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A new methodology was proposed in Finkelstein and Kastner (2007,2008) [5,6] to derive

finite-difference (FD) schemes in the joint time-space domain to reduce dispersion error. The

key idea is that the true dispersion relation is satisfied exactly at some specified wavenum-

bers. Liu and Sen (2009) [11] further developed their idea, going to 2D and 3D. In our

work, we will prove that the system for coefficients of these new schemes is solvable for any

normalized wavenumbers up to the Nyquist. We will also look at the system matrix and

prove that we can get higher order approximation to the dispersion at arbitrary normalized

wavenumbers up to the Nyquist.





Introduction

Finite-difference-time-domain methods (FDTD) have been widely used in seismic modeling

[1,14,9,7]. They are robust, simple and easy to implement, especially the second-order,

centered-difference variant known as the (2,2) scheme or the Leap-frog scheme. In spite

of the advantages of FD methods, the method is subject to numerical dispersion errors.

Precise phase velocity can be a key factor in practice, and thus developing schemes focusing

on accurate phase velocity is in demand. Traditional ways for reducing dispersion errors

include increasing sampling rate and using higher-order degrees of temporal accuracy, but

these methods would normally require more computation. Nonlinear methods tend to reduce

dispersion errors, but they are normally not as easy to implement. To help reduce numerical

dispersion with an easy-to-implement method while not increasing computation, a unified

methodology has been proposed in [5] and [6] by Finkelstein and Kastner, with the key

idea that schemes are obtained with the requirement that exact dispersion is prescribed

at several wavenumbers of interest. Their work is based on modifications of a large class

of centered Finite-Difference schemes for the wave equation. This work can accommodate

arbitrary requirements for reduced phase or group velocity dispersion errors, defined over

the wavenumber domain. Schemes obtained this way can give exact phase velocity at any

key wavenumbers, at the cost of accuracy of the scheme, which is closely related to small

dispersion error for wavenumbers near zero.

The (2,2) scheme has proved to work stably and effectively [3]. However, limits in the

temporal accuracy are obvious due to its second-order approximation. Smaller time steps

or smaller grid size helps to increase precision but also increases the computation. Many

methods, such as high-order, staggered-grid and implicit methods have been developed to

increase the accuracy while not largely complicating the computation. Here, we will focus

on the technique of swapping derivatives [3], i.e., using a wider spatial stencil and thus

higher spatial accuracy to compensate for the accuracy in time. Practical advantages were

observed for the scalar wave equation [11,4].

In our work, we develop a unified methodology similar to the methods in [5,6,11], and we



prove that the system of coefficients obtained by the accuracy requirement at wavenumber

zero accompanied with exact dispersion relations can be solved for arbitrary wavenumbers

up to the Nyquist. We will also conclude that dispersion can be approximated to higher

order at arbitrary wavenumbers other than zero. Our methodology is equivalent to that in

[6]. However, we will prove the solvability for arbitrary wavenumbers for the first time. We

will also see improvement of the dispersion approximation on the whole interval.

After a brief description of some key facts and notations, this document is devided into

six sections. In the first section, we talk about the dispersion relation for wave equations

and phase velocity, both for the continuous problem and for Leap-frog schemes. Section

2 introduces the traditional way of deriving a finite difference scheme and Lax-Wendroff

analysis. We will see increased temporal accuracy with only three grid points in time.

Section 3 presents the solvability for the coefficients for these new schemes, where exact

dispersion is assigned at any wavenumber less than Nyquist. Section 4 presents numerical

experiments comparing the new schemes with traditional schemes. Sections 5 and 6 sum

up related work done for higher dimensions, and propose our future goals regarding group

velocity angle dependence and stability analysis.

Facts and notations

1. Vandermonde matrix

V =


z0

1 z0
2 · · · z0

n

z1
1 z1

2 · · · z1
n

...
... · · ·

...

zn−1
1 zn−1

2 · · · zn−1
n

 (1)

is called a Vandermonde matrix with determinant

det(V ) =
∏

1≤j<k≤n
(zk − zj)

We will call the {zl}’s the generating elements of the Vandermonde matrix. For sim-

plicity, we make the convention that 1× 1 Vandermonde matrix with zero generating



element has determinant 1.

2. Chebyshev polynomials

The Chebyshev polynomials are defined by the recurrence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

They can also be defined as Tn(x) = cos(n arccosx) for −1 ≤ x ≤ 1. If x = cos(θ),

then θ = arccos(x), and Tn(x) = cos(nθ). The Chebyshev polynomials are orthogonal

in the following sense

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =


0 m 6= n,

π
2 m = n 6= 0,

π m = n = 0,

so when comparing two expansions in Chebyshev polynomials, we only need to com-

pare the coefficients for each Tn(x).

3. We will use dM (x1, . . . , xj)[k1, . . . , kl] to denote the determinant of the matrix obtained

from the Vandermonde matrix whose generating elements are the integers from 02 to

M2, with the last j + l rows removed (so p = M − (j + l)) and replaced by j rows

of Chebyshev polynomials in variables x1, . . . , xj , and with l columns removed, where



the {ki}’s are the missing generating elements from the Vandermonde matrix.

dM (x1, . . . , xj)[k1, . . . , kl] = det



1 1 · · · k̂0
1 · · · k̂0

l · · · 1

0 1 · · · k̂2
1 · · · k̂2

l · · · M2

...
...

...
...

...
...

...
...

0 12p · · · k̂2p
1 · · · k̂2p

l · · · M2p

1 T1(x1) · · · T̂k1(x1) · · · T̂kl(x1) · · · TM (x1)
...

... · · ·
...

... · · ·
...

...

