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1. Introduction and main results. Suppose that X1, X2 and Y are independent
standard Brownian motions starting from 0 and let

(1) X(t) =
{
X1(t) if t ≥ 0,
X2(−t) if t < 0.

We will consider the process

(2) {Z(t) df= X(Y (t)), t ≥ 0}

which we will call “iterated Brownian motion” or simply IBM. It can be proved that Z
uniquely determines X and Y (see Burdzy (1992) for a precise statement). A Law of
Iterated Logarithm for IBM is also proved in Burdzy (1992).

We consider IBM to be a process of independent interest but there exists an intrigu-
ing relationship between this process (strictly speaking its modification) and “squared
Laplacian” which was discovered by Funaki (1979). So far, the probabilistic approach
to bi-harmonic functions is much less successful than the probabilistic treatment of har-
monic functions. Krylov (1960) and Hochberg (1978) attacked the problem using a signed
finitely additive measure with infinite variation. Ma̧drecki (1992) and Ma̧drecki and Ry-
baczuk (1992) have a genuine probabilistic approach but their processes take values in an
exotic space. Both models are used to define stochastic integrals for processes with “4-th
order” scaling properties. Higher order variations of the process play an important role in
Ma̧drecki and Rybaczuk’s construction of the stochastic integral. It is no surprise that the
4-th variation of their process is a deterministic linear function. The quadratic variation
of their process is, in a suitable sense, a Brownian motion. See (3.16) in Hochberg’s paper
for a result with similar intuitive content.

In this paper, we study higher order variations of IBM with view towards possible
applications to the construction of the stochastic integral with respect to IBM. We prove
that the 4-th variation of IBM is a deterministic linear function. This clearly means that
the quadratic variation is infinite (although we do not prove this). We show that, in a
weak sense, the “signed quadratic variation” of IBM is distributed like Brownian motion.

Suppose that Λ = {s = t0 ≤ t1 ≤ · · · ≤ tn = t} is a partition of [s, t]. The mesh of the
partition Λ is defined as |Λ| df= max1≤k≤n |tk − tk−1|.
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Theorem 1. (i) Fix some 0 ≤ s < t. The following limit exists in Lp for every p <∞.

(3) lim
|Λ|→0

n∑
k=1

(Z(tk)− Z(tk−1))4 = 3(t− s).

(ii) Suppose in addition that tk − tk−1 = (t− s)/n for every k. Then

(4) lim
|Λ|→0

n∑
k=1

(Z(tk)− Z(tk−1))3 = 0 in Lp, p <∞.

Theorem 2. Suppose that t0 = 0 and tk − tk−1 = 1/n for k ≥ 1. Let

Vn(tm) =
m∑

k=1

(Z(tk)− Z(tk−1))2sgn(Z(tk)− Z(tk−1)).

Extend Vn continuously to [0,∞) by linear interpolation on each interval [tk−1, tk]. The
processes {Vn(s), s ≥ 0} converge in distribution as n → ∞ to a Brownian motion
{B(s), s ≥ 0} with variance VarB(s) = 3s.

Remarks. (i) The assumption that tk − tk−1 = tj − tj−1 for all j and k is imposed for
convenience in Theorem 1 (ii) and Theorem 2. The assumption seems to be unnecessary
but it makes the calculations somewhat more manageable.

(ii) A heuristic argument suggests that for a fixed s > 0, the sequence {Vn(s)}n≥1 has
no subsequences converging in probability.

(iii) The models considered by Funaki (1979) and Ma̧drecki and Rybaczuk (1992) involve
complex numbers. It might be worth having a look at the complex version of IBM. Suppose
that Y is a standard one-dimensional Brownian motion, X is a two-sided complex (i.e.,
two-dimensional but written in complex notation) Brownian motion and Z(t) = X(Y (t)).
Let Vn(tm) =

∑m
k=1(Z(tk) − Z(tk−1))2, in the notation of Theorem 2. Then Theorem 2

holds for this complex analogue of quadratic variation. The limiting process B for Vn’s is
a complex (i.e., two-dimensional) Brownian motion with the quadratic variation 3 times
as large as the standard one. This result may be proved just like Theorem 2 by using the
method of moments.

The proof of Theorem 2 is based on estimates of moments of Vn’s. The estimates are
quite delicate and it would take enormous amount of space to write them down in all detail.
We will carefully examine one crucial estimate and indicate how this can be generalized to
other moments.

We would like to thank Ron Pyke for simple proofs of Lemmas 1 and 2 below.

2. Proofs. Throughout the paper, c will stand for a strictly positive and finite constant
which may change the value from line to line.

We will need the following standard estimate. Let a > 0.∫ ∞

a

x2 1√
2πt

exp(−x2/2t)dx

= −x
√
t/2π exp(−x2/2t)

∣∣∣x=∞

x=a
+

∫ ∞

a

√
t/2π exp(−x2/2t)dx

≤ a
√
t/2π exp(−a2/2t) +

∫ ∞

a

(x/a)
√
t/2π exp(−x2/2t)dx

= a
√
t/2π exp(−a2/2t) + (t/a)

√
t/2π exp(−a2/2t)

= (a+ t/a)
√
t/2π exp(−a2/2t).(5)



VARIATION OF ITERATED BROWNIAN MOTION 3

The next estimate may be derived in an analogous way using integration by parts.

(6)
∫ ∞

a

x4 1√
2πt

exp(−x2/2t)dx ≤ (a3 + ta+ t2/a)
√
t/2π exp(−a2/2t).

Lemma 1. Suppose that for every (integer) k ≥ 1, k 6= 2, the k-th moment of a random
variable R is the same as that of a normal random variable U with mean 0 and variance
σ2. Then R and U have the same distribution.

The point of the lemma is that we do not assume that the variances of R and U are
identical. The lemma would follow immediately from known results (see Durrett (1991)
Theorem (3.9)) if we added this assumption.

Proof. The 2k-th moment µ2k of U is equal to σ2k(2k − 1)!!. Thus

lim sup
k→∞

µ
1/2k
2k /2k = lim sup

k→∞
(σ2k(2k − 1)!!)1/2k/2k = 0.

