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Abstract: We consider a model with a large number N of particles which move according

to independent Brownian motions. A particle which leaves a domain D is killed; at the same

time, a different particle splits into two particles. For large N , the particle distribution

density converges to the normalized heat equation solution in D with Dirichlet boundary

conditions. The stationary distributions converge as N → ∞ to the first eigenfunction of

the Laplacian in D with the same boundary conditions.

1. Introduction. Our article is closely related to a model studied by Burdzy, Ho lyst,

Ingerman and March (1996) using heuristic and numerical methods. Although we are

far from proving conjectures stated in that article, the present paper seems to lay solid

theoretical foundations for further research in this direction. The model is related to many

known ideas in probability and physics—we review them in the Appendix (Section 3). We

present the model and state our main results in this section. Section 2 is entirely devoted

to proofs.

We will be concerned with a multiparticle process. The motion of an individual

particle will be represented by Brownian motion in an open subset of Rd. Probably all our

results can be generalized to other processes. However, the present paper is motivated by

the article of Burdzy, Ho lyst, Ingerman and March (1996) whose results are very specific to

Brownian motion and so we will limit ourselves to this special case. We note that Theorem

1.1 below uses only the strong Markov property of the process representing a particle and

the continuity of the density of the hitting time of a set. Theorem 1.2 is similarly easy to

generalize. At the other extreme, the proof of Theorem 1.4 uses Brownian properties in

an essential way and would be hard to generalize. It might be therefore of some interest

to see if Theorem 1.4 holds for a large class of processes.
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Consider an open set D ⊂ Rd and an integer N ≥ 2. Let Xt = (X1
t , X2

t , . . . , XN
t ) be

a process with values in DN whose evolution can be described as follows. Suppose X0 =

(x1, x2, . . . , xN ) ∈ DN . The processes X1
t , X2

t , . . . , XN
t evolve as independent Brownian

motions until the first time τ1 when one of them, say, Xj hits the boundary of D. At this

time one of the remaining particles is chosen in a uniform way, say, Xk, and the process

Xj jumps at time τ1 to Xk
τ1

. The processes X1
t , X2

t , . . . , XN
t continue as independent

Brownian motions after time τ1 until the first time τ2 > τ1 when one of them hits ∂D. At

the time τ2, the particle which approaches the boundary jumps to the current location of

a randomly (uniformly) chosen particle among the ones strictly inside D. The subsequent

evolution of the process Xt proceeds along the same lines.

Before we start to study properties of Xt, we have to check if the process is well

defined. Since the distribution of the hitting time of ∂D has a continuous density, only one

particle can hit ∂D at time τk, for every k, a.s. However, the process Xt can be defined

for all t ≥ 0 using the informal recipe given above only if τk → ∞ as k → ∞. This is

because there is no obvious way to continue the process Xt after the time τ∞ = limk→∞ τk

if τ∞ < ∞. Hence, the question of the finiteness of τ∞ has a fundamental importance for

our model.

Theorem 1.1. We have limk→∞ τk = ∞ a.s.

Consider an open set D which has more than one connected component. If at some

time t all processes Xk
t belong to a single connected component of D then they will

obviously stay in the same component from then on. Will there be such a time t? The

answer is yes, according to the theorem below, and so we could assume without loss of

generality that D is a connected set, especially in Theorem 1.4.

Theorem 1.2. With probability 1, there exists t < τ∞ such that all processes Xk
t belong

to a single connected component of D at time t.

Before we continue the presentation of our results, we will provide a slightly more

formal description of the process Xt than that at the beginning of the introduction. The

fully rigorous definition would be a routine but tedious task and so it is left to the reader.

One can show that given (x1, x2, . . . , xN ) ∈ DN , there exists a strong Markov process Xt,

unique in the sense of distribution, with the following properties. The process starts from

X0 = (x1, x2, . . . , xN ), a.s. Let

τ1 = inf
1≤m≤N

inf{t > 0 : lim
s→t−

Xm
s ∈ Dc},
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and for n ≥ 1,

τn+1 = inf
1≤m≤N

inf{t > τn : lim
s→t−

Xm
s ∈ Dc}.

Then τn+1 > τn for every n ≥ 1, a.s. For every n ≥ 1, there exists a unique kn such that

lims→τn− Xkn
s ∈ Dc, a.s. We have Xm

τn
= Xm

τn− , for every m 6= kn. For some random

j = j(n, kn) 6= kn we have Xkn
τn

= Xj
τn

. The distribution of j(n, kn) is uniform on the

set {1, 2, . . . , N} \ {kn} and independent of {Xt, 0 ≤ t < τn}. For every n, the process

{X(t∧τn+1)−, t ≥ τn} is a Brownian motion on DN stopped at the hitting time of ∂DN .

Let PD
t (x, dy) be the transition probability for the Brownian motion killed at the time

of hitting of Dc. Given a probability measure µ0(dx) on D, we define measures µt for t > 0

by

µt(A) =

∫
D

PD
t (x,A)µ0(dx)∫

D
PD

t (x, D)µ0(dx)
, (1.1)

for open sets A ⊂ D. Note that µt is a probability measure, for every t ≥ 0. Let

δx(dy) be the probability measure with the unit atom at x. We will write XN
t (dy) =

(1/N)
∑N

k=1 δXk
t
(dy) to denote the empirical (probability) distribution representing the

particle process Xt.

We will say that D has a regular boundary if for every x ∈ ∂D, Brownian motion

starting from x hits Dc for arbitrarily small t > 0, a.s.

Theorem 1.3. Suppose that D is bounded and has a regular boundary. Fix a probability

distribution µ0 on D and recall the definition (1.1). Suppose that for every N , the initial

distribution XN
0 is a non-random measure µN

0 . If the measures µN
0 converge as N → ∞

to µ0 then for every fixed t > 0 the empirical distributions XN
t converge to µt in the sense

that for every set A ⊂ D, the sequence XN
t (A) converges to µt(A) in probability.

The regularity of ∂D seems to be only a technical assumption, i.e., Theorem 1.3 is

likely to hold without this assumption.

We conjecture that for any S > 0, the measure-valued processes {XN
t ( · ), 0 ≤ t ≤ S}

converge to {µt( · ), 0 ≤ t ≤ S} in the Skorohod topology, as N → ∞. The arguments

presented in this paper do not seem to be sufficient to justify this claim.

One may wonder whether EXN
t (A) = µt(A) for all sets A and t > 0 if we assume that

XN
0 = µ0. One can find intuitive arguments both for and against this claim but none of

them seemed to be quite clear to us. We will have to resort to brute calculation to show

that the statement is false. The word “brute” refers only to the lack of a clear intuitive
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explanation and not to the difficulty of the example which is in fact quite elementary (see

Example 2.1 in Section 2). The example is concerned with a process on a finite state space.

We presume that a similar example can be based on the Brownian motion process.

We will say that an open set D ⊂ Rd satisfies the interior ball condition if for some

r > 0 and every x ∈ D there exists an open ball B(y, r) ⊂ D such that x ∈ B(y, r).

Theorem 1.4. Suppose that D ⊂ Rd is a bounded domain, has a regular boundary and

satisfies the interior ball condition.

(i) For every N , there exists a unique stationary probability measure MN for Xt.

The process Xt converges to its stationary distribution exponentially fast, i.e., there exists

λ > 0 such that for every A ⊂ DN , and every x ∈ DN ,

lim
t→∞

eλt|Px(Xt ∈ A)−MN (A)| = 0.

(ii) Let XN
M be the stationary empirical measure, i.e., let XN

M have the same distri-

bution as (1/N)
∑N

k=1 δXk
t
(dy), assuming that Xt has the distribution MN . Let ϕ(x)

be the first eigenfunction for the Laplacian in D with the Dirichlet boundary conditions,

normalized so that
∫

D
ϕ = 1. Then the random measures XN

M converge as N → ∞ to

the (non-random) measure with density ϕ(x), in the sense of weak convergence of random

measures.

We are grateful to David Aldous, Wilfrid Kendall, Tom Kurtz, Jeff Rosenthal, Dan

Stroock, Kathy Temple and Richard Tweedie for very useful advice. We would like to

thank the anonymous referee for many suggestions for improvement.

2. Proofs. This section is devoted to proofs of the main results. It also contains an

example related to Theorem 1.3.

Proof of Theorem 1.1. Fix an arbitrary S < ∞. Let Bt be a Brownian motion, and

h(x, t) = P (inf{s > t : Bs /∈ D} > S | Bt = x).

We will first prove the theorem for N = 2 as this special case presents the main idea of

the proof in a clear way. Let Mt = h(X1
t−, t) + h(X2

t−, t). Consider an arbitrary y ∈ D

and assume that X1
0 = X2

0 = y. Let a = h(y, 0) and τ∗ = τ1 ∧ S. An application of the
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optional stopping theorem to the martingale Mt∧τ∗ gives

2h(y, 0) = EM0 = EMτ∗

= E(Mτ∗ | τ∗ = S)P (τ∗ = S) + E(Mτ∗ | τ∗ < S)P (τ∗ < S)

= 2 · P (τ∗ = S) + E(Mτ∗ | τ1 < S)P (τ1 < S)

= 2 · h(y, 0)2 + E(Mτ∗ | τ1 < S)(1− h(y, 0)2).