1 T1(xj) · · · T̂k1(xj) · · · T̂kl(xj) · · · TM (xj)


(2)

If there is no missing element, we will just use dM (x1, . . . , xj). Similarly, we use just

dM [k1, . . . , kl] when j = 0.

0.1 Dispersion relation and phase velocity

A linear dispersive equation is one that admits plane wave solutions of the form ei(ωt−ξx),

with the property that the speed of propagation of these waves dependends on ξ, the wave

number [12]. Specifically, the frequency ω is a function of the wave number ξ determined

by the particular equation. The speed of wave propagation (or phase velocity) by definition

[16] is

cp(ξ) =
ω(ξ)

ξ

If the function ω(ξ) is linear, the equation is called nondispersive. To find the function ω(ξ),

we take Fourier Transforms of the equation, or equivalently plug in the plane wave solution

ei(ωt−ξx).

Examples

The advection equation ut = ux has dispersion relation ω = ξ.

The wave equation utt = uxx has dispersion relation ω2 = ξ2, i.e. ω = ±ξ.

The heat equation ut = uxx has dispersion relation iω = −ξ2.

The Schrödginger equation ut = iuxx has dispersion relation ω = −ξ2.



So the advection equation and wave equation are nondispersive, but the Schrödinger equa-

tion and the heat equation are dispersive.

Now we turn our attention to numerical methods. Even if an equation is nondispersive,

a discrete model of it might be dispersive. We first look at semi-discretization of the above

equations with centered differences in space and their numerical dispersion relations:

ut =
1

2∆x
(uj+1 − uj−1) , with ω =

1

∆x
sin(ξ∆x)

utt =
1

(∆x)2
(uj+1 + uj−1 − 2uj) , with ω2 =

4

(∆x)2
sin2(

ξ∆x

2
)

ut =
1

(∆x)2
(uj+1 − 2uj + uj−1) , with iω = − 4

(∆x)2
sin2(

ξ∆x

2
)

ut = i
1

(∆x)2
(uj+1 − 2uj + uj−1) , with ω = − 4

(∆x)2
sin2(

ξ∆x

2
)

Comparison between the true and numerical dispersion relations for the examples are

drawn below (Figures 1 to 4). We will always use black curves to show the true solution.

We use the dot line to indicate complex solution.

As we can see, all the numerical dispersions coincides with the true dispersions near

ξ = 0, but as wavenumbers get further away from zero, the approximations get worse.

In this work, we will develop schemes for the one dimensional wave equation

(
∂2

∂x2
− 1

c2

∂2

∂t2
)u = 0

whose purpose is to give better numerical dispersion away from zero while preserving accu-

racy at zero. Here u = u(x, t) is the wave field and c is the true phase velocity. First take

Fourier Transforms to get the dispersion relation for the continuous problem

ω2 = c2ξ2

(t → ω, x → ξ) Without loss of generality, we look at the rightward propagating wave

with dispersion relation ω = cξ. Now ω as a function of ξ is ω(ξ) = cξ. Hence the wave

equation is nondispersive with a phase velocity c(ξ) = ω(ξ)
ξ = c. We start our analysis from

the full discretization with the classical Leap-frog scheme for above equation, using 3 points
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Figure 1: Advection equation
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Figure 2: Wave equation
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Figure 3: Heat equation
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Figure 4: Schrödinger equation



respectively to approximate the 2nd order time and spatial derivatives. This leads to the

following discretization

un+1
j − 2unj + un−1

j − γ2(unj+1 − 2unj + unj−1) ≈ 0.

Here γ = c∆t
∆x is the CFL number, and un+l

j+m = u(x + m∆x, t + l∆t) denotes the grid

function. By taking discrete Fourier Transforms, we get the numerical dispersion relation

1− cos(ω∆t)− γ2 + γ2 cos(ξ∆x) ≈ 0.

As we can see, the numerical dispersion is multi-valued and periodic in ξ∆x and ω∆t. At

any wavenumber ξ̃ above π
∆x , the wave is indistinguishable from a wave of lower wavenumber

ξ, i.e., if ξ̃ = ξ + 2πm
∆x , we see the same wave on the grid. So it is enough to consider the

values within (ξ, ω) ∈ [0, π
∆x ]× [0, π∆t ]. The phenomenon is called aliasing, which can plague

numerical computations when there are not enough spatial grid points per wavelength.

The numerical phase velocity computed from above is (again we look at the rightward

propagating wave)

c(ξ) =
ω(ξ)

ξ
=

2

ξ∆t
sin−1

√
c2(∆t)2

(∆x)2
sin2

(
ξ∆x

2

)
Just as in the semi-discrete situation, this is again a dispersive relation.

We will call Ω = ω∆t the Normalized Frequency and K = ξ∆x the Normalized

Wavenumber, and K = π is called the Nyquist wavenumber.

0.2 Accuracy analysis and finite difference

Continuing our analysis in the previous section, we will use a (3,2M+1) stencil, with 3 points

for temporal derivative and 2M+1 for spatial derivative. The cm’s are free coefficients in

the scheme:

un+1
j + un−1

j +
M∑
m=0

cm(unj+m + unj−m) ≈ 0.

The benefit of a wider spatial stencil is that we can get higher temporal accuracy without

having to use more time steps. This is done through Lax-Wendroff analysis, also called



derivative swapping. To illustrate this idea, let’s look at accuracy of the scheme. We plug

the true solution into the difference scheme to compute the local truncation error using

Taylor expansions (recall un+l
j+m = u(x+m∆x, t+ l∆t)):

LTE = u(x, t+ ∆t) + u(x, t−∆t) +

M∑
m=0

cm(u(x+m∆x, t) + u(x−m∆x, t))

=

(
u(x, t) + ∆t

∂

∂t
u+ (∆t)2 ∂

2

∂t2
u+ . . .