Durrett (1991) shows in the proof of Theorem (3.9) that this implies that the characteristic
function ϕU has the following series expansion valid on the whole real line.

ϕU (t) = 1 +
∞∑

k=1

tk

k!
ϕ

(k)
U (0).

The characteristic function ϕR of R is represented by an analogous series. For every k 6= 2,
the k-th moment of R is the same as that of U so ϕ(k)

R (0) = ϕ
(k)
U (0) and it follows that the

series for ϕR and ϕU may differ by at most one term. Hence

ϕR(t) = ϕU (t) + at2

and
ϕR(t)/t2 = ϕU (t)/t2 + a

for all t 6= 0. Since |ϕU (t)| ≤ 1 and |ϕR(t)| ≤ 1,

0 = lim
t→∞

ϕR(t)/t2 = lim
t→∞

ϕU (t)/t2 + a = a.

It follows that a = 0 and, therefore, U and R have identical characteristic functions. �

Lemma 2. Let fσ(x) denote the centered normal density with standard deviation σ and
let ψ(x, σ) = fσ(0)− fσ(x). For all k, n ≥ 0 there exists c = c(k, n) <∞ such that∫ ∞

−∞
|x|nψ(x, ρ1) . . . ψ(x, ρk)fσ(x)dx ≤ cρ−3

1 . . . ρ−3
k σn+2k

for all ρ1, . . . , ρk ≥ 0 (c does not depend on ρj’s or σ).

Proof. Since 1− e−y ≤ y for all y ≥ 0,

ψ(x, ρ) =
1√
2πρ

(1− exp(−x2/2ρ2)) ≤ 1
2
√

2π
x2

ρ3
.
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Let ξ denote a standard normal random variable. Then the integral in the statement of
the lemma equals

E|σξ|n
k∏

j=1

ψ(σξ, ρj) ≤ E|σξ|n+2k(2
√

2π)−k
k∏

j=1

ρ−3
j = c(k, n)σn+2k

k∏
j=1

ρ−3
j . �

Proof of Theorem 1 (i). We will only prove the convergence in Lp for p = 2. The general
case may be treated in an analogous way.

Recall that Λ = {s = t0 ≤ t1 ≤ · · · ≤ tn = t} is a partition of [s, t]. Let ∆it
df= ti − ti−1

and ∆iZ
df= Z(ti)− Z(ti−1). We have[ n∑

i=1

(∆iZ)4 − 3(t− s)
]2

=
[ n∑

i=1

((∆iZ)4 − 3∆it)
]2

=
n∑

i,j=1

((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt).(7)

It will suffice to prove that the expectation of the above random variable goes to 0 as |Λ|
goes to 0.

Fix some α ∈ (0, 1) and suppose that i 6= j. Fix some numbers ui−1 < ui < uj−1 < uj .
We will compute

E((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)

given

A1 = A1(ui−1, ui, uj−1, uj)
df= {Y (ti−1) = ui−1, Y (ti) = ui, Y (tj−1) = uj−1, Y (tj) = uj}.

Given this condition, the processes {X(ui+t)−X(ui), t ≥ 0} and {X(ui−t)−X(ui), t ≥ 0}
are independent standard Brownian motions. Given A1, the random variable (∆iZ)4−3∆it
is defined in terms of the first process and (∆jZ)4− 3∆jt is defined in terms of the second
one. Since E(X(s1)−X(s2))4 = 3(s1 − s2)2, it follows that

E(((∆iZ)4−3∆it)((∆jZ)4 − 3∆jt) | A1)

= E((∆iZ)4 − 3∆it | A1)E((∆jZ)4 − 3∆jt | A1)

= E((X(ui)−X(ui−1))4 − 3∆it | A1)E((X(uj)−X(uj−1))4 − 3∆jt | A1)

= (3(ui − ui−1)2 − 3∆it)(3(uj − uj−1)2 − 3∆jt).(8)

The same argument works for any ui−1, ui, uj−1 and uj such that the interval with end-
points ui−1 and ui is disjoint from the interval with endpoints uj−1 and uj .

Suppose that r > 2|Λ|α/2. Let

A2 = A2(r)
df= {|Y (ti)− Y (tj−1)| = r, |Y (ti−1)− Y (ti)| < ∆it

α/2, |Y (tj)− Y (tj−1)| < ∆jt
α/2}.

The increments Y (ti−1)−Y (ti) and Y (tj)−Y (tj−1) are independent given A2. If the event
A2 occurs then the interval with endpoints Y (ti−1) and Y (ti) is disjoint from the interval
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with endpoints Y (tj−1) and Y (tj). Hence we may integrate over suitable ui−1, ui, uj−1

and uj in (8) to obtain

E(((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt) | A2)

=
∫ ∆it

α/2

−∆itα/2
(3u2 − 3∆it)

1√
2π∆it

exp(−u2/2∆it)du×

×
∫ ∆jtα/2

−∆jtα/2
(3v2 − 3∆jt)

1√
2π∆jt

exp(−v2/2∆jt)dv.(9)

Since ∫ ∞

−∞
(3u2 − 3∆it)

1√
2π∆it

exp(−u2/2∆it)du = 0,

(5) implies that for some β > 0 and small ∆it,∣∣∣∣∫ ∆it
α/2

−∆itα/2
(3u2 − 3∆it)

1√
2π∆it

exp(−u2/2∆it)du
∣∣∣∣

=
∣∣∣∣2 ∫ ∞

∆itα/2
(3u2 − 3∆it)

1√
2π∆it

exp(−u2/2∆it)du
∣∣∣∣

≤
∫ ∞

∆itα/2
6u2 1√

2π∆it
exp(−u2/2∆it)du

≤ 6(∆it
α/2 + ∆it/∆it

α/2)
√

∆it/2π exp(−∆it
α/2∆it)

≤ exp(−∆it
−β).(10)

This and (9) show that for small |Λ|

(11) |E(((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt) | A2)| ≤ exp(−∆it
−β −∆jt

−β).

Let

A3 = A3(|Λ|)
df= {|Y (ti)− Y (tj−1)| > 2|Λ|α/2, |Y (ti−1)− Y (ti)| < ∆it

α/2, |Y (tj)− Y (tj−1)| < ∆jt
α/2}.

