-in basis. Programmers could, for

example, specify on the command line that “aggressive DRF optimizations” should be

enabled. We envision an “-ODRF” flag in future C/C++ compilers, the documentation

for which would make explicit that the compiler would not restrict its optimizations to

synchronization-free regions.

4.4 Results

We inserted our analysis into LLVM 2.8’s link-time optimization pipeline just before the

loop-invariant code motion (LICM) and global value numbering (GVN) transformations.

The machine used for compilation and running the tests was a 4-core 2.8GHz Intel Xeon

with 16GB of RAM, running Linux.

Microbenchmark Figure 4.7 shows a small C program that contains a redundant load:

every iteration of the loop in function f() checks the value of max, which is constant. But

because the loop contains synchronization, the standard LLVM alias analysis pass assumes
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int max, shared_counter;

pthread_mutex_t m;

void *f(void *my_num) {

int n = *((int *) my_num);

while (n <= max) {

pthread_mutex_lock(&m);

shared_counter++;

pthread_mutex_unlock(&m);

n += 2;

}

}

int main() {

pthread_t t1, t2;

int n1 = 1;

int n2 = 2;

max = 10000000;

shared_counter = 0;

pthread_mutex_init(&m, NULL);

pthread_create(&t1, NULL, f, (void *) &n1);

pthread_create(&t2, NULL, f, (void *) &n2);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

}

Figure 4.7: A microbenchmark demonstrating the effectiveness of IFR-based optimizations.
The microbenchmark uses the pthreads API because C11 threads had not yet been imple-
mented at the time of writing. When combined with our analysis, GVN moves the load of
max out of the loop in f().
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SPLASH-2 Syncs Loads

Benchmark LOC in IFRs deleted Speedup

lu-n 678 14 16 1.0080

radix 833 27 22 0.9962

fft 899 12 13 1.0081

lu-c 911 17 19 0.9988

water-n 2,063 27 24 0.9941

water-s 2,670 27 30 0.9701

barnes 2,864 20 11 0.9977

ocean-n 3,046 34 53 0.9840

volrend 4,204 31 25 0.9412

fmm 4,325 37 36 1.0050

ocean-c 4,774 95 79 0.9915

cholesky 5,139 83 19 0.9869

raytrace 10,649 19 14 1.0260

radiosity 11,760 93 45 1.0000

Table 4.1: SPLASH-2 results.

the synchronization calls may modify max. Our analysis removes max from the modified

sets for the synchronization calls, allowing GVN to hoist the load out of the loop. Running

the program under valgrind shows that the optimization is indeed effective: the optimized

program performs 10 million fewer loads. However, the program performs over 400 million

memory operations in total, so there is no noticable performance improvement.

Realistic applications We compiled the SPLASH-2 benchmarks [49] using our analysis.

The analysis did not affect the LICM pass (we suspect because LICM handles only function

calls that do not modify any memory locations), but the GVN pass found numerous oppor-

tunities to remove redundant loads (Table 4.1).3 The third column in Table 4.1 lists the

number of synchronization calls which were found to be in the interference-free region of at

least one variable. The fourth column lists the difference in the number of loads deleted by

GVN when run with and without our analysis. The fifth column gives the speedup for each

3Theoretically, our analysis should also be useful for dead store elimination, but we did not observe any
improvement in LLVM’s dead store elimination pass, so we concentrate on loads here.
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benchmark, which we compute as the runtime for the version of the code compiled without

our analysis divided by the runtime for the version compiled with out analysis.

Although the analysis exposed a number of redundant loads, we have had little success in

terms of actually extracting performance from these optimizations. The benchmarks either

have similar performance on both versions of the code, or our “optimized” version is slightly

worse. One problem is that the loads may not be located on hot paths. Another possibility

is that the optimizations increased the live ranges of variables, resulting in more loads as

register variables are spilled to the stack (perhaps due to the low number of callee-saves

registers on the x86 architecture).

4.5 Related Work

Our analysis is related to a compiler transformation known as roach-motel reordering. This

transformation increases the size of critical sections by moving actions either past a lock

acquire or before a lock release. In some cases, it is possible to use this line of reasoning to

infer interference-free regions by repeatedly swapping an access until it reaches the end of a

region. Sevcik established that this transformation is legal for data-race-free programs [44].

He also observed that it is legal to eliminate reads across synchronization calls as long as

there is no intervening release/acquire pair [45]. We believe our characterization is inde-

pendently useful, particularly since we make very minimal assumptions about the language

and synchronization primitives and we avoid complex reasoning about syntactic code trans-

formations. In particular, we know of no prior presentation of a similar compiler analysis,

nor any discussion of the consequences of overlapping regions.

Work by several of the authors of the MSPC paper [14] describes a framework for en-

abling sequential optimizations in multithreaded programs [24]. They identify paths on

which variables are “siloed” by iteratively refining a graph of the program. (This “siloed”

property is essentially the same as our notion of interference-freedom.) Like us, their im-

plementation refines the modified/referenced sets for synchronization calls. Our work is

complementary to this work, as our analysis could likely be incorporated neatly into their

framework as an “interference-type refinement.”
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Chapter 5

DYNAMIC DATA-RACE DETECTION USING
INTERFERENCE-FREE REGIONS

Programmers must write programs carefully to ensure data races are prohibited in all

executions. Unfortunately, code with potential data races is easily overlooked and even

thorough testing may fail to uncover data races that only rarely affect program behavior.

The difficulty of dealing with data races necessitates tools to detect them. Over the last

fifteen years, many data-race detectors have been developed, exploring the design space

along familiar axes of static vs. dynamic detection and performance vs. precision.

This chapter describes IFRit, a new dynamic data-race detector based on the funda-

mental notion of interference-free regions.1 Our work is the first to use IFRs for data-race

detection. We have implemented our technique in the LLVM compiler framework [26] and

used it to detect data races in mature real-world software. The implementation requires a

novel static analysis for soundly identifying IFRs and a dynamic analysis for finding races

using the static instrumentation. We directly compare our system with two state-of-the-art

systems and show our performance is considerably better—orders of magnitude better in

several cases. We show that the races our system detects include nearly all the races re-

ported by the precise detectors. We show that by combining our approach with sampling

we can reduce our overheads enough that our technique could be used in deployed systems

or integrated into a build environment. We have developed a formal model of IFRs for

data-race detection and used it prove correctness: Any data race reported by our approach

is a true data race.

1Ifrits are spirit-beings from Arabian mythology that, like data races, are known for being mischievous
and elusive.
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5.1 Overview

A typical dynamic data-race detector observes an execution and reports if data races occur

on (just) that execution. Ideally such a detector would run fast, report all data races,

and not give any false reports, i.e., reported data races that did not occur. In practice,

fully precise data-race detectors run programs orders of magnitude slower [39, 18] than

uninstrumented execution, so it is typically useful to sacrifice precision in principled ways

while still detecting many data races.

IFRit is an imprecise data-race detector: it never reports false data races but may miss

data races. Prior work with this strategy has relied on sampling: removing instrumentation

from some memory accesses. Our work can also leverage sampling, but more fundamentally,

it separates the instrumentation from the memory access and can coalesce the instrumen-

tation for many accesses to the same variable. For example, consider:

mtx_lock(m);

for(int i = 0; i < 1000; i++) {

...

*x = ... ;

...

}

mtx_unlock(m);

Assuming the loop contains no synchronization, there is no reason to instrument each access

to x. Instead, to detect data races on x, it suffices to instrument the region between the

mtx_lock and mtx_unlock as “writing to x,” which dynamically requires instrumentation

only before and after the loop.

Moreover, we go beyond simple synchronization-free regions by incorporating interference-

free regions, as explained in more detail in Section 5.1. Consider this example, where again

we assume any code not shown is known to be synchronization-free:

*x = ...;

while(...) {

*x = ...;

mtx_lock(m);

...

mtx_unlock(m);
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}

*x = ...;

Here again it suffices to instrument that x is written to somewhere in this code region,

which can be done once before and once after the loop. Instrumenting the code thusly

cannot lead to reporting data races that are not true data races, even though the code has

synchronization: any concurrent access to x would have to race with one of the accesses to

x in the code above.

To place instrumentation in sound places while improving performance, we use static

analysis. For a given variable, we can conservatively identify interference-free regions, hence-

forth IFRs, which for the purposes of data-race detection are regions in which any concurrent

access to the variable is indeed a data race. For the second example above, the key insight

is that the IFRs induced by the accesses to x overlap such that every code point falls in at

least one IFR for x.

5.1.1 IFRs for Data-Race Detection

Chapter 4 used IFRs for compiler optimization. This chapter takes the fundamental idea

of interference-free regions and applies it to another purpose: dynamic data-race detection.

We distinguish two types of IFRs: regions surrounding a read of a shared variable, and

regions surrounding a write. We will call these read IFRs and write IFRs, respectively.

We say that two IFRs overlap if parts of their executions happen simultaneously: that

is, the first IFR to start must end before the second IFR begins.2 The novel insight of this

work, then, is this: If the IFRs for two accesses to the same variable in different threads

overlap, and at least one is a write IFR, then the accesses form a data race.

For example, consider the execution shown in Figure 5.1. Two threads access variable

x, and one of the accesses is a write. We have highlighted the corresponding (overlapping)

IFRs for these accesses: a write IFR for the write to x in Thread 1, and a read IFR for the

read of x in Thread 2. The figure shows a number of possible happens-before edges in the

execution. Note that there is no way to trace a path between the two accesses to x using

2Our implementation inserts instrumentation that serializes the beginnings and ends of IFRs for the same
variable. See Section 5.3.3 for more details.
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mtx_lock(...);

mtx_unlock(...);

mtx_unlock(...);

mtx_lock(...);

*x = 5;

mtx_lock(...);

mtx_unlock(...);

mtx_unlock(...);

mtx_lock(...);

r1 = *x;

Thread 1

Thread 2

Ti
m

e

IFR #1

IFR #2

Figure 5.1: Overlapping IFRs for racy accesses in an execution. The solid blocks indicate
interference-free regions. Dashed lines indicate program order; solid lines indicate possible
happens-before edges between synchronization actions. The two accesses must form a data
race.

the happens-before edges. Therefore, the two accesses are not ordered by happens-before,

and form a data race.

We propose a dynamic data-race detection scheme based upon this insight about over-

lapping IFRs:

1. First, a compiler analysis identifies code points that fall within IFRs for accesses.

2. Based on this analysis, we statically insert calls to our run-time to start and stop

dynamic monitors for different memory locations.

3. During execution, we report overlapping monitored regions for conflicting, concurrent

accesses.

If two IFRs for the same variable do not overlap, the two accesses may or may not form

a data race. Figure 5.2 shows a case in which the accesses are ordered by synchronization

on a mutex m1. However, it is possible that the IFRs for two racy accesses will not overlap;

in Figure 5.3, the two threads use different mutexes to protect variable x, but the critical
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mtx_unlock(m1);

*x = 5;

mtx_lock(m1);

r1 = *x;

Thread 1

Thread 2

Figure 5.2: These two accesses do not form a data race, so their IFRs do not overlap.

mtx_unlock(m1);

*x = 5;

mtx_lock(m2);

r1 = *x;

Thread 1

Thread 2

Figure 5.3: These two accesses form a data race, even though their IFRs do not overlap.
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sections do not happen to overlap, so we will not catch the race. Such cases represent

false negatives in our detector. Our detector is therefore sound and incomplete: no false

positives, but some false negatives.

Although our algorithm has false negatives, it does have the nice quality that we might

informally call “pseudo-completeness”: if we run a program with our detector on enough

different executions, we will eventually catch any data race in the program. This property

follows from a standard theorem about happens-before memory models (e.g., Theorem 8.2

in [11]): if an execution of a program has a data race (i.e., two conflicting accesses unordered

by happens-before), then there exists a sequentially consistent execution in which the two

accesses execute consecutively.3 If the racing accesses occur consecutively, their IFRs will

overlap, so there exists an execution of the program for which our algorithm would catch

the race. This distinguishes us from heuristic-based algorithms [42], which only look for

certain classes of data races (e.g., races caused by inconsistent locking).

