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Building a biochemical system from scratch that rivals a living cell in ability to robustly

perform many complex tasks in response to environmental signals is beyond the state-of-the-

art. However, feedback is clearly a principle widely employed by cells – as it is by engineers

– to enable robust dynamical behaviors, although a limited system-level understanding of

feedback regulation and dynamical behavior in biochemical contexts hampers our ability

to engineer such systems. Studying simple feedback systems in a rich, yet fully synthetic,

biochemical context – like that provided by DNA nanotechnology – may therefore lead to

a new state-of-the-art for synthetic biological systems.

This thesis, in keeping with this philosophy, describes basic efforts in engineering bio-

chemical feedback control systems in the form of simple, in vitro, nucleic-acid-based devices.

I describe two such devices, which provide basic test-beds for engineering feedback dynamics

in vitro. The first device is a DNA nanomotor, previously described in the literature, that is

built from and operated by nucleic acid components, and that I modify by the introduction

of a protein enzyme to improve the performance of the device in experimental tests. The

second device I design and build from nucleic acid components and two protein enzymes to

regulate the free quantity of an RNA molecule, which in turn can be used to dynamically

drive the operation of other nucleic-acid-based systems –such as the first device – in a robust

manner.
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Chapter 1

INTRODUCTION

Cells are the fundamental units of living organisms. They exist in great variety and

complexity and are capable of performing a dizzying array of tasks, often in highly uncertain

environments. The robust ability of cells to live and self-replicate in uncertain environments

is due in large part to the extensive biochemical regulatory systems that control cell state

in response to environmental inputs. Feedback, which underpins the complex, dynamical

structure of these systems, is widely studied in biology and engineering due to its ability to

shape important characteristics of dynamical behavior. However, in cells, these dynamical

behaviors are evolved properties and therefore resistant to a rational understanding of the

design principles, feedback or otherwise, that underlie them.

Engineered biochemical regulatory systems, on the other hand, might promise, in similar

contexts, the same robust, controllable behavior as the regulatory systems in cells, but with

the advantage of having been designed with an inherent understanding to a particular

purpose. A broader goal of my research is to move forward our ability to engineer feedback-

regulated biochemical systems that approach the complexity, scale, and robust performance

of natural biological systems, and to provide tools that allow the orthogonal investigation

of the regulatory principles underlying natural biological systems. For example, take as

context the field of DNA nanotechnology, which has leveraged the simple mechanism of

Watson-Crick base-pairing to implement an impressively wide array of behaviors, including

self-assembly, amplification, detection, computation, sensing, and actuation. Taking a cell

as a model, layering the appropriate regulatory behaviors on top of these others might

enable the construction of even more robust and/or complex behaviors.

Certainly, building a biochemical system from scratch that rivals a cell in ability to

robustly perform many complex tasks in response to environmental signals is beyond the

state-of-the-art. However, feedback is clearly a principle widely employed by cells – as it is
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by engineers – to enable robust dynamical behaviors, although a limited system-level under-

standing of feedback regulation and dynamical behavior in biochemical contexts hampers

our ability to engineer such systems. Studying simple feedback systems in a rich, yet fully

synthetic, biochemical context – like that provided by DNA nanotechnology – may therefore

lead to a new state-of-the-art for synthetic biological systems.

This thesis, in keeping with this philosophy, describes basic efforts in engineering bio-

chemical feedback control systems in the form of simple, in vitro, nucleic-acid-based devices.

I describe two such devices, which provide basic test-beds for engineering feedback dynamics

in vitro. The first device is a DNA nanomotor, previously described in the literature, that is

built from and operated by nucleic acid components, and that I modify by the introduction

of a protein enzyme to improve the performance of the device in experimental tests. The

second device I design and build from nucleic acid components and two protein enzymes to

regulate the free quantity of an RNA molecule, which in turn can be used to dynamically

drive the operation of other nucleic-acid-based systems –such as the first device – in a robust

manner.

In Chapter 2, I survey results in synthetic biology and DNA nanotechnology that provide

an engineering context to this work. I also discuss the general study of feedback regulation

in biological contexts.

In Chapter 3, I discuss work on improving a DNA nanomotor to make it less sensitive

to waste products in experimental tests. Guided by chemical reaction network models of

the nanomotor system, two successive modifications are made to the nanomotor system

that compensate for waste, and analysis and experiments are presented that confirm the

modifications improve the nanomotor’s performance.

In Chapter 4, I introduce my work on using feedback to regulate the supply of RNA fuel,

such as might operate the DNA nanomotor discussed in Chapter 3. In this chapter, I intro-

duce the design of two genelet systems, unregulated and regulated RNA delivery devices,

that we use to compare our ability to regulate the RNA fuel supply. The process used to

design these systems is discussed in detail, from high-level regulatory network specifications

to low-level sequence specifications.

In Chapter 5, I introduce a set of models that we use to analyze the behavior of the
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genelet systems introduced in Chapter 4. The models predict qualitative features for the

response of both systems regarding dynamic equilibria, tunability, and robustness to dis-

turbances in a fuel-consuming, downstream process.

Chapter 6, I present experimental tests of the unregulated and regulated genelet systems.

The tests demonstrate the impact of tuning in both genelet systems, highlight the relatively

robust nature of correctly tuned regulated genelet systems with respect to a fuel-consuming,

downstream process, and generally validate the qualitative predictions made by the model

analyses. The results of the application of several data-fitting methods are also presented,

to draw a quantitative connection between models and experiment.

Appendices A, B, and C provide supplementary information for Chapters 4, 5, and 6,

respectively.
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Chapter 2

BACKGROUND

A driving force for the synthetic biology research community is the idea that one can ex-

pose the basic “design principles” of life by trying to build living systems from scratch. This

idea holds for natural and synthetic constructs, in contexts ranging from isolated molecular

circuits to single- or multi-cellular organisms, and across physical and theoretical models

of living systems. For example, cellular automata are theoretical models for which self-

replicating versions were first designed over 50 years ago [75]. Since then cellular automata

have provided models for the study and simulation of biological systems [56]; one even bears

the name “Game of Life” [7].

The most common physical model for living systems, however, is the single cell, which in

many respects seems to be the fundamental unit of life [65]. Consequently, one approach to

understanding living systems is to build an artificial cell from the “bottom-up,” completely

from scratch [26]. Such an effort requires complex, dynamical i/o systems implemented

by interacting nano-scale particles, but does not necessarily require nucleic acids, proteins,

lipids, organelles, or other recognizable, natural cellular constituents. On the other hand,

natural components provide an obvious template for “bottom-up” efforts.

Thus, a first approximation to a completely artificial cell is the synthetic cell, which is

a “top-down” effort to provide a minimally living platform for “bottom-up” biological en-

gineering. Researchers have developed genetic recombination techniques that allow for the

construction of entire genomes from chemically synthesized DNA [31]. The technique was

used to recreate the genome of the bacterium Mycoplasma mycoides from synthetic parts,

which was then recombined into the yeast Saccharomyces cerevisiae and transplanted into

the genome-restricted shell of the related bacterium Mycoplasma capricolum [32]. Eventu-

ally, however, creating a platform for general biological engineering will require a synthetic

genome containing a minimal set of genes sufficient for life [33, 60, 34], rather than a syn-
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thetic recreation of a naturally occurring genome.

With such a platform not yet available, most synthetic biologists are in practice restricted

to building engineered biological circuits inside existing organisms. This practice may in fact

be desirable, however, if the goal is to engineer new behaviors in those particular organisms.

The idea to engineer new behaviors in living organisms has been around since at least 1961,

when Jacob and Monod noted of bacterial genetic regulatory systems: “it is obvious from

the analysis of these mechanisms that their known elements could be connected into a wide

variety of ‘circuits’ endowed with any desired degree of stability” [43]. This observation has

eventually led to the engineering of genetic circuits, where the basic elements – genes, RNA,

proteins, and other biochemical components – are rationally designed to perform specific

interactions and are often borrowed from other organisms.

Widespread practice in engineering genetic circuits lagged considerably behind the recog-

nition of its potential, however. In 1995, McAdams and Shapiro, noting the similarity in the

dynamic functions of genetic networks and electrical circuits, applied electrical engineering

circuit analysis techniques to characterize the natural genetic circuit used by the λ bacte-

riophage to choose between lysis and lysogeny [82] in terms of signal timing, feedback, time

delays, and sequential logic [66]. McAdams was therefore well-poised to review two of the

first demonstrated examples of synthetic genetic circuits: the now-canonical Repressilator

[24] and genetic toggle switch [30], which appeared in the same issue of the journal Nature

in 2000. These two studies also employed models to qualitatively describe the dynamic

behavior of genetic circuits, but the circuits were designed and implemented specifically to

exhibit this behavior (oscillations and bistability, respectively) in vivo.

Hasty et al. also reviewed these, and several more, early examples of engineered ge-

netic circuits in 2002, claiming that the construction of these circuits was finally enabled

by advances in nonlinear dynamics, computing power, and genome-level sequencing. “[T]he

gene[tic] circuit approach,” they wrote, “uses mathematical and computational tools in the

analysis of a proposed circuit diagram, while novel experimental techniques are used to

construct the networks according to the model blueprint” [39]. The authors further under-

lined the similarity of the engineered genetic circuit approach to engineering methodology

by casting the circuits as genetic modules [67, 38, 57, 44] that may be studied as simplified
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systems, or interconnected into more complex systems that enable greater levels of cellular

control.

However, “despite tremendous individual successes in genetic engineering and biotech-

nology,” such as those discussed in the previous reviews, “why is the engineering of useful

synthetic biological systems still an expensive, unreliable and ad hoc research process?”

asked Endy in 2005 [25]. Endy posited two answers: 1) biology is too complex and/or

poorly understood to engineer, and 2) no foundational technologies exist to make engineer-

ing biology an engineering problem.

The first concern is a non-issue since, according to Endy, “these concerns are best eval-

uated by attempting to surmount them” [25]. This is a position also taken by Benner and

Sismour, who argued, in their 2005 review of the field, that “synthesis” can drive discovery

in a way that pure observation and analysis cannot [6]. Also that same year, Sprinzak and

Elowitz reviewed the field with a focus on “how synthetic biology can address biological

questions at the level of genetic circuits” [105]. The uniting theme in these commentaries

is, once again, the goal of using synthetic biology to expose the basic “design principles” of

life.

The second concern is an issue for which “one practical starting point,” according to

Endy, “is to consider past lessons from when other engineering disciplines emerged from the

natural sciences” [25]. This perspective was followed closely in 2006 by Andrianantoandro

et al., who examined the application of engineering rules to synthetic biology using specific

examples [2]. Similarly, but from a more commercial viewpoint, Baker et al. in 2006 envi-

sioned a “Bio Fab” in which “principles and practices learned from engineering successes can

help transform biotechnology from a specialized craft into a mature industry” [3]. More re-

cently, Carlson supported the eponymous argument of his 2010 book Biology is Technology

by drawing an analogy between current biological engineering and the early aeronautics in-

dustry [11]. All of these works outline three main ideas that together form a more developed

conceptual framework for engineering biology: standardization, decoupling, and abstraction.

Standardization should be a familiar concept to anyone who has used a screwdriver,

browsed the Internet, or tried to plug a North American hairdryer into a European outlet.

Standards are needed to ensure that technologies are safe, compatible, interoperable, and of
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high quality. The difficulties of developing standards for engineering genetic circuits occur

at many levels. The behavior of an individual genetic part is affected by its embedding in a

particular circuit, organism, growth environment, and possibly even a particular laboratory.

Therefore, a strong basis for standardization is the development of platforms that allow

researchers to define, characterize, share, and apply parts in a variety of contexts.

One such platform is the Registry of Standard Biological Parts [1], which was initially

built on an early synthetic biological technical standard known as the BioBrick [98]. The

BioBrick standard defines specific methods for encoding, combining, and propagating ge-

netic circuitry in and between laboratories. The success of the Registry, and the associated

BioBrick standard, has been largely driven by the International Genetically Engineered Ma-

chines (iGEM) competition, in which teams of undergraduates from around the world both

use and contribute biological parts to the Registry while competing to build the “best” ge-

netic circuit. The competition, due to its format, serves to foster an open exchange of ideas

and knowledge in synthetic biology between researchers, students, and the general public.

Public opinion of synthetic biology is in many ways tied to its potential applications.

While the upsides of the field are many, and have been discussed often, safety in synthetic

biology is an incredibly important topic due to a perceived potential for environmental

contamination, public health epidemics, and bioterrorism. This topic was recently addressed

in the United States by a Presidential Commission for the Study of Bioethical Issues, which

released a 2010 report urging “monitoring and dialogue between the private and public

sectors to achieve open communication and cooperation” [37]. The commission backed this

moderate recommendation with two observations: 1) organisms have tended to evolve away

synthetic functionalities, and 2) synthetic organisms are still difficult to build, as I have

already noted. Nonetheless, standards will also help to support the open communication

and cooperation urged by the Commission.

Decoupling refers to the separation of a difficult problem – such as engineering genetic

circuits – into easier sub-problems, the solutions to which add up to a solution of the orig-

inal problem. One example of decoupling in engineering is the separation of design and

fabrication. The Registry of Standard Biological Parts and advances in DNA synthesis

and assembly, respectively, are (at least partially) the results of an effort to achieve this
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separation in biological engineering. Another example of decoupling in engineering is mod-

ularity, where functional modules with well-defined interfaces represent solutions to easier

sub-problems, and the predictable behavior arising from their careful interconnection rep-

resents the solution to a more difficult problem.

Abstraction provides a conceptual basis for the process of assembling a complex genetic

circuit from a collection of relatively simple modules, which are in turn assembled from a

collection of relatively simple biochemical parts. An abstraction of an object contains only

the information about that object that is useful to a particular purpose. For the purpose

of designing a large, complicated circuit, for example, a useful abstraction of a module

might contain only a definition of its functionality and interfaces. The design process in

engineering often uses a hierarchy of abstraction layers, where the details of implementation

at a given layer are hidden to the layers at a higher level of abstraction.

An oft-cited example of an abstraction hierarchy in engineering is one used to design

computer networks: physical parts, gates, modules, computers, and networks, from low- to

high-level. Andrianantoandro et al. suggested this example is analogous to a biological hi-

erarchy: biomolecules, biochemical reactions, pathways, cells, and tissues or cultures, from

low- to high-level [2]. Endy suggested a different hierarchy to use in biological engineer-

ing: DNA, parts, devices, and systems [25]. Marguet et al. elaborated on how the latter

abstraction hierarchy might guide the application of engineering tools, in a 2005 review on

biology by design, highlighting the interplay of DNA synthesis-based fabrication with the

DNA layer, rational design with the parts layer, computational modeling with the circuits

layer, and monitoring technologies with the systems layer.

Fundamentally, abstraction hierarchies are useful ways to manage complexity. Complex-

ity is limited across the hierarchy because higher levels of abstraction ignore implementation

details while lower levels of abstraction decouple systems into separate modules. The cost of

this structure, however, is the need to ensure compatibility between component modules at

the interfaces between layers, an issue typically addressed through the use of standardized

parts.

Heinemann and Panke provided a similar summary of this emerging engineering vision

of synthetic biology – with a caveat – when they wrote in 2006: “Building novel parts,
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devices and in particular complex systems will require a systematic approach that relies on

modularity and abstraction at various cellular levels in order to be useful. . . [and] a tech-

nology to fabricate the designs. This is synonymous to following an engineering approach,

even if biology is in many aspects not understood well enough to consider it a sufficient

knowledge base for an engineering discipline” [41]. Two such poorly-understood aspects of

biology, discussed by Voigt in a review of the field written the same year, are 1) the dif-

fusive nature of biochemical reaction systems, which physically limits both the decoupling

and reuse of genetic parts, and 2) the living (evolving) nature of cells, which temporally

limits the performance and permanence of genetic parts and their interconnections [110].

Nonetheless, synthetic biology researchers had by this time collectively demonstrated

a “toolbox” of genetic modules whose robust performance in different designs led Voigt to

catalog them as evidence that an engineering approach is still useful [110]. Three years later,

Purnick and Weiss called the modules in this toolbox the “first wave of synthetic biology,”

in which “basic elements – for example promoters, ribosome binding sites and transcrip-

tional repressors – were combined to form small modules with specified behaviours. . . [like]

switches, cascades, pulse generators, time-delayed circuits, oscillators, spatial patterning

and logic formulas” [84].

The first wave of synthetic biology, according to Purnick andWeiss, exposed three genetic

circuit design principles that were used to build the modules in this “toolbox”: 1) circuit

optimization by directed evolution, 2) circuit selection from a library of circuit variants,

and 3) circuit construction by rational iterative design [84]. (I will focus on the third design

principle – rational iterative design – in this thesis, since it most reflects the engineering

– and the other two the biological – aspects of synthetic biology.) The process of rational

iterative design starts with a specification, an explicit set of requirements for the engineered

system. The development and analysis of computational models of the system, followed by

fabrication and experimental testing, then lead to refinements of the design. In this process

a design is refined until the physical system meets the specification.

