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1. Introduction. The boundary Harnack principle may be stated as follows (cf.
Jerison and Kenig (1982a), Theorem 5.25).

Theorem 1.1. Let D be a Lipschitz domain and V an open set. For any compact
K ⊆ V , there exists a constant c0 such that for all positive harmonic functions
u and v in D that vanish continuously on (∂D) ∩ V with u(x) = v(x) for some
x ∈ K ∩D,

c−1
0 u(y) < v(y) < c0u(y) for all y ∈ K ∩D.

The boundary Harnack principle was first proved by Dahlberg (1977). Sub-
sequently Wu (1978) and Jerison and Kenig (1982a) gave alternate proofs. The
result was extended in many directions, see, e.g., Caffarelli, Fabes, Mortola and
Salsa (1981), Fabes, Garofalo and Salsa (1986), Fabes, Garofalo, Marin-Malave,
and Salsa (1989) and Jerison and Kenig (1982b).

A related problem is to identify the Martin boundary for Lipschitz domains.
Hunt and Wheeden (1970) showed that in a bounded Lipschitz domain the Martin
boundary may be identified with the Euclidean one. Jerison and Kenig (1982a)
showed how this result follows from the same techniques that they used to prove
Theorem 1.1.

The main purpose of this paper is to give a probabilistic proof of Theorem 1.1, one
using elementary properties of Brownian motion. We also obtain the fact that the
Martin boundary equals the Euclidean boundary as an easy corollary of Theorem
1.1. The boundary Harnack principle may be viewed as a Harnack inequality for
conditioned Brownian motion; as an application we prove some new probability
bounds for conditioned Brownian motion in Lipschitz domains.

The principal motivation for this work was to give a proof of the boundary
Harnack principle and of the Martin boundary result that could be easily extended
to domains more general than Lipschitz: ones where locally the boundary is the
graph of a continuous function with a modulus of continuity weaker than Lipschitz.
See Bass and Burdzy (1989).

In Section 2 the main estimate on Brownian motion in Lipschitz domains is
obtained. Theorem 1.1 is proved in Section 3, while the Martin boundary result
is given in Section 4. Section 5 contains the estimates on conditioned Brownian
motion.

2. The main estimate. Theorem 1.1 is essentially a local result, and for the
time being we work with domains lying above the graph of a Lipschitz function.

1Research partially supported by NSF grants DMS 8701073 and DMS 8901255.
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So let λ > 0 and suppose Γ : Rd−1 → R is a bounded Lipschitz function with
Lipschitz constant λ. For points x = (x1, . . . , xd) in Rd we write x = (x̃, xd), where
x̃ = (x1 . . . , xd−1). Let

D = {x ∈ Rd : xd > Γ(x̃)}.
We let

(2.1) ∆(x, a, r) = {y ∈ D : Γ(ỹ) < yd < Γ(ỹ) + a, |ỹ − x̃| < r},

∂u∆(x, a, r) = {y ∈ ∂∆(x, a, r) : yd = Γ(ỹ + a)}, (“u” = upper),

and
∂s∆(x, a, r) = {y ∈ ∂∆(x, a, r) : |ỹ − x̃| = r}, (“s” = side).

Let (Xt, P
x) be Brownian motion in Rd. For any Borel set A, let

T (A) = inf{t : Xt ∈ A}.

The main estimate that we obtain in this section says that the probability that
Brownian motion leaves ∆(x, a, r) near the boundary of D is bounded by a constant
times the probability it leaves far from ∂D. First we have

Lemma 2.1. There exist a constant c1 = c1(λ) ∈ (0, 1) such that
(a) if a > 0, r ≥ a, and y ∈ D with ỹ = x̃ and yd ∈ [Γ(x̃) + a/2,Γ(x̃) + a], then

P y(T (∂∆(x, a, r)) = T (∂u∆(x, a, r))) ≥ c1;

(b) if a > 0 and y ∈ ∆(x, a, a) with ỹ = x̃, then

P y(T (∂∆(x, a, a)) = T (∂s∆(x, a, a))) ≤ 1− c1; and

(c) if k ∈ Z+, a > 0, r ≥ ak, and y ∈ ∆(x, a, r) with ỹ = x̃, then

P y(T (∂∆(x, a, r)) = T (∂s∆(x, a, r))) ≤ (1− c1)k.