Because there are typically many variable accesses during an execution, and therefore

many interference-free regions, we use several techniques to reduce the overhead of our

dynamic detector. First, our static analysis merges the IFRs for accesses to the same

variable whose IFRs overlap, allowing us to insert a single instrumentation call for many

actual IFRs in the execution. Second, if IFRs for two or more variables start and stop at

the same point, we handle all of the variables with a single instrumentation call. Third, we

can sample IFRs to reduce the burden on the run-time. Since any two overlapping IFRs

for conflicting, concurrent accesses represent a data race, sampling does not compromise

our soundness guarantee. The detector is usable without sampling, but even limited use of

sampling (say, monitoring 50% of the time) yields appealingly low performance overheads

(see Section 5.5).

5.1.2 Synchronization-Free Regions

A possible variant on this data-race detection scheme would be to use the same kind of

instrumentation, but monitor for overlapping synchronization-free regions instead of over-

3Recall that an execution is sequentially consistent if all threads see the same global order of actions, and
the actions of each thread are in program order.
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lapping interference-free regions. We believe that a scheme using interference-free regions

is superior for two reasons. First, as shown in Figure 3.1, the interference-free region for an

access always subsumes the synchronization-free region for an access, so monitoring inter-

ference-free regions can find more bugs. Second, the larger size of interference-free regions

directly implies a smaller number of instrumentation calls (for example, the detector does

not need to stop monitoring variables at acquire calls), so the performance overhead of a

synchronization-free region detector would likely be higher.

Prior work on conflict exceptions by several of the authors of the OOPSLA paper [15]

uses synchronization-free regions to implement a lightweight hardware concurrency excep-

tion model [33]. The model ignores data races in non-overlapping SFRs, much as IFRit’s

algorithm ignores data races in non-overlapping IFRs. The paper proves formally that

exception-free executions (i.e., executions with no data races in overlapping SFRs) are guar-

anteed to have sequentially consistent behavior. Moreover, SFRs execute atomically in the

absence of exceptions. If IFRit’s static inference of IFRs were ideal, IFRit too would guar-

antee sequential consistency for exception-free executions and atomicity of SFRs, since IFRs

are always strictly larger than SFRs and therefore IFRit would report strictly more races

than the conflict-exceptions work. Of course, IFRit’s static analysis is necessarily conserva-

tive, so the SFR surrounding an access may not be fully covered by the dynamic monitors.4

Therefore IFRit has weaker guarantees than the conflict-exceptions work. IFRit’s advan-

tage is that it does not need to instrument every memory access and it does not require

specialized hardware.

5.2 Static Analysis

This section presents our static analysis to insert instrumentation for the run-time. We

start by explaining the types of instrumentation calls implemented by our analysis (Section

5.2.1) and giving a simple correctness criterion for the analysis (Section 5.2.2). Then we

present the algorithm in two steps. First, we describe a simplified algorithm for inserting

instrumentation calls (Section 5.2.3). Second, we present the refined algorithm actually used

4For an example of why this might happen, see Section 5.2.6.
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in our implementation (Section 5.2.4). The simplified version is a useful starting point, and

the refined algorithm derives directly from the ideas discussed in Section 5.2.3. Section 5.2.5

details the dataflow analysis we use to implement the algorithm, and Section 5.2.6 discusses

a limitation of our prototype implementation.

Throughout this section we will refer to “variables”; variables here refer to any memory

location at run-time, including array elements, global variables, and so on. In our imple-

mentation, variables are SSA names within a compiler pass, so we are guaranteed that the

variable always points to the same memory location at run-time. Because LLVM automat-

ically converts non-address-taken local variables to registers, our analysis does not process

local variables if their address is not taken.

5.2.1 Instrumentation

The static analysis inserts calls to the run-time to start and stop monitors for different

variables.5 A “strong” monitor for variable x indicates that the thread is currently in an

IFR for a write to x. A “weak” monitor for variable x indicates that the thread is in an IFR

for either a read or write to x. If monitors for the same variable are active in two different

threads at the same time, and at least one of the monitors is strong, then there must be

overlapping IFRs for conflicting, concurrent accesses, so the run-time reports a data race.

Initially, we will consider a simple instrumentation scheme in which we start and stop

monitors for a single variable via three instrumentation calls:

start_strong_monitor(void *x);

start_weak_monitor(void *x);

stop_monitor(void *x);

For example, a simple critical section could be instrumented as follows:

mtx_lock(m);

start_strong_monitor(x);

...

*x = ...;

...

5Our use of the term “monitor” has nothing to do with the synchronization construct of the same name.
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*x = 5;

A: ...
if (a) {
  mtx_lock(m);
}
*x = 5;
if (a) {
  mtx_unlock(m);
}
B: ...

Code Execution
(a == false)

monitored 
region

IFR

B: ...

A: ...

Figure 5.4: Monitored regions may be smaller than the actual IFR, due to conservatism in
the static analysis.

stop_monitor(x);

mtx_unlock(m);

A downside of using static instrumentation is that the monitored region may not cover the

entire dynamic IFR of an access; for instance, in Figure 5.4, our analysis does not insert the

instrumentation to start the monitor until after the if statement.6 On the plus side, since

monitors are tied to variables, not accesses, we can use a single monitor to cover the IFRs

for many accesses to the same variable. In Figure 5.5, the program may read x one or more

times, but we only need to call start weak monitor once.

5.2.2 Correctness

Ideally, we would insert calls to start strong monitor, start weak monitor and stop

monitor such that a monitor would be active if and only if the corresponding point in the

program’s execution fell in an IFR for an access to the monitor’s variable. In practice, we

cannot statically determine the boundaries of every IFR, so we monitor a subset of the

possible operations that fall into one or more IFRs in the execution. Crucially, we must

not start a monitor unless an IFR for an access to the monitor’s variable is active, and we

must stop the monitor if no such IFRs are active. Formally, we meet the following two

correctness conditions:

6Placing a call to start strong monitor before the if statement would violate the first correctness
criterion in Section 5.2.2.
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r2 = *x;

r1 = *x;

r1 = *x;
mtx_lock(m);
...
mtx_unlock(m);
r2 = *x;
mtx_lock(m);
...
mtx_unlock(m);
r3 = *x;

Code

Execution

r3 = *x;

monitored 
region IFR

mtx_unlock(m);

mtx_unlock(m);

mtx_lock(m);

mtx_lock(m);

IFR

IFR

…

…

Figure 5.5: Monitored regions may combine IFRs for several accesses to the same variable.

1. Consider any execution trace from a call to start strong monitor(x) to stop mon-

itor(x), with no intervening calls to stop monitor(x). Each operation in the trace

must fall within an IFR for a write of x.

2. Consider any execution trace from a call to start weak monitor(x) to stop moni-

tor(x), with no intervening calls to stop monitor(x). Each operation in the trace

must fall within an IFR for a read or write of x.

5.2.3 Simplified Algorithm

This section presents a simple intraprocedural algorithm for inserting instrumentation calls.

First, for each program point p, we find two sets of variables:

1. WBNA[p]: the set of variables that must be written on any path through the cur-

rent function’s control-flow graph from p to the next acquire call (or the end of the

function).

2. ABNA[p]: the set of variables that must be read or written on any path through the

current function’s control-flow graph from p to the next acquire call (or the end of the

function).
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This is the same information we gathered in Chapter 4 to find the interference-free variables

at release calls, except in this case we have explicitly split the information into “write-only”

and “read or write” sets. At each program point p, WBNA[p] represents the set of variables

for which it is sound to start a strong monitor using start strong monitor(x). The

reason: If the variable will be written before the next acquire on every path from p, then all

executions of p must be in an IFR for a write to the variable. Similarly, ABNA[p] represents

the set of variables for which it is sound to start a weak monitor using start weak monitor.

Although it is sound to insert start * monitor calls at any program point, we try to

minimize the number of calls by adding instrumentation in only three places: (1) after

acquire calls; (2) after unknown function calls; and (3) at the beginning of basic blocks. As

long as we insert all possible start * monitor calls at these three types of program points,

inserting calls anywhere else in the program is redundant: every other program point is

dominated either by an earlier call in the same basic block, or by the beginning of the basic

block.

When inserting calls to stop monitor, the problem changes from a must-analysis—which

variables must be accessed after this program point—to a may-analysis: which monitors

may have started before this program point? For each program point p, we need ASLR[p],

the set of variables for which there exists a path from an access to the variable to p, with no

intervening release calls. Again, this is the exact same information we needed in Chapter

4. IFRs always end at release calls, so we insert calls to stop monitor just before release

calls, as well as before unknown function calls (since the call may perform a release) and at

the end of each function (to avoid interprocedural reasoning). At each of these locations,

if we insert a call to stop monitor for every variable in ASLR[p], we will have satisfied the

correctness conditions in Section 5.2.2.

However, inserting calls for every variable in ASLR[p] is too conservative. We must take

care not to stop monitors too early. For example, we should stop the monitor for x in Figure

5.6 at the end of the IFR for the second access to x, not the first. Therefore, at release calls,

we insert stop monitor calls only for variables in ASLR[p] − ABNA[p] (i.e., variables for

which this program point does not fall in an IFR). For variables in ASLR[p]∩WBNA[p] (i.e.,

variables for which this program point falls in a write IFR), we do not need to insert any
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mtx_lock(m1); 
start_strong_monitor(x); 
... 
*x = ...; 
... 
stop_monitor(x); // too early 
mtx_unlock(m1); 
... 
*x = ...; 
... 
mtx_lock(m2); 
... 
stop_monitor(x); 
mtx_unlock(m2);

Figure 5.6: Stopping a monitor too early.

mtx_lock(m1); 
start_strong_monitor(x); 
... 
*x = ...; 
... 
downgrade_monitor(x);
mtx_unlock(m1); 
... 
r1 = *x; 
... 
mtx_lock(m2); 
... 
stop_monitor(x); 
mtx_unlock(m2);

Figure 5.7: Downgrading a monitor from strong to weak.
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instrumentation. For variables in ASLR[p]∩ (ABNA[p]−WBNA[p]) (i.e., variables for which

this program point falls in an IFR, but not necessarily a write IFR), instead of stopping the

monitor, we “downgrade” it from strong to weak. This requires a fourth instrumentation

function:

downgrade_monitor(void *x);

For example, in Figure 5.7 the strong monitor induced by the write to x is downgraded at

the end of the critical section for m1.

In summary, we can insert instrumentation calls as follows to meet the correctness

criteria of Section 5.2.2:

1. At acquire calls, unknown function calls, and the beginning of each basic block, we

insert a call to start strong monitor for each variable x in WBNA[p].

2. At acquire calls, unknown function calls, and the beginning of each basic block, we

insert a call to start weak monitor for each variable x in ABNA[p]−WBNA[p].

3. At release calls, we insert a call to stop monitor for variables in ASLR[p]−ABNA[p].

4. At release calls, we insert a call to downgrade monitor for variables in ASLR[p] ∩

(ABNA[p]−WBNA[p]).

5. At unknown function calls and the end of the function, we insert calls to stop monitor

for all variables in ASLR[p].

5.2.4 Refined Algorithm

In our actual implementation, instead of starting each monitor separately, we merge the

start strong monitor and start weak monitor calls for different variables into a single

call with a varargs argument:

start_monitors(int num_weak, int num_strong, ...);

The first num weak arguments to the call after the two integers are the weak monitors

to start (i.e., ABNA[p] − WBNA[p]), and the next num strong arguments are the strong

monitors to start (WBNA[p]). Other than this change, which is useful because it allows the

run-time to start several monitors at once, the algorithm for starting monitors is basically
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as presented in Section 5.2.3. One difference is that we have a second helper analysis to

identify redundant start monitors calls; many calls are not necessary because they are

dominated by a previous call to start monitors.

In contrast, our approach to stopping monitors differs significantly from Section 5.2.3.

Instead of stopping each individual monitor separately, we default to stopping all active

monitors, except for a set of monitors which are permitted to continue through the call.

stop_all_monitors_except(int num_weak, int num_strong, ...);

The num weak arguments correspond to calls to downgrade monitor, since only weak moni-

tors for these variables are permitted to continue through the call. As with start monitors,

the sets of variables for which we do not stop strong and weak monitors are WBNA[p] and

ABNA[p]−WBNA[p], respectively. In other words, we stop all monitors except those whose

variables have active IFRs at that program point.