From this we obtain

E(Mτ∗ | τ1 < S) =
2h(y, 0)− 2h(y, 0)2

1− h(y, 0)2
=

2h(y, 0)
1 + h(y, 0)

≥ h(y, 0).

The process Xk
t which hits ∂D at time τ1 jumps to the location of X3−k

τ1
, so we have

E(h(X1
τ1

, τ1) + h(X2
τ1

, τ1) | τ1 < S) ≥ 2h(y, 0)

= E(h(X1
0 , 0) + h(X2

0 , 0)).

By applying the strong Markov property at the stopping time τ1 we obtain

E(h(X1
τ2

, τ2) + h(X2
τ2

, τ2) | τ2 < S) ≥ E(h(X1
0 , 0) + h(X2

0 , 0)).

By induction, for all k ≥ 1,

E(h(X1
τk

, τk) + h(X2
τk

, τk) | τk < S) ≥ E(h(X1
0 , 0) + h(X2

0 , 0)) = 2a. (2.1)

Let Jk = h(X1
τk

, τk) + h(X2
τk

, τk). Since h(x, t) ≤ 1, we have Jk ≤ 2. Hence,

E(Jk | τk < S) ≤ 2P (Jk ≥ a | τk < S) + aP (Jk < a | τk < S)

= P (Jk ≥ a | τk < S)(2− a) + a,

and so, using (2.1),

P (h(X1
τk

, τk) = h(X2
τk

, τk) ≥ a/2 | τk < S)

= P (Jk ≥ a | τk < S) ≥ E(Jk | τk < S)− a

2− a
≥ 2a− a

2− a
=

a

2− a
.

It follows that

P (τk+1 ≥ S | τk < S)

= P (inf{s > τk : X1
s− /∈ D} > S, inf{s > τk : X2

s− /∈ D} > S | τk < S)

=
∫

[P (inf{s > τk : X1
s /∈ D} > S | X1

τk
= x)]2P (X1

τk
∈ dx | τk < S)

=
∫

h(x, τk)2P (X1
τk
∈ dx | τk < S)

≥ (a/2)2 · a

2− a
=

a3

8− 4a
.
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This implies that

P (τk+1 < S) =
k∏

j=1

P (τj+1 < S | τj < S) ≤
(

1− a3

8− 4a

)k

,

and so

P (τ∞ < S) = 0.

Recall that we have assumed that X1
0 = X2

0 . If X1
0 is not equal to X2

0 , we can apply

the argument to the post-τ1 process to see that P (τ∞ < S) = 0 for every starting position

of Xt. Since S < ∞ is arbitrarily large, the proof of the theorem is complete in the special

case N = 2.

Now we generalize the argument to arbitrary N ≥ 2. Recall S, τ∗ and h(x, t) from the

first part of the proof. Let

Mt =
N∑

k=1

h(Xk
t−, t),

and ak = h(Xk
0 , 0). Then

N∑
k=1

ak = EM0 = EMτ∗

= E(Mτ∗ | τ∗ = S)P (τ∗ = S) + E(Mτ∗ | τ∗ < S)P (τ∗ < S)

= N · P (τ∗ = S) + E(Mτ∗ | τ1 < S)P (τ1 < S)

= N
N∏

k=1

ak + E(Mτ∗ | τ1 < S)

(
1−

N∏
k=1

ak

)
.

From this we obtain

E(Mτ∗ | τ1 < S) =
∑N

k=1 ak −N
∏N

k=1 ak

1−
∏N

k=1 ak

. (2.2)

Our immediate goal is to prove that the right hand side of (2.2) is bounded below by

((N − 1)/N)
∑N

k=1 ak.

The derivative of the function x →
(∑N

k=1 ak −Nx
)

/(1− x) is equal to

∑N
k=1 ak −N

(1− x)2.
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The derivative is non-positive since
∑N

k=1 ak ≤ N . If we let b =
∑N

k=1 ak/N then for a

fixed value of b, the value of the product
∏N

k=1 ak is maximized if we take ak = b for all k.

These facts imply that∑N
k=1 ak −N

∏N
k=1 ak

1−
∏N

k=1 ak

≥
∑N

k=1 ak −N · bN

1− bN
=

Nb−N · bN

1− bN
= Nb · 1− bN−1

1− bN
. (2.3)

We will show that

Nb · 1− bN−1

1− bN
≥ (N − 1)b, (2.4)

for b ∈ [0, 1). The last inequality is equivalent to

N(1− bN−1) ≥ (N − 1)(1− bN ).

After multiplying out and regrouping the terms we obtain

1 + NbN −NbN−1 − bN ≥ 0. (2.5)

The function f(b) = 1+NbN−NbN−1−bN has the derivative f ′(b) = N(N−1)bN−2(b−1)

which is negative for b < 1. Since f(1) = 0, we have f(b) ≥ 0 for b ∈ [0, 1), i.e., (2.5) holds.

Consequently, (2.4) is true as well.

Combining (2.2), (2.3) and (2.4) yields

E(Mτ∗ | τ1 < S) =
∑N

k=1 ak −N
∏N

k=1 ak

1−
∏N

k=1 ak

≥ (N − 1)b =
N − 1

N

N∑
k=1

ak.

The process Xk which hits the boundary at time τ1 jumps to the location of a process Xj ,

uniformly chosen from other processes. Hence,

E

(
N∑

k=1

h(Xk
τ∗ , t) | τ1 < S

)
=
(

1 +
1

N − 1

)
E

(
N∑

k=1

h(Xk
τ∗−, t) | τ1 < S

)

=
N

N − 1
E(Mτ∗ | τ1 < S) ≥ N

N − 1
· N − 1

N

N∑
k=1

ak =
N∑

k=1

ak.

By induction and the strong Markov property applied at τk’s, we have for every k ≥ 1,

E

(
N∑

k=1

h(Xk
τk

, t) | τk < S

)
≥

N∑
k=1

ak = Nb. (2.6)
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Let Jk =
∑N

j=1 h(Xj
τk

, τk). Since h(x, t) ≤ 1, we have Jk ≤ N . Recall that b =

(1/N)
∑N

k=1 ak. Hence,

E(Jk | τk < S) ≤ NP (Jk ≥ b | τk < S) + bP (Jk < b | τk < S)

= P (Jk ≥ b | τk < S)(N − b) + b.

This and (2.6) imply that

P (Jk ≥ b | τk < S) ≥ E(Jk | τk < S)− b

N − b
≥ Nb− b

N − b
.

It follows that

P (∃j : h(Xj
τk

, τk) ≥ b/N | τk < S) ≥ Nb− b

N − b
. (2.7)

Fix some t ∈ (0, S). Suppose that h(Xj
t , t) ≥ b/N for some j and assume that j is

the smallest number with this property. Let T = inf{s > t : h(Xj
s , s) /∈ (b/(2N), 1)}.

Note that h(Xj
T , T ) = 1 if and only if T = S. The process h(Xj

s , s) is a martingale on

the interval (t, T ). By the martingale property and the optional stopping theorem, the

probability of not hitting b/(2N) before time S is greater than or equal to

b/N − b/(2N)
1− b/(2N)

=
b

2N − b
. (2.8)

Consider the event A that h(Xj
t , t) ≥ b/N at some time t and that the process h(Xj

s , s)

does not hit b/(2N) between t and S. Given this event, for any k 6= j, the process Xk

may jump at most once before time S with probability greater than (1/(N−1)) · (b/(2N)),

independent of other processes Xm, m 6= k, j. To see this, observe that Xk might not

hit ∂D before time S at all; or it may hit ∂D, then jump to the location of Xj with

probability 1/(N − 1). If the jump takes place, the process Xk lands at some time u at

a place where we have h(Xk
u , u) = h(Xj

u, u) ≥ b/(2N), because we are assuming that A

holds. The definition of the function h now implies that after u, the process Xk will not

hit ∂D before time S, with probability greater then b/(2N).

Multiplying the probabilities for all k 6= j and using (2.8), we conclude that if we have

h(Xj
t , t) ≥ b/N then the probability that there will be at most N − 1 jumps (counting all

particles) before time S is greater than

p0 =
b

2N − b
·
(

b

2N(N − 1)

)N−1

.
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Hence, in view of (2.7),

P (τk+N ≥ S | τk < S)

≥ P (∃j : h(Xj
τk

, τk) ≥ b/N | τk < S)P (τk+N > S | ∃j : h(Xj
τk

, τk) ≥ b/N)

≥ Nb− b

N − b
· p0.

Thus

P (τ(m+1)N < S) =
m∏

j=1

P (τ(j+1)N < S | τjN < S) ≤
(

1− Nb− b

N − b
· p0

)m

,

and so

P (τ∞ < S) = 0.