Proof. The proof is elementary. By scaling we may suppose a = 1. Choose c2 =
(λ−1 ∧ 1)/8. Let

J1 = {y : |ỹ − x̃| < c2, Γ(x̃) +
1
4

< yd < Γ(x̃) + 2},
J2 = {y : |ỹ − x̃| < c2, Γ(x̃)− 2 < yd < Γ(x̃) + 2},

and
∂uJ = {y : |ỹ − x̃| < c2, yd = Γ(x̃) + 2}.

It is easy to see that there exists c1 depending only on c2 such that

P y(T (∂J1) = T (∂uJ)) ≥ c1 if ỹ = x̃, yd ∈ (Γ(x̃) +
1
2
, Γ(x̃) + 1)

and
P y(T (∂J2) = T (∂uJ)) ≥ c1 if ỹ = x̃, yd ∈ (Γ(x̃), Γ(x̃) + 1).
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Note that if T (∂J1) = T (∂uJ), then T (∂∆(x, 1, r)) = T (∂u∆(x, 1, r)) P y-a.s. for
y such that ỹ = x̃, yd ∈ (Γ(x̃)+ 1

2 ,Γ(x̃)+1); this proves (a). Similarly, if T (∂J2) =
T (∂uJ), then T (∂∆(x, 1, 1)) 6= T (∂s∆(x, 1, 1)), which proves (b).

Part (c) follows from part (b) by use of the strong Markov property. Using (b),

P y(T (∂∆(x, 1, k)) = T (∂s∆(x, 1, k)))

≤ Ey(PX(U)(T (∂∆(X(U), 1, 1)) = T (∂s∆(X(U), 1, 1));

T (∂∆(x, 1, k − 1)) = T (∂s∆(x, 1, k − 1)))

≤ (1− c1)P y(T (∂∆(x, 1, k − 1)) = T (∂s∆(x, 1, k − 1))),

where
U = T (∂∆(x, 1, k − 1)).

Using induction completes the proof.

Let
F1 = {T (∂∆(0, 3, 3)) = T (∂s∆(0, 1, 3))}.

Let
∂g∆(0, 3, 3) = ∂∆(0, 3, 3) \ (∂D ∪ ∂s∆(0, 1, 3)), (“g” = good).

Let
F2 = {T (∂∆(0, 3, 3)) = T (∂g∆(0, 3, 3))}.

The main result of this section is

Theorem 2.2. There exists c3 = c3(λ) < ∞ such that for all x ∈ ∆(0, 3, 1),

P x(F1) ≤ c3P
x(F2).

Proof. Choose M ∈ Z+ so that (1 − c1)M < c1/2 and M ≥ 2
∑∞

i=1 i2−i, where c1

is the constant of Lemma 2.1. Let

Jk = {y ∈ D : yd ∈ [Γ(ỹ) + M−22−k−1, Γ(ỹ) + M−22−k], |ỹ| ≤ 2−M−1
k∑

i=1

i2−i}.

Arguing just as in the proof of Lemma 2.1(a), there exists a constant c4 = c4(λ) ∈
(0, 1) such that

(2.2) P z(F2) ≥ c4, z ∈ ∆(0, 3, 2) \∆(0,M−2/4, 2).

Our first goal is to prove that

(2.3) P z(F2) ≥ c4c
m−1
1 for z ∈ Jm.

We use induction. By (2.2), we have that (2.3) holds for m = 1. Suppose (2.3)
holds for m, and suppose z ∈ Jm+1. For the remainder of the proof, write

(2.4) ∆m = ∆(z,M−22−m,mM−12−m), and Um = T (∂∆m).
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By the strong Markov property,

P z(F2) ≥ Ez(PX(Um)(F2); X(Um) ∈ ∂u∆m).

