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Fire is an essential ecological process. However, forest fire burn area in the Pacific 

Northwest is likely to double or even triple by the end of the 2040s based on projected climate 

change models and ecosystem evaluations. The projected increase in forest fires has negative health 

implications because of air quality impacts. This study aims to characterize the linkage between air 

quality degradation due to wildfires and hospital respiratory and cardiovascular admissions, using the 

2006 Tripod wildfires as a case study. The 2006 Tripod wildfires included the Spur Peak and Tripod 

Complex wildfires and were some of the largest wildfires in the past half-century in Washington 

State.  



 

Air monitoring and air modeling data were used for different research analyses. Air 

monitoring data from the U.S. Environmental Protection Agency (EPA) and the U.S. Forest Service 

(USFS) were analyzed to assess any potential air quality degradation and air monitor availability 

during the Tripod wildfire event. The USFS smoke plume modeling data containing geospatial 

estimates of exposure for 33 days were used for analyses that linked air quality data to hospitalization 

and population data. Using a case-crossover epidemiological study, the relationship between air 

quality and respiratory and cardiovascular hospitalizations was assessed. The case-crossover analysis 

was based on resident zip code exposures, and conducted using USFS air quality modeling data and 

respiratory and cardiovascular hospitalization records from the Washington comprehensive hospital 

abstract reporting system. Hospital relative rates addressing cardiovascular and respiratory 

hospitalizations impacts and exposure impacts in zip codes in Okanogan and surrounding counties 

were also assessed during the 33-day period, using 2010 Census data because the 2010 data had the 

most spatial coverage for the study area of interest. Lastly, modeled air quality data were compared 

against monitoring data from the EPA and USFS to assess the model’s validity, sensitivity, and 

specificity.  

Air monitoring data from the EPA and USFS showed that there were higher than normal air 

quality degradation during the 2006 Tripod wildfire event. No significant results were found for 

modeled air quality data and their impacts on cardiovascular and respiratory hospitalizations in 

several epidemiological analyses by hospital zip codes and residential zip codes. The research found 

that current air quality model data systems are not accurate predictors of ground-level air monitor 

data systems. 



 

For future studies, two scientific recommendations were determined. First, the medians and 

means of the modeled air quality values prior to the hospitalization date were found to be more 

meaningful, in comparison to mean modeled air quality value on the hospitalization date. Second, 

age categories for sensitive and non-sensitive populations (three age categories) were found to be 

more useful than finer divisions of six age categories. Policy recommendations to improve this type 

of research include increasing governmental agency coordination, improving the air quality 

monitoring network and air models, and having further research on the impact of wildfire events on 

air quality and hospitalizations. Additional suggestions were also made for future research into this 

subject including focusing on a smaller population and using smartphones to measure air quality and 

other types of data to address health impacts.  
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Introduction 

Motivations 

Research motives began with an interest in possible public health impacts from climate 

change projections in Washington State. In a future of possible climate change, heat waves and 

degraded air quality are two estimated public health impacts. The Yost and Fenske lab group have 

tracked Washington State’s previous weather between May and September for the past 26 years and 

assessed death records, and found excess deaths during heat events.  

Forest fire burn area in Washington State is likely to double or even triple by the end of the 

2080s based on the best statistical models (Littell, et al. 2010). The projected increase in forest fires 

has negative health implications because of air quality impacts. Projections from Kovalev, et al 

(2009) show that there will be an increased frequency and severity of wildfires and a longer fire 

season in the western United States.  

The research began with locating wildfire events of interest to public health impacts, and a 

list was compiled of top wildfires of interest from 2001 to 2009. The 2006 Tripod wildfires were 

some of the largest wildfires in the state in the past half-century. A preliminary analysis of the air 

quality during the Tripod 2006 wildfires was done using air quality data from enforceable air 

monitors from the U.S. Environmental Protection Agency (EPA) and temporary air monitors from 

the U.S. Forest Service (USFS). Air quality modeling data from the U.S. Forest Service became 

available for the Tripod 2006 wildfires.  The availability of the air quality modeling data presented a 

unique opportunity to develop a methodology to assess the impact of the Tripod 2006 wildfires on 

air quality and respiratory and cardiovascular hospitalizations.  
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Aims 

After assessing wildfire events of interest to public health in Washington State from 2001 to 

2009, the 2006 Tripod wildfire event was chosen for further analysis. Methodologies were developed 

to analyze the impact of the Tripod 2006 wildfire event on air quality and respiratory and 

cardiovascular hospitalizations. The associated aims of the research in developing the methodologies 

were as follows: 

1. Determine and assess available and necessary data addressing air quality and hospitalizations 

for the Tripod wildfire event. 

2. Use the U.S. Forest Service air quality model to determine: 

• Whether there were increased respiratory and cardiovascular hospitalizations 

due to the Tripod wildfire. 

• Relative risks by hospital catchment area. 

• Population impacted by the wildfire. 

3. Evaluate the performance of the U.S. Forest Service air quality model. 
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Chapter 1: Wildfires, Air Pollution, and Human Health 

Chapter 1 provides the background on wildfires such as wildfire smoke composition, air 

quality standards, and how wildfires impact human health. Chapter 1 also summarizes the research 

literature on epidemiology studies during wildfire events, using various forms of air quality data, as 

well as research literature addressing future estimates of climate change impacts on wildfire events.  

 

Composition of Wildfire Smoke 

 Carbon dioxide and water are the two primary products of complete combustion and 

generally make up over 90 percent of the total emissions from a wildfire. In the incomplete 

combustion that occurs under wildfire conditions, smoke comprises of carbon dioxide, water vapor, 

carbon monoxide, particulate matter, hydrocarbons and other organic compounds, nitrogen oxides, 

trace minerals, and several thousand other compounds (Ryan & McMahon, 1976) (Peterson & 

Ward, 1992). Particulate matter (PM) is the principal pollutant of concern to human health from 

wildfire smoke for short-term exposures typically experienced by firefighters and the public 

(Sugihara, 2006). Studies indicate that 90 percent of smoke particles emitted during wildfires are 

particles less than ten microns in size (PM10) and about 90 percent of these are less than 2.5 microns 

(PM2.5) (Ward & Hardy, 1991). Other pollutants of concern include carbon monoxide, nitrogen 

oxides and hydrocarbons.   

Wildfires are complex and variable, and studying their effects is often complicated. The 

architecture of the forest as described by species composition and structure, including fuel amounts, 

size classes, and arrangement, affects the manner in which a fire burns (Agee, 1998). Fire is a 

chemical reaction, combustion, requiring three components of a “fire triangle” which include fuels, 

heat sufficient to ignite available fuels, and oxygen to feed the chemical reaction, known as oxidation 



 

4 
 

(UCAR, 2012). Removing any side of this fire triangle stops a fire (UCAR, 2012). The availability of 

fuels, heat, and oxygen to a wildfire is strongly influenced by the interplay of climate patterns, recent 

weather, and the topography of the landscape (UCAR, 2012). Weather is one of the most significant 

factors in determining the severity of wild land fires. The intensity of fires and the rate at which they 

spread is directly related to the wind speed, temperature and relative humidity (NWS, 2006). Climatic 

conditions such as long term drought also play a major role in the number and intensity of wildfires 

(NWS, 2006). 

     Wildfire disturbance typically is characterized by a combination of factors: type, 

frequency, variability, magnitude, extent, and seasonality (Agee, 1998). The amount of smoke 

produced from a wildfire is dependent on what part of a wildfire flame is burning or the location of 

the wildfire during the combustion process. There are four major phases of combustion when fuel 

particles are consumed: 

1. Pre-ignition 

2. Flaming 

3. Smoldering 

4. Glowing 

During the smoldering phase, the smoke consists mostly of droplets less than a micrometer in size 

and the amount of particulate emissions generated per mass of fuel consumed during the smoldering 

phase is more than double that of the flaming phase (NWCG Fire Use Working Team, 2001).  

 

Air Quality Standards  

Under the Clean Air Act enforced by the EPA, National Ambient Air Quality Standards 

(NAAQS) have been established to protect human health and public welfare. For public health 
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protection, primary standards protect the most sensitive members of the population such as 

asthmatics, children, and the elderly. For public welfare protection, secondary standards protect 

against decreased visibility and damage to animals, crops, vegetation, and buildings. The pollutants 

of particular concern from fires are particulate matter. PM10 is particulate matter less than 10 microns 

in diameter and PM2.5 is particulate matter less than 2.5 microns in diameter.  PM10 and PM2.5 are the 

regulated pollutants of concern emitted during a wildfire event. The EPA enforces a 24-hour PM2.5 

standard of 35 µg/m³, and an area meets the standard if the 98th percentile of 24-hour PM2.5 

concentrations in one year, averaged over three years, is less than or equal to 35 µg/m3. As of 

December 14, 2012, the EPA now enforces an annual primary standard of 12 µg/m³, averaged over 

three years, as it had previously been 15 µg/m³ (EPA, 2012). However, these standards are not as 

relevant to wildfire events, which are typically weeks in duration with high particulate concentration 

values, and are more difficult to monitor because of their variability.  

 

Health Impacts of Wildfires 

There are short-term and long-term health impacts associated with smoke exposure (Hope, 

2005). With short-term exposures to general smoke, individuals may experience coughing, difficulty 

breathing, aggravated asthma and bronchitis, and increased emergency room and hospital visits. 

With long-term exposures to smoke, there are increased deaths per day and an increased long-term 

risk of dying. Long-term exposures to smoke are similar to the effects caused by second hand smoke 

in causing cancer, and have been tentatively linked to systemic and genetic effects in newborns, and 

adversely affecting the heart through rhythm changes and flow blockage. Sensitive populations 

include asthmatics, children, pregnant women, elderly (populations that are 65 years and older), 

smokers, and individuals with pre-existing conditions including cardiopulmonary diseases, chronic 
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obstructive pulmonary disease, and cardiovascular disease.  

There is more scientific literature on industrial particulate matter pollutants and their impacts 

on respiratory and cardiovascular hospitalizations, in comparison to the literature on particulate 

matter pollutants from wildfire events. Particulate matter from fossil fuel combustion has been 

conclusively associated with respiratory and cardiovascular morbidity and mortality (Henderson, 

2009). It has also been suggested that particulates derived from wood smoke may be more 

detrimental to human health than particulates from other sources known to cause ill health 

(Bowman & Johnston, 2005). Health effects from wildfire-related particulate matter and smoke have 

not been thoroughly examined in the scientific literature, in comparison to health effects from 

particulate matter from industrial sources. The majority of smoke effects on health in the scientific 

literature are based on residential wood burning studies.  

 

Epidemiology and Exposure Assessment Literature Review: Wildfires and Health 

Hospitalizations  

 Some of the many challenges with studying health effects from wildfires include the 

variability and infrequency of wildfires and the large number of potential confounders that make it 

difficult to distinguish the epidemiologic “signal” from the background “noise” (Bowman & 

Johnston, 2005). Studies that have evaluated the impacts of wildfire PM on hospital admissions, 

emergency department visits or clinic visits have found associations with respiratory outcomes 

(Delfino, et al., 2009). There has been little research on the impact of wildfire smoke on 

cardiovascular outcomes and there have been conflicting reports on wildfire smoke and mortality 

(Delfino, et al., 2009). The most recent epidemiological studies addressing wildfire and health 

hospitalizations are summarized below. 
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Naeher, et al. (2007) conducted a review of the existing literature on wildfire-induced 

morbidity studies, with the many of the studies from areas outside North America such as Thailand, 

Singapore, Brazil, Australia, and Malaysia. In comparison to conventional PM studies, these studies 

have found that wildfires are less likely to find a significant positive mortality effect despite very 

large increases in particulate matter levels during the wildfire events. These studies found that 

wildfire events have been associated with increases of general respiratory-related and asthma-related 

admissions, but no demonstrated effects on cardiovascular-related admissions during wildfire events. 

However, the papers in the literature review conducted by Naeher, et al. (2007) used data from a 

limited number of air monitors rather than air modeling data covering a larger spatial area. Also, 

some of the studies in the review analyzed PM10 and bushfires, so some of the findings do not 

directly apply to forest fire conditions or assessing PM2.5. It is possible that there is less respiratory 

toxicity from bushfire smoke than from forest fire smoke due to chemical and physical differences 

between the two (Naeher, et al. 2007). 

Within the scientific literature, there has been the most public health research addressing 

particulate matter and wildfires for the 2003 southern California wildfires. The southern California 

fires of late October 2003 were cumulatively, the single largest event in California’s recent history. In 

one week, the wildfires burned over 742,000 acres and a total of 3,361 homes and 26 lives lost 

(Keeley, et al. 2004).  

Delfino, et al. (2009) analyzed the 2003 southern California wildfires and its relationship to 

cardiorespiratory hospital admissions (n = 40,856), which has been the largest study to date 

analyzing wildfires on cardiorespiratory outcomes. This group was one of the first to analyze 

modeled air quality data for wildfires and link the data to health admissions. They built a prediction 

model based on temporal profiles of continuous hourly PM data at co-located or closely located sites 
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and light extinction from visibility data, from MODIS satellite images at a 250 meter resolution. In 

their research, multiple lag models were considered to investigate associations between PM2.5 and 

hospital admission rates, including a 7-day polynomial distributed lag, and stratified analyses 

considering different lag associations. Delfino, et al. (2009) found the two-day moving average of 

PM2.5 (average of today and yesterday) provided the best fitting model that adequately captured the 

association between PM2.5 and admissions. 

For PM2.5 associations and interactions with the wildfire period, Delfino, et al. (2009) found 

that wildfire-related PM2.5 led to increased respiratory hospital admissions, especially asthma. Their 

results found that there were stronger associations of 2-day average PM2.5 with respiratory 

admissions during the fires compared to before or after the fires. The strongest wildfire-related 

PM2.5 associations were for people ages 65 to 99 years (10.1% increase per 10 µg/m³ PM2.5, 95% 

confidence interval (CI)—3.0 to 17.8%) and ages 0 to 4 years (8.3%, 95 percent CI—2.2 to 14.9%). 

For every increase in 10 µg/m³ of wildfire-related PM2.5, acute bronchitis admissions across all ages 

increased by 9.6 percent (95% CI—1.8 to 17.9%), chronic obstructive pulmonary disease admissions 

for ages 20 to 64 years by 6.9 percent (95% CI—0.9 to 13.1%), and pneumonia admissions for ages 

5 to 18 years by 6.4 percent (95% CI—1.0 to 14.2%). The number of acute bronchitis and 

pneumonia admissions also increased after the fires. There was limited evidence of a small impact of 

wildfire-related PM2.5 on cardiovascular admissions. (Delfino, et al., 2009) 

Delfino, et al. (2009) found significantly increased risks for all respiratory hospital admissions 

after the wildfires compared with the pre-fire period. Admissions increased for all ages by 17 percent 

(p<0.001), and in age groups 5 to 19 years (25%), and 20 to 64 years (27%), but associations for 

both groups were stronger after the fires (56% and 36% respectively). For all ages, admissions 

increased greatly for asthma (26%), acute bronchitis and bronchiolitis (48%), and pneumonia. The 
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rates increased even more within specific age groups—for ages 0 to 4, association for acute 

bronchitis and bronchiolitis by 51% and pneumonia by 46%; ages 5 to 19, asthma increased 56%; 

for ages 20-64, asthma increased 36%, acute bronchitis and bronchiolitis by 137% and pneumonia 

by 30%. For the period after the fires, there was a 6.1% increased risk of combined cardiovascular 

admissions (p<0.05) and an 11.3% increased risk of congestive heart failure admissions (p<0.06). 

(Delfino, et al., 2009) 

The results from Delfino, et al. (2009) show a significantly increased risk of admissions for 

total cardiovascular outcomes and congestive heart failure after the wildfire event. Their results 

confirm that the impacts of wildfires on human health are challenging regarding time in relation to 

the wildfire and particulate matter pollutants. They concluded that the increased cardiorespiratory 

admissions after the wildfire may be attributed to the following reasons: 

1. People may delay deciding to go to the hospital until symptoms become too severe. 

2. Cumulative biological effects of wildfire PM may culminate in severe symptoms 

many days after the initial cardiorespiratory impact. 