It follows from (11) that

|E(((∆iZ)4 − 3∆it)((∆jZ)4−3∆jt)1A3)|
≤ |E(((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt) | A3)|
≤ exp(−∆it

−β −∆jt
−β).(12)

Since EX8
t = ct4,

(13) E((∆iZ)8 + 9(∆it)2 | Y (ti−1)− Y (ti) = r) = cr4 + 9(∆it)2.

An argument similar to that in (10) (except that we would use (6) rather than (5)) gives
for small ∆it and some η > 0

|E((∆iZ)8 + 9(∆it)2)1{Y (ti−1)−Y (ti)>∆
α/2
i })|

=
∣∣∣∣2 ∫ ∞

∆itα/2
(cu4 + 9(∆it)2)

1√
2π∆it

exp(−u2/2∆it)du
∣∣∣∣ ≤ exp(−∆it

−η).(14)
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Let

A4 = A4(|Λ|)
df= {|Y (ti)− Y (tj−1)| > 2|Λ|α/2}∩

∩
[
{|Y (ti−1)− Y (ti)| > ∆it

α/2} ∪ {|Y (tj)− Y (tj−1)| > ∆jt
α/2}

]
.

Then (14) yields

|E(((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)1A4)|

≤ (E((∆iZ)4 − 3∆it)21A4)
1/2(E((∆jZ)4 − 3∆jt)21A4)

1/2

≤ (E2((∆iZ)8 + 9(∆it)2)1A4)
1/2(E2((∆jZ)8 + 9(∆jt)2)1A4)

1/2

≤ 2 exp(−∆it
−η/2−∆jt

−η/2).(15)

We define A5 = A5(|Λ|) to be {|Y (ti) − Y (tj−1)| > 2|Λ|α/2}. Combining (12) and (15)
yields for small ∆it and ∆jt

|E(((∆iZ)4−3∆it)((∆jZ)4 − 3∆jt)1A5)|
≤ exp(−∆it

−β −∆jt
−β) + 2 exp(−∆it

−η/2−∆jt
−η/2)

≤ 3 exp(−2∆it
−β −∆jt

−η).(16)

Choose α, γ ∈ (0, 1) such that δ df= α/2− γ/2 > 0. Let

A6 = {|Y (ti)− Y (tj−1)| ≤ 2|Λ|α/2}

and suppose that |ti − tj−1| > |Λ|γ . Taking the expectation on both sides of (13) gives

E((∆iZ)8 + 9(∆it)2) = c∆it
2.

It is easy to see that
P (A6) ≤ c|Λ|α/2/|Λ|γ/2 = c|Λ|δ.

By the independence of increments of Y ,

E(((∆iZ)8 + 9(∆it)2)1A6) = c∆it
2P (A6) = c∆it

2|Λ|δ,
E(((∆jZ)8 + 9(∆jt)2)1A6) = c∆jt

2|Λ|δ.

Hence

|E(((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)1A6)|

≤ (E((∆iZ)4 − 3∆it)21A6)
1/2(E((∆jZ)4 − 3∆jt)21A6)

1/2

≤ (E2((∆iZ)8 + 9(∆it)2)1A6)
1/2(E2((∆jZ)8 + 9(∆jt)2)1A6)

1/2

≤ 2(c∆it
2|Λ|δ)1/2(c∆jt

2|Λ|δ)1/2

= 2c∆it∆jt|Λ|δ.(17)

A similar application of the Schwarz inequality gives

(18) |E(((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)| ≤ c∆it∆jt
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for any i and j.
We conclude from (16) and (17) that for sufficiently small |Λ|

n∑
i,j=1

|ti−tj−1|>|Λ|γ

|E((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)|

≤
n∑

i,j=1
|ti−tj−1|>|Λ|γ

(3 exp(−2∆it
−β −∆jt

−η) + 2c∆it∆jt|Λ|δ)

≤ c|Λ|δ.(19)

As for the remaining terms, we use the estimate (18).

n∑
i,j=1

|ti−tj−1|≤|Λ|γ

|E((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)| ≤
n∑

i,j=1
|ti−tj−1|≤|Λ|γ

c∆it∆jt ≤ c|Λ|γ .

This and (19) show that

(20)
n∑

i,j=1

|E((∆iZ)4 − 3∆it)((∆jZ)4 − 3∆jt)| → 0

as |Λ| → 0. This completes the proof of (3) in the case p = 2. We can prove in a similar
way that

(21) lim
|Λ|→0

n∑
j1,...,jp=1

|E
p∏

k=1

((∆jk
Z)4 − 3∆jk

t)| = 0

for any p < ∞. This can be used to show that the limit in (3) exists in Lp for every
p <∞. �

Proof of Theorem 2. The proof will be based on the method of moments, i.e., we will show
that the moments of V converge to the moments of B.

Recall that t0 = 0 and tk − tk−1 = 1/n for k ≥ 1. Fix some 0 ≤ s1 < s2. Let Θ = Θ(n)
be the set of all k such that s1 ≤ tk−1 < tk ≤ s2. The set Θ(n) is non-empty for sufficiently
large n. Recall that ∆kt = tk − tk−1, ∆kZ = Z(tk) − Z(tk−1), ∆kY = Y (tk) − Y (tk−1)
and let

∆±
k Z

2 = (Z(tk)− Z(tk−1))2sgn(Z(tk)− Z(tk−1)).

We start with some estimates needed for computing the moments of the increments of Vn.
For every s, the distribution of X(s) is normal so EX2j(s) = (2j − 1)!!|s|j (Durrett

(1991), Excercise 3.18). By conditioning on the value of ∆kY we obtain for some dj > 0,

E(∆kZ)2j =
∫ ∞

−∞
EX2j(s)

1√
2π∆kt

exp(−s2/2∆kt)ds

=
∫ ∞

−∞
(2j − 1)!!|s|j 1√

2π∆kt
exp(−s2/2∆kt)ds = dj(∆kt)j/2.(22)
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Hence, E(∆kZ)2j <∞ for all j <∞.
The main contribution in our moment estimates will come from the expectations of the

form

(23) E

( ∑
k1,...,km∈Θ

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

)
.

