
COALESCENCE OF SYNCHRONOUS COUPLINGS

Krzysztof Burdzy and Zhen-Qing Chen

Abstract. We consider a pair of reflected Brownian motions in a Lipschitz planar

domain starting from different points but driven by the same Brownian motion. First we

construct such a pair of processes in a certain weak sense, since it is not known whether

a strong solution to the Skorohod equation in Lipschitz domains exists. Then we prove

that the distance between the two processes converges to zero with probability one if the

domain has a polygonal boundary or it is a “lip domain”, i.e., a domain between the graphs

of two Lipschitz functions with Lipschitz constants strictly less than 1.

1. Introduction. We will consider a “synchronous coupling” of two Brownian motions

reflected inside a planar domain D, i.e., a vector-valued process (Xt, Yt) such that Xt and

Yt are reflected Brownian motions in D, and for every (random) interval (t1, t2) such that

neither Xt nor Yt hits the boundary of D when t ∈ (t1, t2), we have Xs−Ys = Xu−Yu for

all s, u ∈ (t1, t2). We will give a more precise definition of the synchronous coupling in the

next section. Intuitively, the two processes Xt and Yt move in unison as long as they both

stay strictly inside the domain D. However, when one of them hits the boundary, that

process experiences an additional “push,” proportional to the local time on the boundary,

which keeps the process inside the domain. We will consider only processes with the normal

vector of reflection.

We will address the following question.

Question 1.1. Do processes Xt and Yt have to approach each other, i.e., is it true that

limt→∞ |Xt − Yt| = 0, a.s.?

We will prove that the answer is “yes” for two classes of bounded domains.
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Recall that a domain D is called Lipschitz if for every point x ∈ ∂D, there is a

neighborhood of x inside which D may be represented as the region above the graph of a

Lipschitz function in some orthonormal coordinate system.

We will call D a lip domain if D is a Lipschitz domain and its boundary consists of

the union of graphs of functions f1 and f2, i.e.,

D = {(x1, x2) : x2 = f1(x1), z1 ≤ x1 ≤ z2} ∪ {(x1, x2) : x2 = f2(x1), z1 ≤ x1 ≤ z2},

such that f1(z1) = f2(z1), f1(z2) = f2(z2), f1(x1) < f2(x1) for z1 < x1 < z2, and functions

f1 and f2 are Lipschitz with a constant c0 ∈ (0, 1), i.e., for k = 1, 2,

|fk(x1)− fk(x̃1)| ≤ c0|x1 − x̃1|, for all z1 ≤ x1, x̃1 ≤ z2. (1.1)

Note that the assumption that D is a Lipschitz domain puts additional constraints on

functions fk besides the conditions (1.1). See (4.1)-(4.2) in Section 4 for a more formal

treatment of this technical point. Figure 1 presents three examples of lip domains; D1, D2

and the interior of D1 ∪D2 are all lip domains.

Figure 1.

Our main result is the following.

Theorem 1.1. The distance between Xt and Yt converges to 0 a.s. if D ⊂ R2 is a bounded

domain satisfying one of the following conditions:

(i) the boundary of D is a polygon or a finite union of disjoint polygons, or

(ii) D is a lip domain.

We will show in a forthcoming paper (Burdzy, Chen and Jones (2002)) that if D is a

smooth domain then the answer to Question 1.1 may be positive or negative, depending

on the geometry of the domain. The number of holes in D plays an important role for

smooth domains, unlike in the case of polygonal domains.

One can construct reflected Brownian motion in a polygonal domain as a unique strong

solution to a stochastic differential equation with a given “driving” Brownian motion. This
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easily shows that the synchronous coupling of reflected Brownian motions in a polygonal

domain is unique in law. We do not know how to extend this claim to synchronous

couplings in Lipschitz domains. Theorem 1.1(ii) holds for every synchronous coupling of

reflected Brownian motions in D, as defined in Section 2.

Our article is inspired by some results on couplings in Burdzy and Kendall (2000) and

Cranston and Le Jan (1989, 1990). If a domain D is convex then the answer to Question

1.1 is obviously “yes” because the vector of reflection is normal to the boundary and so its

component parallel to the line passing through both particles is always pointing towards

the other reflecting Brownian particle and never away from it. Cranston and Le Jan (1989,

1990) addressed a finer question: Do the processes meet in a finite time? They showed

that the answer is “no”, first for a disc D and then for a large class of planar convex

domains. They also noted that the answer is “yes” if the boundary of the domain contains

two perpendicular line segments.

Burdzy and Kendall (2000) studied the relationship between a coupling and the spec-

tral gap for the Neumann problem in D. It had been known for some time that, informally

speaking, if E|Xt − Yt| ≈ exp(−µt) then µ is a lower bound for the spectral gap. Burdzy

and Kendall (2000) proved that µ is equal to the spectral gap for some couplings in some

domains. Hence, it might be of interest to estimate the rate of convergence of E|Xt−Yt| to
0. The present paper is concerned with the related question of the pointwise convergence

of |Xt − Yt| to 0 in the hope that the results and methods may shed some light on the

quality of couplings as a technique for estimating the spectral gap.

The proof of Theorem 1.1(ii) is based on the techniques developed by Burdzy and

Kendall (2000) and Bañuelos and Burdzy (1999). The first part of Theorem 1.1 is proved

in a completely different way which is, in a sense, more elementary.

Section 2 presents some results on synchronous couplings in Lipschitz domains which

have some independent interest, for example, they have been already applied by Atar and

Burdzy (2002). In particular, we prove that the transition density p(t, x, y) for reflected

Brownian motion in a Lipschitz domain is jointly Hölder continuous in all three variables.

Couplings in polygonal domains are discussed in Section 3. Section 4 is devoted to

lip domains. The core arguments proving both parts of Theorem 1.1 are rather short.

The proof of part (i) is based on analysis of the coupling when both processes are close

to a vertex of the polygon ∂D. Part (ii) is proved using a “monotonicity” property of

synchronous couplings, first established in Burdzy and Kendall (2000) and Bañuelos and

Burdzy (1999). The proof of part (i) needs some “self-evident” lemmas which require
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rather long, complicated and technical arguments. We have to show that the processes Xt

and Yt will not stay at a distance greater than some fixed ε > 0 forever, but will come

close to each other, at least from time to time.

At times we will be informal with our notation—we will identify points in the plane

with vectors; occasionally we will switch between vector and complex notation.

We are grateful to the referee for helpful suggestions for improvement.

2. Construction of synchronous couplings. Constructing a reflecting Brownian mo-

tion in an arbitrary Euclidean domain is a notoriously difficult task. The problem is mainly

caused by the non-smoothness of the boundary. We will first recall a definition of reflected

Brownian motion in a piecewise smooth domain. Then we will present a construction of

a synchronous coupling of reflected Brownian motions in bounded Lipschitz domains in

n-dimensional Euclidean space, though we will concentrate on planar Lipschitz domains

in later sections.

Given a smooth domainD ⊂ Rn, say C3, and a standard Brownian motion Bt starting

from 0, the origin, it is well known that there is a unique continuous conservative strong

Markov process Xt adapted to the Brownian filtration and taking values in D such that

Xt = X0 +Bt +
∫ t

0

n(Xs)dLs, (2.1)

where n is the unit inward normal vector field on ∂D and Lt is the local time process of

X on the boundary ∂D. The local time has the following properties,

Lt =
∫ t

0

1∂D(Xs)dLs and E

[∫ t

0

1∂D(Xs)ds
]

= 0.

Process Xt is called a reflecting Brownian motion on D. Formula (2.1) is called the

Skorohod decomposition forX. In fact, for C3-smooth domains, the following deterministic

Skorohod problem can be solved. Given any continuous path b(t) with b(0) ∈ D, there are

two unique continuous functions x(t) and l(t) such that x(t) ∈ D for all t, l is an increasing

boundary function with l(0) = 0 that increases only when x(t) is on the boundary ∂D,

and

x(t) = b(t) +
∫ t

0

n(x(s))dl(s), t ≥ 0.

Hence, in sufficiently smooth domains we can identify the reflecting Brownian motion X

in D with the solution x of the “deterministic” Skorohod problem where b(t) = X0 +Bt.
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It is still an open problem whether one can find a strong solution to the Skorohod

equation (2.1) in any bounded Lipschitz domain D, given a Brownian motion Bt. The

best known result so far gives an affirmative answer for bounded C1,α-domains—see Bass

and Hsu (2000). However it is known that when D is a bounded Lipschitz domain one can

always find a pair of continuous processes (Xt,Wt) so that (2.1) holds with Wt in place of

Bt, where Wt is a Brownian motion with respect to the filtration generated by (X,W ), X

is a strong Markov process taking values in D, and L is the local time of X on ∂D. The

process Xt solving (2.1) in this weak sense is also called a reflecting Brownian motion in

D with starting point X0. It is known in this case that the distribution of Xt is unique.

In fact the transition density p(t, x, y) is the Neumann heat kernel in D and it is proved

in Bass and Hsu (1991) that p(t, x, y) is continuous on R+ ×D ×D.

If D is a bounded piecewise smooth Lipschitz domain, we will argue that (2.1) has a

strong solution. Since D is a bounded Lipschitz domain, there exists a bounded extension

operator that maps the Sobolev space W 1,2(D) into W 1,2(Rn), where

W 1,2(D) def= {u ∈ L2(D, dx) : ∇u ∈ L2(D, dx)},

(cf. Chen (1993)). This implies (cf. Fukushima, Oshima and Takeda (1994)) that the

capacity associated with reflecting Brownian motion is controlled by the capacity of Brow-

nian motion in Rn. So reflecting Brownian motion X does not visit any boundary set that

is not hit by Brownian motion. In particular, reflecting Brownian motion on D will not

visit the nonsmooth points of ∂D. The existence of a strong solution for (2.1) now follows

from the results on the Skorohod problem in smooth domains and a standard localization

argument.

Returning back to the case of bounded Lipschitz domains, we are going to strengthen a

result of Bass and Hsu (1991) and show that p(t, x, y) is Hölder continuous on R+×D×D.

In order to construct a synchronous coupling of reflected Brownian motions in bounded

Lipschitz domains, we will establish uniform Hölder continuity of the Neumann heat kernels

for an increasing sequence of Lipschitz domains.

Recall that a bounded domain D is said to be Lipschitz if there are constants r0 > 0,

M > 0 so that for every z ∈ ∂D there is a ballB(z, r0) centered at z with radius r0 such that

D ∩B(x, r0) is the region above the graph of a Lipschitz function with Lipschitz constant

no larger than M . We call constants (r0,M) the Lipschitz characteristics of domain D.

Now suppose that D is a bounded Lipschitz domain in Rn. One can find an increasing

sequence of piecewise smooth domains {Dk} such that Dk ⊂ Dk+1 with
⋃

k≥1Dk = D
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and such that they have the same Lipschitz characteristics (r0,M). The existence of such

{Dk}k≥1 is especially evident when n = 2. For notational convenience, we denote D by

D∞ and let pk(t, x, y) be the Neumann heat kernel on Dk, for k = 1, 2, · · · ,∞.

