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Coupled remote sensing and in situ measurements of strongly-forced, fetch-limited waves are

applied to assess the role of breaking in an evolving wavefield. Wave growth follows accepted

fetch-limited relations, and estimated terms in the Radiative Transfer Equation are in quasi-

equilibrium. Remote sensing measurements of the Phillips breaking distribution, Λ(c), using

stabilized shipboard video recordings are unimodal and qualitatively consistent with several

recent studies. In situ measurements of turbulent energy dissipation from wave-following

“SWIFT” drifters and a tethered Dopbeam system are consistent with the wave evolution

and wind input (as estimated using the Radiative Transfer Equation). The breaking strength

parameter, b, is calculated by comparisons of the fifth moment of Λ(c) with the measured

dissipation rates and varies over nearly three orders of magnitude. Breaking strength is

shown to negatively correlate with average wave saturation and steepness, in contrast to

recent laboratory results by Drazen et al. (2008). An explanation for this difference is

proposed based on the energy ratio between the peak waves and the equilibrium range.
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in February, 2011, prior to my arrival at the University of Washington. As such, I have

relied heavily on their notes and memory of the experiment to guide my examination of the
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son’s SWIFTs (see Chapter 2). I have also used wind results processed by Thomson from

the shipboard sonic anemometer.
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data and the synthesis of video results with turbulence and wind results. However, this video
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practice of differencing frames to isolate breaking waves (see Chapter 2) was introduced in

Gemmrich et al. (2008), and many results from that paper informed the choices outlined

here. The theory of the Fourier method was previously described in Thomson and Jessup

(2009). Results from experiments in Lake Washington and Puget Sound using this method

were reported in Thomson et al. (2009).

The body of this thesis has been submitted as an article to the Journal of Physical

Oceanography. For all the reasons mentioned above, these individuals will be included as

co-authors on this paper. They, along with my final committee member, Andy Jessup, have

been extremely valuable resources in preparing and editing this thesis. However, except

where noted above, the work outlined hereafter is my own.
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Chapter 1

INTRODUCTION

Surface waves are one of the most recognizable features of ocean physics. Their impor-

tance is both intellectual and practical. In particular, breaking surface waves are crucial

for many aspects of air-sea interaction, such as the generation of ocean currents, transfer of

gases, and turbulent mixing in the upper ocean. Waves are also a vital concern for mariners,

as steep and breaking seas pose many risks to ocean vessels (Melville, 1996). Yet the history

of wave research is relatively short (Young, 1999). The fundamentals of linear wave me-

chanics were determined by Airy, Stokes, and others in the 19th century, and the first large

observational studies and resulting empirical theories of wave development were made by

Sverdrup, Munk, and Bretschneider around World War II. However, modern understanding

of surface waves began with the landmark studies by Phillips (1957) and Miles (1957) on

the generation of wind waves and the theory of nonlinear interactions of waves developed

by Hasselman (1962). From these early studies, a theoretical framework for surface wave

evolution has developed.

1.1 The Radiative Transfer Equation

Surface waves are often represented by a spectrum, E(f), showing the energy contained

in different wave frequencies. Wave energy is proportional to the square of wave height,

and this energy is moves through the wave field at the group velocity, cg = ∂ω/∂k (Kundu

and Cohen, 2008). In deep water, there are three major processes which cause the wave

spectrum to change: wind input, nonlinear interactions, and energy dissipation from wave

breaking (Babanin, 2011). Thus, the evolution of the spectrum is often represented in terms

of the Radiative Transfer Equation,

∂E(f)

∂t
+ cg · ∇E(f) = Swind(f) + Snl(f)− Sbrk(f) (1.1)
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where Swind(f), Snl(f), and Sbrk(f) are the source terms corresponding to wind, non-

linear interactions, and breaking. Alternatively, a bulk form of the Radiative Transfer

Equation can be written by integrating the terms over all frequencies,

∂E

∂t
+ cg · ∇E = Swind − Sbrk (1.2)

Here, the nonlinear term has been dropped as it does not change the total energy in the

system, only the distribution of the energy within the spectrum. Although there is un-

certainty in the form of both Swind and Snl, the physics of these processes is relatively

well-understood, especially in comparison with the highly nonlinear process of breaking

(Babanin, 2011). However, recent advancements in experimental, observational, and com-

putational study of wave breaking show promise for the quantification of wave dissipation.

1.2 Fetch-Limited Waves

Fetch-limited conditions occur when consistent winds blow perpendicular to a coastline.

After enough time has passed, the wave field becomes “steady,” and only varies with the

distance from the shoreline (Young, 1999). This distance is called fetch, x. Sverdrup and

Munk (1947) and Kitaigorodskii (1962) examined this type of system, and determined that

important variables include the variance of the water surface height, σ2, the 10-meter wind

speed, U10, gravitational acceleration, g, and the peak frequency, fp. Dimensional analysis

shows that these variables can form three non-dimensional groups:

x̂ =
gX

U2
10

, ê =
g2σ2

U4
10

, f̂ =
U10fp
g

(1.3)

where x̂, ê, and f̂ are non-dimensional fetch, energy, and frequency, respectively. Numerous

studies (CERC, 1977; Donelan et al., 1985; Dobson et al., 1989; Donelan et al., 1992) have

sought to empirically determine universal fetch relations from these groups of the form

ê = f1(x̂), f̂ = f2(x̂) (1.4)

At large fetches, many of these relations approach asymptotic limits where growth stops

and the waves become “fully-developed.” Several of these functions and limits have been
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consolidated by Young (1999) into two equations with a range of coefficients,

ê = max

 (7.5± 2.0)×10−7 x̂ 0.8

(3.6± 0.9)×10−3
(1.5)

and

f̂ = min

 (2.0± 0.3)x̂−0.25

(0.13± 0.02)
(1.6)

These empirical growth laws do not explicitly model the wind input or breaking dissipa-

tion terms described in the previous section, so they do not aid in physically understanding

the development of fetch-limited waves. However, they do provide a baseline comparison

for fetch-limited measurements like those presented in Chapter 3.

1.3 Wave Breaking

Wave breaking is the process by which steep waves become unstable and collapse, in doing so

releasing some of their energy into the water column. The intermittent and highly nonlinear

nature of breaking makes theoretical analysis of the process difficult (Banner et al., 2000).

Even determining when a wave will break is challenging. In solving for nonlinear, finite-

amplitude surface waves, Stokes showed that the maximum amplitude of such waves was

amax = 0.07λ, where λ is the wavelength (Kundu and Cohen, 2008). This can be rearranged

in terms of wave steepness, ak, to a limiting steepness value of akmax = 0.443. Another

suggested criterion is that at breaking onset, the horizontal particle velocities at the wave

crest must exceed the phase velocity (Stansell and MacFarlane, 2002). However, both these

criteria and many others have so far been incomplete in determining universal breaking

onset (Banner and Pierson, 2007).

Further complicating matters, identifying breaking waves can also be problematic. The

most obvious signature of a breaking wave is a “whitecap,” and the term “whitecapping” is

often used interchangeably with the term wave breaking (Babanin, 2011). Whitecaps can be

measured visually (as in Chapter 2), accoustically (Ding and Farmer, 1994), or with radar

(Phillips et al., 2001). However, as first described by Banner and Phillips (1974), small

“microbreaking” waves do not break with enough intensity to produce whitecaps, so these
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events are often not captured with the above techniques. Jessup et al. (1997) showed that

microbreaking is detectable in infrared images due to the disruption of the “cool skin” layer

that exists at the water surface. Infrared measurement of breaking remains a promising,

though challenging, means to measuring all breaking waves, rather than just whitecaps.

Still, some aspects of breaking have become clearer in recent years. Waves are known

to break in deep water because of an instability mechanism called “modulational instabil-

ity,” similar to the Benjamin-Feir instability developed for nearly-linear, two-dimensional

monochromatic wave trains (Babanin, 2011). The strength of this instability is related to

the steepness and the spectral bandwidth of the waves in a group. It results in local energy

convergence, and steepening, of the energy maximum of the wave group, which can lead to

breaking (Banner and Pierson, 2007).

A fundamental attribute of breaking waves is increased steepness. Two experiments

in particular make this point clear. In Banner et al. (2000), the breaking probability of

dominant waves (defined as within 30% of the peak frequency) was found to correlate well

with the spectral peak steepness (averaged within the same frequency range). However,

this result was shown to be sensitive to the choice of spectral bandwidth around the peak,

and could not easily be extended to the rest of the spectrum. Thus Banner et al. (2002)

used the saturation spectrum, B(k) = k4Φ(k), where Φ(k) is the wavenumber spectrum,

to calculate spectral steepness. The saturation spectrum is a measure of wave steepness, as

can be seen by its relationship with the mean-square slope:

mss ≡
∫∫

k2Φ(k, θ) k dk dθ =

∫∫
B(k, θ) d(lnk) dθ (1.7)

More specifically, Banner et al. (2002) found a correlation between breaking probability and

normalized, azimuthal-integrated saturation,

σ̃ =

∫ 2π

0

B(k, θ)

D(k)
dθ (1.8)

where D(k) is a local angular spreading width (often found empirically). σ̃ can be calculated

as function of frequency from the deep-water linear dispersion relation, f = (2π)−1
√
gk, as

σ̃(f) =
(2π)4f5E(f)

2g2D(f)
(1.9)
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Banner et al. (2002) noted a consistent linear correlation of breaking probability with nor-

malized saturation, with a common threshold of σ̃ ∼ 4.5× 10−3, for waves with frequencies

ranging from 1 to 2.5 times the peak.