Since ∂u∆m ∈ Jm when z ∈ Jm+1 and since m ≥ 1 ≥ M−1, then by Lemma 2.1
(a) and the induction hypothesis,

P z(F2) ≥ c4c
m−1
1 P z(X(Um) ∈ ∂u∆m) ≥ c4c

m
1 .

So (2.3) is proved.
Now let

dm = sup
z∈Jm

P z(F1)/P z(F2).

By (2.2),

P z(F1) ≤ 1 ≤ c−1
4 P z(F2), z ∈ ∆(0, 3, 2) \∆(0,M−2/4, 2).

Hence d1 < ∞, and so to prove the theorem, it suffices to prove that supm dm < ∞,
since ∆(0, M−2/2, 1) ⊂ ⋃∞

m=1 Jm.
Consider z ∈ Jm+1. Using the strong Markov property, we have

(2.5) P z(F1) ≤ Ez(PX(Um)(F1); X(Um) ∈ ∂u∆m) + P z(X(Um) ∈ ∂s∆m)

and

(2.6) P z(F2) ≥ Ez(PX(Um)(F2); X(Um) ∈ ∂u∆m).

Since ∂u∆m ⊆ Jm, the definition of dm says that the first term on the right of (2.5)
is bounded by

dmEz(PX(Um)(F2); X(Um) ∈ ∂u∆m) ≤ dmP z(F2).

By Lemma 2.1 (c), the second term on the right of (2.5) is bounded by

(1− c1)mM ≤ (c1/2)m ≤ 2−mc−1
4 P z(F2),

using (2.3).
Hence, substituting in (2.5),

P z(F1) ≤ (dm + 2−mc−1
4 )P z(F2).

Thus dm+1 ≤ dm + c−1
4 2−m, or supm dm ≤ d1 + c−1

4

∑∞
m=1 2−m < ∞ as required.

3. Boundary Harnack principle. We first borrow an elementary lemma from
Jerison and Kenig (1982a), Lemma 5.4. The notation is as in Section 2.
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Lemma 3.1. There exists a constant c5 = c5(λ) > 0 such that if u is positive
and harmonic in ∆(x, 5, 5) and vanishes continuously on ∆(x, 5, 5) ∩ ∂D, where
xd = Γ(x̃) + 1, then u is bounded in ∆(x, 3, 3) by c5u(x).

Proof. Fix x. Without loss of generality, assume u(x) = 1. Let

Jk = ∆(x, 2−k, 4) \∆(x, 2−k−1, 4), k = 1, 2, . . . .

By the usual Harnack inequality, u is bounded in ∆(x, 4, 4)\⋃∞
k=2 Jk by a constant

c6 = c6(λ).
If u is harmonic and positive in ∆(y, 1, 1) and yd = Γ(ỹ) + 1

2 , then by the
usual Harnack inequality there exists c7 = c7(λ) > 0 so that u is bounded on
∆(y, 1, 1) \∆(y, 1

4 , 1) by c7u(y).
Using this observation together with scaling, we see that

sup
Jk+1

u ≤ c7 sup
Jk

u,

and hence

(3.1) sup
Jk

u ≤ c6c
k
7 .

This implies that there exist constants c8 = c8(λ), β = β(λ) > 0 such that if

r(y) = yd − Γ(ỹ),

then

(3.2) r(y) ≤ c8u(y)−β .

Suppose y ∈ ∆(x, 3, 3). Arguing as in Lemma 2.1 (a), there is a constant c9 =
c9(λ) > 0 such that

P y(T (∂∆(y, 2r(y), 2r(y)) = T (∂D)) ≥ c9.