Theorem 2.1 For each fixed t0 > 0, there are constants c = c(t0) > 0 and γ > 0,

independent of k, such that

|pk(t, x, y)− pk(s, x1, y1)| ≤ c
(√
t− s+ |x− x1|+ |y − y1|

)γ
(2.2)

for all t0 ≤ s ≤ t ≤ 1, all (x, y), (x1, y1) ∈ Dk ×Dk, and all k = 1, 2, . . . ,∞.

Proof. Under our assumptions, there are positive constants c1, c2 independent of k such

that

pk(t, x, y) ≤ c1t
−n/2 exp

(
−|x− y|2

c2t

)
for x, y ∈ Dk and t ≤ 1 (2.3)

(cf. Bass and Hsu (1991)). This implies in particular that for each ε > 0,

sup
ε≤t≤1/ε

sup
k
‖pk(t, ·, ·)‖∞ <∞.

By Nash’s Hölder continuity result (cf. Stroock (1988)), estimate (2.2) is evident when

x, y, x1 and y1 are inside D with distances to ∂Dk being larger than r0
4M . As Dk is bounded,

there exists a finite cover of {x ∈ Dk : dist(x, ∂Dk) ≤ r0
8M } consisting of balls B(zi,

r0
4M ),

where zi ∈ ∂Dk and 1 ≤ i ≤ K. It suffices to prove (2.2) in each B(zi,
r0
4M ) ∩Dk. There

is a coordinate system (y1, · · · , yn−1, yn) := (ỹ, yn) centered at point zi and a Lipschitz

function f with Lipschitz constant no larger than M such that B(zi, r0)∩Dk = {(ỹ, yn) ∈
B(zi, r0) : yn > f(y1, · · · , yn−1)}. Define a one-to-one map φ : φ(ỹ, yn) = (ỹ, yn − f(ỹ)).

Assume without loss of generality that M > 1 and note that

φ(B(zi, r0/(2M))∩Dk) ⊂ {(w̃, wn) : |w̃| < r0/(2M), 0 < wn < r0/2} ⊂ φ(B(zi, r0)∩Dk).

As f is Lipschitz, the Jacobians of φ and its inverse φ−1 are bounded, with the bound

depending only on the Lipschitz constant M . If u(t, y) is a solution of the heat equation

in [0,∞)×B(zi, r0) ∩Dk with Neumann boundary conditions on [0,∞)× ∂Dk, then it is

easy to check that u(t, φ−1(x)) solves a parabolic equation in [0,∞) × φ(B(zi, r0) ∩Dk).

The equation has divergence form with bounded and uniformly elliptic coefficients. The

bounds on the size of the coefficients and the ellipticity constant do not depend on k.

Let Ak,i be the “mirror” reflection of φ(B(zi, r0) ∩ Dk) with respect to the hyperplane

{(ỹ, yn) : yn = 0}. The corresponding reflection of the equation yields a solution to a
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parabolic equation of the same type in the set [0,∞) × [Ak,i ∪ φ(B(zi, r0) ∩ Dk)]. This

set includes [0,∞) × {(ỹ, yn) : |ỹ| < r0/(2M), |yn| < r0/2}. Applying this argument to

the heat kernel pk(t, x, y) we see that pk(t, x, φ−1(w)) satisfies a parabolic equation in

[0,∞) × {(w̃, wn) : |w̃| < r0/(2M), 0 < wn < r0/2} and so by Nash’s Hölder continuity

result,

|pk(t, x, φ−1(w))− pk(s, x1, φ
−1(v)| ≤ c(t0)

(√
t− s+ |w − v|

)γ
for all 1 ≥ t ≥ s ≥ t0 and w, v ∈ {(w̃, wn) : |w̃| < r0/(4M), 0 < wn < r0/4}.
Since φ is Lipschitz, the function (t, y) → pk(t, x, y) is Hölder continuous in (t, y) ∈
(t0, 1] ×

(
B(zi, r0/4M) ∩Dk

)
. By symmetry, (t, x) → pk(t, x, y) is also Hölder contin-

uous. Combining Hölder continuity in x and y variables, we obtain (2.2) on (t0, 1] ×
(B(zi, r0/4M)∩Dk)× (B(zi, r0/4M)∩Dk). As indicated earlier in the proof, this implies

Hölder continuity of pk(t, x, y) on (t0, 1]×Dk ×Dk, uniform in k.

Given a Brownian motion Bt, for 1 ≤ k <∞, let Xk
t be the unique reflecting Brownian

motion on Dk satisfying

Xk
t = Xk

0 +Bt +
∫ t

0

nk(Xk
s )dLXk

s ,

where LXk

is the boundary local time of Xk on ∂Dk and nk is the unit inward normal

of ∂Dk. We use P k
x to denote the law of Xk starting from x, that is with Xk

0 = x. For

reflecting Brownian motion Xk with initial distribution ν, its law will be denoted by P k
ν .

The notation Px and Pν will be also used for Brownian motion in Lipschitz domains where

we do not necessarily have strong solutions to the Skorohod equation but we do have

uniqueness in law for the weak solutions.

The following two results extend the main result in Burdzy and Chen (1998). The

approximation result proved in Burdzy and Chen (1998) is for reflecting Brownian motions

in an increasing sequence of smooth domains approaching an arbitrary open domain D,

with all processes in the sequence starting from a common fixed point in D. Here we

assume D is Lipschitz.

Lemma 2.2. For any sequence xk ∈ Dk that converges to x∞ ∈ D, the finite dimensional

distributions of {Xk
t , t ≥ 0} under P k

xk
converge to those of {Xt, t ≥ 0} under Px∞ .

Proof. It is proved in Theorem 3.6 in Chen (1993) that for each T > 0, there is a subset H

of [0, T ] with Lebesgue measure T such that for x ∈ D, the finite dimensional distributions

of {Xk
t , t ∈ H} under P k

x converge to those of {Xt, t ∈ H} under Px. Hence for any t ∈ H
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and any bounded continuous function f on D, P k
t f(x) converges to Ptf(x) pointwise and

in L2. Thus for 0 < t1 < t2 < · · · < tk in H and bounded continuous functions f1, · · · , fk

on D,

Ek
xk

[
k∏

i=1

fi(Xk
ti

)

]
=
∫

Dk

pk(t1, xk, y)f1(y)P k
t2−t1

(
f2(P k

t3−t2f3 · · ·) · · ·)
)
(y) dy

converges to

∫
D

p(t1, x∞, y)f1(y)Pt2−t1 (f2(Pt3−t2f3 · · ·) · · ·)) (y) dy = Ex∞

[
k∏

i=1

fi(Xti)

]

by the equi-continuity of x → pk(t, x, y). By the equi-continuity of t → pk(t, x, y), the

above convergence holds for any 0 < t1 < t2 < · · · < tk and bounded continuous functions

f1, · · · , fk on D, and so the conclusion of the lemma follows.

Theorem 2.3. For every sequence of probability measures νk on Dk, {P k
νk
, k ≥ 1} is tight

on C([0, ∞),Rn), the space of continuous Rn-valued functions equipped with the local

uniform topology. If νk converge weakly to a probability measure ν on D as k →∞, then

P k
νk

converge weakly to Pν on C([0, ∞),Rn).

Proof. In view of Lemma 2.2 it suffices to show that the family {P k
νk
} is tight on

C([0, ∞),Rn).

Fix a small r > 0 and define τk = inf{t > 0 : |Xk
t −Xk

0 | ≥ r}. It follows from Theorem

3.2 of Bass and Hsu (1991) that there is a constant c > 0 such that for each k ∈ [k0, ∞],

P k
x (t > τk) ≤ c exp

(
− r

c t

)
for all t > 0 and x ∈ Dk. (2.4)

Let a > 0. For each T > 0 and ε > 0, by (2.4) and the strong Markov property of Xk,

P k
νk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 ≤ P k
νk

(a ≥ τk) + P k
νk

 sup
a≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε, a < τk


≤ c exp

(
− r

c a

)
+ P k

µk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 , (2.5)

where µk is the sub-probability distribution at time a of reflecting Brownian motion Xk in

Dk killed upon leaving B(Xk
0 , r)∩Dk. Let mk denote the Lebesgue measure on Dk. Note
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that µk(dy) ≤
(∫

Dk
pk(a, x, y)νk(dx)

)
dy ≤ Cmk(dy), where C := supk ‖pk(a, ·, ·)‖∞ <∞.

We will use an idea of Takeda (Theorem 3.1 of Takeda (1989)) to show that

lim
δ→0

sup
k≥1

P k
µk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 = 0. (2.6)

By Lyons-Zheng’s forward and backward martingale decomposition (see Theorem 5.7.1 of

Fukushima, Oshima and Takeda (1994)),

Xk
t −Xk

0 =
1
2
W k

t −
1
2

(
W k

T ◦ rk
T −W k

T−t ◦ rk
T

)
for all 0 ≤ t ≤ T, P k

mk
-a.s.,

where W k is a martingale additive functional of Xk which is an n-dimensional Brownian

motion, and rk
T is the time reversal operator of Xk at time T , i.e., Xk

t (rk
T (ω)) = Xk

T−t(ω)

for each 0 ≤ t ≤ T . Since Xk is symmetric under P k
mk

, for k ≥ k0,

P k
µk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 ≤ C P k
mk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε


≤ C P k

mk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣W k
t −W k

s

∣∣ > ε


+ CP k

mk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣W k
T−t ◦ rk

T −W k
T−s ◦ rk

T

∣∣ > ε


= 2C P k

mk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣W k
t −W k

s

∣∣ > ε


= 2C |Dk|P

 sup
0≤s,t≤T
|t−s|≤δ

|Bt −Bs| > ε

 ,

where B is the standard n-dimensional Brownian motion and |Dk| is the volume of Dk.

Claim (2.6) follows because

lim
δ→0

P

 sup
0≤s,t≤T
|t−s|≤δ

|Bt −Bs| > ε

 = 0.

From (2.5) and (2.6),

lim sup
δ→0

sup
k≥1

P k
νk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 ≤ c exp
(
− r

c a

)
.
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Letting a ↓ 0, we have that for each T > 0 and ε > 0,

lim
δ→0

sup
k≥1

P k
νk

 sup
0≤s,t≤T
|t−s|≤δ

∣∣Xk
t −Xk

s

∣∣ > ε

 = 0.

Thus the family {P k
νk
, k ≥ 1} is tight on C([0, ∞),Rn).

Now assume that νk converge weakly to ν. Since each of weak limit distributions of

P k
νk

’s must be equal to Pν by Lemmas 2.1 and 2.2, we conclude that P k
νk

’s converge weakly

to Pν on C([0, ∞),Rn) as k →∞.

Let Bt be a standard Brownian motion starting from 0; it will serve the role of the

“driving Brownian motion” for reflecting Brownian motions. As ∂Dk is piecewise smooth,

given two points xk, yk ∈ Dk, there exist unique reflecting Brownian motions Xk and Y k

driven by the same Brownian motion Bt:

Xk
t = xk +Bt +

∫ t

0

nk(Xk
s )dLXk

s

Y k
t = yk +Bt +

∫ t

0

nk(Y k
s )dLY k

s .