1.4 Laboratory Studies of Breaking Dissipation

The link between breaking-induced dissipation and breaking kinematics was first investi-

gated in several laboratory experiments in the 1980s and early 1990s. Duncan (1981, 1983)

studied quasi-steady breakers generated by towing a submerged hydrofoil through a long

channel. These experiments indicated that the drag force, Fb, resulting from a quasi-steady

breaking wave in the wake of the hydrofoil is a function of the wave phase speed, c, and the

angle of the water surface in the breaking region, θ,

Fb =
0.009ρwc

4

g sin θ
(1.10)

where g is gravitational acceleration and Fb is the force per crest length. This drag force,

with an additional characteristic speed, can be used to calculate the energy dissipated from

the breaker. Assuming this characteristic speed is proportional to c, a scaling of the rate of

energy loss to breaking per unit crest length takes the form

εl ∝
ρwc

5

g
(1.11)

A series of laboratory experiments in the following years (Melville and Rapp, 1985;

Rapp and Melville, 1990; Lamarre and Melville, 1991; Loewen and Melville, 1991) used

dispersive focusing to research unsteady breaking waves more akin to natural whitecaps than

Duncan’s quasi-steady breakers. Melville and Rapp (1985) provided the first measurements

of momentum loss from unsteady breaking. Building from this study, Rapp and Melville

(1990) is notable for its comprehensive measurements of laboratory breaking waves. Rapp

and Melville (1990) used both wire wave gauges and laser Doppler velocimetry to measure

the loss of momentum and energy, surface geometry, and the underwater turbulent signature

caused by breaking waves. Lamarre and Melville (1991) studied the importance of bubble

generation in breaking waves, and concluded that work done by the breaker to submerge

the bubble plume could make up as much as 50% of the energy dissipation. Loewen and
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Melville (1991) related breaking dissipation to microwave backscatter and acoustic energy.

Melville (1994) used the results of Loewen and Melville (1991) to measure the dissipation

rate and found that while unsteady breakers produced notably less dissipation per crest

length than Duncan’s quasi-steady breaking, they still nonetheless followed the scaling of

Equation 1.11. However, Melville (1994) noted an additional trend of increasing εl with

larger wave slopes.

While these later laboratory experiments better simulate the unsteady nature of true

ocean whitecaps, they still lack some of the physics. Most importantly, they are driven to

break by steepening caused by the linear superposition of waves, rather than the nonlinear

modulational instability of wave groups. In addition, they lack the directionality and short-

crestedness of ocean waves (Babanin, 2011).

1.5 Dissipation in the Equilibrium Range

The results of Phillips (1985) are integral to the work described throughout this thesis. In

this study, Phillips revisited his own earlier (Phillips, 1958) prediction of an upper-limit

spectral asymptote of the form

E(f) ∝ g2f−5 (1.12)

This limit was based on the premise of constant saturation (note the similarity to Equation

1.9), such that any excursions of spectral density would immediately be dissipated by break-

ing. The high frequencies where this spectrum appeared to apply he called the “equilibrium

range.” However, Toba (1973) showed that his wind-tunnel data actually better followed

the form

E(f) ∝ u∗gf−4 (1.13)

where u∗ is the wind friction velocity. This new form was supported by the field observations

of Kawai et al. (1977), Donelan et al. (1985), among others. Kitaigorodskii (1983) used

a Kolmogorov-type argument to support Toba’s relation. In his hypothesis, wind input,

spectral flux divergence, and dissipation are all negligible in the equilibrium range, and

energy cascades from its input at large, energy-containing waves to dissipation at very high



8

frequencies. Phillips (1985) used a different argument to obtain Toba’s spectral form. In

Phillips’s analysis, he assumed a balance between the input, dissipation, and nonlinear

source terms, where the terms are all important (i.e. non-trivial) and in local equilibrium.

Thus he argued that the terms must be proportional, and with estimates of the wind input

function and nonlinear flux divergence, predicted the form of the dissipation function as

ε(k, θ) dk dθ = 2γβ3(cos θ)3pu3∗k
−1 dk dθ (1.14)

Or, with the dispersion relation,

ε(c, θ) dc dθ = 4γβ3(cos θ)3pu3∗c
−1 dc dθ (1.15)

where γ, β, and p are empirical coefficients.

Phillips (1985) used this result to make a prediction of the wave breaking that would be

needed to fit this dissipation function. He introduced a statistical description of breaking,

Λ(c, θ), which is defined as the distribution of breaking crest length per area as a function

of speed, c, and direction, θ. Thus the total length of breaking crests per area is

Ltotal =

∫ ∞
0

∫ 2π

0
Λ(c, θ)dθdc (1.16)

The omnidirectional distribution, Λ(c), is often used in place of the full directional distribu-

tion. It can be found by integrating over all directions in broad-banded waves or by using

the speed in the dominant direction in sufficiently narrow-banded wavefields. The breaking

rate, or breaker passage rate, is the frequency that an actively breaking crest will pass a

fixed point in space. One obtains the breaking rate from the first moment of Λ(c),

R =

∫
cΛ(c)dc (1.17)

Wave dynamics can be related to the Λ(c) distribution based on the scaling of energy

dissipation per crest length of Equation 1.11. Since Λ(c) gives the total normalized breaking

crest length at speed c, Λ(c) is related to the energy dissipation due to wave-breaking, ε(c),

through

ε(c) dc =
bρw
g
c5Λ(c) dc (1.18)
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where b is a “breaking strength” proportionality factor. From Equations 1.15 and 1.18,

Phillips (1985) predicted Λ(c) to be of the form

Λ(c) = (4γβ3)I(3p)b−1u3∗gc
−6, (1.19)

where

I(3p) =

∫ π/2

−π/2
(cos θ)3pdθ (1.20)

1.6 Observations of Λ(c)

Phillips et al. (2001) produced the first field observations of Λ(c), using backscatter and

power from radar data. They found energy dissipation, from c5Λ(c), to be broadly dis-

tributed among speeds above about 3 m s−1. They hypothesized that the drop-off at low

speeds, corresponding to a unimodal Λ(c) distribution, was due to missing small, weak

events that did not produce foam. They also showed no evidence of a “Kolmogorov cas-

cade” in wave breaking, asserted by Kitaigorodskii (1983) and others. Melville and Matusov

(2002) used digital video taken from an airplane to calculate Λ(c). They presented a mono-

tonically decreasing distribution of the form Λ(c) = (3.3 × 10−4)(U10/10)3e−0.64c (with SI

units). However, they had limited resolution and used the assumption that the rear of

breaking crests was stationary.

In recent years, there has been emerging consensus that Λ(c) actually shows a peaked

distribution, at least for whitecaps. Plant (2012) suggested as a mechanism for this peaked

distribution the large slopes produced by an interference pattern of dominant wind waves,

moving at speeds slightly less than the group velocity. By simulating this interference pat-

tern from a representative wave spectrum, he showed that he could accurately predict the

peak speed of breaking, as measured by a number of methods, including Λ(c). Gemmrich

et al. (2008) calculated a peaked distribution using video taken from the Research Platform

FLIP. They fit an ellipse to the forward edge of each breaking crest, and used the major axis

for the crest length and translation of the centroid for breaking speed. This study is notable

for the high spatial resolution of their video (pixel size of 1.9−3.2×10−2 m), which resolved

even the smallest scales of whitecaps. In addition, they observed a correlation between the
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breaking rate and the mean normalized saturation, σb. Kleiss and Melville (2010) calculated

Λ(c) distributions in strongly-forced, fetch-limited seas during the Gulf of Tehuantepec Ex-

periment (GOTEX). They used a temporally and spatially varying definition of the breaking

crest speed, which they called the “elemental method.” They estimate the coefficients in

Equation 1.19, and explicitly show that their unimodal distributions do not follow Phillips’s

predicted form. Rather, their Λ(c) are shown to closely follow a Rayleigh distribution,

though no physical reason for this is apparent. Kleiss and Melville (2011) further detailed

this method and demonstrated that the differing results from Melville and Matusov (2002)

and Gemmrich et al. (2008) could be reproduced in their data by imitating each study’s

video processing method.

Thomson and Jessup (2009) introduced a Fourier-based method for processing video

data into Λ(c) distributions, which was applied in Thomson et al. (2009) for data taken in

Lake Washington and Puget Sound. The Fourier-based method has the advantage of in-

creased efficiency and robust statistics compared to conventional time-domain crest-tracking

methods. They used the subtraction of subsequent frames, as in Gemmrich et al. (2008), to

isolate breaking crests. They used the method of Chickadel et al. (2003) to transform the

resulting frequency-wavenumber spectrum to a speed spectrum. In Thomson and Jessup

(2009), the Fourier method was validated alongside an algorithm similar to the one used

in Gemmrich et al. (2008). This Fourier method is used, with some modifications, in this

thesis. It is described in more detail in Chapter 2.