Purnick and Weiss, however, also wrote that “we are now on the cusp of the second

wave of synthetic biology, in which basic parts and modules need to be integrated to create

systems-level circuits,” and that to accomplish this task, ”synthetic biologists will formulate
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new and effective bioengineering design principles” [84]. On the other hand, Mukherji and

van Oudenaarden, in a review of the field written the same year,“highlight[ed] how the

process of engineering biological systems – from synthetic promoters to the control of cell–

cell interactions – has contributed to our understanding of how endogenous systems are

put together and function” [73]. Together, these commentaries expose the complementary

nature of the pairing of biology and engineering in synthetic biology, in which new design

principles are discovered in pursuit of existing design principles and vice versa. As we try

to build more robust, complicated, and useful synthetic systems, the better we understand

living systems; the better we understand living systems, the easier it becomes to build more

robust, complicated, and useful synthetic systems.

Smolke and Silver examined this exact synergy between synthetic and living systems in

a 2011 essay, although they separated the study of synthetic and living systems into the

fields of synthetic and systems biology, respectively. They wrote, in the conclusion of their

essay:

“Although each field could in principle exist without the other, we instead feel

that the natural interplay between design, analysis, and understanding high-

lights the important relationship between systems biology and synthetic biology.

Systems biology brings added layers of information that will further empower

future efforts to design synthetic biological systems. Synthetic biology brings

new technologies and tools that can be applied to effectively test our under-

standing of natural biological systems. By integrating the contributions of these

rapidly evolving fields, scientists and engineers together will be well positioned

to transform health, well-being, and the environment in the years to come” [102].

Systems-level thinking has certainly started to influence the direction of synthetic biol-

ogy research and the most recent reviews of the field reflect this fact. Khalil and Collins, for

example, reviewed the practical applications of synthetic biology in 2010, when “10 years

after the demonstration of synthetic biology’s inaugural devices, engineered biomolecular

networks are beginning to move into the application stage and yield solutions to many com-

plex societal problems” [47]. Nandagopal and Elowitz, in 2011, observed that “researchers
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have begun to develop a new generation of synthetic circuits that integrate more closely

with endogenous cellular processes. . . [and] are providing fundamental insights into the reg-

ulatory architecture, dynamics, and evolution of genetic circuits and enabling new levels of

control across diverse biological systems” [74].

The growing capability of synthetic biologists to deal with complexity is evident not

just in the increasing complexity of engineered biological systems, but also in the increasing

complexity of the biological context. The reviews and commentaries referenced above mostly

provide examples of biological engineering in bacterial cells. However, biological engineering

is also increasingly being performed in yeast [53] and mammalian [111] cells, and human

therapies are on the horizon [91].

For all the advances toward a better understanding of living systems made by synthetic

biologists working in vivo, however, more fundamental approaches can be taken by decreas-

ing the complexity of the biological context, i.e. building the components of an artificial cell

in vitro. As Forster and Church remarked in 2007, “until we can assemble a form of life in

vitro from defined, functionally understood macromolecules and small-molecule substrates,

how can we say that we understand the secret of life?” [27]. Thus we return to the concept

of “bottom-up” biological engineering with a discussion of in vitro synthetic biology.

The first cell was presumably constructed “bottom-up” by natural processes. The pro-

tocell represents this hypothetical “missing link” between the primordial soup and modern

cellular organisms, consisting of a minimal set of self-replicating macromolecules [59] in a

self-assembled membrane [9]. Significant efforts have been put towards the creation of a

protocell in the laboratory in an attempt to recreate nature’s path to the construction of

complex living systems [72, 103, 23].

However, the construction of an artificial cell that rivals the complexity of natural liv-

ing systems requires also building all of the fundamental systems that make up a living

cell, whatever they may be, not just a minimal set of self-replicating macromolecules in a

self-assembled membrane. Natural systems have, in the last decade, yielded yet another

“top-down” approach in the form of cell-free extracts, which ease the need for completely

synthetic mechanisms in an artificial cell. In particular, transcription/translation extracts,

which are now commercially available from several sources (e.g. Ambion, Austin, TX;



12

New England Biolabs, Ipswich, MA), have been used to engineer cell-free activation and

repression cascades [78] as well as green fluorescent protein (GFP) production inside in a

phospholipid vesicle [79, 77]. These effort could be considered a first approximation to a

totally artificial cell, yet still more basic approaches exist.

Advances in DNA nanotechnology [95] have enabled the construction of molecular com-

putation systems at the nanoscale, which compute functions or perform basic tasks [113,

85, 54]. Theoretical work by Soloveichik has shown that DNA is a highly programmable

molecule, a “universal substrate” for the implementation of arbitrary chemical kinetics [104].

In addition, Oishi and Klavins gave blueprints for the in vitro construction of linear I/O

systems with DNA [80], suggesting that the large body of engineering practice associated

with linear systems might be brought to bear in the context of an artificial cell. Thus,

DNA nanotechnology might provide an artificial basis for building the fundamental systems

required by an artificial cell capable of complex tasks.

Indeed, at the laboratory bench, nucleic acids alone have been used to implement a wide

variety of in vitro, enzyme-free systems such as logic gates [94, 85], catalytic and feedback

circuits [121, 122], self-assembling systems [90, 89, 115], triggered amplification circuits [21],

and a host of autonomous nanomachines [46, 4] (also see [120] for a thorough review of this

literature). All or some of these systems may provide crucial to building an artificial cell.

For example, autonomous DNA nanomachines are devices that convert chemical energy to

mechanical actuation and are typified by the DNA nanomotor [117, 62, 58, 101, 12, 16, 13,

70, 45] and the closely-related DNA walker [97, 99, 107, 116, 81, 35, 61]. In an artificial cell,

nanomachines might act as synthetic replacements for protein-based molecular motors such

as kinesin, playing a role in transport, enzymatic catalysis, and other important cellular

processes.

The biological engineering abstraction hierarchy presented by Endy – DNA, parts, de-

vices, and systems – is an informative guide to the construction of these in vitro, enzyme-free,

DNA-based devices. At the lowest level there is the DNA, where systems are implemented

choosing the sequences (A’s, C’s, G’s, and T’s) of DNA strands. At the next level, there are

the parts, of which the two fundamental types are DNA hybridization and toehold-mediated

DNA strand displacement. At higher levels, there are a wide array of devices and systems
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that can be constructed by clever combination of just these two parts, as demonstrated by

the references above.

Hybridization parts are built from distinct, but complementary, single-stranded DNA

(ssDNA) sequences. Complementary DNA bases (A and T, C and G) bind via individu-

ally weak hydrogen bonds, and longer complementary sequences bind collectively to form

more strongly bound double-stranded DNA (dsDNA). Toehold-mediated strand displace-

ment parts are built from two distinct, but complementary, sequences and a third sequence

identical to one of the other two except shorter by several bases on one end. Initially, the

shorter sequence is bound to its longer complement, which leaves an exposed toehold. The

other long sequence then binds to the toehold, creating a branch point between the three co-

localized sequences. The branch point moves in a random walk as the weakly bound bases

to either side of the branch point unbind and bind randomly, and eventually the displacing

sequence either completely displaces the shorter sequence or dissociates from the toehold.

The length of the toehold determines the kinetics of this process in the test tube [123].

The canonical example of in vitro, enzyme-free systems is the DNA tweezer, described

by Yurke et al – coincidentally – in the journal Nature in 2000, and built from a simple

combination of these two part types [117]. As already noted, the larger systems referenced

above use the same two parts originally demonstrated by Yurke et al.. Some design principles

that have emerged from the further use of hybridization and strand-displacement parts,

however, are the use of domains, which decouple functionally independent sequences in

designs [15], to represent well-characterized hybridization [124, 19, 20, 18, 63, 64, 118, 119]

and strand-displacement [123] parts; the development of chemical reaction network kinetics

models [104, 80, 54] that predict the behavior of large systems, e.g. in [94, 86]; and the

practice of orchestrating sequential events through either the covering or uncovering of

toeholds, e.g. in [94, 86].

Another, broader, class of systems exists for engineering biochemical circuits in vitro:

enzyme-dependent nucleic acid systems. In fact, this class of systems forms the backbone of

molecular biology, encompassing PCR, restriction-based and other types of cloning, isother-

mal nucleic acid amplification and detection [76], and many common biochemical assays.

Purified protein enzymes, as molecular components, are a counterpoint to synthesized nu-
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cleic acids. They are highly evolved, highly specific, and (currently) difficult to design.

However, they provide a toolbox of new parts that are difficult, if not impossible, to recre-

ate with nucleic acids alone, and, luckily, many interface naturally with nucleic acids.

As it turns out, enzyme-dependent nucleic acid systems provide fertile ground for the

exploration of dynamic biological behaviors in vitro. They fall between enzyme-free DNA

and cell-extract systems in terms of complexity, which allows a rich space of behaviors to ex-

plore, while still providing a relatively simple biochemical environment for this exploration.

Two synthetic frameworks were recently introduced that allow exploration in this space.

In 2007, Kim et al. introduced the transcriptional switch, or genelet [51], an in vitro,

enzyme-dependent, nucleic-acid-based regulatory component. As an example of the flexi-

bility of genelet-based systems, a bistable switch [51], several oscillatory topologies [52, 28],

a transcriptional rate regulator [29], and a positive-feedback switch [106] have all been built

and tested experimentally. Genelet systems combine hybridization and strand-displacement

parts with two new enzyme parts: Ribonuclease H (RH), which hydrolytically degrades RNA

from an RNA/DNA hybrid complex [40, 69], and T7 RNA polymerase (RP ), which binds to

dsDNA at a sequence-dependent location, and generates an RNA copy of the downstream

dsDNA sequence.

In 2011, Montagne et al. introduced an alternative set of in vitro, enzyme-dependent,

nucleic-acid-based regulatory components [71]. These systems rely on priming protected

DNA templates for extension by a DNA polymerase enzyme. The newly extended primers

are then released from the template by a nickase enzyme and feed forward or back to regulate

production or repression from the same template or others. The framework is demonstrated

through the construction of an oscillatory network, which should be noted for the thorough

experimental characterization of every reaction involved in the network. However, these

systems are run at temperatures close to the melting temperature of the DNA templates,

which makes them non-ideal candidates for the regulation of other in vitro DNA systems.
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Chapter 3

AN IMPROVED IN VITRO DNA NANOMOTOR

3.1 Introduction

There are many in vitro DNA systems and devices whose operation is driven or controlled

by one or more nucleic acid fuel strands. Any such system or device is eligible for dynamic

control through the regulation of fuel production, but are more often operated by large

initial concentrations or repeated exogenous additions of fuel. The DNA nanomotor is a

basic device that requires fuel to cycle through a series of operating states.

We consider the DNA nanomotor introduced by Chen, Wang, and Mao [12] a model

system in this regard. This nanomotor is constructed from a 10-23 DNA enzyme [92]

(DNAzyme), as shown in Fig. 3.1a and cycles autonomously as the DNAzyme binds to and

cleaves nucleic acid fuel strands into waste strands. This specification implies that the fuel

is completely digested by the nanomotor. Unfortunately, the fuel and waste strands have

similar affinities for the nanomotor. The result is that the accumulation of waste significantly

interferes with the operation of the system, which can be observed experimentally as a loss of

performance, as shown in Fig. 3.1b, which represents our reproduction of the experiment by

Chen, Wang, and Mao [12] (with minor modifications). We therefore iterate on the design

of the nanomotor, using models to guide design refinements that improve its performance

in experiments.

To begin, an explanation for the observed behavior of the DNAzyme nanomotor follows,

accompanied by a descriptive mathematical model, which together suggest a modification of

the DNAzyme nanomotor system. We call this modified system the compensated system,

as it incorporates a waste management mechanism and shows improved performance in

experiments. We also introduce a streamlined version of the compensated system that

simplifies the design of the nanomotor and still maintains improved performance. Both the

compensated and streamlined systems use the enzyme ribonuclease H [40, 69] (RH) to digest
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waste strands so that they do not interfere with the normal operation of the nanomotor.

Finally, we offer an explanation, loosely based on the idea of disturbance rejection [22] from

control theory, for the improved behavior of the compensated and streamlined systems.

Specifically, we show that the original system is highly sensitive to the presence of waste,

while the other systems are not.

This chapter contains material published in the journal article “An Improved Autonomous

DNA Nanomotor” [8].

3.2 Design 1: Original System
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Figure 3.1: (a) The reaction network model of the original DNAzyme nanomotor system.
The states of the nanomotor are boxed and labeled by species, whereM denotes the nanomo-
tor, S denotes the RNA fuel, and S1 and S2 denote the waste products. The symbol (·)
denotes the hybridization of species into a larger complex. The model captures the oper-
ation of the nanomotor as well as the effect of waste having non-negligible affinity for the
nanomotor. All reactions are reversible hybridization reactions, excepting the fuel-cleaving
reaction, and the direction of these reactions is indicated by bold arrows. Parameters and
further details are described in the supplementary documentation. The model yields a sim-
ulated trajectory (b) of the system that is in agreement with our experimental results (c).
In these plots, spikes in fluorescence intensity correspond to the addition of a stoichiometric
quantity of RNA fuel to the solution of nanomotors.
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The DNAzyme nanomotor introduced by Chen, Wang, and Mao [12] consists of two he-

lical arms joined by a single-base hinge on one end and an RNA-cleaving 10-23 DNAzyme

on the other (see Fig. 3.1a). The DNAzyme region and an RNA fuel strand bind to form a

bulged-duplex hybrid, or the open conformation of the nanomotor. The DNAzyme eventu-

ally cleaves the bound fuel strand and collapses, (hypothetically) causing the dissociation

of the cleaved pieces of the fuel stand and the closed conformation of the nanomotor.

Each nanomotor is marked with a fluorophore/quencher pair at opposite ends of the

DNAzyme, so that open or closed conformations of an ensemble of nanomotors can be

indirectly observed via fluorescence resonance energy transfer (FRET) with a spectrofluo-

rometer. The operation of the DNAzyme nanomotor is demonstrated in a FRET experiment

in which stoichiometric quantities of the RNA fuel are periodically added to a solution of

the nanomotor. The experimental procedure is described in the Materials and Methods

portion of this chapter.

Ideally, when the RNA fuel is cleaved, the waste products are completely dissociated

and inert. In this case, the addition of fuel in a FRET experiment would be marked by

a rapid rise in fluorescence intensity, followed by an exponential decline to the same base

fluorescence level observed before the addition, as the ensemble of nanomotors collectively

used the entirety of the fuel. In other words, the specification for the expected behavior

of the system upon continued, periodic additions of fuel is a periodic signal with constant

amplitude. However, in experiments, the system does not return to the base fluorescence

level after each addition of fuel, but instead saturates at a high level of fluorescence, as

shown in Fig. 3.1c, which is our reproduction of the experiment by Chen, Wang, and Mao

[12]. In our experiments, we use RNA fuel strands instead of RNA/DNA chimeric strands

and a different fluorophore/quencher pair, yet the results are qualitatively similar to those

of Chen, Wang, and Mao [12] in that the fluorescent output does not return to its basal

level after each addition.

To give insight into why this behavior occurs, we describe a deterministic chemical

reaction network (CRN) model of the general nanomotor system dynamics, which we write

compactly as

v̇ = A ·K(v), (3.1)
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where the vector v holds the concentrations of relevant species, the matrix A holds the

stoichiometries of the reactions, and the functionK returns the propensities of each reaction.

We choose a deterministic model due to the relatively large concentration of all the species

in experiments. The same species are considered for all models, so that

v = ([M ], [M ·S], [M ·S1 · S2], [M ·S1], [M · S2], [M ·S1 · S], [M ·S · S2], [S], [S1], [S2])
T

in each model. Here, M denotes the nanomotor, S the RNA fuel, S1 and S2 the waste

products, and the symbol (·) denotes the hybridization of these species in a larger complex.

For example, M ·S denotes the open nanomotor complex, where the fuel is bound to the

DNAzyme in a bulged-duplex hybrid.

The specific model of the original system includes 20 reversible hybridization reactions

and one irreversible cleaving reaction as shown graphically in Fig. 3.1a. Therefore, we

describe the original system dynamics as in (3.1) with

v̇ = Ao ·Ko(v), (3.2)

where

Ao =




−1 −1 −1 0 0 0 0 0 0 0

1 0 0 −1 −1 −1 0 0 0 0

0 0 0 1 0 0 −1 −1 0 0

0 1 0 0 0 0 1 0 −1 0

0 0 1 0 0 0 0 1 0 −1

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

−1 0 0 0 0 0 0 0 −1 −1

0 −1 0 0 −1 0 0 1 0 0

0 0 −1 0 0 −1 1 0 0 0




, Ko(v) =




k12 v1(t) v8(t) − k21 v2(t)

k14 v1(t) v9(t) − k41 v4(t)

k15 v1(t) v10(t) − k51 v5(t)

k23 v2(t) − k32 v3(t)

k26 v2(t) v9(t) − k62 v6(t)

k27 v2(t) v10(t) − k72 v7(t)

k34 v3(t) − k43 v4(t) v10(t)

k35 v3(t) − k53 v5(t) v9(t)

k46 v4(t) v8(t) − k64 v6(t)

k57 v5(t) v8(t) − k75 v7(t)




.