Now let M = (1−c9)−1 and let N be a large real to be chosen later. Suppose there
exists x(1) ∈ ∆(x, 3, 3) with u(x(1)) ≥ NM . We now show that this implies there ex-
ist x(2), . . . , x(n), . . . ∈ ∆(x, 4, 4) with u(x(n)) ≥ NMn, x(k+1) ∈ ∆(x(k), 3rk, 3rk),
where rk = r(x(k)). We use induction. Suppose we have x(1), x(2), . . . , x(n).

Write ∆n for ∆(x(n), 2rn, 2rn). Note

u(x(n)) = Ex(n)
u(XT (∂∆n)) ≤ (sup

∂∆n

u)P x(n)
(T (∂∆n) 6= T (∂D))

≤ (sup
∂∆n

u)(1− c9).

Hence there exists x(n+1) ∈ ∂∆n ⊆ ∆(x(n), 3rn, 3rn) with

u(x(n+1)) ≥ (1− c9)−1u(x(n)) ≥ NMn+1.

By (3.2),
rn+1 ≤ c8(NMn+1)−β ,

and so provided we take N sufficiently large so that
∑∞

i=1 c8(NM i)−β < 1
4 , then

x(n+1) ∈ ∆(x, 4, 4).
We thus have our sequence x(n) in ∆(x, 4, 4) with u(x(n)) → ∞. Moreover, by

(3.2), rn → 0. But this contradicts the assumption that u vanishes continuously on
(∂D) ∩∆(x, 5, 5). So we must have u bounded on ∆(x, 3, 3) by NM .

We now prove the following special case of the boundary Harnack principle.
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Theorem 3.2. There exists a constant c10 = c10(λ) > 0 such that if x ∈ D with
xd = Γ(x̃)+1, u and v are positive and harmonic on ∆(x, 5, 5), vanish continuously
on ∂D ∩∆(x, 5, 5), and u(x) = v(x) = 1, then

c−1
10 u(y) < v(y) < c10u(y) for all y ∈ ∆(x, 3, 1).

Proof. Recall the definitions of F1 and F2 of Theorem 2.2. By Lemma 3.1, u is
bounded on ∆(x, 3, 3) by c5. Then if y ∈ ∆(x, 3, 1),

u(y) = Eyu(XT (∂∆(x,3,3))) ≤ c5P
y(T (∂∆(x, 3, 3)) 6= T (∂D))(3.3)

≤ c5(P y(F1) + P y(F2))
≤ c5(1 + c3)P y(F2)

by Theorem 2.2.
On the other hand, by the usual Harnack inequality, there exists c11 = c11(λ) > 0

such that v is bounded below by c11 on ∂∆(0, 3, 3) \ (∂D ∪ ∂s∆(0, 1, 3)). Then

(3.4) v(y) = Eyv(XT (∂∆(x,3,3))) ≥ c11P
y(F2).

Comparing (3.3) and (3.4) gives the left hand inequality, and reversing the roles
of u and v gives the right hand inequality.

However, Theorem 3.2 is actually equivalent to Theorem 1.1. We first recall the
definition of a Lipschitz domain.

A bounded domain D is a Lipschitz domain if for each x ∈ ∂D there is a
Lipschitz function Γx : Rd−1 → R, a coordinate system CSx, and rx > 0 such
that if y = (y1, . . . , yd) in CSx coordinates, then

D ∩B(x, rx) = {y : yd > Γx(y1, . . . , yd−1)} ∩B(x, rx).

Proof of Theorem 1.1. Theorem 1.1 follows from using scaling, Theorem 3.2 and
the usual Harnack principle repetitively.

4. Martin boundary. In this section we prove that the Martin boundary of a
Lipschitz domain may be taken to be the Euclidean boundary. For details about
Martin boundary, see Doob (1984).

Suppose D is a bounded Lipschitz domain. We denote the Green function for D
by G(x, y).

Let us fix x0 ∈ D and suppose ε < dist (x0, ∂D)/4.

Lemma 4.1. Suppose x ∈ D with |x−x0| > 4ε. There exists a constant c12(ε,D, x0, x)
such that

G(x, y)/G(x0, y) ≤ c12 for y in D \ (B(x0, ε) ∪B(x, ε)).