Suppose that m = 2. We have∑
j,k∈Θ

(∆±
j Z

2)2(∆±
k Z

2)2 =
∑

j,k∈Θ

∆jZ
4∆kZ

4

=
[∑

j∈Θ

((∆jZ)4 − 3∆jt)
]2

−
∑

j,k∈Θ

9∆jt∆kt+ 2
∑

j,k∈Θ

3∆jZ
4∆kt.

It is easy to check that d2 = 3 in (22). Thus

E3∆jZ
4∆kt = 9∆jt∆kt

and, therefore,

E
∑

j,k∈Θ

(∆±
j Z

2)2(∆±
k Z

2)2 = E

[∑
j∈Θ

((∆jZ)4 − 3∆jt)
]2

+
∑

j,k∈Θ

9∆jt∆kt.

The expectation on the right hand side goes to 0 as n goes to ∞, by (20). Hence

(24) lim
n→∞

E
∑

j,k∈Θ

(∆±
j Z

2)2(∆±
k Z

2)2 = lim
n→∞

∑
j,k∈Θ

9∆jt∆kt = 9(s2 − s1)2.

In order to estimate the expectations in (23) for m ≥ 3, we use induction. We will treat
only the case m = 3.∑

i,j,k∈Θ

(∆±
i Z

2)2(∆±
j Z

2)2(∆±
k Z

2)2 =
∑

i,j,k∈Θ

∆iZ
4∆jZ

4∆kZ
4

=
[∑

j∈Θ

((∆jZ)4 − 3∆jt)
]3

+
∑

i,j,k∈Θ

27∆it∆jt∆kt

− 3
∑

i,j,k∈Θ

9∆iZ
4∆jt∆kt+ 3

∑
i,j,k∈Θ

3∆iZ
4∆jZ

4∆kt.

By (21), (22) and (24),

lim
n→∞

E

[∑
j∈Θ

((∆jZ)4 − 3∆jt)
]3

= 0,

lim
n→∞

E

[
3

∑
i,j,k∈Θ

9∆iZ
4∆jt∆kt

]
= lim

n→∞
E

[
3

∑
i,j,k∈Θ

27∆it∆jt∆kt

]
= 81(s2 − s1)3,
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lim
n→∞

E

[
3

∑
i,j,k∈Θ

3∆iZ
4∆jZ

4∆kt

]
= lim

n→∞
(s2 − s1)E

[
3

∑
i,j∈Θ

3∆iZ
4∆jZ

4

]
= 81(s2 − s1)3.

Hence,

lim
n→∞

E
∑

i,j,k∈Θ

(∆±
i Z

2)2(∆±
j Z

2)2(∆±
k Z

2)2 = lim
n→∞

E
∑

i,j,k∈Θ

27∆it∆jt∆kt = 27(s2 − s1)3.

In the same way, using induction, we may prove that

(25) lim
n→∞

E

( ∑
k1,...,km∈Θ

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

)
= 3m(s2 − s1)m.

Suppose that q1, . . . , qm ≥ 1 are integers and at least one of them is strictly greater
than 1. By Hölder’s inequality and (22),

E[(∆±
k1
Z2)2q1(∆±

k2
Z2)2q2 . . .(∆±

km
Z2)2qm ]

≤ (E(∆±
k1
Z2)2mq1)1/m . . . (E(∆±

km
Z2)2mqm)1/m

≤ (d2mq1(∆k1t)
mq1)1/m . . . (d2mqm

(∆km
t)mqm)1/m

≤ c(1/n)q1+···+qm ,

and, therefore,
(26)

lim
n→∞

E

( ∑
k1,...,km∈Θ

(∆±
k1
Z2)2q1(∆±

k2
Z2)2q2 . . . (∆±

km
Z2)2qm

)
≤ lim

n→∞
nmc(1/n)q1+···+qm = 0.

The absolute value of the difference between∑
k1,...,km∈Θ

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

and ∑
k1,...,km∈Θ

k1,...,km distinct

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

is bounded by a finite sum of the expressions of the form∑
k1,...,ki∈Θ

(∆±
k1
Z2)2q1(∆±

k2
Z2)2q2 . . . (∆±

ki
Z2)2qi

where at least one of the qj ’s is greater than 1. It follows from (25) and (26) that

(27) lim
n→∞

E

( ∑
k1,...,km∈Θ

k1,...,km distinct

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

)
= 3m(s2 − s1)m.

Next we tackle the expectations of the form

E

( ∑
k1,...,km∈Θ

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

km
Z2)qm

)
,



10 KRZYSZTOF BURDZY

where q1, . . . , qm ≥ 1 are integers but they are not necessarily even. We will tacitly assume
that the sum is taken over indices which are pairwise distinct (the other terms appear in
sums with different exponents qk). We will illustrate the method by analyzing in detail
only one sum, namely,

E

( ∑
k1,...,k4∈Θ

k1<k2<k3<k4

(∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2

)
.

Note that the indices in the last sum are ordered — the sum with unordered indices may
be obtained by adding a finite number of sums with ordered indices. Let

A1 = A1(uk1−1, uk1 , uk2−1, uk2 , uk3−1, uk3 , uk4−1, uk4)
df= {Y (tki−1) = uki−1, Y (tki) = uki , i = 1, 2, 3, 4}.

Let A2 denote the event that there exists a number a such that for each i, the interval
with endpoints uki−1 and uki

is either contained in (a,∞) or in (−∞, a) and that each
half-line contains at least one of these intervals. Suppose for a moment that uki−1 and uki

are such that A2 holds, for example, the intervals corresponding to i = 1, 2 are in (a,∞)
and the other two are contained in the other half-line. The same argument that leads to
(8) gives in the present case

E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2 | A1)

= E((∆±
k1
Z2)2∆±

k2
Z2 | A1)E((∆±

k3
Z2)2∆±

k4
Z2 | A1).(28)

Both conditional expectations on the right hand side are equal to zero since the random
variables have symmetric (conditional) distributions. If the event A2 is realized in some
other way, the conditional expectation on the left hand side of (28) may be factored in
some other way such that at least one conditional expectation on the right hand side is
equal to 0 because of symmetry of the involved distribution. Hence,

(29) E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z21A2) = 0.