However, none of the individual species described in this model are observable experi-

mentally. Therefore, we define an output mapping

y(t) = (α ·m(t) + β) , (3.3)

where the vector m(t) = voltotal · v(t) contains the total mass of each species, in moles; the

constant vector α contains the estimated fluorescence efficiency over the baseline level, per

mass, in moles−1, of each species; and β is the baseline fluorescence level, in photon counts

per second (cps), for the given experimental conditions. In this definition, y is the total

fluorescence output of the system, above the baseline, expressed in (cps).
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The values in α are estimated using the expression for FRET efficiency

E =
1

1 + ( r
R0

)6
, (3.4)

with R0 = 3 nm. The distance between fluorophore and quencher molecules, r, is esti-

mated, for each species containing the nanomotor complex, to be the combined length of

the attached fuel or waste products. These species are estimated to have a fluorescence

contribution per mass proportional to their FRET efficiency. The closed nanomotor, fuel,

and waste species are estimated to have zero fluorescence contribution above the base level.

The resulting estimated fluorescence efficiencies from application of (3.4) are

α = (0, 0.0105624, 0.0103512, 0.00392833, 0.00219512, 0.0103512, 0.0103512, 0, 0, 0).

The qualitative behavior does not depend on exact values, so no effort has been made to

make these values precise.

We generate deterministic simulations of system output by numerically solving the model

differential equations and applying the output mapping. Numerical integration of model

equations is done separately for each period of fuel addition. The initial conditions of each

period, starting immediately after an addition of fuel at time t, are

v(t+) =
voladded · vadded + vol(t−) · v(t−)

voladded + vol(t−)
,

which updates the final conditions of the previous period, v(t−), to account for exogenous

input, vadded, and the resulting dilution vol(t−)/(vol(t−) + voladded). Simulation data for

each period are then appended to create a single output trajectory. An example simulation

trajectory for the original system is shown in Fig. 3.1b, and it is in good agreement with

the experimental data shown in Fig. 3.1b.

As the experimental and simulation data show, the actual behavior of the original system

is a periodic signal with decreasing amplitude. The rate parameters we use to generate this

and other simulations in this section are listed in Table 3.1, but we can prove that the model

shown in Fig. 3.1a predicts this behavior no matter how the values of the rate parameters

are chosen. Specifically, the model suggests that an increasingly large fraction of motors

remain open after each addition of fuel due to the interference of the accumulating waste

strands S1 and S2.
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Table 3.1: Rate constant estimates used in the simulations shown in Figs. 3.1b, 3.2b, and
3.4b.

Model Parameters

original k12 1.0 (/M/s) k21 0.10 (/s)

k14 0.010 (/M/s) k41 1.0 (/s)

k15 0.10 (/M/s) k51 0.10 (/s)

k23 0.95 (/s)

k27 0.10 (/M/s) k72 100 (/s)

k34 10. (/s) k43 0.010 (/M/s)

k35 10. (/s) k53 0.010 (/M/s)

k46 0.010 (/M/s) k64 10. (/s)

k57 0.10 (/M/s) k75 100 (/s)

compensated ki (same as orig. model)

kE 0.83 (/s)

streamlined k12 1.0 (/M/s) k21 0.10 (/s)

kE 0.83 (/s)
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The proof goes as follows. First, we consider the steady-state fluorescence output of the

original system above its basal level of fluorescence by taking the limit of (3.3)

y∗ = lim
t→∞

(
αT ·m+ β

)
− β,

which can be rewritten as

y∗ = voltotal
(
αT · v∗

)
, (3.5)

where v∗ is the species concentration vector at steady-state.

Second, we assume that y∗ = 0. Since α1, α8, α9, and α10 are zero and all other values

of α are positive, we have from the assumption y∗ = 0 and the definition of y∗ that v∗i = 0,

where i ∈ {2, 7}. In steady state, Ao ·Ko(v
∗) = 0, and substituting in the values of v∗ that

must be zero yields the equation



−v∗1 (k12 v
∗

8 + k14 v
∗

9 + k15 v
∗

10)

k12 v
∗

1 v
∗

8

0

k14 v
∗

1 v
∗

9

k15 v
∗

1 v
∗

10

0

0

−k12 v
∗

1 v
∗

8

−k14 v
∗

1 v
∗

9

−k15 v
∗

1 v
∗

10




= 0.

For positive values of the rate parameters k12, k14, and k15, this equation allows only two

solutions: v∗1 = 0, or v∗8 , v
∗

9 , and v∗10 = 0. However, since v∗i = 0, where i ∈ {2, 7}, these

solutions imply that the system either contains no nanomotors, or no waste/fuel strands,

respectively. Therefore, if fuel/waste strands and nanomotors are present in the original

nanomotor system, y∗ cannot equal zero.

3.3 Design 2: The Compensated System

We infer from the model of the original system that the waste strands compete with the

fuel. One way to selectively digest waste is with the enzyme Ribonuclease H (RH), which
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Figure 3.2: (a) The reaction network model of the RH compensator. The compensated
system model is the composition of these reactions and those in the original system model
depicted in Fig. 3.1a. The enzyme RH degrades fuel and waste bound to motors, mitigating
the effect of accumulating waste on nanomotor performance. The model yields a simulated
trajectory (b) of the compensated system that is in agreement with experimental results
(c). The experimental data show an upward trend not reflected in the simulated trajectory,
which may be a result of non-uniform mixing or RNAase H degradation, neither of which
are modeled.
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digests RNA into tri-ribonucleotide or smaller fragments, but only from RNA/DNA hybrids

[40, 69]. This property of RH ensures that the fuel is not digested before it binds to the

nanomotor and that the waste products are degraded to the point of having negligible

affinity for the nanomotor. In this section, we refine the design of the original nanomotor to

include RH , and evaluate a corresponding model and experimentally test the new system

for improved performance.

The inclusion of RH adds reaction pathways to the original system that are shown in

Fig. 3.2a, with the estimated rate of RNA digestion by RH listed in Table 3.1. We use a

first-order model of enzyme kinetics for the compensated system model, so that we describe

the compensated system dynamics as in (3.1) with

v̇ = Ac ·Kc(v), (3.6)

where

AT
c =




−1 1 0 0 0 0 0 −1 0 0

−1 0 0 1 0 0 0 0 −1 0

−1 0 0 0 1 0 0 0 0 −1

0 −1 1 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0 −1 0

0 −1 0 0 0 0 1 0 0 −1

0 0 −1 1 0 0 0 0 0 1

0 0 −1 0 1 0 0 0 1 0

0 0 0 −1 0 1 0 −1 0 0

0 0 0 0 −1 0 1 −1 0 0

1 −1 0 0 0 0 0 0 0 0

0 1 0 0 0 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 0 0 1 0 −1 0 0 0

0 0 −1 1 0 0 0 0 0 0

0 0 −1 0 1 0 0 0 0 0

1 0 0 −1 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 0 0




, Kc(v) =




k12 v1(t) v8(t) − k21 v2(t)

k14 v1(t) v9(t) − k41 v4(t)

k15 v1(t) v10(t) − k51 v5(t)

k23 v2(t)

k26 v2(t) v9(t) − k62 v6(t)

k27 v2(t) v10(t) − k72 v7(t)

k34 v3(t) − k43 v4(t) v10(t)

k35 v3(t) − k53 v5(t) v9(t)

k46 v4(t) v8(t) − k64 v6(t)

k57 v5(t) v8(t) − k75 v7(t)

kE v2(t)

kE v6(t)

kE v6(t)

kE v7(t)

kE v7(t)

kE v3(t)

kE v3(t)

kE v4(t)

kE v5(t)




.

Here, kE is the first-order rate constant representing enzyme activity, which was estimated

from experimental data. In particular, the initial slope of the decrease in fluorescence signal

after the first addition of a stoichiometric quantity of fuel to a solution of nanomotors is

considered an acceptable approximation to this rate constant.

The enzymatic degradation pathways mitigate the effect of the unintended pathways that

dominate in the original system when the concentration of waste becomes significant. A
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simulation of the resulting model is shown in Fig. 3.2b, which predicts that the performance

of the compensated nanomotor system is improved over that of the original system.
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Figure 3.3: Experimental data demonstrating performance recovery of the compensated
system after 14 hours of inactivity. In this experiment, only 20 units of RH were added
to the system, which may account for the loss in performance observed between adjacent
periods.

Experiments confirm the behavior predicted by the modified model. Fig. 3.2c shows

experimental data for repeated additions of fuel strands to the compensated system. Further

experiments, as described in Fig. 3.3 show that the compensated nanomotor can be cycled

even after 14 hours of inactivity.

One issue with this design, however, is that RH does not distinguish between fuel

bound to the nanomotor and waste bound to the nanomotor. In fact, it competes with

the DNAzyme to digest fuel and therefore two enzymes are actually redundant.

3.4 Design 3: The Streamlined System

We introduce a streamlined design for the nanomotor in which the DNAzyme is replaced by a

sequence of DNA that is exactly complementary to the RNA fuel as shown in Fig. 3.4a. This

sequence binds with an RNA fuel strand into a full-duplex hybrid, opening the nanomotor.

The RH then digests the bound RNA strand, closing the nanomotor. As in the compensated

system, autonomy is preserved without performance loss from the accumulation of waste,

but with a simpler, non-redundant design.

To model the streamlined system, we consider all conformations in which RNA is bound
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Figure 3.4: (a) The reaction network model of the streamlined system. The simplified
nanomotor design yields a model with only two nanomotor states: open and closed. The
motor opens when it binds with a fuel strand, and closes when the bound fuel is digested by
RH . The model yields a simulated trajectory (b) of the streamlined system that is in good
agreement with experimental results (c). In experiments, RH is replenished with every fifth
addition of fuel to counteract the natural decay of the enzyme at 22oC.



26

to the nanomotor as open (see Fig. 3.4a). We describe the streamlined system dynamics,

much as before in (3.1), with

v̇ = As ·Ks(v), (3.7)

where

As =




−1 1

1 −1

0 0

0 0

0 0

0 0

0 0

−1 0

0 0

0 0




, Ks(v) =

(
k12v1(t)v8(t)− k21v2(t)

kEv2(t)

)
.

A simulation of the resulting model is shown in Fig. 3.4b, which predicts the same

improved performance seen in the compensated system.

Experimental data from the streamlined system confirm the behavior predicted by the

model. In Fig. 3.4c we show experimental data for repeated additions of fuel to the stream-

lined system. In these experiments, the activity of RH slowly decreases, possibly due to

relatively long exposure to room temperature. Thus, we replenish the RH with every fifth

addition of fuel to the system.

3.5 Sensitivity Analysis

Biochemical nanodevices have been demonstrated in simple laboratory settings. However,

to be useful, nanodevices must eventually be deployed in more complex settings and in the

presence of other devices. Thus, a truly useful nanodevice must be robust to its operating

environment. It is instructive to characterize each nanomotor system in the context of its

robustness.

For example, given a model of the ideal behavior of the DNAzyme nanomotor, we

can characterize the effect of increasing concentrations of waste products as a disturbance.

For each system, a disturbance model is used that divides the system into A · K̂(v), which

contains the terms describing the ideal behavior of the system, and A ·K̃(v), which contains
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the terms describing the disturbance: competition from waste strands. In particular, we

write the dynamics as

v̇ = A · K̂(v) + εA · K̃(v). (3.8)

where the stoichiometric matric A with the rate function K̂ models the ideal behavior (with

no competition from the waste strands), and A with K̃ models the disturbance (in which

competition is present). We use the equilibrium fluorescence intensity

y∗ = lim
t→∞

(
αT ·m(t) + β

)
− β,

as a performance metric.

In the disturbance model (3.8) description of the original system, the system dynamics

are

v̇ = Ao · K̂o(v) + εAo · K̃o(v), (3.9)

where Ao is as before,

K̂o(v) =




k12 v1(t) v8(t)− k21 v2(t)

−k41 v4(t)

−k51 v5(t)

k23 v2(t)

0

0

0

0

0

0




, and K̃o(v) =




0

k14 v1(t) v9(t)

k15 v1(t) v10(t)

0

k26 v2(t) v9(t)− k62 v6(t)

k27 v2(t) v10(t)− k72 v7(t)

k34 v3(t)− k43 v4(t) v10(t)

k35 v3(t)− k53 v5(t) v9(t)

k46 v4(t) v8(t)− k64 v6(t)

k57 v5(t) v8(t)− k75 v7(t)




.

Likewise, in the disturbance model (3.8) description of the compensated system, the

system dynamics are

v̇ = Ac · K̂c(v) + εAc · K̃c(v), (3.10)
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where Ac is as before,

K̂c(v) =




k12 v1(t) v8(t)− k21 v2(t)

−k41 v4(t)

−k51 v5(t)

k23 v2(t)

0

0

0

0

0

0

kE v2(t)

kE v6(t)

kE v6(t)

kE v7(t)

kE v7(t)

kE v3(t)

kE v3(t)

kE v4(t)

kE v5(t)




, and K̃c(v) =




0

k14 v1(t) v9(t)

k15 v1(t) v10(t)

0

k26 v2(t) v9(t)− k62 v6(t)

k27 v2(t) v10(t)− k72 v7(t)

k34 v3(t)− k43 v4(t) v10(t)

k35 v3(t)− k53 v5(t) v9(t)

k46 v4(t) v8(t)− k64 v6(t)

k57 v5(t) v8(t)− k75 v7(t)

0

0

0

0

0

0

0

0

0




.

Finally, in the disturbance model (3.8) description of the streamlined system, the system

dynamics are

v̇ = Ās · K̂s(v) + εĀs · K̃s(v), (3.11)

where

Ās =




−1 −1 −1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 −1 −1 −1 0 0 0 0 −1 1 0 1 0 0 0 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 −1 −1 0 0

0 1 0 0 0 0 1 0 −1 0 0 0 1 0 0 1 0 −1 0

0 0 1 0 0 0 0 1 0 −1 0 0 0 0 1 0 1 0 −1

0 0 0 0 1 0 0 0 1 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 −1 −1 0 0 0 0

−1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0

0 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0




,
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K̂s(v) =




k12 v1(t) v8(t)− k21 v2(t)

−k41 v4(t)

−k51 v5(t)

kEv2(t)

0

0

0

0

0

0

kE v2(t)

kE v6(t)

kE v6(t)

kE v7(t)

kE v7(t)

kE v3(t)

kE v3(t)

kE v4(t)

kE v5(t)




, and K̃s(v) =




0

k14 v1(t) v9(t)

k15 v1(t) v10(t)

0

k26 v2(t) v9(t)− k62 v6(t)

k27 v2(t) v10(t)− k72 v7(t)

k34 v3(t)− k43 v4(t) v10(t)

k35 v3(t)− k53 v5(t) v9(t)

k46 v4(t) v8(t)− k64 v6(t)

k57 v5(t) v8(t)− k75 v7(t)

0

0

0

0

0

0

0

0

0




.

The stoichiometric matrix of the non-disturbance model of the streamlined system, As

in (3.7), lacks a description of the waste competition reactions, since we assume the fuel

is completely digested by the enzyme RH . For purposes of performing the comparative

sensitivity analysis, the stoichiometric matrix requires the addition of these reactions, which

is reflected in the matrix Ās in (3.11).

The initial condition used in the analysis is v(0) = (0.5, 0, 0, 0, 0, 0, 0, 0.5, 0, 0)T . The

variable ε ranges over the interval (0, 1]. In Fig. 3.5 we show the sensitivity of y∗ to ε

after the addition of a stoichiometric quantity of fuel for all three of the systems described

in this paper. The original system is highly sensitive to the disturbance, as is evident

from the dependence of y∗ on ε. In contrast, the compensated and streamlined systems

are completely insensitive to the disturbance, indicating that these systems are robust to

competition from waste strands.

It appears that a biochemical nanodevice, even a very simple nanomotor, requires a

control system to regulate its performance and increase its robustness. For example, the



30

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

ε

y
* 

(c
p

s)

 

 

Original

Compensated

Streamlined

Figure 3.5: Plot of the sensitivity of nanomotor performance to the effect of competition
from waste strands after a single addition of fuel. The performance metric, y∗, is a measure
of the difference between the base fluorescence level and the equilibrium fluorescence. The
dynamics for each nanomotor system are described by the equation v̇ = A·K̂(v)+εA·K̃(v),
where A · K̂(v) models the ideal behavior of a nanomotor system, and A · K̃(v) models
the competition from waste strands. In the ideal case, where accumulating waste has no
effect on nanomotor operation, y∗ = 0. Although the performance of the original system is
very sensitive to competition from waste strands, the performance of the compensated and
streamlined systems is completely insensitive to this competition.
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pathways resulting from the inclusion of RH to the DNAzyme nanomotor system can be

considered to be a rudimentary control system. We speculate that more complex, integrated,

and interconnected nanodevices will require equally complex control systems that govern

their behaviors. In fact, we next consider the problem of dynamically regulating the RNA

fuel supply for this and other such devices, a consideration made possible by the introduction

of transcriptional switches [49], or genelets.

3.6 Materials and Methods

3.6.1 DNA Oligonucleotides

All oligonucleotides were purchased, purified and lyophilized, from Proligo (Sigma-Aldrich).