Since S is arbitrarily large, the proof is complete.

Proof of Theorem 1.2. Fix arbitrary points xj ∈ D and suppose that Xj
0 = xj for all

j. Let τ j be the the first jump time for the process Xj . Since there are N ! permutations

of {1, 2, . . . , N}, there exists a permutation (j1, j2, . . . , jN ), such that

P (τ j1 < τ j2 < . . . < τ jN ) ≥ 1/N !.

In order to simplify the notation we will assume that (j1, j2, . . . , jN ) = (1, 2, . . . , N). Thus

we have

P (τ1 < τ2 < . . . < τN ) ≥ 1/N !

and

P (τ1 < τ2 < . . . < τN , X1
τ1 = XN

τ1) ≥ 1
N ·N !

.

Let τ j
2 denote the time of the second jump of process Xj

t . By independence,

P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 | τ1, τ2, . . . , τN−1, X1

τ1 = XN
τ1)

= P (τ1 < τ2 < . . . < τN−1 < τN , X1
τ1 = XN

τ1 | τ1, τ2, . . . , τN−1, X1
τ1 = XN

τ1)

× P (τ1 < τ2 < . . . < τN−1 < τ1
2 , X1

τ1 = XN
τ1 | τ1, τ2, . . . , τN−1, X1

τ1 = XN
τ1)

= P (τ1 < τ2 < . . . < τN−1 < τN , X1
τ1 = XN

τ1 | τ1, τ2, . . . , τN−1, X1
τ1 = XN

τ1)2.
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It follows that,

P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1)

= EP (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 | τ1, τ2, . . . , τN−1, X1

τ1 = XN
τ1)

= E[P (τ1 < τ2 < . . . < τN−1 < τN , X1
τ1 = XN

τ1 | τ1, τ2, . . . , τN−1, X1
τ1 = XN

τ1)2]

≥ [EP (τ1 < τ2 < . . . < τN−1 < τN , X1
τ1 = XN

τ1 | τ1, τ2, . . . , τN−1, X1
τ1 = XN

τ1)]2

= P (τ1 < τ2 < . . . < τN−1 < τN , X1
τ1 = XN

τ1)2

≥ 1
(N ·N !)2

.

We proceed by induction. Let us display one induction step. We start with

P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2) ≥ 1

N
· 1

(N ·N !)2
.

Then we observe that

P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 , τ2

2 ), X1
τ1 = XN

τ1 , X2
τ2 = XN

τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )

= P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )

× P (τ1 < τ2 < . . . < τN−1 < min(τ2
2 , τ1

2 ), X1
τ1 = XN

τ1 , X2
τ2 = XN

τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )

= P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )2.

From this we deduce that

P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 , τ2

2 ), X1
τ1 = XN

τ1 , X2
τ2 = XN

τ2)

= EP (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 , τ2

2 ), X1
τ1 = XN

τ1 , X2
τ2 = XN

τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )

= E[P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )2]

≥ [EP (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2

| τ1, τ2, . . . , τN−1, τ1
2 , X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2 , )]2

= P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 ), X1

τ1 = XN
τ1 , X2

τ2 = XN
τ2)2

≥
(

1
N
· 1

(N ·N !)2

)2

.
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Proceeding in this way, we can prove that

P (τ1 < τ2 < . . . < τN−1 < min(τN , τ1
2 , τ2

2 , . . . , τN−1
2 ),

X1
τ1 = XN

τ1 , X2
τ2 = XN

τ2 , . . . , XN−1
τN−1 = XN

τN−1) ≥ c1, (2.9)

where c1 > 0 is a constant which depends on N but not on the starting position of Xk
t ’s. If

the event in (2.9) occurs then at time τN−1 all particles are present in the same connected

component of D as XN . They will stay in this connected component of D forever. If

the event in (2.9) does not occur then we wait until the time max(τN , τ1
2 , τ2

2 , . . . , τN−1
2 )

and restart our argument, using the strong Markov property. We can construct in this

way a sequence of events whose conditional probabilities (given the outcomes of previous

“trials”) are bounded below by c1. With probability 1, at least one of these events will

occur and so all particles will end up in a single connected component of D.

Proof of Theorem 1.3. Fix some S ∈ (0,∞). We will prove that XN
S converges to µS .

Our proof will consist of three parts.

Part 1. In this part of the proof, we will define the tree of descendants of a particle and

estimate its size.

Fix an arbitrarily small ε1 > 0. Let Bt denote a Brownian motion and TA = inf{t > 0 :

Bt ∈ A}. Find open subsets A1, A2 and A3 of D such that A1 ⊂ A2 ⊂ A3, µ0(A1) ≥ ε1 > 0,

and for some p1, p2 > 0,

inf
x∈A1

P x(TAc
2

> S) > p1 and inf
x∈A2

P x(TAc
3

> S) > p2.

We would like to set aside a small family of particles starting from A1 and containing

about ε1N particles. Since the measure µ0 may be purely atomic with all atoms greater

than ε1, we cannot designate the particles in that family just by their starting position.

We have assumed that the measures XN
0 converge to µ0, so we must have XN

0 (A1) > ε1/2

for large N . Let [b] denote the integer part of a number b. For each sufficiently large

N , we arbitrarily choose [Nε1/2] particles with the property that their starting positions

lie inside A1. The choice is deterministic (non-random). The family of all N − [Nε1/2]

remaining particles will be called H. By the law of large numbers, for any p3 < 1 and

sufficiently large N , more than Nε1p1/4 particles will stay inside A2 until time S, with

probability greater than p3.
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We will say that a particle has label k if its motion is represented by Xk
t . We will

identify the families Hc and H with the sets of labels so that we can write, for example,

k ∈ Hc.

Let F be the event that at least N1 = Nε1p1/4 particles from the family Hc stay

inside A2 until time S. Consider the motion of a particle Xk belonging to the H family,

conditional on F . Given F , the probability that the particle lands on a particle from the

family Hc at the time of a jump is not less than (Nε1p1/4)/(N − 1). If this event occurs,

then the k-th particle can stay within the set A3 until time S with probability p2 or higher.

Hence, each jump of particle k has at least probability p2(Nε1p1/4)/(N −1) ≥ p2ε1p1/4 ≡
p4 of being the last jump for this particle before time S. We see that the total number of

jumps of Xk before time S is stochastically bounded by the geometric distribution with

mean 1/p4.

In the rest of Part 1, we will assume that F occurred, i.e., all the probabilities will be

conditional probabilities given F , even if the conditioning is not reflected in the notation.

We will now define a tree T m of particle trajectories representing descendants of

particle m (see Fig. 1.). Informally, the family of all descendants of a particle Xm can be

described as the smallest family of points (t, n) with the following properties. The particle

Xm
t is its own descendant for all t, i.e., (t,m) ∈ T m for all t. If a particle Xk jumps

on a descendant of Xm at time s than Xk
t becomes a descendant of Xm for all t ≥ s,

i.e., (t, k) ∈ T m for all t ≥ s. We now present a more formal definition. We will say

that (t, n) ∈ T m if there exists a set of pairs (sj , yj), 0 ≤ j ≤ j0, with (s0, y0) = (0, xm),

(sj0 , yj0) = (t, Xn
t ), such that there exist distinct k(j) ∈ H, j ≥ 1, with the following

properties: (i) (sj−1, X
k
sj−1

) = (sj−1, yj−1) and (sj , X
k
sj

) = (sj , yj) for all j, (ii) Xk does

not jump at time sj for 0 ≤ j ≤ j0 − 1, and (iii) k(0) = m and k(j0) = n. Note that the

definition assumes that we use only pieces of trajectories of particles from the family H.

12



Figure 1. Descendants of the m-th particle are represented by thick lines.

The domain D is the interval (0, a).

Let Km
t be the set of all descendants of particle m until t, i.e., the set of all k such

that (s, k) ∈ T m for some s ≤ t. The function t → Km
t is monotone.

Fix some m ∈ H. Let αk
1 be the number of jumps made by particle k from the family

H during the time interval [0, S] but before the first time T k
m when it becomes a descendant

of m (if there is no such time, we count all jumps before S). Let αk
2 be the number of

jumps made after T k
m but before S (αk

2 = 0 if k does not become a descendant of m before

S). It is easy to see that every random variable αk
1 and αk

2 is stochastically bounded by the

geometric distribution with mean 1/p4 — we can use the same argument as earlier in the

proof. We will need a substantially stronger bound, though. It is not very hard to see that

one can define our processes on a probability space which will also carry random variables

α̂k
1 and α̂k

2 for all k ∈ H, such that αk
1 ≤ α̂k

1 and αk
2 ≤ α̂k

2 for all k ∈ H, and every random

variable α̂k
1 and α̂k

2 is geometric with mean 1/p4. Moreover, random variables α̂k
1 and α̂k

2

can be constructed so that they are jointly independent and independent of the process
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t → Km
t . The construction of such a family of random variables is standard so we will only

sketch it. We start with constructing α̂k
1 ’s and α̂k

2 ’s and then we use them to construct

αk
1 ’s and αk

2 ’s. We consider a probability space which carries independent sequences of

Bernoulli coin tosses with success probability p4. We then identify α̂k
1 ’s and α̂k

2 ’s with the

number of tosses until and including the first success in different sequences—we need one

sequence of Bernoulli trials for each α̂k
1 and α̂k

2 . The results of coin tosses corresponding to

α̂k
1 are used to determine whether particle k jumps onto a particle from the family Hc and

then stays inside A3 until S (this would be considered a “success”), for all jumps before

the time T k
m. The analogous events after time T k

m are determined by the sequence of coin

tosses corresponding to α̂k
2 . All other aspects of the motion of particle k are determined by

some other random mechanism. Such mechanisms need not be independent for different

particles.

