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Abstract

.

We investigate the number N of molecules needed to perform independent diffusions

in order to achieve bonding of a single molecule to a specific site in time t0. For a certain

range of values of t0, an increase from N to k ·N molecules (k > 1) results in the decrease

of search time from t0 to t0/k. In this regime, increasing the number of molecules is an

effective way of speeding up the search process. However when N ≥ N0 (optimal number

of N) the reduction of time from t0 to t0/k can be achieved only by an exponentially large

increase of the number of molecules (from N to N exp(ck) for some c > 0).

PACS numbers: 05.40Jc, 87.10.+e, 87.16Ac
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I. Introduction.

The diffusion is one of the prime means of protein transport on the micrometer scale

of a cell in the case of bacteria [1] or a nucleus in the case of eukaryotic cells [2]. One of

the most important processes in the cell is the activation or repression of genes. In order

to activate or repress a gene a specific protein must find a short sequence of nucleotides on

the chain of DNA related to the gene and tightly bind to it. The protein must first find

its target in the volume by diffusional motion so in principle the rate of this reaction is

limited by the time needed by diffusion to bring the protein to its target [3]. However, it

was recognized many years ago [4,5] that the free diffusion in three dimensional space is too

slow for many biological processes. A simple estimate [6] shows that for a single specific

protein, it takes a few days to find a small specific binding site on DNA by free diffusion in

a cell or a nucleus—the time that cannot be reconciled with experimental facts. There are

a number of specific mechanisms which can speed up the process of target location [7] such

as reduction of dimensionality in a search process from 3D to 2D [4] or 1D, sliding with

intersegment transfer process [8,9,10] or combination of 3D and 1D diffusion processes [7].

1D diffusion on DNA has been observed in vitro [11,12], but its relevance to the facilitated

target location in vivo has been questioned [6,13]. In general it is not known which strategy

proteins use in order to locate the target in vivo, although it is an established fact that its

mode of transport is the diffusion.

One of the problems which has not been addressed so far in connection with facilitated

target location is the number of molecules which are needed to locate the target in the

fastest way for the given size of the target and given size of the volume where the target is

located. In a living cell, there is usually only one DNA molecule and tens or hundreds of

copies of the same specific protein. One purpose of the paper is to estimate the number of

molecules needed to locate the target in the fastest possible way. As we will show there is

an optimal number, N0, for performing the task of target location. To be specific, we take

a single molecule in a volume V = L3 and a target of linear size a. We estimate the time,

t, needed to locate the target by various aforementioned mechanisms. Next we increase

the number N of molecules. If N is small and the molecules are independent the time

needed to locate the target decreases as t/N . However, we will show that when N > N0,

the decrease of time will be logarithmic in N and not algebraic. Therefore we call N0

the optimal number of molecules for locating the target. Of course we assume that the

molecules enter the volume where the target is located through the bounding surface and

are not present in the volume before the start of the search process.
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We do not claim that this number is optimal for the biological processes since a typical

biochemical pathway involves plenty of steps (reactions) and usually the time scale for one

step must be well correlated with the time scales for all the other steps in the biochemical

pathway. Nonetheless the optimal number N0 calculated in this paper can be used as the

estimate of the upper limit for the number of molecules in a process of location of a single

target by diffusion.

The paper is organized as follows. In Section II we calculate N0 for the free diffusion

process in a 3D system. In Section III we perform the same calculation for the 2D system.

In Section IV we discuss 1D diffusion on a line combined with the intersegment transfer

or 3D diffusion. Conclusions are drawn in Section V.

II. 3D diffusion

We assume that N molecules enter a spherical region of linear size L at the same time

through a surface bounding the region and they search for the target of size a via diffusion

characterized by the diffusion coefficient D. We will consider the time t0 when one of the

molecules reaches the target.

The molecules perform a reflected Brownian motion inside the sphere. The motion

can be divided into two periods. In the first period, when t ∈ [0, s], a molecule stays within

distance l � L from its point of entry. In the second period, for t ∈ [s,∞), the molecule’s

distribution is spread over the whole spherical region of linear size L.