The purification method was reverse-phase, high-performance liquid chromatography (RP-

HPLC). Table 3.2 contains the sequences of the DNA and RNA oligonucleotides used in

experiments. Upon receipt, DNA and RNA oligonucleotides were vortexed, resuspended to

100 µM in TAE/Mg2+ buffer (40 mM Tris, pH 8.0, 20 mM acetic acid, 2 mM EDTA and

12.5 mM Mg(Ac)2), and aliquoted into 0.6 µL reaction vials to be stored at -20◦C until

used.

Table 3.2: DNA and RNA sequences used in DNA nanomotor experiments.

Strand Sequence1

E 5’-GGTTAGATGGTATGCTTCGGACAGGCTAGCTACAACGAGAGTGACTGAGCGTAA

GGTCTGG-3’

Ē 5’-GGTTAGATGGTATGCTTCGGACATGAATGACTGAGCGTAAGGTCTGG-3’

F 5’-Rhodamin Green-GCATACCATCTAACCTCCAGACCTTACGCTC-BHQ-1-3’

S 5’-rGrUrCrArUrUrCrArUrGrUrCrCrGrA-3’

S1 5’-rGrUrCrArUrUrCrA-3’

S2 5’-rUrGrUrCrCrGrA-3’

1The notation rN indicates a ribonucleotide base, where N is A, C, U, or G.
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Note that the work done by Chen, Wang, and Mao [12] involved a chimeric RNA/DNA

fuel strand and the fluorophore/quencher pair TET and TAMRA. Here, an RNA fuel strand

and the fluorophore/quencher pair of Rhodamin Green and Black Hole Quencher-1 were

used.

3.6.2 Nanomotor Formation

DNA strands E (or Ē for the streamlined system) and F were combined at an equal molar

ratio in TAE/Mg2+ buffer to a final concentration of 0.5 µM. The nanomotor complex M

was formed by annealing this solution on the following schedule: 95◦C (3 min), 65◦C (30

min), 50◦C (30 min), 37◦C (30 min) and 22◦C (30 min). The solution of M at 0.5 µM was

then used immediately or stored at -20◦C.

3.6.3 FRET Analysis

FRET experiments were started with 600 µL of M at 0.5 µM in a 1 mL spectrofluorometry

cuvette (Starna). Additionally, the compensated and streamlined systems were started

with 50 units of RH , E. coli (MBI-Fermentas). For all systems, a stoichiometric quantity

of RNA fuel strand S was periodically added to a solution of M , followed by rapid pipette

mixing for at least 7 seconds. In the streamlined system, 50 units of RH was also added

with every fifth addition of fuel. Fluorescence emission data were recorded on a Jobin-

Yvon SPEX spectrofluorometer equipped with a Peltier heating/cooling device (Wavelength

Electronics). All data were collected at 22◦C with slit widths of 5 nm. The samples were

excited at 504 nm and the emission photon count was collected at 531 nm for 1 second every

10 seconds.
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Chapter 4

A ROBUST, TUNABLE, FEEDBACK-REGULATED GENELET

SYSTEM – DESIGN

4.1 Introduction

Biological systems operate in highly uncertain environments, preserving functionality and

performance regardless of changing external conditions. The concept of homeostasis is often

invoked to describe how biological systems accomplish this feat through the robust regu-

lation of internal conditions. Unfortunately, current synthetic biological systems are often

not robust in the same fashion, although there is much interest in engineering such systems

that approach the complexity of, and that may interface with, natural biological systems

[3]. We believe that such systems will require the homeostatic regulation of key species in

order to maintain functionality and performance as their architectural and environmental

complexities increase.

Many engineered biological systems are based on rationally-designed DNA and RNA

molecules [21, 89, 94, 121, 115, 122, 80, 86, 85] due to the inherent biological flexibility

of nucleic acids, the increasing predictive power of nucleic acid design tools [17], and the

decreasing costs of oligonucleotide synthesis [10]. A major drawback of these systems,

however, is their dependence on various nucleic acid “fuel” strands or complexes, which

they require to drive forward their desired dynamic behavior. For example, the depletion

of these fuels over time can impact functionality and degrade performance due to changes

in system dynamics. For another, the similarity of these nucleic acid fuels to other nucleic

acid system components increases the likelihood of spurious interactions, which may also

impact functionality and degrade performance [8].

Synthetic, in vitro transcriptional switches [49], or genelets, provide the framework

for engineering regulated, in vitro, synthetic biological systems in a bottom-up fashion

[51, 29, 52, 106]. Genelet networks display dynamic behavior driven by enzymatic RNA
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polymerization and degradation reactions rather than nucleic acid fuel interactions, yet the

interactions of system components can still be programmed via nucleic acid sequence selec-

tion. Another advantage of genelet networks is that they may approximate the architectural

and functional complexity of naturally occurring genetic regulatory networks without the

environmental complexity of cellular systems. Also, genelets operate at temperatures and

in buffer conditions conducive to the operation of other engineered, in vitro synthetic bio-

logical systems, unlike competing in vitro regulatory frameworks [71]. Therefore, as genelet

technology continues to develop, homeostatically regulated genelet systems may become the

basis for complex synthetic systems that interact in predictable ways with natural biological

systems.

Here we describe the rational design a tunable, synthetic, genelet-based, RNA concen-

tration regulator. The regulator is a negative-feedback control device based on an autoregu-

lation motif that has been widely studied as a common in vivo genetic regulatory motif [96]

due to its simplicity, performance [87], and robustness [5, 88]. In particular, we implement

this negative-feedback control device with a self-regulated genelet, which delivers RNA fuel

for consumption by downstream devices. We also implement a similar, but unregulated,

RNA fuel delivery device, which by comparison shows that negative-feedback results in a

robustness to varying levels of activity in downstream molecular devices.

A detailed description of the genelet systems can be expressed in a variety of ways.

Linguistically, the vocabulary of molecular biology is best suited to an informal descrip-

tion, while the various programming and scripting languages and notations associated with

software like Visual DSD [55] and NUPACK [118, 17, 19, 20, 119] are useful for formal

descriptions. Visually, in vitro DNA systems are often depicted with individual strands

as colored lines or series of letters, with small harpoons or text direction indicating 5′-3′

directionality; complexes as aligned strands; and reactions as directed arrows with reactant

strands and complexes on the left-hand side, and products on the right-hand side as in

chemical reaction networks (CRNs), or reactant-catalyzed reactions on the right-hand side

as in genetic regulatory networks (GRNs). We will rely on several of these methods to

develop and describe design specifications and models for genelet systems at a variety of

levels of abstraction.
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We also use a common design abstraction employed in DNA circuit design: the domain.

A domain is a contiguous sequence of nucleic acid bases that act as a single functional

subunit. Thus, a domain specifies that no two bases in the same domain will independently

interact with other molecular species. We label domains with letters or numbers, and we

label complementary domains the same label with and without asterisks, for example, x

and x∗.

We first introduce our design process with a high-level, molecular-biology description

of the general mechanics of genelet systems. Genelet systems consist of: nucleic acid com-

ponents, including the genelets themselves; T7 RNA polymerase (RP ) and ribonuclease H

(RH) enzymes; and free ribonucleotide triphosphates, salts, and buffer conditions suitable

to in vitro transcription reactions. A typical genelet, which is part single- and part double-

stranded DNA, contains three overlapping sequence regions: a regulatory (input) region, a

T7 RNAp promotor site, and a template (output) region. The regulatory region, which is

entirely single-stranded, overlaps the first five bases of the promotor site. The rest of the

promotor site and the template region are fully double-stranded.

A genelet is regulated either through the binding of a DNA activator strand to the regu-

latory domain, which completes the promoter site (activation), or through the removal and

sequestration of a bound activator by an inhibitory RNA input strand (deactivation). An

activated genelet generates RNA output strands from its template domain, via transcription

reactions catalyzed by RP enzymes; a deactivated genelet generates very little or no RNA

output due to an incomplete promoter site.

Furthermore, genelet regulation is a dynamic process due to the highly specific conversion

of DNA/RNA hybrid complexes to single DNA strands via degradation reactions catalyzed

by ribonuclease H (RH) enzymes. For example, an RNA input strand and DNA activator

strand that are bound in a hybrid complex are converted by such a reaction to degraded

RNA fragments and a free DNA activator strand, the latter of which is then free to interact

with other RNA input strands or deactivated genelets. The ability to regulate dynamics in

genelet systems makes them excellent candidates for engineering molecular control systems.
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4.2 System-Level Specifications

As previously mentioned, we construct two versions of a genelet-based RNA fuel delivery

device: an unregulated, or open-loop, device, and a negatively auto-regulated, or closed-loop

device. The open-loop device uses a short activator, s, designed to be exactly complementary

to the regulatory region of a genelet, g. This activator therefore binds g irreversibly to make

a stably active genelet, g ·s, which is also a simple, unregulated source of RNA, r.

The closed-loop device uses an activator, a, which we design to be complimentary to, but

longer than, the regulatory region of g. This activator therefore binds g to make g·a, which is

also a source of r, and leaves an exposed toehold [123]. We also design r to complement and

therefore sequester a into an RNA/DNA hybrid complex, a·r. As a result, the closed-loop

device g ·a is inhibited by its own product due to a toehold-mediated, strand-displacement

reaction that is initiated by r at the toehold region in g ·a. This reaction produces the

sequestration complex, a · r, and deactivated genelet g, making the closed-loop device a

negatively auto-regulated source of r that can be tuned by the amount of a.

Additionally, we design r to serve as fuel for a downstream process. For simplicity, we

design r to turn on a single-stranded DNA (ssDNA) probe1[109]. The probe is a seventeen-

base oligonucleotide that is fully complementary to a region of r and has a fluorophore and

quencher FRET pair [114], which are incorporated at opposing ends so as to act as an output

reporter in experiments. The ssDNA probe in isolation, p, coils on itself and is therefore in a

closed, or off, conformation, as this state co-localizes the attached fluorophore and quencher

pair. When p binds to r they form a rigid, double-stranded, RNA/DNA hybrid complex,

p·r, which is the open, or on, conformation of the probe as this state maximally separates

the attached fluorophore/quencher pair. Additionally, p·r dynamically reverts to p via the

degradation reactions catalyzed by RH enzymes.

We call the pairing of fuel supply and downstream devices a system. We translate

descriptions of the open- and closed-loop systems into regulatory network diagrams, which

are illustrated in Figure 4.1. These diagrams are a visual representation of system-level

specifications for each system, and we use them to guide the process of designing nucleic

1A gift from Dr. Georg Seelig.
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acid sequences that implement our desired behaviors.
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Figure 4.1: System-level design specifications, illustrated as regulatory network diagrams.
(A) In the open-loop system, an activated DNA genelet (g ·s) catalytically produces RNA
fuel, (r), via transcription reactions initiated by a T7 RNA polymerase enzyme (bold lines).
RNA fuel opens a closed DNA-based molecular probe (p). An open probe (p·r) catalytically
degrades to a closed probe via a reaction initiated by an ribonuclease H enzyme (dashed
lines). (B) In the closed-loop system, a deactivated genelet (g) is activated by a DNA
activator strand with a toehold (a). An activated genelet can react with RNA fuel via a
toehold-mediated strand invasion reaction, implementing negative feedback. This genelet–
product reaction produces an RNA-sequestered activator complex (a·r) and a deactivated
genelet. An RNA-sequestered activator complex degrades into a free activator strand.

4.3 Domain-Level Specifications

To physically implement the systems with synthesized nucleic acids, we must choose the

sequences of the nucleic acid components in each system so they determine all – and only

– the interactions that are specified by our system-level specifications, which are illustrated

in Figure 4.1 and described above. We begin this process by translating the system-level

specifications into the domain-level specifications illustrated in Figure 4.2, one specified

interaction at a time. We design both systems to use the same g to 1) simplify the design

process, 2) use a single probe design, and 3) ensure the systems perform comparably in

experimental tests.

We first design the sequence of the input region of g, which implements two interactions:
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Figure 4.2: Domain-level design specifications, based on the regulatory network diagrams
in Figure 4.1. Reactions: transcription (bold lines), degradation (dashed lines), and nu-
cleic acid hybridization (thin lines). (A) Open-loop system. Components: activated DNA
genelet (g · s), RNA fuel (r, yellow letters), closed probe (p, green letters) labeled with
a fluorophore–quencher pair (green and black dots, respectively), and open probe (p · r)
with active fluorphore (green star). (B) Closed-loop system. Components: activated DNA
genelet (g ·a), DNA activator with toehold (a, red letters), RNA fuel (r, yellow letters),
RNA-sequestered activator complex (a·r), deactivated genelet (g, blue letters), closed probe
(p, green letters) labeled with a fluorophore–quencher pair (green and black dots, respec-
tively), and open probe (p·r) with active fluorphore (green star). (Note: Left-to-right reading
order of nucleic acid sequences indicates 5′ to 3′ directionality and the symbol ∗ represents
complementarity. The symbol N represents an unconstrained nucleotide.)
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the binding of s or a, and the completion of the 5′-end of the promoter sequence by s or

a at the overlap with the promoter region. The domains regulatory and pro1, respec-

tively, represent the ssDNA sequences that implement these interactions. The regulatory

sequence and length are not constrained, but do determine the specificity to s and a as

well their binding rate; we set the length to 17 nucleotides to ensure fast binding. The

pro1 sequence is constrained by the promoter sequence, for which we use the canonical

T7 RNA polymerase promoter sequence. The pro1 length is only constrained in multiple

genelet systems, where the degree of promoter inactivation (greater with longer pro1) must

be balanced against the possibility of non-specific promoter activation (greater with longer

pro1). Although this constraint does not apply to single-genelet systems, we maintain the

established convention of using five nucleotides from the 5′-end of the promoter sequence.

The core of the promoter region implements a single interaction: RP binding. The

domains pro2 and pro2∗ represent the dsDNA sequence that implements this interaction.

The length and sequence are determined by the part of the promoter sequence that does

not overlap with the input or output regions. The domains pro3 and pro3∗ represent the

dsDNA sequence that overlaps the promoter and output regions, and are determined by the

location of the transcription start site in the promoter sequence.

We next include a “spacer” sequence to ensure that abortive transcripts are inert. The

domain spacer contains the sequence (along with pro3) that should be considered inert

should transcription of r end early. We define abortive transcripts to be sequences less than

11 nucleotides in length, which constrains the spacer length to five nucleotides.

Most importantly, the requirements of the feedback architecture of the closed-loop

genelet system, in which r interacts with both a and p, dictate that significant sequence

similarity must exist between these nucleic acid components. We address the concern that

p might interact with components other than r by choosing the toehold region of a to have

identical sequence to p. This choice ensures that p does not interact with a, s, or g, since

p has no significant secondary structure. The domain toehold/probe∗ represents this se-

quence, and is therefore constrained to the sequence and length of p. The implementation

of the feedback loop in the closed-loop system is completed by including the regulatory

and pro1 domains upstream of the toehold/probe∗ domain in the output region of g.
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Finally, to ensure that transcription terminates correctly, we include sequences at the

3′-end of r that form a hairpin loop structure during transcription. The domains hairpin

and x represent the sequences necessary to form a five-bp stem, three-nt loop structure with

a three-nt tail. We have now defined the necessary structure and sequence constrains to

design and analyze sequences using NUPACK [118, 17, 19, 20, 119], a software package with

nucleic acid sequence design and thermodynamic analysis modules.

4.4 Sequence Design

We encode all of our design choices and constraints, illustrated in Figure 4.2, in the following

NUPACK script:

1 # Secondary structure constraints

2 structure a = .......................................

3 structure ar = ...........((((((((((((((((((((((((((((((((((((

((((((((...)))))...+)))))))))))))))))))))))))))

))))))))))))

4 structure g = ......................(((((((((((((((((((((((((

(((((((((((((((((((((((((((((((((((((((((((((((

((((((+) )))))))))))))))))))))))))))))))))))))))

))))))))))))))))))))))))))))))))))))))

5 structure ga = (((((((((((((((((((((((((((((((((((((((((((((((

(((((((((((((((((((((((((((((((((((((((((((((((

((((((+) )))))))))))))))))))))))))))))))))))))))

))))))))))))))))))))))))))))))))))))))+))))))))

)))))))))))))).................

6 structure p = .................

7 structure pr = ...........(((((((((((((((((..................

....(((((...)))))...+)))))))))))))))))

8 structure r = ...............................................