Two additional observations of breaking distributions should be noted. Although they

did not calculate Λ(c), Ding and Farmer (1994) used passive acoustics with an array of

hydrophones to track and measure the phase speed of breaking waves. They calculated

a breaking probability density function that closely resembles later observed Λ(c) curves.

The breaking probability is broadband in speed, and centered around half the dominant

phase speed. Finally, Jessup and Phadnis (2005) were the first to include microbreaking

in calculating Λ(c). They used a particle image velocimetry (PIV) algorithm on infrared

imagery of wave breaking in a laboratory wind-wave tank. Again, for a range of wind

speeds and tracking methods, the Λ(c) distributions are centered roughly around half the

peak phase speed.
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1.7 Total Dissipation from Λ(c)

Phillips (1985) derived the relation of Equation 1.19 from his analysis of the spectral source

terms in the equilibrium range, so it is only expected to be valid within this range. The

total (non-spectral) energy dissipation from breaking, however, can be calculated from Λ(c)

independent of this theoretical prediction. From 1.18 the total rate of energy lost is

Ė =

∫
ε(c) dc =

bρw
g

∫
c5Λ(c) dc (1.21)

Equation 1.21 has shown promise for remote sensing quantification of energy dissipation.

The key to the remote calculation of dissipation is knowledge of the form of b. Estimates of

b have varied widely in the literature, however. They have been made in studies of quasi-

steady breaking, laboratory breaking using dispersive focusing techniques, and remote field

studies. Drazen et al. (2008) provide a summary of b measurements prior to 2008. Values

of b have spanned four orders of magnitude, from 3.2× 10−5 in Gemmrich et al. (2008) to

7.5× 10−2 in Duncan (1983). Confounding the issue is uncertainty over the nature of b. In

introducing the concept, Phillips (1985) treated b as a constant, but a number of laboratory

experiments have noted dependencies of b on the wave slope (Duncan, 1981; Melville, 1994)

or growth rate (Banner and Pierson, 2007).

Drazen et al. (2008) used an inertial model of a plunging breaking wave to produce a

scaling of b of the form,

b ∝ (hk)5/2 (1.22)

Laboratory data from breakers generated using linear superposition support this scaling.

Based on these results, Romero et al. (2012) proposed two spectral models of b for breaking

in the Gulf of Tehuantepec Experiment (GOTEX),

b1(k) = A1(B(k)1/2 −BT (k)1/2)5/2 (1.23)

and

b2(k) = A2(B̃(k)1/2 − B̃T (k)1/2)5/2 (1.24)
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where B(k) is the spectral saturation in wavenumber, B̃(k) is the normalized saturation,

and A1, A2, BT (k), and B̃T (k) are coefficients fit to their data. These models are related to

the prediction of Equation 1.22 using the fact that B(k) is related to the mean-square-slope

(mss) through Equation 1.7. Calculation of b(k) by Romero et al. (2012) showed moderate

agreement with this model, but this agreement is sensitive to their wind input function and

the measurement of the saturation spectrum. They improved their model by normalizing

their B(k), B̃(k), and b(k) by the wavenumber at the peak of these functions. They were

unable to reconcile the lack of visible breaking at low speeds, yielding unreasonably high b

values for high wavenumbers.

In this thesis, the assumption of a “bulk” breaking strength, where b is not a function

of c, is used. Although b is assumed constant for all speeds of breaking, it may vary with

other characteristics of the wave field, such as wave age, steepness, or mean saturation.

This is similar to the analysis used in Gemmrich et al. (2008). They showed a correlation

of increasing b with wave age, cpu
−1
∗ . This bulk breaking strength assumption is discussed

more in Chapter 5.

1.8 Other Measures of Dissipation

Calculation of b requires a separate measurement of the breaking dissipation. However,

direct in situ measurements of dissipation in the water column during breaking have been

rare and are difficult to make (Terray et al., 1996; Gemmrich and Farmer, 2004). In the

absence of in situ measurements, Gemmrich et al. (2008) and Romero et al. (2012) used

indirect estimates of dissipation from wind measurements and wave spectra. Gemmrich

et al. (2008) used the parameterization of Gemmrich et al. (1994),

Swind = ρaceffu
2
∗ (1.25)

where ceff is the effective phase speed of the waves acquiring energy from the wind. Terray

et al. (1996) calculated ceff from in situ turbulence measurements from a number of field

experiments under a variety of conditions. In nearly fully-developed waves, they found ceff

normalized by peak phase speed to be weakly related to wave age, u∗c
−1
p . For u∗c

−1
p ≥ 0.08,

however, ceffc
−1
p values grouped around roughly 0.5 and showed much scatter. For their
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wind input, Romero et al. (2012) use three spectral input functions: from Snyder et al.

(1981), Janssen (1991), and a modified form of Janssen (1991) including the effects of long

waves “sheltering” smaller short waves. These three models are all derived from the wind

input theory of Miles (1957), which attributes wave growth to pressure perturbations from

a quasi-laminar shear flow (Young, 1999).

Alternatively, in situ turbulence dissipation measurements can be used as a proxy for

breaking dissipation. Dissipation in a turbulent boundary layer over a flat, rigid, wall obeys

a “law of the wall” scaling,

ε =
u3∗
κz

(1.26)

where z is the distance from the interface and κ is the von Kármán constant. Numerous

studies (Kitaigorodskii et al., 1983; Agrawal et al., 1992; Anis and Moum, 1995) have shown

a layer of enhanced dissipation under breaking waves, decaying significantly faster than

the law of the wall solution. Below this enhanced layer, measurements tend to approach

the expected law of the wall scaling. Gemmrich and Farmer (2004) correlated enhanced

dissipation with breaking events, indicating that dissipation in this surface layer corresponds

to energy lost from waves.

Gemmrich (2010) measured turbulent dissipation using a system of three high-resolution

pulse-coherent Sontek Dopbeam acoustic Doppler profilers. He was able to measure dissi-

pation even into the wave crest, above the mean water line. He found that turbulence

was enhanced particularly in the crest, even more so than previous observations. Thom-

son (2012) achieved a similar result with wave-following “SWIFT” drifters, which measure

turbulent dissipation from near the surface to a half meter below the surface with a pulse-

coherent Aquadopp acoustic Doppler profiler. Both these studies measured dissipation using

the second-order structure function, D(z, r), as described in detail in Section 2.

1.9 Thesis Outline

This thesis describes field observations of wave breaking made under fetch-limited conditions

in the Strait of Juan de Fuca, WA. In Chapter 2, the field experiment is described and

the methods are summarized. The direct results of the video observations and in situ
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measurements are reported in Chapter 3. Chapter 4 presents the combined results: the

analysis of the energy budget and estimates of b. In Chapter 5, these results are compared

with the predictions of Phillips (1985) and Drazen et al. (2008), as well as other field studies.



15

Chapter 2

METHODS

2.1 Collection of Field Data

Observations were made in the Strait of Juan de Fuca (48◦12’ N 122◦55’ W), north of

Sequim, Washington, from February 12-19, 2011. Measurements were taken onboard the

R/V Robertson and from two free-floating “SWIFT” (Surface Wave Instrument Float with

Tracking) drifters. The roughest conditions were observed during the days of February 14th

and 15th, in which a winter storm hit the region with consistent southerly winds of 9-18

ms−1. On these days, the Robertson was set on a drogue and allowed to drift across the

Strait (downwind) at approximately 2 km hr−1. Wave height and period increased along

track, as shown in Figure 2.1.

Wave breaking observations were made from a video camera mounted above the Robert-

son wheelhouse, at 7 m above the mean water level, aimed off the port side of the ship.

With the drogue set from the stern, the port side view was an undisturbed wavefield. The

video camera was equipped with a 1/3” Hi-Res Sony ExView B&W CCD. The data (eight-

bit grayscale, 640 × 480 pixel, NTSC) was sampled at 30 Hz and later subsampled to 15

Hz. The lens had a 92◦ horizontal field of view and was oriented downward at an incidence

angle of approximately 70 degrees, giving a pixel resolution of 10-40 cm in the analyzed

region. The video was stabilized in the vertical and azimuthal (pitch and yaw) directions

with a pan-tilt mounting system (Directed Perception PTU-D100). The camera position

was remotely reset periodically, as it was prone to drift in the azimuth at frequencies on the

order of 5◦ per minute. Short video windows of 5 to 10 minutes were chosen for analysis to

avoid these resets and ensure statistical stationarity of the breaking conditions.