)
+

(
u(x, t)−∆t

∂

∂t
u+ (∆t)2 ∂

2

∂t2
u− . . .

)
+ 2c0u(x, t) +

M∑
m=1

cm(2u(x, t) + 2(m∆x)2 ∂
2

∂x2
u+ 2

∂4

∂x4
u+ . . . )

In Lax-Wendroff analysis, we replace temporal derivatives by spatial derivatives, which we

can do by differentiating the original equation ( ∂2

∂x2
− 1

c2
∂2

∂t2
)u = 0. For even orders 2k of

derivatives, we have ( ∂2k

∂x2k
− 1

c2k
∂2k

∂t2k
)u = 0. Replacing the temporal derivatives in above

equation by spatial derivatives, we get

LTE = 2u(x, t) + 2c2(∆t)2 ∂
2

∂x2
u+ · · ·+ 2c0u(x, t)

+
M∑
m=1

cm(2u(x, t) + 2(m∆x)2 ∂
2

∂x2
u+ 2

∂4

∂x4
u+ . . . )

=

(
2 + 2c0 +

M∑
m=1

2cm

)
u(x, t) +

(
2(∆t)2c2 + 2

M∑
m=1

2cm(m∆x)2

)
∂2

∂x2
u

+

(
2(∆t)4c4 + 2

M∑
m=1

2cm(m∆x)4

)
∂4

∂x4
u+ . . .

We make the first p + 1 terms vanish, dividing each equation by (∆x)2n and replacing

c∆t
∆x by γ to get:

2 +

M∑
m=0

2cm = 0,

2(γ2)j + 2

M∑
m=1

2cm(m2)j = 0, j = 1, . . . , p.



Now we have accuracy of order 2p at (x, t) in space. But notice when ∂2n

∂x2n
u vanishes,

1
c2n

∂2n

∂t2n
u vanishes as well, so although we only have three grid points in the time stencil

(and thus apparently only second-order accuracy in time) we are actually getting higher-

order accuracy in time [4]. [6, 11] have more details on the comparison of schemes with and

without Lax-Wendroff derivative swapping.

Our goal is to find a set of coefficients {cm}Mm=0, with required accuracy at zero and

improved dispersion approximation on the whole interval up to the Nyquist wavenumber.

Applying discrete Fourier transforms in above general scheme, we get the following

approximation of exact dispersion

cos(Ω) +
M∑
m=0

cm cos(mK) ≈ 0,

where Ω denotes the normalized frequency and K denotes the normalized wave number as

before. Let

ε = cos(Ω) +
M∑
m=0

cm cos(mK).

Let’s first choose to Taylor expand ε at Ω = 0 and K = 0.

We get the following expansion

ε =
∞∑
j=0

(−1)j

(2j)!
(Ω)2j +

M∑
m=0

cm

 ∞∑
j=0

(−1)j

(2j)(mK)2j



=

∞∑
j=0

(−1)j

(2j)!

[
(Ω)2j +

M∑
m=0

cm(mK)2j

]
.

If we make the first p+1 terms in the infinite series vanish, we get order 2p accuracy of disper-

sion at zero. For j = 0, we get 1+
∑M

m=0 cm = 0. For j = 1, −1
2

[
(Ω)2 +

∑M
m=0 cm(mK)2

]
=

0. For general j ≥ 2, we get (Ω)2j +
∑M

m=0 cm(mK)2j = 0. Plugging in the true dispersion

relation ω2 = c2ξ2, or equivalently Ω = γK, and replacing the Ω in the equation above, we

get (γK)2j +
∑M

m=0 cm(mK)2j = 0. This altogether gives us p + 1 equations. From here

we see that accuracy of the dispersion relation near wavenumber zero is equivalent to the

usual definition of accuracy of the difference scheme at (x, t).



0.3 Dispersion reduction scheme

So far we have put p+ 1 constraints on the {cm}Mm=0, so we still need q = (M + 1)− (p+ 1)

constraints to make up a (M + 1) × (M + 1) system. We prescribe the exact dispersion

relation at q normalized wave numbers

cos(Kjγ) +
M∑
m=0

cm cos(mKj) = 0, j = 1, . . . q,

where the domain for Kj is (0, π].

Now we have obtained a system of M + 1 equations in M + 1 unknowns:

c0(02)0 + c1(12)0 + . . .+ cM (M2)0 = −(γ2)0

c0(02)1 + c1(12)1 + . . .+ cM (M2)1 = −(γ2)1

...

c0(02)p + c1(12)p + . . .+ cM (M2)p = −(γ2)p

c0 + c1 cos(K1) + . . .+ cM cos(MK1) = − cos(γK1)

c0 + c1 cos(K2) + . . .+ cM cos(MK2) = − cos(γK2)

...

c0 + c1 cos(Kq) + . . .+ cM cos(MKq) = − cos(γKq).

Equivalently, 

1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12p · · · M2p

1 cos(K1) · · · cos(MK1)
...

... · · ·
...

1 cos(Kq) · · · cos(MKq)





c0

c1

...

cp

cp+1

...

cM


=



−(γ2)0

−(γ2)1

...

−(γ2)p

− cos(γK1)
...

− cos(γKq)


. (3)



To obtain a new scheme with exact dispersion at {Kj}, we solve the system above for {cj}.

Conjecture The system above has a unique solution for all distinct {Kj}q1 in (0, π]. Fur-

thermore, the determinant of the coefficient matrix is

αM

q∏
j=1

(1− cos(Kj))
p+1

∏
1≤m<k≤q

(cos(Kk)− cos(Km)),

where αM is a constant only depending on the order of matrix.