This inverted interface is an improvement over the simplified algorithm because now

we do not need to add instrumentation before unknown function calls or at the end of a

function. As long as we instrument every release call in the program, every monitor will

be stopped at the first release call it encounters dynamically, unless the call is statically

known to fall into an IFR for that variable. This means our detector has the surprising and

useful quality that even though our compiler analysis is strictly intraprocedural, a dynamic

monitor can start in one function and end in another. The other function might be the

function’s caller, a callee of the function, or even another function called long after the

function returns.

This introduces a small soundness issue, since release calls in uninstrumented libraries, or

indirect calls to primitive release functions, will not stop monitors. However, we have found

that programs typically do not rely on synchronization in library code to protect shared

data in the main program, so missing these release calls is a relatively minor problem. This

problem is not fundamental to our algorithm; it would be possible to dynamically intercept

release calls. In practice, we encountered only one case in our benchmarks where a program

used function pointers for synchronization calls.
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Statement type Statement form WBNA[p] ABNA[p]

Load p : r = ∗x; WBNA[p′] ABNA[p′] ∪ {x}
Store p : ∗x = r; WBNA[p′] ∪ {x} ABNA[p′] ∪ {x}

Acquire p : mtx lock(m); {} {}
Release p : mtx unlock(m); WBNA[p′] ABNA[p′]

Call p : f(...); {} {}
Other p : . . . ; WBNA[p′] ABNA[p′]

Figure 5.8: Summary of our backwards data-flow analysis to insert instrumentation calls.
p′ is the program point after the statement at point p.

5.2.5 Data-Flow Analysis

Our compiler analysis is an intraprocedural backwards data-flow analysis. Working from

the end of each function to the beginning, we identify variables that must be accessed

on every path from a given program point to the next acquire call: WBNA and ABNA.

(The refined analysis does not use ASLR.) The initial values (at the end of the function)

are WBNA[pend] = ABNA[pend] = {}. The sets propagate through statements as shown in

Figure 5.8. At load and store operations we update the WBNA and ABNA sets. The sets

get killed at acquire calls and unknown function calls. At control-flow merge points, we take

the intersection of the incoming sets. We implemented this analysis in the LLVM compiler

framework [26].

5.2.6 Short-Scope Monitors

In the previous section, we discussed inserting calls to start monitors at the beginning

of basic blocks or after unknown function calls. However, in some cases, instrumenting at

these locations is not possible, because one or more variables for which a monitor is being

started are not in scope. For example, consider the following loop:

int array[10]; // global variable

...

int i = 0;

int *x;
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do {

x = &array[i];

*x = i;

i++;

} while (i < 10);

Without analyzing the compiled version of this program, we can infer that there will be at

least 10 different IFRs per execution: one for each value of x. Therefore we cannot simply

insert a single start monitors call for x before the loop. When translated to SSA form,

x’s definition is inside the loop:

int *array; // global variable

entry:

array = ...;

goto loop;

loop:

int i_1 = PHI [0, entry] [i_2, loop];

int *x = array + i_1;

store i_1 into x;

int i_2 = i_1 + 1;

if (i_2 < 10) goto loop else goto done;

done:

return;

Our analysis will discover that the monitor for x should start at the beginning of the entry

block; however, x is not in scope at the beginning of the entry block. Practically, the earliest

we can start the monitor for x is after x is initialized:

...

int *x = array + i_2;

start_strong_monitor(x);

store i_2 into x;

...

Placing the call within the body of the loop has the effect of starting an IFR for each

element in the array, which is what we expected from examining the source code.

Our instrumentation pass therefore works as follows: for every monitor start whose

variable is not in scope, we insert a special call (either to start weak monitor or to start
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strong monitor) that starts a single monitor right after the variable’s definition. We call

such monitors short-scope monitors, because the scope of the variable being monitored limits

the duration of the monitor. We have found that there tend to be many short-scope monitor

starts in program executions, since typically such calls cover exactly one memory load or

store. Since handling all of these calls can be very expensive, our dynamic analysis can

start monitors for only a subset of these calls in order to recover performance; this will be

discussed in more detail in Section 5.3.4.

5.3 Dynamic Analysis

There are two parts to IFRit’s dynamic analysis. First, IFRit tracks which threads have

active monitors for which memory locations. Second, IFRit detects races by identifying

conflicting monitors for the same location in different threads.

5.3.1 Dynamic Monitors

The static analysis informs the dynamic analysis of program points where monitors should

start and stop. At run-time, IFRit maintains a data structure called the Active Monitors

Table (AMT). The AMT maps each memory location to a set of monitor records for that

location. There is one monitor record for each thread executing a monitor for a particular

memory location. A monitor record stores the program counter where the monitor began,

the thread ID of the thread executing the monitor, and whether the monitor is weak or

strong. Each thread also maintains two thread-local sets of memory locations representing

active weak and strong monitors.

Following the key insight of the FastTrack algorithm [18], the AMT holds at most one

strong monitor per memory location at a time. In the data-race-free case, there is no need

to store more than one monitor, since writes to a memory location are totally ordered. If

more than one thread starts a strong monitor for a given location concurrently, the tool will

report a data race. This optimization might result in fewer data-race detections, but only

for executions where at least one data race is reported.

When a thread reaches a call to start monitors, it looks up each argument in the AMT,

adds a monitor record to the table’s entry for each argument (unless one is already active),
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and updates its local sets. When a thread encounters a call to stop all monitors except,

it iterates through its local sets, removing monitor records from the AMT for all memory

locations in the local sets except those listed as arguments.

5.3.2 Detecting Data Races

IFRit detects data races using the information stored in the AMT. When a thread reaches

a call to start monitors, it performs a race check on every memory location passed to

start monitors (except those for which monitors are already active) before updating the

AMT. To perform the race check, the thread looks at the set of monitor records associated

with each memory location.

If the thread performing the race check is starting a strong monitor, and another thread

already has an active monitor (weak or strong) for the location, IFRit concludes there is a

data race. If the thread performing the check is starting a weak monitor, IFRit concludes

there is a data race only if another thread has an active strong monitor for that location.

When a thread detects a data race, it reports its current program counter, and the

program counter stored in the monitor record that the thread found in the AMT.

5.3.3 Implementation

We implemented IFRit’s dynamic analysis from scratch in a run-time library. The li-

brary’s API exposes the start monitors, start strong monitor, start weak monitor

and stop all monitors except functions. The runtime implements the AMT as two ar-

rays of 2n hash tables, where n is a small positive integer—that is, 2n pairs of hash tables,

where each pair includes one hash table for strong monitor records and one hash table for

weak monitor records.7 Monitor records are assigned to the appropriate hash table in the

array by masking off n bits in the monitor’s associated memory location. We found that

partitioning the AMT in this way was extremely valuable for regaining parallelism, as com-

pared to earlier designs in our development process that used just two hash tables for all

monitor records.

7The results presented in Section 5.5 use n = 5.
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Each pair of hash tables in the AMT is synchronized using a mutex lock. In addition

to preventing the hash tables from being corrupted by concurrent accesses, this simple

synchronization scheme also has the effect of serializing monitor starts for each location.

The threads’ sets of monitors are implemented as two thread-local hash tables, one for

active strong monitors and one for active weak monitors. Because this information is stored

locally, many calls to the runtime do not need to do any synchronization—they simply

check to see whether the monitor is already active (in the case of start monitors or its

variants) or whether there are any active monitors that need to be stopped (in the case of

stop all monitors except).

5.3.4 Performance Considerations

IFRit has a strong correctness guarantee: even if not all monitors are started, we will report

no false positives, as long as monitors are stopped at the appropriate time (or earlier).

Therefore, we can ignore some calls to start monitors without compromising soundness.

We leverage this in two ways: limiting short-scope monitors, and sampling.

First, as discussed in Section 5.2.6, so-called “short-scope monitors” are numerous

enough to be a burden on the runtime. A common case is that a thread will be iterat-

ing through a large array, which requires starting a new monitor on every iteration. The

idea of our static instrumentation is to use a few calls to represent many accesses, so these

small-scope calls are problematic. Therefore we have an optional mode for our detector

that starts only a subset of these monitors. Specifically, we allow a maximum of k dynamic

monitors per static call site to be live at the same time. This optimization is intended to

exploit the observation that if one iteration of the loop is racy, it is likely that the rest

will be racy as well. We have found that this optimization provides considerably better

performance while catching almost as many races as the fully-monitored mode. We did find

one race which was missed by this optimization: a loop in one of the PARSEC benchmarks

(streamcluster) was not racy for its first 512 iterations, but was racy for the rest.

Second, we implemented sampling. Our runtime executes a sampling period for a window

of execution every second. During a sampling period, the runtime executes all calls to
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mtx_unlock(m1);

*x = 5;
mtx_lock(m1);

r1 = *x;

Thread 1

Thread 2

Figure 5.9: Even though neither access happens during the other access’s IFR, we can detect
the race in this case because the accesses’ IFRs overlap.

start monitors and its variants. For instance, with a sampling rate of 1%, IFRit monitors

the execution for one one-hundredth of a second every second. When the period ends, we

ignore calls to start monitors and its variants. We chose this sampling technique because

we suspect monitoring many memory locations simultaneously finds more bugs than sparsely

sampling monitors at all times. Sampling is effective: at a sampling rate of 50%, overheads

dropped an order of magnitude.

We also implemented an optimization for programs that have long single-threaded phases:

if there is only one thread running, we ignore calls to start monitors. This affects neither

soundness nor completeness: once the thread finishes its work, it must call thrd create to

start a new thread. thrd create is a release operation. Therefore any monitors collected

during the single-threaded phase would be stopped before the thrd create call anyway, so

there is no point to starting these monitors.8
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5.4 Formalism and Correctness

This section proves that the central idea of our detector is correct: if two interference-free

regions for conflicting, concurrent accesses overlap, then the accesses must form a data race.

The property we prove here is stronger than Theorems 3.1 and 3.2, because the racing access

may not happen during the other access’s IFR (see Figure 5.9 for an example).

As in Chapter 3, an execution of a program is a triple (A,≤po, <sw): a set of actions

A, the program order ≤po, and the synchronizes-with order <sw. The happens-before order

≤hb is the reflexive transitive closure of ≤po and <sw.

Our goal is to prove that two overlapping IFRs for conflicting, concurrent accesses to

the same variable always imply that the accesses form a data race. This is stated in the

following theorem:

Theorem 5.1. Consider two IFRs I1 and I2 for actions (t1, k1, u1) and (t2, k2, u2). Assume

that t1 6= t2 and that k1 and k2 are either read(x) or write(x), and at least one is a write.

Then if I1 and I2 overlap, (t1, k1, u1) and (t2, k2, u2) form a data race.

First, we define interference-free regions and data races with respect to our formal model.

Definition 5.1 (IFR). An IFR is a triple I = (ubegin, uaccess, uend) where the following

conditions hold:

1. There exist t, kaccess, and x such that (t, kaccess, uaccess) ∈ A and either kaccess =

read(x) or kaccess = write(x).

2. ubegin <po u
access <po u

end.

3. For all u such that ubegin <po u ≤po uaccess, u’s associated kind is not an acquire

synchronization.

4. For all u such that uaccess ≤po u ≤po uend, u’s associated kind is not a release syn-

chronization.

Definition 5.2 (Data race). Two actions (t1, k1, u1) and (t2, k2, u2) ∈ A form a data race

if:

8The thrd create call might allow some monitors to continue through it, but we do not think this is a
concern. Ignoring these monitors does not affect soundness, and it would be very easy to special-case calls
to stop all monitors except so that the monitors would be started before the thrd create call.
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1. t1 6= t2;

2. k1 and k2 are either reads or writes of the same variable, and at least one is a write;

3. and the two actions are not ordered by happens-before: u1 6≤hb u2 and u2 6≤hb u1.