Wave and turbulence measurements were made from the two wave-following SWIFT

drifters. These Lagrangian drifters are described in detail in Thomson (2012). They were

equipped with a QStarz BT-Q1000eX, 5 Hz GPS logger and accelerometer, 2 MHz Nortek
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Figure 2.1: Summary of conditions during the two days of observations. Bottom left: a
map of Pacific Northwest showing the Strait of Juan de Fuca. The red box corresponds to
the edges of the top left map. Top left: map of instrument and ship tracks during February
14 and 15. The dashed line is the zero-fetch line. The solid lines are the tracks of the
R/V Robertson and Dopbeam (black), SWIFT 1 (red), and SWIFT 2 (cyan). The yellow
arrow shows the average direction of the wind from both days. The right panels show
the evolution of the wave and wind conditions with fetch measured from SWIFT 1 (red),
SWIFT 2 (cyan), and the R/V Robertson(black in wind measurements). Conditions shown
are significant wave height (top), peak energy period (upper middle), 10-meter wind speed
(lower middle), and friction velocity (bottom).
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Aquadopp HR pulse-coherent Acoustic Doppler Current Profiler (ADCP) with 4 Hz and 4

cm bin size, Go-Pro Hero digital video camera, and Kestral 4500 anemometer. The SWIFTs

were released from the Robertson and generally drifted at similar speeds, thus staying within

approximately 1 km of the ship. Similar turbulence measurements were made from Sontek

Dopbeam pulse-coherent acoustic Doppler profilers tethered to the ship on a wave-following

platform. This Dopbeam system is discussed further in Gemmrich (2010).

Wave spectra and associated parameters were estimated using the orbital velocities mea-

sured by Doppler speed-resolving GPS loggers onboard the freely-drifting SWIFTs, using

the method of Herbers et al. (2012). Wind measurements were made from the SWIFTs at

0.9 m above the water surface, as well as from the shipboard sonic anemometer (RM Young

8100), at a height of 8.9 m. The wind friction velocity u∗ was estimated using the inertial

dissipation method as described in Yelland et al. (1994).

2.2 Video Processing for the Distribution of Breaking Crests, Λ(c)

The method of Thomson and Jessup (2009) is used to process the video recordings of wave-

breaking and determine the crest-length distributions Λ(c). A short summary is provided

below, along with four notable modifications. For reference on the sensitivity of Λ(c) to

different methods of processing, see Kleiss and Melville (2011).

The analysis begins with the rectification of camera pixels to real-world coordinates

using the methods of Holland et al. (1997). Here the x and y directions are taken as the

along-ship and cross-ship directions, respectively. A portion of the image, roughly 15 m ×

20 m and no closer than 15 m from the ship is extracted and interpolated to a uniform grid

of 2n points. This field of view is notably less than in Kleiss and Melville (2010) (roughly

0.2 km2), however it is sufficient to capture complete crests for the conditions observed.

The resulting pixel resolution is around 0.25 m (cross wave) by 0.075 m (along wave).

Video is broken up into segments of 1024 frames (68.3 seconds) with 25% overlap. Se-

quential images are subtracted to create difference images, which highlight the moving

features of the video, most prominently the leading edge of breaking waves. The breaking

crests are further isolated when the differenced images are thresholded to binary images,

I(x, y, t) (see below for choice of threshold). This procedure was originally described in
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Gemmrich et al. (2008). An example of the progression from raw image to binary is shown

in Figure 2.2.

A three-dimensional fast Fourier Transform (FFT) is performed on the binary video data,

which is then filtered in wavenumber to isolate the crest motion. Integration over the ky

component produces a two-dimensional frequency-wavenumber spectrum, S(kx, f), as shown

in Figure 2a of Thomson and Jessup (2009). Following the method of Chickadel et al. (2003),

the frequency-wavenumber spectrum is transformed to a speed-wavenumber spectrum using

c = f/kx, and the Jacobian |∂f/∂c| = |kx| preserves the variance in the spectrum. The

speed spectrum is calculated by integrating over the wavenumber, S(c) =
∫
S(kx, c)dkx.

This speed spectrum has the shape of the Λ(c) distribution, but it must be normalized

to have the correct magnitude. The normalization follows from a direct calculation of the

average breaking length per unit area, Ltotal,

Ltotal = dy

∑
I(x, y, t)

NA
, (2.1)

where dy is the length of the pixels along the crests,
∑
I(x, y, t) is the number of breaking

pixels, N is the number of frames, and A is the area of our field of view. Thus, Λ(c) is

calculated as

Λ(c) = Ltotal
S(c)∫
S(c)dc

, (2.2)

directly following Thomson and Jessup (2009). Modifications to Thomson and Jessup (2009)

are described below.

2.2.1 Calculation of Incidence Angle from Horizon

The camera incidence angle was not constant, because of the slow drift and periodic resetting

of the stabilized pan and tilt. The stabilized pan and tilt adequately removed wave motions

(e.g. ship roll at periods of a few seconds) from the video recordings, but contamination

from lower period motions is evident in the raw video data. To remove these motions, the

horizon in the undistorted image (i.e. after lens “barrel” distortion is removed) is used as a

constant reference. First, the angle above horizontal is calculated as

β =
ytop − yhorizon
ytop − ybottom

× 69◦ (2.3)
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Figure 2.2: Top: video frame in raw pixel coordinates, the red box is the sampled field of
view. Bottom: binary-thresholded differenced image from same frame as upper left, rectified
to real-world coordinates.
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where 69◦ is the total vertical field of view and y is in pixels. Then, the incidence angle is

calculated simply as

θ = 90− 69◦/2 + β (2.4)

In practice, the horizon is manually identified in four images every 30 seconds and the

average value of the resulting incidence angle is used for all images in that 30 seconds. The

incidence angle is essential for rectifying the video data to real-world coordinates (Holland

et al., 1997).

2.2.2 Difference Threshold

Choosing an accurate binary threshold to identify breaking crests is critical to obtaining

the correct Λ(c) distribution. Differences in lighting and foam conditions make it difficult

to determine a single threshold criterion. In Thomson and Jessup (2009), a threshold based

on a multiple of the image standard deviation is used, with similar results over a range of

conditions. In the present study, however, the wider range of conditions necessitate a more

adaptable method. We use a modification of a technique described in Kleiss and Melville

(2011) based on the cumulative complementary distribution of pixels

W (it) = 1−
∫ it

−∞
p(i)di, (2.5)

where p(i) is the probability density function of the subtracted brightnesses. The main

difference from Kleiss and Melville (2011) is the use of the differenced images rather than

the raw frames. As shown in Kleiss and Melville (2011) Figure 3, W (it) decreases from

1 to 0 as it increases, and shows a distinct tail at high it when breaking is present. This

signature is also present when using differenced images. The tail is seen clearly in the

second derivative of the log of W (it), L
′′. As noted by Kleiss and Melville (2011), taking

the threshold as the beginning of this deviation (i.e. maximum L′′) produces a number of

false positives in their data. To obtain better signal-to-noise, they settle on a threshold

value where L′′ falls to 20% of its maximum value. Here, we apply the same threshold, after

manually confirming that this is near the point when thresholding stops excluding more

residual foam and begins cutting off the edges of true breaking crests.
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2.2.3 Constant Signal-to-Noise Filter

Thomson and Jessup (2009) describe the need to isolate the significant bands around the

peak in the wavenumber-frequency spectrum when transforming to S(c) to prevent noise

from biasing the speed signal (page 1667). To this end, Thomson and Jessup (2009) restrict

the integration from S(ky, f) to S(ky, c) to the points where the value of S(ky, f) is greater

than 50% of the peak of S(ky). This process was slightly modified after examining the

accuracy of the Fourier method with synthetic data. It was found that significant gains in

accuracy could be made by using an integration cut-off that did not vary with wavenumber,

as shown in Figure 2.3. The true Λ(c) curve in Figure 2.3 is calculated directly from the

synthetic data. For more discussion of the synthetic data and its utility in investigating the

response of the Fourier method, see Appendix A. The “original” Λ(c) distribution comes

from the Fourier method as described in Thomson and Jessup (2009). For the “modified”

curve, values from wavenumbers or frequencies less than 0.2 s−1 or m−1 are removed as they

contain a high density of noise. Next, a constant cut-off 5% of the absolute maximum value

of the remaining spectrum is used in the limits of integration around the significant band.

It was found that this procedure reduced the error in the Fourier method from an average

of 52% to 22% across all speeds, when weighted by the true value of Λ(c).

2.2.4 Width/Speed Bias

A central assumption in the normalization of Λ(c) by Ltotal described above is that the

width of the breaking crests is exactly one pixel, so that all
∑
I(x, y, t) pixels contribute to

the length of the crest. However, breaking that occurs at speeds faster than one pixel per

frame, c > ∆x/∆t, will produce crests in the binary image of width

n =
c

∆x/∆t
, (2.6)

where ∆x is the pixel width in the breaking direction and ∆t is the separation between

frames (here, 0.0667 seconds). Evidence of this effect is shown in Figure 2.4 (top), where

the average horizontal advancement of crests is plotted against their average width, weighted

by crest size. These variables are well-correlated, and the relation follows closely the one-

to-one line predicted by Equation 2.6. To correct for the associated bias of additional pixels
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Figure 2.3: Comparison of Λ(c) results from the Fourier method with synthetic data input.
The “true” distribution (solid blue) is measured directly from the synthetic data. The
“original” Fourier method curve (dashed black) uses the wavenumber-specific signal-to-
noise filtering of Thomson and Jessup (2009). The “modified” Fourier method (solid black)
uses a constant signal-to-noise cut-off throughout the spectrum.
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with fasters crests, we modify the FFT normalization of Thomson & Jessup (2009) with the

ratio of ∆x/∆t and obtain

Λ(c) = Ltotal
∆x/∆t

c

S(c)∫
S(c)dc

. (2.7)

With Equation 2.1, this is equivalent to matching the first moment of Λ(c) with the

breaking rate, calculated directly from the binary images as

fbrk =

∑
I(x, y, t)

nxnyN∆t
, (2.8)

where nx and ny are the number of pixels in x and y. Carrying through the integration in

Equation 1.17 with the modified Λ(c) from Equation 2.7 results in an equivalent expression

as Equation 2.8. Figure 2.4 (bottom) shows both the breaking rate from the original Λ(c)

distribution, as well as from the width corrected Λ(c), versus the direct breaking rate, fbrk.