Moreover c12(ε,D, x0, x) → 0 uniformly as dist (x, ∂D) → 0.

Proof. Pick y0 ∈ ∂B(x0, 2ε). If G0 is the Green function for Brownian motion killed
on exiting ∂B(x0, 3ε), then

G(x0, y0) ≥ G0(x0, y0) ≥ δ(ε) > 0.
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(See Section 1.11 of Durrett (1984) for an explicit expression for G0.)
On the other hand, G(x, y0) is bounded above by the Newtonian potential eval-

uated at x, y0; hence G(x, y0) is bounded above by a constant depending on ε (use
the Green function for a large ball containing D instead of the Newtonian potential
in the case d = 2). Moreover G(x, y0) → 0 uniformly as dist (x, ∂D) → 0.

Thus the ratio G(x, y0)/G(x0, y0) is bounded above. But Theorem 1.1 says
that G(x, y)/G(x0, y) is comparable to G(x, y0)/G(x0, y0) for all points y in D \
(B(x, ε/2) ∪ B(x0, ε/2)); here u = G(x, · ), v = G(x0, · )G(x, y0)/G(x0, y0). The
lemma follows.

We now prove that for fixed x0, x, the ratio G(x, y)/G(x0, y) is Hölder continuous
in y.

Lemma 4.2. Let x, x0, ε be as above. Then G(x, y)/G(x0, y) is a Hölder continu-
ous function of y for y ∈ D \ (B(x0, ε) ∪B(x, ε)), the constants depending only on
x, x0, ε, and D.

Proof. For a set A, define

Osc
A

f = sup
A

f − inf
A

f.

Let f(y) = G(x, y)/G(x0, y). Let y0 ∈ Dε = D \ (B(x0, ε) ∪ B(x, ε)). Since f is
bounded by c12 on the region Dε by Lemma 4.1, then Osc

Dε

f ≤ c12. So to prove the

lemma, it will suffice to show that there exists ρ = ρ(D, ε, x, x0) < 1 such that

(4.1) Osc
D∩B(y0,r)

f ≤ ρ Osc
D∩B(y0,2r)

f, r < ε/4.

Suppose r < ε/4, and let g be the ratio of any two positive harmonic functions
on Dε/4 vanishing continuously on ∂D. By considering ag + b for suitable a and b,
we may assume

sup
D∩B(y0,2r)

g = 1, inf
D∩B(y0,2r)

g = 0.

If sup
D∩B(y0,r)

g ≤ 1
2 , then since inf

D∩B(y0,r)
g ≥ 0,

Osc
D∩B(y0,r)

g ≤ 1
2
.

If sup
D∩B(y0,r)

g ≥ 1
2 , there exists a point y1 in D∩B(y0, r) with g(y1) ≥ 1

2 . But then

by Theorem 1.1, there exists a constant c13 = c13(ε,D, x, x0) ∈ (0, 1) such that

inf
D∩B(y0,r)

g ≥ c13g(y1).

Since sup
D∩B(y0,r)

g ≤ 1, in this case we have

Osc
D∩B(y0,r)

g ≤ 1− c13/2.

Since Osc
D∩B(y0,2r)

g = 1, we have (4.1) with ρ = max( 1
2 , 1− c13/2).

To construct the Martin boundary of a domain, one first compactifies D by
adding all limit points of the ratios G(x, y)/G(x0, y) as y → z, z ∈ ∂D (see
Doob(1984)). But Lemmas 4.1 and 4.2 show that G(x, y)/G(x0, y) converges to
a single value as y → z ∈ ∂D. Thus we have proved
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Theorem 4.3. The Martin boundary of a Lipschitz domain may be identified with
a subset of the Euclidean boundary.

To complete the identification of the Martin boundary, one needs to show that
a proper subset of the Euclidean boundary will not suffice. We will write

K(x, z) = lim
y∈D,y→z

G(x, y)/G(x0, y) for x ∈ D, z ∈ ∂D.