...(((((...)))))...
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9

10 # Domin constraints

11 domain regulatory = NNNNNNNNNNNNNNNNN

12 domain pro1 = TAATA

13 domain pro2 = CGACTCACTATA

14 domain pro3 = GGGAGA

15 domain spacer = NNNNN

16 domain toeholdprobe = GATCTATAAGCACCGTG

17 domain hairpin = NNNNN

18 domain x = AAA

19

20 # Domain constraints

21 a.seq = pro1* regulatory* toeholdprobe

22 ar.seq = pro3 spacer toeholdprobe* regulatory pro1 hairpin x

hairpin* x pro1* regulatory toeholdprobe

23 g.seq = regulatory pro1 pro2 pro3 spacer toeholdprobe*

regulatory pro1 hairpin x hairpin* x x* hairpin x*

hairpin* pro1* regulatory* toeholdprobe spacer*

pro3* pro2*

24 ga.seq = regulatory pro1 pro2 pro3 spacer toeholdprobe*

regulatory pro1 hairpin x hairpin* x x* hairpin x*

hairpin* pro1* regulatory* toeholdprobe spacer*

pro3* pro2* pro1* regulatory* toeholdprobe

25 p.seq = toeholdprobe

26 pr.seq = pro3 spacer toeholdprobe* regulatory pro1 hairpin x

hairpin* x toeholdprobe

27 r.seq = pro3 spacer toeholdprobe* regulatory pro1 hairpin x

hairpin* x

28

29 # Stop conditions
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30 a.stop[%] = 1.0

31 ar.stop[%] = 1.0

32 g.stop[%] = 1.0

33 ga.stop[%] = 1.0

34 p.stop[%] = 1.0

35 pr.stop[%] = 1.0

36 r.stop[%] = 1.0

37

38 # Design parameters

39 material = dna

40 temperature[C] = 37.0

41 sodium[M] = 0.05

42 magnesium[M] = 0.012

43 trials = 10

44 prevent = AAAA , CCCC , GGGG , UUUU , KKKKKK , MMMMMM , RRRRRR ,

SSSSSS , WWWWWW , YYYYYY

Lines 2–8 encode the secondary structure constraints written in dot-parens notation. In

this notation, the symbols “.”, “(”, and “)” represent single nucleotides and the symbol

“+” represents the concatenation of separate nucleic acid strands. The keyword structure

defines a named structure consisting of one or more component nucleic acid strands, with

unpaired nucleotides denoted by the “.” symbol and paired nucleotides denoted by “(” and

“)” symbols of equal scope. We only define the structures corresponding to the closed-loop

system components a, a·r, g, g·a, p, p·r, and r, since the open-loop sequences are a subset

of the closed-loop sequences.

Lines 11–18 encode the domain sequence and length constraints. The keyword sequence

defines a named domain with the given sequence and length constraints consisting. The

structure and sequence constraints are then threaded together on lines 21–27, using the

〈structure〉.seq command.
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Lines 30–36 define stop conditions for the design algorithm using the 〈structure〉.stop

command, which specifies the allowed normalized ensemble defect in the sequence design for

each named structure. The normalized ensemble defect calculates the average percentage of

incorrectly paired bases between the target structure and the Boltzmann-weighted ensemble

of structures that form at equilibrium for a particular sequence design.

Lines 39–44 pass parameters to the design algorithm. Energy parameters are not avail-

able for mixed RNA/DNA systems, so we choose to treat r as DNA in the context of the

NUPACK software. We must also ignore the role of RP and RH in this context, except to

ask for designs at a temperature and in salt conditions consistent with enzyme-dependent

experimental conditions. Finally, we ask for ten sequence designs and prevent certain se-

quence patterns from appearing in the designs.
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Figure 4.3: Final design specification of the open- and closed-loop genelet systems.
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4.5 Sequence Analysis

The “best” sequence design from the ten generated by this script in the NUPACK design

module is illustrated in Figure 4.3. To determine the “best” design, we evaluate each se-

quence design in the NUPACK analysis module, which provides information on the ensemble

structures formed at equilibrium, for a given design, in a dilute solution. We impose two

ad-hoc measures on the quality of each design by evaluating the sequences in a nominal

system ([g] = [a] = [p] = 100 nM), under four different “initial conditions” ([r] = 0, 50,

100, and 200 nM), with a maximum structure size of four strands. First, we look at the

maximum concentration of any incorrect structure in each ensemble. Second, we examine

the graph of ensemble pair fractions, which depicts the fraction of structures in the ensemble

containing a particular nucleotide pairing, charted for all nucleotides.

Table 4.1: Results of NUPACK analysis of “best” sequence design.

Initial Conditions (nM) Equilibrium Conditions (nM)

[a] [g] [p] [r] [a] [a·r] [g] [g ·a] [p] [p·r] [r] [other]

100 100 100 0 0.03748 - 0.03748 99.96 99.99 - - < 0.004

100 100 100 50 - 49.99 49.99 49.99 99.99 - - < 0.006

100 100 100 100 - 99.99 99.97 - 99.99 - - < 0.008

100 100 100 200 - 99.99 99.96 - 0.3537 99.61 0.3536 < 0.012

The results of the analysis is summarized in Table 4.1 and in Figure 4.4. The last

column of Table 4.1 contains the maximum concentration of any incorrect structure, which

is predicted by NUPACK for each of the four analysis cases to be on order of picomolars

or less. Also, the ensemble pair fractions plotted in Figure 4.4 show that very few incorrect

bases form with any great probability in any of the four analysis cases. These analyses,

although based on predictions made for thermodynamic equilibrium, provide a basic check

that the correct structures will form over a range of dynamic equilbria, such as in our

analysis cases [r] = 0, [r] < [p], [r] = [p], and [r] > [p]. Thus we obtain a reasonable degree

of confidence that synthesized strands with the sequences in Figure 4.4 will fold as desired.
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in Figure 4.3, for each of the cases in Table 4.1.
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Chapter 5

A ROBUST, TUNABLE, FEEDBACK-REGULATED GENELET

SYSTEM – MODELS

5.1 Introduction

Our principal goal in constructing the closed-loop device is to build a regulated fuel supply

that is insensitive to disturbances downstream, or at least less sensitive than a comparable

unregulated fuel supply. A simple test of this property is to increase the number of down-

stream devices consuming fuel, then observe the effect on the supply of fuel. Thus we ask:

How sensitive is the concentration of r to changes in the total amount of probe, which we

denote ptot, in each type of system?

We perform a mathematical analysis on simple models of the open- and closed-loop sys-

tems to estimate whether our design achieves our goal. We begin by developing a general

form for models of the open- and closed-loop systems from the system-level specifications

in Figure 4.1. We first consider the case in which enzyme activities are represented by

Michaelis-Menten approximations, which allows us to probe the behavior of the dynamic

equilibrium in open-loop with respect to system parameters. We also consider the simpler

case in which enzyme activities are represented by first-order, mass-action approximations

from which we derive, via a time-scale separation, approximate models for the time depen-

dence of [r] in both systems. We then perform a sensitivity analysis on these approximate

models to better understand the effect of changing ptot on equilibrium [r], which we denote

as [r]∗.

We interpret the system-level specifications (Figure 4.1) as a set of chemical reactions.

There are three types of reactions in these specifications: 1) production (transcription of

r), 2) binding (nucleic acid hybridization), and 3) degradation (hydrolysis of r from p·r and

a·r). We assume that the binding reactions are adequately modeled by mass-action kinetics,

but allow the production and degradation rates to take on arbitrary functional forms fp and
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fd, respectively.

The general forms of the chemical reaction models are

∅
fp([g·s],[g])
−−−−−−−⇀ r

p+ r
kp
−⇀ p·r

p·r
fd([p·r])
−−−−−⇀ p

and

∅
fp([g·a],[g])
−−−−−−−⇀ r

p+ r
kp
−⇀ p·r

p·r
fd([p·r])
−−−−−⇀ p

g ·a+ r
kf
−⇀ g + a·r

g + a
ko−⇀ g ·a

r + a
ka−⇀ a·r

a·r
fd([a·r])
−−−−−⇀ a.

(5.1)

where we make one modification to the specifications: inactive genelet may produce r at

some “leak” rate. As before, the symbol g represents a deactivated genelet, s or a an

activator strand, r an RNA product, and p a molecular probe. The symbol · represents

binding, such that g·s or g·a is an activated genelet, a·r an activator strand bound by RNA,

and p·r an open probe (i.e., probe bound by RNA). Reaction rate constants are denoted by

k with subscripts differentiating the reaction types.

From (5.1), we obtain general forms for the open- and closed-loop dynamics, which are

˙[r] = fp ([g ·s], [g]) − kp [p] [r]

˙[p·r] = kp [p] [r]− fd ([p·r])
and

˙[r] = fp ([g ·a], [g]) − kp [p] [r]

−kf [g ·a] [r] − ka [a] [r]

˙[p·r] = kp [p] [r]− fd ([p·r])

˙[g ·a] = ko [g] [a] − kf [g ·a] [r]

˙[a] = kd ([a·r])− ka [a] [r]

−ko [g] [a],

(5.2)

Since r is the only specie in our model that degrades there are several conserved quan-

tities within the system. Therefore, we defined the constants, in the context of the open-

and closed-loop systems, respectively,

gtot = [g ·s] + [g]

atot = 0

ptot = [p] + [p·r],

and

gtot = [g ·a] + [g]

atot = [a] + [a·r] + [g ·a]

ptot = [p] + [p·r],

(5.3)
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to represent the total amount of g, a, and p, all of which, it is important to note, are

experimentally meaningful parameters.

Finally, observe that at steady-state the rates of production and degradation of r must

balance in the open-loop system, since

0 = fp ([g]
∗, [s]∗)− kp [p]

∗ [r]∗

0 = kp [p]
∗ [r]∗ − fd ([p·r]

∗)





⇒ fp ([g]
∗, [s]∗) = fd ([p·r]

∗) , (5.4)

where [x]∗ indicates the equilibrium concentration of x. Our intuition confirms that too

much production will overwhelm degradation, saturating the output at [p ·r] = ptot and

leading to an unstable [r], but we also examine this intuition mathematically, below. This

property is independent of all forms of fp ([g], [s]) and fd ([p·r]), and so the open-loop system

appears, in general, to be very sensitive to the concentration of enzymes. We next examine

this property of the open-loop model, and other properties of both models, given specific

forms of the production and degradation functions.

5.2 Model 1: Enzyme Kinetics

We can use the well-known Michaelis-Menten approximation to describe the enzyme activity

in the open-loop system, such that

fp([g ·s], [g]) =
k1 [g ·s]

K1

(
1 + [g·s]

K1
+ [g]

K2

)+ k2 [g]

K2

(
1 + [g·s]

K1
+ [g]

K2

) ,

fd([pr]) =
k3 [p·r]

K3 + [p·r]
.

(5.5)

The function fp now approximates the rate of production of r, which is due to the interac-

tion of RP with one of two competing substrate complexes, g ·s and g. (Again, we include

g as a substrate to account for leaky expression from the incomplete promoter site.) These

reactions have catalysis rates k1 and k2, and Michaelis-Menten constants K1 and K2, re-

spectively. Similarly, the function fd now approximates the rate of degradation r, which is

due to the interaction of RH with its substrate complex, p ·r. This reaction has catalysis

rate k3 and Michaelis-Menten constant K3. In general, the Michaelis-Menten approximation
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defines the catalysis rate as the maximum rate of product formation, vmax, times the con-

centration of enzyme; and the Michaelis-Menten constant as the concentration of substrate

that yields half the maximum rate, vmax/2.

We neglect the closed-loop system for now due to the highly non-linear impact of these

functional forms on (5.2), but we can rewrite (5.2) for the open-loop system, using (5.5) and

the mass-conservation relationships in (5.3). For simplicity in analysis and experiments, we

consider only the case where stot ≤ gtot. We then have

˙[r] =
c1 + c2 s

tot

c3 + stot
− kp

(
ptot − [p·r]

)
[r],

˙[p·r] = kp
(
ptot − [p·r]

)
[r]−

k3 [p·r]

K3 + [p·r]
,

(5.6)

where

c1 =
K1 k2 g

tot

K2 −K1
,

c2 =
k1 K2 − k2 K1

K2 −K1
,

c3 =
K1 K2 +K1 g

tot

K2 −K1
,

c4 =
k1 g

tot

K1 + gtot
.

(5.7)

5.2.1 Equilibrium Analysis

We now examine the equilibrium behavior of (5.6). At equilibrium,

0 =
c1 + c2 s

tot

c3 + stot
− kp

(
ptot − [p·r]∗

)
[r]∗ and

0 = kp
(
ptot − [p·r]∗

)
[r]∗ −

k3 [p·r]
∗

K3 + [p·r]∗
.

(5.8)

We can algebraically solve (5.8) for the equilibrium values [r]∗ and [p·r]∗, which are

[r]∗ =
c5 (c5 − c6 k3)

kp c6 (c5 K3 + (c5 − c6 k3) ptot)
and

[p·r]∗ =
c5 K3

c6 k3 − c5
,

(5.9)



50

where

c5 = c1 + c2 s
tot and

c6 = c3 + stot.

(5.10)

We can clearly see from (5.9) that the steady-state output of the system, [p · r]∗, is

independent of the term ptot. Thus, the output of the system [p·r], when a stable steady-state

exists, will demonstrate a behavior known to biologists as “perfect adaptation,” alternately

known as disturbance rejection, with respect to disturbances in ptot. However, as we see

in experiments, the observation of this phenomenon is dependent on the output mapping,

where here we assume perfect observation, i.e. y = [p ·r]. We discuss this issue more in

Chapter 6.

The existence of a stable steady-state requires positive values of [r]∗ and [p·r]∗, however,

which depends on the system parameters and initial conditions. However, for a given set

of parameters, we can predict the stable steady-states of the system using the equilibrium

model (5.9). To illustrate this property, we take as an example a system with specific

parameters and initial conditions.

5.2.2 Results

The values in Table 5.2.2 represent realistic, but hand-picked, parameters based on previous

genelet studies [49] and initial conditions based on current experimental design. This set

is of interest due to the saturation of the system output, [p·r], at ptot when increasing the

initial condition stot, as illustrated in Fig. 5.1 and discussed below.

Table 5.1: Set of parameters and initial conditions for equilibrium analysis of the open-loop
enzyme kinetics model.

Parameters k1 k2 k3 K1 K2 K3 kp gtot ptot

(units) (nM/h) (nM/h) (nM/h) (nM) (nM) (nM) (/nM/h) (nM) (nM)

150 150 145 10 100 10 0.1 100 100
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Figure 5.1: Simulations of the system model using the parameters in Table 5.2.2. (a) Plot
of system equilibria parameterized by stot, which shows the region in which [r]∗ > 0 and
[p·r]∗ > 0 where the system has a stable steady-state. Here, this region corresponds to stot in
the interval [0, 69.4444). The bold black box corresponds to experimental conditions, where
we vary stot in the interval [0, 100]. (b) Plot of [r] and [p·r] trajectories over time, with varied
stot in the interval [0, 100] as specified in the legend. (c) Magnified plot of system equilibria
parameterized by stot, overlaid with points

(
stot, [r]

)
and

(
stot, [p·r]

)
taken at t = 24 h from

simulated trajectories, and points
(
stot, [r]∗

)
and

(
stot, [p·r]∗

)
calculated for t → ∞. (d)

Nullclines overlaid with intersecting points ([r]∗, [p·r]∗) for each trajectory yielding a stable
steady state. (d, Inset) Magnification showing the asymptotic approach of the non-stable
trajectories’ nullclines, which never intersect.

First, we observe in the parameterization of (5.9) by stot plotted in Fig. 5.1(a) that the

output saturation of [p ·r]∗ at ptot coincides with a point of discontinuity in [r]∗. We can

calculate from (5.9) that when ([r]∗, [p·r]∗) = (∞, ptot), then

stot =
c1
(
K3 + ptot

)
− c3 k3 p

tot

k3 ptot − c2 (K3 + ptot)
, (5.11)

which for this example is stot = 69.4444 nM. This bifurcation between stable and unstable

behavior occurs in the physical system only when the expression (5.11) is positive, as in this
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example.

Second, we plot several simulated system trajectories with varied initial condition stot

in Fig. 5.1(b) to show the effect of this bifurcation more clearly. Fig 5.1(c) charts endpoint

measurements of [r] and [p·r] for these trajectories for two time points: 1) realistic experi-

mental tf = 24 h and 2) equilibrium tf → ∞; note that the former set of points approach

the latter. The seven trajectories with initial condition stot in the interval [0, 69.4444) have

stable steady-states predicted by (5.9) while those four with initial condition stot in the

interval (69.4444, 100] have [r] increasing to infinity while [p·r] saturates at ptot.

Third, as a final characterization of the equilibrium behavior of this example, we examine

the nullclines of the full model (5.6)

[p·r] = ptot −
c5

kp [r] c6
,

[p·r] =
−k3 − kp

(
K3 − ptot

)
[r]

2 kp [r]

±

√
4K3 ptot k2p [r]

2 + (k3 + kp (K3 − ptot) [r])2

2 kp [r]
,

(5.12)

which correspond to ˙[r] = 0 and ˙[p·r] = 0, respectively. The steady-states of the stable

trajectories correspond to the points of intersection of their nullclines, plotted for this ex-

ample in Fig. 5.1(d). The nullclines of the unstable trajectories never meet, and the inset of

Fig. 5.1(d) shows the lack of intersection even at large [r] for the four unstable trajectories,

as expected.

The equilibrium analysis of the open-loop model emphasizes the role that finding useful

initial conditions will play in experimental tests. The initial concentrations of RP , RH , gtot,

stot (and, presumably, atot in the closed-loop system), and ptot impact the existence of a

steady-state, which is necessary for testing the properties of each system that we wish to

confirm. We discuss this issue more in Chapter 6.