The linear trend in the original results indicates that the bias is small and linear. The final

results are constrained to always equal the direct breaking rate.

2.3 In Situ Estimates of Energy Dissipation, Ė

The rate of energy dissipation via wave breaking, Ė, is estimated using in situ measurements

of turbulent velocity profiles u(z) in a reference frame moving with the wave surface. This

is done from two SWIFT drifters, as described in Thomson (2012) and, independently, from

a tethered Dopbeam system, as described in Gemmrich (2010). The volumetric dissipation

rate ε(z) is calculated by fitting a power law to the observed turbulent structure function,

D(z, r) = 〈(u′(z)− u′(z + r))2〉 = A(z)r2/3 +N (2.9)

where z is measured in the wave-following reference frame (i.e. z = 0 is the water surface),

r is the lag distance between measurements (corresponding to eddy scale), A is the fitted

parameter, and N is a noise offset. Then, the depth-integrated dissipation rate is calculated

as

ĖSWIFT = ρw

∫ 0

0.6
ε(z)dz = ρwC3v

∫ 0

0.6
Az−3/2dz, (2.10)

where Cv is a constant equal to 1.45. The structure function is averaged over 5 minute

intervals before calculating the dissipation. In addition, profiles of ε(z) are removed if the
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Figure 2.4: Top: comparison of mean crest width in pixels with crest advancement speed
in pixels for both February 14 (circles) and February 15 (squares). Bottom: comparison of
calculated breaking rate from the first moment of Λ(c), R, with the direct breaking rate
fbrk for the original distribution. R are shown without width correction (“original,” x’s for
February 14, crosses for February 15), and with width correction (“corrected,” circles for
February 14, squares for February 15).
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Figure 2.5: Top: total (integrated) turbulent dissipation measured by SWIFT 1 (red),
SWIFT 2 (cyan), and Dopbeam (blue) vs. fetch, averaged over 500 meters. Bottom:
turbulent dissipation profiles in the wave reference frame from SWIFT 1 and plotted with
fetch.

r2/3 fit does not account for at least 80% of the variance or if A is similar to N . Figure

2.5 shows the evolution of the dissipation profiles and total dissipation with fetch. Profiles

of dissipation deepen, and the overall magnitude increases, as waves grow along fetch and

breaking increases.
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Chapter 3

RESULTS

3.1 Fetch Dependence

A number of studies have attempted to describe the evolution of a wave field under fetch-

limited conditions through empirical fits to observed data (CERC, 1977; Donelan et al., 1985;

Dobson et al., 1989; Donelan et al., 1992). These empirical fits use non-dimensionalized

measures of fetch, wave energy, and frequency, specifically,

x̂ =
gX

U2
10

, ê =
g2σ2

U4
10

, f̂ =
U10fp
g

(3.1)

where X is fetch, U10 is wind speed at 10 m reference height, g is gravity, σ2 is the variance

of the frequency spectrum (equivalent to the energy or H2
s /16), and fp is the frequency at

the peak of the wave spectrum. Young (1999) consolidated many of these relations into

two power laws with a small range of coefficients. Figure 3.1 compares this current data set

against Young’s empirical prediction, using 500-meter along-fetch averaging. The maximum

daily 500-meter average wind speed is used for U10. The ê and f̂ values lie largely above,

but in line with, Young’s empirical formulae. This suggests a slight underestimate of fetch,

possibly due to wave generation south of the study area in Discovery Bay or Admiralty

Inlet. Additionally, some scatter may be caused by variations in the wind speed throughout

the day. In particular, the wave energy growth on February 15th appears steeper than

given by the empirical growth law, perhaps due to a ramping up of the wind over the

course of that day. In general, the observed wave height and frequency have the trends

and approximate magnitude expected from fetch-limited growth, and lie well beneath fully-

developed conditions.

3.2 Evolution of the Frequency Spectrum, E(f)

In addition to the trends in bulk parameters along the fetch, the wave frequency spectrum,

E(f), also evolves along the fetch. Figure 3.2 (top) shows the 500-meter averaged non-
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Figure 3.1: Comparison of measured wave evolution from SWIFT 1 (red) and SWIFT 2
(cyan) with the Young (1999) empirical formula (black dashed line) and fully-developed
limits (horizontal solid black line). Left: dimensionless wave energy vs. dimensionless fetch.
Right: dimensionless frequency vs. dimensionless fetch. The circles and squares denote
data from February 14th and February 15th, respectively. All U10 are maximum daily
500-m averages.

dimensional energy spectra from February 14th and 15th colored by non-dimensional fetch.

The spectra are normalized by maximum daily 500-meter average U10 similar to Figure

3.1. As shown with the bulk parameters, the peak waves grow and lengthen (shift to lower

frequencies) with increasing fetch. All spectra have a high-frequency tail with an expected

f−4 slope characteristic of the equilibrium range. It is in this range that Phillips developed

the theoretical form for the Λ(c) distribution, Equation 1.19. It is interesting to note that

while there is a clear trend in the development of the peak with fetch, the energy in the

equilibrium range stays relatively steady throughout the experiment (relative to the wind

speed).

This is further investigated using the normalized saturation spectrum,

B̃(f) =
(2π)4f5E(f)

2g2D(f)
(3.2)

where D(f) is an angular spreading function. Here D(f) is used as defined in Gemmrich
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Figure 3.2: Top: normalized wave spectral energy density vs. normalized frequency colored
by dimensionless fetch for both February 14 (30 < x̂ < 300) and 15 (500 < x̂ < 600) data.
Bottom: Normalized saturation spectra vs. frequency normalized by peak frequency for
both February 14 and 15 data.
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et al. (2008). These spectra are shown in Figure 3.2 (bottom). The average of this function,

σb, over the equilibrium range (we use fp ≤ f ≤ 5fp) gives a measure of the mean-square

slope of the wave-field. Although the waves from late in the day of February 14th are in the

mid-range of the fetch evolution (200 < x̂ < 300), these waves have the largest saturation

levels. The waves of February 15th are more developed (500 < x̂ < 600), but their mean

saturation lies somewhat in the middle of the observed data.

Banner et al. (2002) showed σb to exhibit threshold behavior for the onset of breaking and

a correlation of σb to the breaking rate. Thus, it is expected that other breaking quantities,

including b, will relate to σb. In this study, some quantities correlate with non-dimensional

fetch (non-dimensional wave height, energy, period, frequency, phase and group velocity)

while others correlate with saturation (wind speed and stress, wave steepness, wave age,

and breaking statistics).

3.3 Evolution of the Distribution of Breaking Crests, Λ(c)

The calculated Λ(c) and ρg−1c5Λ(c) distributions are shown in Figure 3.3 using both dimen-

sional and normalized speed. The distributions are unimodal, consistent with the studies

of Gemmrich et al. (2008), Thomson et al. (2009), and Kleiss and Melville (2010), and

in contrast with Melville and Matusov (2002). Normalizing by the peak phase speed, cp,

shows that the peaks in Λ(c) are aligned around 0.5cp, with some slight scatter. There is a

general trend of increasing breaking with higher mean saturation, consistent with Banner

et al. (2002). This trend is also shown in Figure 3.4 (left), where the breaking rate from

Λ(c) is compared to σb. The breaking rate also shows a positive correlation when compared

to peak steepness, Hskp/2, in Figure 3.4 (right).

Since the breaking dissipation is related to the integral of c5Λ(c), the distribution of

this quantity reveals the contribution to the dissipation from whitecaps at each speed. The

curves of Figure 3.3 show that dissipation is dominated by the small amount of breaking at

high speeds. This is an important point in the later discussion of microbreakers, which are

excluded from measurement when using video methods (see Section 5). Because high-speed

noise is amplified by multiplication by c5, many of these integrals appear unbounded, and

it can be difficult to determine where to end the integration. The sensitivity of the later
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analysis to the limits of integration is discussed in further detail in Appendix B. A practical

upper limit of the point where Λ(c) drops below 5% of the peak is used here, which is shown

by the transition from solid to dash lines in Figure 3.3. Integrated quantities in the next

section use only the solid lines.
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Figure 3.3: Λ(c) (top) and ρg−1c5Λ(c) (bottom) vs. dimensional (left) and non-dimensional
(right) speed. All curves colored by mean normalized saturation. Solid lines indicate the
limits of integration for bulk quantities, dotted lines are the continuation of the curve above
the upper limit of integration.
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Figure 3.4: Breaking rate vs. mean normalized saturation (left) and peak steepness (right)
for SWIFT 1 (red) and SWIFT 2 (cyan) for data from February 14th (circles) and February
15th (squares).
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Chapter 4

ANALYSIS

4.1 Radiative Transfer Equation

The evolution of the ocean surface waves is governed by the Radiative Transfer Equation.