If q = 0 in above system, we only put restrictions on accuracy at K = 0, and the

coefficient matrix is a Vandermonde matrix, which is invertible since the generating elements

are 02, 12, . . . ,M2, which are all distinct. [11]

0.3.1 Specify exact phase velocity at one wavenumber

To begin with, let’s consider the case where only one exact dispersion relation is required.

Our coefficient matrix looks like

1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−1) · · · M2(M−1)

1 cos(K) · · · cos(MK)


(4)

Proposition The matrix above is invertible for all K in (0, π], and its determinant is

equal to

dM (x) = αM (1− cos(K))M ,

where the constant αM = (−1)M2M−1dM−1 only depends on the dimension M .

Letting x denote cos(K) and using the notation of Chebyshev polynomials, to compute

dM (x), we can expand the matrix in to the last row (see below), and can thus write the

determinant as a linear combination of Chebyshev polynomials.

To get the constant αM , we just need to compare the leading coefficient in dM (x) and

(1− x)M . For the determinant, since Tj has leading coefficient 2j−1, and the highest order



of Tj is M when expanding according to the last entry of the last row. Thus we know that

(−1)2MdM−1TM (x) and αM (1−x)M have the same leading coefficient and we conclude that

αM = (−1)MdM−12M−1.

Proof. We prove the relation by proving that the two sides of the equation have the same

induction relations, with the same initial value. For M = 1,

d1(x) =

1 1

1 cos(K)

 = cos(K)− 1 (5)

α1(1− cos(K))1 = (−1)121−1d0(x)(1− cos(K))1 = cos(K)− 1

The induction relation on the polynomial side is simple:

αM (1− x)M = αM (1− x)M−1(1− x) = αM−1(1− x)M−1(1− x)
αM
αM−1

.

So to prove the result, we only need to show dM (x) = αM
αM−1

(1− x)dM−1(x)

We compute the determinant of the matrix of order (M + 1)× (M + 1), expand by the

last row to get

dM (x) =

M∑
j=0

(−1)M+1+j+1 cos(jK)dM [j] =

M∑
j=0

(−1)M+1+j+1Tj(x)dM [j]

We compute (1− x)dM−1(K) to get

(1− x)dM−1(x)

= (1− x)

M−1∑
j=0

(−1)M+j+1 cos(jK)dM−1(x)[j]

=
M−1∑
j=0

(−1)M+j+1(1− x)Tj(x)dM−1(x)[j]

Here we use the recursion relation listed above for Chebyshev polynomials, reorganize to



get

(1− x)dM−1(x) =

[
(−1)M−1dM−1[0]− 1

2
(−1)M−1+0+1dM−1[1]

]
T0(x)+[

(−1)MdM−1[1]− (−1)M−1dM−1[0]− 1

2
(−1)M−1dM−1[2]

]
T1(x)+

M−2∑
k=2

[
(−1)M−1+kdM−1[k]− 1

2
(−1)M−1+k+1dM−1[k + 1]− 1

2
(−1)M−1+k−1dM−1[k − 1]

]
Tk(x)

+

[
(−1)M−1+MdM−1[M − 1]− 1

2
(−1)M−1+M−1dM−1[M − 2]

]
TM−1(x)−

1

2
(−1)M−1+MdM−1[M − 1]TM (x)

To show dM (x) = αM
αM−1

(1−x)dM−1(x), notice that Chebyshev polynomials are orthogonal,

so we compare the coefficients term by term.

By direct computation, we see that result holds for k = 0, 1,M − 1 and M ,i.e.

(−1)M+1+0+1T0(x)dM [0] =

(
(−1)M−1dM−1[0]− 1

2
(−1)M−1+1dM−1[1]

)
T0(x)

etc. Now for the general case, first notice that dM−1 and all the {dM−1[k]}’s are Vander-

monde matrices. We use the fact that

dM−1 = dM−2

∏
0≤l≤M−2

((M − 1)2 − l2) = dM−1[M − 1]
∏

0≤l≤M−2

((M − 1)2 − l2) (6)

and

dM−1 = dM−1[k]
∏

0≤l≤k−1

(k2 − l2)
∏

k+1≤l≤M−1

(l2 − k2) (7)

To simplify, we compute the right hand side of above equation∏
0≤l≤k−1

(k2 − l2)
∏

k+1≤l≤M−1

(l2 − k2)

=
∏

0≤l≤k−1

(k − l)
∏

0≤l≤k−1

(k + l)
∏

k+1≤l≤M−1

(l − k)
∏

k+1≤l≤M−1

(l + k)

=

 ∏
1≤l≤k

l

 ∏
k≤l≤2k−1

l

 ∏
1≤l≤M−1−k

l

 ∏
2k+1≤l≤M−1+k

l


=

1

2
(M − 1− k)!(M − 1 + k)! (8)



Similarly

∏
0≤l≤M−2

((M − 1)2 − l2) =

 ∏
1≤l≤M−1

l

 ∏
M−1≤l≤2M−3

l

 =
1

2
(2(M − 1))! (9)

Now plug (7) and (8) back into (5) and (6), equate (5) and (6) to obtain

dM−1[k]

dM−2
=

(
2(M − 1)

(M − 1)− k

)
We look at dM [k] in the similar way and obtain dM [k] = dM−1

(
2M
M−k

)
Finally, we compute the k-th term of dM [x]/

(
αM
αM−1

(1− x)dM−1

)
dM [k]/

(
2dM−1

dM−2

[
dM−1[k] + 1

2dM−1[k + 1] + 1
2dM−1[k − 1]

])
= dM [k]/

(
2dM−1

[(2(M−1)
M−1−k

)
+ 1

2

( 2(M−1)
M−1−(k+1)

)
+ 1

2

( 2(M−1)
M−1−(k−1)

)])
= dM−1

(
2M
M−k

)
/
(

2dM−1

[(2(M−1)
M−1−k

)
+ 1

2

( 2(M−1)
M−1−(k+1)

)
+ 1

2

( 2(M−1)
M−1−(k−1)

)])
= 1

(10)

So far, we have proven that two sides satisfy the same induction relation, with the same

initial value, as desired.