Suppose we have two IFRs I1 and I2 in a given execution. I1 and I2 do not overlap if

either I1 ends before I2 begins, or I2 ends before I1 begins. Therefore, we say that two IFRs

overlap if neither of these conditions holds:

Definition 5.3 (Overlapping IFRs). Two IFRs I1 = (ubegin1 , uaccess1 , uend1 ) and I2 = (ubegin2 ,

uaccess2 , uend2 ) overlap if uend1 6≤hb ubegin2 and uend2 6≤hb ubegin1 .

In order to prove our main theorem, we first prove a supporting lemma about the

structure of happens-before edges. Effectively, we need to show that in order for there to

be a happens-before edge between two actions in different threads, there must be a release

synchronization action in the first thread that is sequenced after the first action, and an

acquire synchronization action in the second thread that is sequenced before the second

action.

Lemma 5.1. Let (t1, k1, u1), (t2, k2, u2) ∈ A such that t1 6= t2 and u1 ≤hb u2. Then there

exist u3 and u4 such that u1 ≤po u3 ≤hb u4 ≤po u2, u3’s associated kind is a release

synchronization, and u4’s associated action is an acquire synchronization.

Proof. Proof by induction on u1 ≤hb u2.

• As t1 6= t2, u1 6≤po u2.

• If u1 <sw u2, let u3 = u1 and u4 = u2. As t1 6= t2, u3 has an outgoing edge and u4

has an incoming edge. By reflexivity of ≤po, we have that u1 ≤po u3 ≤hb u4 ≤po u2.

• If u1 ≤hb u5 ≤hb u2, let t5 be the thread ID for u5. Either t5 = t1, t5 = t2, or t5 6= t1

and t5 6= t2.

– t5 = t1. Then t5 6= t2, so by the inductive hypothesis there exist u6 and u7

such that u5 ≤po u6 ≤hb u7 ≤po u4, u6 has an outgoing edge, and u7 has an

incoming edge. Let u3 = u6 and u4 = u7. As t5 = t1 and u1 ≤hb u5, it

must be that u1 ≤po u5, and by transitivity of ≤po, u1 ≤po u6. Therefore

u1 ≤po u6 ≤hb u7 ≤po u2.
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– t5 = t2. Then t5 6= t1, so by the inductive hypothesis there exist u6 and u7

such that u1 ≤po u6 ≤hb u7 ≤po u5, u6 has an outgoing edge, and u7 has an

incoming edge. Let u3 = u6 and u4 = u7. As t5 = t2 and u5 ≤hb u2, it

must be that u5 ≤po u2, and by transitivity of ≤po, u7 ≤po u2. Therefore

u1 ≤po u6 ≤hb u7 ≤po u2.

– t5 6= t1 and t5 6= t2. We apply the inductive hypothesis twice. First, there exist

u6 and u7 such that u1 ≤po u6 ≤hb u7 ≤po u5 and u6 has an outgoing edge.

Second, there exist u8 and u9 such that u5 ≤po u8 ≤hb u9 ≤po u2 and u9 has an

incoming edge. Let u3 = u6 and u4 = u9. By transitivity of ≤hb, we have that

u1 ≤po u6 ≤hb u9 ≤po u4.

Lemma 5.1 leads directly to the proof of Theorem 5.1.

Proof. Let I1 = (ubegin1 , uaccess1 , uend1 ) and I2 = (ubegin2 , uaccess2 , uend2 ). Assume that the two

accesses do not form a data race; i.e. that either uaccess1 ≤hb uaccess2 or uaccess2 ≤hb uaccess1 .

Proceed by cases:

1. uaccess1 ≤hb uaccess2 . By Lemma 5.1, this happens-before edge must go through a release

action in Thread t1, and an acquire action in Thread t2. Formally, there exist u3

and u4 such that uaccess1 ≤po u3 ≤hb u4 ≤po uaccess2 , u3 is a release synchronization,

and u4 is an acquire synchronization. By Definition 5.1, it must be the case that

the release and acquire actions do not fall in I1 and I2, respectively: uend1 ≤po u3

and u4 ≤po ubegin2 . By transitivity of happens-before, we have that uend1 ≤hb ubegin2 ,

contradicting our assumption that the two IFRs overlap.

2. uaccess2 ≤hb uaccess1 . This case is symmetric to the first.

We have therefore proved that our algorithm produces no false positives.

5.5 Evaluation

There are four main goals to our evaluation of IFRit: (1) We highlight IFRit’s low runtime

overheads and characterize the impact of sampling on IFRit’s overheads; (2) We demonstrate

that IFRit effectively detects data races in several mature applications and assess the impact
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Figure 5.10: Overhead of IFRit compared to uninstrumented code for the PARSEC bench-
marks and a suite of real applications. Average and geometric mean are over the first eight
PARSEC benchmarks.
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Figure 5.11: Effect of sampling on IFRit’s performance overhead. Average and geometric
mean are over the ten PARSEC benchmarks.
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of sampling on IFRit’s race-detection capability; (3) We qualitatively analyze the output of

IFRit by examining several discovered races; and (4) Throughout our evaluation, we provide

a head-to-head comparison with ThreadSanitizer, a state-of-practice happens-before data-

race detection tool with widespread commercial adoption and FastTrack, a state-of-the-art

happens-before data-race detection tool.

5.5.1 Experimental Setup

To benchmark IFRit, we used the PARSEC-2.1 benchmark suite [7] and a set of real ap-

plications. We ran the PARSEC benchmarks with their 8 threaded pthreads configuration

on the simsmall input set. We excluded three of the 13 benchmarks: one, freqmine, used

OpenMP for synchronization, and our runtime currently suports only pthreads; a second,

vips, used GLib for synchronization, which our runtime uses for hash tables and there-

fore cannot be instrumented; a third, facesim, crashed during our tests due to memory

requirements.

To evaluate IFRit further, we used unmodified versions of MySQL, Apache, and PBZip2.

MySQL is an industrial-strength database server. We used MySQL-5.5.15, running with its

default configuration. To benchmark MySQL, we used the sysbench OLTP benchmark run-

ning under its default configuration. Apache is a webserver. We used version httpd-2.0.48

with its “worker” thread configuration. We ran tests using ApacheBench, issuing 10000

requests from 8 request threads. PBZip2 is a parallel file compression/decompression tool.

We used PBZip2-0.9.1, running with 8 threads. To benchmark PBZip2, we decompressed a

150MB text file.

We compiled applications using LLVM 3.0 and our instrumenting compiler pass. For our

baseline, we compiled applications using LLVM 3.0, but without our instrumenting pass.

The applications were run on a machine with two 4-core Intel Xeon processors clocked at

2.8 GHz with 16GB of RAM.

In our evaluation we directly compared IFRit to ThreadSanitizer’s Valgrind implemen-

tation [43] and an implementation of FastTrack for C/C++ using DynamoRio [39]. We ran

experiments with ThreadSanitizer on our machines. The authors of [39] provided us with
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data from their experiments with their FastTrack implementation.

5.5.2 Overheads

PARSEC Figure 5.10 shows the overheads imposed by IFRit on the PARSEC benchmarks

compared to FastTrack and ThreadSanitizer. FastTrack data was available for only the first

eight PARSEC benchmarks, so we have listed the average and geometric mean for those

programs only. The geometric mean de-emphasizes the effect of outliers. We ran each

PARSEC program three times for each sampling rate and used the mean of the three

execution times. In addition to the fully instrumented IFRit data, we show the overheads

for a variant of IFRit where short-scope monitors are limited to a maximum of ten monitors

per static call site at a time.

IFRit’s overheads are low. On all but three PARSEC benchmarks, the fully instru-

mented version of IFRit outperforms ThreadSanitizer. For four of the eight benchmarks for

which we have FastTrack numbers, IFRit outperforms FastTrack. The geometric mean of

IFRIT’s slowdown across the entire PARSEC suite is 46.3x, compared to 147.4x for Thread-

Sanitizer and 57.3x for FastTrack. If we enable the short-scope optimization, which limits

the number of monitors per static call site, IFRit performs better than both FastTrack and

ThreadSanitizer on every PARSEC benchmark, with an overall geometric mean of 12.2x.

Overall, these data show that IFRit’s overheads are comparable to prior race detection

tools [39, 43, 18]. In most of our benchmarks, monitors are started and stopped infrequently

enough that the cost of our instrumentation is amortized by program execution. In these

cases, IFRit’s low overhead results from not having to instrument every memory access.

For benchmarks with a large number of short-scope monitors, selectively omitting some

monitors on a per-call-site basis is extremely effective in recovering performance without

sacrificing much coverage (we discuss coverage more in Section 5.5.3).

Real applications Figure 5.10 also shows overheads for the real applications compared to

uninstrumented execution. For these applications, we ran the benchmarking code only once

per configuration. IFRit’s overhead running on real applications is similar to the overheads

we saw for PARSEC. Our best case is PBZip, with overheads around 4x. IFRit’s worst case
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full application is MySQL, which incurs a 66X overhead. While higher than the overheads

in Apache and PBZip, IFRit’s overhead is far lower than ThreadSanitizer’s overhead of

around 160X. The short-scope monitor optimization reduces MySQL’s overhead to 59X.

The difference indicates that short-scope monitors contribute to MySQL’s overhead. Both

PBZip and Apache saw little benefit from the short-scope monitor optimization, suggesting

their performance is not limited by starting and stopping short-scope monitors.

Impact of Sampling on Performance

Figure 5.11 gives the overheads for IFRit with sampling enabled for 1%, 10% and 50% of the

execution time. We give the average and geometric mean for all 10 PARSEC benchmarks.

Sampling is very effective at reducing IFRit’s overheads for PARSEC, with a geometric mean

of 4.2x, 2.6x, and 2.0x slowdown for 50%, 10% and 1% sampling, respectively. Sampling

also helps a great deal for the some of the real applications. MySQL runs much faster under

sampling (15-30 times faster), but under sampling, no data races are detected (see Table

5.1). Apache, on the other hand, runs with nearly no overhead under sampling, and still

detects many data races – half of the races reported without sampling are reported with a

50% sampling rate, and 30% of the races reported without sampling are still reported with

a 1% sampling rate. PBZip also enjoys nearly no overhead with 50% sampling and still

detects all the races reported by IFRit without sampling.

5.5.3 Race-Detection Coverage

Table 5.1 lists the number of unique races reported by our tool for the benchmarks. We

found races in all three real applications and in four of the 13 PARSEC benchmarks. To

assess the coverage of IFRit, we directly compare to the coverage of ThreadSanitizer. We

discuss the races found by IFRit and ThreadSanitizer in Section 5.5.4. The data show that

in each of the PARSEC programs that had any races reported, ThreadSanitizer detects

some races that IFRit did not detect. The programs with the biggest difference in coverage

are ferret and x264. In x264, ThreadSanitizer found 72 races while IFRit found only 3.

In ferret, IFRit missed all of the races ThreadSanitizer reported. As we shall discuss in
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IFRit

1% 10% 50% 10/PC Full ThreadSanitizer

bodytrack 1 1 1 5 5 10

x264 – – 2 3 3 72

streamcluster 1 1 2 2 3 24

ferret – – – – – 38

Apache 6 8 10 19 19 21

PBZip – – 2 2 2 2

MySQL – – – 11 11 14

Table 5.1: Number of unique races found by IFRit in various configurations and by Thread-
Sanitizer. Omitted benchmarks had no detected races.

Section 5.5.4, many of these races are related to memory accesses in code not instrumented

by IFRit. Note that missing these races is a limitation of our prototype, not a fundamental

limitation of our IFR-based approach.

In contrast, in the real application benchmarks we used, IFRit’s coverage is nearly

identical to ThreadSanitizer’s coverage. IFRit and ThreadSanitizer detect the same races

as PBZip. IFRit misses two races in Apache, and three races in MySQL.

Impact of Short-Scope Monitor Optimizaton on Coverage

When we limit the number of short-scope monitors per code point, IFRit’s coverage is

identical in all cases except streamcluster. Streamcluster executes a loop that starts short-

scope monitors. The memory accesses in the first 512 iterations of the loop are not racy,

but the remaining accesses are racy. The accesses occur at the same code point, so we miss

these races with this optimization enabled.