5.3 Model 2: Mass-Action Kinetics

We now simplify the chemical models in (5.1) to use first-order rate constants to approximate

enzyme activity. This approximation embodies a trade-off between simplicity and reality
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in our models, which we leverage to make qualitative statements about the behavior of

the systems without knowledge of parameter values. With this assumption, the chemical

reaction models in (5.1) now become equivalent to

g ·s
kr1−−⇀ g ·s+ r

g
kr2−−⇀ g + r

p+ r
kp
−⇀ p·r

p·r
kd1−−⇀ p

and

g ·a
kr1−−⇀ g ·a + r

g
kr2−−⇀ g + r

p+ r
kp
−⇀ p·r

p·r
kd1−−⇀ p

g ·a + r
kf
−⇀ g + a·r

g + a
ko−⇀ g ·a

r + a
ka−⇀ a·r

a·r
kd2−−⇀ a.

(5.13)

which we convert, by the laws of mass-action, to models of the open- and closed-loop

dynamics

˙[r] = kr1 [g ·s] + kr2 [g] − kp [p] [r]

˙[p·r] = kp [p] [r]− kd1 [p·r]
and

˙[r] = kr1 [g ·a] + kr2 [g]− kp [p] [r]

−kf [g ·a] [r]− ka [a] [r]

˙[p·r] = kp [p] [r]− kd1 [p·r]

˙[g ·a] = ko [g] [a] − kf [g ·a] [r]

˙[a] = kd2 [a·r]− ka [a] [r]

−ko [g] [a],

(5.14)

5.3.1 Time-scale separation

Although small relative to many in vivo biological models, the models (5.14)are still difficult

to analyze with respect to the dynamics of r. To overcome this difficulty, we employ a

method of time-scale separation that separates the “slow” dynamics of r from the “fast”

dynamics of the other species [48].

We first identify system parameters that, when made sufficiently small, reduce (5.14)

to an approximate solution. Here we choose atot (or stot) and ptot, which produce valid

approximations (as shown below), but are also physically meaningful parameters that we
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can set experimentally. By (5.3), this choice implies that a, a ·r, g ·a, p, and p ·r are also

always small. To reflect these choices in the model, we define a change of variables using

the “small” parameter ε, where

[s] = ε[̂s]

[p] = ε[̂p]

[p·r] = ε̂[p·r]

and

[a] = ε[̂a]

[a·r] = ε̂[a·r]
[g ·a] = ε̂[g ·a]
[p] = ε[̂p]

[p·r] = ε̂[p·r]

(5.15)

Additionally, we assume that the rate of transcription is much greater for an activated

genelet (kr1 >> kr2), so that kr2 = εkr1 .

We can derive the fast model by first changing variables, then setting the parameter ε

to zero. The fast model should contain “slow” variables that do not change with time and

“fast” variables that do change with time and must converge to an asymptotically stable

fixed point.

When the fast model converges asymptotically, the “fast” variables can essentially be

treated as constants in the slow model. We can then derive the slow model by first scaling

time so that

τ = ε t, (5.16)

changing variables, then setting the parameter ε to zero. The slow model should contain

the same “slow” variables that now change with (scaled) time and the same “fast” variables

that now do not change with (scaled) time.

In the following, we perform this time-scale separation on both the open- and closed-loop

systems in order to obtain slow models that approximate the behavior of r as a function of r

alone. We then analyze these reduced models and show mathematically that the open-loop

system is more sensitive to changes in ptot and furthermore that the closed-loop system can

be tuned to any desired steady-state level and sensitivity to changes in ptot.
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Open-loop system

To derive the fast model of the open-loop system, we substitute (5.15) and kr2 = εkr1 into

(5.2) to obtain

˙[r] = ε kr1
̂[g ·s] + ε kr1 [g] − ε kp [̂p] [r]

ε
˙̂

[p·r] = ε kp [̂p] [r]− ε kd1
̂[p·r],

which, setting ε = 0, reduces to the fast model

˙[r] = 0
˙̂

[p·r] = kp [̂p] r − kd1
̂[p·r].

(5.17)

where we see that, as desired, [r] is unchanging in time.

We show convergence of the fast model by treating [r] as a constant, rc, and substituting

the conservation equality ptot = [̂p] + ̂[p·r] into (5.17). This yields the ordinary differential

equation

˙̂
[p] = ptot kp rc − (kd1 + kp rc) ̂[p·r],

which is asymptotically stable at the point

̂[p·r]
∗

= ptot
kp rc

kd1 + kp rc
. (5.18)

Therefore the dynamics of the fast model converge and we can derive the slow model.

To derive the slow model of the open-loop system, we substitute (5.15) and (5.16) into

(5.2) to obtain

ε (d[r]/dτ) = ε kr1
̂[g ·s] + ε kr1 [g]− ε kp [̂p] [r]

ε2 (d[p·r]/dτ) = ε kp [̂p] [r]− ε kd ̂[p·r],

which, setting ε = 0, reduces to

(d[r]/dτ) = kr1
̂[g ·s] + kr1 [g]− kp [̂p] [r]

0 = kp [̂p] [r]− kd1
̂[p·r].

This slow model of the open-loop system can be further reduced through algebraic manip-

ulation and substitution of the conservation equalities (5.3) to yield

˙[r] ≈ gtot kr1 − ptotD([r]) (5.19)
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where

D([r]) =
kd1 kp [r]

kd1 + kp [r]
,

which is an approximation of the full system in terms of [r] only as desired. The quality of

this approximation depends on the assumption that there is a small total amount of probe

in the system.

Closed-loop system

We now pursue the comparative derivation of the closed-loop system approximation. First,

to derive the fast model of the closed-loop system, we substitute (5.3) and (5.15) into (5.2)

to obtain

˙[r] = ε kr1
̂[g ·a] + ε kr1 [g]− ε kp [̂p] [r]− ε kf ̂[g ·a] [r]− ε ka [̂a] [r]

ε
˙̂

[p·r] = ε kp [̂p] [r]− ε kd1
̂[p·r]

ε
˙̂

[g ·a] = ε ko [g] [̂a] − ε kf ̂[g ·a] [r]
ε

˙̂
[a] = ε kd2

̂[a·r]− ε ka [̂a] [r]− ε ko [g] [̂a],

which, setting ε = 0, reduces to the fast model

˙[r] = 0
˙̂

[p·r] = kp [̂p] [r]− kd1
̂[p·r]

˙̂
[g ·a] = ko [g] [̂a] − kf ̂[g ·a] [r]

˙̂
[a] = kd2

̂[a·r]− ka [̂a] [r]− ko [g] [̂a],

(5.20)

where we see that, as desired, [r] is unchanging in time.

We show convergence of the fast model as before, by treating [r] as a constant (rc) and

substituting the conservation equalities ptot = [̂p] + ̂[p·r], atot = [̂a] + ̂[a·r] + ̂[g ·a], and

gtot = [g] + ̂[g ·a] ≈ [g] into (5.20). This yields the set of ordinary differential equations

˙̂
[p] = (kd1 + kp rc) [̂p]− ptot kd1
˙̂

[g ·a] = gtotko [̂a]− kf ̂[g ·a] rc
˙̂
[a] = atot kd2 − (gtot ko + kd2 + ka rc) [̂a]− kd2

̂[g ·a],
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which has a positive, asymptotically stable steady-state at




̂[p·r]
∗

̂[g ·a]
∗

[̂a]
∗


 =




ptot
kp rc

kd1+kp rc

atot
gtot kd2 ko

gtot ko kd2+(g
tot ko+kd2) kf rc+ka kf r2c

atot
kd2 kf rc

gtot ko kd2+(g
tot ko+kd2) kf rc+ka kf r2c




(5.21)

Therefore the dynamics of the fast model converge and we can derive the slow model.

To derive the slow model of the closed-loop system, we substitute (5.15) and (5.16) into

(5.2) to obtain

ε(d[r]/dτ) = ε kr1
̂[g ·a] + ε kr1 [g]− ε kp [̂p] [r]− ε kf ̂[g ·a], [r]− ε ka [̂a] [r]

ε2(d[p·r]/dτ) = ε kp [̂p] [r]− ε kd1
̂[p·r]

ε2(d[g ·a]/dτ) = ε ko [g] [̂a] − ε kf ̂[g ·a] [r]
ε2(d[a]/dτ) = ε kd2

̂[a·r] − ε ka [̂a] [r]− ε ko [g] [̂a],

which, dividing through by and then setting ε to 0, reduces to

(d[r]/dτ) = gtot kr1 − kp [̂p] [r]− kf ̂[g ·a] [r]− ka [̂a] [r]

0 = kp [̂p] [r]− kd1
̂[p·r]

0 = ko [g] [̂a] − kf ̂[g ·a] [r]
0 = kd2

̂[a·r]− ka [̂a] [r]− ko [g] [̂a].

(5.22)

This slow model of the closed-loop system can be further reduced through algebraic manip-

ulation and substitution of the conservation equalities (5.3) to yield

˙[r] ≈ gtot kr1 − ptotD([r])− atotK([r]) (5.23)

where

K([r]) =
kd2 kf (g

tot ko [r] + ka [r]
2)

gtot ko kd2 + (gtot ko + kd2) kf [r] + ka kf [r]2

which is an approximation of the full system in terms of r only as desired. The quality

of this approximation depends on the assumption that there is a small total amount of

activator and probe in the system, relative to the total amount of genelet.

5.3.2 Sensitivity analysis

We now use the approximations for the time evolution of r in (5.19) and (5.23) to compare

the sensitivity of the steady-state availability of r to changes downstream. We use sensitivity
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to mean the change in a given performance measure, x, when a parameter of the system, p,

changes, as in

Sx
p =

% change in performance
% change in parameter

=
∆x/x

∆p/p
=

∆x

∆p

p

x
≈

∂x

∂p

p

x
.

(5.24)

Since our goal is to regulate the amount of steady-state RNA available to a downstream

molecular device, we define our performance measure as [r]∗, and our parameter of interest

as ptot.

Open-loop system

To find the sensitivity of [r]∗ with respect to ptot in the open-loop system, we linearize (5.19)

around the nominal value of RNA product, [r]0, and nominal value of the total amount of

probe, ptot0 , to obtain

˙[r] ≈ gtot kr1 − ptot0 D(r0)

− ptot0
∂D([r])
∂[r]

∣∣∣∣
[r]=[r]0

([r]− [r]0)

− ∂
∂ptot

ptotD([r]0)

∣∣∣∣
ptot=ptot0

(ptot − ptot0 )

≈ gtot kr1 − ptot0 d([r]0)([r]− [r]0)− ptotD([r]0)

where

d([r]0) =
∂D([r])

∂[r]

∣∣∣∣
[r]=[r]0

Solving for equilibrium gives

[r]∗ =
gtot kr1 − ptotD([r]0)

ptot0 d([r]0)
+ [r]0 (5.25)

and applying the definition in (5.24) to (5.27) yields the open-loop sensitivity

S
[r]∗

ptot
≈ −

D([r]0)

ptot0 d([r]0)

ptot0

[r]0
= −

kd1 + kp [r]0
kd1

. (5.26)

It is of principle importance to note that the open-loop sensitivity is independent of

any experimentally-tunable parameters such as gtot or atot. This result indicates that the
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open-loop system is not robust to changes in ptot with respect to [r]∗, and in fact is more

sensitive the more r is delivered; and therefore makes a poor regulator of RNA fuel, as

expected.

Closed-loop system

Comparatively, to find the sensitivity of r∗ with respect to ptot in the closed-loop system,

we linearize (5.23) around r0 and ptot0 as before to obtain

˙[r] ≈ gtot kr1 − ptoto D([r]0)− atot K(r0)

− ptot0
∂D([r])
∂[r]

∣∣∣∣
[r]=[r]0

([r]− [r]0)

− atot
∂K([r])
∂[r]

∣∣∣∣
[r]=[r]0

([r]− [r]0)

− ∂
∂ptot

ptotD([r]0)

∣∣∣∣
ptot=ptot0

(ptot − ptot0 )

≈ gtot kr1 − ptotD([r]0)− atot K([r]0)

−(ptot0 d([r]0) + atot k([r]0))([r]− [r]0)

where

k([r]0) =
∂K([r])
∂[r]

∣∣∣∣
[r]=[r]0

Solving for equilibrium r gives

[r]∗ =
gtot kr1 − ptotD([r]0)− atotK([r]0)

ptot0 d([r]0) + atot k([r]0)
+ [r]0 (5.27)

and applying the definition in (5.24) to (5.27) yields the closed-loop sensitivity

S
[r]∗

ptot
≈ −

D([r]0)

ptot0 d([r]0) + atot k([r]0)

ptot0

[r]0
. (5.28)

Here, it is of principle importance to note that the closed-loop sensitivity is dependent

on the experimentally tunable parameter atot and that the magnitude of the sensitivity will

decrease as atot increases. This equation is strong evidence that the closed-loop system

matches our design specification for a robustly-regulated RNA fuel source.
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5.3.3 Results

As previously stated, our principal goal in using negative feedback in the closed-loop device

is to provide a more robust supply of r with respect to fluctuations in ptot, the total amount

of probe in the system. The time-scale separation and sensitivity analysis of the simple

mass-actions models allow us to make several statements about the qualitative behavior of

both systems .

First, the open-loop sensitivity of [r]∗ with respect to ptot depends on just two rate

parameters and the nominal level of [r], which we denote [r]0. Specifically, the magnitude

of the open-loop sensitivity increases proportionately with [r]0. Therefore, our open-loop

model indicates that decreasing the effect of disturbances in ptot on [r]∗ in a given system

would require dynamic adjustment of [r], a task at odds with the concept of “open-loop.”

Second, although our analysis confirms the intuitive notion that dynamic self-adjustment

of [r] to disturbances in ptot is impossible in the open-loop system, it also predicts that the

open-loop sensitivity will increase as the total amount of genelet, gtot, is increased. Note

from Equation 5.26 that the open-loop sensitivity is proportional to [r]0, which is itself

proportional to gtot. Therefore, open-loop systems with higher gtot should be more sensitive

than open-loop systems with lower gtot.

Third, the magnitude of the closed-loop sensitivity of [r]∗ with respect to ptot decreases

proportionately with the total amount of activator, atot. Therefore, according to our closed-

loop model, increasing atot in a closed-loop system would decrease the effect of disturbances

in ptot on [r]∗. So while the open-loop sensitivity cannot be tuned down as gtot is increased,

the closed-loop sensitivity can always be tuned down by increasing atot, regardless of the

value of gtot. This result supports the intuitive connection between the general ability of

negative feedback loops to reject disturbances and the role of a in the feedback pathway.

Fourth, and finally, gtot and atot (or stot) are all physically meaningful parameters, and

can be varied across experiments. Thus, these analytical results form the basis of a testable

hypothesis: closed-loop systems should produce a more robust fuel supply, with respect to

changes in probe activity, compared to open-loop systems or closed-loop systems with less

activator.
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Chapter 6

A ROBUST, TUNABLE, FEEDBACK-REGULATED GENELET

SYSTEM – TESTS

6.1 Introduction

We experimentally test the main hypothesis: closed-loop systems should produce a more

robust fuel supply, with respect to changes in probe activity, compared to open-loop systems

or closed-loop systems with less activator. Experimental tests of the systems monitor the

total fluorescence output, typically the response of pre-mixed solutions of g and s or a, in the

required buffers, to additions of enzymes and p. For our experimental testbed, we prepare

and monitor experiments in the individual wells of a 96-well microplate, in a fluorescence

microplate reader (see Appendix C for protocols). This testbed allows for the concurrent

testing of multiple systems with varying conditions.

The mapping between the fluorescence output and concentrations of system components

is one of several experimental characterizations we perform to follow up on the insights

offered by our model analysis in Chapter 5. We also characterize the effect of enzyme levels

and buffer conditions on system activity. The design of the nucleic acid components is

contingent upon thermodynamic predictions of secondary structure and do not take into

account the activity of RP or RH . In addition, our models indicate the systems are sensitive

to initial conditions and other parameters. We look for a nominal set of conditions in which

both systems respond quickly, are tunable, and do not saturate the output.

First, we examine the output mapping between the systems and the experimental

testbed. Then we check the impact of initial enzyme concentrations on the equilibrium

dynamics of the systems. Once we establish a feasible set of nominal initial conditions, we

test our hypothesis on multiple open- and closed-loop systems. Finally, we try to connect

the qualitative predictions of our mass-action model to quantitative fits of our test data.



62

6.2 Output Calibration

The precise output mapping from the fluorescence readings taken by the plate reader to

[p ·r] is important to our understanding of the experimental system. We present data in

Figure 6.1 from calibration tests performed on p and p ·r, on two different plate readers,

along with linear fits for each data set. Note that each data point is averaged over four

replicates, and that the error bars are too small to see. The protocol for the data calibration

is in Appendix C.
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Figure 6.1: Calibration data for p and p · r. Probe p was titrated into replicate wells
containing either buffer, or buffer with r. Averaged data points were fitted to linear models
for fluorescence vs. [p] (dashed lines) and [p·r] (solid line). Error bars are smaller than the
plotted points.