0.3.2 Specify exact phase velocity at two distinct wavenumbers

Now we go up to two exact dispersion restrictions. The following matrix will be of concern:

1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

1 cos(K2) · · · cos(MK2)


(11)

Our claim is that this matrix is invertible for all distinct Kj ’s from (0, π), with determinant

αM (1 − cos(K1))M−1(1 − cos(K2))M−1(cos(K2) − cos(K1)). Moreover, by comparing the

highest order term, we get the constant αM = 22M−3dM−2



For this case, we will again use Chebyshev polynomials, let cos(K1) = T (x) and cos(K2) =

T (y). We will directly expand both sides in Chebyshev polynomials, compare the coeffi-

cients of corresponding terms and show that they are equal. Now since we have two angles,

we will need Chebyshev polynomials in two variables. By Stone−Weiestrass Theorm, we

see that {Tk(x)Tj(y)} form a orthogonal basis for the polynomial space of two variables.

We will need to use the result for the previous case.

Proof. We compute the (k, j)-th coefficient in the determinant under Chebyshev polynomial

expansion for dM (x, y)

We expand dM (x, y) in the last row first to get

dM (x, y) =
M∑
j=0

(−1)M+1+j+1Tj(y)dM (x)[j]

For a fixed j, we expand dM (x)[j] by the last row.

dM (x)[j] = det


(02)0 . . . (̂j2)0 . . . ((M)2)0

...
...

...
...

...

(02)M−2 . . . ̂(j2)M−2 . . . ((M)2)M−2

T0(x) . . . T̂j(x) . . . TM (x)

 = (12)

M∑
k=0,k 6=j

(−1)M+k+1Tk(x) det


(02)0 . . . (̂k2)0 . . . (̂j2)0 . . . ((M)2)0

...
...

...
...

...
...

...

(02)M−2 . . . ̂(k2)M−2 . . . ̂(j2)M−2 . . . ((M)2)M−2


(13)

Hence the (k, j)-th term in Chebyshev polynomial with k 6= j has coefficient (−1)k+j+1dM [k, j]

Notice

dM = dM [j]
∏

j+1≤l≤M
(l2 − j2)

∏
0≤l≤j−1

(j2 − l2)

and

dM [j] = dM [k, j]
∏

0≤l≤k−1

(k2 − l2)
∏

k+1≤l≤M,l 6=j
(l2 − k2)



Together we obtain

dM = dM [k, j]
∏

j+1≤l≤M
(l2 − j2)

∏
0≤l≤j−1

(j2 − l2)
∏

0≤l≤k−1

(k2 − l2)
∏

k+1≤l≤M,l 6=j
(l2 − k2)

Now we expand the terms and simplify to get

dM [k, j] =
4(j2 − k2)dM

(M + j)!(M − j)!(M + k)!(M − k)!

Now we compute the (k, j)-th term on the polynomial side. Notice we already have the

Chebyshev expansion for (1− x)M in case q = 1.

αM (1− x)M−1(1− y)M−1(y − x)

= 22M−3dM−2(
1

(−1)M2M−2dM−2

M−1∑
j=0

(−1)M+j+1Tj(x)dM−1[j]×

M−1∑
k=0

(−1)M+k+1Tk(y)dM−1[k](y − x))

=
(−1)j+k+1

dM−2
(dM−1[j](dM−1[k + 1] + dM−1[k − 1])− dM−1[k](dM−1[j + 1] + dM−1[j − 1]))

= (−1)k+j+1dM−2(

(
2(M − 1)

M − j

)(
2(M − 1)

M − (k + 1)

)
+

(
2(M − 1)

M − j

)(
2(M − 1)

M − (k − 1)

)
−(

2(M − 1)

M − k

)(
2(M − 1)

M − (j + 1)

)
−
(

2(M − 1)

M − k

)(
2(M − 1)

M − (j − 1)

)
)

(14)

To prove the equality, we compute the ratio of the (k, j)-th term in dM (x, y) and αM (1 −

x)M−1(1− y)M−1(y − x)

ratio =
4dM

dM−2((2M)!)22M(2M − 1)
= 1

Remark For the q = 2 case, we have more boundary terms to check. Including the case

where |k− j| = 1, and at least one of k and j is 0,1, M − 1 or M . But all of these cases are

easy to justify.



0.3.3 Higher order approximation of dispersion relation at wavenumber away from zero

We begin our analysis from the following equation

det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

0 cos(K2)−cos(K1)
K2−K1

· · · cos(MK2)−cos(MK1)
K2−K1


(15)

=
1

K2 −K1
det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

0 cos(K2)− cos(K1) · · · cos(MK2)− cos(MK1)


(16)

=
1

K2 −K1
det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

1 cos(K2) · · · cos(MK2)


(17)



Take any K1 6= 0, π, and let K2 → K1, use the explicit formula we have for the determinants,

we get the following limit

lim
K2→K1

det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

0 cos(K2)−cos(K1)
K2−K1

· · · cos(MK2)−cos(MK1)
K2−K1



= lim
K2→K1

1

K2 −K1
det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

1 cos(K2) · · · cos(MK2)



= lim
K2→K1

1

K2 −K1
αM (1− cos(K1))M−1(1− cos(K2))M−1(cos(K2)− cos(K1))

= −αM sin(K1)(1− cos(K1))2M−2

This expression is non-zero. On the other hand, the limit above is also

lim
K2→K1

det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

0 cos(K2)−cos(K1)
K2−K1

· · · cos(MK2)−cos(MK1)
K2−K1





= det



1 1 · · · 1

0 1 · · · M2

...
... · · ·

...