We will also show that K(x, z) is a minimal harmonic function for each z ∈ ∂D; that
is, if u is harmonic in D satisfying u(x) ≤ K(x, z) for all x ∈ D, then u = cK( · , z)
for some constant c.

Theorem 4.4. The Martin boundary of a Lipschitz domain may be identified with
the Euclidean boundary.

Proof. We first show that if w ∈ ∂D, then K(x,w) → 0 uniformly as dist (x, ∂D \
B(x, 2ε)) → 0. To see this, pick y0 ∈ D ∩ B(w, ε). Let δ > 0. By Lemma 4.1, we
can make G(x, y0)/G(x0, y0) < δ by taking dist (x, ∂D \ B(w, 2ε)) small enough.
By Theorem 1.1,

G(x, y)/G(x0, y) ≤ c0δ, y ∈ D ∩B(w, ε).

Now let y → w to get K(x,w) ≤ c0δ.
Suppose that K( · , w) = K( · , z) for some w, z ∈ ∂D, w 6= z, and let ε = |w −

z|/8. By the above argument, we have K(x,w) → 0 uniformly when dist (x, ∂D \
B(w, 2ε)) → 0 and when dist (x, ∂D \B(z, 2ε)) → 0. Thus, K(x, w) → 0 uniformly
as dist (x, ∂D) → 0. By the maximum principle, the positive harmonic function
K( · , w) vanishes on D, contrary to the fact that K(x0, w) = 1. This contradiction
shows that the Martin kernels corresponding to w and z are distinct.

Theorem 4.5. If z ∈ ∂D, K( · , z) is a minimal harmonic function.

Proof. Fix z ∈ ∂D and suppose u ≤ K( · , z), where u is positive and harmonic. By
Theorem 4.3, it follows that

u( · ) =
∫

K( · , w)µ(dw)

for some measure µ on ∂D. If µ is not a multiple of point mass at z, then there
exists a finite measure µ̂ ≤ µ such that dist (z, supp (µ̂)) > 0. Let

û( · ) =
∫

K( · , w)µ̂(dw).

Then û is positive, harmonic, and bounded by K( · , z).
Recall from the proof of Theorem 4.4 that K(x, z) → 0 uniformly as dist (x, ∂D\

B(z, ε)) → 0. So the same is true of û. But for each w ∈ supp (û), we see that
K(x, w) → 0 uniformly as dist (x, ∂D∩B(z, 2ε)) → 0 provided 2ε < dist (z, supp (µ̂)).
So it follows by dominated convergence that û(x) → 0 as dist (x, ∂D∩B(z, 2ε)) → 0.
But then û is a positive harmonic function vanishing continuously on ∂D, or û is
identically 0. This implies that µ̂ is 0, or that µ must be point mass at z.
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5. Conditioned Brownian motion. Let h be a positive harmonic function on
D and let (Xt, P

x
h ) be conditioned Brownian motion, that is, the h path transform

of Brownian motion. See Doob (1984) for more information about conditioned
Brownian motion. In this section we prove the analog of Theorem 2.2 for (Xt, P

x
h )

and we obtain an exponential bound on P x
h (sups≤t |Xs − x| ≥ r) similar to the

bound for Brownian motion. We suppose we are in the set-up of Section 2 where
D is the region above the graph of a Lipschitz function. The definition of F1 and
F2 are as in Theorem 2.2.

Theorem 5.1. Suppose h is positive, harmonic in ∆(0, 5, 5), and h vanishes con-
tinuously on ∂D ∩∆(0, 5, 5). Then there exists c14 = c14(λ) > 0 such that for all
x ∈ ∆(0, 3, 1)

P x
h (F1) ≤ c14P

x
h (F2).