It is clear from the two data sets corresponding to increasing [p] that the output mapping

is unique to each plate reader, as p contributes a different amount of “background” fluores-

cence in each plate reader. Also, we note that the data set corresponding to increasing [p·r]

falls below the associated linear fit with increased concentrations of p and r. A linear fit

therefore may not properly map fluorescence values to [p·r], even considering background

fluorescence.

The creation of an empirical mapping is made even more difficult by the fact that p is

sensitive to other system components besides r. The data sets and associated linear fits

plotted in Figure 6.2 correspond to increasing [p·r] without and with various combinations



63

of the system components g, s, and a. The presence of each combination of components

results in a different linear fit, each of them divergent from the mapping established by

measurement of [p · r] in isolation. The inset to Figure 6.2 shows how the fits for each

combination diverge as [p·r] increase.

Taken together, these calibration data convince us to present data in the raw fluorescence

mode, to avoid the possibility of miscounting p·r. However, to unify models and data, we

require some method for mapping fluorescence to [p ·r]. We therefore propose an output

mapping, y, that defines the relationship between fluorescence, and [p] and [p·r] as

y = ky1 [p] + ky2 p
tot, (6.1)

which we use with our models when fitting data.
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Figure 6.2: Calibration data for p · r in the presence of various combinations of system
components g, s, and a. Probe p was titrated into replicate wells containing buffer with
r and the combination of g, s, a or nothing as noted in the upper left corner of the plot.
Averaged data points were fitted to linear models for fluorescence vs. [p ·r] (solid yellow
line) and [p·r] in the presence of system components (dashed lines). Error bars are included,
except where smaller than the plotted points.

6.3 Equilibrium Dynamics

We require nominal conditions for running the open-and closed-loop systems in order to

obtain a dynamic equilibrium that does not saturate ptot. In the saturating regime, [r] is
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unstable, the closed-loop device cannot regulate r, and there is no discernible difference

between the open- and closed-loop systems in the output response.

Extensive optimization of initial conditions leads us to use the nominal conditions [g]

= [s] = [a] = [p] = 100 nM for the majority of our tests, with enzyme concentrations [RP ]

= 100 U and [RH ] = 1 U. We include Figure 6.3 as an example the kind of optimization

we can do in these systems. The trajectories in Figure 6.3 illustrate the effect of tuning

the enzyme concentrations in the system (in this case both enzyme concentrations, while

keeping a constant ratio between them). Each of the eight trajectories in Figure 6.3 depict

the output response of a nominal open-loop system to which some concentration of enzymes

are added after one hour.
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Figure 6.3: Effects of tuning enzyme concentrations with a fixed ratio in a nominal open-
loop system. Enzymes at concentrations noted in the legend were added to eight open-loop
systems with [g] = [s] = [p] = 100nM.

Note that higher enzyme concentrations lead to a slope in the equilibrium phase (lasting

from one hour after enzymes are added to about nine hours after enzymes are added). The

relative flatness of “slower” systems is a factor in our choice of nominal initial conditions. It

is also likely that higher enzyme concentrations result in higher turnover of r, which yields
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waste products from the degradation of r faster, which causes p to be more open on average.

Although lower enzyme concentrations reduce the effect, faster systems–like high-feedback

closed-loop systems–experience it more.

0 20 40 60 80

Time HhL

0

10000

20000

30000

Fl
uo

re
sc

en
ce
Hn

M
L

Enzyme Inactivation

LEGEND

@gD = 100 nM

@sD = 100 nM

@pD = 200 nM

@RHD = 0.2 U

@RPD =

700 U

600 U

500 U

400 U

300 U

200 U

100 U

0 U

Figure 6.4: Experimental effects of enzyme inactivation in a nominal open-loop system. [RP ]
at concentrations noted in the legend were added to eight open-loop systems at t = 0h.
In sub-saturating trajectories, fluorescence drops with RP inactivation and flattens with
subsequent RH . More RP takes longer to inactivate. In saturating regimes, fluorescence
stays high due to unstable [r].

Another issue with the enzymes to RP and RH is their inactivation over time. Figure 6.4

plots eight trajectories of an open-loop system with fixed [RH ] and varying [RP ]. Each

system response is monitored for ∼90 hours after the addition of enzymes . In each case below

saturation, we see the inactivation of RP , which is marked by a drop in fluorescence, followed

by the inactivation of RH , which is marked by the lack of change in fluorescence. Since

[r] is unstable in saturating conditions, we cannot observe inactivation in the trajectories

corresponding to [RP ] = 500, 600, or 700 U. One may note the small oscillations in the

trajectories; these have a period of ∼24 hours, and may be due to periodic temperature
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changes in the room containing the plate reader.

Due to the inactivation of enzymes within ∼10 hours, we test the sensitivity of the open-

and closed-loop systems by changing ptot at least every 2 hours. The short time period is

still long enough to allow systems to reach a dynamic equilibrium, as seen in Figure 6.3,

while also short enough to allow for multiple disturbances to ptot in a single trajectory.

6.4 Hypothesis Validation

We test the validity of our hypothesis by directly comparing several closed-loop systems,

with varying production and feedback strengths, to several open-loop systems, with varying

production strengths. We expect to see that both open- and closed-loop outputs increase

with gtot, and we expect that closed-loop systems are more robust than open-loop systems

or than other closed-loop systems with less activator.
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Figure 6.5:

In each experiment, disturbances in the downstream activity of p were periodically intro-

duced through the exogenous increase of ptot above the nominal level, ptot0 . Multiple parallel
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Table 6.1: Reagent distributions in named data sets. (Reagents were combined in batches
to allow for equal distribution into each well containing a test system, and pipetting waste.)

Reagents OL1 OL2 OL3 OL4 CL1 CL2 CL3 CL4

H2O vol. (µL) 66.70 66.35 66.00 65.65 65.65 64.25 62.85 61.45

- conc. (none) - - - - - - - -

TB vol. (µL) 10 10 10 10 10 10 10 10

10 conc. (×) 1 1 1 1 1 1 1 1

rNTPs vol. (µL) 10 10 10 10 10 10 10 10

80 conc. (mM) 8 8 8 8 8 8 8 8

MgCl2 vol. (µL) 6 6 6 6 6 6 6 6

100 conc. (mM) 6 6 6 6 6 6 6 6

g (in TB) vol. (µL) 0.1 0.2 0.3 0.4 0.4 0.8 1.2 1.6

25× 103 conc. (nM) 25 50 75 100 100 200 300 400

s vol. (µL) 0.25 0.5 0.75 1 - - - -

10× 103 conc. (nM) 25 50 75 100 - - - -

a vol. (µL) - - - - 1 2 3 4

10× 103 conc. (nM) - - - - 100 200 300 400

p vol. (µL) 1 1 1 1 1 1 1 1

10× 103 conc. (nM) 100 100 100 100 100 100 100 100

TIPP vol. (µL) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

2 conc. (U/µL) 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

RNase H vol. (µL) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10 conc. (U/µL) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

RNAP vol. (µL) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

1000 conc. (U/µL) 1 1 1 1 1 1 1 1

BSA vol. (µL) 5 5 5 5 5 5 5 5

10 conc. (mg/µL) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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experiments, in which the initial conditions gtot and stot or atot were varied, allowed us to

compare the behavior of open- and closed-loop systems with different fuel production and

negative feedback strengths.

The results of our primary hypothesis validation experiment are plotted in Figures 6.5.

Each trajectory in the plot is a trajectory we denote Yi,n, which contains fluorescence data

collected in the ith minute for test system n, where n is one of four open-loop systems

named OL1, OL2, OL3, or OL4; or four closed-loop systems named CL1, CL2, CL3, or

CL4. The initial conditions gtot and stot or atot of each test system are listed in the legend

of Figure 6.5. Identical disturbances to ptot were introduced to each test system every 71

minutes as quickly as possible (< 4 minutes). Longer periods between disturbances were

impractical due to enzyme inactivation; see above.

Since quantitative time-course data is difficult to obtain for [r], we looked for a way to

clearly compare the sensitivities of [r] to changes in ptot in our test system using the data in

Yi,n. We first reasoned that a more robust supply of fuel will operate a greater percentage of

downstream devices after an increase in downstream demand. We then normalized Yi,n by

the last pre-disturbance output, Y71,n to directly compare systems with different [r]0; and

by the ratio of ptot to ptot0 to measure the robustness of the fuel supply. These normalized

data thus show the relative robustness of the test systems, and are plotted in Figure 6.5B.

More specifically, the vertical ordering of the trajectories in Figure 6.5B corresponds

to the relative robustness of the fuel supply among the test systems. The open-loop test

systems all open a smaller percentage of probes in each period than the closed-loop test

systems, and are therefore less robust. In addition, closed-loop test systems become more

robust with higher atot, while open-loop test systems become less robust with higher gtot,

as expected.

It is important to note that the performance of CL2, CL3, and CL4 increases in each

period. This could indicate that these systems have not reached equilibrium prior to each

new disturbance. However, other experiments we performed (see, for example, the results

shown in Figure 6.3) suggest that the fuel supply does stabilize within the time period, other,

un-modeled processes might be responsible for a slow increase in fluorescence. For example,

the ssDNA nature of p makes it particularly susceptible to nonspecific binding, such as with
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the waste products of r degradation, which are in greater quantities in closed-loop systems

due to the additional degradation by a.

So although the qualitative agreement of the vertical ordering of trajectories in Figure 6.5

with the predictions of the sensitivity analysis supports our basic hypothesis that, in contrast

to the open-loop device, the closed-loop device is a robust, tunable source of r, we next

assessed the quantitative agreement of our model to our data Yi,n. This assessment required

optimizing the set of free parameters, θ in the model such that simulations of the model

with optimized parameters, θ∗, fit the data.

Table 6.2: The set of model parameters to be fit for each data set, an initial guess at the
best fit parameter set, and the range of values that each parameter can take.

Free Parameter Initial Guess Range

kr1 (/h) 10 (10−3, 104)

kr2 (/h) 10−1 (10−5, 102)

kd1 (/h) 10 (10−6, 101)

kd2 (/h) 10 (10−6, 101)

ka (/nM/h) 10−1 (10−6, 102)

kf (/nM/h) 10−1 (10−6, 102)

ko (/nM/h) 10−1 (10−6, 102)

kp (/nM/h) 10−1 (10−6, 102)

ky1 (A.U./nM/h) 102 (10−3, 103)

6.5 Data Fitting

We employ a data-fitting approach [36] that was also successfully applied to a positive

feedback genelet system [106]. We use the software package SloppyCell [36] to generate

ensembles of model parameters sets consistent with our test data. The software takes

as inputs an SBML version of our model (Appendix B), our data, and the initial model

parameter set shown in Table 6.2. It first optimizes the cost separately for each test system,
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starting from the initial parameter set, then generates an ensemble of model parameter sets,

for each test system, that is consistent with the data.
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Figure 6.6: Individual data trajectories (dots) and individual SloppyCell model fits (95%
confidence intervals; translucent windows).

Briefly, each ensemble contains a distribution of parameter sets, θ, consistent with the

probability density

P (θ) ∝ expC(θ,T )/T

where T = 1 is the temperature and C is a cost function of the form

C(θ) =
1

2

∑

i

(
Bn,i yn,i(θ)− Yn,i

σn,i

)
+ priors

for system n, model prediction yni
(θ), “scale factor” Bn,i, data point Yn,i and uncertainty

σn,i of that data point. The ‘priors’ term

1

2

(
log θi − log θ∗i

σlog θi

)2

keeps individual parameters θi from extending more than σlog θi from θ∗i .

Figures 6.6A and 6.6B plot the open- and closed-loop test data, respectively, along

with the 95% confidence interval consistent with the ensembles, which were individually



71

0

20

40

60

80

100
kr1

kr2
kd1

0

20

40

60

80

100

lo
g 1

0H
pa

ra
m

et
er
L

co
un

ts kd2 ka kf

-8 -6 -4 -2 0 2 40

20

40

60

80

100
ko

-8 -6 -4 -2 0 2 4

log10HparameterL values

kp

-8 -6 -4 -2 0 2 4

ky1

LEGEND

OL1

OL2

OL3

OL4

CL1

CL2

CL3

CL4

Figure 6.7: Parameter distributions of individual SloppyCell model fits, color-coded by
system.



72

generated for each test system. Each interval represents a collective fit specific to one data

set. While these model fits generally contain most of the data trajectories, they do not

predict all of the quantitative features in the data. Particularly, the transient features of

each collective fit are less exaggerated than are the transient features of the data trajectory

in later periods.
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translucent windows) to all trajectories at once.

Figure 6.7 plots the distributions of individual parameter values within each ensemble.

The distributions of model parameters kr1 , kr2 , kd1 , and kp vary the most among the

ensembles. We might expect this for kr1 , kr2 , and kd1 , since we have used them in our simple

model to approximate higher-order enzyme processes, but the variation in the distribution

of kp might indicate “sloppiness” in the model [36].

We also plot the 95% confidence interval on the model fit to all the data at once. This

collective fit, as one might expect, performs less well than individually fitting each data set.

Both the steady-state and the transient dynamics are generally unmatched by the fit for
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any data trajectory in any time period.

Since the ensembles that yield these collective fits are generated near θ∗, the quality of

the fits is limited by the cost function landscape local to θ∗. It seems clear from Figures 6.6,

6.7, and 6.8 that there are multiple minima in the cost function landscape, and local methods

suffer from a poor choice of θ∗.

In Figures 6.9 and 6.10, we plot the results of an alternative fitting method, in which

we generate ensembles consistent with

P (θ) ∝ expC(θ,T )/T

but randomly, rather than directed by local search methods. Figure 6.9 shows the data

trajectories for OL1, OL2, OL3, and OL4 plotted with the hundred best model fits, for each

data set, found by this random Bayesian ensemble algorithm. Figure 6.10 shows the same

for CL1, CL2, CL3, and CL4. In each case, the model fits collectively form a window that

contains the actual data trajectory.

Despite the quality of these fits, the fact remains that the model is poorly constrained

by the data. Figure 6.11 plots the distributions of each parameter in each random Bayesian

ensemble. The relatively flat distribution of all parameters across all systems illustrates the

fact that cost function landscape either flat, or contains many local minima.

6.6 Discussion

Robust, tunable, dynamic regulation of RNA fuel is achievable with even the simplest

feedback architecture, as we have demonstrated. As the complexity of systems that rely on

DNA-based nanodevices grow, it will be increasingly evident that tight regulation of fuel and

other intermediate components is necessary for the robust operation of such systems. Indeed,

natural biological systems point the way, as researchers uncover more and more elegant

regulatory schemes from the cellular level up to the physiological. Synthetic biologists have

already demonstrated, in vitro, DNA-based computation [94, 123, 86], assembly [21, 115],

signal processing [80, 104], and regulatory [49, 29, 28, 106] systems of scalable complexity.

Combining these systems into, for example, a synthetic cell will require appropriate control

architectures to ensure robust behavior.
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Appendix A

DESIGNS

A.0.1 Genelet System + Nanomotor

This design modification was an early iteration of the design in Chapter 4, and is missing

many of the latter’s features. However, this design was intended to drive the DNA nanomo-

tor describe in Chapter 3, instead of the ssDNA probe, as can be seen in the domain-level

specifications in Figure A.1. Unfortunately, the features lacking from this design (short in-

put region, no spacer, high sequence similarity between genelet and nanomotor, etc.) means

that this design should be redone before being tested.