3. Sustained effects of wildfire PM may lead to susceptibility to, or increased severity 

of, later respiratory infections, possibly through alterations in immune function or 

respiratory clearance mechanisms. 

Although this thesis addresses the linkage of air quality data with hospitalization data, the 

data on air quality during wildfire events at fine spatial resolutions is still limited. Air quality 

monitoring is sparse in many fire-affected areas, so it is challenging to apply epidemiologic methods 

that require individual-level exposure assessment. Data from dispersion models and remote sensors 

are spatially extensive and may provide viable exposure estimation alternatives.  The studies 
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presented below give some insight to a new area of research that uses modeling and remote sensing 

data to assess air quality impacts from wildfires. 

Wu, et al. (2006) were the first to systematically examine and estimate daily particulate matter 

(PM10 and PM2.5) concentrations at a fine spatial resolution over a relatively large study domain. 

More specifically, they examined PM concentrations at a zip code level in southern California 

before, during, and after the 2003 southern California wildfires. Wu, et al. (2006) used satellite, 

visibility, and air quality data to conclude that heavy smoke increased PM10 and PM2.5 concentrations 

by 160 and 100 µg/m3, respectively. Wu, et al. (2006) were able to fill missing data (due to failure or 

intermittence) from 37 particulate matter samplers. Wu, et al. (2006) also concluded that fine 

temporal-spatial resolution of the PM data generated from satellite, visibility, and air quality data are 

suitable for linkage to the residential zip code of subjects admitted to hospital for cardiorespiratory 

illnesses. Henderson, et al. (2008) briefly critiqued Wu, et al. (2006)’s article and explain that 

although their results were favorable, their use of moderate resolution imaging spectroradiometer 

(MODIS) remains qualitative and that their method is limited to areas with relatively dense 

monitoring networks. The definition and application of MODIS will be explained later in this 

chapter. 

Henderson, et al. (2008) show that all studies to-date report considerable error between 

observed and output data under some conditions and that dispersion models of fire smoke are 

challenging to simulate and model output needs rigorous evaluation. Henderson, et al. (2008) 

suggest the use of the measurement, spatial and temporal strengths of different data to allow for a 

straightforward and holistic evaluation of model performance.  

Henderson, et al. (2011) performed the first cohort study for a wildfire event through their 

research on the 2003 British Columbia wildfires. During the 2003 wildfire season in British 
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Columbia, more than 2,600 km2 of forest were consumed in the southern interior and 343 homes 

were destroyed (Henderson, et al., 2011). The cohort for the study included all 640,000 British 

Columbia residents. From administrative health data, 280,000 subjects were identified for their 

population-based cohort. Three daily smoke exposure estimates were assigned for each individual 

according to residential location. These daily smoke exposure estimates included the following: total 

measurements of PM10 from six air quality monitors that meet U.S. and international particulate 

monitoring regulations using tapered element oscillating microbalance (TEOM), smoke-related PM10 

from a CALPUFF dispersion model run for the study, and an exposure metric for the presence or 

absence of exposure to a fire smoke plume (SMOKE) for plumes visible in satellite images. 

CALPUFF is a non-steady-state puff dispersion model that simulates the effects of time- and space-

varying meteorological conditions on pollution transport, transformation, and removal. CALPUFF 

can be applied for long-range transport and for complex terrain. 

Henderson, et al. (2011) used a longitudinal logistic regression to examine the independent 

effects of each exposure over the 92-day study period. Through their statistical analyses, the 

researchers found that increases in smoke particulates, PM10, were associated with increased odds of 

respiratory physician visits and hospital admissions, but not with cardiovascular health outcomes. 

Residents in Kelowna experienced an increase of 100 micrograms of particulate per cubic meter of 

air, which resulted in an 80 percent increase in respiratory hospital admissions and a six percent 

increase in the odds of an asthma-specific physician visit. While odds ratios for the particulate 

monitoring metric using TEOM were consistent with other reports, those for the CALPUFF metric 

were biased towards the null. Results for SMOKE tracked with those for TEOM, but with much 

wider confidence intervals. Their results show that additional work is needed with air quality smoke 

modeling and satellite data. Their research was unable to show that air quality modeling is an 

improvement over monitoring. 
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In conclusion, the study from Henderson (2009): 

1. Highlights the potential of new smoke exposure assessment methods 

2. Demonstrates that plume dispersion models can be simplified with remote sensing data 

3. Confirms the respiratory health effects of forest fire smoke. (Henderson, 2009) 

With the exception of the studies presented in this literature review, the relationship between 

hospitalizations and wildfires has been examined mostly via time-series analyses without linking 

health data to air monitoring or modeling data. There have been more recent studies that used 

stationary air quality monitor data. Additional research is needed to address higher spatial air quality 

modeling and satellite data in epidemiologic analyses. Further work is also needed for air quality 

exposure assessments at higher spatial levels. 

 

Climate Change and Wildfires 

It is possible that a warmer climate will lead to more frequent fires, possibly more severe 

fires, and a longer fire season in the western United States (Westerling, et al., 2006). Recent decades 

have already witnessed an increase in the frequency, duration, and severity of wildfires in the western 

United States (Kovalev, et al. 2009). Since warming temperatures will increase the likelihood of 

drought, it will be easier for forests to burn, and burns will be more severe (Joint Fire Science 

Program, 2008). Fuel levels may have elevated the average fire risk to a point where thresholds will 

once again be sensitive to the influence of climatic variability in coming decades, regardless of fire 

suppression activities (Joint Fire Science Program, 2008). 

Regional fire models suggest that summer precipitation and temperature historically played a 

large role in the area burned by fire (Littell, et al., 2010). For Washington State, the future area 
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burned projections from the best statistical model suggest a doubling or tripling by the 2080s (Littell, 

et al., 2010). Littell, et al. (2010) determined that future median regional area burned, averaged over 

two global climate models, is projected to increase from about 0.2 million hectare acres (ha) to 0.3 

million hectares in the 2020s, 0.5 million ha in the 2040s (about 2.5 times), and 0.8 million ha in the 

2080s (about 4 times). Littell, et al. (2010) determined that the probability of exceeding the 95% 

quantile area burned for the time period, 1916 to 2006, increases from 0.05 to 0.48 by the 2080s.   

Heat waves are projected to increase in the future due to global climate change impacts. 

Heat waves also build an environment for wildfires. According to a study by Jackson, et al., (2010), 

projected warming would likely result in 101 additional deaths among persons aged 45 and above 

during heat events in 2025 and 156 additional deaths in 2045 in the greater Seattle area alone 

(relative to 1980-2006). By mid-century, King County will likely experience 132 additional deaths 

between May and September annually due to worsened air quality caused by climate change.  

The global impact of wildfires is an enormous issue. A recent study from Johnston, et al. 

(2012) is the first to estimate a death toll for landscape fires, and estimated that wildfires, peat fires, 

and controlled burns on farming lands kill 339,000 people worldwide each year.  Most of these 

deaths are concentrated in sub-Saharan Africa, where an estimated 157,000 people die as a result of 

being exposed to such fires annually, with Southeast Asia ranking second with 110,000 deaths. 

Johnston, et al. (2012) looked at the number of deaths from all causes in areas that were exposed to 

heavy smoke and landscape fire between 1997 and 2006 using satellite data and chemical transport 

models to assess the health impacts of PM2.5. In comparison, the number of wildfires come in far 

below the previously estimated global tolls for indoor air pollution (2 million people per year) and 

urban air pollution (800,000 people per year). The research from Johnston, et al. (2012) also suggests 

a significant link between climate and fire mortality with their finding that about twice as many 
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people died during El Niño years when the surface ocean temperature rises in the tropical eastern 

Pacific Ocean (averaging 532,000) as during cooler La Niña years (averaging 262,000). 

In a future of possible climate change, wildfires are projected to increase in severity and 

frequency in Washington State and globally. These studies show a demonstrated need to look more 

closely at the impact of wildfires on health effects.  
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Chapter 2:  Wildfires in Washington State 

The 2006 Tripod wildfire event was chosen for this analysis as it was one of the largest 

wildfire events in the past half-century in Washington State and also for the availability of air 

modeling data from the U.S. Forest Service. Chapter 2 explains the following topics: 

 Identifies large, naturally occurring wildfire events in Washington State in the past 

ten years that could have had potential health impacts and available air monitoring 

data to assess their public health impacts (Top Wildfires of Interest to Public Health 

(2001 to 2009)) 

 Provides background on the 2006 Tripod wildfires. (2006 Tripod Wildfires) 

 Addresses the available air monitoring and modeling data systems associated with 

the Tripod 2006 wildfires. (Air Monitoring Data for the 2006 Tripod Wildfires) 

 Explains the benefits and limitations of the monitoring and modeling data systems 

from the EPA and the U.S. Forest Service. (Air Monitoring Data for the 2006 

Tripod Wildfires, Air Modeling Data for the 2006 Tripod Wildfires, Satellite Data) 

This chapter also provides the preliminary analysis of available air monitoring and modeling 

data systems.  Air quality modeling data from the U.S. Forest Service were later linked to 

Washington State health hospitalization data and Census 2010 data for further epidemiological and 

population level analyses. 

 

Top Wildfires of Interest to Public Health (2001 to 2009) 

The goal of the original data scoping and analysis was to identify naturally occurring wildfire 

events of “large impact” to public health in Washington State from the past ten years. Washington 
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State health hospitalization data also known as the Comprehensive Hospital Abstract Reporting 

System data (CHARS) were available through 2009. Therefore, the search for wildfire event data was 

focused for the years 2001 to 2009.   

Forest science professionals define “large wildfire events” in terms of acreage of forest 

impacted and forest ecosystem impacts. The National Wildland Coordinating Group defines “large 

wildfire events” as those larger than 100 acres in timber or greater than 300 acres in grasslands or 

rangelands or has an Incident Management Team assigned to the wildfire event (Northwest 

Interagency Coordination Center, 2012). Many wildfires occur in more remote areas located many 

hours away from more populated areas. Wildfires may have a concentrated ecological impact in 

terms of acreage of forests burned. However, determining air quality impacts to population centers 

further away is more complicated, since impacts depend on how smoke plumes travel. Each wildfire 

burns differently, which also means that smoke plume travel changes with each wildfire. Because of 

the complexity of smoke plume travel, it is difficult to define these “large wildfire events” without a 

more thorough analysis.  Understanding the exposure implications would require additional research 

on smoke travel for each wildfire event. One would have to look at satellite and modeled projections 

to estimate whether the plume had a large impact to population centers further away.  

The lists for wildfire events in Washington State were extensive and scattered across various 

governmental sources. The lists designated whether a wildfire was naturally occurring or human-

induced. Much effort was made to research the large wildfires and eliminate those that were human-

induced. The located lists came from the following sources: 

 Wildfire event on non-national forest lands from 1970-2009 (Stanger, Brant, USFS, personal 

communication, February 17, 2011) 
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 Wildfire event on state and private forest land from 2004-2009 (Kassel, Albert, Washington 

State Department of Natural Resources, personal communication, February 23, 2011) 

 Wildfire event on national forest lands in Eastern Washington, 2000-2004, Okanogan-

Wenatchee 2003-2009 (Ohlson, Pete, USFS, personal communication, March 16, 2011) 

 Additional details from National Wildfire Coordinating Group’s Incident Status Summaries 

(http://www.nwcg.gov) and Incident Management Team 

(http://www.imtcenter.net/main/default.aspx)  

The original ranking system of large wildfires question was focused to natural wildfires that 

were large in terms of acres impacted and their location to larger population centers in the state 

within the past ten years. Wildfires can arise from natural or a variety of human-induced causes. 

Since wildfires are projected to increase in the future due to climate change, this research analysis 

focused on naturally occurring wildfires. The definition of “large wildfires” in terms of acres 

impacted included wildfire events where the estimated acreage impact was over 1,000 acres. The 

definition of what constitutes a “large wildfire” in terms of their location to larger population centers 

in the state is a more difficult to determine. Since smoke from wildfires is variable, it is difficult to 

estimate the wider extent of wildfires on possible population impacts. When assessing the larger 

extent of wildfires, it is necessary to perform a more thorough analysis for each wildfire event using 

satellite and other available smoke plume modeling data. Another deciding factor of whether a 

wildfire event was listed was whether there were any associated EPA DataMart air quality monitors 

for the same county. There could have been wildfires in areas closer to more populated areas, but 

they were not included if there was no associated EPA DataMart data. 

Therefore, the final ranking system was based on the following criteria: 

 The cause of the wildfire event was natural. (For example, due to lightning.) 

http://www.nwcg.gov/
http://www.imtcenter.net/main/default.aspx
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 The wildfire event’s total acreage impact was greater than 10,000 acres. 

 There was available air quality data for the county of wildfire occurrence in the EPA 

Air Quality DataMart. 

The analysis of wildfire events in Washington for the past ten years showed that there were 

events of varying sizes, and in some cases, in closer proximity to more populated counties in 

Washington.  There also were gaps and inconsistencies in the availability of air quality monitoring 

and related event characterization data from governmental agencies.  An end product of the analysis 

is a list (see Table 1, Appendices in Chapter 8) of wildfire events in the past ten years that could have 

had air quality impacts due to the wildfire’s acreage impacts and potential spread of smoke impacts.   

Examples of the differences in data across years and counties are also documented in Table 

1. After assessing wildfire events in Washington State from 2001 to 2009, it was also found there 

were limited enforceable monitors from the EPA Air Quality DataMart data with many counties 

having only one or two air quality monitors. Some wildfire events did not have any associated air 

monitoring data at all, and were excluded from the final tables. 

For many counties, there are only a few monitors available for the entire county, and no 

monitors in some more rural counties. One or several monitors do not adequately represent the air 

quality for an entire county. The air quality monitors are only representative for the air quality at the 

monitor’s location. For many of the wildfires, there is not adequate air monitoring data to analyze 

estimated health effects.  
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2006 Tripod Wildfires 

The Tripod Complex 2006 wildfires included the Spur Peak and Tripod fires were some of 

the largest wildfires in the past half-century in the state, generating increased ambient concentrations 

of inhalable particulate matter (NSF, 2008). The Spur Peak fire began on July 3, 2006.  The Spur 

Peak fire was fairly active at first, but then some rains came through and it was slowed down, but 

was not completely out.  On July 24, the Tripod fire started about 10 to 12 miles south of Spur Peak 

and quickly grew and merged with the Spur Peak fire.  After this point, the Tripod wildfire became 

known as the Tripod Complex Fire. The Tripod Complex wildfire did not end until November 9, 

2006. The acreage impacted by the Tripod wildfires was as follows: Spur Peak with 62,173 acres and 

Tripod Complex with 113,011 acres. (Ohlson, Pete, personal communication, May 14, 2012) 

On August 22, 2006, the Tatoosh Buttes fire began in the Pasayten Wilderness, about 25 

miles to the northwest of the Tripod Complex at the time (Ohlson, Pete, personal communication, 

May 14, 2012). The Tripod and Tatoosh Buttes fires never burned near one another and were 

considered separate fires. The Tatoosh Buttes fire did not end until November 9, 2006 and burned 

51,671 acres. In addition to the Tatoosh Buttes fire, there were other wildfires that occurred in 

Washington in 2006, which are listed below. The thorough analysis of wildfire events in Washington 

State also allowed us to locate 2006 wildfires that were occurring at the same time as the Tripod 

wildfires, which may have further increased possible smoke impacts and degraded air quality.  

1. Columbia Complex (Southeastern Washington, Columbia/Garfield, Walla Walla):  

109,402 acres: 8/21 to 12/1 

2. Tatoosh Buttes (Methow, Okanogan County):  51,671 acres (8/22 to 12/1) 

3. Tinpan (Entiat, Chelan County):  9,252 acres (7/6 to 11/25) 

4. Flick Creek (Chelan, Chelan County):  7,879 acres (7/26 to 10/3) 
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5. Cedar Creek (Methow, Okanogan County):  1,661 acres (8/22 to 12/1) 

6. Van Peak (Methow, Okanogan County): 1,813 acres (9/5 to 11/9 or as late as 12/1) 

 

The 2006 Tripod wildfires consumed over 175,000 acres of mostly USFS and state managed 

forestland in Okanogan County (Okanogan County Community Wildfire Protection Plan Planning 

Commitee and Northwest Management, Inc., 2006). Suppression costs of the fire were reported to 

be $74 million with an additional $28.3 million requested for rehabilitation (Okanogan County 

Community Wildfire Protection Plan Planning Commitee and Northwest Management, Inc., 2006). 