We will call (Xk
t , Y

k
t ) a synchronous coupling of reflected Brownian motions in Dk. The

above construction does not apply in a Lipschitz domain because we do not know if the

stochastic differential equations have strong solutions in such a case. The following is the

main result of this section. It presents a “weak” construction of a synchronous coupling

of reflected Brownian motions in a bounded Lipschitz domain D.

Theorem 2.4. Consider a sequence of synchronous couplings (Xk
t , Y

k
t ) of reflecting Brow-

nian motion in Dk with (Xk
0 , Y

k
0 ) = (xk, yk) for some xk, yk ∈ Dk.

(i) The sequence of distributions of (Xk, Y k) is tight on C([0, ∞),Rn ×Rn).

(ii) Suppose that xk → x∞ and yk → y∞. Let (X,Y ) be any subsequential limit of

(Xk, Y k). Its components X and Y are reflecting Brownian motion in D starting from

x∞ and y∞. Moreover there is a continuous process W which is a Brownian motion with

respect to the filtration generated by (W,X, Y ) such that (X,Y ) admits the following

Skorohod representation:

Xt = x∞ +Wt +
∫ t

0

n(Xs)dLX
s and Yt = y∞ +Wt +

∫ t

0

n(Ys)dLY
s ,

where LX and LY are boundary local times of X and Y , respectively. In particular,

P (Xt ∈ ∂D) = 0, for every fixed t > 0.
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Proof. Let (Xk
t , Y

k
t ) be the synchronous coupling of reflecting Brownian motion in Dk

with (Xk
0 , Y

k
0 ) = (xk, yk), driven by a Brownian motion Bk. By Theorem 2.3, we see

that the sequence of distributions of (Bk, Xk, Y k) is tight on the space C([0, ∞), (Rn)3).

Consider any subsequential limit (W,X, Y ) of distributions of (Bk, Xk, Y k). Using the

Skorohod lemma, we may assume, by changing the underlying probability spaces if neces-

sary, that processes (Bk, Xk, Y k) converge to (W,X, Y ) almost surely. We will prove that

W is a Brownian motion with respect to the filtration generated by (W,X, Y ). To see this,

note that for any t > s > sm > · · · > s1, bounded continuous functions f1, · · · , fm on R3n

and a bounded continuous function φ on Rn,

E

[
φ(Wt −Ws)

m∏
i=1

fi(Wsi
, Xsi

, Ysi
)

]

= lim
k→∞

E

[
φ(Bk

t −Bk
s )

m∏
i=1

fi(Bk
si
, Xk

si
, Y k

si
)

]

= lim
k→∞

E
[
φ(Bk

t −Bk
s )
]
E

[
m∏

i=1

fi(Bk
si
, Xk

si
, Y k

si
)

]

= E [φ(Bt −Bs)]E

[
m∏

i=1

fi(Wsi
, Xsi

, Ysi
)

]
,

which shows that Wt −Ws has a Gaussian distribution with zero mean and variance t− s
which is independent of the filtration σ{(Wr, Xr, Yr) : r ≤ s}. Similarly it can be shown

that W is a standard Brownian motion with respect to the filtration generated by (W,X)

as well as with respect to the filtration generated by (W,Y ). It follows from Theorem 2.3

that X and Y are reflecting Brownian motions in D starting from x∞ and y∞, respectively.

So P (Xt ∈ ∂D) =
∫

∂D
p(t, x∞, y)dy = 0 for any t > 0. Note that by (2.3),

sup
k
Ek

xk

[
LXk

t

]
= sup

k

∫ t

0

∫
∂Dk

pk(s, x, y)σk(dy)ds ≤ c
√
t,

where σk is the surface measure of ∂Dk. Since
∫ t

0
nk(Xk

s )dLXk

s = Xk
t − xk −Bk

t converges

weakly to At := Xt − x∞ −Wt, we have for any partition {ti, 0 ≤ i ≤ l} of interval [0, t],

E

[
l∑

i=1

∣∣Ati −Ati−1

∣∣] = lim
k→∞

Ek
xk

[
l∑

i=1

∣∣∣∣∣
∫ ti

ti−1

nk(Xk
s )dLXk

s

∣∣∣∣∣
]
≤ lim sup

k→∞
Ek

xk

[
LXk

t

]
≤ c

√
t.

Hence At is a continuous process of finite variation and therefore Xt = x∞ +Wt +At is a

semimartingale. Similarly it can be shown that Ct := Yt−y∞−Wt is a continuous process
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of finite variation and so Yt = y∞+Wt +Ct is a semimartingale. As At, Ct are measurable

with respect to the filtrations generated by (W,X) and (W,Y ) respectively, W is the

unique continuous martingale part in the Doob-Meyer decomposition of the continuous

semimartingales X and Y with respect to the filtrations generated by (W,X) and (W,Y ),

respectively. Processes X and Y have the desired Skorohod decompositions since they are

reflecting Brownian motions in D starting from x∞ and y∞, respectively.

Remarks 2.5 (i) In view of Theorem 2.4, we are justified to call any subsequential limit

(X,Y ) from any subsequential limit (X,Y ) of (Xk, Y k) a synchronous coupling of reflecting

Brownian motion in D.

(ii) Though the weak convergence in Theorem 2.4 is stated and proved for synchronous

reflecting Brownian motions having deterministic starting points, the theorem holds for

those with random starting points as well. The same proof shows that if the initial dis-

tributions for synchronous couplings of reflecting Brownian motions (Xk, Y k) converge

weakly to a probability distribution ν on D × D, then the sequence of the distributions

of (Xk, Y k) is tight on C([0,∞)×Rn ×Rn), and any of its subsequential limits is a syn-

chronous coupling of reflecting Brownian motions in D with initial distribution ν. Hence

every synchronous coupling of reflecting Brownian motions (X,Y ) in D has Markov prop-

erty in the following sense: for any s > 0, the process t → (Xs+t, Ys+t) is a synchronous

coupling of reflecting Brownian motions in D with the initial distribution equal to that of

(Xs, Ys).

3. Polygonal domains. The proof of Theorem 1.1 (i) consists of two major steps. First

we will prove that the distance between Xt and Yt has to be small from time to time.

Then we will show that if the processes start not far from each other then there is good a

chance that the distance between them will get smaller and smaller in time. The first step

will require a series of lemmas.

Let us recall the Skorohod construction of a reflected path generated from a “free”

path. The construction is real analytic in nature and so it applies path by path to processes

with continuous trajectories. First we will discuss the case of normal reflection on a straight

line.

Suppose that Γ : [s1, s2) → R2 is a continuous function; we will often take [s1, s2) =

[0,∞). Let Γ(t) = (Γ1(t),Γ2(t)), assume that Γ2(s1) ≥ 0 and let Γ∗2(t) = Γ2(t) − 0 ∧
infs1≤s≤t Γ2(s). We will call the function Γ∗(t) = (Γ1(t),Γ∗2(t)) the Skorohod transform of

Γ relative to the halfspace H = {(x1, x2) : x2 ≥ 0}. In other words, Γ∗ is Γ reflected on

12



the x1-axis (horizontal axis).

A more familiar form of the Skorohod transform is the following. Let LΓ
t = 0 ∧

infs1≤s≤t Γ2(s) and let n = (0, 1). Then

Γ∗t = Γ(t) +
∫ t

s1

ndLΓ
s , (3.1)

for t ∈ [s1, s2).

We will record for future reference several simple properties of the Skorohod mapping.

(SM1) If [s3, s4) ⊂ [s1, s2) and {Γ∗(t), t ∈ [s1, s2)} is a normal reflection of {Γ(t), t ∈ [s1, s2)}
in H then {Γ∗(t), t ∈ [s3, s4)} is a normal reflection of {Γ(t) + Γ∗(s3) − Γ(s3), t ∈
[s3, s4)} in H.

(SM2) The normal reflection does not depend on the parameterization of a curve which is

reflected, i.e., if ψ : [s1, s2) → [s3, s4) is continuous, strictly increasing and one-to-one,

and Λ(t) = Γ(ψ−1(t)) then if {Γ∗(t), t ∈ [s1, s2)} is the normal reflection of {Γ(t), t ∈
[s1, s2)} in H and {Λ∗(t), t ∈ [s3, s4)} is the normal reflection of {Λ(t), t ∈ [s3, s4)} in

H then Λ∗(t) = Γ∗(ψ−1(t)).

(SM3) If Γ(t) is a piecewise linear function and Γ∗(t) is its normal reflection in a halfplane

then | d
dtΓ

∗(t)| ≤ | d
dtΓ(t)| for all t where the derivatives are well defined.

The above remarks (SM1)-(SM3), suitably modified, apply to the normal reflection in

polygonal domains.

Next we discuss the case of normal reflection in polygonal domains. We start with

convex domains. We refer the reader to Dupuis and Ishii (1991) for the proofs of the

following results. If D is a convex polygonal domain and {Γ(t), t ∈ [s1, s2)} is a piecewise

linear function with Γ(s1) ∈ D then it has a unique normal reflection {Γ∗(t), t ∈ [s1, s2)}
in D. Moreover, the Skorohod mapping is continuous in convex polygonal domains, i.e.,

there exists α = α(D) < ∞ such that if {Γ(t), t ∈ [s1, s2)} and {Λ(t), t ∈ [s1, s2)} are

piecewise linear then

sup
t∈[s1,s2)

|Γ∗(t)− Λ∗(t)| ≤ α sup
t∈[s1,s2)

|Γ(t)− Λ(t)|.

In this paper, we do not want to limit ourselves to convex domains. The lack of convex-

ity presents some new challenges. The reflection might not be uniquely defined at vertices

where the domain is not locally convex. We will tackle the problem of non-uniqueness by

perturbing the original function {Γ(t), t ∈ [s1, s2)} so that its normal reflection avoids the

non-convex vertices. The details are presented in the next lemma.
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Suppose D is a polygonal domain. We will call a vertex x of ∂D convex if for some

neighborhood U of x, the set U ∩D is convex. A vertex which is not convex will be called

concave.

Consider a polygonal, not necessarily convex domain D and a piecewise linear function

{Γ(t), t ∈ [s1, s2)} with Γ(s1) ∈ D. Suppose that {Γ∗(t), t ∈ [s1, s2)} and {Γ∗∗(t), t ∈
[s1, s2)} are normal reflections of Γ(t) in D in the following sense. If U is an open polygonal

domain such that U ∩D is convex and {Γ∗(t), t ∈ [s3, s4)} ⊂ U then {Γ∗(t), t ∈ [s3, s4)}
is a normal reflection of {Γ(t) + Γ∗(s3) − Γ(s3), t ∈ [s3, s4)} in U ∩D. Suppose the same

applies to Γ∗∗(t). Moreover, suppose that Γ∗ and Γ∗∗ do not visit concave vertices of ∂D.

Then Γ∗ ≡ Γ∗∗. This claim follows from the uniqueness of the Skorohod mapping in convex

polygonal domains via a localization argument. We will call Γ∗ a normal reflection of Γ in

D, provided it satisfies the conditions listed above.