0 12(M−2) · · · M2(M−2)

1 cos(K1) · · · cos(MK1)

0 sin(K1) · · · M sin(MK1)


Now we have a new coefficient matrix, which is again invertible. Computing coefficients from

here would give us order 1 approximation of the dispersion curve. Numerical demonstration

is shown below.

0.4 Numerical experiments and stability criteria

We first look at stability criteria. Our scheme should look like

un+1
j + un−1

j +

M∑
m=0

cm
(
unj−m + unj+m

)
= 0

Do von Neumann analysis, plug in unj = (eiK)jgn to get

g2 + 2

(
M∑
m=0

cm cos(mK)

)
g + 1 = 0

For |g| ≤ 1, we let |
∑M

m=0 cm cos(mK)| ≤ 1, all K ∈ [0, π].

In this section, we will do experiments for traditional scheme where all cj ’s were deter-

mined by accuracy at (K,Ω) = (0, 0); then for the new scheme, we put the constraints at

K = π
2 , for both only one exact disperson and two exact dispersions. Finally we demon-

strate the higher order approximation of phase velocity curve with result from Section 3.3.

For all the wave propagation experiments, we will use u(x, 0) = sin(2πξx) as our initial

wave signal, even number of interior points, and periodic boundary conditions. We will use

the sampling rate of 4 grid points per wavelength, and γ = 0.6. We let the wave propagate

on the interval of [0, 3], but for the purpose of demonstration, only draw the blow-up on

[0, 0.2]. The true wave is drawn in black for comparison. Max error e traditional is the
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Figure 5: Velocity curves, γ = 0.8 Traditional scheme

L∞ distance between the phase velocity for the true solution and that of the numerical

solution on (0, π].

0.4.1 Traditional schemes

The figures show the phase velocity curves as a function of normalized wavenumber for

traditional schemes, with four different γ’s. For each γ, we draw the curves for four different

spatial sampling rate. From the figures we see that for all the different CFL numbers, the

numerical velocity is always no bigger than the true phase velocity. So when we compute

the wave equation with these schemes, we will always see wave falling behind the true wave.

As the wavenumber goes up to π, the phase curve gets further less than the true dispersion

curve.

First we obtain coefficients and max error with M = 2. (Phase velocity is the green

curve in Figure 6)
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Figure 6: Velocity curves, γ = 0.6 Traditional scheme
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Figure 7: Velocity curves, γ = 0.4 Traditional scheme
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Figure 8: Velocity curves, γ = 0.2 Traditional scheme

c_0 =-0.5824, c_1 =-0.4368, c_2=0.0192

e_traditional = 0.2338

The following figures show the lagging of numerical wave at different time steps:

As we can see, after only 34 time steps, the computed wave is already behind the true

wave (Figure 10); after 83 time steps, we can see that the numerical solution is roughly 1/4

wavelength behind the true solution (Figure 11). After 193 steps, we can see a slow down

of half a wavelength (Figure 12).

Now we get our coefficients with M = 3. (Phase velocity is the blue curve in Figure 6)

c_0 =-0.5591, c_1 =-0.4717, c_2=0.0332,c_3=-0.0023

e_traditional = 0.1940

We observe a reduction of max dispersion error, as indicated in the phase velocity curve.

As we can see from Figures 13 to 16, the lagging of numerical solution is not as obvious

as M = 2 case; as time goes on, however, lagging still occurs.
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Figure 9: Initial time, traditional scheme with M = 2
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Figure 10: Time step 34, traditional scheme with M = 2
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Figure 11: Time step 83, traditional scheme with M = 2
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Figure 12: Time step 193, traditional scheme with M = 2
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Figure 13: Initial time, traditional scheme with M = 3
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Figure 14: Time step 34, traditional scheme with M = 3
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Figure 15: Time step 83, traditional scheme with M = 3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t = 9.65000e−01  after  193 time steps

Figure 16: Time step 193, traditional scheme with M = 3
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Figure 17: Velocity curve, exact dispersion at π
2

0.4.2 Phase velocity exact at π
2

For one exact dispersion, we develop scheme with M = 2, and assign exact dispersion at π
2 .

Phase velocity curve is drawn.

From Figure 18, we see exact phase velocity at π
2 .

We compute the new coefficients and the max error e new pi over 2 for the new scheme

c_0 =-0.5617, c_1 =-0.4644, c_2 =0.0261

e_new_pi_over_2 = 0.2043

We can see improved max error over the whole interval up to π compared with traditional

M = 2 scheme.

We can see obvious improvement for the numerical phase velocity compared to the

traditional method from Figures 20 to 22. After 865 time steps, we still get almost the same

velocity for the numerical and true solution.
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Figure 18: Velocity curve, exact dispersion at π
2 , blow-up
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Figure 19: Initial time, Exact dispersion at π
2 , with M = 2
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Figure 20: Time step 34, Exact dispersion at π
2 , with M = 2
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Figure 21: Time step 83, Exact dispersion at π
2 , with M = 2
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Figure 22: Time step 865, Exact dispersion at π
2 , with M = 2

0.4.3 Phase velocity exact at K1 = π
2 and K2 = π

2 + π
8

Now we examine the new schemes with two exact dispersion assigned. In this section, we

will look at the case for M = 3 for all wave propagation experiments. First we show figures

of dispersion curve with exact dispersion at π
2 and another wavenumber near by. Coefficients

are obtained with K1 = π
2 and K2 = π

2 + π
8 . We first show dispersion curves.

c_0 =-0.5347, c_1 =-0.5116, c_2 =0.0531, c_3=-0.0067

e_new_pi_2_twopoints = 0.1470

There is an observed improvement of overall approximation to dispersion from above

computation.