Looking back to Figure 5.10, the data show that the reduction in overhead resulting

from this optimization is very large. The data in Table 5.1 show that the degradation of

coverage is almost negligible. Together these results demonstrate that limiting the number

of short-scope monitor’s per code point is beneficial.
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Impact of Sampling on Coverage

Sampling reduces IFRit’s coverage, but even with sampling IFRit detects many data races.

Sampling 50% of the execution, IFRit detects some races in all programs in which it detected

races without sampling, except MySQL. Using even sparser sampling further reduces IFRit’s

coverage. However, even with a sample rate of 1% IFRit still detects races in streamcluster,

bodytrack, and Apache.

The data in Figure 5.11 show that sampling reduces overheads considerably—the geo-

metric mean overhead at 1% sampling rate is about 2X, and only slightly higher at 10%

sampling rate. The data in Table 5.1 show that IFRit is still useful for finding data races

when sampling is active. Together, these results show that sampling is one way to trade off

precision for increased performance.

5.5.4 Analysis of Detected Races

In order to track down these reported data races, we compiled and ran a second version

of each racy benchmark with debugging information and less aggressive optimization. Our

tool prints out the program counter for the start monitors call for each side of the data

race, as well as a stack trace for the call that triggered the report. The static analysis also

prints a list of instrumentation calls and their associated accesses.

Races in PARSEC

Most of the PARSEC benchmarks had no races reported by either IFRit or ThreadSanitizer.

(We did not have access to the DynamoRIO FastTrack race reports, but the paper mentions

a race in canneal which neither IFRit nor ThreadSanitizer reported.) Both tools found races

in bodytrack, x264, and streamcluster. ThreadSanitizer also found races in ferret that were

not detected by IFRit.

Bodytrack IFRit found five data races in bodytrack, four of which were caused by the

same bug involving the misuse of condition variables. The last race was caused by threads

reading a structure that had not been fully initialized.
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ThreadSanitizer reported 10 unique races, including the two problems identified by

IFRit. ThreadSanitizer also found a race involving an unprotected counter that was not

reported in IFRit. However, that race did show up in IFRit during runs run with a larger

input (simmedium), and running IFRit on the simmedium input was faster than running

ThreadSanitizer on the simsmall input. Fixing these three root causes resolved all of the

race reports from both ThreadSanitizer and IFRit.

X264 IFRit reported three data races in x264, one of which was confirmed by Thread-

Sanitizer. ThreadSanitizer reported 72 races, most of them within memcpy in libc, which

was not instrumented by IFRit’s static analysis and therefore was not monitored for races.

Streamcluster IFRit reported three data races in streamcluster. Two of the races were on

local variables declared static. static local variables are scoped to their function or block,

but correspond to a single global object, so threads executing the function simultaneously

can race on the variable. The third race was caused by a missing barrier call. It appears that

the pthreads code was improperly translated from code that used Intel’s TBB (Threading

Building Blocks) Library.9

ThreadSanitizer reported 23 unique races in streamcluster, including the three reported

by IFRit. We determined that the remaining races reported by ThreadSanitizer were due

to two root causes. First, a function passed its arguments by value rather than by refer-

ence; since pass-by-value arguments are not listed as loads in the LLVM IR, IFRit did not

instrument those memory accesses. The second race was on a pointer being freed, which

ThreadSanitizer counts as a write and IFRit does not.

Ferret ThreadSanitizer found 43 races in ferret that were not reported by IFRit. Two

races, one on a shared counter and a second on a shared boolean flag, were not detected by

IFRit because the racy monitors in IFRit were of very short duration, and never happened

to overlap. The remaining races were in libc, which was not instrumented by IFRit’s static

analysis and therefore was not monitored.

9http://threadingbuildingblocks.org/

http://threadingbuildingblocks.org/
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Races in Real Applications

MySQL IFRit reported 11 races in MySQL. Three races in MySQL were the result of

unsynchronized accesses to flags written in the main program thread and read in a signal

handling thread during server shutdown. Two reported races involved lock meta-data in

MySQL’s wrapper for pthread locks.

The remaining races are on unsynchronized flags and a linked list implementation in de-

bugging code. These races are unsurprising. Debugging code is often disabled in production,

so it may be less thoroughly tested than other code.

IFRit and ThreadSanitizer had comparable coverage for MySQL. ThreadSanitizer re-

ported 14 races in MySQL, including 9 of the 11 races that IFRit reported. ThreadSan-

itizer did not report two races IFRit reported and IFRit did not report four races that

ThreadSanitizer reported.

Apache IFRit reported 19 different races in Apache. Seven were caused by a well-known

bug in Apache’s logging code that can lead to garbled log output [32, 34, 51]. Five more were

caused by races that nearby comments indicated were known or intentional. Intentional or

not, these races should be reported because even “benign” races can result in incorrect

behavior [10]. The other races were all on improperly synchronized flags.

IFRit has nearly the same race detection coverage as ThreadSanitizer. IFRit detected

all the races reported by ThreadSanitizer except for two. ThreadSanitizer did not report

one of the two flag races that IFRit detected.

PBZip IFRit reported two races in PBZip. One of the races involves unsynchronized

accesses to a flag variable signaling a termination condition to worker threads.

The other race involves concurrent accesses to fields of an output buffer structure. One

thread fills the buffer and writes the fields. Concurrently, the thread that empties the buffer

reads the fields without synchronizing.

The races reported by IFRit were the same races reported by ThreadSanitizer.
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5.5.5 Discussion: IFRit vs. Other Detectors

Throughout this evaluation, we have compared IFRit directly to FastTrack and ThreadSan-

itizer. Like these precise detectors, IFRit is sound, so for all three there are no false positive

races reported. FastTrack and ThreadSanitizer are also complete, meaning they detect all

races in an execution. IFRit is not complete, but the data show that IFRit exploits a critical

tradeoff of completeness for performance.

Figure 5.10 shows that IFRit’s overhead is much lower than FastTrack and ThreadSan-

itizer. For the PARSEC programs, IFRit consistently outperformed the other techniques

with our short-scope monitor optimization enabled. Comparing IFRit’s overhead on our real

application benchmarks to the overhead of ThreadSanitizer, IFRit is the clear winner with

overheads far less than ThreadSanitizer. IFRit’s performance advantage is a key distinction

from prior techniques.

Table 5.1 shows that IFRit detects most of the races detected by FastTrack and Thread-

Sanitizer in the application code of the programs we evaluated. While we provide no com-

pleteness guarantee, our data show that IFRit is a powerful tool for detecting data races.

Together our performance and coverage results illustrate that IFRit recovers a large

amount of performance by trading off what we empirically found to be a small margin of

completeness. We consider this tradeoff profitable, as the reduction in overhead makes data-

race detection cheap enough for practical frequent use. FastTrack and ThreadSanitizer pay

a very high performance cost to provide completeness guarantees. Their overhead may be

a barrier to their frequent use by developers in practice.

5.6 Related Work

A variety of tools have been developed to help find data races. Static race detection tools [16,

38, 1] analyze program code, and attempt to prove the absence of data races in all program

executions. Static techniques are useful in that they can statically prove a program is data-

race-free, but they also must be conservative because they lack information that is available

only during program execution. We will focus on dynamic techniques.

Dynamic race detectors mostly fall into two categories: happens-before detectors [18,
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12, 36, 39, 43] and lockset detectors [42]. Lockset detectors like Eraser [42] track the

locks held at each access and report a race if accesses to a location are not consistently

protected by the same lock. These techniques are based on a heuristic—that every shared

variable will be consistently protected by the same lock—which may lead to false positives.

Although it is possible to reduce false positives by introducing more heuristics (e.g., read-

only data), any false positives represent a waste of the developer’s time. This problem with

false positives also applies to hybrid techniques such as MultiRace [40], RaceTrack [52], and

ThreadSanitizer’s hybrid mode [43].

Happens-before detectors work by tracking the order of synchronization actions in order

to determine if conflicting accesses are or are not ordered by happens-before. Typically,

these algorithms use vector clocks [37], a data structure that tracks the relative timing

between different threads of execution in a process. Such race detectors report a data race

if two accesses to the same shared state occur are not ordered by the happens-before relation.

ThreadSanitizer’s non-hybrid mode (which we used for comparison to IFRit in Section 5.5)

is a standard happens-before detector that uses valgrind to instrument binaries.

The current state-of-the-art implementation of vector clocks, FastTrack [18], achieves an

average 8.5x slowdown and is fully precise — i.e., it produces no false positives and reports

at least one race if the execution contained any races. FastTrack achieves this relatively low

overhead by looking only for shortest races—i.e., if access A races with later accesses B and

C, only the race with access B will be reported. Practically, this means that the algorithm

only has to track the most recent writer for each shared variable. In its current form,

IFRit performs comparably to FastTrack when either sampling enabled or the short-scope

optimization are enabled. This is significant since FastTrack is implemented in a managed

language (Java), while IFRit runs on unmanaged code (C/C++). Therefore the baseline

for IFRit is much faster, meaning overheads for IFRit are more noticeable.

As dicussed in Section 5.5, a recent paper reimplemented FastTrack for x86 binaries

using the DynamoRio instrumentation platform [39]. As expected, FastTrack is still more

efficient than a standard happens-before detector (ThreadSanitizer), but its overheads are

much more noticeable than the Java versions: a geometric mean of around 50x for a set

of 10 PARSEC benchmarks. The authors of that paper reduce the overheads by about
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50% using Aikido, a custom hypervisor that uses page faults to quickly detect conflicts.

We compared IFRit to the non-Aikido version of FastTrack, since IFRit does not require a

custom hypervisor. IFRit, even without any sampling enabled, outperforms FastTrack, with

a geometric mean of 36.3x on eight of the ten benchmarks used for FastTrack (FastTrack’s

geometric mean for those eight was 57.4x). In turn, FastTrack detects more data races than

IFRit, since FastTrack is a fully-precise algorithm.

Several other tools have been developed that use sampling to reduce the overhead of

fully-precise vector-clock detectors. Pacer uses FastTrack during sampling periods, and also

does a small amount of work during non-sampled periods to ensure proportionality: the

number of races detected should scale linearly with the size of the sampling period [12].

Unlike Pacer, IFRit does not do any work during non-sampled periods (except to check a

boolean flag), so we miss races where only one of the monitor starts is sampled. However,

the relatively smaller number of instrumentation points in IFRit means that we can afford

to sample for longer periods, which mitigates Pacer’s concern about proportionality. Our

overheads at 10% sampling are comparable to Pacer’s at 10%, even though we are running

on C/C++ code instead of Java.

LiteRace [36] also uses sampling to improve the performance of vector clocks. They

use dynamic profiling to identify “cold” functions, which they hypothesize are more likely

to contain unnoticed data races. This adaptive sampling is a technique we could adapt

to IFR-based data race detection. LiteRace achieves low overheads via adaptive sampling

and also by using logging to postpone race checks until after execution. Like us, LiteRace

runs on unmanaged C/C++ code, although they instrument binaries rather than source

code. IFRit has higher overheads than LiteRace, but we perform race checks at runtime

instead of offline. IFRit’s overheads with sampling are comparable to those for LiteRace

with thread-local adaptive sampling.

DataCollider [17] is a heuristic detector that tries to catch data races in OS kernels “red-

handed”: it freezes one thread before a memory access, and sets a hardware watchpoint to

trap writes to the memory location in other threads. This is similar to IFRit in that

both try to identify accesses that happen at roughly “the same time.” IFRit differs from

DataCollider in that we do not require hardware watchpoints, so we can monitor many
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variables simultaneously.

5.7 Conclusion

This chapter presented IFRit, a new dynamic data-race detection algorithm for arbitrary C

and C++ programs based on the fundamental concept of interference-free regions. IFRit

improves on prior work by coalescing the instrumentation for multiple accesses to the same

variable, reducing runtime overhead, and by requiring no specialized hardware to detect

races with no false positives.

IFRit is a natural approach to dynamic data-race detection without the overhead of

tracking a full happens-before relation. Our prototype implementation of this algorithm

indicates that we can detect races in real programs without inducing too much overhead.
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Chapter 6

INTERPROCEDURAL IFR ANALYSIS

The previous chapters introduced interference-free regions and developed static analyses—

the ABNA and ASLR analyses—that infer IFRs for the purposes of program optimization

or static instrumentation. In this chapter, we extend these algorithms to be interproce-

dural; i.e., to consider more than one function at a time. As we shall demonstrate, this

is a natural extension of the original analyses that neatly solves a shortcoming of those

algorithms—namely, handling functions with internal synchronization.