Let |Km
t | denote the cardinality of Km

t . Note that if a particle from the family H\Km
t

jumps then with probability 1/(N − 1) it lands on any other given particle. The value of

|Km
t | increases by 1 at the time t of a jump of a particle from H \ Km

t with probability

equal to |Km
t−|/(N − 1). Hence,

P (|Km
t | = a + 1

∣∣∣ |Km
t−| = a,∃k ∈ H \ Km

t− : Xk
t 6= Xk

t−) =
a

N − 1
,

so for integer a, r ≥ 1, and c1 = c1(r) < ∞,

E(|Km
t |r

∣∣∣ |Km
t−| = a,∃k ∈ H \ Km

t− : Xk
t 6= Xk

t−) = ar

(
1− a

N − 1

)
+ (a + 1)r a

N − 1

= ar

(
1− a

N − 1
+
(

a + 1
a

)r
a

N − 1

)
≤ ar

(
1− a

N − 1
+
(

1 +
c1r

a

) a

N − 1

)
= ar

(
1 +

c1r

N − 1

)
.

Hence, the expectation of |Km
t |r jumps by at most the factor of 1+c1r/(N−1) at the time

of a jump of a particle from H \ Km
t . Let α =

∑
k∈H αk

1 . By conditioning on the times of

jumps, we obtain for m ∈ H,

E|Km
t |r ≤ E

(
1 +

c1r

N − 1

)α

.

We estimate this quantity as follows, using the fact that the family of random variables

αk
1 may be simultaneously stochastically bounded by a sequence of independent geometric
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random variables α̂k
1 with mean 1/p4. The number of particles in H is obviously bounded

by N . In the following calculation we will pretend that the number of α̂k
1 ’s is N ; this is

harmless because if the number of particles in H is smaller than N , we can always add a

few independent α̂k
1 ’s to the family. If

log
(

1 +
c1r

N − 1

)
= c2,

then c2 is small for large N , and the following holds,

E

(
1 +

c1r

N − 1

)α

= E exp(c2α) = E exp

(
c2

∑
k∈H

αk
1

)

≤ E exp

(
c2

∑
k∈H

α̂k
1

)
= E

∏
k∈H

exp
(
c2α̂

k
1

)
≤ E

N∏
k=1

exp
(
c2α̂

k
1

)
=
(
E exp

(
c2α̂

k
1

))N
=

 ∞∑
j=0

ec2(j+1)(1− p4)jp4

N

=
(

ec2p4

1− ec2(1− p4)

)N

=
(

1 +
1
p4

(e−c2 − 1)
)−N

=

(
1 +

1
p4

(
1

1 + c1r
N−1

− 1

))−N

=
(

1− c1r

p4

1
N − 1 + c1r

)−N

≤ c3 = c3(r, p4) < ∞.

Thus, for some c3 which depends only on r and p4,

E|Km
t |r ≤ c3. (2.10)

Next we will estimate the total number of jumps βm on the tree of descendants of

particle m. For each descendant, this will include not only the first jump, at the time

of which a particle becomes a descendant of m, but also all subsequent jumps by the

descendant. Recall that given the whole genealogical tree {Km
t , 0 ≤ t ≤ S}, the numbers

of jumps of descendants of m can be simultaneously bounded by α̂k
2 ’s, i.e., independent

geometric random variables with mean 1/p4. We have, using (2.10), for some c4 = c4(r) <

∞,

E(βm)r ≤ E

|Km
t |+

|Km
t |∑

k=1

α̂k
2

r
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≤ c4E|Km
t |r + c4E

|Km
t |∑

k=1

α̂k
2

r

≤ c4E|Km
t |r + c4E E

((
a∑

k=1

α̂k
2

)r ∣∣∣∣ |Km
t | = a

)

≤ c4E|Km
t |r + c4E E

(
ar

a∑
k=1

(
α̂k

2

)r ∣∣∣∣ |Km
t | = a

)

≤ c4E|Km
t |r + c4E E

(
ar+1

(
α̂k

2

)r ∣∣∣∣ |Km
t | = a

)
≤ c4E|Km

t |r + c4E E

(
ar+1c5

∣∣∣∣ |Km
t | = a

)
= c4E|Km

t |r + c4c5E|Km
t |r+1 ≤ c6 = c6(r) < ∞. (2.11)

Part 2. This part of the proof is devoted to some qualitative estimates of the transition

probabilities of the killed Brownian motion. Suppose A ⊂ D is an open set.

We recall our assumption of regularity of ∂D. It implies that the function (x, t) →
PD

t (x,A) vanishes continuously as x → Dc and so it has a continuous extension to D ×
[0,∞).

The notation of the following remarks partly anticipates the notation in Part 3 of the

proof. Fix some t > 0 and arbitrarily small δ1 > 0. The set D × [0, t] is compact, so the

continuous function (x, t) → PD
t (x, A) is uniformly continuous on this set. It follows that

we can find an integer n < ∞ and δ2 > 0 such that |PD
t−sj

(x, A) − PD
t−s(y, A)| < δ1 when

s ∈ [sj , sj+1], |sj − sj+1| ≤ t/n, and |x− y| ≤ δ2.

Fix arbitrarily small t1, δ1 > 0. Let Dδ2 denote the set of points whose distance to Dc

is greater than δ2. The transition density pt(x, y) of the free Brownian motion is bounded

by r1 < ∞ for x, y ∈ Rd and t ≥ t1. The same bound holds for the transition densities

pD
t (x, y) for the killed Brownian motion because pD

t (x, y) ≤ pt(x, y). Choose δ2 > 0 so

small that the volume of D \Dδ2 is less than δ1/r1. Then for every sj ≥ t1 and x ∈ D,

PD
sj

(x, Dc
δ2

) =
∫

D\Dδ2

pD
t (x, y)dy ≤ (δ1/r1) · r1 = δ1.

Part 3. We start with the definition of marks which we will use to label particles. We will

prove, in a sense, that the theorem holds separately for each family of particles bearing

same marks. Typically, a particle Xj will bear different marks at different times.
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The family of marks Θ is defined as the smallest set which contains 0, and which has

the property that if θ1, θ2 ∈ Θ then the ordered pair (θ1, θ2) also belongs to Θ. Note that

we do not assume that θ1 6= θ2. We will write (θ1 7→ θ2) rather than (θ1, θ2). Here are

some examples of marks:

0, (0 7→ 0), (0 7→ (0 7→ 0)), ((0 7→ 0) 7→ 0).

Our marks can be identified with vertices of a binary tree and are introduced only because

our notation seems more intuitive in our context. Every mark will have an associated

“height.” The height of 0 is defined to be 1. The height of (θ1 7→ θ2) is one plus the

maximum of heights of θ1 and θ2.

We assign marks as follows. If a particle Xj has not jumped before time t then its

mark is equal to 0 on the interval (0, t). The mark of every particle is going to change every

time it jumps, and only at such times. If a particle Xj jumps at time t onto a particle

Xk, the mark of Xj has been θ1 just before t, and the mark of Xk has been θ2 just before

t then the mark of Xj will be (θ1 7→ θ2) on the interval between (and including) t and

the first jump of Xj after t. To see that the above definition uniquely assigns marks to all

particles at all times, note that we assign mark 0 to all particles until the first jump by

any particle. Recall that τ1 < τ2 < τ3 < . . . denote the jump times of all particles. If we

know the marks on the interval [τj , τj+1) then it is easy to assign them in a unique way

on the interval [τj+1, τj+2). An easy inductive procedure allows us to assign marks to all

particles at all times.

The mark of Xk
t will be denoted θ(Xk

t ). For any θ1 ∈ Θ, let

XN,θ1
t (dy) =

1
N

N∑
k=1

1{θ1}(θ(Xk
t ))δXk

t
(dy).

Note that XN,θ1
t (dy) is a (sub-probability) empirical measure supported by the particles

marked with θ1 at time t.

The law of large numbers and the continuity of x → PD
t (x, dy) (see Part 2 of the

proof) imply that for every fixed t ≤ S, the measures XN,0
t (dy) converge in probability as

N →∞ to the measure
∫

D
PD

t (x, dy)µ0(dx), in the sense of weak convergence of measures.