Lemma 3.1. Suppose D is a polygonal domain and {Γ(t), t ∈ [s1, s2]} is a piecewise linear

function with Γ(s1) ∈ D whose range does not contain any concave vertices of ∂D. Fix

arbitrarily small δ > 0. Then there exists a piecewise linear function {Γ̃(t), t ∈ [s1, s2]}
with Γ̃(s1) = Γ(s1), satisfying the following properties. There exists a normal reflection

{Γ̃∗(t), t ∈ [s1, s2]} of Γ̃(t) in D which does not hit any concave vertices of ∂D. Moreover,

|Γ̃(t) − Γ(t)| < δ for t ∈ [s1, s2] and | d
dt Γ̃(t)| ≤ (1 + δ)| d

dtΓ(t)| for every t where the

derivatives exist.

Proof. We will construct a finite sequence of curves Γj whose last element will satisfy

the conditions of the lemma. Let Γ1 = Γ and let s3 be the supremum of s such that

{Γ1(t), t ∈ [s1, s)} has a normal reflection in D which does not visit any concave vertices.

If s3 = s2 then we are done. Suppose that s3 < s2. Then Γ1,∗(s3−) is a concave vertex y.

We may choose the coordinate system so that y = (0, 0) and Γ1(t) = Γ1(s3)− (t− s3)(a, 0)

for some a ≥ 0, s4 > s3, and all t ∈ [s3, s4].

There exists some s5 < s3 such that the functions Γ1 and Γ1,∗ are linear on [s5, s3].

It is easy to see that we can find small ε1, ε2 > 0 with the following properties. The

distance from Γ1,∗(s5) to (0, 0) is greater than ε1. Let s6 ∈ (s5, s3) be the smallest s

with |Γ1,∗(s)| = ε1. Since (0, 0) is a concave vertex, at least one of the points (0, ε2) or

(0,−ε2) belongs to D and at least one of the line segments connecting Γ1,∗(s6) to (0, ε2)

and (0,−ε2) lies in D, except possibly for the endpoint Γ1,∗(s6). Assume that this property
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holds for (0, ε2). Then, if ε1 and ε2 are small and properly chosen,

|Γ1,∗(s6)− (0, ε2)| ≤ (1 + δ)(s3 − s6)
∣∣∣∣ ddtΓ1,∗(s6)

∣∣∣∣ . (3.2)

Let

v =
(0, ε2)− Γ1,∗(s6)

s3 − s6
.

We now define a new piecewise linear function Γ2(t). We let Γ2(t) = Γ1(t) for t ≤ s6.

For t ∈ (s6, s3] we let Γ2(t) = Γ1(s6) + (t− s6)v. Finally,

Γ2(t) = Γ1(t)− Γ1(s3) + Γ1(s6) + (0, ε2)− Γ1,∗(s6),

for t ∈ (s3, s2).

It is routine to check that Γ2 has the following properties. Let s7 be the supremum

of s such that {Γ2(t), t ∈ [s1, s)} has a normal reflection in D which does not visit any

concave vertices. Then s7 > s3. We have Γ2,∗(t) = Γ1,∗(t) for t ≤ s6, Γ2,∗(s3) = (0, ε2),

and Γ2,∗ is linear on [s6, s3].

From property (SM3) of Skorohod mappings, | d
dtΓ

1,∗(t)| ≤ | d
dtΓ

1(t)| for t ∈ [s6, s3).

The definition of Γ2 and (3.2) imply that | d
dtΓ

2(t)| ≤ (1 + δ)| d
dtΓ

1,∗(t)|, for t ∈ [s6, s3).

Hence, | d
dtΓ

2(t)| ≤ (1 + δ)| d
dtΓ

1(t)|, for t ∈ [s6, s3) and in fact for all t ∈ [s1, s2] except

possibly for finitely many points.

Consider arbitrarily small δ1 > 0. We can make the values of ε1 and ε2 smaller, if

necessary, so that |Γ2(t)− Γ1(t)| < δ1, for all t ∈ [s1, s2].

We continue the construction by induction. Given Γj , we construct Γj+1 from Γj in

a way analogous to the way Γ2 was defined relative to Γ1.

We will argue that the inductive procedure will terminate after a finite number of

steps with a function satisfying the conditions of the lemma. Recall that Γ1(t) = Γ1(s3)−
(t − s3)(a, 0) for t ∈ [s3, s4]. Assume that s4 is the largest s with the property that d

dtΓ
1

is constant on (s3, s4). Note that if s7 ≤ s4 then the vertex approached by Γ2,∗ at s7
lies to the left of (0, 0). More generally, all concave vertices approached by Γ2,∗ at times

s ∈ (s3, s4) must lie to the left of (0, 0). It follows that the number of inductive steps

needed to construct a function on (s3, s4) avoiding concave vertices is not larger than the

number N1 of all vertices of ∂D. Since Γ1 is piecewise linear, its slope is constant on a

finite number N2 of intervals whose lengths sum up to s2 − s1. Our inductive procedure

will require no more than N1N2 steps.

If we let δ1 = δ/(N1N2), then the function Γ̃ = ΓN1N2+1 will satisfy all the properties

stated in the lemma.
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Recall that a Brownian path reflected in a polygonal domain D does not hit any

vertices of ∂D, a.s. The problem of non-uniqueness of the reflected paths does not arise in

the case of Brownian trajectories.

Lemma 3.2. Suppose that D is a polygonal domain and {Γ(t), t ∈ [0, v]} is a piecewise

linear function such that its normal reflection {Γ∗(t), t ∈ [0, v]} in D does not visit any

concave vertices of ∂D. There exist ε > 0 and β < ∞ such that the following holds.

Assume that {f(t), t ∈ [0, v]} is a continuous function with supt∈[0,v] |f(t)− Γ(t)| = a ≤ ε,

such that its normal reflection {f∗(t), t ∈ [0, v]} in D does not hit any vertices of ∂D.

Then supt∈[0,v] |f∗(t)− Γ∗(t)| ≤ aβ.

Proof. The set of t ∈ [0, v] such that Γ∗(t) ∈ ∂D consists of a finite number of disjoint

closed intervals A1, A2, . . . , Ak, ordered in this way. Some intervals Aj may be degenerate,

i.e., they may consist of a single point. Find sj and s′j , j = 1, . . . , k, with the following

properties. Every interval Aj is inside (sj , s
′
j), except when A1 contains 0 then s1 = 0

and A1 ⊂ [s1, s′1). Similarly, if v ∈ Ak then s′k = v and Ak ⊂ (sk, s
′
k]. We require that

s′j < sj+1 for j = 1, . . . , k − 1. Let Mj denote the union of those edges of ∂D which are

visited by Γ∗(t) for t ∈ Aj . Choose δ > 0 so small that

(i) if some continuous curve {f(t), t ∈ [0, v]} satisfies |f(t)− Γ∗(t)| ≤ δ for t ∈ [0, s] then

f(t) does not hit ∂D \Mj for any t ∈ [sj , s
′
j ] ∩ [0, s], and

(ii) if |f(t)− Γ∗(t)| ≤ δ for t ∈ [0, v] then f(t) does not hit ∂D for t /∈
⋃

j [sj , s
′
j ].

By Theorem 2.2 of Dupuis and Ishii (1991), for every convex polygonal domain D̃ there

exists a constant α = α(D̃) < ∞ such that if {f1(t), t ∈ [0, v]} and {f2(t), t ∈ [0, v]} are

continuous functions with supt∈[0,v] |f1(t)−f2(t)| ≤ a and {f∗1 (t), t ∈ [0, v]} and {f∗2 (t), t ∈
[0, v]} denote the normal reflections of f1 and f2 in D̃ then supt∈[0,v] |f∗1 (t)− f∗2 (t)| ≤ aα.

Since Γ∗(t) can visit only convex vertices, every set Mj is either a single edge of

∂D or it is the union of several adjacent edges with convex vertices between them. The

obvious localization argument allows us to adapt Dupuis and Ishii’s result on the Lipschitz

continuity of the Skorohod map as follows. For every j there exists a constant αj ∈ (1,∞)

with the following property. Suppose that {f(t), t ∈ [sj , s
′
j ]} is a continuous function with

supt∈[sj ,s′
j
] |f(t)−Γ(t)| ≤ a, such that its normal reflection {f∗(t), t ∈ [0, v]} in D does not

hit ∂D \Mj . Then supt∈[sj ,s′
j
] |f∗(t)− Γ∗(t)| ≤ aαj .

Let α = maxj αj and ε = δ2−k−2(1 + α)−k.
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Assume that {f(t), t ∈ [0, v]} is a continuous function which satisfies

sup
t∈[0,v]

|f(t)− Γ(t)| ≤ δ12−k(1 + α)−k, (3.3)

where δ1 ≤ δ. We will show that supt∈[0,v] |f∗(t) − Γ∗(t)| ≤ δ1. Suppose otherwise

and let v1 = inf{t : |f∗(t) − Γ∗(t)| ≥ δ1}. The function f∗(t) cannot hit ∂D at any

t ∈ [0, v1] \
⋃

j [sj , s
′
j ] in view of the definition of δ and the assumption that δ1 ≤ δ. We

have chosen sj ’s and s′j ’s so that Γ∗(t) /∈ ∂D for t ∈ [0, v1] \
⋃

j [sj , s
′
j ] so the distance

between f∗(t) and Γ∗(t) remains fixed on every interval in [0, v1] \
⋃

j [sj , s
′
j ]. It follows

that v1 ∈ [sj , s
′
j ] for some j, say, for j = j0. Suppose for the moment that j0 ≥ 3.

By (SM1), the functions {f∗(t), t ∈ [s1, s′1]} and {Γ∗(t), t ∈ [s1, s′1]} can be viewed as

normal reflections in D of {f(t)+f∗(s1)−f(s1), t ∈ [s1, s′1]} and {Γ(t)+Γ∗(s1)−Γ(s1), t ∈
[s1, s′1]}. The norm of the difference of the last two functions is bounded by δ12−k(1+α)−k

in view of (3.3) because f∗(s1) = f(s1) and Γ∗(s1) = Γ(s1), The Lipschitz continuity of

the Skorohod map implies that |f∗(s′1)− Γ∗(s′1)| ≤ δ12−k(1 + α)−kα. The same estimate

holds at time s2.

We iterate the estimate. We look at the functions {f∗(t), t ∈ [s2, s′2]} and {Γ∗(t), t ∈
[s2, s′2]} as normal reflections in D of {f(t) + f∗(s2) − f(s2), t ∈ [s2, s′2]} and {Γ(t) +

Γ∗(s2)− Γ(s2), t ∈ [s2, s′2]}. We have

|f(t) + f∗(s2)− f(s2)− (Γ(t) + Γ∗(s2)− Γ(s2))|

≤ |f(t)− Γ(t)|+ |f(s2)− Γ(s2)|+ |f∗(s2)− Γ∗(s2)|

≤ 2 · δ12−k(1 + α)−k + δ12−k(1 + α)−kα

≤ δ12−k+1(1 + α)−k+1,

for t ∈ [s2, s′2]. By the Lipschitz continuity, |f∗(s′2)−Γ∗(s′2)| ≤ δ12−k+1(1 +α)−k+1α, and

the same is true at time s3. Proceeding by induction, we obtain

|f∗(s′j0−1)− Γ∗(s′j0−1)| ≤ δ2−k+j0−2(1 + α)−k+j0−2α.