However, this amount does not include economic losses, health costs, or other costs associated with 

the Tripod wildfires. In 2006, nearly 250,000 total acres burned in Okanogan County alone (175,000 

from Tripod). In comparison, 275,000 total acres burned in Okanogan County between 2001 and 

2005 (Okanogan County Community Wildfire Protection Plan Planning Commitee and Northwest 

Management, Inc., 2006). From 2001 to 2005, $65 million was spent on fire suppression, which 

drastically compares to the $74 million spent on the Tripod wildfires (Okanogan County 

Community Wildfire Protection Plan Planning Commitee and Northwest Management, Inc., 2006).  

 

Air Monitoring Data for the 2006 Tripod Wildfire 

In analyzing the Tripod 2006 wildfire event, the first goal was to characterize the event 

properly in terms of intensity (number of acres burned) and duration (number of days), and then 

link this information to air quality data in relevant communities. By researching this information, 

one can then answer the question of whether a forest fire degrades the air quality in nearby 

communities, and, by how much is the air quality was degraded.  
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Background on Air Monitoring 

Air quality monitoring data is extracted from either gravimetric or optical particle 

concentration measurement techniques. Gravimetric or filter-based instruments collect particulates 

on ventilated filters. Optical instruments measure light-absorbing characteristics of the atmosphere, 

which can then be converted to obtain an estimate of the concentration of airborne particulates 

(National Wildfire Coordinating Group, 2001).  For their state, local, and tribal air quality 

monitoring stations and the Interagency Monitoring of Protected Visual Environments 

(IMPROVE), the EPA uses both gravimetric and optical particle concentration measurement 

techniques. The EPA’s gravimetric sources include the following instruments: PM2.5 SCC with 

Correction Factor-TEOM Gravimetric 50 degrees Celsius, PM2.5 SSI with Correction Factor-TEOM 

Gravimetric 50 degrees Celsius, and the Andersen RAAS Teflon. The EPA’s nephelometer source is 

the correlated radiance research M903 with heated inlet-nephelometry. For the temporary monitors 

to assess the Tripod 2006 wildfires, the instrument used by the USFS was the MIE DataRam, a 

compact, self-contained instrument that internally estimates mass concentration from the measured 

scattering of light (USFS, 2006). The MIE DataRam measures particulate concentrations from 0.1 to 

400,000 µg/m³ and continuously displays the current and time-weighted average mass concentration 

while logging up to 10,000 data points. 

The Washington Department of Ecology is responsible for monitoring public exposure to 

pollutants. The EPA maintains a database of monitored air quality data via the Air Quality DataMart 

(EPA, 2008). The monitors in the Air Quality DataMart are permanent monitors that are 

enforceable by EPA pollutant standards under the Clean Air Act.  Air quality monitors in the EPA 

Air Quality DataMart are managed by federal, state, and local agencies that manage air program air 

quality data (in the case of this research, Washington State Department of Health and EPA) and 
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Native American tribes. The DataMart database is not conclusive of all available air quality 

monitoring data, as the database does not include non-EPA enforceable monitors such as temporary 

monitor data from other governmental agencies such as the U.S. Forest Service.  

Hourly air monitoring data from the Air Quality DataMart are limited and there are often 

only a few monitors available for an entire county. An analysis of the EPA DataMart database 

system was done and found that the EPA DataMart database system does not include data for seven 

counties in Washington State, Douglas, Ferry, Garfield, King, Lincoln, San Juan, and Wahkiakum 

counties. The EPA DataMart database does have data for the other 32 counties in Washington State. 

For earlier years, there may not be any monitoring data for various counties or only one monitor for 

an entire county. The USFS has additional temporary monitors (hourly measurements) for analyzing 

and tracking wildfire events of interest. To obtain temporary monitor data from the USFS, the data 

must be requested and is limited for certain wildfire events being assessed by the USFS.  For this 

analysis, the seven monitors of data from the Pacific Wildland Fire Sciences Laboratory team are not 

considered “air quality monitor data” because the monitors were recording PM2.5 concentrations and 

were not used to give exceedance reports (Strand, Tara, personal communication, April 27, 2012). 

Therefore, the USFS refers to this data as “observation data” instead of “air quality data”. “Air 

quality monitor data” would refer to data collected and sent to EPA to assess whether monitors 

were in compliance with EPA enforcement standards.  

There are limited air quality monitoring data to address PM2.5 concentrations. Figure 1 shows 

a map of Washington State and the locations of all EPA air quality DataMart monitors that are 

currently active as well as historical monitors. Some of the monitors are no longer active, but by 

looking at the map, one can see the inadequacies of available air quality monitoring data, especially in 

more rural areas where wildfires are more prone to occur. During the time of the Tripod 2006 
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wildfire, there were even fewer monitors in place. Air quality monitor measurements represent PM2.5 

concentrations at a specific fixed location in time.   Therefore, it would not be accurate to use air 

quality monitoring data from a specific monitor to represent nearby zip codes, counties, or other 

spatial entities. Also, smoke conditions change greatly across locations. For example, smoke levels 

may be high at a monitor location but the air could be clear in a distance one-mile away. Each 

wildfire event produces varying air quality conditions. Monitors are placed often in more centrally 

located areas and particulate matter values may come from a variety of sources including pollution 

from cars, smoke, or industry. It is not completely accurate to use monitor data exclusively for 

wildfire events since there are other contributing sources to the particulate matter values.  

 

Methods 

For the Tripod 2006 wildfires, there were two types of air monitoring data available, as listed 

below. For the USFS temporary non-enforceable monitors, there were originally twelve instruments 

but five of them shutdown due to power failure. Seven of the twelve monitors ran for a month or 

longer, and those seven monitors are included in this analysis (Larkin, et al. 2009). The following 

monitor data was used for the analysis: 

1. Permanent enforceable PM2.5 data from the EPA Air Quality DataMart database and 

enforced locally by the Department of Ecology (Washington State Department of 

Ecology, 2012) 

2. Temporary non-enforceable PM2.5 data from the USFS Pacific Wildland Fire Sciences 

Laboratory (PWFSL) (August and September, 7 monitors)  
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For both sets of 2006 monitor data, hourly data were averaged for daily means and 

compared against the EPA’s 24-hour PM2.5 standard of 35 µg/m³. Using the EPA Air Quality 

DataMart, air quality monitoring data for 2005 and 2007 (Figures 3 and 5) was also analyzed to 

determine if the PM2.5 values observed in 2006 were typical or abnormal values. The purpose of the 

analysis is to characterize the intensity and duration of the 2006 Tripod wildfire event. The analysis 

of the year prior and the year after the wildfire event is helpful to understand what may be 

considered typical air quality levels. Also, the comparison across the years allows us to understand 

whether there was demonstrable air quality degradation during the wildfire event and estimating the 

potential impact within Okanogan and surrounding counties.  The comparison analysis of the EPA 

DataMart monitors was done for Okanogan County and adjacent counties for 2005 to 2007. 

 

Results 

From both sets of air monitoring data from the EPA and the USFS, it was determined that 

only monitors from Okanogan County showed air quality impacts above the EPA 24-hour PM2.5 

standard. From the EPA enforceable air quality monitoring data in Okanogan County and its 

surrounding counties, air quality degradation (in terms of PM2.5) was found in Okanogan County in 

the communities of Twisp and Winthrop (Figure 4). In Twisp, concentrations of PM2.5 ranged from 

1 to 15 µg/m³ in June 2006, but during the peak points of the wildfires in July and August 

concentrations ranged from 98-160 µg/m³. For Winthrop, PM2.5 concentrations averaged around 

160 µg/m³. EPA Air Quality DataMart data were unavailable for monitors in Ferry and Lincoln 

counties. No large differences in air quality were observed for Skagit, Whatcom, Chelan, and Grant 

counties compared to the normal ambient levels in the winter months. Hourly measurements peaked 

several times above the 24-hr standard; At Twisp, 398 and at Winthrop, 439 points.  In comparison 
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to 2005 and 2007 air quality data from the EPA DataMart (Figures 3 and 5), there was degraded air 

quality for 2006, most likely due to the Tripod wildfires. Monitors from surrounding counties were 

also analyzed for air quality data in 2005, 2006, and 2007 (Figures 7,  8, and 9), and no major changes 

were found for 2006 due to the Tripod wildfires, nor any major discernible differences between the 

two years. 

From the USFS PM2.5 (non-enforceable) data, Conconully had 536 hourly measurements 

exceeding 35 µg/m3, Eight Mile with 469, Omak with 217, Fruitland with 59, Nespelem with 50, 

Oroville with 39, and Kettle Falls with 11. The Eight Mile monitor was located closest to the fire. 

The Conconully and Omak monitors were located downwind from the Eight Mile monitor and the 

wildfire, and the Fruitland, Nespelem, Oroville, and Kettle Falls monitors show further downwind 

trends (Strand, Tara, personal communication, May 24, 2011). Figure 6 shows the PM2.5 data 

collected at the USFS’s seven monitors for the Tripod wildfires (Strand, et al., 2011) and gives the 

idea of the impact to the east, which shows that the smoke was minimal past Nespelem, WA.  The 

USFS did not deploy air monitors to the south because observations showed that most of the smoke 

was not traveling in that direction (Strand, Tara, personal communication, April 7, 2012).   

 

Conclusions 

The results from analyzing air monitor data from the EPA and the USFS demonstrated that 

there was degraded air quality for Okanogan County during the Tripod wildfire event. As addressed 

in the Background in Chapter 2, limited monitors exist across counties. Monitors in Washington 

counties may range from having no monitors to up to three monitors. The limited number of 

monitors presents a challenge when assigning air quality values to hospitalizations. The next step 

was to examine the potential of using air quality modeling data for this research analysis. 
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Air Modeling Data for the 2006 Tripod Wildfires 

Although there were measurements from a limited number of air quality monitors from the 

EPA and the USFS, those measurements only capture air quality at a specific location, and do not 

accurately reflect the spatial air quality. Therefore, the hypothesis was that modeled air quality data 

incorporating wind and fire patterns would be a better measurement for this analysis.  

 

Background on U.S. Forest Service Air Modeling 

The AirFire team at the Pacific Northwest Research Station of the USFS used a smoke 

prediction framework known as BlueSky to build the air quality model data for the 2006 Tripod 

wildfires.  The original BlueSky Framework was developed to provide smoke impacts information to 

forest managers investigating the possibility of a prescribed burn (Larkin, et al. 2009). Figure 2 

shows the input components of the BlueSky framework, and the framework is described in more 

detail below.  

The BlueSky framework pulls data on fire locations and sizes from prescribed burn and 

wildfire reporting systems. Fuel load data are also essential inputs for BlueSky, with the 

amount of fuel dependent on fuel moisture, humidity, wind speed, and slope, among other 

factors. BlueSky uses an emission production model that takes data on fuel load, fuel 

moisture, burn area, and wind speed, and predicts the amount of fuel consumption and 

emissions that will occur. The emissions model produces estimates of the total particulate 

matter, carbon monoxide, carbon dioxide, methane and heat generated from the fires. The 

next step is calculating the long-range transport of the smoke plume and its gradual 
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dispersion. BlueSky uses CALPUFF and Hysplit, a smoke trajectory model developed by the 

National Oceanic and Atmospheric Administration (NOAA).  Every night, BlueSky obtains 

regional weather forecasts produced by the MM5 model, which is a midscale weather 

forecasting model, and burn information from state and federal agency reporting systems. 

Twelve-hour smoke trajectories are computed from each burn location and CALPUFF is 

run using the emission estimates from the emissions production model and the weather 

forecast from MM5. (Pacific Northwest Research Station, 2006)  

BlueSky addresses climate change in its wildfire predictions through the Fire Scenario 

Builder function. The Fire Scenario Builder function accounts for variables including climate and 

vegetation changes.  The Fire Scenario Builder is linked to future climate meteorological runs and a 

statistically based algorithm is used to determine probable start of fire and size (Strand, Tara, 

personal communication, June 9, 2011). The researchers at the Pacific Northwest Research Station 

of the USFS modeled the expected PM2.5 air quality concentration increases for the 2006 Tripod 

wildfires. Air quality modeling data were available during 33 days of the Tripod 2006 wildfire time 

period from August 14 to September 15, 2006. There was no target population with the Tripod air 

model data system. The monitoring data were collected to obtain observations and gain an 

understanding of PM2.5 concentrations downwind from the Tripod 2006 wildfire event (Strand, Tara, 

personal communication, July 29, 2012). This dataset from the USFS is unique for being one of the 

first data systems on PM2.5 data during a large wildfire event (Strand, Tara, personal communication, 

July 29, 2012). 

 The modeling data were from CALPUFF, a smoke dispersion model developed and 

distributed by Earth Tech, Inc., which has now been adopted by EPA for national use. For the 

model data, there were three components used for smoke prediction (a) known fire information at 
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the time through ICS-209 ground reports and satellite detects; (b) forecasted meteorology such as 

wind pattern estimates; and (c) fuel layers given to the team by the local foresters in the area (Strand, 

Tara, personal communication, April 27, 2012). The model does not include or adjust for variation 

from air monitoring instruments. 

The air quality modeling data from the USFS were specific to the 2006 Tripod wildfires, but 

also factored in other Pacific Northwest fires, including one north of the Canadian border (Strand, 

Tara, personal communication, May 28, 2012). Each pixel value represents the estimated increase in 

PM2.5 due to the Tripod wildfire. The impacts from other wildfires were determined to be minimal 

over the duration of the observation data collection based on the primary wind direction (Strand, 

Tara, personal communication, May 28, 2012). The estimated PM2.5 values did not include other 

types of air pollution, such as traffic, and the first layer of the model data has a depth of about 50 

meters (Strand, Tara, personal communication, May 28, 2012).  

 

Background on Satellite Data  

It is possible to build a smoke exposure model of an exposure shadow from various data 

sources. Such data may include weather observations with latitude, longitude, elevation, wind speed 

and direction and data from wildfire reports that address distance, frequency, severity, and burn area 

during the wildfire event. The U.S. Department of Agriculture and the U.S. Department of Forest 

Service have an active fire-mapping program that allows users to detect wildfires in real-time (USFS, 

2012). Satellite data systems such as Moderate Resolution Imaging Spectroradiometer (MODIS) are 

also useful. Satellite data, as well as modeled data can often be difficult to relate to ground 

concentration data due to their focus on higher atmosphere levels, and the tendency to under-
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predict ground concentration levels. As explained by the National Aeronautics and Space 

Administration (NASA 2012): 

MODIS is a key instrument aboard the Terra (formally known as the Earth Observing 

System (EOS)-AM (morning)-1) and Aqua (formerly known as the EOS PM 

(evening)) satellites. Terra's orbit around the Earth is timed so that it passes from north to 

south across the equator in the morning, while Aqua passes south to north over the equator 

in the afternoon. Terra MODIS and Aqua MODIS satellites scan the entire Earth's surface 

every 1 to 2 days, acquiring data in 36 groups of wavelengths. MODIS data will improve our 

understanding of global dynamics and processes occurring on the land, in the oceans, and in 

the lower atmosphere. MODIS is playing a vital role in the development of validated, global, 

interactive Earth system models able to predict global change accurately enough to assist 

policy makers in making sound decisions regarding environmental protection. 

Satellite data, such as those from NASA, show the extent of the smoke for a specific point in 

time. Meteorological forecasts adjusted with the observations can be obtained from NOAA and one 

can use these observations to determine where the smoke may have drifted. It is also possible to 

look at smoke plume footprints recorded by the satellite versus model predictions, and this type of 

analysis is called a footprint analysis (Strand, Tara, personal communication, April 27, 2012). There 

are many errors associated with satellite footprints but this technique gives a general trend of 

wildfire impacts (Strand, Tara, personal communication, April 27, 2012). Smoke plume footprints 

only show information at a snapshot level and at a particular time, since the satellites move across 

the sky. 
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Satellite data were not readily available from the USFS or NASA and were not used in this 

research.  Smoke impacts were assessed using the modeled air quality data from the Pacific Wildland 

Fire Sciences Laboratory at the USFS. 