After time s, the probability distribution for a single molecule within the spherical

region is roughly uniform. The hitting time of the binding site has an approximately

exponential distribution for times greater than s. Since the minimum of N independent

exponential random variables is an exponential random variable with N times smaller

expectation, increasing the number of molecules k times results in a decrease of the time

needed to reach the binding site by one of them by the same factor of k.

We will now estimate the critical time s. The probability that a molecule moves (at

least) distance L away from its starting point in time t0 is equal to∫ ∞

L

1
(2πt0D)3/2

exp
(
− r2

2Dt0

)
4πr2dr. (1)

The critical time s is given by the value of t0 for which the last expression is equal to 1/2.

We find numerically that L/
√

t0D ≈ 1.54. Hence, s ≈ L2/(1.54D).

Now we will consider times less than s. For such times, the distribution of a single

molecule is concentrated near the surface bounding the region. The probability that a
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molecule moves (at least) distance L away from its starting point in time t0 < s is∫ ∞

L

1
(2πt0D)3/2

exp
(
− r2

2Dt0

)
4πr2dr

= −
√

2
π

exp
(
−y2

2

)
y

∣∣∣∣∣
∞

L/
√

t0D

+
∫ ∞

L/
√

t0D

√
2
π

exp
(
−y2

2

)
dy

≤
√

2
π

exp
(
− L2

2t0D

)
L√
t0D

+
√

t0D

L

√
2
π

exp
(
− L2

2t0D

)
(2)

For t0 < s, we have L/
√

t0D > 1.54 so the first term in the last line is dominating.

If a molecule reaches a binding site L in a time t0 less than s, then its trajectory is

ballistic for the time t0, i.e., it follows a straight line. The probability that a straight line

in a random direction in 3-D space hits a binding site of linear dimensions a at a distance

L is equal to a2/L2. Hence, the probability p1 that a single molecule hits the binding site

after time t0 is approximately equal to (see Eq(2) and the comment following it):

p1 =
a2

L2

√
2L√

πt0D
exp

(
− L2

2Dt0

)
. (3)

We have p1 � 1 for t0 < s and a � L. We are interested in the value of N , the number

of molecules, such that at least one of the molecules reaches the binding site by the time

t0, with probability pN ≈ 1/2. We must have Np1 ≈ pN . Hence,

N ≈ pN

p1
=

1
2p1

=
1
2

L2

a2

√
2L√

πt0D
exp

(
L2

2Dt0

)
. (4)

We conclude that the k-fold increase in the number of molecules N results only in a loga-

rithmic (in k) decrease of the hitting time t0. The critical number of molecules N0 beyond

which the increase of N is not efficient is obtained from Eq(4) by substituting the inverse

of the probability from Eq(1) with t0 = s in place of the expression
√

2L√
πt0D

exp
(

L2

2Dt0

)
.

Because this probability is 1/2 we finally find

N0 =
L2

a2
. (5)

From this estimate one can compute the minimal time needed to find the target in the

volume. It follows from Smoluchowski’s work [3,13] and Eq(5) that

t0 ∼
L3

N0aD
=

La

D
.
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III. 2D diffusion.

It has been conjectured in [4] that the search for a binding site may be speeded up by

a number of possible mechanisms, mostly dealing with reduction of dimensionality. The

diffusion process in a 3D-2D reduction of dimensionality model involves two steps. First a

molecule finds a surface on which a target is located and next it finds the target by sliding

on the surface [3,6]. In this section we recalculate the quantities introduced in the previous

section assuming that the molecules move on a 2-dimensional flat surface.

We now consider a circular region of linear size L and a binding site of linear size a

in the middle of the circle. We suppose that the molecules perform a reflected Brownian

motion on the 2-dimensional surface with the diffusion constant D.

As in the 3-dimensional model, after the critical time s, the probability distribution

for a single molecule within the circular region is roughly uniform. The hitting time of

the binding site has an approximately exponential distribution for times greater than s.

Increasing the number of molecules k times results in a decrease of the time needed to

reach the binding site by one of them by the same factor of k.