The same inequality is valid at time sj0 . We now drop the assumption that j0 ≥ 3; it was

imposed only to enable us to illustrate the method with a few non-trivial steps.

We repeat our earlier argument involving the translation of the paths, this time for

the functions on the interval [sj0 , s
′
j0

]. We may view {f∗(t), t ∈ [sj0 , s
′
j0

]} and {Γ∗(t), t ∈
[sj0 , s

′
j0

]} as normal reflections in D of {f(t) + f∗(sj0)− f(sj0), t ∈ [sj0 , s
′
j0

]} and {Γ(t) +
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Γ∗(sj0)− Γ(sj0), t ∈ [sj0 , s
′
j0

]}. We have for t ∈ [sj0 , s
′
j0

],

|f(t) + f∗(sj0)− f(sj0)− (Γ(t) + Γ∗(sj0)− Γ(sj0))|

≤ |f(t)− Γ(t)|+ |f(sj0)− Γ(sj0)|+ |f∗(sj0)− Γ∗(sj0)|

≤ 2 · δ12−k(1 + α)−k + δ12−k+j0−2(1 + α)−k+j0−2α

≤ δ12−k+j0−1(1 + α)−k+j0−1 ≤ δ1/(2α).

By the Lipschitz property of the Skorohod map, we must have |f∗(t)−Γ∗(t)| ≤ δ1/2 on the

interval [sj0 , s
′
j0

]. This contradicts the definition of j0 and proves that supt∈[0,v] |f∗(t) −
Γ∗(t)| ≤ δ1.

The lemma holds with ε defined earlier in the proof and β = 2k(1 + α)k.

Lemma 3.3. Suppose that (Xt, Yt) is a synchronous coupling of reflected Brownian mo-

tions in D, starting from (x, y). For some ε1 > 0, all ε2 > 0, and all x, y ∈ D, with

probability 1, there exists t < ∞ such that |Xt − Yt| ≤ ε2, dist (Xt, ∂D) ≥ ε1 and

dist (Yt, ∂D) ≥ ε1.

Proof. Step 1. In this part of the proof, we will find points whose neighborhoods are

visited infinitely often by the synchronous coupling. Let D1 be a non-empty open subset

of D, such that D1 ⊂ D. The stationary distribution of Xt has the uniform density in

D. This clearly implies that Xn ∈ D1 for infinitely many n, a.s. For every integer k ≥ 1,

choose a finite sequence of open balls B(zk
j , 1/k) whose union covers D. Let Aj1,j2 be the

event that (Xn, Yn) ∈ (B(zk
j1
, 1/k) ∩D1) × B(zk

j2
, 1/k) for infinitely many integers n ≥ 0.

Since Xn ∈ D1 for infinitely many n, and the family of balls B(zk
j2
, 1/k) is finite, the union

of events Aj1,j2 has probability one. Every event Aj1,j2 belongs to the tail σ-field so its

probability is 0 or 1. There are only finitely many events Aj1,j2 so not all of them can have

probability 0. Let jk
1 and jk

2 be such that P (Ajk
1 ,jk

2
) = 1. By compactness, a subsequence

of (zk
jk
1
, zk

jk
1
) converges to a pair (z1, z2) ∈ D1 ×D.

Step 2. This step is devoted to the construction of a piecewise linear path {Γ(t), t ≥ 0}
inside D with Γ(0) = z1 which chases the normal reflection of {Π(t), t ≥ 0} def= {Γ(t)− z1 +

z3, t ≥ 0}, where z3 ∈ D is a point very close to z2.

Fix some ε3 > 0. We start by defining an initial piece of Γ. We choose t1 > 0 and

{Γ1(t), 0 ≤ t ≤ t1} so that the range of this function is the shortest polygonal line inside

D connecting Γ1(0) = z1 and Γ1(t1) = z2. Moreover, we require that the derivative of

Γ1(t) has the unit length for all t where it is defined. Next we slightly perturb Γ1 so that
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it fits inside D. More precisely, we find a piecewise linear function {Γ2(t), 0 ≤ t ≤ t1}
such that Γ2(t) /∈ ∂D for t ∈ [0, t1], Γ2(0) = Γ1(0) = z1, |Γ2(t1) − Γ1(t1)| ≤ ε3, and

| d
dtΓ

2(t)| = | d
dtΓ

1(t)| = 1 for almost all t ∈ [0, t1]. The existence of such a function Γ2 is

not hard to prove. Denote Γ2(t1) by z3 and note that |z3 − z2| ≤ ε3, by the choice of Γ2.

Using Lemma 3.1 we can modify {Γ2(t) − z1 + z3, 0 ≤ t ≤ t1} to obtain a piecewise

linear function {Π(t), 0 ≤ t ≤ t1} such that Π(0) = z3, sup0≤t≤t1 |Π(t) − (Γ2(t) − z1 +

z3))| is so small that {Π(t) − z3 + z1, 0 ≤ t ≤ t1} ⊂ D, and the normal reflection of

{Π(t), 0 ≤ t ≤ t1} in D does not visit any concave vertices of ∂D. Moreover, | d
dtΠ(t)| ≤

(1 + 2−1)| d
dtΓ

2(t)| = (1 + 2−1) for all t ∈ [0, t1] where the derivatives are defined. Then we

let Γ(t) = Π(t)− z3 + z1 for t ∈ [0, t1]; note that this curve lies inside D.

We will use induction to extend {Γ(t), 0 ≤ t ≤ t1} to a piecewise linear path {Γ(t), t ≥
0} inside D such that the normal reflection Π∗ in D of the path Π(t) def= Γ(t)− z1 + z3 does

not visit any concave vertices of ∂D, |Γ(s)−Π∗(s− t1)| ≤ 2−n for s ∈ [nt1, (n+ 1)t1)] and

n ≥ 1, and ∣∣∣∣ ddsΓ(s)
∣∣∣∣ ≤ (1 + 2−n)

∣∣∣∣ ddsΠ∗(s− t1)
∣∣∣∣

for almost every s ∈ [nt1, (n+ 1)t2].

Suppose that {Γ(t), nt1 ≤ t ≤ (n+ 1)t1} has been defined. Let Π(t) = Γ(t)− z1 + z3

for t ∈ [nt1, (n + 1)t1]; an equivalent formula for Π(t) is Γ(t) − Γ(nt1) + Π(nt1). Let

{Π∗(t), nt1 ≤ t ≤ (n + 1)t1} be the normal reflection of {Π(t) − Π(nt1) + Π∗(nt1), nt1 ≤
t ≤ (n+1)t1} in D. The latter is the same as {Γ(t)−Γ(nt1)+Π∗(nt1), nt1 ≤ t ≤ (n+1)t1}.
We set Γ1(t) = Π∗(t− t1) for t ∈ ((n+1)t1, (n+2)t1]. We then modify {Γ1(t), (n+1)t1 ≤
t ≤ (n + 2)t1} in several steps, just as in the case of {Γ1(t), 0 ≤ t ≤ t1}. First we find a

piecewise linear function {Γ2(t), (n+1)t1 ≤ t ≤ (n+2)t1} lying strictly inside D such that

Γ2((n+ 1)t1) = Γ1((n+ 1)t1),

|Γ2(t)− Γ1(t)| ≤ 2−(n+2),

and | d
dtΓ

2(t)| = | d
dtΓ

1(t)| for almost all t ∈ [(n+ 1)t1, (n+ 2)t1].

Next we use Lemma 3.1 to modify

{Γ2(t) + Γ2((n+ 2)t1)− Γ2((n+ 1)t1), (n+ 1)t1 ≤ t ≤ (n+ 2)t1}

to obtain a piecewise linear function {Π(t), (n + 1)t1 ≤ t ≤ (n + 2)t1} such that Π((n +

1)t1) = Γ2((n+ 2)t1),

sup
(n+1)t1≤t≤(n+2)t1

|Π(t)− (Γ2(t) + Γ2((n+ 2)t1)− Γ2((n+ 1)t1))|
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is smaller than 2−(n+2) for t ∈ [(n+ 1)t1, (n+ 2)t2] and so small that

{Π(t)−Π((n+ 1)t1) + Γ2((n+ 1)t1), (n+ 1)t1 ≤ t ≤ (n+ 2)t1} ⊂ D.

Moreover, the normal reflection of {Π(t)−Π((n+1)t1)+Π∗((n+1)t1), (n+1)t1 ≤ t ≤ (n+

2)t1} in D does not visit any concave vertices of ∂D and | d
dtΠ(t)| ≤ (1 + 2−(n+1))| d

dtΓ
2(t)|

for all t ∈ [(n + 1)t1, (n + 2)t1] where the derivatives are defined. Then we let Γ(t) =

Π(t)−Π((n+ 1)t1) + Γ2((n+ 1)t1) for t ∈ [(n+ 1)t1, (n+ 2)t1]; this path lies inside D.

Proceeding by induction, we define Γ(t) on [0,∞). Let Π(t) = Γ(t)− z1 + z3, which is

a parallel translation of the path Γ. Denote by Π∗ the normal reflection of Π in D. Note

that |Γ((n+ 2)t1)−Π∗((n+ 1)t1)| ≤ 2−(n+1) for any n ≥ 0.

Step 3. We will show that lim infn→∞ |Γ(nt1) − Π∗(nt1)| = 0. Suppose that this is

not the case. Then |Γ(nt1) − Π∗(nt1)| ≥ b for some b > 0 and large n. Since |Γ((n +

2)t1) − Π∗((n + 1)t1)| ≤ 2−(n+1), we must have |Γ(nt1) − Γ((n + 1)t1)| ≥ b/2 for large

n. We will reparametrize Γ using a continuous strictly monotone one-to-one function

ψ : [0,∞) → [0,∞) so that Λ(t) = Γ(ψ−1(t)) is parameterized according to its length,

i.e., | d
dtΛ(t)| = 1 for all t where the derivative is well defined. Let sn = ψ(nt1) so that

Λ(sn) = Γ(nt1). Let Φ(t) = Π(ψ−1(t)) and note that the normal reflection of Φ in D is

Φ∗(t) = Π∗(ψ−1(t)).

Recall that |Γ((n+ 1)t1)−Π∗(nt1)| ≤ 2−n. It follows that

Λ(sn+1)− Λ(sn) = Φ∗(sn)− Φ∗(sn−1) + vn,

for some vn satisfying |vn| ≤ 2−n+2. From the “local time” representation (3.1) of reflected

paths we obtain

Λ(sn+1)− Λ(sn) = vn + Φ∗(sn)− Φ∗(sn−1) = vn + Λ(sn)− Λ(sn−1) +
∫ sn

sn−1

nΦ∗(s)dL
Φ
s ,

so, using induction,

Λ(sn+k+1)− Λ(sn+k) =
n+k∑
m=n

vm + Λ(sn)− Λ(sn−1) +
∫ sn+k

sn−1

nΦ∗(s)dL
Φ
s ,

for integer k ≥ 0. From this we obtain,

Λ(sn+j+1)− Λ(sn) =
j∑

k=0

Λ(sn+k+1)− Λ(sn+k)

=
j∑

k=0

(
n+k∑
m=n

vm + Λ(sn)− Λ(sn−1) +
∫ sn+k

sn−1

nΦ∗(s)dL
Φ
s

)

=
j∑

k=0

n+k∑
m=n

vm + (j + 1)(Λ(sn)− Λ(sn−1)) +
j∑

k=0

(∫ sn+k

sn−1

nΦ∗(s)dL
Φ
s

)
.
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Let b2 be the diameter of D and let j be 1 plus the integer part of 4b2/b. Since |Λ(sn)−
Λ(sn−1))| ≥ b/2 for large n,

|(j + 1)(Λ(sn)− Λ(sn−1))| ≥ 2b2.