 

Methods 

The USFS air quality modeling data were used in the epidemiologic analyses addressing 

hospitalizations and population impacts that are described in Chapter 3. The study area consisted of 

Okanogan and adjacent counties. Smoke impacts were not factored in the selection of the study 

area. Rather, the focus was on where the nearest hospitals were to the Tripod wildfires in Okanogan 

County. Zip codes were used as the spatial level of exposure assessment. The methodology below 

describes how air modeling data from the USFS were converted to a usable form to be later linked 

with hospitalization data, based on hospitalization and residential zip codes. 

For the Tripod 2006 wildfire, USFS air quality modeling data were available for a 33-day 

period from August 14 to September 15, 2006. Air quality modeling data were in the form of MM5 

data and needed to be converted into a usable form for further analysis with hospitalization and zip 

code data. In ESRI’s ArcMap Version 10.0, the air quality modeling data were converted from a 

common data format (CDF) into a TIFF image file.  With the data being 4 x 4 km data, MM5 grid 

extent data from the Northwest Modeling Consortium were added to all 33 TIFF images so that the 

images were no longer floating in space. Next, the TIFF image was converted from a raster file to a 

vector format since the data were needed by zip code. Raster files are images made up of grids of 

rectangles and squares where each one can have its own associated values, whereas vector images are 

made of polygons, points and/or lines. Spatial reference information and coordinate system data 

were added before the data were able to overlay in ArcMap. 
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Hospitalization data included the patient’s zip code and the hospital’s zip code. Either the 

patient or hospital zip codes needed to be aligned with the air quality modeling data. The options 

with zip code data with summarized pros and cons of each data source are highlighted below. ESRI 

does not provide the formula to their algorithm. However, their method is most likely an 

aggregation from centroids of blocks with 100% population counts for 2000. Figure 10 shows 

visually the high spatial variability that exists across the three sources of data. After reassessing the 

pros and cons as outlined below, 2010 Census zip code shape files were decided to be the best zip 

code shape file, and its associated population data. U.S. Census Tigerline data are considered the 

optimal choice, given the uncertainties associated with the ESRI data.  

1.  ESRI zip code shape file data (2006) with ESRI population adjusted counts (2005) 

 Perfect coverage by zip (Census + unknown algorithm) 

 Population estimated for 2005 in an unknown method from 2000 Census data 

 

2.  Tigerline Census zip code shape file data (2000, updated in 2002) with Census population 

(2000) = Census data used prior to 2010 

 Less coverage (by ZCTA, not zip) 

 Perfect 100% count of population for 2000 

 

3. Tigerline Census zip code shape files data (2010) with Census population (2010)  

 Moderate coverage (by ZCTA, not zip) 

 Perfect 100% count of population for 2010 

Each pixel of data in the TIFF image file indicates the increase in PM2.5 that was only due to 

the Tripod wildfire. In ArcMap, 2010 ZCTA and county data were overlaid so that ZCTAs in 

Okanogan and its surrounding counties were selected. The selection criteria of the zip codes 
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included selecting for zip codes within counties and if any part of zip codes were within boundaries, 

but not if borders were shared. Using ArcMap, all 33 TIFF images were georeferenced with 1983 

State Plane South coordinates. Pixel values were averaged within zip code boundaries. To obtain one 

PM2.5 modeled value per zip code per day, the ArcMap feature, “Zonal Statistics as Table”, was used 

to connect TIFF images to zip code data. There were many pixels that could have been a part of one 

zip code. Therefore, the aforementioned step calculated the average of the pixel values within each 

zip code so that every zip code had a unique value of the air pollution for each of the 30 days. 

Statistical Package for the Social Sciences (SPSS) Version 20 was the software version used for the 

statistical analyses in this research, and was then used to compile the 33 days of modeled air quality 

values based on 2010 zip codes.  

 

Results 

In using the U.S. Census 2010 data, zip codes in Okanogan and its surrounding counties 

were selected if any part of the zip codes were contained within the county boundaries. Since 

hospitalization data were analyzed for Okanogan and its adjacent counties, a preliminary analysis was 

done for the aggregate modeled air quality data. The 75th percentile of modeled air quality for all zip 

codes in Okanogan and its adjacent counties across the 33-days daily was determined to be 0.504 

µg/m3 based on 867 data points. For Okanogan and its adjacent counties, each zip code had a daily-

averaged associated PM2.5 value, which allowed for the data to be later linked to hospitalization data 

at the zip code level.  

In using the 75th percentile of all of the modeled air quality values in the zip codes of 

Okanogan and its surrounding counties in residential zip codes, the majority of the exposures were 

zero values. There were very few values above the 75th percentile. In addition, the 75th percentile 
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value comprised a large area, much of which may not have been impacted by the Tripod wildfire. 

The prevalence of the zero values also, even in Okanogan County hospitals, first raised the question 

of whether the modeled data had “ground truth”. “Ground truth” would refer to whether the air 

modeling data was representative of smoke particulate matter at ground concentration levels. A 

threshold, whether zero and non-zero values or 75th and 25th percentiles needed to be used because 

there were different daily PM2.5 values associated for the same zip code. On one day, a zip code 

could have been a “high PM/exposed” exposure, but on another day, it could have been a “low 

PM/non-exposed exposure”. 

Because the modeled air quality pollution increases were such small values, the previous 

consideration of creating air quality buffer zones was not used. Otherwise, one could analyze the 

data based on air quality PM2.5 categories: 0 to 0.5, 0.5 to 3, 3-35, or above 35 µg/m³, since 35 µg/m³ 

is the EPA 24-hour standard for PM2.5. For further analysis, the modeled air quality data were linked 

to hospitalization and Census 2010 data with the methodology and results are shown in Chapters 3 

and 4.  

 

Conclusions 

Given the limited spatial data available for monitor data and the link being established for 

the air quality monitors in Okanogan County, it was hypothesized that air quality modeling data 

from the USFS could be linked to hospital admission data. In analyzing the data by hospitals, 

exposure characterization was done for the modeled air quality data. The preliminary statistical 

analysis in the chapter hints that the modeled estimates in air pollution due to the Tripod wildfire 

were under 0 µg/m³. In translating to air monitoring terminology, zero values would mean values 

below the detectable limits. With modeling data, it is possible that these zero values could be 
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inaccurate and underpredicted values. However, the availability of the air modeling data presented a 

unique opportunity to develop the methodology to assess wildfire impacts on air quality and human 

health, which will be addressed in Chapter 3.  
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Chapter 3: Epidemiologic Analysis of Air Pollution Impacts on 

Hospitalizations  

Introduction 

Chapter 3 describes the methodology and results of epidemiologic analyses to address air 

pollution impacts from the Tripod 2006 wildfires on cardiovascular and respiratory hospitalizations. 

Three epidemiologic analyses were conducted:  

1. Hospital relative rates 

2. Case-crossover study design 

3. Public health population analysis 

 

Washington State Comprehensive Hospital Abstract Reporting System (CHARS) 

In Washington State, the hospitalization data system is referred to as CHARS 

(Comprehensive Hospital Abstract Reporting System) and is managed by the Washington State 

Department of Health. For the time period of the Tripod wildfires, cause-specific morbidity 

CHARS data were available for May to September 2006. This analysis focuses on non-traumatic 

respiratory and cardiovascular hospitalizations. Available variables are as follows and those used in 

this analysis are denoted with an asterisk (*): 

1. Date of admission* 

2. Date of discharge 

3. Source of admission 

4. Total charges 

5. ICD-9 diagnosis codes* (principal, and up to 5 other codes) (organized into whether 

the hospital admission was a cardiovascular or respiratory admission) 

6. Hospital of admission (and associated address and zip)* 



 

36 
 

7. Zip code of patient’s residence* 

8. Patient’s gender* 

9. Patient’s age* (organized into age categories) 

10. Length of stay 

11. Primary payer ID codes 

 

The CHARS database contains data for all non-traumatic hospitalizations, which contains 

information on hospital discharges. The non-traumatic hospitalizations include circulatory and 

respiratory admissions, based on primary diagnosis code. Secondary and tertiary diagnoses were 

unavailable in the dataset. For 2006, there is only data on hospitalizations that occurred from May to 

September. Hospitalization data were requested for Okanogan and its surrounding counties. The 

wildfire occurred in Okanogan County, but impacted residents in nearby counties may have gone to 

the hospital closest to their residence.  Figure 11 shows all of the hospitals in Okanogan and its 

surrounding counties of Chelan, Ferry, Grant, Lincoln, Skagit and Whatcom that will be used for 

this analysis. As one can see in Figure 11, the number of hospital locations in Okanogan and its 

surrounding counties is small compared to more populated areas in Washington State. 

Hospitalization data were available from May to September 2006. However, since air quality 

modeling data were only available for 33 days, the same period was used for the hospitalization data. 

Air quality modeling data were aligned with hospitalization data, which limited the number of cases 

that could actually be analyzed, since many of the hospitalizations occurred on days where there 

were zero PM2.5 values. Prior to limiting cases with no observable air quality values, during the time 

period of August 14 to September 15, 2006, a total of 268 people were hospitalized for a respiratory 

hospitalization, and 445 people for a cardiovascular hospitalization in hospitals located in Okanogan 

and its surrounding counties. However, some of those cases had no associated modeled air quality 

value (not even a zero predicted PM2.5 value) and were taken out of the analysis, leaving 252 
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respiratory hospitalizations and 381 cardiovascular hospitalizations. Tables 2 and 3 provide detail on 

respiratory and cardiovascular hospitalizations by hospital and county. The numbers in parentheses 

indicate the non-zero PM2.5 values used in this analysis. The numbers that are not in parentheses 

include all hospitalizations; including those with associated zero PM values.  

 

Census Data 

On a yearly basis, the U.S. Census Bureau provides population estimates by state, city, 

towns, county for the United States as well as for the Commonwealth of Puerto Rico and its 

municipalities. The Census data also has data on demographic components of population change 

(births, deaths, migration) at the national, state, and county levels of geography. Housing unit 

estimates are also produced for the nation, states, and counties. However, yearly data are not 

available for population estimates by zip code.  The most recent Census data with population 

estimates by zip code are from 2000 and 2010. U.S. Census Tigerline data contains Census data with 

the most recent updates. The U.S. Census provides updated geographical spatial data and age-

specific population data for every ten years, and provides additional updates for any changes in the 

data via Tigerline data. Any estimates for specific years of data by zip code are from third parties and 

therefore, the algorithms to their calculations are unknown. For 2006 estimates, there was 

geographical spatial data from ESRI (Environmental Systems Research Institute). ESRI is a software 

development and services company providing Geographic Information System (GIS) software and 

geodatabase management applications, such as ArcMap, which was used for this research.  However, 

the 2006 ESRI data only contained total population information, and did not have age-specific 

population information. 
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ESRI is a third party vendor that develops formulas and algorithms and purchases additional 

spatial information to update their data, so that they have yearly updated Census. Their extra-

developed data include information on yearly population estimates and spatial boundaries. However, 

the methodology that ESRI uses to update the Census data is unavailable to the user.  For the best 

data integrity, this research was done using U.S. Census data directly from the source.  However, 

there are zip code limitations with the Census data. The Census data comprises of zip code 

tabulation areas (ZCTAs) for their zip codes. There is not spatial data associated with U.S. Postal 

Service (USPS) zip codes, but only ZCTAs. As explained by the U.S. Census Bureau (2012): 

ZCTAs are a statistical geographic entities produced by the U.S. Census Bureau for 

tabulating summary statistics, first developed for Census 2000. This entity was developed to 

overcome the difficulties in precisely defining the land area covered by each zip code, which 

is necessary in order to accurately tabulate census data for that area. ZCTAs are generalized 

area representations of USPS Code service areas and represent the most frequently occurring 

five-digit zip code found in a given area. Each ZCTA is built by aggregating 2010 Census 

blocks, whose addresses use a given zip code. Each resulting ZCTA is then assigned the 

most frequently occurring zip Code as its ZCTA code. 

 

Hospital Relative Rates 

Hospitalization zip codes were used to link hospitalization data with modeled air quality 

data, rather than residence zip codes. This analysis by hospital allows us to analyze hospitals as 

catchment areas and to understand if any observed effects are because certain hospitals have 

increased population, and generally have more patients. 
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Methods 

 Hospitals used in this analysis included hospitals located in Okanogan and its adjacent 

counties (Figure 11). CHARS hospitalization data were linked with modeled air quality data (August 

14 to September 15), based on the zip code of the hospital. The analysis by hospital zip codes, rather 

than residential zip codes, allows us to understand whether any increases in health outcomes may be 

due to a hospital having more patients, and which hospitals were associated with non-zero PM2.5 

values. There are some disadvantages to analyzing the air quality modeling data system and hospital 

data system based on hospital zip codes and not residential zip codes. The use of hospital zip codes 

assumes that all patients were impacted by the wildfire. However, there may be patients from zip 

codes from farther locations in the state or other states, and these patients may not have been in 

areas close to the Tripod wildfire. 

Using ArcMap, air quality modeling data were first merged with Census 2010 shapefiles 

addressing zip code locations. For each day in the air quality model, averaged PM2.5 values were 

noted for each U.S. Census zip code so that an averaged PM2.5 value would be available for every 

U.S. 2010 Census zip code of interest per day. Next, using SPSS, air quality modeling data were then 

matched to hospitalization data, based on the hospital zip code and hospitalization date of the 

patient. Hospital zip codes that did not match with Census 2010 zip codes were not included in the 

analysis, since air quality modeled data were based on Census 2010 zip code locations. With CHARS 

hospitalization data, the only spatial data associated with a patient is the zip code of the patient and 

the zip code of the hospital. Each hospital serves as a stand-in for the catchment area for air 

pollution exposures, by serving as a hospital located in Okanogan County or a surrounding county.  

There were many PM2.5 values with zero values. With monitor measurements, measurements 

that are zero are those which we do not have a number because they are less than the limit of 
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detection. However, since these are modeled air quality values, these zero values are a prediction 

value, and are not necessarily values which would have been beyond the limit of detection. Given 

the limited number of PM2.5 values above zero, this analysis distinguishes between zero and non-zero 

PM2.5 values.  

Relative risks (R values) were calculated using the following formula for each hospital, with 

separate calculations for respiratory and cardiovascular hospitalizations: 

RR = HRPM2.5 / HRnoPM2.5 

Where RR = relative risk 

HR = hospitalization rate 

HRPM2.5 = number of hospitalizations on non-zero PM2.5 days divided by number of non-

zero PM2.5 days 

HRnoPM2.5 = number of hospitalizations on days with PM2.5 less than the limit of detection 

divided by number of days with PM2.5 less than the limit of detection 

 

Exposure characterization was needed to determine what constitutes an “exposed” and 

“unexposed” population. In this case, non-zero value PM2.5 events were “high exposure events”, or 

the total number of hospitalizations where there was a PM2.5 value associated with the day. Zero 

value PM2.5 events were “low exposure events”, or the total number of hospitalizations where there 

was a PM2.5 with a “0” value associated with the day. The non-zero and zero PM2.5 days were the 

cumulative number of days of whether the modeled air quality value had an associated non-zero or 

zero value. Since this analysis assessed the modeled air quality data, there were 33 days for which the 
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USFS modeling data were available. In total, there were 3,207 unique PM2.5 events, with 2,473 of 

them being a zero PM2.5 events. 