In particular, XN,0
S (dy) converge weakly to a multiple of µS(dy). The main goal of this

part of the proof is to show that XN,θ
S (dy) converge weakly to a multiple of µS(dy), for any

fixed mark θ. This will be achieved by an inductive argument. We will elaborate the details

of one inductive step, showing how the convergence of XN,0
t (dy) to

∫
D

PD
t (x, dy)µ0(dx) for
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every t ≤ S implies the convergence of XN,(0 7→0)
t (dy) to c1

∫
D

PD
t (x, dy)µ0(dx) for every

t ≤ S.

Consider some t ∈ (0, S]. We will show that for any δ > 0, p < 1, open A ⊂ D and

0 < t1 < t2 < t, we have

(1− δ)µt(A) ≤ inf
t1≤s≤t2

∫
D

PD
t−s(x, A)XN,0

s (dx)∫
D

PD
t (x,D)µ0(dx)

≤ sup
t1≤s≤t2

∫
D

PD
t−s(x,A)XN,0

s (dx)∫
D

PD
t (x,D)µ0(dx)

≤ (1 + δ)µt(A), (2.12)

with probability greater than p, when N is sufficiently large. If we fix any integer n ≥ 1,

then for every sj = jt2/n, j = 0, 1, . . . , n, and every open set A1 we have XN,0
sj

(A1) →∫
D

PD
sj

(x, A1)µ0(dx) in probability as N → ∞, by the law of large numbers and the

continuity of x → PD
sj

(x,A1). This and the continuity of x → PD
t−sj

(x,A) imply that∫
D

PD
t−sj

(x, A)XN,0
sj

(dx)∫
D

PD
t (x,D)µ0(dx)

→ µt(A),

in probability. Since there is only a finite number of sj ’s, we immediately obtain a weak

version of (2.12), namely,

(1− δ)µt(A) ≤ inf
0≤j≤n

∫
D

PD
t−sj

(x, A)XN,0
sj

(dx)∫
D

PD
t (x,D)µ0(dx)

≤ sup
0≤j≤n

∫
D

PD
t−sj

(x, A)XN,0
sj

(dx)∫
D

PD
t (x,D)µ0(dx)

≤ (1 + δ)µt(A), (2.13)

with probability greater than p, when N is sufficiently large.

Fix arbitrarily small δ1, p1 > 0 and let δ2 > 0 be so small and n so large that the

following conditions are satisfied, according to Part 2 of the proof. First, |PD
t−sj

(x,A) −
PD

t−s(y, A)| < δ1 when s ∈ [sj , sj+1], 0 ≤ j ≤ n−1, and |x−y| ≤ δ2. Second, if Dδ2 denotes

the set of points whose distance to Dc is greater than δ2, we want to have PD
sj

(x,Dc
δ2

) < δ1,

for every x and j with sj ≥ t1. Finally, increase n if necessary so that the probability that

a Brownian path has an oscillation larger than δ2 within a subinterval of [0, S] of length

t2/n or less, is less than p1. With this choice of various constants, we see that for large

N , with probability greater than p the following will be true for all j with t1 ≤ sj ≤ S.

First, the proportion of Xk’s which will be within distance δ2 of the boundary at time

sj will be less than 2δ1 and the proportion of Xk’s which will jump during the interval

[sj , sj+1] will be less than 3δ1. Because of this and the other parameter choices, we will
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have |PD
t−sj

(Xk
sj

, A)−PD
t−s(Xk

s , A)| < δ1 for all j, s ∈ [sj , sj+1] and all labels k in a subset

of {1, 2, . . . , N} whose cardinality would be bounded below by (1 − 2p1 − 3δ1)/N . This

implies that simultaneously for all j and s ∈ [sj , sj+1], for large N ,∣∣∣∣∫
D

PD
t−sj

(x, A)XN,0
sj

(dx)−
∫

D

PD
t−s(x,A)XN,0

s (dx)
∣∣∣∣ ≤ δ1 + 2p1 + 3δ1,

with probability greater than p. This, the fact that p can be arbitrarily large and δ1 and

p1 arbitrarily small, and (2.13) prove (2.12).

We will now prove that a suitable version of (2.12) holds when we replace XN,0
s with

XN,(0 7→0)
s . Consider an arbitrary t ≤ S, and 0 < t1 < t2 < t. Suppose that a particle

Xk with mark 0 hits the boundary of D at a time s ∈ (t1, t2). Then it will jump onto a

randomly chosen particle. If Xk jumps onto a particle marked 0, its label will change to

(0 7→ 0). Given this event, conditional on the value of XN,0
s , the distribution of Xk at time

t will be
∫

D
PD

t−s(x, · )XN,0
s (dx), by the strong Markov property. The same holds true for

all other particles with mark 0 which hit Dc between times t1 and t2. Since these particles

evolve independently after the jump, we see from (2.12) that the empirical distribution at

time t of all particles marked (0 7→ 0) which received this mark at a time between t1 and t2

converges in probability to a constant multiple of µt, as N →∞. If we fix t > 0, it is easy

to see that for sufficiently small t1 > 0 and large t2 < t, the probability that a particle with

mark 0 will hit the boundary of D in one of the intervals [0, t1] or [t2, t] will be arbitrarily

small. Hence, XN,(0 7→0)
t converges to a constant multiple of µt, in probability.

Given the last fact, the same argument which proves (2.13) yields for some η(θ) ∈
(0, 1],

η((0 7→ 0))(1− δ)µt(A) ≤ inf
0≤j≤n

∫
D

PD
t−sj

(x,A)XN,(0 7→0)
sj

(dx) (2.14)

≤ sup
0≤j≤n

∫
D

PD
t−sj

(x,A)XN,(0 7→0)
sj

(dx) ≤ η((0 7→ 0))(1 + δ)µt(A),

with large probability, when N is large. The argument following (2.13) is not specific to

the case when the particles have the mark 0 and so it can be applied to the present case

of particles marked (0 7→ 0). Hence, we obtain the following formula, which differs from

(2.12) only in that the normalizing constant is η((0 7→ 0)) and not
∫

D
PD

t (x, D)µ0(dx),

η((0 7→ 0))(1− δ)µt(A) ≤ inf
t1≤s≤t2

∫
D

PD
t−s(x,A)XN,(0 7→0)

s (dx) (2.15)

≤ sup
t1≤s≤t2

∫
D

PD
t−s(x,A)XN,(0 7→0)

s (dx) ≤ η((0 7→ 0))(1 + δ)µt(A).
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The last formula holds with probability greater than p if N is sufficiently large, for any

fixed t ≤ S, any 0 < t1 < t2 < t, and any p < 1.

Proceeding by induction, one can show that (2.15) applies not only to the mark

θ = (0 7→ 0) but also to (0 7→ (0 7→ 0)), ((0 7→ 0) 7→ 0), ((0 7→ 0) 7→ (0 7→ 0)), and to

every other mark θ. Imbedded in an induction step for a mark θ is the proof that the

measures XN,θ
S (dy) converge to a constant (deterministic) multiple of µS(dy). It follows

that for every finite deterministic subset Θ1 of Θ, the measures
∑

θ∈Θ1
XN,θ

S (dy) converge

to a multiple of µS(dy).

It will now suffice to show that for any p2, p3 > 0, there exists a finite set Θ1 such

that
∑

θ/∈Θ1
XN,θ

S (D) < p2 with probability greater than 1− p3. In other words, we want

to show that for some finite Θ1, the number of particles with a mark from Θc
1 at time S is

less than p2N with probability greater than 1− p3. In order to prove this, we will use the

result proved in Part 1 of the proof.

Recall the notion of the “height” of a mark from the beginning of the second part

of the proof. Suppose that a particle Xk has a mark with height j at time S. Let tj be

the infimum of t with the property that Xk
t has a mark with height j. Then tj must be

the time of a jump of Xk. Let Xnj be the particle on which Xk jumps at time tj . By

definition, the height of the mark of Xk or the height of the mark of Xnj must be equal

to j − 1 just before time tj . We define kj to be k or nj , so that the height of the mark

of Xkj is equal to j − 1 prior to tj . We proceed by induction. Suppose we have identified

a particle Xkm which has a mark with height m − 1 prior to a time tm, where m ≤ j.

Then we let tm−1 be the infimum of t < tm with the property that the height of the mark

of Xkm
t is m − 1. We see that Xkm must jump at time tm−1 on a particle Xnm−1 . We

choose km−1 to be either km or nm−1, so that the height of the mark of Xkm−1 is m − 2

just before the time tm−1. Proceeding in this way, we will end up with a particle Xk2

which has a mark with height 1. The mark of this particle is 0, as it is the only mark with

height 1. This implies that t1 = 0. We claim that for all m ≤ j and t ∈ [tm−1, tm), we

have (t, km) ∈ T k2 . In other words, every particle Xkm is a descendant of Xk2 at times

t ≥ tm−1. To see this, note that the claim is obviously true for m = 2. If k3 = k2 then

the claim is true for m = 3, because Xk2 always remains its own descendant. If k3 6= k2,

it is clear that the particle Xk3 has jumped at time t2 on Xk2 , a descendant of k2, and

so became a descendant of k2 at this time. Proceeding by induction, we can show that all

particles in our chain are descendants of k2 on the intervals specified above. Note that at

every time tm, either a descendant of k2 jumps or a descendant of k2 is born. Hence, if
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Xk has a mark with height j at time S, it must belong to the family of descendants of a

particle for which the sum of descendants and their jumps is not less than j.