For arbitrary values of ui’s,

E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2 | A1)

≤ (E((∆±
k1
Z2)4 | A1))1/2(E((∆±

k2
Z2)2 | A1))1/2×

× (E((∆±
k3
Z2)4 | A1))1/2(E((∆±

k4
Z2)2 | A1))1/2

= (EX8(|uk1−1 − uk1 |))1/2(EX4(|uk2−1 − uk2 |))1/2×

× (EX8(|uk3−1 − uk3 |))1/2(EX4(|uk4−1 − uk4 |))1/2

≤ c|uk1−1 − uk1 |2|uk2−1 − uk2 ||uk3−1 − uk3 |2|uk4−1 − uk4 |.(30)

Note that

E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2 | A1(uk1−1, uk1 , uk2−1, uk2 , uk3−1, uk3 , uk4−1, uk4))

= −E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2 | A1(uk1−1, uk1 , uk2 , uk2−1, uk3−1, uk3 , uk4−1, uk4))

(31)
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because when we exchange the roles of uk2−1 and uk2 , we change, in a sense, the sign of
∆±

k2
Z2. For the same reason we have

E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2 | A1(uk1−1, uk1 , uk2−1, uk2 , uk3−1, uk3 , uk4−1, uk4))

= −E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2 | A1(uk1−1, uk1 , uk2−1, uk2 , uk3−1, uk3 , uk4 , uk4−1)).

(32)

Let ρ = ρ(r1, r2, r3, r4) = |r1|+ |r2|+ |r3|+ |r4|. We claim that

|E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2)|

≤
∣∣∣∣∫ [

|r1|2|r2||r3|2|r4|P (Y (tk1)− Y (tk1−1) ∈ dr1)P (Y (tk2)− Y (tk2−1) ∈ dr2)

P (Y (tk3)− Y (tk3−1) ∈ dr3)P (Y (tk4)− Y (tk4−1) ∈ dr4)
]

1|r5|≤ρ1|r6|≤ρ

[
P (Y (tk2−1)− Y (tk1) ∈ dr5)P (Y (tk3−1)− Y (tk2) ∈ dr6)

− P (Y (tk2−1)− Y (tk1) ∈ d(r5 + r2))P (Y (tk3−1)− Y (tk2) ∈ d(r6 − r2))
]

1|r7|≤ρ

[
P (Y (tk4−1)− Y (tk3) ∈ dr7)− P (Y (tk4−1)− Y (tk3) ∈ d(r7 + r4))

]∣∣∣∣.(33)

The terms in the first pair of large square brackets are justified by (30). The terms in
the second and third pair of large square brackets come from (31)-(32). The presence of
indicator functions follows from (29).

We will now estimate∣∣∣∣∫ 1|r5|≤ρ1|r6|≤ρ[P (Y (tk2−1)− Y (tk1) ∈ dr5)P (Y (tk3−1)− Y (tk2) ∈ dr6)

− P (Y (tk2−1)− Y (tk1) ∈ d(r5 + r2))P (Y (tk3−1)− Y (tk2) ∈ d(r6 − r2))]
∣∣∣∣.(34)

Recall ψ(x, σ) from Lemma 2. Since tk2−1 − tk1 = (k2 − 1− k1)/n, the standard deviation
of Y (tk2−1)− Y (tk1) is equal to ((k2 − 1− k1)/n)1/2. Hence

|P (Y (tk2−1)− Y (tk1) ∈ dr5)− P (Y (tk2−1)− Y (tk1) ∈ d(r5 + r2))|

≤ (ψ(r5, ((k2 − 1− k1)/n)1/2) + ψ(r5 + r2, ((k2 − 1− k1)/n)1/2))dr5

≤ 2ψ(2ρ, ((k2 − 1− k1)/n)1/2)dr5(35)

provided |r5| ≤ ρ. Similarly,

|P (Y (tk3−1)− Y (tk2) ∈ dr6)− P (Y (tk3−1)− Y (tk2) ∈ d(r6 − r2))|

≤ 2ψ(2ρ, ((k3 − 1− k2)/n)1/2)dr6(36)

assuming |r6| ≤ ρ. We will assume temporarily that kj − kj−1 > 1 for all j in order to
avoid normal variables with zero variance and in order to be able to use Lemma 2. We
will get rid of this assumption later.
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For any reals a,∆a, b and ∆b,

|ab− (a+ ∆a)(b+ ∆b)| ≤ |a∆b|+ |b∆a|+ |∆a∆b|.

This, (35) and (36) imply

|P (Y (tk2−1)− Y (tk1) ∈ dr5)P (Y (tk3−1)− Y (tk2) ∈ dr6)
− P (Y (tk2−1)− Y (tk1) ∈ d(r5 + r2))P (Y (tk3−1)− Y (tk2) ∈ d(r6 − r2))|

≤ 2ψ(2ρ, ((k2 − 1− k1)/n)1/2)dr5P (Y (tk3−1)− Y (tk2) ∈ dr6)

+ 2ψ(2ρ, ((k3 − 1− k2)/n)1/2)dr6P (Y (tk2−1)− Y (tk1) ∈ dr5)

+ 2ψ(2ρ, ((k2 − 1− k1)/n)1/2)dr52ψ(2ρ, ((k3 − 1− k2)/n)1/2)dr6.