 

Results 

Tables 4 and 5 show all of the respiratory and cardiovascular hospitalizations where there 

were non-zero PM2.5 values listed in descending order of values. For the data displayed in Table 6, 

relative risks (R values) were calculated for hospital locations based on the number of non-zero and 

zero PM days in the modeled merged air quality and hospitalization dataset. Table 7 shows the 

number of non-zero PM2.5 and zero PM2.5 days and the number of respiratory hospitalizations on 

both categories; Table 8 does the same but for cardiovascular hospitalizations.  The two maps 

(Figures 12 and 13) show hospitals with R values greater than 1 for respiratory and cardiovascular 

hospitalizations. The R values greater than 1 (2 significant digits) are also highlighted below with the 

number of respiratory or cardiovascular hospitalizations on non-zero PM days in parentheses. Since 

these calculations were done with the formula described in the methods, there is no associated 

relative risk calculation.  

Respiratory R (map shown in Figure 12) 

 Central Washington Hospital:  1.22 (10) 

 Coulee Community Hospital: 2.80 (1) 

 Lincoln Hospital: 2.82 (2) 

 Quincy Valley Medical Center: 5.60 (1) 

 United General Hospital: 3.11 (3) 

Cardiovascular R (map shown in Figure 13) 

 Island Hospital: 1.87 (4) 

 Lincoln Hospital: 3.10 (1) 
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 North Valley Hospital: 1.71 (3) 

 Peace Health Saint Joseph: 1.31 (42) 

 Skagit Valley Hospital: 1.50 (11) 

 United General Hospital: 3.62 (2) 

Overall, there were not many relative risks above 1 for respiratory and cardiovascular 

hospitalizations. Within the hospitals with relative risks above 1, there were a limited number of 

respiratory and cardiovascular hospitalizations for non-zero PM2.5 days. The exception was Peace 

Health Saint Joseph Hospital, where there were 42 cardiovascular hospitalizations during non-zero 

PM days. 

 

Case-Crossover Study Design 

In the case-crossover study design, each case serves as his or her control by comparing 

exposures near the time of the incident health event with exposures to the same person at another 

time—either before or after the incident even  (Baker & Nieuwenhuijsen, 2008). The analysis 

compares the difference between exposures during the event and control time periods for the same 

individual, so it is a ‘matched’ case-control analysis (Baker & Nieuwenhuijsen, 2008). The rationale 

for this design is that if precipitating events exist, they should occur more frequently immediately 

prior to the onset of disease rather than during a period more distant from the onset of disease 

(Merrill, 2010). The case-crossover study design is especially appropriate when individual exposures 

are intermittent wherein the disease occurs abruptly and the incubation period for detection and the 

induction period are short (Merrill, 2010). 

The lag effect is important to case-crossover analyses. Some studies assign case events to the 

calendar date on which the patient presented to hospital or died, and exposure is based on the daily 
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level of particulate matter (Mittleman, 2005). However, these studies do not take into account that 

the event might have begun any time between 0:00 and 23:59 hours (Mittleman, 2005). These studies 

may be misclassifying exposure by a half-day on average (Mittleman, 2005).  

The size of the population at risk is not an issue with the case-crossover design (Neas, et al. 

1999). The case-crossover design controls many time-varying confounders by design because the 

case and control periods in each risk set are separated by a relatively small interval of time (Neas, et 

al. 1999). This time interval may be only a few hours in some cardiovascular research or several days 

in air pollution research (Neas, et al. 1999). The case-crossover study design controls for 

confounding by month and season by design. The case-crossover study design with time-stratified 

sampling is appealing since it affords control for confounding by day of week, month, and season of 

year by design (Buckley and Richardson, 2012). It is important to control for season and day-of-

week effects (or at least weekend/week-day contrasts) for several reasons. Because air pollution has 

seasonal variability, there is the potential to confound the pollution associations if not controlled 

(Neas, et al. 1999). In addition, seasonality may modify the relationship between ambient 

concentrations of particles and personal exposure to particles of ambient origin, for example, the 

amount of time spent outdoors or window opening. In addition to this 365 day cycle, behavior and 

exposure change substantially between weekdays and weekends (Neas, et al. 1999). Factors that vary 

slowly over a longer time scale, such as trend, season, and smoking status, are essentially the same in 

both periods and therefore do not confound the health effects of more rapidly varying factors such 

as air pollution.  

The case-crossover study design has been especially used for research on the effects of air 

pollution on cardiovascular disease events, such as deaths, hospitalizations, ventricular arrhythmias, 

and intracerebral hemorrhage (Baker & Nieuwenhuijsen, 2008). In case-cross-over studies 
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addressing the impacts of air pollution, the air pollution concentration that corresponded in time 

with a person’s adverse event is compared with a “control” time when the event did not occur 

(Vedal, 2002). In comparison, in a time-series study, the association between parallel time-series of 

varying air pollution concentrations and daily mortality or morbidity counts is assessed over a period 

of time (Vedal, 2002).  

The case-crossover design does not address the issue of exposure measurement error or the 

discrepancy of ambient and personal exposures (both challenges are addressed in Chapter 5), but 

does represent a unique approach to control for confounding. For example, by making within-

subject comparisons, time-independent confounders are controlled by design (Janes, et al. 2005). 

Also, if the referent times are matched to the index time with respect to time-dependent 

confounders, these confounding effects are controlled by design (Janes, et al. 2005). 

 Studies of acute effects face many challenges, including exposure measurement error, the 

discrepancy between ambient and personal exposures, and confounding (Janes, et al. 2005). Only a 

limited number of research topics are amenable to the case-crossover design. The exposure must 

vary over time within individuals rather than stay constant (Rothman, et al. 2008). The exposure 

must also have a short induction time and a transient effect; otherwise, exposures in the distant past 

could be the cause of a recent disease onset (a carryover effect) (Rothman, et al. 2008). Control of 

time-varying confounders, such as daily variation in ambient temperature, may be achieved through 

regression modeling (Buckley and Richardson, 2012). Case-crossover studies suffer from 

confounding when the baseline risk of the outcome is not constant within the referent window 

(Buckley and Richardson, 2012). The time-stratified, bi-directional approach to control period 

sampling within a one-month referent window constrains variation in potential time-varying 

confounders but does not eliminate it (Buckley and Richardson, 2012). Despite any limitations, 
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studies have demonstrated that the case-crossover gives unbiased estimates in the presence of strong 

seasonal confounding (Guo, et al. 2010). With the rare exception, recent findings show that case-

crossover studies are generally consistent with findings from time-series studies. (Vedal, 2002)  

 

Methods 

Dependent Variables 

The dependent variables in this case-crossover analysis were whether one was either any type 

of hospitalization case, a respiratory or a cardiovascular hospitalization case, as there were multiple 

analyses. From the CHARS data, patients that had a respiratory or cardiovascular condition as their 

primary diagnosis were selected out of the total hospitalization data. Secondary and tertiary 

diagnoses were unavailable in the dataset. Table 9 shows the respiratory and cardiovascular codes 

that were used for this analysis.  

Table 9: Respiratory and Cardiovascular Categories and ICD-9 CM Codes 

 

Category ICD-9-CM Code 

Respiratory 460-519 

    Acute respiratory infections 460-465 

    Acute bronchitis and bronchiolitis 466 

    Other diseases of the respiratory tract 470-478 

    Pneumonia and influenza 480-488 

    Chronic obstructive pulmonary 
disease (COPD) and allied conditions 

490-496 

         Asthma 493 

    Pneumoconiosis and other lung 
diseases due to external agents 

500-508 

    Other diseases of the respiratory 
system 

510-519 

Circulatory 390-459 

    Cardiovascular 393-429 

        Ischemic  410-414 
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Independent Variables 

There were several independent variables in this case-crossover analysis including PM2.5 values, age, 

and gender.  

 

Modeled PM2.5 values 

Each modeled air quality PM2.5 value represents a mean value, per day, as based on the patient’s 

residential zip code.  

 

Age category 

For the analyses using six age categories, the categories were based on the epidemiological analysis 

addressing climate change and mortality by Jackson, et al., 2010. 

 1 = 15 to 44 (reference age category) 

 2 = 0 to 4  

 3 = 5 to 14 

 4 = 45 to 64 

 5 = 65 to 84 

 6 = 85 and older 

 

For the “sensitive populations” analyses, three categories were assessed: 

 1 = Ages 15-64 (reference age category) 

 2 = Ages 0-14 

 3 = Ages 65 and older 
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Gender 

Males and females were coded as follows: 

 1 = Males (reference category) 

 2 = Females  

 

With the case-crossover analysis, each hospitalization “case” is treated separately and serves 

as its own “control” group. Using SPSS, the case-crossover study design was performed using a 

conditional logistic regression for cardiovascular and respiratory hospitalizations, with cases 

stratified by age and gender. The modeled air quality and date of the case was noted. The control 

group information consisted of the same-day of the week data for the rest of the study period and 

the modeled air quality and date of the control are noted. For further clarification, if there were two 

patients from the same zip code that had a respiratory hospitalization on the same day, they would 

have been treated as two separate cases.  

The modeled air quality data for zip codes located in Okanogan and adjacent counties, 

described in previous chapters, were used for this analysis. Patient residential zip codes were linked 

to the zip codes in the modeled air quality dataset so that every zip code had a unique modeled PM2.5 

value for each day. After a preliminary analysis, it was found that there were patients that lived in 

outside counties and states. Therefore, residence zip codes of patients that did not align with Census 

2010 zip codes were not included in the analysis. The data were coded so that the day of the week 

and week number of the hospitalization were labeled. Using those codes, up to four controls were 

created for each hospitalization case. The control data consisted of all of the same identifying patient 

data, but with the change in modeled air quality value for the patient’s residential zip code. Once the 

data were put together, a binary logistic regression was performed. Two separate analyses were 

performed. The first analysis’ dependent variable was whether the hospitalization was a case or 
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control and the covariates included the modeled PM2.5 value, age category of the patient, and gender 

of the patient. The second analysis was almost the same as the first analysis, with the change of the 

covariates coded as interaction terms with each other. 

In addition to the case-crossover analysis of the patient data described above, several 

additional case-crossover analyses were performed. Prior to the lag model, modeled air quality values 

were linked to the same day that a patient was admitted. Patients counted as a case based on their 

associated modeled air quality value on that day and whether they had a respiratory or cardiovascular 

illness.  The scientific literature found that patients became cases after wildfire events. Delfino, et al. 

(2009) found the two-day moving average of PM2.5 (average of today and yesterday) provided the 

best fitting model that adequately captured the association between PM2.5 and admissions. For this 

analysis, a 3-day moving average lag model was applied.  

Case-crossover analyses were conducted for sensitive populations aged 0 to 14 and 65 and 

older. The grouping of sensitive populations was done using the same day admission for the 

associated modeled air quality value, as well as a lag model of a 3 day moving average and median 

values. 

The binary logistic regression was done using the dependent variable of whether one is a 

control or hospitalization case and the covariates of gender, modeled air quality value, and age 

category. Additional logistic regression analyses were done to include interaction terms of the 

various combinations of covariates of age category, gender, and modeled air quality values.  The 

research question to be answered is whether a hospitalization case is a control depending on one’s 

age category, gender, and associated air quality for their residential zip code. Separate logistic 

regression analyses were done for 6 age categories of 0-4, 5-14, 15-44 (reference age category), 45-

64, 65-84, and 85 and older and for sensitive age categories of 0-14, 15-64 (reference age category), 
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and 65 and older. For gender, males were coded as 1 and females coded as 2 and males were used as 

the reference category. 

To summarize, logistic regressions were performed for the following combinations. 

• All hospitalizations 

• Respiratory Hospitalizations 

• Cardiovascular Hospitalizations 

• Interaction terms 

• Lag model (mean/median of 3 days prior) 

• Sensitive populations 

• 0-14, 16-64 (reference), 65+ 

 

Results 

The summary of results are as follows. 

• Results are statistically insignificant using standard epidemiologic approaches. 

• Results were more defensible using the mean or median values for modeled air quality for 

the 3 days prior.  

• There was an improvement when 3 sensitive age categories were used instead of 6 age 

categories. 

For Okanogan and its surrounding counties, the logistic regression data for all 

hospitalizations, respiratory hospitalizations, and cardiovascular hospitalizations and their 

association with air quality impacts are presented in the Tables 10 through 33. All of the Hosmer 

and Lemeshow tests indicated adequate goodness of fit because all of the tables contain non-
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significant findings. All of the Hosmer and Lemeshow contingency tables also support the model 

because the expected distributions correspond to the observations in the dataset.  None of the 

classification tables had shown significant results. In analyzing the results of the logistic regression 

with and without interaction terms, there were some odds ratios above 1, but at an extremely poor 

significance level. Logistic regression analyses presented in Tables 10 to 33 show final results for all, 

respiratory, and cardiovascular hospitalizations, either using or not using a 3-day lag model, and 3 or 

6 age categories. In interpreting the results, there was a slight improvement in significance values and 

odds ratios values when the mean or median values for modeled air quality for the three days prior 

to the hospitalization were used, compared to when the mean on the same day as the hospitalization 

was used. Age categories for sensitive and non-sensitive populations using 3 age categories also 

proved to be a more useful measure as opposed to using 6 age categories. 

Although the statistical values were not significant, the odds ratios were comparable and in 

some cases, even larger than the values from Delfino, et al. (2009). An example of the case-

crossover analysis results is presented below. Since the air modeling data used in this analysis were 

not a good indicator of ground concentration levels and it was still possible to obtain comparable 

odds ratios, there is large potential for future studies to use similar methodologies and obtain 

meaningful odds ratios.  

 An example of the case-crossover analysis results using data from Table 29, “Logistic 

Regression for respiratory hospitalizations (interaction terms, sensitive, comparison of modeled air 

quality using median of 3 days prior against mean on hospitalization day, is shown below.  

 When accounting for a 3-day lag model (using median value) as opposed to the same day, a 

patient is 1.522 times more likely to be hospitalized for a respiratory hospitalization. 
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 A female patient aged 65 or older is 1.043 times more likely to be hospitalized for a 

respiratory hospitalization, compared to a female patient aged 15-64. 

 A patient aged 0-14 is 1.063 times more likely to be hospitalized for a respiratory 

hospitalization compared to someone aged 15-64. 

 

To compare these results against Delfino, et al. (2009), 

 When accounting for a 3-day lag model during the wildfire period, a patient is 1.028 times 

more likely to be hospitalized for a respiratory hospitalization. 

 During the wildfire period, a patient aged 65 or older is 1.030 more likely to be hospitalized 

for a respiratory hospitalization.  

 During the wildfire period, a patient aged 5-19 is 1.027 times more likely to be hospitalized 

for a respiratory hospitalization. A patient aged 0-4 is 1.045 times more likely to be 

hospitalized for a respiratory hospitalization. 

 

Public Health Population Analysis 

The air quality modeling data files were first converted to a usable form for the analysis in 

ArcMap, from the common data format (CDF) given by the USFS to a TIFF image. This 

conversion allowed for each pixel to represent an individual day’s worth of data for a unique 

estimated modeled air quality associated value. The USFS air quality modeling data  were merged 

with 2010 zip code Census population data and Washington CHARS hospitalization data in SPSS. 

The EPA 24-hour PM2.5 standard is 35 µg/m³. Although the majority of the data consisted of 0 or 

low values, the 35 µg/m³ standard was still used as the basis of the population impacts. Census 2010 
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data were obtained for zip code population data and aligned with the zip code of the patient’s 

residence zip code. For the 33-day period, respiratory and cardiovascular hospitalizations were 

analyzed for whether the associated modeled air quality value (based on the patient’s residential zip 

code) was above 35 µg/m³. If the modeled air quality value was above 35 µg/m³, the zip code’s 

population count was part of the total population of impacted residents. The 2010 Census data 

included data by ages. The six age categories as well as total population counts were totaled to 

estimate the possible population impacted by the Tripod wildfire based on modeled air quality data.   
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Methods 

The methods can be summarized as follows. 

• Use modeled PM2.5 data with 2010 Census zip code data 

• Estimate the total population from zip codes with PM2.5 modeled estimates greater than 

EPA’s 24-hour PM2.5 standard of 35 ug/m3. 