Recall the event F from Part 1 of the proof and choose the parameters in Part 1 so

that the probability of F c is less than p3/2 and the cardinality of Hc is less than Np2/2.

Conditional on F , we have the following estimate. If the sum of the number of descendants

of a particle k and the number of all their jumps is equal to j than a crude estimate says

that at most j descendants of k end up at time S with marks of height j or lower; by

the argument in the previous paragraph, the marks cannot be higher than j. Hence, the

expected number of particles with marks higher than n at time S among descendants of a

particle k ∈ H can be bounded using (2.11) by

∑
j≥n

jP (βk ≥ j) ≤
∑
j≥n

j
E(βk)3

j3
≤ c1

∑
j≥n

j−2 ≤ c2/n.

The expected number of all particles in the family H with marks higher than n is bounded

by Nc2/n.

Choose Θ1 to be the set of all marks of height less than n, where n is so large that

Nc2/n < (p3/2)(p2N/2). Then, conditional on F , the probability that the total number

of particles in H with marks higher than n is bounded by Np2/2 with probability 1−p3/2

or higher. We add to that estimate all particles from Hc—their number is bounded by

Np2/2, so the total number of particles with marks higher than n is bounded by Np2,

with probability greater than or equal to 1− p3/2. This estimate was obtained under the

assumption that F holds. Since the probability of F is less than p3/2, we are done.

Example 2.1 We will show that for some process Xt, some t, A, µ0 and N we have

EXN
t (A) 6= µt(A). Our process has a finite state space; we presume that a similar example

can be constructed for Brownian motion.

We will consider a continuous time Markov process on the state space {0, 1, 2}. The

set {1, 2} will play the role of D. The possible jumps of the process are 0 → 1, 1 → 2,

2 → 1 and 1 → 0. The jump rates are equal to 1 for each one of these possible transitions.

The measure µ0 will be uniform on D, i.e., µ0(1) = µ0(2) = 1/2.

First we will argue that µt = µ0 for all t > 0. To see this, note that if we condition

the process not to jump to 0, it will jump from the state 1 to the state 2 and from 2 to

1 at the rates 1, i.e., at the original rates. This is because all four types of jumps 0 → 1,

1 → 2, 2 → 1 and 1 → 0 may be thought of as coming from four independent Poisson
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processes. Conditioning on the lack of jumps of one of these processes does not influence

the other three jump processes.

Since the conditioned process makes jumps from 1 to 2 and vice versa with equal

rates, the symmetry of µ0 on the set {1, 2} is preserved forever, i.e., µt = µ0 for all t > 0.

Now let N = 2 and consider the distribution of the process Xt. Let At denote the

number of particles X1 and X2 at the state 1 at time t. The process At is a continuous

time Markov process with possible values 0, 1 and 2. Its possible transitions are 0 → 1,

1 → 2, 2 → 1 and 1 → 0, just like for the original process Xt. If At = 0, i.e., if both

particles are at the state 2, the waiting time for a jump of At has expectation 1/2 because

each of the particles jumps independently of the other one with the jump rate 1. When

both particles are in the state 1, and one of them jumps to 0, it immediately returns to

1 (the location of the other particle) so the jumps of Xk’s from 1 to 0 have no effect on

At, if At = 2. It follows that the rate for the jumps of At from 2 to 1 is 2, i.e., it is the

same as for the jumps of At from 0 to 1. Finally, let us analyze the case At = 1. When

only one of the particles is at 2, it jumps to 1 at the rate 1, so the rate of the transitions

1 → 2 for the At process is 1. However, its rate of transitions 1 → 0 is equal to 2 because

any jump of a particle from the state 1 will result in its landing at 2, either directly or

through the instantaneous visit to 0. Given these transition rates, it is elementary to check

that the stationary distribution of At assigns probabilities 1/3, 1/2 and 1/6 to the states

0, 1 and 2. This implies that EX 2
t ({1}) ≈ 5/12 for large t (no matter what X 2

0 is) and so

EX 2
t ({1}) 6= µt({1}) for some t when we choose µ0({1}) to be equal to 1/2.

Proof of Theorem 1.4. For a point x ∈ D let ρx be the supremum of dist(x, ∂B(y, r))

over all open balls B(y, r) such that x ∈ B(y, r) ⊂ D. For each x ∈ D we will choose a ball

Bx with radius r, such that x ∈ Bx ⊂ D and dist(x, ∂Bx) > ρx/2. The center of Bx will

be denoted vx. We would like the mapping x → vx to be measurable. One way to achieve

this goal is to construct a countable family of balls with radius r and make the mapping

x → vx constant on every element of a countable family of squares, closed on two sides,

disjoint, and summing up to D. Such a construction is known as “Whitney squares,” it is

quite elementary and so it is left to the reader.

We will construct Xk
t ’s in a special way. Two 1-dimensional processes Uk

t and Rk
t

will be associated with each Xk
t . The processes Uk

t and Rk
t will take their values in

[0, r]. The processes Rk
t will be independent d-dimensional Bessel processes reflected at

r. In other words, every process Rk
t will have the same distribution as the radial part
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of the d-dimensional Brownian motion reflected inside the ball B(0, r). We will define

Uk
t so that Uk

t ≤ Rk
t for all k and t. The processes Rk

t will give us a bound on the

distance of Xk
t from Dc; more precisely, we will have, according to our construction,

dist(Xk
t , Dc) ≥ r − Uk

t ≥ r −Rk
t .

No matter what distribution for X0 is desirable, it is easy to see that we can choose

the starting values for Rk
t ’s so that Rk

0 = dist(Xk
0 , vXk

0
), a.s.

In our construction, we assume that Rk
t ’s are given and we proceed to describe how

to define Uk
t ’s and Xk

t ’s given Rk
t ’s. We will first fix a k. Let T k

1 be the first time when

the process Rk
t hits r. On the interval [0, T k

1 ), we can define Xk
t as Brownian motion

in Rd such that Rk
t = dist(Xk

t , vXk
0
). This requires only generating an angular part for

Xk
t , relative to the initial positions Xk

0 . A classical “skew-product” decomposition (see

Itô and McKean (1974)) achieves the goal by generating a Brownian motion on a sphere

(independent of Rk
t ) and then time-changing it according to a clock defined by Rk

t . Note

that according to the definition of vx, this constructed process Xk
t will remain inside D

for t ∈ [0, T k
1 ). We let Uk

t = Rk
t for t ∈ [0, T k

1 ). At time T k
1 , the process Uk

t jumps to the

value dist(Xk
T k

1 −
, v(Xk

T k
1 −

)), i.e., we let Uk
T k

1
= dist(Xk

T k
1 −

, v(Xk
T k

1 −
)). We let the process

Uk
t evolve after time T k

1 as a d-dimensional Bessel process independent of Rk
t , until time

T k
2 = inf{t ≥ T k

1 : Uk
t = Rk

t }. Let T k
3 = inf{t ≥ T k

2 : Rk
t = r}. We couple the processes

Uk
t and Rk

t on the interval [T k
2 , T k

3 ), i.e., we let Uk
t = Rk

t for t ∈ [T k
2 , T k

3 ). For t ∈ [T k
1 , T k

3 ),

we construct Xk
t so that dist(Xk

t , v(Xk
T k

1
)) = Uk

t . The spherical part is constructed in an

“independent” way, in the sense of the skew-product decomposition.

We proceed by induction. Recall that Rk
t is given, and suppose that processes Xk

t

and Uk
t are defined on the interval [0, T k

2j−1). Moreover, suppose that Rk
t approaches r as

t ↑ T k
2j−1. We define Uk

T k
2j−1

to be dist(Xk
T k

2j−1−
, v(Xk

T k
2j−1−

)) and we let the process Uk
t

evolve after time T k
2j−1 as a d-dimensional Bessel process independent of Rk

t , until time

T k
2j = inf{t ≥ T k

2j−1 : Uk
t = Rk

t }. Note that Uk
t < Rk

t ≤ r for t ∈ [T k
2j−1, T

k
2j). Let

T k
2j+1 = inf{t ≥ T k

2j : Rk
t = r}. We couple the processes Uk

t and Rk
t (i.e., we make them

equal) on the interval [T k
2j , T

k
2j+1). The Brownian motion Xk

t is defined on [T k
2j−1, T

k
2j+1) so

that dist(Xk
t , v(Xk

T k
2j−1

)) = Uk
t . Its spherical part is generated in an independent way from

other elements of the construction and then time-changed according to the skew-product

recipe. We see that Uk
t < Rk

t ≤ r for t ∈ [T k
2j−1, T

k
2j+1) and limt→T k

2j+1
Rk

t = r. This

implies that Xk
t stays inside D on every interval [T k

2j−1, T
k
2j+1).