Now we use the new set of coefficients to compute the wave propagation

After 865 time steps, there is still no obvious phase lag, as expected.
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Figure 23: Velocity curve, exact dispersion at π
2 and π

2 + π
8 M = 3
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Figure 24: Velocity curve, exact dispersion at π
2 and π

2 + π
8 , M = 3 , blow-up
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Figure 25: Initial time, exact dispersion at π
2 and π

2 + π
8 , M = 3
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Figure 26: Time step 34, exact dispersion at π
2 and π

2 + π
8 , M = 3
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Figure 27: Time step 83, exact dispersion at π
2 and π

2 + π
8 , M = 3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t = 4.32500e+00  after  865 time steps

Figure 28: Time step 865, exact dispersion at π
2 and π

2 + π
8 , M = 3
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Figure 29: Velocity curve, tangent approximation, M = 3

0.4.4 Higher order approximation of phase velocity at π
2

Here we present the scheme discussed in Section 3.3.

c_0 =-0.5407, c_1 =-0.5011, c_2 =0.0471, c_3=-0.0052

e_new_pi_over_2_tangent = 0.1597

The phase velocity curve are drawn in Figure 29 and 30. Tangent approximation at π
2

can be easily seen.

Now we use the coefficients above to compute wave propagation. As shown below (Figure

34), we ger really good approximation at time step 865.

Finally we show the dispersion curves drawn with two points pinned down and higher

order approximation, for four different CFL numbers γ. The legends indicate how far the

second point is from π
2 . (Figures 35 to 38)
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Figure 30: Velocity curve, tangent approximation, M = 3, blow-up
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Figure 31: Initial time, with tangent approximation, M = 3
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Figure 32: Time step 34, with tangent approximation, M = 3
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Figure 33: Time step 83, with tangent approximation, M = 3
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Figure 34: Time step 865, with tangent approximation, M = 3
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Figure 35: Velocity curve, γ = 0.8
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Figure 36: Velocity curve, γ = 0.6
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Figure 37: Velocity curve, γ = 0.4



0 0.5 1 1.5 2 2.5 3 3.5
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Normalized Wavenumber

P
h
a
s
e
 V

e
lo

c
it
y

gamma=0.2, exact dispersion at 2pi/4

 

 

pi/4

pi/8

pi/16

pi/32

tangent

true

Figure 38: Velocity curve, γ = 0.2

0.5 2D and higher dimension cases

For higher dimension cases, we consider the equation ∂2u
∂t2
− c2∆u = 0. In two dimensional

case for example, we start off with the following discretization [5]

un+1
i,j − 2uni,j + un−1

i,j − γ
2
x

[
uni+1,j − 2uni,j + uni−1,j

]
− γ2

y

[
uni,j+1 − 2uni,j + uni,j−1

]
= 0

with γx = c∆t
∆x and γy = c∆t

∆y . Group the symmetric terms and free the coefficients to obtain

a general scheme

un+1
i,j + un−1

i,j − 2c1u
n
i,j + c2(uni+1,j + uni−1,j) + c3(uni,j+1 + uni,j−1) = 0

Do discrete Fourier transform to obain our dispersion relation

cos(Ω) + c1 + c2 cos(Kx) + c3 cos(Ky) = 0



Here Kx = ξx∆x and Ky = ξy∆y denotes respectively the x and y direction in spectral

domain. We can choose to solve for new scheme only concerning ourselves with these two

directions, which uses essentially the same strategy as the one-dimensional case; A more

interesting point of view is to replace Kx and Ky with spectral direction depending terms

K cos(φ) and K sin(φ), thus obtain the dispersion relation

cos(Ω) + c1 + c2 cos(K cos(φ)) + c3 cos(K sin(φ)) = 0

Now we have more freedom to choose how to obtain the scheme. For example, here we

can fix one angle φ and pick three different wavenumbers for the dispersion to be exact; we

can look at three different angles, but at only one wavenumber; or we pick three pairs of

(φ,K).

If we apply the same stencil in both x and y direction, and set up our general scheme as

un+1
i,j + un−1

i,j +
M∑
m=0

cm(uni+m,j + uni−m,j + uni,j+m + uni,j−m) = 0

discrete Fourier transform gives the following numerical dispersion

cos(Ω) +
M∑
m=0

cm[cos(mK cos(φ)) + cos(mK sin(φ))] = 0

We apply the same analysis as in Section 3 to do Taylor expansion at (Ω,K) = (0, 0)

with accuracy requirements

γ2j +
M∑
m=0

cmm
2j [cos(φ)2j + sin(φ)2j ] = 0 j = 0, . . . , p

Now the coefficients for our scheme are angle dependent. Let fj(φ) = cos(φ)2j+sin(φ)2j .

Liu and Sen in their work [11] found the angle π
8 as their optimal choice, for fj(

π
8 ) gives the

most repeat values for φ within [−π, π]. This can be easily seen as

fj(φ) = cos(φ)2j + sin(φ)2j =
1

2j
(1− cos(2φ))j +

1

2j
(1 + cos(2φ))j



The fact that cos(2φ) is even function itself, and both of cos(2φ), − cos(2φ) are in the

function indicates that we can find 8 repeats when taking φ between 0 and π
4 , π

8 being the

middle guarantees even distribution of angles.

One of our future goals is to look at angle dependence and solve for the coefficients such

that we get a good approximation uniformly in angle. For the 3-dimensional problem, Wang

and Teixeira [15] first expanded the numerical dispersion error ( same as our ε in Section 2

) in spherical harmonics in terms of propagating angle, then made the first few terms made

to be zero. Now the scheme is frequency dependent, they then do Taylor expansion in the

frequency variable.