6.1 Motivation

The compiler analysis presented in Chapter 4 is an intraprocedural (operating on one func-

tion at a time) analysis that prunes the modified/reference sets for explicit synchronization

calls. However, there is a problem with this approach: the intraprocedural algorithms

cannot handle calls that contain internal synchronization—that is, calls to functions that

transitively call primitive synchronization functions. In particular, if a program uses wrap-

per functions for synchronization, an interprocedural (operating on multiple functions at a

time) analysis is necessary for IFR-based optimization.

Consider the following example. Here a program uses wrapper functions for synchro-

nization calls:

mtx_t *global_lock;

void acquire_global() {

mtx_lock(global_lock);

}

void release_global() {

mtx_unlock(global_lock);

}
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void f() {

r1 = *x;

acquire_global();

...

release_global();

r2 = *x;

}

If we inline the calls to acquire global() and release global(), it becomes clear that

the second read of x can be eliminated (as in Figure 3.2):

void f() {

r1 = *x;

mtx_lock(global_lock);

...

mtx_unlock(global_lock);

r2 = *x;

}

If we were to analyze this program (the inlined version) using the intraprocedural IFR

analyses, the ASLR and ABNA analyses would find that x is interference-free for the calls

to mtx lock() and mtx unlock(), respectively. Therefore a later optimization pass could

safely eliminate the second read of x.

Now consider how the intraprocedural analyses described in Chapter 4 would behave

for the non-inlined version of this program. Both the ASLR and ABNA analysis analyze

each function separately. Since function acquire global() contains no memory accesses,

the ASLR analysis would conclude that no variables are interference-free at the call to

mtx lock(). (In a larger program, there may be other calls to acquire global() that are

not in an IFR for x or any other variables, so this conclusion is correct.) Symmetrically,

the ABNA analysis would conclude that no variables are interference-free at the call to

mtx unlock() in function release global(). Therefore our analysis from Chapter 4 would

not remove the redundant load in the non-inlined code.

In general, with enough inlining, any intraprocedural analysis is as effective as an equiv-

alent interprocedural analysis (except in the presence of recursion). We will focus instead

on designing an interprocedural algorithm that allows us to apply IFR-based optimizations

to both primitive synchronization calls and calls with internal synchronization.
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To address this issue, we need a systematic mechanism for reasoning about the side

effects of calls that may contain internal synchronization. This chapter presents such a

mechanism, which distinguishes the local memory accesses of a function from its synchro-

nization behavior. We will also discuss how to use interprocedural analysis to improve the

instrumentation for IFR-based data race detection in Section 6.5.

Unfortunately, our experimental results (Section 6.4) are underwhelming. Specifically,

there were only two benchmarks in which using interprocedural analysis improved the results

of the optimization passes. As we shall discuss later, we suspect that the lack of sophisticated

alias analyses for LLVM is negatively affecting our results, and therefore that the algorithms

presented in this chapter are still of interest because they could be combined profitably with

future alias analyses.

6.2 Synchronization Behavior

The example in Section 6.1 suggests a possible approach to this problem: it would be

useful to characterize the synchronization behavior of each function. For example, function

acquire global() acts like an acquire call, and release global() acts like a release call.

With this information, we can determine which interference-free regions extend through a

given function call. For example, if given the information that the synchronization behavior

of acquire global() is “acquire,” we can determine that the IFR for access A includes the

acquire global() call and area B in this program:

A: r = *x;
interference-free region for Aacquire global();

B: ...

release global();

Similarly, if given the information that the synchronization behavior of release global()

is “release,” we can determine that the IFR for access B includes the release call and area

A in this program:

acquire global();

A: ...
interference-free region for Brelease global();

B: r = *x;
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As it turns out, determining which IFRs extend through user-defined function calls will

not be quite enough information to perform IFR-based optimization across those calls. If

the IFR of an access includes a user-defined function call, that guarantees that no other

thread will modify the accessed variable during the IFR (without introducing a data race),

but the current thread may modify the variable during the call. This was not a problem

for primitive synchronization calls like mtx lock() and mtx unlock(), which do not do

any visible thread-local writes. We will discuss how to solve this problem in Section 6.4.

For now, we will focus on the first step: summarizing the synchronization behavior of each

function.

6.3 Interprocedural Algorithm

The purpose of the synchronization behavior analysis is to assign to each user-defined func-

tion in the program a label describing the kind of synchronization that may be performed

when the function is called (including synchronization in transitively-called functions). Ulti-

mately, we will use this labeling to determine which variables might be concurrently modified

by other threads during the call’s execution.

6.3.1 Synchronization Behaviors

We distinguish five different synchronization behaviors:

1. NONE: no synchronization calls

2. ACQ: acquire calls only (no release calls)

3. REL: release calls only (no acquire calls)

4. ACQ/REL: acquire or release calls, and any release calls must be performed after all

acquire calls

5. ANY: other (e.g., a release call followed by an acquire call)

We selected these five synchronization behaviors because they are the most useful for

interference-freedom analysis. Specifically, variables that must be accessed before an ACQ

call are interference-free for that call; variables that must be accessed after a REL function

are interference-free for that call; and variables that must be accessed both before and after

an ACQ/REL call are interference-free for that call.
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void n() {

}

void a(mtx_t *m) {

mtx_lock(m);

}

void r(mtx_t *m) {

mtx_unlock(m);

}

void ar(mtx_t *m1, mtx_t *m2) {

a(m1); a(m2); n(); r(m2); r(m1);

}

void x(mtx_t *m) {

r(m); a(m);

}

Figure 6.1: Example of synchronization behavior in a program.

For example, in Figure 6.1, function n() has synchronization behavior NONE, a() has

behavior ACQ, r() has behavior REL, ar() has behavior ACQ/REL, and x() has behavior

ANY.

The five synchronization behaviors form the lattice shown in Figure 6.2. We use this

lattice to join synchronization behaviors at merge points in the control flow of a function. For

example, function f() (defined below) technically has synchronization behavior ACQ/REL:

it may perform acquire or release calls, and any release calls will be performed after all

acquire calls have been completed.

void f(mtx_t *m, bool b) {

if (b) {

mtx_lock(m);

} else {

mtx_unlock(m);

}

}
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ANY

ACQ/REL

ACQ REL

NONE

Figure 6.2: Lattice for synchronization behaviors.

Synchronization behavior Bit representation

NONE 000

ACQ 001

REL 010

ACQ/REL 011

ANY 111

Table 6.1: Bit encodings for synchronization behaviors.

The first branch of the conditional has synchronization behavior ACQ; the second has

synchronization behavior REL; overall, the function has behavior ACQ t REL = ACQ/REL.

Although this observation that “acquire OR release” can be treated like “acquire THEN

release” is pleasingly elegant, we do not expect this pattern to occur often in real code. How-

ever, it simplifies our implementation because we can encode synchronization behavior using

only 3 bits, with the join operator implemented as bitwise OR. Specifically, synchronization

behaviors map to bit representations as shown in Table 6.1.

6.3.2 Interprocedural algorithm

Algorithm 6.1 (with helper algorithms 6.2, 6.3, and 6.4) gives the algorithm for deter-

mining the synchronization behavior for each user-defined function in a program. The final

output of the algorithm is a map func sync from functions to synchronization behaviors. We
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Algorithm 6.1 analyze()

for each function f do
if f is a user-defined function then

Add f to func worklist
func sync[f ]← NONE

else if f is mtx lock or thread join or . . . then
func sync[f ]← ACQ

else if f is mtx unlock or thread create or . . . then
func sync[f ]← REL

else
func sync[f ]← NONE

end if
end for
while func worklist is not empty do
f ← remove from func worklist
analyze function(f)

end while

Algorithm 6.2 analyze function(f)

for each basic block b in f do
visited[b]← false
bb sync[b]← NONE

end for
Add entry block to bb worklist
while bb worklist is not empty do
b← remove from bb worklist
analyze basic block(b)

end while
s← bb sync[exit block of f ]
if (s 6= func sync[f ]) then

Add callers[f ] to func worklist
func sync[f ]← s

end if
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Algorithm 6.3 analyze basic block(b)

s← bitwise OR of bb sync of b’s predecessors
for each statement S in b, in order do

if S is an external call to function g then
s← update sync(s, func sync[g])

else if S is a call to function g then
f ← function being analyzed
callers[g]← callers[g] ∪ {f}
s← update sync(s, func sync[g])

end if
end for
if (¬visited[b]) or (s 6= bb sync[b]) then

Add b’s successors to bb worklist
visited[b]← true
bb sync[b]← s

end if

Algorithm 6.4 update sync(s1, s2)

if s2 = ACQ or s2 = ACQ/REL then
if s1 w REL then

s1 ← ANY
else

s1 ← s2
end if

else if s2 = REL then
s1 ← s1 t REL

else if s2 = ANY then
s1 ← ANY

end if
return s1
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initialize func sync such that every function has behavior NONE. The algorithm maintains

the following pieces of state, the last three of which should be reinitialized at each call to

function analyze function:

• func worklist: a list of functions to be processed

• func sync: a map from functions to their synchronization behavior

• bb worklist: a list of basic blocks to be processed in the current function

• visited: a map from basic blocks to a boolean indicating whether the block has been

visited during the current call to analyze function

• bb sync: a map from basic blocks to synchronization behaviors at the end of the block

Note that we initialize non-synchronization external functions to have synchronization

behavior NONE. This includes even library calls that may perform synchronization, meaning

the synchronization analysis is “unsound” in the sense that some calls may be labeled

as having a weaker synchronization behavior than they do in reality. However, in the

context of IFR-based compiler optimization, if an unknown external function could possibly

contain synchronization, any sound alias analysis will treat calls of that function as opaque

(potentially modifying any variable). Therefore, since the synchronization behavior analysis

is always used in conjunction with a sound alias analysis, the combined result of the two

analyses is sound. Many functions are known not to perform synchronization or have local

side effects—e.g., sin and cos—so labeling them as having NONE synchronization behavior

means that more optimization will be allowed. A more conservative approach would be

to label unknown external functions as having ANY synchronization behavior; this variant

ends up being a reasonable choice for IFR-based data-race detection, since in that context

the synchronization behavior analysis is not combined with alias analysis and therefore its

results should stand on their own. We will discuss this more in Section 6.5.

The algorithm is a standard interprocedural flow-sensitive data-flow analysis. As we pro-

cess each function in the worklist, if its synchronization behavior changes from the behavior

recorded in sync func, we add its callers back into the worklist so their synchronization

behavior can be updated to incorporate the newly-discovered behavior of their callees. We

construct the list of callers for each function dynamically: whenever we encounter a function

call, we add the current function to the callee’s set of callers. (Note that the set of callers
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is actually updated within Algorithm 6.3.)

Processing individual functions The intraprocedural portion of the algorithm, given

in Algorithms 6.2 and 6.3, is a standard forward dataflow analysis, in which the data being

flowed is the synchronization behavior. We maintain a worklist of basic blocks and a map

from basic blocks to synchronization behaviors, where the synchronization behavior of a

block respresents the synchronization from the beginning of the function to the end of

the block. The algorithm proceeds by iteratively processing blocks in the worklist, adding

their successors to the worklist if the block’s synchronization behavior changes, until the

algorithm reaches a fixpoint.

We use Algorithm 6.4 (update sync) to update the current synchronization behavior if,

in the course of analyzing a basic block, we encounter a statement that may perform syn-

chronization. update sync(s1, s2) returns the overall synchronization behavior of performing

synchronization s1 followed by s2. If we have already seen acquire calls and we encounter

a release call, update sync returns ACQ/REL; if we have already seen release calls and we

encounter an acquire call, update sync returns ANY. Here are a few examples:

update sync(ACQ,REL) = ACQ/REL

update sync(REL,ACQ) = ANY

update sync(NONE,REL) = REL

Example Consider running Algorithm 6.1 on the program listed in Figure 6.1. For the

purposes of the example, we process the functions in a non-optimal order; practically, it

would be best to process them in bottom-up order in the call graph.