This is often stated spectrally, where nonlinear energy transfers between frequencies are

explicitly modeled, but for our purposes only the bulk, or spectrally-integrated, energy is

considered. Thus the equation reduces to simply

∂E

∂t
+ cg · ∇E = Swind − Sbrk (4.1)

where Swind and Sbrk are the energy input from wind and energy lost to breaking, respec-

tively. We attempt to calculate each of these terms to close the energy budget of these

fetch-limited waves, and to assess the estimates of wave-breaking dissipation.

A stationary wavefield is assumed, such that ∂E/∂t = 0 and all wave growth is due to

advection of wave energy at the group velocity. This approximation is justified by the success

of empirical fetch laws when normalized by a constant windspeed, as in Figure 3.1, and by

simple scaling of the unsteady term as wave energy over storm onset time ∆E/∆t ∼ 10−3

Wm−2, which is 2 to 3 orders of magnitude smaller than the other terms in Equation 4.1.

There is, however, some variability of the wind that may contaminate the remaining terms.

The calculation of spatial gradient of wave energy is inherently noisy due to the 5-minute

estimates of wave spectra. To combat this issue, measurements are first averaged over 500-

meter spatial bins. In addition, the gradient is calculated by regressing a line through the

origin (assuming no wave energy at zero fetch) and each 500-meter bin. This larger-scale

method smooths the otherwise noisy gradient. The group velocity, cg, is estimated every

500 meters from the peak waves using the deep water dispersion relation. The resulting

estimate of cg · ∇E is shown in the middle panel of Figure 4.1.

The wind input function is parameterized using the wind stress, ρau
2
∗, and an effective
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Figure 4.1: Wind input (top), advective energy flux divergence (middle), and breaking
dissipation (bottom) vs. fetch. Dissipation is calculated directly from turbulence for SWIFT
1 (red), SWIFT 2 (cyan), and Dopbeam (blue), and by the residual of the top two panels
(black). All quantities are 500-meter averages.



35

phase speed, ceff , such that

Swind = ρaceffu
2
∗, (4.2)

as described in Gemmrich et al. (1994). There is significant uncertainty in the choice of ceff .

Terray et al. (1996) found ceff to be somewhat less than the peak phase speed and show a

dependence on wave age, but with much scatter. Here, the best agreement when comparing

with in situ turbulent dissipation (next paragraph) is found using a daily ceff equal to the

minimum phase speed (4.5 and 4.9 ms−1 for February 14th and 15th, respectively). The

friction velocity, u∗, is calculated from the shipboard sonic anemometer using the inertial

dissipation technique. The resulting wind input is shown in the top panel of Figure 4.1.

There are three direct in situ measures of the breaking loss, Sbrk = Ė (from Equation

1.21), from the two SWIFTS and the Dopbeam, and there is a fourth indirect measure of

the energy dissipation from the residual of the other RTE terms, Sbrk = Swind − cg · ∇E.

These four estimates of the wave breaking dissipation rate are shown in the bottom panel

of Figure 4.1 and are used in the following section to interpret the Λ(c) distributions. The

dissipation rates are all within 0.4 Wm−2 of each other, except for disparities of up to 1.0

Wm−2 in the RTE estimate at the beginning and end of February 14th. Although the

agreement is coarse, the consistency of these independent estimates is more than sufficient

for the subsequent analysis of the breaking parameter b. The RTE solution is shown largely

to validate, on an order of magnitude scale, the conclusions from the in situ methods.

4.2 Estimation of the Breaking Parameter b

The value of the breaking parameter b is calculated from

b =
Sbrk

ρwg−1
∫
c5Λ(c)dc

, (4.3)

using each of the four measures of dissipation, Sbrk. Application to the nine different calcu-

lated Λ(c) distributions results in total of 36 estimates of b, which are shown as a function

of wave age, mean wave saturation, and wave steepness in Figure 4.2. The independent

variables use the average of cp, U10, σb, and Hs within a 250 m vicinity of the Λ(c) calcula-

tion.
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Figure 4.2: Breaking strength parameter, b, plotted against inverse wave age (left), mean
normalized saturation (middle), and peak steepness (right). Coloring as in Figure 4.1 and
symbols from Figure 3.4, with additional data from Lake Washington in 2006 (green crosses)
and Puget Sound in 2008 (magenta crosses).
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In addition, we include data taken from measurements made in Lake Washington, WA, in

2006 and Puget Sound, WA, in 2008, originally reported in Thomson et al (2009). Whereas

in Thomson et al (2009), a constant b was obtained via regression of
∫
c5Λ(c)dc to ĖDopbeam,

here individual values of b are calculated. Apart from the updates to the Fourier method

detailed in section 2, the Λ(c) methodology is similar between the datasets.

Figure 4.2 shows trends of decreasing b with increasing wind forcing (described by inverse

wave age, U10/cp) and increasing wave slope (using mean normalized saturation, σb, and

peak wave steepness, Hskp/2). The trends are robust across all dissipation measures and

all datasets. The Strait of Juan de Fuca data from early February 14th, as well as the Lake

Washington and Puget Sound data, make up the least forced and least steep conditions. The

data from late on February 14th contributes the most highly forced and steepest data. The

February 15th data lies in the middle of the range from the previous day. Values of b range

over three orders of magnitude, which is much larger than the uncertainty in the inputs to

Equation 4.3, or the relative error when comparing the four measures of dissipation. The

trend in wave age is consistent with the results of Gemmrich et al. (2008). The trend in wave

slope contrasts the results of Drazen et al. (2008) and will be addressed in the discussion.

4.3 Comparison with Phillips’s Relation

In Figure 4.3, the measured Λ(c) are compared with Phillips’s predicted function (Equation

1.19). The Λ(c) results are plotted in logarithmic coordinates in Figure 4.3 (top), along

with a c−6 trend line. Due to their peaked shape, the Λ(c) functions only approach c−6

at the high-speed tail of the distribution, where c ≥ 0.5cp. This agreement occurs almost

completely outside the equilibrium range, as shown in Figure 4.3 (bottom), where the wave

spectra corresponding to these Λ(c) have been plotted against phase speed using the dis-

persion relation. The upper limit of 0.7cp for the equilibrium range was suggested by Kleiss

and Melville (2010). They estimated the factors (4γβ3)I(3p) from Equation 1.19 to fall in

the range of 0.0015–0.0032. Phillips suggested a value of b = 0.06 based on the experiments

of Duncan (1981). It was shown in the last section, however, that b varies over a wide range

in this experiment. In comparing with Equation 1.19 the individual b values found from

comparison with in situ measurements are used. Thus, if Phillips’s formulation, the factors
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as estimated by Kleiss and Melville (2010), and the calculated b values are all correct, the

Λ(c) results should follow the relation:

Λ(c)bg−1u−3∗ c6 = (4γβ3)I(3p) ≈ 0.0015− 0.0032 (4.4)

The left-hand side of Equation 4.4 is plotted in Figure 4.3 (middle), with a line at

the median proposed value of 0.0024. Within most of the equilibrium range, there is no

agreement. However, at high speeds the data flattens and begins to resemble a steady value.

The spread between data in this range is around an order of magnitude, and all curves lie

somewhat above the proposed 0.0015 – 0.0032 range.
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Figure 4.3: Λ(c) (top), Λ(c) scaled by Phillips’s proposed model (middle), and wave energy
spectral density (bottom), vs. non-dimensional speed. The dashed line in the top panel
shows a c−6 tail. The horizontal dashed line in the middle panel is the predicted constant
value of scaled Λ(c) from Phillips (1985). The vertical solid line in all plots shows the
approximate division between the equilibrium range and the peak range.
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Chapter 5

DISCUSSION

This study provides a unique quantification of wave breaking dissipation. First, in ob-

serving strongly-forced, fetch-limited waves as they develop, a large range of wave conditions

are measured under similar winds. In addition, measurements of breaking statistics, in situ

turbulence measurements, wave spectra, and wind conditions provide a comprehensive de-

scription of the breaking dissipation. Analysis of the Radiative Transfer Equation validates

the turbulent dissipation measurements as an estimate of the energy lost from waves due to

breaking. In addition, breaking data from previous experiments in Lake Washington and

Puget Sound are consistent with data from this experiment. The Λ(c) results, with peaks

centered around 0.5cp are also qualitatively similar to a number of previous field studies of

breaking (Gemmrich et al., 2008; Thomson and Jessup, 2009; Kleiss and Melville, 2010).

Breaking correlates with steepness and saturation, as predicted by Banner et al. (2002).