Consider n sufficiently large so that∣∣∣∣∣
j∑

k=0

n+k∑
m=n

vm

∣∣∣∣∣ ≤ (j + 1)2−n+4 ≤ 2−n+48b2/b ≤ b2/2.

Since both points Λ(sn+j+1) and Λ(sn) lie in D, we must have for some k = k(n) ≤ j,∣∣∣∣∣
∫ sn+k

sn−1

nΦ∗(s)dL
Φ
s

∣∣∣∣∣ ≥ b2/(2(j + 1)) ≥ b/8.

So for this k = k(n), LΦ(sn+k) − LΦ(sn−1) ≥ b/8. This shows that there is a constant

a ∈ (0, 1) depending only on b and j (in fact, a can be taken to be
√

1− b216−2(j + 1)−2 )

such that | d
dsΦ∗(s)| ≤ a for s in a union of intervals in [sn−1, sn+k] of total length no less

than b/16. Hence, the length of the curve {Φ∗(s), s ∈ [sn−1, sn+k(n)]} is smaller than that

of {Φ(s), s ∈ [sn−1, sn+k(n)]}, and therefore of {Λ(s), s ∈ [sn−1, sn+k(n)]}, by (1− a)b/16.

Since | d
dtΠ

∗(t)| ≤ | d
dtΠ(t)| = | d

dtΓ(t)| and | d
dtΓ(t + t1)| ≤ (1 + 2−n−1)| d

dtΠ
∗(t)|, for

t ∈ (nt1, (n + 1)t1], we see that the length of {Γ(t), (n + 1)t1 ≤ t ≤ (n + 2)t1} is not

greater than 1 + 2−n−1 times the length of {Π∗(t), nt1 ≤ t ≤ (n + 1)t1}; it is therefore

bounded by 1 + 2−n−1 times the length of {Γ(t), nt1 ≤ t ≤ (n + 1)t1}. Hence, for any

δ > 0, m ≥ 1 and all sufficiently large n, the length of {Γ(t), nt1 ≤ t ≤ (n + k(n) + 1)t1}
is not greater than 1 + δ times the length of {Γ(t), (n − 1)t1 ≤ t ≤ (n + k(n))t1} and

the length of {Γ(t), (n + k(n) + 1)t1 ≤ t ≤ (j + 1)t1} is bounded by 1 + δ times the

length of {Γ(t), (n + k(n))t1 ≤ t ≤ jt1}. Translated to the language of Λ, this means

that for large n, the length of the curve {Λ(s), s ∈ [sn, sn+k+1]} is smaller than that of

{Λ(s), s ∈ [sn−1, sn+k]} by (1 − a)b/32, and the length of {Λ(s), s ∈ [sn+k+1, sn+j+1]}
is not greater than the length of {Λ(s), s ∈ [sn+k, sn+j ]} times 1 + δ. Combining these

estimates, we obtain for large n that the length of {Λ(s), s ∈ [sn, sn+j+1]} is smaller

than that of {Λ(s), s ∈ [sn−1, sn+j ]} by (1 − a)b/64. As (1 − a)b/64 is independent of n,

an induction argument now implies that for sufficiently large n, the length of {Λ(s), s ∈
[sn, sn+j+1]} is negative, which is impossible. This completes the proof of the claim that

lim infn→∞ |Γ(nt1)−Π∗(nt1)| = 0.
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Step 4. Fix some x, y ∈ D and suppose that (Xt, Yt) is a synchronous coupling of reflected

Brownian motions in D, starting from (x, y). Recall z1 and z2 from Step 1 of the proof.

Find v < ∞ such that |Γ(v) − Π∗(v)| ≤ ε2/4. Let δ0 be the distance of {Γ(t), t ∈ [0, v]}
from ∂D and recall that δ0 > 0. Brownian paths reflected in a polygonal domain do

not hit any vertices, a.s., so Lemma 3.2 can be applied to a Brownian path in place of

the function f . Lemma 3.2 implies that we can find δ1 ∈ (0, ε2/4 ∧ δ0/2) so small that

if |f(t) − Π(t))| ≤ δ1 for all t ∈ [0, v] then |f∗(t) − Π∗(t)| ≤ ε2/4 for t ∈ [0, v]. Let

Bj = B(zj , δ1/3), for j = 1, 2. We may and will assume that |z3 − z2| ≤ δ1/3. Let T1

be the first time t when Xt ∈ B1 and Yt ∈ B2. This stopping time is finite a.s., by the

definition of z1 and z2. Recall that Bt is the Brownian motion “driving” Xt and Yt. Let

A be the event that |BT1+t − BT1 − Γ(t) + z1| ≤ δ1/3 for all t ∈ [0, v]. By the support

theorem, the probability of A is greater than some p1 > 0. The event A implies that

Xt = Bt +XT1 −BT1 for t ∈ [T1, T1 + v] because the process t→ BT1+t +XT1 −BT1 will

not hit the boundary on the interval [0, v], by the choice of δ0 and δ1. Hence,

|XT1+v − Γ(v)| = |BT1+v − Γ(v) +XT1 −BT1 |

≤ |BT1+v −BT1 − Γ(v) + z1|+ |XT1 − z1|

≤ δ1/3 + δ1/3 < δ1 < ε2/4.

Recall that Π(t) = Γ(t)− z1 + z3. If A occurs then

|BT1+t −BT1 + YT1 −Π(t)|

≤ |BT1+t −BT1 − Γ(t) + z1|+ |YT1 − z2|+ |z2 − z3|

≤ δ1/3 + δ1/3 + δ1/3 = δ1.

for all t ∈ [0, v]. Since {Yt, t ∈ [T1, T1 +v]} is a normal reflection of {BT1+t−BT1 +YT1 , t ∈
[T1, T1 + v]} in D, the definition of δ1 implies that |Y (T1 + t)−Π∗(t)| ≤ ε2/4 for t ∈ [0, v].

Then

|XT1+v − YT1+v| ≤ |XT1+v − Γ(v)|+ |YT1+v −Π∗(v)|+ |Π∗(v)− Γ(v)|

≤ ε2/4 + ε2/4 + ε2/4 < 3ε2/4.

We see that |XT1+v − YT1+v| ≤ 3ε2/4 with probability greater than p1.

For k ≥ 2, let Tk be the first time t ≥ Tk−1 + v, such that Xt ∈ B1 and Yt ∈ B2. All

stopping times Tk are finite a.s. The strong Markov property applied at time Tk implies

that given the events {|XTj+v − YTj+v| ≤ 3ε2/4} did not occur for any j < k, we have

|XTk+v−YTk+v| ≤ 3ε2/4 with probability greater than p1, by the same argument as above.

This easily implies that |XTk+v − YTk+v| ≤ 3ε2/4 for some k with probability 1.
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It is easy to see that if ε1 > 0 is sufficiently small then there exists p2 > 0, such

that for any x, y ∈ D with |x − y| = 3ε2/4, if (X0, Y0) = (x, y) then both Xt and Yt will

move at least ε1 units away from the boundary before moving away from each other to

the distance greater than ε2, in 1 time unit, with probability greater than p2. The proof

of this fact is quite elementary and is left to the reader. We note that Lemma 4.1 tackles

similar estimates in the considerably harder case of domains with Lipschitz boundaries.

Let S1 be the first time t such that |Xt−Yt| ≤ 3ε2/4, and let Sk = inf{t > Sk−1 + 1 :

|Xt − Yt| ≤ 3ε2/4}. The main part of the proof shows that all stopping times Sk are

finite. By the strong Markov property applied at Sk, there exists t ∈ [Sk, Sk +1] such that

|Xt − Yt| ≤ ε2, dist (Xt, ∂D) ≥ ε1 and dist (Yt, ∂D) ≥ ε1 with probability greater than

p2, assuming that there is no t with such properties in any of the intervals [Sj , Sj + 1],

j = 1, 2, . . . , k − 1. A routine argument now shows that with probability 1, there exists a

time t such that |Xt − Yt| ≤ ε2, dist (Xt, ∂D) ≥ ε1 and dist (Yt, ∂D) ≥ ε1.

Let K = {reiθ ∈ C : r > 0, θ ∈ (0, θ0)}, a wedge with angle θ0 ∈ (0, 2π). In Lemma

3.4 we will consider a process (Xt, Yt) involving a sequence of synchronous couplings in

K. Later on, we will apply the lemma to a synchronous coupling of reflected Brownian

motions in a polygonal domain. Such a pair of processes behaves like a synchronous

coupling of reflected Brownian motions in a wedge K whenever both processes are inside

a neighborhood of a vertex of ∂D.

Processes (Xt, Yt) in the statement of Lemma 3.4 are supposed to have the following

properties. Fix some integer n, not necessarily positive. Assume there exist sequences of

stopping times Sk, k ≥ 1 and Uk, k ≥ 1, such that

(i) Sk+1 > Uk > Sk for all k,

(ii) |XSk
| = 2n for every k,

(iii) {(Xt, Yt), t ∈ [Sk, Uk]} is a synchronous coupling of reflected Brownian motions in K,

independent of {(Xt, Yt), t ∈ [0, Sk)} given (XSk
, YSk

),

(iv) Uk = inf{t > Sk : |Xt| = 2n+1},
(v) |XS1 − YS1 | ≤ |X0 − Y0|,
(vi) |XSk

− YSk
| ≤ |XUk−1 − YUk−1 | if |XUk−1 − YUk−1 |/|XUk−1 | ≤ 1/2.

Let I =
⋃

j≥1[Sj , Uj ].

Lemma 3.4. If |XS1 − YS1 | ≤ |XS1 |/2m then P (supt∈I |Xt − Yt|/|Xt| ≤ 1/2) > qm, for

some qm’s such that qm → 1 as m→∞.
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Proof. Let T1 = S1 and for k ≥ 1,

Tk = inf{t ∈ (Tk−1,∞) ∩ I : |Xt| = 2|XTk−1 | or |Xt| = |XTk−1 |/2}.

The modulus Rt = |Xt| of Xt is a 2-dimensional Bessel process in random intervals I

because the normal reflection on ∂K does not affect the radial part of the driving Brownian

motion Bt (see the discussion of “mirror” couplings in Section 3 of Burdzy and Kendall

(2000)). It follows that Nk = log2RTk
is the symmetric random walk on (−∞, n+ 1] ∩Z,

with reflection at n+ 1.