Let τk
1 = limj→∞ T k

j and note that typically, τk
1 < ∞. The above procedure allows us

to define the processes Xk
t and Uk

t on the interval [0, τk
1 ). We repeat the construction for
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all particles Xk
t in such a way that that the processes in the family {(Xk

t , Uk
t )}1≤k≤N are

jointly independent.

Let τ1 = min1≤j≤N τ j
1 and suppose that the minimum is attained at k, i.e., τk

1 =

τ1 < ∞. Since infinitely many independent Bessel processes {Uk
t , t ∈ [T k

2j−1, T
k
2j+1)}

traveled from dist(Xk
T k

2j−1
, v(Xk

T k
2j−1

)) to r, and their travel times sum up to a finite number,

bounded by τ1, it follows that limj→∞ dist(Xk
T k

2j−1
, v(Xk

T k
2j−1

)) = r. We will show that Xk
t

must approach ∂D at time τk
1 = τ1.

Recall the function ρx from the beginning of the proof. If x belongs to an open

ball B(y, r) ⊂ D then the same holds for all points in a small neighborhood of x. The

definition of ρx now easily implies that the function x → ρx is Lipschitz inside D. Since,

by assumption, ρx does not vanish inside D, every sequence xn satisfying dist(xn, vxn) → r

also satisfies ρxn
→ 0 and so must approach ∂D as n → ∞. This finishes the proof that

limt→τk
1−

dist(Xk
t , Dc) = 0. Since two independent Brownian particles cannot hit ∂D at

the same time, we see that there is only one process Xk
t with τk

1 = τ1 < ∞.

Still assuming that τk
1 = τ1 < ∞, we uniformly and independently of everything else

choose j 6= k and let Xk
τ1

= Xj
τ1

and Uk
τ1

= U j
τ1

. We then proceed with the construction of

Xk
t and Uk

t on the interval [τk
1 , τk

2 ), such that limt→τk
2−

dist(Xk
t , Dc) = 0. The construction

is completely analogous to that outlined above. Note that we necessarily have Uk
τ1

< Rk
τ1

so we have to start our construction as in the inductive step of the original algorithm.

Recall that the construction generates a process Uk
t satisfying Uk

t ≤ Rk
t for t ∈ [τk

1 , τk
2 ).

We let τ2 = τk
2 ∧ min1≤j≤N,j 6=k τ j

1 . A particle Xj will have to approach ∂D at time

τ2. We will make this particle jump and then proceed by induction. Theorem 1.1 shows

that there will be no accumulation of jumps of Xk
t ’s at any finite time.

Recall that the inner ball radius r > 0 is a constant depending only on the domain D.

It is well known that the reflected process Rk
t spends zero time on the boundary (i.e., at

the point r) so if it starts from Rk
0 = r than its distribution at time t = 1 is supported on

(0, r). It follows that for any p1 < 1 there exists r1 ∈ (0, r) such that we have, with r2 = r,

P (Rk
1 ∈ [0, r1] | Rk

0 = r2) > p1.

This estimate can be extended to all r2 ∈ [0, r], by an easy coupling argument. It follows

from this and the independence of processes Rk
t that there exists p2 > 0 such that with

probability greater than p2, more than Np1/2 processes Rk
t happen to be in [0, r1] at time

1, no matter what their starting positions are at time 0, for every N > 0.

Let Da be the set of all points in D whose distance from Dc is greater than or equal

to a. The processes Xk
t have been constructed in such a way that a.s., for every k and
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t we have dist(Xk
t , Dc) ≥ r − Rk

t . This and the claim in the previous paragraph show

that for any starting position of Xk
t ’s, with probability greater than p2, more than Np1/2

processes Xk
t happen to be in Dr3 at time 1, where r3 = r − r1. We will now proceed

as at the beginning of Part 1 in the proof of Theorem 1.3. Fix an arbitrary p1 < 1, a

corresponding r1 = r1(p1) ∈ (0, r), r3 = r − r1, and arbitrary 0 < r5 < r4 < r3. Let

H be the family of all processes Xk such that Xk
1 ∈ Dr3 . Assume that H has at least

Np1/2 elements. There is p3 > 0 (depending on N, p1 and rj ’s) such that with probability

greater than p3, all processes in H will stay in Dr4 for all t ∈ [1, 2]. For some p4 > 0,

all processes in Hc will have a jump in the interval [1, 2], will land on a particle from the

H family, and subsequently stay in Dr5 until time t = 2. Altogether, there is a strictly

positive probability p2p3p4 ≡ p5 that all particles will be in Dr5 at time t = 2, given any

initial distribution at time t = 0.

Now let us rephrase the last statement in terms of the vector process Xt whose state

space is DN . We have just shown that with probability higher than p5 the process Xt

can reach a compact set DN
r5

within 2 units of time. This and the strong Markov property

applied at times 2, 4, 6, . . . show that the hitting time of DN
r5

is stochastically bounded by

an exponential random variable with the expectation independent of the starting point

of Xt. Since the transition densities pX
t (x, y) for Xt are bounded below by the densities

for the Brownian motion killed at the exit time from DN , we see that pX
t (x, y) > c1 > 0

for x, y ∈ DN
r5

. Fix arbitrarily small s > 0 and consider the “skeleton” {Xns}n≥0. It is

standard to prove that the properties listed in this paragraph imply that the skeleton has a

stationary probability distribution and that it converges to that distribution exponentially

fast. This can be done, for example, using Theorem 2.1 in Down, Meyn and Tweedie (1995).

Extending the convergence claim to the continuous process t → Xt from its skeleton can

be done in a very general context, as was kindly shown to us by Richard Tweedie. In our

case, a simple argument based on “continuity” can be supplied. More precisely, one can

use a lower estimate for pX
t (x, y) in terms of the transition densities for Brownian motion

killed upon leaving DN , which are continuous. We leave the details to the reader. This

completes the proof of part (i) of the theorem.

Recall that we have proved that for any p1 < 1 there exists r1 < r such that for any

starting position of Xk
0 , the particle Xk is in Dr−r1 at time t = 1, with probability greater

than p1. It follows that for any N , the mean measure EXN
M of the compact set Dr−r1 is

not less than p1. Hence, the mean measures EXN
M are tight in D. Lemma 3.2.7 of Dawson

(1992, p. 32) implies that the sequence of random measures XN
M is tight and so it contains
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a convergent subsequence.

Choose a subsequence Nj such that the sequence XNj

M is convergent to a probability

measure Π(µ), carried by the family of probability measures on D. It will be enough

to prove part (ii) of the theorem for this sequence. Consider the sequence of processes

Xt = XNj

t , each with the stationary distribution XNj

M as its starting distribution. Fix

an open set A ⊂ D. By an argument totally analogous to the proof of Theorem 1.3, the

following holds in the sense of convergence in probability,

lim
j→∞

XNj

t (A) =
∫ ∫

D
PD

t (x,A)µ(dx)∫
D

PD
t (x,D)µ(dx)

Π(dµ). (2.16)

We will now apply a few results from Bass and Burdzy (1992). Check Section 3 of

that paper for the definition of a John domain. It is elementary to see that our domain

D is a John domain, because it satisfies the interior ball condition. By Proposition 3.2 in

Bass and Burdzy (1992), every John domain is a twisted Hölder domain of order 1. Hence,

the parabolic boundary Harnack principle (Theorem 1.2 of Bass and Burdzy (1992)) holds

for D. That theorem says that if pD
t (x, y) denotes the transition densities for Brownian

motion killed upon exiting D, then for each u > 0 there exists c = c(D,u) ∈ (0, 1) such

that
pD

t (x, y)
pD

t (x, z)
≥ c

pD
s (v, y)

pD
s (v, z)

(2.17)

for all s, t ≥ u and all v, x, y, z ∈ D. We will need a stronger version of this inequality.

The proof will be based on a lemma of Burdzy, Toby and Williams (1989). The following

version of that lemma is taken from Burdzy and Khoshnevisan (1998).

Suppose that functions h(x, y), g(x, y) and h1(x, y) are defined on product spaces

W1 ×W2, W2 ×W3 and W1 ×W3, resp. Assume that for some constant c1, c2 ∈ (0, 1) the

functions satisfy for all x, y, x1, x2, y1, y2, z1, z2,

h1(x, y) =
∫

W2

h(x, z)g(z, y)dz,

h(x1, z1)
h(x1, z2)

≥ h(x2, z1)
h(x2, z2)

(1− c1),

and
g(z1, y1)
g(z1, y2)

≥ c2
g(z2, y1)
g(z2, y2)

.