A.0.2 Genelet System + Malachite Green Aptamer

This design modification includes a new feature, as can be seen in the domain-level spec-

ifications in Figure A.2. This design includes a malachite green aptamer sequence on the

template, so that the aptamer is transcribed at the 3′ end of the RNA output. The mala-

chite green apatmer fluoresces when bound to malachite green in solution, and so reports

on [r] directly. Unfortunately, the malachite green reacts with the mineral oil that prevents

evaporation from wells.
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Figure A.1: Domain-level specification for open- and closed-loop genelet systems that drive
the DNA nanomotor described in Chapter 3. Domains are indicated by black boxes, with
domain names above and/or below as appropriate. The symbol ∗ indicates complementarity
between domains with the same name.
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Figure A.2: Domain-level specification for open- and closed-loop genelet systems that use a
malachite green aptamer to report the concentration of r. Domains are indicated by black
boxes, with domain names above and/or below as appropriate. The symbol ∗ indicates
complementarity between domains with the same name. The domains with pre-defined
sequences are the promoter region, pro1, pro2, and pro3; the probe, which also defines the
activator toehold region, toehold/probe; and the malachite green aptamer region mg. The
domains with undefined sequences are the genelet regulatory region regulatory; the inert
region spacer, which ensures abortive transcripts are inert; and the hairpin stem regions
hairpin and hairpin∗.
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Appendix B

SBML MODEL

1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <sbml xmlns="http://www.sbml.org/sbml/level2/version3" level

="2" version ="3">

3 <model id="net1">

4 <listOfUnitDefinitions >

5 <unitDefinition id="substance">

6 <listOfUnits >

7 <unit kind="mole" scale="-9"/>

8 </listOfUnits >

9 </unitDefinition >

10 <unitDefinition id="time">

11 <listOfUnits >

12 <unit kind="second" multiplier="3600"/>

13 </listOfUnits >

14 </unitDefinition >

15 <unitDefinition id="nM" name="nM">

16 <listOfUnits >

17 <unit kind="mole" scale="-9"/>

18 <unit kind="litre" exponent ="-1"/>

19 </listOfUnits >

20 </unitDefinition >

21 <unitDefinition id=" per_nM_per_h" name="/nM/s">

22 <listOfUnits >

23 <unit kind="litre"/>
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24 <unit kind="mole" scale="-9" exponent ="-1"/>

25 <unit kind=" second" multiplier="3600" exponent

="-1"/>

26 </listOfUnits >

27 </unitDefinition >

28 <unitDefinition id="per_nM" name="/nM">

29 <listOfUnits >

30 <unit kind=" litre"/>

31 <unit kind="mole" scale="-9" exponent ="-1"/>

32 </listOfUnits >

33 </unitDefinition >

34 <unitDefinition id="per_h" name="/h">

35 <listOfUnits >

36 <unit kind=" second" multiplier="3600" exponent

="-1"/>

37 </listOfUnits >

38 </unitDefinition >

39 </listOfUnitDefinitions >

40 <listOfCompartments >

41 <compartment id="Well" name="Well" size="1"

spatialDimensions="3"/>

42 </listOfCompartments >

43 <listOfSpecies >

44 <species id="g" compartment="Well" initialConcentration

="0"/>

45 <species id="s" compartment="Well" initialConcentration

="0"/>

46 <species id="a" compartment="Well" initialConcentration

="0"/>

47 <species id="gs" compartment="Well" initialConcentration

="0"/>
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48 <species id="ga" compartment="Well" initialConcentration

="0"/>

49 <species id="r" compartment="Well" initialConcentration

="0"/>

50 <species id="ar" compartment="Well" initialConcentration

="0"/>

51 <species id="p" compartment="Well" initialConcentration

="100"/>

52 <species id="pr" compartment="Well" initialConcentration

="0"/>

53 <species id="y" compartment="Well"/>

54 </listOfSpecies >

55 <listOfParameters >

56 <parameter id="kr1" value ="0.0121644" units=" per_h"/>

57 <parameter id="kr2" value ="8.00839" units="per_h"/>

58 <parameter id="kd1" value ="82.2627" units="per_h"/>

59 <parameter id="kd2" value ="12.6569" units="per_h"/>

60 <parameter id="ka" value ="0.0000231405" units="

per_nM_per_h"/>

61 <parameter id="kf" value ="0.000163101" units="

per_nM_per_h"/>

62 <parameter id="ko" value ="0.00159884" units="

per_nM_per_h"/>

63 <parameter id="kp" value ="27274.7" units=" per_nM_per_h

"/>

64 <parameter id="ky1" value ="44.8071" units="per_nM"/>

65 <parameter id="ky2" value="0.0" units="per_nM"/>

66 </listOfParameters >

67 <listOfRules >

68 <assignmentRule variable ="y">

69 <math xmlns="http://www.w3.org /1998/ Math/MathML">

70 <apply >
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71 <plus/>

72 <apply >

73 <times/>

74 <ci> ky1 </ci>

75 <ci> pr </ci>

76 <ci> Well </ci>

77 </apply >

78 <apply >

79 <times/>

80 <ci> ky2 </ci>

81 <apply >

82 <plus/>

83 <ci> pr </ci>

84 <ci> p </ci>

85 </apply >

86 <ci> Well </ci>

87 </apply >

88 </apply >

89 </math >

90 </assignmentRule >

91 </listOfRules >

92 <listOfReactions >

93 <reaction id="R1">

94 <listOfProducts >

95 <speciesReference species ="r"/>

96 </listOfProducts >

97 <listOfModifiers >

98 <modifierSpeciesReference species ="g"/>

99 </listOfModifiers >

100 <kineticLaw >
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101 <math xmlns="http://www.w3.org /1998/ Math/MathML">

102 <apply >

103 <times/>

104 <ci> Well </ci>

105 <ci> kr2 </ci>

106 <ci> g </ci>

107 </apply >

108 </math >

109 </kineticLaw >

110 </reaction >

111 <reaction id="R2">

112 <listOfProducts >

113 <speciesReference species ="r"/>

114 </listOfProducts >

115 <listOfModifiers >

116 <modifierSpeciesReference species ="gs"/>

117 </listOfModifiers >

118 <kineticLaw >

119 <math xmlns="http://www.w3.org /1998/ Math/MathML">

120 <apply >

121 <times/>

122 <ci> Well </ci>

123 <ci> kr1 </ci>

124 <ci> gs </ci>

125 </apply >

126 </math >

127 </kineticLaw >

128 </reaction >

129 <reaction id="R3">

130 <listOfProducts >
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131 <speciesReference species ="r"/>

132 </listOfProducts >

133 <listOfModifiers >

134 <modifierSpeciesReference species ="ga"/>

135 </listOfModifiers >

136 <kineticLaw >

137 <math xmlns="http://www.w3.org /1998/ Math/MathML">

138 <apply >

139 <times/>

140 <ci> Well </ci>

141 <ci> kr1 </ci>

142 <ci> ga </ci>

143 </apply >

144 </math >

145 </kineticLaw >

146 </reaction >

147 <reaction id="R4">

148 <listOfReactants >

149 <speciesReference species ="p"/>

150 <speciesReference species ="r"/>

151 </listOfReactants >

152 <listOfProducts >

153 <speciesReference species ="pr"/>

154 </listOfProducts >

155 <kineticLaw >

156 <math xmlns="http://www.w3.org /1998/ Math/MathML">

157 <apply >

158 <times/>

159 <ci> Well </ci>

160 <ci> kp </ci>
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161 <ci> p </ci>

162 <ci> r </ci>

163 </apply >

164 </math >

165 </kineticLaw >

166 </reaction >

167 <reaction id="R5">

168 <listOfReactants >

169 <speciesReference species ="pr"/>

170 </listOfReactants >

171 <listOfProducts >

172 <speciesReference species ="p"/>

173 </listOfProducts >

174 <kineticLaw >

175 <math xmlns="http://www.w3.org /1998/ Math/MathML">

176 <apply >

177 <times/>

178 <ci> Well </ci>

179 <ci> kd1 </ci>

180 <ci> pr </ci>

181 </apply >

182 </math >

183 </kineticLaw >

184 </reaction >

185 <reaction id="R6">

186 <listOfReactants >

187 <speciesReference species ="ga"/>

188 <speciesReference species ="r"/>

189 </listOfReactants >

190 <listOfProducts >
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191 <speciesReference species ="ar"/>

192 <speciesReference species ="g"/>

193 </listOfProducts >

194 <kineticLaw >

195 <math xmlns="http://www.w3.org /1998/ Math/MathML">

196 <apply >

197 <times/>

198 <ci> Well </ci>

199 <ci> kf </ci>

200 <ci> ga </ci>

201 <ci> r </ci>

202 </apply >

203 </math >

204 </kineticLaw >

205 </reaction >

206 <reaction id="R7">

207 <listOfReactants >

208 <speciesReference species ="a"/>

209 <speciesReference species ="r"/>

210 </listOfReactants >

211 <listOfProducts >

212 <speciesReference species ="ar"/>

213 </listOfProducts >

214 <kineticLaw >

215 <math xmlns="http://www.w3.org /1998/ Math/MathML">

216 <apply >

217 <times/>

218 <ci> Well </ci>

219 <ci> ka </ci>

220 <ci> a </ci>
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221 <ci> r </ci>

222 </apply >

223 </math >

224 </kineticLaw >

225 </reaction >

226 <reaction id="R8">

227 <listOfReactants >

228 <speciesReference species ="g"/>

229 <speciesReference species ="a"/>

230 </listOfReactants >

231 <listOfProducts >

232 <speciesReference species ="ga"/>

233 </listOfProducts >

234 <kineticLaw >

235 <math xmlns="http://www.w3.org /1998/ Math/MathML">

236 <apply >

237 <times/>

238 <ci> Well </ci>

239 <ci> ko </ci>

240 <ci> g </ci>

241 <ci> a </ci>

242 </apply >

243 </math >

244 </kineticLaw >

245 </reaction >

246 <reaction id="R9">

247 <listOfReactants >

248 <speciesReference species ="ar"/>

249 </listOfReactants >

250 <listOfProducts >
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251 <speciesReference species ="a"/>

252 </listOfProducts >

253 <kineticLaw >

254 <math xmlns="http://www.w3.org /1998/ Math/MathML">

255 <apply >

256 <times/>

257 <ci> Well </ci>

258 <ci> kd2 </ci>

259 <ci> ar </ci>

260 </apply >

261 </math >

262 </kineticLaw >

263 </reaction >

264 <reaction id="R10">

265 <listOfReactants >

266 <speciesReference species ="g"/>

267 <speciesReference species ="s"/>

268 </listOfReactants >

269 <listOfProducts >

270 <speciesReference species ="gs"/>

271 </listOfProducts >

272 <kineticLaw >

273 <math xmlns="http://www.w3.org /1998/ Math/MathML">

274 <apply >

275 <times/>

276 <ci> Well </ci>

277 <ci> ko </ci>

278 <ci> g </ci>

279 <ci> s </ci>

280 </apply >
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281 </math >

282 </kineticLaw >

283 </reaction >

284 </listOfReactions >

285 <listOfEvents >

286 <event >

287 <trigger >

288 <math xmlns="http://www.w3.org /1998/ Math/MathML">

289 <apply >

290 <gt/>

291 <csymbol encoding ="text" definitionURL="http://

www.sbml.org/sbml/symbols/time"> time

292 </csymbol >

293 <cn> 1.2 </cn>

294 </apply >

295 </math >

296 </trigger >

297 <listOfEventAssignments >

298 <eventAssignment variable ="p">

299 <math xmlns="http://www.w3.org/1998/ Math/MathML">

300 <apply >

301 <plus/>

302 <ci> p </ci>

303 <cn> 100 </cn>

304 </apply >

305 </math >

306 </eventAssignment >

307 </listOfEventAssignments >

308 </event >

309 <event >
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310 <trigger >

311 <math xmlns="http://www.w3.org /1998/ Math/MathML">

312 <apply >

313 <gt/>

314 <csymbol encoding ="text" definitionURL="http://

www.sbml.org/sbml/symbols/time"> time

315 </csymbol >

316 <cn> 2.38333 </cn>

317 </apply >

318 </math >

319 </trigger >

320 <listOfEventAssignments >

321 <eventAssignment variable ="p">

322 <math xmlns="http://www.w3.org /1998/ Math/MathML">

323 <apply >

324 <plus/>

325 <ci> p </ci>

326 <cn> 100 </cn>

327 </apply >

328 </math >

329 </eventAssignment >

330 </listOfEventAssignments >

331 </event >

332 <event >

333 <trigger >

334 <math xmlns="http://www.w3.org /1998/ Math/MathML">

335 <apply >

336 <gt/>

337 <csymbol encoding ="text" definitionURL="http://

www.sbml.org/sbml/symbols/time"> time
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338 </csymbol >

339 <cn> 3.56667 </cn>

340 </apply >

341 </math >

342 </trigger >

343 <listOfEventAssignments >

344 <eventAssignment variable ="p">

345 <math xmlns="http://www.w3.org/1998/ Math/MathML">

346 <apply >

347 <plus/>

348 <ci> p </ci>

349 <cn> 100 </cn>

350 </apply >

351 </math >

352 </eventAssignment >

353 </listOfEventAssignments >

354 </event >

355 </listOfEvents >

356 </model >

357 </sbml >
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Appendix C

PROTOCOLS

C.1 Experiments

System trajectories, in which the genelet systems responded to two exogenous additions

of [p]tot under various initial conditions, were observed via fluorescence activity of p in the

presence of g; either s or a; both RP and RH ; and the necessary in vitro transcription buffer

conditions. We recently generated three sets of data by varying stot and atot under two sets

of conditions. The general protocol used for collecting this data follows.

C.1.1 Data collection protocol

1. Combine in a 1.5-mL reaction tube (label “buffer mix”), at a scale proportional to the

number of experiments (where the total volume of experiments is 100 µL, see Table 6.1

for final reagent concentrations in each dataset), in order:

• molecular grade H2O,

• 10x Transcription Buffer (NEB),

• 80 mM rNTPs (NEB),

• 100 mM MgCl2 and

• 25 µM g (previously annealed in H2O and 10x Transcription Buffer).

2. Vortex “buffer mix” for 1 minute.

3. Distribute in appropriate volume to wells in a Corning 3880 microplate.

4. To each well containing experiments:

(a) Add 1 µL of either s or a from stock (100× the desired stot or atot).
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(b) Mix mechanically using the tip of the pipette, with rapidity.

(c) Coat with 50 µL of mineral oil.

5. Cover plate with a plastic lid and place in a Synergy HT plate reader (BioTek).

6. Set plate reader to collect raw fluorescence data

• from bottom of each well,

• once a minute,

• with sensitivity 56,

• using 575/15 excitation and 620/15 emission wavelength/bandpass filters,

• at 37◦C.

7. Program plate reader to

(a) collect data for 30 minutes,

(b) eject the plate for additions,

(c) collect data for 8 hours,

(d) eject the plate for additions again, and

(e) collect data for another 24 hours.

8. Start plate reader program at 7(a). Meanwhile, combine in a 0.5-mL reaction tube

(label “enzyme mix”) at a scale proportional to the number of experiments, in order:

• molecular grade H2O,

• 10 µM p,

• 2 U/µL TIPP (thermostable inorganic pyrophosphatase, NEB)

• 10 U/µL RH (EpiBio)

• 2 U/µL RP (EpiBio)
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9. Vortex “enzyme mix” for 1 minute.

10. At 7(b), remove plate from plate reader tray and incubate on a heat block at 37◦C.

11. To each well containing experiments:

(a) Add appropriate volume of ”enzyme mix”.

(b) Mix mechanically using the tip of the pipette, with rapidity.

12. Centrifuge plate at 1000 × g for 1 second, then replace plate in plate reader and start

7(c).

13. At 7(d), remove plate from plate reader tray and incubate on a heat block at 37◦C.

14. To each well containing experiments:

(a) Add 1 µL of p from stock.

(b) Mix mechanically using the tip of the pipette, with rapidity.

15. Centrifuge plate at 1000 × g for 1 second, then replace in plate reader and start 7(e).

C.1.2 Data calibration

System trajectory data was calibrated using a function that relates raw fluorescence values

to concentrations of open probe, i.e.,

fluorescence = a0 + a1[closed probe] + a2[open probe],

or equivalently,

[open probe] =
fluorescence− a0 − a1 p

tot

a2 − a1

since ptot = [closed probe] + [open probe].

The parameters of this function were estimated empirically in experiments in which

probe was titrated into standard buffer conditions with and without the probe’s DNA

complement, p∗. The protocol for these experiments was as follows.
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1. Combine in a 1.5-mL reaction tube (label “buffer mix”), in order:

• 340.3 µL of molecular grade H2O,

• 36.9 µL of 10x Transcription Buffer (NEB),

• 20.5 µL of 80 mM rNTPs (NEB),

• 8.2 µL of 100 mM MgCl2.

(a) Vortex “buffer mix” for 1 minute.

(b) Distribute 99 µL from “buffer mix” to each of four (4) wells in a Corning 3880

microplate.

(c) Coat with 50 µL of mineral oil.

2. Combine in a 1.5-mL reaction tube (label “complement mix”), in order:

• 336.2 µL of molecular grade H2O,

• 36.9 µL of 10x Transcription Buffer (NEB),

• 20.5 µL of 80 mM rNTPs (NEB),

• 8.2 µL of 100 mM MgCl2,

• 4.1 µL of 100 µM p∗.

(a) Vortex “complement mix” for 1 minute.

(b) Distribute 99 µL from “complement mix” to each of four (4) wells in a Corning

3880 microplate.

(c) Coat with 50 µL of mineral oil.

3. Cover plate with a plastic lid and place in a Synergy HT plate reader (BioTek).

4. Set plate reader to collect raw fluorescence data

• from bottom of each well,
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Table C.1: Calibration test reagents

iteration 1 2 3 4 5 6 7 8 9

stock (µM) 0.5 0.5 0.5 0.5 0.5 0.5 10 10 10

volume (µL) 1 1 1 1 1 1 0.25 0.5 1

final (nM) 5 9.95 14.85 19.71 24.51 29.28 53.03 100.311 193.99

• once a minute,

• with sensitivity 56,

• using 575/15 excitation and 620/15 emission wavelength/bandpass filters,

• at 37◦C.

5. Program plate reader to

(a) collect data for 10 minutes,

(b) eject the plate for additions,

(c) repeat (a) and (b).

6. Start plate reader program at 7(a).

7. At each iteration of 7(b), remove plate from plate reader tray and incubate on a heat

block at 37◦C.

(a) To each well containing experiments add p according to this table.

(b) Mix mechanically using the tip of the pipette, with rapidity.

8. Centrifuge plate at 1000 × g for 1 second, then replace plate in plate reader and start

7(c).
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