We will define events Ak in terms of {Xt, t ∈ [Tk, Tk+1]} and {Bt, t ∈ [Tk, Tk+1]}.
First, we declare that Ak ⊂ {|XTk

| 6= 2n+1}. Suppose that |XTk
| = 2m 6= 2n+1. Let

T 1
k = inf{t > Tk : |Xt| = (3/2)2m or |Xt| = (3/4)2m},

T 2
k = inf{t > Tk : argXt = 0}.

Note that T 1
k < Tk+1 and let A1

k = {T 2
k < T 1

k }. Write Bt = (B1
t , B

2
t ). Let

T 3
k = inf{t > T 2

k : B2
t ≤ B2

T 2
k
− 2m}

and
A2

k =
{
T 3

k < inf{t > T 2
k : |B1

t −B1
T 2

k
| ≥ 1/16 · 2m}

∧ inf{t > T 2
k : B2

t − inf
s∈[T 2

k
,t]
B2

s ≥ 1/16 · 2m}
}
.

If A1
k ∩A2

k holds then |XT 3
k
| ∈ [(5/8)2m, (13/8)2m]. Next let

T 4
k = inf{t > T 3

k : |Xt| = (7/4)2m or |Xt| = (9/16)2m},

T 5
k = inf{t > T 3

k : argXt = θ0},

and A3
k = {T 5

k < T 4
k }. Let B̃1

t and B̃2
t be the real and imaginary parts of Bte

−iθ0 . Let

T 6
k = inf{t > T 5

k : B̃2
t ≥ B̃2

T 5
k

+ 2m}

and
A4

k =
{
T 6

k < inf{t > T 5
k : |B̃1

t − B̃1
T 5

k
| ≥ 1/64 · 2m}

∧ inf{t > T 5
k : −B̃2

t + sup
s∈[T 5

k
,t]

B̃2
s ≥ 1/64 · 2m}

}
.

We let Ak = A1
k∩A2

k∩A3
k∩A4

k. Note that if Ak holds then |XT 6
k
| ∈ [(17/32)2m, (57/32)2m].
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We will now argue that P (Ak | BTk
, XTk

, |XTk
| 6= 2n+1) > p1 for some p1 > 0, inde-

pendent of k. First, the event A1
k occurs if the driving Brownian motion Bt, t ≥ Tk, makes

a clockwise loop within the annulus with center BTk
−XTk

and radii (3/2)2m and (3/4)2m;

this event has a positive probability not depending on m, by scaling. Assuming that A1
k

occurred, the event A2
k can occur with a positive probability, by the support theorem;

this probability is independent of m, again by the scaling property of Brownian motion.

Similar arguments apply to A3
k and A4

k. This proves our claim about the probability of

Ak.

Let Mj be the number of k ≤ j such that |XTk
| 6= 2n+1. Let Vj be the number of

k ≤ j such that Ak holds. Recall that Ak is defined in terms of {Xt, t ∈ [Tk, Tk+1]} and

{Bt, t ∈ [Tk, Tk+1]}. Hence, by the strong Markov property, assuming |XTk
| 6= 2n+1, the

conditional probability of Ak given the σ-field generated by {Aj , j < k} is greater than

p1. The strong law of large numbers implies that limj→∞ Vj/Mj > p1. However, standard

results for the reflected random walk Nk show that limj→∞Mj/j = 1 so limj→∞ Vj/j > p1,

a.s.

We note that if |Xt − Yt|/|Xt| ≤ 1 for t ≤ s then the distance between Xt and Yt

cannot increase during the time interval [0, s] ∩ I—we will refer to this observation as (*)

later in the proof. This is because for all t ∈ I not larger than s, if one of the processes

reflects on a side of the wedge K, the other process stays on the same side of the straight

line containing this side. The claim now follows easily from the Skorohod representation

of reflecting Brownian motion in K and assumption (vi).

If |XTk
−YTk

|/|XTk
| ≤ 1/2 and the event Ak occurs then |Xt−Yt| is reduced by at least

a factor of | cos θ0| on the interval [Tk, Tk+1]. To see this, first note that |Xt−Yt|/|Xt| ≤ 1

for t ∈ [Tk, Tk+1]. Hence, by (*), the function t→ |Xt−Yt| cannot increase during the time

interval [Tk, Tk+1]. The occurrence of A2
k implies that at some time s1k ∈ [Tk, T

3
k ], both

processes Xt and Yt lie on the horizontal axis. Later, at some time s2k ∈ [T 3
k , T

6
k ], in view

of the occurrence of A4
k, the processes will lie on the side of the wedge K which is inclined

at the angle θ0. Elementary geometry shows that |Xs2
k
− Ys2

k
| ≤ | cos θ0||Xs1

k
− Ys1

k
|.

From now on we will assume that θ0 6= π/2, π, 3π/2 so that | cos θ0| ∈ (0, 1). The

argument would have to be modified if we allowed θ0 to take one of the values π/2, π or

3π/2 but the proof would be in fact easier than the one given below; we leave the analysis

of those special three cases to the reader. Recall that the process Nk = log2 |XTk
| is a

symmetric random walk on (−∞, n+1]∩Z reflected at n+1. Fix some q ∈ (0, 1), arbitrarily

close to 1 and note that N1 = n. The law of iterated logarithm implies that we can find
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m so large that the probability that Nk ≤ n−m/2− k
∣∣ log2 | cos θ0|

∣∣p1/2 for some k ≥ 0 is

less than (1− q)/2. Since limk→∞ Vk/k > p1, a.s., we can increase m, if necessary, so that∣∣ log2 | cos θ0|
∣∣Vk ≥ −m/2 + k

∣∣ log2 | cos θ0|
∣∣p1/2 for all k ≥ 0 with probability greater than

(1 − q)/2. It follows that for some large m, Nk ≥ n −m −
∣∣ log2 | cos θ0|

∣∣Vk for all k ≥ 0

with probability greater than q.

Assume that |XS1 − YS1 |/|XS1 | ≤ 2−m−3. We will argue that if Nk ≥ n − m −∣∣ log2 | cos θ0|
∣∣Vk for all k ≥ 0 then |Xt − Yt|/|Xt| ≤ 1/2 for all t ≥ S1. Suppose otherwise.

Let j be the smallest integer such that |Xt − Yt|/|Xt| > 1/2 for some t ∈ [Tj , Tj+1]. This

implies that the function t→ |Xt−Yt| is non-decreasing on the interval [0, Tj ]∩ I, in view

of (*) and assumption (vi). Since Vj−1 ≥ −(Nj−1 − n + m)/
∣∣ log2 | cos θ0|

∣∣, the distance

|XTj
− YTj

| is less than or equal to | cos θ0|−(Nj−1−n+m)/| log2 | cos θ0|||XS1 − YS1 |. Thus

log2 |XTj
− YTj

| ≤ (Nj−1−n+m) + log2 |XS1 − YS1 | ≤ Nj + 1−n+m+ log2 |XS1 − YS1 |,

so

log2 |XTj
− YTj

| −Nj ≤ 1− log2 |XS1 |+m+ log2 |XS1 − YS1 |,

log2

(
|XTj − YTj |/|XTj |

)
≤ 1 +m+ log2 (|XS1 − YS1 |/|XS1 |) .

Recall that |XS1 − YS1 |/|XS1 | ≤ 2−m−3 to see that log2 |XTj
− YTj

|/|XTj
| ≤ −2 and so

|XTj − YTj |/|XTj | ≤ 1/4. This and (*) imply that |Xt − Yt|/|Xt| ≤ 1/2 for t ∈ [Tj , Tj+1],

because t → |Xt − Yt| is non-increasing for t ∈ I as long as |Xt − Yt|/|Xt| ≤ 1, and there

is no t for which this condition fails before the first time s > Tj when |Xs| is equal to

|XTj
|/2. This contradicts the definition of j.

We have shown that for any q < 1, there exists m such that if |XS1 − YS1 |/|XS1 | ≤
2−m−3 then |Xt − Yt|/|Xt| ≤ 1/2 for all t ∈ [S1,∞) ∩ I with probability greater than or

equal to q. The lemma follows from this statement in a straightforward way.

Proof of Theorem 1.1 (i). Let {x1, x2, . . . , xk0} be the set of all vertices of ∂D. Choose

n so negative that the discs B(xj , 2n+2) are disjoint. For every j = 1, 2, . . . , k0, let

Sj
1 = inf{t ≥ 0 : |Xt − xj | = 2n},

U j
k = inf{t > Sj

k : |Xt − xj | = 2n+1},

Sj
k+1 = inf{t > U j

k : |Xt − xj | = 2n}.

For a point x ∈ ∂D which is not a vertex, let K(x) be a straight line containing the edge

of ∂D to which x belongs. Let H(x) be a halfplane whose boundary is K(x), and which
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intersects D in every neighborhood of x. Let ε > 0 be so small that if |Xt − Yt| ≤ ε, Xt

is at a distance greater than 2n−1 from all vertices, and Xt ∈ ∂D then Yt ∈ H(Xt). This

property is symmetric in Xt and Yt, of course. As long as |Xt − Yt| ≤ ε, the function

t→ |Xt − Yt| is non-increasing outside
⋃

j,k[Sj
k, U

j
k ].

Choose arbitrarily small δ > 0 and let m be so large that qm defined in Lemma

3.4 satisfies k0(1 − qm) < δ. Recall ε1 and ε2 from Lemma 3.3. Assume without loss

of generality that ε2 is smaller than ε chosen in the previous paragraph. Decrease n, if

necessary, so that 2n+2 < ε1. Decrease ε2 so that |Xt − Yt| ≤ |Xt − xj |/2m for all j if

|Xt − Yt| ≤ ε2 and dist (Xt, ∂D) ≥ ε1. Let T1 be the first time t when |Xt − Yt| ≤ ε2, and

for all j we have |Xt − Yt| ≤ |Xt − xj |/2m and |Xt − xj | ≥ 2n+2. The stopping time T1

is finite a.s. because there exists t < ∞ with |Xt − Yt| ≤ ε2 and dist (Xt, ∂D) ≥ ε1, by

Lemma 3.3.

The process t → |Xt − Yt| will be non-increasing at least until the first time s when

|Xs−Ys|/|Xs−xj | ≥ 1/2 for some j. This follows from observation (*) made in the proof

of Lemma 3.4. For every j, Lemma 3.4 can be applied to the process (Xt, Yt) relative to

wedge Kj for which Kj ∩Vj = D ∩Vj and some neighborhood Vj of xj . Lemma 3.4 shows

that the probability that there exists s ≥ T1 such that |Xs−Ys|/|Xs−xj | ≥ 1/2 for some j

is less than k0(1−qm) < δ. If there is no such s, the process t→ |Xt−Yt| is non-increasing

for all t ≥ T1.