Proof. Let z be such that z̃ = 0 and zd = Γ(z̃)+1. Since multiplying h by a constant
does not change P x

h , let us assume h(z) = 1. Let u(x) = P x
h (F1), v(x) = P x

h (F2).
By the usual Harnack inequality, there exists c15 = c15(λ) such that h ≥ c15 on
∂g∆(0, 3, 3) = ∂∆(0, 3, 3) \ (∂D ∪ ∂s∆(0, 1, 3)). As in Lemma 2.1 (a), there exists
c16 = c16(λ) such that P z(F2) ≥ c16. Then using basic properties of h path
transforms,

v(z) = Ez(h(XT (∂g∆(0,3,3))); F2)/h(z) ≥ c15c16.

Since u(z) ≤ 1, then u(z) ≤ (c15c16)−1v(z).
The functions uh and vh are positive and harmonic (with respect to P x) on

∆(0, 3, 3) and vanish continuously on ∂D ∩ ∆(0, 3, 3) since u and v are bounded
being probabilities. By the boundary Harnack principle, there exists c14 so that

(uh)(x) ≤ c14(vh)(x) for x ∈ ∆(0, 3, 1).

Dividing both sides by h(x) proves the theorem.

We now obtain the following exponential bound

Theorem 5.2. Suppose h is as in Theorem 5.1. Then there exist r0 = r0(λ) > 0,
c17 = c17(λ) > 0 and c18 = c18(λ) > 0 such that

P x
h (sup

s≤t
|Xs − x| > r) ≤ c17 exp(−r2/c18t), r < r0.

Proof. Since P x
h (F1) + P x

h (F2) = 1, then by Theorem 5.1

(5.1) P x
h (F2) ≥ (1 + c14)−1 for x ∈ ∆(0, 3, 1).

Define
τr = inf{t : |Xt −X0| ≥ r}.

We have
P y(τβ > 1) ≥ c19

for a constant c19 = c19(λ, β) > 0. We have assumed in the proof of Theorem 5.1
that h(z) = 1. It follows that h is bounded above and below by constants depending
only on λ on the set ∆(0, 4, 4) \∆(0, 1

2 , 4) and

(5.2) P y
h (τβ > 1) ≤ Ey(h(X1); τβ > 1)/h(y) ≥ c20, y ∈ ∂g∆(0, 3, 3),
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for a constant c20 = c20(λ, β) > 0 provided β is taken small enough so that

dist (∂∆(0, 1/2, 4), ∂g∆(0, 3, 3)) ≥ 2β.

So by the strong Markov property, (5.1), and (5.2),

P x
h (T (∂∆(0, 4, 4)) > 1) ≥ (1 + c14)−1c20, x ∈ ∆(0, 3, 1).

By scaling and the fact that yd − Γ(ỹ) is comparable to dist (y, ∂D) for y ∈ D,
we then get the existence of constants c21 = c21(λ) > 0 and p = p(λ) ∈ (0, 1) such
that

(5.3) P x
h (τ1 ≤ c21) ≤ p.

Without loss of generality we may assume c21 ≤ 1.
Let n be a positive integer to be chosen later. Let U1 = τ1/n, Ui+1 = Ui + τ1/n ◦

θUi , where θ is the usual shift operator. Clearly Un ≤ τ1.
By (5.3) and scaling, P x

h (τ1/n ≤ c21n
−2) ≤ p. Hence

P x
h (Un+1 − Un ≤ z | U1, . . . , Un) ≤

{
p if z ≤ c21n

−2

1 if z > c21n
−2

≤ p + (1− p)zn2/c21 if z > 0.

By Barlow and Bass (1989), Lemma 1.1, then

P x
h (τ1 < z) = exp(an3/2z1/2 − bn),

where
a = 2((1− p)/pc21)1/2 and b = log(

1
p
).

Taking n to be the integer part of 4b2/9a2z, for z sufficiently small we get

(5.4) P x
h (τ1 < z) ≤ exp(−c22/z),

c22 = c22(λ) > 0.
Using (5.4) and scaling gives Theorem 5.2, provided we take c17 sufficiently large.
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