The probability that a molecule moves (at least) distance L away from its starting

point in time t0 is equal to∫ ∞

L

1
2πt0D

exp
(
− r2

2Dt0

)
2πrdr = exp

(
− L2

2Dt0

)
. (6)

The time s is given by the value of t0 for which (6) is equal to 1/2, i.e.,

exp
(
− L2

2Ds

)
= 1/2. (7)

Recall that if a molecule reaches a binding site L in a time t0 less than s, then its

trajectory is ballistic for time t0, i.e., it follows a straight line. The probability that a

straight line in a random direction in 2-D space hits a binding site of linear dimensions a

at a distance L is equal to a/L. Hence, the probability p1 that a single molecule hits the

binding site after t0 seconds is approximately equal to

p1 =
a

L
exp

(
− L2

2Dt0

)
. (8)

We have p1 � 1 for t0 < s and a � L. We would like to find N such that at least one of

the molecules reaches the binding site by the time t0, with probability pN ≈ 1/2. Such an

N must satisfy Np1 ≈ pN . Hence,

N ≈ pN

p1
=

1
2p1

=
1
2

L

a
exp

(
L2

2Dt0

)
. (9)
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Just as in the 3-D case, the k-fold increase in the number of molecules N results only in

a logarithmic (in k) decrease of the hitting time t0. The critical number of molecules N0

beyond which the increase of N is not efficient is obtained from Eq(13) by substituting the

inverse of the probability from Eq(10), i.e.,

N0 =
1
2

L

a
exp

(
L2

2Ds

)
=

L

a
. (10)

We see that in the 2-D model, the optimal number of molecules is much lower than

in the 3-D model. In general for a given dimensionality d of the system (d ≥ 1),

N0 = (L/a)d−1. (11)

We will now extract the essence of calculations in Sections II and III (3D and 2D

cases) so that we can apply similar arguments in models for which explicit calculations are

impossible.

First, we find the critical time s in which the molecule distribution in the volume

reaches its stationary state. For times t less than s, the molecule may reach the specific

bounding site in time t by following a ballistic path. Let p2 be the probability that a single

molecule following a ballistic path in a random direction will reach the target at the end

of the path. Then the critical number of molecules N0 is equal to 1/p2.

The minimal time t0 to find the target in the 2D case is obtained [6,14] similarly to

the 3D case:

t0 ∼
L2 log(L/a)

N0D
=

La log(L/a)
D

.

IV. Combined diffusion processes.

1D diffusion with intersegment transfer

We will consider two possible models for a DNA molecule—“self-avoding random

walk” (SARW) [15] and “true self-avoding random walk” (TSARW) [16,17]. SARW can

be obtained from the random walk by rejecting all trajectories which cross itself at any

point. In contrast to that model, TSARW can be represented as an ordinary random walk

whose trajectories pass very close to points visited earlier by the same path instead of

revisiting such points.

First we will examine the TSARW model together with the one dimensional diffusion

and intersegment transfer. In this model a molecule performs a one dimensional walk along
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a DNA chain and when two parts of the chain are close to each other, the molecule can

jump from one part to another part of DNA (intersegment transfer) [7].

According to this model, the binding site lies on a Gaussian polymer chain of length

L1. In our search model, first the molecule has to find the polymer chain which will be

considered a 3D target with linear size b ∼ a
√

L1/a =
√

aL1. Then, the molecule will

slide along the polymer chain to find the binding site of linear size a.

The percolation or chemical exponent of the random walk path in 3D, i.e., of a TSARW

cluster, is about 0.8 ([18,19]). Let s be the time needed for random walk on TSARW cluster

to reach the stationary distribtion. For t less than s, if a molecule goes from a point on the

TSARW cluster to another point on the cluster whose distance is comparable to the cluster

size, the path will have to have a “ballistic character,” i.e., it will be the shortest path

between the two points within the cluster. This is supported, for example, by the known

estimates of the transition probabilities on fractal sets ([20]). They have similar form to

the Gaussian transition probabilities in that the probabilities of very fast transitions are

exponentially small ([20]). We conclude that the number of ballistic paths on TSARW

cluster is of order (L1/a)1−0.8, and so the probability p1 that a random ballistic path

hits the target binding site is of order (L1/a)−0.2. This implies that the critical number of

molecules is N0 = (L1/a)0.2, although this represents only the portion of the search process

on the TSARW cluster, because first of all a molecule has to find the cluster. Therefore

the last estimate has to be combined with the critical number of molecules needed to find

the TSARW cluster in the cell. According to Section II, the critical number is (L/b)2, so

the modified estimate of N0 is

N0 = (L/b)2(L1/a)0.2. (12)

.