If there is s ≥ T1 such that |Xs − Ys|/|Xs − xj | ≥ 1/2 for some j, we let T2 be the

first time t > s when |Xt − Yt| ≤ ε2, and for all j we have |Xt − Yt| ≤ |Xt − xj |/2m and

|Xt − xj | ≥ 2n+2. Lemma 3.3 implies that T2 < ∞ a.s. It should be now clear how to

use an induction argument to define a sequence of stopping times Tk and to show that

with probability 1, for some k, we will have |Xt − Yt|/|Xt − xj | ≤ 1/2 for all j and all

t ≥ Tk. Remark (*) in the proof of Lemma 3.4 implies that with probability 1, the distance

between Xt and Yt will be non-increasing after such a time Tk. In view of Lemma 3.3, the

distance will converge to 0.

4. Lip domains. We will prove Theorem 1.1 (ii) in this section.

Let D be a lip domain. We will need a sequence of Lipschitz domains Dn with

piecewise smooth boundaries, increasing to D. It is easy to see that we can find Dn’s with

the following properties. The boundary of Dn is the union of graphs of C2 functions fn
1

and fn
2 , i.e.,

Dn = {(x1, x2) : x2 = fn
1 (x1), zn

1 ≤ x1 ≤ zn
2 } ∪ {(x1, x2) : x2 = fn

2 (x1), zn
1 ≤ x1 ≤ zn

2 },
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such that fn
1 (zn

1 ) = f2(zn
1 ), fn

1 (zn
2 ) = fn

2 (zn
2 ), fn

1 (xn
1 ) < fn

2 (xn
1 ) for zn

1 < x1 < zn
2 , and

functions fn
1 and fn

2 are Lipschitz with the constant c0 (same as in (1.1)), i.e., for k = 1, 2,

|fn
k (x1)− fn

k (x̃1)| ≤ c0|x1 − x̃1|, for all zn
1 ≤ x1, x̃1 ≤ zn

2 .

Moreover, Dn ⊂ D for every n ≥ 1 and D =
⋃

nDn.

We will assume that the boundary of D near its left and right endpoints can be

represented as a Lipschitz function in the coordinate system rotated by π/2 relative to

the standard one. The general case does not present any fundamentally new technical

challenges. Because of this assumption, there exist c1 ∈ (0, c0] and r1 > 0 such that,

f1(x1)− f1(x2) ≥ c1(x2 − x1),

f2(x1)− f2(x2) ≤ −c1(x2 − x1),
(4.1)

for z1 ≤ x1 < x2 ≤ z1 + r1, and

f1(x1)− f1(x2) ≤ −c1(x2 − x1),

f2(x1)− f2(x2) ≥ c1(x2 − x1),
(4.2)

for z2 − r1 ≤ x1 < x2 ≤ z2. We can assume that the functions fn
k defining the domains

Dn satisfy (4.1) for zn
1 ≤ x1 < x2 ≤ zn

1 + r1/2 and (4.2) for zn
2 − r1/2 ≤ x1 < x2 ≤ zn

2 .

Let R+ = {(s, t) : s ≥ 0, |t| ≤ c0 s} and R− = {(s, t) : s ≤ 0, |t| ≤ c0 |s|}.

Proof of Theorem 1.1 (ii). Step 1. Let µ2 < 0 be the second eigenvalue of the Laplacian

in D with the Neumann boundary conditions. In this step, we will show that there exists

an eigenfunction ϕ2(x) corresponding to µ2, such that for every x we have ∇ϕ2(x) ∈ R+.

Let un(t, x) be the solution of the heat equation in Dn with the Neumann boundary

conditions and the initial condition un(0, x) = x1 for x = (x1, x2) ∈ Dn. Then∇xun(t, x) ∈
R+ for every t ≥ 0. This can be proved in the same way as Theorem 3.1 of Bañuelos and

Burdzy (1999) (see also their Example 3.3).

We define u(t, x) for x ∈ D in a way completely analogous to that for un(t, x), namely,

we let u(t, x) be the solution of the heat equation in D with the Neumann boundary

conditions and u(0, x) = x1 for x = (x1, x2) ∈ D. By Theorem 2.1 and Lemma 2.2,

functions un(t, x) converge pointwise to u(t, x) on compact subsets of (0,∞)×D as n→∞.

It follows that ∇xu(t, x) ∈ R+ for every t > 0, just like in the case of ∇un(t, x). This

combined with the methods from the proof of Theorem 3.3 of Bañuelos and Burdzy (1999)
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shows that there exists an eigenfunction ϕ2(x) such that ∇ϕ2(x) ∈ R+ for every x. Let us

fix an eigenfunction ϕ2 with this property and let v(t, x) = ϕ2(x)e−µ2t.

Step 2. Define V+ = {(s, t) : s ≥ 0, |t| ≤ s/c0}, and V− = {(s, t) : s ≤ 0, |t| ≤ |s|/c0}.
Since 0 < c0 < 1, clearly R+ ⊂ V+ and R− ⊂ V−. We will show that for any fixed a2 > 0

there exists a3 > 0 such that if x, y ∈ D, |x− y| ≥ a2, dist (x, ∂D) ≥ a2, dist (y, ∂D) ≥ a2,

and y−x ∈ R+∪R−, then |ϕ2(x)−ϕ2(y)| ≥ a3. If this is not true then there exist sequences

of points xk and yk satisfying the above conditions but such that |ϕ2(xk)−ϕ2(yk)| ≤ 1/k.

By compactness, we can extract convergent subsequences with limits x∞ and y∞. We have

|x∞ − y∞| ≥ a2. We will assume without loss of generality that y∞ − x∞ ∈ R+. By the

continuity of ϕ2, we have ϕ2(x∞) = ϕ2(y∞). The eigenfunction ϕ2 satisfies ∇ϕ2 ∈ R+ so

if z ∈ x∞ + V+ then ϕ2(z) ≥ ϕ2(x∞). Similarly, ϕ2(z) ≤ ϕ2(y∞) for z ∈ y∞ + V−. It

follows that ϕ2(z) = ϕ2(x∞) for all z in the intersection of x∞ + V+ and y∞ + V−. The

intersection of these sets is nonempty because y∞ − x∞ ∈ R+ and c0 < 1. Hence, the

function ϕ2 is constant on a nonempty open set. Since it is real analytic in D, it must be

constant on the whole set D. This is impossible, so our claim must be true.

Step 3. Recall the definitions of the wedges R+ and R−. First we will show that we can

assume that y0 − x0 ∈ R+ ∪ R−. Let (Xn
t , Y

n
t ) be a synchronous coupling of reflecting

Brownian motions in Dn. In each piecewise smooth domain Dn, the reflecting Brownian

motions Xn
t and Y n

t are strong solutions to the stochastic differential equation (2.1), so

if Xn
t0 = Y n

t0 for some t0 ≥ 0 then Xn
t = Y n

t for all t ≥ t0. If (Xn
t , Y

n
t ) starts from

(xn, yn) such that yn − xn ∈ R+ (respectively, xn − yn ∈ R+) then Y n
t − Xn

t ∈ R+

(respectively, Xn
t − Y n

t ∈ R+) for all t ≥ 0, by the argument used in Theorem 3.1 of

Bañuelos and Burdzy (1999). If xn → x∞ and yn → y∞ then (Xn
t , Y

n
t ) converge weakly

(along a subsequence) to (Xt, Yt), a synchronous coupling in D starting from (x∞, y∞).

The above mentioned monotonicity property carries over to the limit and we conclude that

for any synchronous coupling (Xt, Yt) starting from any (x∞, y∞) with y∞ − x∞ ∈ R+

(respectively, x∞ − y∞ ∈ R+), we have Yt −Xt ∈ R+ (respectively, Xt − Yt ∈ R+) for all

t ≥ 0.

Let Tn
1 be the first hitting time of the lower part of the boundary of Dn by the

process Xn
t , and let Tn

2 be the first time after Tn
1 when Xn

t hits the upper part of ∂Dn.

The vertical component of the normal vector points down at every point of the upper part

of ∂Dn. Hence, the vertical component of Xn
t is a Brownian motion plus a nonincreasing

process, until time Tn
1 . This easily implies that the distributions of Tn

1 ’s are stochastically

majorized by a single distribution independent of n. The same applies to Tn
2 . Easy
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geometry shows that for some random time Tn
0 < Tn

2 , we must have either Y n
T n

0
−Xn

T n
0
∈ R+

or Xn
T n

0
− Y n

T n
0
∈ R+ This also holds for all t ≥ Tn

0 , by the argument mentioned in the last

paragraph. It is now easy to deduce from the weak convergence that there is an almost

surely finite random time T0 such that Yt −Xt ∈ R+ for all t ≥ T0, or Yt −Xt ∈ R− for

all t ≥ T0. Thus the probability P (Yt −Xt ∈ R+ ∪R−) increases to 1 as t → ∞. This

and a “weak” Markov property presented in Remark 2.5 (ii) show that it is enough to

prove that |Xt − Yt| → 0 as t → ∞, assuming that (Xt, Yt) starts from (x∞, y∞) with

y∞ − x∞ ∈ R+ ∪R−.

Assume without loss of generality that (Xt, Yt) starts from (x0, y0) with y0−x0 ∈ R+.

Recall the function v(t, x) = ϕ2(x)e−µ2t from Step 1. The function |ϕ2(x)| is bounded on

D and so, for a fixed s > 0, |v(t, x)| is bounded on [0, s]×D. It follows that the processes

t → v(t,Xt) and t → v(t, Yt) are martingales. As we observed in the last paragraph,

Yt −Xt ∈ R+ for all t ≥ 0. This, together with the fact that for every x, ∇φ2(x) ∈ R+,

implies that ϕ2(Yt)− ϕ2(Xt) ≥ 0 for all t > 0. Hence, the process

v(t, Yt)− v(t,Xt) = (ϕ2(Yt)− ϕ2(Xt))e−µ2t

is a non-negative martingale and, therefore, it converges a.s. as t→∞. Since µ2 < 0, this

implies that, with probability one, ϕ2(Yt)−ϕ2(Xt) → 0, as t→∞. In view of Step 2 and

the fact that both X and Y spend zero Lebesgue amount of time on the boundary of D,

this shows that |Yt −Xt| → 0, a.s.
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[11] M. Cranston and Y. Le Jan (1990), Noncoalescence for the Skorohod equation in a

convex domain of R2. Probability Theory and Related Fields 87, 241–252.

[12] P. Dupuis and H. Ishii (1991), On Lipschitz continuity of the solution mapping to the

Skorokhod problem, with applications. Stochastics 35, 31–62.

[13] M. Fukushima, Y. Oshima and M. Takeda (1994), Dirichlet forms and symmetric

Markov processes. Walter de Gruyter, Berlin.

[14] J. Nash (1958), Continuity of solutions of parabolic and elliptic equations. Amer. J.

Math. 80, 931-954.

[15] D.W. Stroock (1988), Diffusion semigroups corresponding to uniformly elliptic diver-

gence form operators. Lect. Notes Math. 1321, 316-347, Springer-Verlag.

[16] M. Takeda (1989), On a martingale method for symmetric diffusion processes and its

applications. Osaka J. Math. 26, 605-623.

Department of Mathematics
University of Washington
Box 354350
Seattle, WA 98195-4350, USA

Email: burdzy@math.washington.edu
http://www.math.washington.edu/˜burdzy/

Email: zchen@math.washington.edu
http://www.math.washington.edu/˜zchen/

31