The public health population analysis was done to answer the following question, “What 

were the larger population impacts of the Tripod 2006 wildfires?” zip codes within the study area 

and time frame were analyzed for whether there were any days where the daily maximum PM2.5 value 

was above the EPA 24-hour standard of 35 µg/m³. The data are organized by the total population, 

and data for the six age categories for the affected zip codes are also displayed. Air modeling data 

were only available for 33 days of the wildfire, so the public health impacts are only based on the 33 

days, and not the period of the entire wildfire event. This analysis was done for zip codes in 

Okanogan and its surrounding counties. In ArcMap, county boundaries determined which ZCTAs 

were included in the analysis. ZCTAs that fell out of the county boundaries were included as long as 

there was a part of the ZCTA that was still contained within county boundaries. Bordering ZCTAs 

were not included if they were not part of the counties.  

 

Results 

Based on zip codes with modeled air quality values above 35 µg/m³, 5,972 people were 

estimated to have been impacted in Okanogan and its surrounding counties (Table 34). Three zip 

codes came up as having modeled air quality values above 35 µg/m³ for Okanogan and its adjacent 
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counties. The three zip codes and summary modeled air quality data and best estimates for their 

locations are as follows: 

1. 98822: 10 days of data, maximum modeled air quality value of 435.996 µg/m³, Entiat, 

Chelan County 

2. 98856: 6 days of data, maximum modeled air quality value of 167.680 µg/m³, Twisp, 

Okanogan County 

3. 98862: 1 day of data, modeled air quality value of 60.976 µg/m³, Winthrop, Okanogan 

County 

 

Conclusions 

For the public health population and case-crossover analyses addressing hospital relative 

rates, there was limited data on the number of respiratory and cardiovascular hospitalizations to 

begin with. Next, within the limited amount data of respiratory and cardiovascular hospitalizations, 

data was even more limited for non-zero PM2.5 days. The limited data made it difficult to obtain 

robust relative risks above 1.  For the case-crossover study design, the many logistic regression 

analyses did not show results of significance. However, results did slightly improve when the 3-day 

lag of mean or median values of modeled air quality were used rather than the mean modeled air 

quality on the day of the hospitalization. Also, the use of fewer age categories to capture vulnerable 

populations also proved to be more useful. For the public health population analysis, 5,972 people 

were estimated to have been impacted when the threshold was 35 µg/m³. However, prior analysis 

on the modeled air quality data showed that there were not many values at the 24-hour EPA 

threshold, and that there were more zero PM2.5 values. The results from these epidemiologic analyses 

raise the question of whether the modeled air quality data are valid, or more specifically, whether the 
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modeled air quality data are capturing what is happening at ground concentration levels. Given that 

the air modeling data contained many zero or small PM2.5 values, the estimated public health impact 

in this analysis is likely to have been a conservative estimate. The next chapter will examine the 

differences between modeled PM2.5 concentrations against monitor PM2.5 concentrations, which will 

allow us to validate whether the model has “ground truth”. 
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Chapter 4:  Evaluation of the U.S. Forest Service Air Pollution Model  

Introduction 

The epidemiologic analyses presented in Chapter 3 were based on air quality modeling data 

from the USFS, Pacific Northwest Research Station. The focus of this chapter was to evaluate 

whether these modeled air quality values were representative of air monitor values for ground-level 

concentrations. Using latitude and longitude data from the air monitors, air monitor data from the 

EPA and USFS were compared to predicted air model data from the USFS. 

 

Assessing Smoke Impacts on Study Area 

 Given the erratic nature of wildfires, the smoke plumes associated with wildfires vary. There 

are some wildfires for which smoke plumes stay within a state, whereas some wildfires travel across 

country or across international boundaries. Wildfires are complex and it is difficult to assess whether 

or not a particular area may experience negative air quality impacts, especially for estimates across 

large areas. Also, there are limitations that need to be addressed regarding the available tools that can 

show regions impacted by wildfire smoke.  The two tools include satellite images and modeled air 

quality or plume data. Model runs done by the Pacific Wildland Fire Sciences Laboratory provide 

estimates of the extent of the smoke from the Tripod wildfire. According to the Pacific Wildland 

Fire Sciences Laboratory team, the smoke from the Tripod wildfire went primarily northeast and it 

would have been unlikely to travel west over the mountains, nor make it as east as Spokane (Strand, 

Tara, personal communication, May 23, 2011).  
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Methods 

The methods can be summarized as follows. 

Part I 

• Using ArcMap, 

• Aggregate 33 data images from USFS air model.  

• Overlay the aggregated image with county boundaries from 2010 Census data 

Part II 

• Use the latitude and longitude of monitor locations from the EPA (26 monitors) and USFS 

(7 monitors). Counties assessed include Okanogan, Grant, Chelan, Skagit, Whatcom, 

Stevens, Adams, Benton, Franklin, Kittitas, Klickitat, Lewis, Pierce, and Yakima.  

• Using the air model data in ArcMap, develop an averaged PM2.5 value per day for 33 days  

There is limited information regarding smoke travel for the 2006 Tripod wildfires, as the 

information is based on model projections and predicted observations. The USFS’s modeled air 

quality data were used to test the model’s prediction on where the most smoke was located in the 

state. To get a general idea of the model’s estimate of air quality impacts, all 33 days of air quality 

modeling data were summed together and spatially joined with county data. Figure 14 shows the 

cumulative modeled air quality TIFF image used in ArcMap. The sum of the modeled air quality 

values allows us to obtain understanding of the cumulative smoke impacts estimated during the 2006 

Tripod wildfire. Also, before all of the images were added together cumulatively, each modeled air 

quality TIFF image contained average values for each day. This analysis served as a preliminary 

analysis for whether the modeled smoke data were showing an accurate assessment of what was 

happening at ground concentration levels. The assessment by counties was used because there are 
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numerous zip codes across Washington State and air quality data monitors are also organized by 

counties.  The assessment by counties rather than zip codes also allows for a quicker preliminary 

analysis and a broad overview of where the model predicted that smoke accumulated during the 33 

days.  

 

Results 

All of the cumulative PM2.5 measurements were summed and the 75th percentile value of 

these measurements was determined using the formula below. The 75th percentile was selected 

because it is a percentile that would get close to the “Top 10” most impacted counties. 

75th percentile = Sum of all of the cumulative impacts/ (38 counties) * 0.75 = 1100 µg/m³ 

Over the 33 days of available data, there were 14 counties that had a cumulative air quality 

impact above 1100 µg/m³. These counties are listed below, in order of highest cumulative impacts 

to the lowest: 

1. Okanogan 
2. Yakima 
3. Chelan 
4. Lewis 
5. Grant 
6. Benton 
7. Stevens 
8. Skamania 
9. Adams 
10. Pend Oreille 
11. Pierce 
12. Klickitat 
13. Franklin 
14. Kittitas 
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Table 36 shows the data for all Washington counties when all of the 33 days of modeled air 

quality impacts were summed. Table 37 displays data for cumulative smoke impacts for all 33 days, 

and the average cumulative impact per day. Table 38 displays descriptive data of maximum, 

minimum, range, average, and standard deviation for data for zip codes within each county in 

Washington in the cumulative smoke data set. In the next section, the results show counties and 

their summed modeled PM2.5 concentrations in order of highest cumulative concentrations to the 

lowest. 

Figure 15 shows a map with the top 14 counties with a cumulative, modeled air quality 

impact above 1099.929 µg/m³ with the following breakdowns: 1000-1500, 1700-1950, 2000-3000, 

4000-6000, and above 9000 µg/m³. Figure 16 was also created to highlight these 14 counties and the 

hospitals located within the counties. Since the cumulative modeled data predicted a different group 

of impacted counties from proximity estimates, the public health impacts analysis was redone to 

reflect this change in counties. Based on proximity, the estimated number of citizens possibly 

impacted is 5,972 people (shown in Table 34).  When assessing the population impact specific for 

the 14 counties as based upon smoke modeled effects, the estimated population impact is 27,529 

people (shown in Table 41). This estimate is for any zip codes where there was at least one modeled 

day with estimated air quality impacts above 35 µg/m³. In performing the hospitalization relative 

rate analysis for the “Top 14” counties, we expanded the dataset. By performing the hospitalization 

relative rate analysis, we pick up on six additional zip codes.  
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Air Quality Model and Monitor Sensitivity Analysis 

As shown in this research and other recent scientific literature, air models have a tendency to 

underestimate the air quality at the ground concentration level and overestimate atmospheric 

concentrations. As shown in the data analyses thus far, there is a disconnect between air monitoring 

and air modeling values attributed to the Tripod wildfires. Air quality monitoring data for PM2.5 were 

from the EPA Air Quality DataMart, which comprise of regulated, permanent air quality monitors. 

Additional PM2.5 data were obtained from temporary, non-regulatory monitors from the USFS 

Pacific Wildland Research Laboratory. The USFS data cannot be called air quality data because the 

data cannot be used for regulatory enforcement. 

The air monitoring data from the EPA and the USFS for Okanogan County contained many 

values above the EPA’s 24-hour PM2.5 standard. There also were data from other counties that 

showed large PM2.5 values in the EPA and USFS monitoring data.  The PM2.5 values from monitors 

near more populated areas may be attributed to sources other than the Tripod wildfires. Air 

monitors assess for particulate matter beyond wildfires, whereas the air quality model generates 

estimates only for particulate matter from the Tripod wildfires.  In contrast, the modeled air quality 

data from the USFS consist of many zero values. For zip codes closer to the wildfire, there were still 

zero and low PM2.5 values. The model could be a poor predictor of air quality at ground 

concentration levels. If we assume that the air quality model data may hold some truth, the 

hypothesis is that these zero and low PM2.5 modeled air quality values may have more meaning when 

examining scatter plot trends with the data.  

The comparison of the air quality model and monitors serves as an important sensitivity 

analysis. The primary purpose of this chapter is to evaluate the predictive value of the air modeling 

data. By comparing the monitor data against the modeled data at the exact same location, one can 
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better understand whether the modeled data are a good prediction of air quality, and whether the 

zero and low PM2.5 modeled air quality values may translate to higher values on the air monitoring 

scale. 

 

Methods 

The USFS air quality model generated estimates, which were compared against actual 

measurement data from the USFS and EPA. The comparison of air monitoring and modeling data 

was done using the latitudes and longitude locations of the air monitoring stations. This analysis was 

done on ArcMap by locating the latitude/longitude of the monitoring stations to estimate the model 

data’s value at the exact latitude/longitude coordinate. The EPA monitor data’s latitude and 

longitude follow the North American Datum (NAD) 1927 (EPA, 2008). The USFS GPS system 

uses the WGS-84 coordinate system and the model output data are on a spherical shaped earth, 

which is essentially identical to the NAD 1983 (Strand, Tara, personal communication, May 28, 

2012). 

This analysis was done for the 14 “top” counties where there was the largest cumulative 

impact from the Tripod wildfires. For this sensitivity analysis, information on the monitor’s latitude, 

longitude, agency in charge, and city location is shown in Table 35. At each of the monitor’s latitude 

and longitude, daily mean air quality values during the 33-day time period were noted. The air quality 

values associated with the modeled data were matched by the same latitude and longitude location 

and also by the nearest zip code. The nearest zip code is of interest since our health and population 

analysis is by zip code, as are much of available health data. Final data results were displayed through 

scatter plot graphs showing comparisons of monitoring data against modeled air quality data. The 
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monitor’s latitude and longitudinal coordinates were used as the location for assessing both the 

monitor and modeling data, with a unique, averaged PM2.5 value for each of the 33 days.   

 

Results 

Within the 14 counties with the highest estimated cumulative smoke impacts, all of the 

monitor locations were assessed against the model’s predictions at the exact same location. Table 38 

shows the cumulative descriptive statistics for the USFS monitor (non-enforceable) and the EPA 

monitor (enforceable) data against what the model predicted. The variable ‘N’ represents the 

number of total air monitor concentration values. The value in the range column is the same as the 

maximum for modeled air quality values because the lowest numbers were the zero concentration 

values predicted by the model. Table 39 shows the descriptive statistics for just the USFS monitor 

(non-enforceable) data against what the model predicted. Table 40 shows the descriptive statistics 

for just the EPA monitor (enforceable) data against what the model predicted. As shown in the 

many figures, the model predicted zero for the majority of the locations, regardless of their distance 

to the Tripod wildfires. For all of these scatter plots, R values were added to the figures, and the 

results show that there was very little correlation between the model and monitor data. Figure 17 

shows the modeled data for all of EPA and USFS monitor locations on one figure. Figure 18 shows 

the USFS monitor locations only, and Figure 19 shows only the EPA monitor locations. However, 

all of the monitors were on a different scale, depending on their location to the wildfire. Therefore, 

scatter plots were re-created so that every monitor had its own scatter plot. Even after this separate 

analysis, none of the locations had any demonstrable correlation between its modeled values and 

monitor values. 
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An additional analysis was done for all of the monitor locations by removing any PM2.5 

values where the model predicted zero for the air quality values. If there were at least five predicted 

PM2.5 values above 10, then a new scatter plot was created to assess whether there was any trend in 

the modeled data against the monitor data. Figures 20 to 23 show the USFS monitor locations which 

met these criteria while Figures 24 through 26 show the EPA monitor locations which met these 

criteria. Although all of these selected monitor locations were in Okanogan County, the county of 

the Tripod wildfires, there did not appear to be any correlation. Figure 22 for Nespelem shows a 

negative association, and Figures 21 and 26 show an extremely low positive association that is a 

nearly zero association. 

After assessing all scatter plots, it was determined that the modeled data are not predictive of 

what was actually occurring at ground concentration levels, or there was no “ground truth”. For 

areas located in Okanogan County that were closer to the wildfires, the estimated modeled air quality 

impacts did not change much compared to areas that were not estimated to have been impacted 

from the Tripod wildfires.  

It is also interesting to note that the model did predict some smoke impacts in areas located 

west of the Cascades. The areas west of the Cascades were considered to have been unlikely areas to 

have been impacted based on smoke travel knowledge from the USFS. Therefore, air monitoring 

data for Whatcom and Skagit counties should not indicate smoke impact from the Tripod wildfire. 

However, an analysis of the modeled data found some zip codes west of the Cascades where there 

were air quality modeled values above zero and a few of these values are documented below. 

 2.248 µg/m3: August 16, 98267, Marblemount, WA 

 1.292 µg/m3: August 16, 98237, Concrete, WA 

 1.166 µg/m3: August 18, 98267, Marblemount, WA 
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 0.937 µg/m3: August 16, 98284, Sedro Wooley, WA 

 0.545 µg/m3: August 16, 98233, Burlington, WA 

 

In comparing the modeled surface PM2.5 concentrations to observation comparisons, it is 

also important to note that the understanding of modeling fire emissions and smoke dispersion was 

at its infancy (Strand, Tara, personal communication, April 27, 2012). There are more errors 

associated with the Tripod model runs compared to a fire in the last two to three years (Strand, Tara, 

personal communication, April 27, 2012). Through simple experiments, Larkin, et al. (2009) 

identified some specific issues with the model failure, which are as follows: 

1. BlueSky used fire information from ICS-209 reports. This fire information was not the most 

accurate, with errors in reporting geo-referencing and in daily fire growth.  

2. BlueSky did not account for enough impacts from smoldering in the emissions calculations. 

3. There were errors in the plume rise scheme. BlueSky uses CALPUFF, which has a built in 

plume rise schema. Because of the reliance on ICS-209 data, the entirety of the fire was 

being considered as a single plume and run through the built-in scheme which was 

developed through smokestack observations. 

 

Conclusions 

The analysis in this chapter provided the following results: 

1. Modeled data showed smoke plume impacts on different counties and zip codes from 

estimated impacted counties and zip codes of closer proximity to the wildfire.  

2. Modeled data did not show “ground truth”, as observed by the monitor data.  
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3. The majority of the air quality values predicted by the model were zero, regardless of 

location to the proximity of the wildfire. 

4. The model predicted some smoke impacts for areas that were not known to be in the 

wildfire smoke impact zone. 

With these findings, although the modeled air quality data are the highest-spatially available 

data when looking at zip codes, current models need more work. Unfortunately, air quality 

monitoring data are too limited to contribute to meaningful analyses with health data. Chapter 5 will 

address research challenges that came up during this analysis. Chapter 6 will address the policy 

implications from this research and tie up all of the findings and discussion from the analyses in 

Chapters 1 through 4.  
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Chapter 5: Research Limitations 

The following research limitations will be addressed in this chapter. 