Then
h1(x1, y1)
h1(x1, y2)

≥ h1(x2, y1)
h1(x2, y2)

(1− c1 + c2
2c1). (2.18)
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We will apply the lemma with pD
2 (x, y) in place of h1(x, y), and pD

1 (x, y) in place of

h(x, z) and g(z, y). We see from (2.18) that the constant c(D, 2) in (2.17) may be taken to

be c(D, 1) + c(D, 1)2(1 − c(D, 1)). By induction, we see that the constants c(D, 2n) may

be chosen in such a way that c(D, 2n) = c(D, 2n−1) + c(D, 2n−1)2(1 − c(D, 2n−1)). Then

c(D, 2n) → 1 as n → ∞. Obviously, we may assume that the function u → c(D,u) is

non-decreasing. Hence, (2.17) holds for some c(D,u) satisfying c(D,u) → 1 as u →∞.

The inequality (2.17) easily implies that

c(D, t)
PD

t (y, A)
PD

t (y, D)
≤ PD

t (x,A)
PD

t (x, D)
≤ c(D, t)−1 PD

t (y, A)
PD

t (y, D)
,

for all x, y ∈ D. This in turn shows that

c(D, t)

∫
D

PD
t (x,A)µ2(dx)∫

D
PD

t (x, D)µ2(dx)
≤
∫

D
PD

t (x, A)µ1(dx)∫
D

PD
t (x,D)µ1(dx)

≤ c(D, t)−1

∫
D

PD
t (x,A)µ2(dx)∫

D
PD

t (x, D)µ2(dx)
,

for any probability measures µ1 and µ2 on D. Since c(D, t) → 1 as t →∞, we see that for

some fixed probability measure µ1 on D and any Π(µ),

lim
t→∞

(∫
D

PD
t (x, A)µ1(dx)∫

D
PD

t (x,D)µ1(dx)

)−1 ∫ ∫
D

PD
t (x, A)µ(dx)∫

D
PD

t (x,D)µ(dx)
Π(dµ) = 1. (2.19)

The normalized distribution of the killed Brownian motion in D converges to the normal-

ized first eigenfunction ϕ1 of the Dirichlet Laplacian in D, i.e.,

lim
t→∞

∫
D

PD
t (x,A)µ1(dx)∫

D
PD

t (x, D)µ1(dx)
=

∫
A

ϕ1(y)dy∫
D

ϕ1(y)dy
,

by the eigenfunction expansion for pD
t (x, y). In view of (2.19),∫ ∫

D
PD

t (x,A)µ(dx)∫
D

PD
t (x, D)µ(dx)

Π(dµ) →
∫

A
ϕ1(y)dy∫

D
ϕ1(y)dy

, (2.20)

as t →∞. By the stationarity of XNj

M , the right hand side of (2.16) does not depend on t

and so (2.20) is in fact an equality. This observation combined with (2.16) completes the

proof.

3. Appendix. Related probabilistic and physical models. We will discuss a few well

known models and problems in probability and mathematical physics to which our paper
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is related. Before we do so, let us note that the original impulse for the article came from

heuristic and numerical results presented in Burdzy, Ho lyst, Ingerman and March (1996).

This largely determined the direction of our research. The notes below may include some

ideas for future research on our model, perhaps different in their flavor from the present

article.

(i) Superprocesses with interactions. Superprocesses, also known as measure-valued dif-

fusions or Dawson-Watanabe diffusions, are processes whose states are measures. Super-

Brownian motion and the Fleming-Viot process with Brownian spatial motion are two of

the most studied models in this class. The model introduced in this paper resembles most

the Fleming-Viot process, which can be described in a heuristic way as follows. Consider

N particles performing independent Brownian motions in Rd. Every ε units of time, two

particles are chosen uniformly and the first particle jumps to the location of the second

one. Between the jumps, the particles are independent Brownian motions. Assume for

simplicity that all particles start from a fixed point. If N → ∞ and ε → 0, at a rate

related to N , then the empirical distributions of the particles converge for every time t ≥ 0

to a random measure. It is known that in dimensions d ≥ 2, the measures are carried by

sets of fractal nature.

The original Fleming-Viot model sketched above assumes independence of the branch-

ing mechanism from the spatial distribution of the particles. In recent years, a number of

papers have been devoted to processes which are similar but whose branching mechanism

does depend on the spatial distribution of the particles. Roughly speaking, two closely re-

lated models have been considered—in one of them a “catalyst” is present, facilitating the

branching of particles; the other model assumes that branching can be influenced by the

local density of particles (see, e.g., Adler and Ivanitskaya (1996) Dawson and Fleischmann

(1997), Dawson and Greven (1996), Dawson and Perkins (1998) and Klenke (1999)).

Our model goes in a slightly different direction because we consider an “obstacle” (the

set Dc) where the particles are killed although the offspring are generated in a uniform

way across the whole population as in the original model. Our process might possibly

represent a biological population, with a region Dc having fatal effect on individuals. The

assumption of the constant number of individuals is an idealization of the constant carrying

capacity of an environment. Fleming-Viot models are sometimes applied to “populations”

whose individual members are genes.

The main qualitative difference between our model and the classical Fleming-Viot

process with Brownian spatial motion is that in the limit, we obtain measures with smooth
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densities.

(ii) Propagation of chaos. When we consider a large number of interacting particles then

under some assumptions, two tagged particles will behave in an almost independent way

(see, e.g., Sznitman (1991)). In our case, two particles Xk
t and Xj

t are almost independent

when N is large. Even stronger result is true—the propagation of chaos holds for the entire

trees of descendants of particles labeled k and j. The two claims are quite clear in view of

the theorems and techniques presented in the paper but we will not give a rigorous proof

here.

(iii) Genetic algorithms. A very active area of applied and theoretical research deals with

“genetic algorithms.” We mention a book of Man, Tang and Kwong (1999) as a possible

starting entry point to this rapidly growing field. A genetic algorithm is a way to search

for an answer to a problem by imitating biological genetic processes. Our model might

be thought of as a genetic algorithm generating the first eigenvalue and the corresponding

eigenfunction for the Dirichlet Laplacian. We do not make any claims of direct applicability

of our model, especially in view of the fact that we do not present any theoretical estimates

of the rate of convergence or computer simulations. We note however, that a related

problem of finding the second Neumann eigenvalue (the “spectral gap”) is one of the most

studied problems from both theoretical and practical points of view, for various Markov

processes.

(iv) Minimization of entropy production. It is postulated in physics (Wio (1994) III.5) that

an irreversible system achieves a stationary state characterized by the minimum entropy

production. See Prigogine-de Groot Theorem in Yourgrau, van der Merwe and Raw (1982);

consult also a recent article of Ruelle (1997) on this topic. Entropy production has been

studied in the context of stochastic processes, for example by Gong and Qian (1997) but

we could not find a direct relationship between that paper and our model.

We will explain how our model relates the principle of minimum entropy production

to a minimizing property of the first Laplacian eigenfunction. In order to simplify the

presentation, we will consider a slightly modified model in which the branching rate is

constantly equal to λ1, the first eigenvalue of the Laplacian in D with Dirichlet boundary

conditions. In general, the branching rate does not have to be a constant. In the limit,

when N → ∞, we obtain the following formula for the evolution of the density of the
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particle process,
∂p(x, t)

∂t
= ∆p(x, t) + λ1p(x, t), (3.1)

where ∆ represents the Laplacian (we ignored the probabilistic constant 1/2). The first

term on the right hand side represents the Brownian motion effect and the second one

represents branching.

We will use the notion of entropy proposed by Rényi (1961). He introduced a family

of entropy measures parametrized by β,

St(β) = (1− β)−1 log
∫

D

p(x, t)βdx.

We will consider one of these definitions corresponding to β = 2,

St = − log
∫

D

p(x, t)2dx.

Using this definition of entropy, we obtain from (3.1),

dS
dt

= −λ1 +

∫
D
|∇p(x, t)|2dx∫
D

p(x, t)2dx
.

The first term represents the decrease of the entropy in the system due to the flux of

particles through the boundary. The second term represents the entropy production. The

last quantity is always positive and is minimal in the stationary state, i.e., when dS/dt = 0.

We see that the entropy production is minimal when∫
D
|∇p(x, t)|2dx∫
D

p(x, t)2dx
= λ1.

However, the same minimization problem defines the first eigenfunction of the Laplacian

in D with Dirichlet boundary conditions leading to the equation (3.1) in the stationary

regime (dp/dt = 0). In this sense, the first eigenfunction minimizes the entropy production.

We note that since λ1 is the mean escape rate from the system, the property of minimum

entropy production is equivalent to the property of the minimum mean escape rate from

the system.

The Rényi entropy belongs to the class of entropies introduced in the nonextensive

thermostatics (Pennini, Plastino and Plastino (1998)). In ordinary physical systems it

is usually assumed—in view of the second law of thermodynamics—that entropy is an

additive quantity and therefore has a properly defined density. This is the case when the
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boundary conditions do not strongly influence the bulk properties of the system. This does

not hold for the stochastic process considered in this paper since the process of branching

in the middle of the system is induced by the flux of particles through the boundary.
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