The integral in (34) is, therefore, bounded by∣∣∣∣∫ 1|r5|≤ρ1|r6|≤ρ

[2ψ(2ρ, ((k2 − 1− k1)/n)1/2)dr5P (Y (tk3−1)− Y (tk2) ∈ dr6)

+ 2ψ(2ρ, ((k3 − 1− k2)/n)1/2)dr6P (Y (tk2−1)− Y (tk1) ∈ dr5)

+ 2ψ(2ρ, ((k2 − 1− k1)/n)1/2)dr52ψ(2ρ, ((k3 − 1− k2)/n)1/2)dr6]
∣∣∣∣

≤ cψ(2ρ, ((k2 − 1− k1)/n)1/2)ρ2((k3 − 1− k2)/n)−1/2

+ cψ(2ρ, ((k3 − 1− k2)/n)1/2)ρ2((k2 − 1− k1)/n)−1/2

+ cψ(2ρ, ((k2 − 1− k1)/n)1/2)ρ2ψ(2ρ, ((k3 − 1− k2)/n)1/2).(37)

We can prove in the same way that∣∣∣∣∫ 1|r7|≤ρ[P (Y (tk4−1)− Y (tk3) ∈ dr7)− P (Y (tk4−1)− Y (tk3) ∈ d(r7 + r4))]
∣∣∣∣

≤ cψ(2ρ, ((k4 − 1− k3)/n)1/2)ρ.(38)

We now substitute this estimate and (37) into (33) to obtain

|E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2)|

≤
∣∣∣∣∫ |r1|2|r2||r3|2|r4|P (Y (tk1)− Y (tk1−1) ∈ dr1)P (Y (tk2)− Y (tk2−1) ∈ dr2)

P (Y (tk3)− Y (tk3−1) ∈ dr3)P (Y (tk4)− Y (tk4−1) ∈ dr4)[
cψ(2ρ, ((k2 − 1− k1)/n)1/2)ρ2((k3 − 1− k2)/n)−1/2

+ cψ(2ρ, ((k3 − 1− k2)/n)1/2)ρ2((k2 − 1− k1)/n)−1/2

+ cψ(2ρ, ((k2 − 1− k1)/n)1/2)ρ2ψ(2ρ, ((k3 − 1− k2)/n)1/2)
]

cψ(2ρ, ((k4 − 1− k3)/n)1/2)ρ
∣∣∣∣.(39)
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By multiplying out the expression in brackets on the right hand side we obtain three terms
under the integral sign. The first one is equal to

∫
|r1|2|r2||r3|2|r4|cψ(2ρ, ((k2 − 1− k1)/n)1/2)ρ2((k3 − 1− k2)/n)−1/2

cψ(2ρ, ((k4 − 1− k3)/n)1/2)ρP (Y (tk1)− Y (tk1−1) ∈ dr1)P (Y (tk2)− Y (tk2−1) ∈ dr2)
P (Y (tk3)− Y (tk3−1) ∈ dr3)P (Y (tk4)− Y (tk4−1) ∈ dr4)

=
∫
|r1|2|r2||r3|2|r4|cψ(2(|r1|+ |r2|+ |r3|+ |r4|), ((k2 − 1− k1)/n)1/2)

(|r1|+ |r2|+ |r3|+ |r4|)2((k3 − 1− k2)/n)−1/2

cψ(2(|r1|+ |r2|+ |r3|+ |r4|), ((k4 − 1− k3)/n)1/2)(|r1|+ |r2|+ |r3|+ |r4|)
P (Y (tk1)− Y (tk1−1) ∈ dr1)P (Y (tk2)− Y (tk2−1) ∈ dr2)

P (Y (tk3)− Y (tk3−1) ∈ dr3)P (Y (tk4)− Y (tk4−1) ∈ dr4).
(40)

Note that

ψ(2(|r1|+ |r2|+ |r3|+ |r4|), ((k2 − 1− k1)/n)1/2) ≤
4∑

j=1

ψ(8|rj |, ((k2 − 1− k1)/n)1/2)

and the standard deviation of Y (tkj
)−Y (tkj−1) is equal to n−1/2. This and Lemma 2 can

be used to show that (40) is bounded by

c((k2 − 1− k1)/n)−3/2((k3 − 1− k2)/n)−1/2((k4 − 1− k3)/n)−3/2n−13/2.

The other terms in (39) may be treated in a similar way so

|E((∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2)|

≤ c((k2 − 1− k1)/n)−3/2((k3 − 1− k2)/n)−1/2((k4 − 1− k3)/n)−3/2n−13/2

+ c((k3 − 1− k2)/n)−3/2((k2 − 1− k1)/n)−1/2((k4 − 1− k3)/n)−3/2n−13/2

+ c((k2 − 1− k1)/n)−3/2((k3 − 1− k2)/n)−3/2((k4 − 1− k3)/n)−3/2n−15/2.

(41)

Now we discuss our temporary assumption that kj − kj−1 > 1. If k4 − k3 = 1 then the
last term in large square brackets in (33) should be replaced by 1. If k4 − k3 = 2 then the
effect of the same term on our estimate is that of a multiplicative constant (see, e.g., (38)).
It follows that the terms corresponding to kj − kj−1 = 1 contribute to our sums as much
as those corresponding to kj − kj−1 = 2 (up to a multiplicative constant). Having this in
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mind, we may write∣∣∣∣E( ∑
k1,...,k4∈Θ

k1<k2<k3<k4

(∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2

)∣∣∣∣
≤

∑
k1,...,k4∈Θ

k1<k2<k3<k4
kj−kj−1>1[

c((k2 − 1− k1)/n)−3/2((k3 − 1− k2)/n)−1/2((k4 − 1− k3)/n)−3/2n−13/2

+ c((k3 − 1− k2)/n)−3/2((k2 − 1− k1)/n)−1/2((k4 − 1− k3)/n)−3/2n−13/2

+ c((k2 − 1− k1)/n)−3/2((k3 − 1− k2)/n)−3/2((k4 − 1− k3)/n)−3/2n−15/2
]
.

(42)

We have∑
k1,...,k4∈Θ

k1<k2<k3<k4
kj−kj−1>1

c((k2 − 1− k1)/n)−3/2((k3 − 1− k2)/n)−1/2((k4 − 1− k3)/n)−3/2n−13/2

≤ cn−3
n∑

k1=1

∞∑
j1=1

j
−3/2
1

n∑
j2=1

j
−1/2
2

∞∑
j3=1

j
−3/2
3

≤ cn−3nn1/2 = cn−3/2.(43)

Similar bounds hold for other terms in (42) so that∣∣∣∣E( ∑
k1,...,k4∈Θ

k1<k2<k3<k4

(∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2

)∣∣∣∣ ≤ cn−3/2 + cn−3/2 + cn−2

and, therefore,

lim
n→∞

∣∣∣∣E( ∑
k1,...,k4∈Θ

k1<k2<k3<k4

(∆±
k1
Z2)2∆±

k2
Z2(∆±

k3
Z2)2∆±

k4
Z2

)∣∣∣∣ = 0.