0.6 Group velocity

For dispersive equations, problems concerning speed of propagation arise when we are deal-

ing with a wave packet containing several modes with different frequencies. Consider an

initial wave packet f(x, 0) near the origin, with Fourier transform f̂(ξ), then at time t ≥ 0,

the solution is

f(x, t) =

∫ ∞
−∞

f̂(ξ)ei(ω(ξ)t−ξx)dξ

Now this solution is a superposition of waves of different wavenumbers, each traveling

with its own phase velocity cp(ξ), dispersing as time evolves. As t→∞, we can only observe

wave at stationary phase with respect to ξ, i.e. d
dξ

(
ω(ξ)− ξx

t

)
= 0, dω

dξ −
x
t = 0. We define

cg(ξ) =
dω(ξ)

dξ

to be the group velocity [16]. Group velocity carries information about energy of the wave

packet, so we will develop schemes in the future aiming at giving good approximation of

group velocity.

Generally, phase velocity and group velocity are not equal. For example, for dispersive

equation

ut + aux + buxxx = 0



with dispersion relation ω(ξ) = aξ − bξ2, then we have

cg(ξ) = a− 3bξ2

but

cp(ξ) = a− bξ2

Now we look at the numerical group velocity computed from three common schemes.

Use the fact dω
dξ = 1, we implicitly differentiate the above equations with respect to ξ to get

LF sin(ω∆t) =
∆t

∆x
sin(ξ∆x)

CN 2 tan(
ω∆t

2
) sec2(

ω∆t

2
) =

∆t

∆x
sin(ξ∆x)

LF4 sin(ω∆t) =
4

3

∆t

∆x
sin(ξ∆x)− 1

6

∆t

∆x
sin(2ξ∆x)

Note that the Nyquist frequency gives zero group velocity and in this sense, we treat

Nyquist as a singularity for this computation, we will have to make a choice between good

approximation and information on the whole spectral domain. We would like to find a

theorical upper bound of wavenumbers, and develop schemes that give ’good’ numerical

group velocity for all wavenumbers up to that upper bound.

Here we show wave propagation with initial wave packet u(x, 0) = e−16(x−0.5)2 sin(2πξx).

Figure 39 is drawn with traditional scheme for M = 2, and Figure 40 with the new scheme

developed with exact dispersion at K = π
2 . Take γ = 0.6.

As we can see, using scheme developed for exact phase velocity still helps reduce the

lag in group velocity. We would like to study schemes improving group velocity dispersion

directly.



0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
t = 1.36950e+01  after  913 time steps

Figure 39: Traditional scheme, M = 2, wave packet
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Figure 40: New scheme, M = 2, wave packet



0.7 Appendix: MATLAB code

The following code is used to compute the wave equation with the (3,5) stencil, both put

all constraints on accuracy at zero, and assign exact dispersion at one frequcies.

% solve the wave equation with c=1

function []=wave_29(n)

global c

c = 1;

L=3;

dx=L/(n+1); % need mod(n+1,4L)=0. L=3 implies (n+1)/12=integer

xi = 2*pi/(4*dx*2*pi); %xi has to be integer.

%%%%%%%%%%%%%%%%%%

dt=0.6*dx;

stoptime=1000;

%r=c*dt/dx;

xfine = 0:0.0001*L:L;

past=utrue(0:dx:L,0,xi);

past(1)=past(n+2);

past(n+3)=past(2);

past(n+4)=past(3);

past(n+5)=past(4);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ufinepast = utrue(xfine,0,xi);

plot(0:dx:L,past(1:n+2),’b.-’,xfine,ufinepast,’k’)



%plot(0:dx:L,past(1:n+2))

axis([0 L -2 2])

pause

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

current=utrue(0:dx:L,dt,xi);

current(1)=current(n+2);

current(n+3)=current(2);

current(n+4)=current(3);

current(n+5)=current(4);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ufinenow = utrue(xfine,dt,xi);

plot(0:dx:L,current(1:n+2),’b.-’,xfine,ufinenow,’k’)

%plot(0:dx:L,current(1:n+2))

axis([0 L -2 2])

pause

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%c0=-0.5824;c1=-0.4368;c2= 0.0192; % only accuracy at zero.

c0=-0.5617;c1=-0.4644;c2= 0.0261; % exact dispersion at K0=pi/2; pair with

%n=359

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for t=2*dt:dt:stoptime



future(3:n+3)=-2*c0*current(3:n+3)-past(3:n+3)-c1*(current(4:n+4)+...

current(2:n+2))-c2*(current(5:n+5)+current(1:n+1));

future(1)=future(n+2);

future(2)=future(n+3);

future(n+4)=future(3);

future(n+5)=future(4);

past=current;

current=future;

% if mod(t/dt,10000)==0

ufine = utrue(xfine,t,xi);

plot(0:dx:L,current(1:n+2),’b.-’,xfine,ufine,’k’)

title(sprintf(’t = %9.5e after %4i time steps’,...

t,t/dt))

axis([0 L -2 2])

pause%(0.01)

% end

end

function utrue = utrue(x,t,xi)

% true solution for comparison



global c

% For periodic BC’s, we need the periodic extension of eta(x,xi).

% Map x-a*t back to unit interval:

xat = rem(x - c*t, 3);

ineg = find(xat<0);

xat(ineg) = xat(ineg) + 3;

utrue = eta(xat,xi);

return

%--------------------------------------------------------

function eta = eta(x,xi)

% initial data

beta = 16;

eta = sin(2*pi*xi*x);%need to make xi integer for pbc

return
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