The most striking result of this study is that breaking rate varies over a dramatically

larger range (2 ≥ R ≥ 250 hr−1) than dissipation rate (0.2 ≥ Sbrk ≥ 1.7 W m−2). The

effect on the resulting b values is seen in Figure 4.2. To reconcile the differing dynamic

ranges of c5Λ(c) and Sbrk, the breaking strength varies over nearly three orders of magni-

tude. Although both c5Λ(c) and Sbrk correlate with inverse wave age, mean saturation, and

steepness, the breaking strength decreases with these variables as a result of the dispropor-

tionate degree of correlation. These trends are robust: changes in processing of Λ(c) and

Sbrk result in only minor shifts in the b values relative to their spread (for examples, see

Appendices A and B).

This result is critical for interpretation of Λ(c) and b. It leads to two potential expla-

nations: Either the nature of breaking changes with wave development, or the c5 scaling of

Equation 1.11 is incomplete. Furthermore, the continued disagreement between observed

Λ(c) distributions and Phillips’s prediction of Λ(c) ∼ c−6 in Equation 4.4 poses additional
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questions. We propose that both of these issues are related to a difference in the breaking

behavior of waves in the equilibrium range and the peak range, as described below.

5.1 Breaking Strength and Wave Slope

If indeed the nature of breaking is changing with wave development, the trends shown in

Figure 4.2 indicate that the relative strength of breaking decreases with increasing wave

slope, as measured by mean saturation, σb, or steepness, Hskp/2. This dependence is con-

trary, however, to the Drazen et al. (2008) result of b = 0.25S5/2, where S is the maximum

slope of a focused wave in a laboratory tank. One possible explanation for this difference is

that steepness or mean saturation are not representative of breaking wave slope. Even under

strong forcing, only a small fraction of the waves in a natural spectrum are breaking. While

it seems unlikely that waves would break at smaller slopes in overall steeper conditions, a

separate steepness measurement of only breaking waves was not possible in this field study.

A more likely explanation is that natural breakers are not adequately simulated in lab-

oratory studies. Ocean waves break primarily due to modulational instability, whereas

laboratory waves are usually induced to break by linear superposition. As noted in Babanin

(2011), this difference has already been shown to affect the spectral distribution of dissipa-

tion, and may also be the source of the discrepancy between the results presented here and

those in Drazen et al. (2008). In addition to wave slope parameters, b is shown to decrease

with inverse wave age U10c
−1
p , as also noted in Gemmrich et al. (2008). Since Drazen et al.

(2008) did not investigate breaking with wind forcing, it is possible that this is a stronger

dependence, such that the correlation with steepness and saturation is spurious. Other

lab/field differences may also be responsible for the deviation. For example, our measured

waves are much less steep, (Hskp/2)max ≤ 0.28, than the breakers in Drazen et al. (2008),

Smin ≥ 0.3. Finally, three-dimensional wave effects (i.e., the short-crestedness that is a

signature of whitecaps) are not well simulated in flume experiments.

5.2 Deviation from Duncan c5 Scaling

Another possible explanation for the observed trends in b is from deviations in the Duncan

scaling of Equation 1.11. This scaling forms the basis for calculating breaking dissipation
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from Λ(c). The c5 dependence on speed is partly responsible in this data for the large

spread in b, as large c breaking events occur more often in rough conditions and are heavily

weighted in the c5Λ(c) distribution (see the bottom plots of Figure 3.3). Deviations from

c5 can be incorporated to the Λ(c) dissipation model through a spectral b(c), as opposed

to the bulk b used here. This approach would be analogous to that used by Romero et al.

(2012) in studying wave breaking in the Gulf of Tehuantepec Experiment (GOTEX). They

proposed two spectral models of b,

b1(k) = A1(B(k)1/2 −BT (k)1/2)5/2 (5.1)

and

b2(k) = A2(B̃(k)1/2 − B̃T (k)1/2)5/2 (5.2)

where B(k) is the spectral saturation in wavenumber, B̃(k) is the normalized saturation,

and A1, A2, BT (k), and B̃T (k) are coefficients fit to their data. These models are based

on the results of Banner and Pierson (2007) and Drazen et al. (2008) showing a 5/2 power

law dependence on wave slope, using the fact that B(k) is related to the mean-square-slope

(mss). This formulation in k can be converted to c using the deep water dispersion relation,

and thus shown to alter the c5 dependence of dissipation.

In contrast, we solve for bulk (i.e., non-spectral) values of b and find a negative depen-

dence on wave slope. A bulk b estimate is implicit to the use of in situ measurements of

dissipation (see Equation 4.3), which, at present, cannot resolve spectral components. The

alternative is to infer spectral dissipation from the residual of the spectral Radiative Trans-

fer Equation (as opposed to the integrated version in Equation 4.1), as done in Romero

et al. (2012). However, this approach is sensitive to the wind input function, as evident by

the three wind models used in Romero et al. (2012).

Although the use of non-spectral in situ dissipation measurements is preferred here,

comparison with the b(k) results of Romero et al. (2012) is illuminating. Qualitatively,

Romero et al. (2012) show three regimes of b(k). For large k, corresponding to phase

speeds less than 4.5 m s−1, they calculate unreasonably high breaking strengths which they
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attribute to not resolving microbreakers (see Section 5.4). For intermediate k, or speeds

roughly between the peak in Λ(c) and the dominant phase speed, their b is relatively constant

at around 10−3, with slight inflections. For k < kp, their b drops dramatically by a full order

of magnitude to around 10−4. Thus, treating our data with the spectral b from Romero

et al. (2012) would diminish the effect of the large c5Λ(c) at speeds at and above cp. This

would partially reconcile the large range of breaking activity with the much smaller range

of dissipation.

5.3 Peak and Equilibrium Breaking

In introducing Λ(c), Phillips (1985) recognized that breaking functioned differently in waves

of different scales. Indeed, the formulation behind Equation 4.4 should only be expected to

be valid within the equilibrium range. As described by Phillips (1985):

“Only over wavenumbers that are more distant both from the spectral peak

and from the upper limit to this range than half the interval of wavenumbers

that is needed to specify these non-local processes, that is, only well inside the

equilibrium range, can these scaling arguments be used to represent as, in effect,

spectrally local.”

Figure 4.3 (bottom) shows the wave spectra plotted against c/cp, where the equilibrium

range is the region of constant positive slope at c/cp < 0.7. There is almost no overlap

with the region of c−6 observed in the Λ(c) distributions (Figure 4.3, top), or the region of

Λ(c)bg−1u−3∗ c6 convergence (Figure 4.3, middle), both of which occur at c/cp > 0.7. Kleiss

and Melville (2010) show the same paradox in their Figure 12(a).

The revelation that significant breaking occurs near the spectral peak, especially when

weighted by c5 and contrary to the expectations of Phillips (1985), along with the b(k) results

of Romero et al. (2012), points toward a fundamental difference in breaking between peak

and equilibrium waves. A bulk b estimate reconciles all of the breaking, on average, from a

wavefield with both equilibrium and peak waves, superimposed. The relative contributions

from these components can be quantified as the energy ratio E(3fp)/E(fp), using three times

the peak frequency as an ad hoc center for the equilibrium range. As shown in Figure 5.1,
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Figure 5.1: Breaking strength parameter, b, plotted against the ratio of energy in the
equilibrium range to energy in the peak waves. Colors and symbols as in Figure 4.2.

this ratio is positively correlated with b, suggesting that breaking is stronger in wavefields

that have a greater fraction of energy in the equilibrium range. An alternate interpretation

of the breaking parameter b is the fraction of energy lost when a wave breaks. A large,

steep wave can then dissipate large amounts of energy and still have a small b value, so long

as most of the wave persists after the breaking event. This is consistent with the spilling

breakers observed for the peak waves in a pure wind sea. For the smaller waves, within the

equilibrium range, a greater fraction of the wave may be lost during breaking (or indeed, the

entire wave may be lost), and thus the b value would be higher. Resolving these questions

requires in situ wave-by-wave and spectral measurements of dissipation, as can be achieved

in laboratory experiments. These methods are not yet available in the field, however, so this

specific hypothesis remains to be tested. For now, it is apparent that the value of b is highly

sensitive to contributions to c5Λ(c) from wave breaking in the peak range and correlates

with the relative energy contained in the peak and equilibrium waves.
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5.4 Limitations to Λ(c)

A major limitation of all video observations of wave breaking is the omission of microbreak-

ers, which create turbulence but do not entrain air (and thus do not cause a whitecap).

Jessup and Phadnis (2005) measured significant micro-scale breaking in laboratory experi-

ments at winds of 9 m s−1 using infrared imaging. In the open ocean, cool skin conditions

rarely are favorable enough to make these measurements, especially when large-scale break-

ing is present. The contribution of wave dissipation from micro-breaking at different sea

states continues to be an open question. For the Λ(c) distributions calculated in the present

study, extrapolation to include microbreakers by requiring c−6 for c/cp < 0.7 does not

change the main results. The b values are somewhat reduced, but the trends with wave age

and wave slope persist.

Another limitation of this study is the lack of directional treatment, Λ(c, θ). This is

appropriate for the fetch-limited pure wind sea conditions, however, in other conditions

directionality may be important (e.g., Gemmrich et al. 2008). Directionality could not be

calculated from this dataset because of the shipboard camera configuration. With a camera

height of 7 m and incidences angles of 60◦ – 70◦, changes in sea surface elevation due to the

waves themselves can manifest as movement in the lateral, or y, direction. This corrupts

the y-velocities and prevents the calculation of an accurate directional spectrum.