• First, we add all functions to the func worklist, and set each function’s initial synchro-

nization behavior to NONE.

• We remove a function from the worklist to process. Suppose it is function ar().

Because none of its callees have been processed, Algorithm 6.2 determines that its

synchronization behavior is NONE. In the course of processing ar(), we add it to the

set of callers for a(), n() and r().
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• Next, suppose we process n(). We (correctly) determine that its synchronization

behavior is NONE. Because the synchronization behavior of n() has not changed as

a result of processing it, we do not add n()’s callers to the worklist.

• Next, suppose we process a(). We (correctly) determine that its synchronization

behavior is ACQ. Because the synchronization behavior of a() has changed from its

initial value of NONE, we add a()’s callers (currently just ar()) to the worklist.

• Next, suppose we process r(). As with a(), we update its synchronization behavior

(this time to REL) and add its callers to the worklist. ar() is already in the worklist,

so this has no effect.

• Next, suppose we process ar() again. Now that we have the correct synchronization

behaviors for a() and r(), Algorithm 6.2 correctly determines that the synchroniza-

tion behavior of ar() is ACQ/REL.

• Finally, we process x(). Algorithm 6.2 correctly determines that the synchronization

behavior of x() is ANY. We do update the set of callers for a() and r() to include

x(), but since the function worklist is empty, we are done.

6.4 Compiler Optimization

This section explains how we integrated the synchronization behavior analysis into IFR-

based compiler optimization.

6.4.1 Handling Thread-Local Side Effects

The synchronization behavior analysis lets us determine when IFRs may propagate through

calls of defined functions. However, this analysis alone is insufficient to allow elimination of

redundant instructions across such calls. For example, consider the following:

r = *x;

...

update_shared_data();

...

r = *x;

where function update shared data() has behavior ACQ/REL. Given this synchronization

behavior, we can infer that the variable x is interference-free in the region between the two
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reads. Therefore it seems reasonable to remove the second read of x, since it appears to be

redundant. However, what if the function itself writes to x? For example,

void update_shared_data() {

acquire_global();

...

release_global();

...

*x = ...;

}

Now it is not safe to remove the second load of x. The same problem appears if a callee

of update shared data may modify x. Such writes do not cause a data race because they

are thread-local.

Let us assume for now that update shared data() does not modify x. To prove that the

second read of x may be safely removed, we need information about the call’s thread-local

side effects. We therefore divide the problem into two subproblems:

1. Determining each call’s possible synchronization behavior

2. Determining each call’s possible thread-local side effects

Of course, the first subproblem is simply the synchronization behavior analysis presented

in Section 6.2. By combining the results of these two analyses, we have enough informa-

tion to enable interprocedural IFR-based optimization. In particular, we will implement a

synchronization-aware memory dependency pass, which determines that the second read is

dependent on the first read because (1) x is interference-free for the entire region between the

two reads and (2) the intervening instructions, including the call to update shared data(),

do not thread-locally modify x. We will discuss how to combine these two analyses more in

Section 6.4.2.

Solving the second subproblem is conceptually quite simple, but practically more dif-

ficult. This problem is related to the standard compiler problem of determining the side

effects (thread-local and non-thread-local) of a call. Typically, the alias analysis pass col-

lects side-effect information for each call, and provides an interface for querying whether a

call modifies a given variable. This includes both thread-local writes—such as store state-

ments in the callee or its transitive callees—or potential writes in other threads, which are
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AliasAnalysis

MemDepAnalysis

DeadStoreEliminationGlobalValueNumbering . . .

Figure 6.3: A subset of the LLVM analysis and optimization pipeline. Arrows indicate
information flowing from one analysis to another.

indicated by the presence of synchronization calls. Therefore we can find thread-local side

effects simply by modifying an existing alias analysis such that it ignores the synchronization

calls when querying side effect information.

The practical difficulty arises in selecting an existing alias analysis to modify. We need

an interprocedural alias analysis, so that the non-thread-local effects of calls with internal

synchronization will be appropriately ignored in their callers. Alias analysis is an enor-

mously complex problem, and sound, interprocedural alias analyses are difficult to find. In

particular, we did not find any sophisticated interprocedural alias analysis for LLVM that

was also sound for multithreaded programs [27, 20, 29].

LLVM is distributed with a simple interprocedural analysis called GlobalsModRef, which

handles global variables whose addresses are never taken (and therefore all accesses of the

variables are trivially statically identifiable). We modified GlobalsModRef to ignore syn-

chronization calls when called with a special flag. This alias analysis, although simple, is

interprocedural and therefore was sufficient for testing our synchronization behavior anal-

ysis. In the future, we would like to combine the synchronization behavior analysis with a

more sophisticated alias analysis that is sound for multithreaded programs (e.g., [50], which

was not available for public use at the time of writing).
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class MemDepResult {

enum DepType { Def, Clobber, NonFuncLocal };

DepType type;

Instruction *I;

...

}

/* Get the set of dependent instructions for an instruction. */

vector<MemDepResult> getDependency(LoadInst *L);

Figure 6.4: Interface for LLVM’s Memory Dependence Analysis.

6.4.2 LLVM Implementation

Figure 6.3 shows the current analysis and optimization pipeline in LLVM. Optimizations

such as global value numbering, dead store elimination, and so on indirectly query the alias

analysis through a helper analysis called the memory dependency (“MemDep”) analysis.

MemDepAnalysis queries alias information to determine the dependencies of a load instruc-

tion (or other instructions, but we consider only loads here), using the interface given in

Figure 6.4. Dependencies consist of an instruction and a descriptor for the instruction: Def

for instructions that definitely access the same memory location as the load, and Clobber

for instructions that may change the value of the memory location. In other words, a load

of location x may have a Clobber dependency on a store to a location that may-aliases with

x or a function call that may write to x, and may have a Def dependency on a load or store

to a location that must-aliases with x. If there are any paths from the beginning of the

function to the queried load instruction with no dependencies, MemDepAnalysis returns a

single NonFuncLocal dependency.

In this example, the load at line C is has a Def dependence on the load at line A and a

Clobber dependence on the store at line B.

if (random()) {

A: int r1 = *x;

} else {

int *z = random() ? x : y;

B: *z = 5;
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AliasAnalysis SyncBehaviorAnalysis

MemDepAnalysis

DeadStoreEliminationGlobalValueNumbering . . .

Figure 6.5: The LLVM analysis and optimization pipeline, modified to be synchronization-
aware. Italicized analyses were modified; bolded analyses are new.

}

C: int r2 = *x;

Figure 6.5 shows our modified LLVM pipeline. Integrating the sync analysis into LLVM’s

optimization pipeline involved two main modifications. First, we modified the GlobalsMod-

Ref analysis to ignore the side effects of synchronization calls. Second, we modified Mem-

DepAnalysis to take advantage of synchronization behavior information and thereby avoid

returning unnecessary Clobber results. Specifically, our modified version of MemDepAnal-

ysis allows calls that perform synchronization on paths between a Def instruction and its

dependent instruction, as long as all release calls come after all acquire calls. In such cases,

the Def instruction’s interference-free region will overlap with the dependent instruction’s

interference-free region, so no other thread can modify the variable without introducing a

data race. On the other hand, if there is a release call followed by an acquire call between the

Def instruction and the dependent instruction, the memory location is not interference-free

between the Def and the dependent instruction, so another thread may modify its value. In

this case, we return (one of) the release call(s) as a Clobber result.

Modifying MemDepAnalysis was quite straightforward. The algorithm is implemented

as a backwards analysis from the dependent instruction. We added an extra piece of state

to the analysis—a boolean indicating whether a call with behavior ACQ or ACQ/REL has

been encountered yet on this path. If the analysis encounters a call with behavior REL or

ACQ/REL when the boolean is true, it reports the release call as a Clobber dependency. It

also reports any call with behavior ANY as a Clobber dependency.
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The modified MemDepAnalysis replaces the ASLR and ABNA analyses from Chapter 4.

We found that this approach was simpler and more effective, for the following three reasons:

1. The MemDepAnalysis approach catches more redundant loads that the ASLR/ABNA

approach, because it is strictly more precise. Specifically, the MemDep analysis catches

situations like this:

r1 = *x;

mtx_lock(...);

...

mtx_unlock(...);

if (...) {

r2 = *x;

}

Here the second load of x is redundant, since the call to mtx unlock is interference-free

for x if the conditional branch executes. However the ABNA analysis would not list

x as interference-free for the mtx unlock() call because x may not be read after the

release call. MemDepAnalysis correctly determines that the first load of x is a Def for

the second load, since the only path between the two loads does not have a release

call followed by an acquire call.

2. MemDepAnalysis handles PHI nodes, which dictate how variable names should be

translated at basic block boundaries. This is a tricky technical detail that can impact

the precision of an analysis.

3. MemDepAnalysis includes a robust caching mechanism, which we were able to take

advantage of with only a few small tweaks.

6.4.3 Experimental Results

Table 6.2 shows the result of running this analysis on the PARSEC and SPLASH-2 bench-

marks. We used LLVM 2.9’s clang frontend with link-time optimization in order to have

the whole program available at analysis time. We disabled inlining in order to better eval-

uate the interprocedural aspect of our analysis. With inlining enabled, the interprocedural
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Total static loads Loads removed Loads removed across

Package (LLVM bytecode) by GVN user-defined function calls

S
P

L
A

S
H

-2

barnes 460 4 0

fmm 772 21 0

ocean-c 3068 36 0

ocean-n 985 94 0

radiosity 1280 26 1

raytrace 1357 10 0

volrend 481 27 0

water-n 706 15 0

water-s 712 15 0

cholesky 1975 9 0

fft 197 3 0

lu-c 219 3 0

lu-n 170 3 0

radix 202 11 0

P
A

R
S

E
C

2.
1

blackscholes 42 0 0

bodytrack 1949 0 0

ferret 22398 0 0

fluidanimate 398 7 0

swaptions 129 1 0

vips 58764 28 28

x264 9616 0 0

canneal 262 0 0

dedup 1679 0 0

streamcluster 270 10 0

Total 108091 323 29

Table 6.2: Results of running LLVM’s global value numbering (GVN) pass with the inter-
procedural synchronization behavior analysis, a modified version of LLVM’s GlobalsModRef
alias analysis, and the modified version of LLVM’s MemDepAnalysis on the SPLASH-2 and
PARSEC benchmarks.
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and intraprocedural versions of the analysis behave identically. This is partially due to the

imprecise alias analysis, since the functions that were not inlined had poor thread-local side

effect information.

The first column in Table 6.2 gives the package name. The second gives the total number

of static loads per program, in order to put the last two columns in perspective. The third

column gives the total number of new redundant loads identified and removed by GVN

(global value numbering) using the synchronization-aware versions of the alias and memory

dependence analyses. The fourth column gives the number of loads removed with at least

one dependency across a user-defined function call—i.e., loads for which interprocedural

synchronization behavior analysis is necessary.

Our results indicate that our analysis does uncover new loads to remove. As we already

learned in Chapter 4, there are numerous loads that can be removed by enabling simply the

intraprocedural analysis. As for the interprocedural analysis, there were two benchmarks,

radiosity and vips, where loads were removed across user-defined function calls. For ra-

diosity, the load in question was of a pointer to a global structure; the load was separated

from its Def by a call to a function with ACQ/REL synchronization behavior. libxml2, a

library called by vips, uses wrapper functions for synchronization, so our synchronization

summaries allowed us to remove 28 extra loads across synchronization wrapper calls. We

expect these results will improve with more accurate alias analysis.

6.5 Dynamic Data-Race Detection

This section explains how to extend IFRit, the dynamic data-race detection tool described

in Chapter 5, to make use of the interprocedural synchronization behavior analysis described

in Section 6.3.