Now we will explain how this result may be generalized. Suppose that qj is either equal
to 1 or 2 for j = 1, . . . ,m. The expectation

|E((∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

km
Z2)qm)|

may be bounded as in (41) by a product of factors corresponding to (∆±
kj
Z2)qj . If qj = 1

and j > 1 then the factor is of the form

c((kj − 1− kj−1)/n)−3/2n−2

and when qj = 2, j > 1, then the factor is

c((kj − 1− kj−1)/n)−1/2n−3/2.
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For j = 1, the factor is n−1 or n−1/2, depending on whether qj = 2 or 1. Summing as in
(43) shows that each factor corresponding to (∆±

kj
Z2)qj contributes cn−1/2 to the sum of

expectations provided j > 1. The contribution from the first factor is either c or cn1/2.
Hence

(44)
∣∣∣∣E( ∑

k1,...,km∈Θ

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

km
Z2)qm

)∣∣∣∣ ≤ cn(−m+2)/2.

If m > 3 then

(45) lim
n→∞

∣∣∣∣E( ∑
k1,...,km∈Θ

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

km
Z2)qm

)∣∣∣∣ = 0.

Suppose that some qj ’s are greater than 2 and at least one of them is odd (we need this
assumption to prove (29)). The only part of the proof that will be affected by this change
in the assumptions is that the powers of rj ’s in (33) will increase. If every qj is equal to
2pj + 1 or 2pj + 2 for some integer pj ≥ 0 then instead of (44) we will have

(46)
∣∣∣∣E( ∑

k1,...,km∈Θ

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

km
Z2)qm

)∣∣∣∣ ≤ cn−p1−···−pm+(−m+2)/2.

Next we will analyse the fourth moment of Vn’s. We have(∑
k∈Θ

∆±
k Z

2

)4

= 3
∑

j,k∈Θ
j,k distinct

(∆±
j Z

2)2(∆±
k Z

2)2 +
∑
k∈Θ

(∆±
k Z

2)4

+ c
∑

j,k∈Θ
j 6=k

(∆±
j Z

2)3∆±
k Z

2 + c
∑

j,k,m∈Θ
m6=j 6=k<m

(∆±
j Z

2)2∆±
k Z

2∆±
mZ

2

+ c
∑

i,j,k,m∈Θ
i<j<k<m

∆±
i Z

2∆±
j Z

2∆±
k Z

2∆±
mZ

2.(47)

It follows from (26), (27), (45) and (46) that

lim
n→∞

E

(
3

∑
j,k∈Θ

j,k distinct

(∆±
j Z

2)2(∆±
k Z

2)2
)

= 27(s2 − s1)2,

lim
n→∞

∣∣∣∣E(∑
k∈Θ

(∆±
k Z

2)4
)∣∣∣∣ = 0,

lim
n→∞

∣∣∣∣E(
c

∑
j,k∈Θ
j 6=k

(∆±
j Z

2)3∆±
k Z

2 + c
∑

j,k,m∈Θ
m6=j 6=k<m

(∆±
j Z

2)2∆±
k Z

2∆±
mZ

2

+ c
∑

i,j,k,m∈Θ
i<j<k<m

∆±
i Z

2∆±
j Z

2∆±
k Z

2∆±
mZ

2

)∣∣∣∣ = 0.
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Hence

(48) lim
n→∞

E

(∑
k∈Θ

∆±
k Z

2

)4

= 27(s2 − s1)2.

More generally, suppose that m > 1 is an integer. Then(∑
k∈Θ

∆±
k Z

2

)2m

= (2m− 1)!!
∑

k1,...,km∈Θ
k1,...,km distinct

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

+
∑

2(q1+···+qj)=2m
q1·...·qj≥2

c(q1, . . . , qj)
∑

k1,...,km∈Θ

(∆±
k1
Z2)2q1(∆±

k2
Z2)2q2 . . . (∆±

kj
Z2)2qj

+
∑

q1+···+qj=2m

c(q1, . . . , qj)
∑

k1,...,kj∈Θ

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

kj
Z2)qj ,

where qi’s are positive integers and in the last sum, at least two qi’s are odd. By (27)

lim
n→∞

E

(
(2m−1)!!

∑
k1,...,km∈Θ

k1,...,km distinct
2m=q

(∆±
k1
Z2)2(∆±

k2
Z2)2 . . . (∆±

km
Z2)2

)
= (2m−1)!!3m(s2−s1)m.

We have

lim
n→∞

E

( ∑
2(q1+···+qj)=2m

q1·...·qj≥2

c(q1, . . . , qj)
∑

k1,...,km∈Θ

(∆±
k1
Z2)2q1(∆±

k2
Z2)2q2 . . . (∆±

kj
Z2)2qj

+
∑

q1+···+qj=2m

c(q1, . . . , qj)
∑

k1,...,kj∈Θ

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

kj
Z2)qj

)
= 0

by (26), (45) and (46). We conclude that

(49) lim
n→∞

E

(∑
k∈Θ

∆±
k Z

2

)2m

= (2m− 1)!!3m(s2 − s1)m

for m > 1. Note that

(50) lim
n→∞

E

(∑
k∈Θ

∆±
k Z

2

)2m+1

= lim
n→∞

0 = 0

since the random variables under the expectation have symmetric distributions.
We see from (49)-(50) that the moments of Ṽn(s2) − Ṽn(s1)

df=
∑

k∈Θ ∆±
k Z

2 (except
possibly the second moment) converge as n goes to infinity to the moments of the normal
distribution with mean 0 and variance 3(s2 − s1). The difference

|Ṽn(s2)− Ṽn(s1)− (Vn(s2)− Vn(s1))|
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is bounded by |∆±
j Z

2 + ∆±
k Z

2| for appropriate j and k. Since

lim
n→∞

E|∆±
j Z

2 + ∆±
k Z

2|p = 0

for every p <∞ and every choice of j and k, an application of Minkowski’s inequality shows
that the moments of Vn(s2)− Vn(s1) have the same limits as those of Ṽn(s2)− Ṽn(s1).