In calculating Λ(c), there is some ambiguity in the definition of the breaker speed, c. In

Phillips’s theory, c refers to the phase speed of the breaking wave. It has been observed,

however, that the speed of the whitecap is actually somewhat less than the phase speed.

Laboratory experiments (Rapp and Melville, 1990; Banner and Pierson, 2007; Stansell and

MacFarlane, 2002), show a linear relationship between the two speeds of the form cbrk = αcp,

where cp is the phase speed, cbrk is the observed speed of the whitecap, and α ranges from

0.7 to 0.95. Here, we apply α = 1, because we have no direct measure of cbrk/cp. Other

constant values of α would modulate our results somewhat, but the trends would remain

intact. In addition, it has been theorized that the breaking speed of small waves would

be enhanced by the orbital motion of dominant long waves. However, both Thomson and

Jessup (2009) and Kleiss and Melville (2011) noted that the correction of this effect produces
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an overall small change in the results. In the fetch-limited conditions of Juan de Fuca Strait

(and lacking significant swell), this effect is neglected.

Finally, it was shown in Kleiss and Melville (2011) that the speed of advancing foam in

breaking waves tends to slow over the course of a breaking event. Since the Fourier method

includes contributions from speeds throughout the duration of breaking, it distributes the

contributions from a single breaking event to a number of speed bins. It has been asserted

that this interpretation of breaker speed is contrary to the original definition of the Λ(c)

function by Phillips (1985) (Mike Banner, personal communication). The uncertainty in-

troduced by slowing crests in the Fourier method is explored in more detail with synthetic

data in Appendix A, and is shown not to change the trends in b.
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Chapter 6

CONCLUSIONS

Shipboard video observations of breaking waves were made for fetch-limited conditions

during two days of a winter storm in the Strait of Juan de Fuca. Video data was processed

into Λ(c) distributions using the Fourier-based method of Thomson and Jessup (2009) with

only minor modifications. Meanwhile, wave-following drifters provided turbulent dissipation

measurements of the same seas.

The waves grow and lengthen over the fetch as expected by previously derived empirical

relations. Λ(c) results show a peaked distribution around speeds somewhat greater than

half the peak phase speed. These distributions appear to decrease like c−6 as predicted

by Phillips (1985), but at speeds outside the equilibrium range. Breaking rates from Λ(c)

correlate with two bulk measures of wave slope: mean normalized saturation and peak

steepness. Indirect estimates of breaking dissipation from the difference of wind energy flux

and energy flux divergence validates the turbulent dissipation measurements.

Calculations of the breaking strength parameter, b, are made from comparison of the fifth

moment of the Λ(c) distributions with the dissipation measurements. The breaking strength

is found to decrease with increasing steepness and mean saturation, contrary to laboratory

measurements made by Drazen et al. (2008). This could be due to differences between ocean

waves and laboratory waves. Another explanation is that there are differences in breaking

between wave scales that are not resolved with a bulk b interpretation using a c5 scaling of

dissipation. We speculate that peak waves may lose a smaller fraction of their energy in

breaking than equilibrium waves. The breaking strength, b, is shown to correlate with the

ratio of energy in the equilibrium range to peak energy.

These trends were observed strictly under narrow-banded, fetch-limited conditions. They

remain to be tested in open ocean conditions. In addition, phase-resolved or wave-by-

wave dissipation measurements are not yet possible. However, as ocean video observations
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continue to become more prevalent and in situ methods are improved, it is likely that the

relationship between breaking kinematics and dynamics will be further solidified.
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Appendix A

TIME-VARYING BREAKING CREST SPEED

Synthetic data were created to test the Fourier method for crests that slow during

active breaking. This effect was shown in Kleiss and Melville (2011) in their Figure 13,

and potentially biases estimates of Λ(c) towards lower speeds if the true phase speed of the

breaking component is the maximum speed of the whitecap (i.e. at the onset of breaking).

The synthetic data is a binary time series resembling thresholded, natural, crests.1 The

breaking crests follow a normal distribution centered around 4 m/s. They also vary in crest

length, duration, and direction.

Because the speed and crest length of the synthetic breakers is prescribed, the true Λ(c)

distribution is easily calculated and compared with the curve obtained from the Fourier

method. Synthetic breaking crests were initially kept at a constant speed throughout their

duration. This control case is shown in Figure A.1 (left). In the next artificial experiment,

crests were made to slow down similar to the data of Kleiss and Melville (2011). Their

speed decreased linearly through their duration to 55% of their original speed. Figure

A.1 (right) shows a comparison of the Λ(c) distributions from the maximum crest speed,

average crest speed, time-varying crest speed (similar to the “elemental method” of Kleiss

and Melville, 2011), and the Fourier method. As expected, distributions from all other

methods are centered on lower speeds than the maximum speed curve. The Fourier method

actually resembles the true curve from averaging individual crests speeds more than the

time-varying distribution.

The error in Λ(c) between the Fourier and true maximum speed methods is calculated

at each c, and an average error is calculated as weighted by the true maximum Λ(c). This

1When “perfect” crests (i.e. straight lines of one pixel width) were examined, the Fourier method showed
significant aliasing from high frequency components due to Gibbs phenomenon. Crests were then given
some randomness in speed along the crest length to make the Fourier transform more well-behaved. In
even the best natural data there is plenty of noise present to achieve this effect.
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Figure A.1: Comparison of the true Λ(c) distribution with the estimate from the Fourier
method for synthetic data. Left: Crests propagating at a constant speed, true distribution
is shown in blue and Fourier method estimate is black. Right: Crests slowing over their
duration as in Kleiss and Melville (2011). True Λ(c) distributions based on the maximum
crest speed is blue, from the time-varying crest speed is red, from the average crest speed
is cyan, and Fourier method estimate is black.



56

Figure A.2: Breaking strength parameter, b, with error bars from synthetic data of time-
varying crest speed, plotted against inverse wave age (left), mean normalized saturation
(middle), and peak steepness (right). Colors and symbols as in Figure 4.2. Error bars are
calculated using the estimated positive bias of 90% in the Fourier method.

average error is 88% of the true maximum Λ(c). Additionally, a bias is propagated through

in the calculations of a breaking strength, b, from Equation 4.3 using an arbitrary constant

value for Sbrkgρ
−1. The Fourier method was found to bias b high by 90%. With this percent

bias, it is possible to place bars on the plots of b from the experimental data, as shown in

Figure A.2. Even with this seemingly large difference based on interpretation of crest speed,

the error bars are minuscule compared with the scatter of the data and the large range over

which the trends are exhibited. Moreover, if the bias is consistent over all data points, the

b values would be slightly altered but the trend should be unchanged.
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Appendix B

SENSITIVITY TO LIMITS OF INTEGRATION

The calculation of b depends on the total dissipation from integration of c5Λ(c) over all

speeds of breaking. However, the factor of c5 presents a signal-to-noise problem. Even small

contributions to Λ(c) at large speeds can add significantly to the total dissipation. This is a

common problem, as seen in the c5Λ(c) distributions of Gemmrich et al. (2008) and Kleiss

and Melville (2010). Even Phillips’s theoretical relation for Λ(c) (Equation 4.4) is prone to

this issue, as the resulting integrand has a c−1 shape, the improper integral of which does not

converge. In time-domain methods such as Gemmrich et al. (2008) and Kleiss and Melville

(2010), the upper limit of integration can be infinite because no breaking is calculated above

certain speeds. The problem is exacerbated when using the Fourier method, however, as

Λ(c) never approaches zero due to noise in the spectrum. No clear solution presents itself, so

instead the sensitivity of the resulting b values to the upper limit of integration is examined.

Λ(c) can be transformed to a function of the number of pixels moving at each speed.

This presents a physically intuitive way to define the noise floor. For example, the upper

limit of integration can be defined as the point when Λ(c) falls below 1 pixel per speed bin

(dc = 0.2 ms−1). Figure B.1 shows the trends in b, similar to Figure 4.2 (using SWIFT

dissipation only for clarity), with error bars corresponding to the range of b from changing

the limiting value from 1 pixel to 100 pixels. Large error bars indicate that the value of b

is highly sensitive to the integration cut-off. The largest range occurs for the largest value

of b (least total breaking) and for the smallest value of b (most breaking at high speeds).

The cut-off at 5% of the peak Λ(c), shown by the symbols, pulls these two uncertain values

nearer the rest of the b values. Therefore, the uncertainty in these b values only makes the

trends in wave age, mean saturation, and steepness more stark.
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Figure B.1: Breaking strength parameter, b, with error bars from varying upper limit in
integration of c5Λ(c), plotted against inverse wave age (left), mean normalized saturation
(middle), and peak steepness (right). Colors and symbols as in Figure 4.2 (SWIFTs 1 and 2,
only). Error bars are calculated from varying the upper limit of integration from a limiting
value of 1 to 100 equivalent pixels per speed bin.