 Exposure errors 

 Hospitalization data 

 Modeling data 

 Study area 

 Zip codes and other spatial issues 

 Determining wildfire impacts 

 Confounders 

 

Exposure Errors 

 There are many potential exposure errors. Janes, et al. (2005) state that studies of acute 

effects have the potential for exposure measurement errors and that there can be discrepancies 

between ambient and personal exposures. Monitoring data are limited and it is not completely 

accurate to assign individuals in an entire county to exposure levels from several monitors. With 

modeling data and satellite data, the data are still being improved. These data sources do not always 

provide necessary “ground truth” and data scales vary largely between atmospheric concentrations 

and ground level concentrations of air quality. In addition, for monitoring data, PM2.5 concentrations 

are caused by a variety of external sources and it is challenging to extrapolate that certain PM2.5 levels 

are due to one source, in this case, wildfire smoke. There also are difficulties in making associations 

with air quality studies due to a few unresolved issues including a lack of demonstrated biological 

mechanisms for PM-related effects, confounding by co-pollutants (air toxics), characterization of 
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daily and annual background concentrations, and exposure estimates performed outdoors (Hope, 

2005). 

 

Hospitalization Data 

There are population limitations to performing broader-scale research with hospitalization 

data. Exposure was based on zip code of residence in the more robust epidemiologic analyses, so 

this study was unable to account for vacationers. Using the zip code of the hospital has its 

challenges, as one does not know if a patient’s hospitalization was due to the wildfire. The 

hospitalization data did not give any information on whether patients could have been repeat 

patients, or whether a patient came in more than once. Smoke from wildfire events is variable and 

there is potential to misclassify when a patient may have come in during the wildfire event, especially 

since with no information on patient locations during a given event. Due to limitations in recording 

and observing forest fire smoke data, wildfire impacts on human health are still not well researched 

and known. For many wildfires, including the Tripod 2006 wildfires, hospitalization data are limited 

for rural areas. In addition, the populations impacted depend greatly on how one characterizes the 

affected populations.  

 

Modeling Data Limitations 

For this research, air quality modeling data were the highest spatial level data available for zip 

code level analysis. In the epidemiologic analyses in Chapter 3, hospitalization data were linked with 

air quality modeling data. The air quality modeling data were averaged so that each zip code had an 

associated value per day. In obtaining this calculation spatially, it may have been possible that the 
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PM2.5 values were a conservative estimate. There were larger PM2.5 values in specific pixels that 

became part of a zip code average. 

 As shown from the analyses in Chapter 4, the air quality modeling data were not an accurate 

predictor of what was actually happening at ground concentration levels. Since the air quality 

modeling data were the air quality data used for analysis with the hospitalization data, the exposures 

of the patients were improperly categorized.  The epidemiologic analyses provided in Chapter 3 had 

limitations given the inaccuracies of the modeling data in terms of impacted locations and modeled 

air quality values. The EPA’s 24-hour air quality standard for PM2.5 addresses PM2.5 values greater 

than 35 µg/m³. However, the majority of the air quality values were zero, even for locations that 

were relatively close to the wildfire.  

Although the model proved to be inaccurate, there are often differences in scales between 

modeled and monitor data. Modeled data can often be difficult to relate to ground concentration 

data due to its focus on higher atmosphere levels, and the tendency to under-predict ground 

concentration levels. 

Ideally, a test should have high sensitivity and high specificity. In this research, the model did 

not have sensitivity or specificity. Sensitivity refers to the ability of the model to correctly identify 

those zip codes that had poor air quality from the wildfires. Even zip codes in Okanogan did not 

show increased impacts, as had been observed from the monitor data. Specificity refers to the ability 

of the model to correctly identify those zip codes that had no air quality impacts from the wildfires. 

There were zip codes that were far away from the wildfire and not in the wind direction of the 

smoke plume that had associated modeled values associated, whereas areas of more likely impact did 

not have associated values. Many values were predicted by the model to be zero when there actually 

were observed values. In addition, when zero values were removed to assess any potential 
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correlations as shown in the scatter plots in Chapter 4, there was a weak trend, even when assessing 

locations closer to the Tripod wildfire. 

 

Study Area  

For the epidemiologic analyses of this research, the study area was Okanogan and its 

surrounding counties. The original assumption was that smoke traveled to surrounding counties. 

However, wind patterns may have taken the smoke to other directions. The modeling data predicts 

smoke in different locations, but the analysis in Chapter 4 showed that the modeling data were not 

an accurate data source. After assessing the air quality modeling data against ground concentration 

monitor data, the question of which areas were impacted is still a question. How far did the smoke 

from the Tripod wildfire really travel? The air monitoring data from the USFS and the EPA are 

limited to several monitors within a county. In addition, the Tripod wildfire was predicted to have 

had smoke impacts in Canada, but for the purposes of this analysis, research was limited to 

Washington State. Smoke impacts are difficult to assess, and with any choice in study area, 

assumptions have to be made. 

There are many difficulties in this type of research with assessing wildfire smoke impact 

beyond the immediate area of a wildfire. Wildfires occur in rural areas, and there is often not a large 

impacted population to perform a more robust, epidemiological analysis. In this research, the sample 

size grew to include those residing in counties surrounding Okanogan County. However, it is 

possible that there may not have been smoke impacts in some areas of these surrounding counties. 

It is also possible that there were smoke impacts in different areas outside of the surrounding 

counties. Given the difficulties of using modeled air quality data systems and the limited data from 

air monitors, additional research is needed to confirm wildfire smoke plume travel.    
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Zip Codes and Spatial Limitations 

In general, there are spatial issues and caution is necessary in interpreting data involving 

counties, zip codes, ZCTAs, or others. Zip codes are unstable geographical areas. Zip codes change 

often over time and are determined arbitrarily. Figure 10 shows the varying spatial boundaries across 

three sets of zip code data, and how using one zip code data set over the other would affect the 

exposure classification of patients. Zip codes comprise large areas, and it is possible that analysis by 

zip codes may miss what is happening at finer spatial scales. However, for privacy reasons, zip codes 

are the finest spatial scale available for research using hospitalization data. Another limitation is that 

some zip codes can be part of multiple counties, or other boundaries. Since each zip code has its 

own associated PM2.5 value by day, aggregated data for counties may not be meaningful since the 

modeled values may differ across locations. Counties are also large areas and combining the data by 

county may also not be meaningful because the modeled data varies greatly across counties. This 

limitation is demonstrated in the example below. 

In Chapter 4, the theoretical idea of comparing air quality data from a monitor station 

against modeled data for the nearest zip code to that monitor station seems like a plausible idea. 

However, further analysis (shown below) demonstrates that this technique does not make sense. To 

demonstrate the limitations and challenges of this type of analysis, zip codes 98862 and 98856 were 

examined. 

Figure 27 shows the map of Washington State: 

 Red lines show zip code borders. 

 Yellow dots are the monitoring stations. 
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 The black/white gradient show smoke plumes – with white showing greater presence of 

smoke. 

To determine the average modeled air quality in µg /m3 for a zip code, the value for each cell 

(appears as a pixel in this screen shot) is summed, and then divided by the total number of cells 

within a zip code.  This calculation gives an average value for that zip code, and is a coarse 

aggregation for the scale. In Figure 28, zip code 98862 is on the left, and zip code 98856 is on the 

right.  Table 42 shows the descriptive statistic values for the two zip codes: 

 

Table 42: Descriptive Statistics Values for 98862 and 98856 

ZCTA Count Min Max Range Mean Std Sum 

98862 75 0.0435 7.1443 7.1008 1.1800 1.5781 88.5017 

98856 22 0.1320 2.2306 2.0985 0.3408 0.4922 7.4972 

 

Regarding zip code 98862 (left) 

There is a large difference in values if one assesses the range for zip code 98862. Each pixel 

or square is approximately 2.8 miles2.  The zip code on the left is about 32 miles across East/West 

and about 15 miles North/South. Aggregation to the zip code with granular data is coarse, and the 

range is extremely large for one end of the zip code in comparison to the other. 

Regarding zip code 98856 (right)  

If the model were an accurate representation of what was happening on the ground, 

monitoring point 3 would have a PM2.5 value of 0.17 µg/m³. The monitor itself reports 36.33 µg/m3. 

This finding is the first issue with using the point’s representation as a means of measuring against 

the model with the values not being close.  
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The next explanations are based on the assumptions that the model is correct, and assuming 

that the monitoring point actually gave the same value as the smoke model.  The comparison of 0.17 

µg/m3 against an average of 0.34 µg/m³ for the zip code is going to result in a large disparity.  Since 

many monitors could fit inside a single pixel (2.8 miles x 2.8 miles across), it is methodologically 

questionable to use extremely granular data (the monitoring location) to evaluate the aggregation to 

the zip code.  The main issue is that a point can exist in one part of the zip code with little or no 

exposure, while high exposures in another part of the zip code may cause an extremely high result.  

The issue is not with the monitor or the model, but rather, an issue of comparing different levels of 

granularity and aggregation with one another. This same issue is a huge problem with crime data. 

Even if the model was correct, with the monitoring point reporting the same as the model, 

and an almost uniform spatial distribution of PM2.5 throughout the zip code, zip codes do not have 

one exclusive monitoring station within them.  So both monitors #3 and #4 would be tested against 

the same aggregate value, despite the wide variation between the two monitors. The scale of the 

aggregation is incompatible with point measurements for testing the validity of the model due to the 

granularity of the model data available, and the need to aggregate model data to zip codes.   

 

Determining Wildfire Impacts  

Given the nature of the data, the sudden occurrence of wildfires, and because wildfires are 

found in more rural areas, these reasons limit the type of detailed epidemiological analysis that can 

be conducted. Wildfires are irregular and unpredictable, and are affected by changing wind and 

weather patterns. It is often difficult to locate where a wildfire is at a given time because the majority 

of maps and documents only report the area burned. Progression maps color in the whole area 

burned to date, and do not indicate which part of the wildfire is now burning. Determining impact 
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from a certain distance from the wildfire event has its limitations since wildfire smoke is variable and 

does not go in an exact distance from the wildfire extent. Therefore, creating a buffer distance from 

the wildfire event may miss where smoke impacts could have occurred. If one is interested in just 

the areas that were burning, MODIS satellite heat detects or infrared flight data from the fire are 

two types of data that would need to be used. (Potter, Brian, personal communication, January 17, 

2012) 

 

Confounders 

Given the short time frame available for the modeling data, the opportunity to narrow the 

days of impact was not available. With respiratory hospitalizations, there may be confounders such 

as seasonality, as pollen counts may exacerbate respiratory conditions at certain times during the 

year. There may also be other factors that cause certain types of hospitalizations to peak. Ideally, 

follow up studies could analyze the impact of hospitalizations for the previous or following years. 

However, exposure data on wildfires are limiting for this type of research. It is widely known within 

the research literature that there are weekend/holiday effects with hospitalizations. For example, 

hospitalizations are often higher on days such as Monday. However, this case-crossover analysis 

with cases also being their own controls adjusts for any day-of-the-week effects.  
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Chapter 6: Policy Implications, Recommendations, Suggestions for Further 

Research, and Conclusions 

Policy Implications 

Global Climate Change Impacts on Wildfires and Health Costs 

In a future of possible increased climate change effects, increased occurrences in wildfires 

and heat waves (which build the environment for wildfires) are projected. As shown by Johnston, et 

al. (2012), wildfires have a large estimated impact on global mortality, especially in Sub-Saharan 

Africa and Southeast Asia. Projections show increased frequency and severity of wildfires and longer 

fire season in western United States (Kovalev, et al. 2009). For Washington State, the best statistical 

models suggest that wildfire area burns will increase 2-3 times by the 2080s (Littell, et al. 2010).  

All of these projections have large economic and health cost implications. Estimating the 

health costs of climate change is important for informing health policy decisions but these estimates 

have not been part of the discussion. Prior studies have estimated future health costs related to 

climate change but these figures are not specific enough to form the basis of health policy decisions 

(Knowlton, et al. 2011). Economic costs can be estimated either by a willingness to pay (WTP) 

approach or a cost of illness (COI) approach. These methods estimate health costs in either 

monetary terms, or physical units such as the number of lives saved or the number of cases of illness 

avoided (Knowlton, et al. 2011). Another approach is to use indicators such as quality-adjusted life-

years, which incorporates both mortality and morbidity effects (Knowlton, et al. 2011). A better 

understanding of the range of economic impacts of climate change on health risks, such as wildfire 

impacts, could help prioritize preparedness efforts to reduce vulnerability, costs, and losses, and 

improve the US population’s ability to withstand the effect of climate change (Knowlton, et al. 

2011). 
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Wildfires have the potential to have large hospitalization costs. There have been very few 

studies that have analyzed wildfire-smoke exposure to estimate health-related economic costs. The 

5-day average hospitalization has been documented as $10,000, with willing-to-pay costs to be even 

greater, as shown in Table 43 (Kochi, et al. 2010). Kochi, et al. (2010) found that the magnitude of 

these costs depends on three factors: the scale of the wildfire event, demographic characteristics of 

the population exposed, and the type of adverse health outcomes considered.  

The 2003 fires in Southern California covered 736,597 acres and destroyed 3,631 structures, 

and the cost of responding to the fires was more than $3 billion. Knowlton, et al. 2011 estimated 

health costs by using both mortality and morbidity data. Mortality estimates associated with smoke 

inhalation were based on a ratio derived from the 2003 Healthcare Cost and Utilization Project that 

was applied to hospitalization counts (Knowlton, et al. 2011). Smoke-related morbidity data were 

taken from the Delfino, et. al (2009) research that determined excess hospital admissions in the 

affected counties for respiratory and cardiovascular issues.  Knowlton, et al. (2011) calculated that 

health cost estimates from the 2003 Southern California wildfires to be $578 million (in U.S. dollars, 

2008), with $545 million from premature deaths and $34 million from respiratory and cardiovascular 

illnesses.  

 

Projected Public Health Costs from Tripod 2006 Wildfires 

For the 33-day study period, respiratory and cardiovascular hospitalization costs are 

available, independent of exposure data. Since the modeled air quality values were not found to be 

meaningful, this research did not produce relevant relative risks for use with hospitalization cost 

data. However, the Delfino, et al. (2009) research did provide relative risk estimates for pre-, during, 

and post-wildfire periods based on increased PM2.5 value of 10 µg/m3. Using relative risk estimates 
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from Delfino, et al. (2009) with hospitalization cost data for Okanogan County provided by the 

Washington State Department of Health, it was possible to estimate attributable costs due to the 

Tripod 2006 wildfire. The maximum PM2.5 value observed over a 24-hour period from EPA 

monitors was 161 µg/m3, from the 118 S Glover St, Twisp, WA monitor. The maximum PM2.5 value 

observed over a 24-hour period from USFS monitors was 1659 µg/m3, at the Eight Mile monitor. 

For the purposes of this analysis, the EPA monitor from Twisp, WA showed a maximum value of 

161 µg/m3, which was used in this analysis for a more conservative estimate compared to the USFS 

monitors.  

 

The following formulas were used: 

(Wildfire Period Relative Risk) – (Pre-Wildfire Relative Risk) = Difference in Relative Risk 

The relative risk estimates from Delfino, et. al (2009) are based on values per 10 µg/m3, so  

Estimated Percentage of Costs due to Wildfire  

=  (Difference in Relative Risk) * 161 µg/m3 *100%  

 

This value is then multiplied by hospitalization costs in Okanogan County to determine the 

final hospitalization costs in Okanogan County due to estimated Relative Risks. 

 

  



 

77 
 

Table 43: Estimated Hospitalization Costs in Okanogan County during the 2006 Tripod 
Wildfire for a 33 day period (August 14 – September 15, 2006) 

  

Our best estimate of the 2006 Tripod wildfire on respiratory hospitalization costs were about 

$81,549 and cardiovascular hospitalization costs at $110,580, for a total of $192,129. However, 

estimated percentage of costs due to the Tripod wildfire are higher for some conditions such as 

asthma at 80.5 percent association, and chronic obstructive pulmonary disease at 49.91 percent. 