It is perhaps appropriate to explain why we have not proved the convergence of the
second moments of Vn(s2)−Vn(s1). In order to do it we would have to have very accurate
estimates of

E

( ∑
j,k∈Θ

∆±
j Z

2∆±
k Z

2

)
which cannot be found using our method.

A simple modification of the proof of Theorem 4.5.5 of Chung (1974) shows that every
subsequence of {Vn(s2) − Vn(s1)}n≥1 has a further subsequence which converges in dis-
tribution to a random variable which has the same moments (with possible exception of
variance) as the centered normal with variance 3(s2 − s1). Lemma 1 implies that there is
only one distribution which has the same moments of order greater than 2 asN(0, 3(s2−s1))
and so {Vn(s2)− Vn(s1)}n≥1 converges in distribution to N(0, 3(s2 − s1)).

We will indicate how one can prove that the finite-dimensional distributions of Vn also
converge to those of Brownian motion B(s) with variance 3s. In order to prove that a pair
of random variables has a two-dimensional normal distribution it suffices to show that all
linear combinations of the random variables are normal. One can show this by finding the
moments of all linear combinations. Let us fix some 0 ≤ s1 < s2 ≤ u1 < u2 and let Θ(s)
and Θ(u) be the obvious analogues of Θ. Let a and b be arbitrary real numbers. In order
to find

lim
n→∞

E

(
a

∑
k∈Θ(s)

∆±
k Z

2 + b
∑

k∈Θ(u)

∆±
k Z

2

)m

we might calculate

lim
n→∞

E

[(
a

∑
k∈Θ(s)

∆±
k Z

2

)m1
(
b

∑
k∈Θ(u)

∆±
k Z

2

)m2
]

for various values of m1 and m2. Doing this would require estimates of

E

( ∑
k1,...,km∈Θ(s)

(∆±
k1
Z2)q1(∆±

k2
Z2)q2 . . . (∆±

km
Z2)qm×

×
∑

k1,...,ki∈Θ(u)

(∆±
k1
Z2)p1(∆±

k2
Z2)p2 . . . (∆±

ki
Z2)pi

)
.

It can be shown that these expectations converge to the desired limits. The method of proof
is a routine adaptation of the one used in the case of the one-dimensional distributions
of Vn. We omit the details as they are tedious. The case of m-dimensional distributions,
m > 2, can be dealt with in the same way.

Since the the finite-dimensional distributions of Vn converge as n→∞ to those of B it
remains to check that the distributions of Vn are tight. It will suffice to show that there
exists c <∞ such that

(51) E(Vn(s2)− Vn(s1))4 ≤ c(s2 − s1)2
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for all s1, s2 and all n (see Billingsley (1968), (12.51)). It follows easily from the scaling
properties of Brownian motions X and Y that Z has the “4-th order” scaling proper-
ties while Vn’s have the Brownian scaling properties. In other words, the distribution of
{
√
n/mVn(s ·m/n), s ≥ 0} is the same as that of {Vm(s), s ≥ 0}. It follows that (51) holds

for all n if it holds for a single n. We will show that (51) holds for n = 1. Suppose that
s1 = 0. Then we want to show that

E(V1(s2))4 ≤ cs22.

This is true for s2 = 1 and some c since V1 has all moments. It is easy to extend it to
all s2 ∈ [0, 1] since V1 is (by definition) a linear function on [0, 1]. Suppose that s2 is an
integer greater than 1. Then

E(V1(s2))4 = E(
√
s2Vs2(s2/s2))

4 = s22E(Vs2(1))4

by the scaling property of Vn’s. We have proved in (48) that

lim sup
s2→∞

E(Vs2(1))4 < c <∞

so

(52) E(V1(s2))4 ≤ cs22

for all integer s2. It is elementary to extend the inequality to non-integer s2 using the
fact that V1 is a linear function between integers. Now we use another invariance property
of Vn’s, namely, that of translation invariance of their increments. The distribution of
{V1(s)− V1(0), s ≥ 0} is the same as that of {V1(s+ a)− V1(a), s ≥ 0} provided a > 0 is
an integer. This and (52) imply that

E(V1(s2)− V1(s1))4 ≤ c(s2 − s1)2

for integer numbers s1 and all s2 > s1. Extending the result to all s1 is easy.
This concludes the proof of the weak convergence of Vn’s to B. �

Proof of Theorem 1 (ii). We will prove the theorem only for s = 0 and t = 1. The
estimate (46) obtained in the proof of Theorem 2 will be used to prove (4). We will apply
the estimate with s1 = 0 and s2 = t (recall the notation form the previous proof). We
want to show that

lim
n→∞

E

( n∑
j=1

(∆jZ)3
)p

= 0.

It will suffice to show that

(53) lim
n→∞

∣∣∣∣E( ∑
k1,...,km∈Θ

(∆k1Z)3q1(∆k2Z)3q2 . . . (∆km
Z)3qm

)∣∣∣∣ = 0

for integer qj ≥ 1 such that q1 + · · · + qm = p. The sum extends over distinct kj ’s. If all
qj ’s are even then (53) follows from (26).

Assume that at least one of qj ’s is odd. Let us adopt the following convention for integer
m

(∆±
k Z

2)m+1/2 = (∆kZ)2m+1.
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One can verify that (46) remains true if some of qj ’s are not integers but have the form
k + 1/2 for some integer k. Such qj ’s should be treated as odd integers for the purpose of
the decomposition qj = 2pj + 1 used in (46). We obtain from (46)

(54)
∣∣∣∣E( ∑

k1,...,km∈Θ

(∆k1Z)3q1(∆k2Z)3q2 . . . (∆km
Z)3qm

)∣∣∣∣ ≤ cn−r1−···−rm+(−m+2)/2

where 3qj/2 = 2rj + 2 if 3qj/2 is an even integer and 3qj/2 = 2rj + 1 otherwise. If m > 2
then (54) implies (53). If m = 2 and p is large then r1 + r2 > 0 and again (54) implies
(53). �
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