As discussed in Section 6.1, interprocedural analysis can increase the size of inferred

IFRs. On the data-race-detection side, the benefit of inferring bigger IFRs is that we are

more likely to detect data races. Recall that we detect data races by detecting overlapping,

conflicting IFRs in different threads. If the IFRs are bigger, then they are more likely

to overlap. To use the “monitor” terminology from Section 5.2, monitors will be active

for longer periods of time during execution, both because they are started earlier (instead
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SyncBehaviorAnalysis

IFRit Instrumentation Pass

Figure 6.6: The IFRit instrumentation pipeline, modified to make use of the synchronization
behavior analysis. Italicized analyses were modified; bolded analyses are new.

of conservatively started after unknown function calls) and because they may be able to

propagate past more release calls before being stopped.

We will use the same synchronization behavior analysis described in Section 6.3, modulo

the treatment of external function calls (see Section 6.5.2). Figure 6.6 shows the pass

structure, which is very simple: the result of the synchronization behavior analysis feeds

into the instrumentation pass (i.e., the static analysis).

6.5.1 Modified Static Analysis

Recall that the core of IFRit’s static analysis are two backwards-dataflow analyses used to

find the sets of variables (WBNA and ABNA) that must be accessed between each program

point and either the next acquire call or the end of the function containing that program

point.

In order to integrate the interprocedural synchronization analysis into IFRit, we mod-

ify how the two IFRit analyses handle call statements. In Figure 5.8, the parts of the

analyses handling call statements are shown in the “Acquire,” “Release,” and “Call” lines.

Specifically, the WBNA and ABNA sets propagate through release calls, and are killed at

acquire and other calls. Figure 6.7 presents the modified dataflow analyses. This version

is very similar, except that it relies on the synchronization behavior analysis. The WBNA

and ABNA sets propagate through calls with synchronization behavior weaker than or equal

to REL (i.e., REL or syncnone), since there is no chance that those calls will perform an

acquire. For calls that may perform one or more acquire calls (i.e., syncacq, ACQ/REL, or

ANY), the WBNA and ABNA sets are killed.
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Statement type Statement form WBNA[p] ABNA[p]

Load p : r = ∗x; WBNA[p′] ABNA[p′] ∪ {x}
Store p : ∗x = r; WBNA[p′] ∪ {x} ABNA[p′] ∪ {x}
Call p : f(...); where sync(f) w ACQ {} {}
Call p : f(...); where sync(f) v REL WBNA[p′] ABNA[p′]

Other p : . . . ; WBNA[p′] ABNA[p′]

Figure 6.7: The dataflow analysis given in Figure 5.8, modified to use the results of the in-
terprocedural synchronization behavior analysis. p′ is the program point after the statement
at point p.

A: lock(&mtx);

...


Possible IFR
#1 (unsound)

B: unknown external();

...
Possible IFR

#2 (sound)
C: tmp = x;

...

unlock(&mtx);

Figure 6.8: Possible inferred IFRs for a program with an unknown external function call.
Possibility #1 assumes that unknown external has synchronization behavior NONE. Pos-
sibility #2 assumes that unknown external has synchronization behavior ANY.

6.5.2 Handling External Function Calls

In Section 6.3.2, we discussed how to handle external function calls in the context of com-

piler optimization. In that case, we argued that treating unknown function calls as having

no synchronization was safe, because the complementary thread-local alias analysis would

prevent unsafe optimizations across such calls. In the case of dynamic data-race detection,

the correct approach is less clear, so we will simply present the two possible approaches and

explain the advantages and disadvantages of each. As we will discuss in Section 6.5.3, the

two approaches yielded no significant difference in our experiments.

Figure 6.8 illustrates the two possibilities, which depend upon the assumed synchroniza-

tion behavior of the call to unknown_external() at line B. The IFR for access C extends
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through call B if and only if call B performs an acquire call. If we assume that the call does

not perform any synchronization (has synchronization behavior NONE), the instrumenta-

tion pass infers that access C’s IFR extends up to line A (possible IFR #1 in the figure). (In

other words, a start monitors call will be inserted after line A.) If instead we assume that

the call has synchronization behavior ANY, the inferred IFR is conservatively shortened to

start after line B (possible IFR #2 in the figure). The second option is sound, but possibly

overly conservative if B does not perform synchronization. The first option is unsound, but

improves IFRit’s chances of finding data races for the access.

The ANY approach is appropriate in the case where we use separate compilation to

compile the program. In that case, it is possible that “external” calls are not library calls,

but calls to user-defined functions in another file. Therefore the calls could contain relevant

synchronization. In the opposite case where the whole program is available at compile time

(e.g., link-time optimization), all external calls are library calls. As discussed in Section

5.2.4, we have observed that it is unlikely that user data will be protected by internal

synchronization in library calls. Therefore the NONE approach, although unsound, seems

reasonable when whole-program compilation is used.

We use whole-program compilation (link-time optimization) in our tests, so we chose to

treat external calls as having behavior NONE. As expected, this did not introduce any false

positives, because the library calls did not do any relevant synchronization. We also tested

with the ANY approach and did not observe any significant difference between the two for

the programs we tested.

6.5.3 Updated Results

We experimentally evaluated two versions of IFRit on Parsec 2.1. The interprocedural

version used the results of the synchronization analysis for all function calls during the

instrumentation pass. The intraprocedural version used the results of the synchronization

behavior analysis only for calls to external (non-user-defined) functions, and assumed that

user-defined functions had ANY behavior. In both cases, we compiled the benchmark pro-

grams using clang and link-time optimization so that the whole program would be available.
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IFRit IFRit

(intraprocedural) (interprocedural) ThreadSanitizer

bodytrack 5 5 10

ferret – – 38

streamcluster 3 3 24

x264 3 2 72

Table 6.3: Number of unique races found by the intra- and interprocedural versions of IFRit
on PARSEC. ThreadSanitizer results are repeated from Table 5.1 for comparison. Omitted
benchmarks had no detected races.

As in Section 6.4, several of the benchmarks (dedup, facesim, raytrace, and vips1) did not

compile properly in this environment. The baseline was also compiled using clang and

link-time optimization, in order to better isolate the effects of the interprocedural syn-

chronization analysis. For both versions of IFRit, we configured the runtime to start all

short-scope monitors and not to use sampling.

Figure 6.9 gives the relative overheads for the two different versions of the runtime, as

well as the old results from Chapter 5. The intraprocedural and interprocedural versions

perform roughly the same on all benchmarks. There is no significant change from the

numbers for IFRit in Chapter 5.

Table 6.3 shows the number of unique data races reported by the intraprocedural and

interprocedural versions IFRit across 3 runs. The two versions reported the same races,

except that the intraprocedural version reported one extra race in x264. There were only

two dynamic reports of that extra race in x264, so most likely that race did not happen to

manifest in the interprocedural runs.

These results are disappointing, since using the interprocedural synchronization behav-

ior analysis does not noticeably affect the tool’s performance or race-detection efficacy. A

possible reason is that not enough functions have sufficiently simple synchronization be-

haviors (i.e., REL or NONE) to significantly change the results of the synchronization pass.

1vips compiled properly on its own, but failed to link properly with IFRit’s runtime (see Section 5.5).
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Figure 6.10: Distribution of synchronization behaviors for defined functions in the PARSEC
benchmarks. This distribution is for the case where non-synchronization external functions
are assumed to have synchronization behavior NONE.
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However, Figure 6.10 gives the distribution of the five synchronization behaviors for defined

(non-external) functions in the benchmarks, and for all benchmarks, at least half of the

functions have synchronization behavior NONE. Therefore the instrumentation pass should

be able to propagate WBNA and ABNA through many more function calls.

More likely is that, for the races in these benchmarks, the IFRs for the racy accesses

include few, if any, calls to user-defined functions. One issue is the “short-scope monitors”

discussed in Section 5.2.6—these monitors are inserted after the declaration of the accessed

variable, meaning that the inferred IFR is already started as early as possible. Of the 11

races reported by the intraprocedural version of IFRit in bodytrack, streamcluster and x264,

7 involved a short-scope monitor, so the monitor’s starting point could not be improved via

interprocedural analysis. Manual inspection of all of the start monitors calls involved in

the 11 race reports confirmed that none of them could be moved earlier by reasoning about

the synchronization behavior of calls. Our hope was to find new races for which the opposite

was true, but for these seven benchmarks we were unsuccessful.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

Interference-free regions are a new abstraction for reasoning about data-race-freedom

in multithreaded programs. This dissertation defines interference-free regions as the region

around a memory access in a single thread’s execution that extends from the most recent

acquire call before the access and to the next release call after the access. Within this

region, any modification of the accessed variable by another thread constitutes a data race.

We argued that interference-free regions are useful by developing two novel applications of

interference-free regions: compiler optimization and data-race detection.

The compiler optimization work, developed in Chapter 4 and published in MSPC 2011

[14], is one of the first projects to allow optimization across synchronization calls. In the

future, we would like to see this kind of optimization integrated into real compilers. Chapter

6 discussed potentially extending this analysis to be interprocedural, but was hampered by

the unavailability of sound interprocedural alias analyses for multithreaded programs. We

plan to continue this work, either making use of stronger alias analyses as they become

available, or developing new alias analyses specifically targeted to this problem.

In particular, we think it may be possible to build an alias analysis that ignores the

effects of a synchronization call on a pointer if it is known that the call is interference-

free for the pointer. This would be a new type of synchronization-aware, flow-sensitive alias

analysis and would be useful both as a general multithreaded alias analysis and as a starting

point for the interprocedural IFR analysis discussed in Chapter 6.

Our data-race detection tool (IFRit), described in Chapter 5 and published in OOPSLA

2012 [15], is also potentially extensible. Since this work does not assume data-race-freedom,

it is not restricted to C and C++; in fact, we believe it would fit very well with other

data-race detection work in Java [18]. The algorithm requires static instrumentation, so

we are planning to use a framework like Soot [48] to instrument Java bytecode. We are
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also interested in instrumenting binaries, which would fix some of the limitations of the

prototype implementation in Chapter 5 (namely, not catching races on memory accesses in

uninstrumented library code).

In summary, this work improves the community’s understanding of multithreaded pro-

grams. We build on the newly-published C11 and C++11 standards [22, 23], particularly

their requirement that programs be data-race-free, to develop several new algorithms based

on the core idea of interference-free regions. As compilers begin to implement the new

standards, the existence of a comprehensive and unambiguous specification for C/C++

multithreading will make it easier for researchers to develop new tools for writing, compil-

ing, and debugging multithreaded programs. Our work on interference-free regions is an

example of how reasoning formally about concurrency can lead to useful new algorithms for

compilers and debugging tools.
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[46] Jaroslav Ševč́ık and David Aspinall. On the validity of program transformations in

the Java memory model. In European Conference on Object-Oriented Programming

(ECOOP), 2008.

[47] UPC Consortium. UPC language specications v1.2. Technical Report LBNL-59208,

Lawrence Berkeley National Laboratory, May 2005.

[48] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay

Sundaresan. Soot—a Java bytecode optimization framework. In Conference of the

Centre for Advanced Studies on Collaborative Research (CASCON), 1999.

[49] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop

Gupta. The SPLASH-2 programs: Characterization and methodological considerations.

In ACM IEEE International Symposium on Computer Architecture (ISCA), 1995.

[50] Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang. Sound and pre-

cise analysis of parallel programs through schedule specialization. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), 2012.

[51] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-memory

multi-processor. In ACM IEEE International Symposium on Computer Architecture

(ISCA), 2009.

[52] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: efficient detection of data race

conditions via adaptive tracking. In ACM Symposium on Operating Systems Principles

(SOSP), 2005.


	List of Figures
	List of Tables
	Introduction
	Background
	Concurrency and Parallelism in Software
	Motivating Memory-Consistency Models
	Programming-Language Memory Models
	Conclusion

	Interference-Free Regions
	Interference-Free Regions
	Formalism
	Barriers
	Other Applications
	Conclusion

	Intraprocedural Compiler Optimization using Interference-Free Regions
	IFR-Based Optimization
	Algorithm
	Data-Race-Freedom
	Results
	Related Work

	Dynamic Data-Race Detection using Interference-Free Regions
	Overview
	Static Analysis
	Dynamic Analysis
	Formalism and Correctness
	Evaluation
	Related Work
	Conclusion

	Interprocedural IFR Analysis
	Motivation
	Synchronization Behavior
	Interprocedural Algorithm
	Compiler Optimization
	Dynamic Data-Race Detection

	Conclusions and Future Work