A typical size of TSARW of length L1 is b ∼
√

aL1, but in a typical cell one finds

b ∼ L. Therefore the factor (L/b)2 is at most of the order of 10.

Combined 3D-1D diffusion

Next we consider the SARW model. In this model, once the SARW cluster is reached, a

molecule is performing a 1D diffusion along a line of length L1 with the diffusion coefficient

D1. After a time τ1 ∼ l21/D1, the molecule detaches from the SARW cluster and performs

a 3D diffusion until it reaches the SARW cluster again and continuous its motion according

to the 1D random walk. The process of interchanging 1D and 3D diffusions continues until

the binding site is found.
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The critical number of molecules is the product of factors corresponding to 1D and

3D diffusion processes. The 1D factor is trivially one, in view of Eq (11).

The coiling of DNA molecule on the length scale of l1 is negligible, se we will assume

that a piece of this length can be treated as having a linear shape. Then the 3D search is

equivalent to the 2D search and we obtain, in view of (10),

N0 =
L

a
. (13)

V. Estimates and conclusions

Let us estimate N0 for all our models assuming typical parameter values taken from

biological system. One has to note that in order to apply our models we need a clear-cut

case in which molecules enter the volume via the bounding surface and are not present in

the volume before the start of the search process. Here we consider the eucaryotic cell with

DNA contained in the nucleus and specific proteins in the cytoplasm. The protein must

physically move from the cytoplasm into the nucleus of the cell and find its binding site

in order to activate a given gene. It may be present inside the cytoplasm in the inactive

form and the external signal may activate it. For example the transcription factor may be

released from the tight complex with other protein that otherwise holds it in the cytoplasm

preventing it from entering the nucleus. A typical size of the nucleus is L ∼ 5µm, the size

of the DNA (one chromosome) is L1 ∼ 105µm. A typical diffusion coefficient for a small

protein (like GFP) diffusing in the nucleus is D3 ∼ 10µm2/s [2]. The size of the target

is roughly a ∼ 10−3 µm (three or four base pairs). A typical size b occupied by a single

chromosome is of the order of 0.25L and a typical distance l1 covered by 1D diffusion along

a DNA chain (measured in vitro) [11,13] is l1 ∼ 0.2µm.

Assuming that we locate the target by free diffusion in the volume (3D diffusion,

Eq(5)) we find:

N0 ∼ 107. (14)

If the diffusion takes place on a surface (2D diffusion, Eq(10)) we find

N0 ∼ 5000, (15)

and for this particular case t0 ∼ 0.004s. For the combined 1D diffusion and intersegment

transfer (Eq(12)) we get:

N0 ∼ 600. (16)
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Finally for the combined 1D-3D search process we get from Eq(13),

N0 ∼ 5000. (17)

.

One can also estimate the volume occupied by N0 molecules in the nucleus. A typical

linear size of a protein is of the order of 100 Å. Thus only in the case of Eq(14) the volume

fraction occupied by the molecules is considerable i.e. of the order of 20 %. In all other

cases N0 molecule occupies a tiny fraction of the volume i.e. 0.004 % or less.

The number of specific proteins is usually small, i.e., of the order of 10 or 100, thus it

is at least few orders of magnitude smaller than N0 for 3D or 2D diffusion or combined 1D-

3D process and few times smaller than N0 for the 1D diffusion with intersegment transfer.

We conclude that the number of specific proteins used to activate or repress the genes is

well below the theoretical estimate of the optimal number for the search process.

Finally we would like to note that as far as the search time is concerned the 2D

diffusion search process is the most effective [6]. For a single molecule performing 1D

diffusion with intersegment transfer the best estimate of the search time is

t ∼ L1l1/D1,

where l1 is the typical distance covered between intersegment transfers. For D1 ∼ 0.1µm2/s

[13,21] and l1 ∼ 0.2µm one finds

t ∼ 2 · 105s

whereas we get for the 2D diffusion [6] (see also section II):

t ∼ 20s,

i.e., the 4 orders of magnitude decrease in the search time in comparison to the 1D diffusion

with intersegment transfer. For the combined 1D-3D diffusion process we would get similar

estimate of the search time as for the 1D diffusion with intersegment transfer.
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