However, the variability in PM2.5 values indicates that hospitalization costs attributable to the wildfire 

could have been much higher. Since the wildfire event went on for several months, the estimated 

health costs would have varied, depending on how the study location was defined. These cost 

estimates were done for only Okanogan County, and smoke from wildfires have the potential to 

Health issue Age Wildfire 
Period 
Relative 
Risk 

Pre-
Wildfire 
Period 
Relative 
Risk 

Estimated 
Percentage 
of Costs 
due to 
Wildfire 

Hospitalization 
Costs in 
Okanogan 
County 

Hospitalization 
Costs in 
Okanogan 
County due to 
Estimated 
Relative Risks 

Respiratory 
hospitalizations 

All 
ages 

1.028 1.022 9.66% $844,190 $81,549  

Cardiovascular 
hospitalizations 

All 
ages 

1.008 0.992 25.76% $429,270 

 

$110,580 

Asthma (493) 

 

All 
ages 

1.048 0.998 80.50% $12,510 

 

$10,070 

 

Chronic 
obstructive 
pulmonary 
disease (COPD) 
and allied 
conditions (490-
496) 

 

All 
ages 

1.038 1.007 49.91% $79,055 

 

$39,456  
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spread across further distances. The USFS has an annual budget of $5.5 billion and spends $2.3 

billion, or almost half of its annual budget on suppressing wildfires (USDA, 2013). Public health 

costs and economic costs from wildfires are generally not considered, yet can be greatly substantial, 

even with conservative estimates such as our example in Table 43.  

 

Recommendations 

1. Increase governmental agency coordination. 

2. Improve air monitoring, modeling, and satellite data systems. 

3. Further research to address the impact of wildfire events on air quality and hospitalizations. 

(Future Research Suggestions) 

 

Increase Governmental Agency Coordination. 

The research question of how wildfires impact public health and health hospitalizations is an 

interdisciplinary question because of its impacts—socially, environmentally, economically, and in 

terms of health. In locating data on air monitoring through the course of this research, it was found 

that air monitoring and air modeling efforts are done by many governmental agencies. Enforceable 

and permanent air monitors is compiled in the EPA Air Quality DataMart database. However, non-

enforceable air monitors are not shared across agencies. Temporary air monitors provide useful data, 

often closer to where there are increased exposures to an event such as a wildfire. However, the data 

are not as publicly accessible, which makes it difficult to know whether such data even exists. Some 

local health agencies and governmental agencies, including federal agencies such as the EPA and 

USFS, perform air quality modeling for various public health events. There is a huge potential to 
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coordinate data efforts across local health agencies and other governmental agencies. During wildfire 

events, it is not clear for citizens to know which agency to contact to receive further information. 

Just as an example, some agencies that were involved during the Tripod wildfire event include the 

USFS, EPA, Washington State Department of Health, Washington State Department of Ecology, 

National Wildfire Coordinating Group, among many others including local health and wildlife 

agencies. Coordination would likely improve the quality of responses. This research showcases the 

need for health protection data to be coordinated with air quality and wildfire data, through the 

respective government agencies. 

After the Tripod wildfire, there were some follow-up meetings to discuss future 

collaborations on research and response. On June 25, 2007, a wildfires and public health response 

meeting was held in Ellensburg, WA by the Washington State Department of Health, with assistance 

from the Washington State Department of Ecology, Chelan-Douglas Health Department, and the 

Public Health Emergency Planning and Response (Washington State Department of Health, 2008). 

Funding for the meeting was provided by the Washington Environmental Health Tracking grant, 

which was also a Centers for Disease Control and Prevention grant. On August 6, 2008, a wildfires 

workshop was organized by the Washington Department of Health to get various agencies that may 

be working together during a wildfire event together and coordinate plans, and also provide 

information for health messaging to public health agencies (Washington State Department of 

Health, 2008). For the 2008 workshop, there was a diverse group of attendees from the natural 

resources, air quality, health, and forest agencies locally and federally. The main conclusions from 

the meetings were the need for increased resources at the state, local, and federal level, better 

coordination among emergency management personnel and between states, research on wildfire 

health effects on people impacted by the smoke and workers, shelter and equipment including clean 

air shelters, air conditioners and air conditioners, and preplanning for people at increased risk. 
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However, due to lack of resources, to the knowledge of the Washington Department of Health, 

there has not been follow-up on some of these issues nor another meeting with interdisciplinary 

parties to address these issues. 

Most recently, the summer 2012 wildfires in Washington State activated the incident 

command structure at the Washington Department of Health. There was coordination with local, 

state, and federal response agencies. Technical support was provided to local health on ambient air 

quality public health impacts (Bardin, 2012). Over 53,000 N95 respirator masks were provided to 

local health agencies, documents were created on frequently asked questions on smoke and health in 

English and Spanish, and indoor air quality technical assistance was provided by the Washington 

Department of Health (Bardin, 2012). Further interdisciplinary coordination could improve 

emergency response strategies and data analysis work addressing health impacts from wildfire 

events. 

 

Improve Air Quality Monitoring, Modeling, and Satellite Data Systems 

From the air quality analysis regarding the top wildfire events from 2001 to 2009, and a more 

in-depth analysis of the 2006 Tripod wildfires, it was found that there are limited air monitors. 

Wildfires typically occur in more rural areas, where air quality monitoring is sparse compared to 

more urban areas. As shown in Figure 1, there may be only one to a few permanent air quality 

monitors for an entire county. By increasing the air monitoring network, it will be possible to 

improve the assessment of air quality levels for public health protection. Permanent air quality 

monitors that are tied to enforcement actions are limited. However, there are also temporary 

monitors that are not tied to enforcement. These temporary monitors are used by many government 

agencies and research. While permanent monitors are being added, these temporary monitors could 
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greatly inform future public health research. In addition, there is a large potential for novel 

technologies, which are further addressed in the next section. There are also many improvements 

that need to be made on air quality modeling and satellite data. There is limited research on air 

quality modeling efforts in addressing wildfire events, with much of the known research 

documented in Chapter 1.  Air quality models and satellite systems for wildfire events have under 

predicted the air quality at ground level. Many models are based off of satellite data and most 

satellite instruments have difficulties distinguishing particles at ground level from those at higher 

atmospheric levels. In addition, clouds tend to obscure the view, and bright land surfaces, such as 

snow, desert sand, and those found in certain urban areas can mar measurements (NASA, 2010). 

 

Further Research Suggestions 

As mentioned in the previous section, to adequately address the health impacts of PM2.5 

during wildfire events, there needs to be improved air quality monitoring and modeling data. Future 

studies could do a similar study design method as Henderson, et al. (2011) by using a combination of 

data from air quality monitoring networks, air quality modeling, and satellite images. Research is 

limited in merging the interdisciplinary fields of forest science and environmental health on 

addressing wildfires and their impact on human health. Future studies should also distinguish 

exposure impacts to sensitive populations, which would include asthmatics, children, pregnant 

women, and the elderly (aged 65 years and older), smokers, and individuals with pre-existing 

conditions. Although the air quality model was not an accurate predictor, more meaningful results 

were obtained when age categories were categorized by sensitive age categories. Depending on the 

data, duration and the level of exposure will vary. For example, for this study, air quality modeling 

data were only available for 33 days.  
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There are also other study designs to address the limitations of the epidemiological study 

designs in this research study. This research study design focused on the larger population at risk. 

There are other possible research designs that focus on a smaller population impacted by wildfire 

events, as well as upcoming and novel ideas in using new technologies to address the health impacts 

of wildfire events. For example, research has been done to address smoke exposures by firefighters 

during wildfire events, using individual exposure monitors. Given the limited air quality monitoring 

resources available, simpler and more inexpensive air sampling technologies could be employed, 

such as passive air samplers. Passive air samplers do not use electricity or other highly technical 

equipment, used by traditional air quality monitors. There is also potential to use cameras from the 

Department of Transportation and other agencies to assess air quality impacts. There is also research 

done on using surveillance cameras to measure air quality by detecting particulate matter pollution 

levels. Research by Wong, et al. (2007) showed that air quality remote monitoring sensors using 

internet protocol camera and internet video cameras produced real time air quality information with 

high accuracies, and that internet protocol camera gives an alternative way to overcome the difficulty 

of obtaining satellite images in the equatorial region and provides real time air quality information.  

Such surveillance cameras could serve a dual purpose at schools for security as well as part of a 

larger air monitoring network. There is additional future work to be done in to improve assessing 

particulate matter and visible range levels using surveillance cameras.  

Smartphones could also be used as a tool for participatory air quality monitoring. 

Hasenfratz, et al. 2012 recently used smartphones to build a large-scale sensor network of mobile 

devices for participatory air pollution monitoring, and found the process to be feasible through their 

GasMobile prototype system. The GasMobile prototype system consists of a low-cost ozone sensor 

to an off-the-shelf smartphone running the Android OS (Hasenfratz, et al. 2012). By involving the 

general public, the usage of mobile devices helps to raise public awareness and encourages the 
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behavior changes about the environment, as well as providing a large network of air quality data. 

Future engagement challenges with using smartphone devices to measure air quality include making 

the process unobtrusive and user-friendly and promoting participation and awareness of this option 

among the general public. Technical challenges include addressing data quality of mobile sensors as 

well as in the communication and information systems infrastructure because of the move from 

isolated well controlled systems to an open and scalable infrastructure where there will be large 

amounts of data sharing (Hasenfratz, 2012). Recent work has also been done by researchers in Dr. 

Sukhatme’s Robotics Laboratory at the University of Southern California through an Android 

application called Visibility. The Visibility application allows users to take a photo of the sky while 

the sun is shining and compare the image to established models of sky luminance toe estimate 

visibility (Mankin, 2010). The result is sent back to the user and the data are also used to create 

pollution maps for the region (Ganapati, 2010). However, the work is still in being developed and 

improved. More recent and active work is being done by computer scientists at System Energy 

Efficiency Lab in University of California San Diego with their work in building a small fleet of 

portable pollution sensors that allow users to monitor air quality on smartphones. CitiSense is the 

only air quality monitoring system capable of delivering real-time data to users’ cell phones and 

home computers, at any time (Patringenaru, 2012). CitiSense sensors detect common pollutants 

emitted by cars and trucks which include ozone, nitrogen dioxide, and carbon monoxide, so this 

work would not be relevant to wildfires. However, air quality monitoring and smartphones is a 

growing and new field, with a lot of exciting future developments and improvements. 

There are also other technologies and data that could increase data on impacted residents. 

During wildfire events, with patient consent, patients could use their waiting room time to 

participate in future studies. To streamline the process, mobile technologies such as the Ipad could 

be used. To increase the number of potential patients, future research could look at 911 calls and 
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ambulance data and link the data to hospitalization data. Additional future work will also need to be 

done in emergency preparedness and response. For workers and citizens, such areas include rescue 

and response, improving communication, and risk management strategies and techniques. Wildfires 

often occur in and affect rural communities, who are vulnerable populations because medical 

services are generally harder to access or unavailable in rural communities. 

 

Conclusion 

The following five points are key findings of this research. 

1. Air quality impacts from wildfires are difficult to assess. There is also limited research 

literature assessing health hospitalizations from wildfire events, especially using modeled air 

quality and satellite data systems. 

2. Air monitor data from the EPA and the USFS showed that there were higher than normal 

air quality impacts during the 2006 Tripod wildfire event. 

3. No significant results were found for modeled air quality data systems and their impacts on 

cardiovascular and respiratory hospitalizations in several epidemiological analyses by hospital 

zip codes and residential zip codes.  

4. Current air quality model data systems are not accurate predictors of ground-level air 

monitors. 

5. Policy recommendations to improve this type of research include increasing governmental 

agency coordination, improving the air quality monitoring network, and having further 

research on the impact of wildfire events on air quality and hospitalizations, using air quality 

monitor and observational data systems, air quality model data systems, and satellite data 

systems.  
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As the analyses have shown, air quality impacts from wildfires are difficult to assess. 

Wildfires are variable, complex, and occur in areas with a limited monitoring network. With 

modeling and satellite data, it is so important to have “ground truth”. Existing modeled and satellite 

data focus on higher atmosphere level and may not show “ground truth”. It is important to 

understand how the smoke travels during wildfire events. This research supports the literature 

finding that existing air quality models need further improvements. Existing air quality monitoring 

networks are too limited to be the main source of data. A combination of high quality resolution 

data encompassing air quality monitoring, air quality modeling, and satellite data would be ideal, if 

there are available data to address the impact of wildfires on air quality and human health.  

In a future of possible climate change impacts, wildfires are predicted to increase in severity 

and frequency, which has large public health and economic consequences. The summer of 2012 has 

seen many severe wildfires in Washington State, as shown in Figure 29. Although there is still much 

work to be done to improve available air monitoring, air modeling, and satellite data, this research 

has shown that it is possible to use diverse datasets to answer the research question of how wildfire 

smoke impacts hospitalizations.  

 

 

  



 

86 
 

 

Bibliography 

Agee, J. (1998). The landscape ecology of western forest fire regimes. Northwest Science, 72, 24-34. 

Baker, D., & Nieuwenhuijsen, M. (2008). Environmental epidemiology: Study methods and application. New 
York: Oxford University Press. 

Bardin, J. (2012, November 2012). Recent Forest Fires and Public Health Impacts. Retrieved from 
Washington State Board of Health: http://sboh.wa.gov/Meetings/2012/11-
14/Docs/Tab11d-Wildfires_DOHPresentation.pdf 

Bowman, D. M., & Johnston, F. H. (2005). Wildfire smoke, fire management, and human health. 
EcoHealth, 76-80. 

Buckley, J., & Richardson, D. (2012). Seasonal modification of the association between temperature 
and adult emergency department visits for asthma: a case-crossover study. Environmental 
Health, 11(55), 1-6. 

Delfino, R. J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., . . . Gillen, D. (2009). The 
relationship of respiratory and cardiovascular hospital admissions to the southern California 
wildfires of 2003. Occupational and Environmental Medicine, 66(3), 189-97. 

EPA. (2008). Technology Transfer Network Air Quality System Data Mart. Retrieved from EPA: 
http://www.epa.gov/ttn/airs/aqsdatamart 

EPA. (2012). National Ambient Air Quality Standards (NAAQS). Retrieved from EPA: 
http://www.epa.gov/air/criteria.html 

Ganapati, P. (2010, September 24). Android App Uses Cellphone Camera to Measure Air Pollution. 
Retrieved from Wired: http://www.wired.com/gadgetlab/2010/09/cellphone-camera-air-
pollution/  

Guo, Y., & al, e. (2010). Gaseous air pollution and emergency hospital visits for hypertension in 
Beijing, China: a time-stratified case-crossover study. Environmental Health, 9(57), 1-7. 

Hasenfratz, D. (2012, July 30). Open Sensor Network for Air Quality Monitoring. Retrieved from 
http://www.tik.ee.ethz.ch/~hdavid/gpEasy/index.php/OpenSense 

Hasenfratz, D., Sturzenegger, S., & Thiele, L. (2012). Participatory Air Pollution Monitoring Using 
Smartphones. 2nd International Workshop on Mobile Sensing, (pp. 1-5). Beijing. 

Henderson, S. B. (2009). Spatial assessment of forest fire smoke exposure and its public health impacts in 
southeastern British Columbia during the Summer of 2003 (Doctor of Philosophy thesis). Health Care 
and Epidemiology. 

Henderson, S. B., Brauer, M., MacNab, Y. C., & Kennedy, S. M. (2011, September). Three measures 
of forest fire smoke exposure and their associations with respiratory and cardiovascular 



 

87 
 

health outcomes in a population-based cohort. Environmental Health Perspectives, 119(9), 1266-
1271. 

Henderson, S. B., Burkholder, B., Jackson, P. L., Brauer, M., & Ichoku, C. (2008). Use of MODIS 
products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure 
assessment. Atmospheric Environment, 42, 8524-8532. 

Hope, B. K. (2005). Health effects from exposure to smoke. Retrieved from Oregon Department of 
Environmental Quality: http://www.deq.state.or.us/aq/burning/docs/smoke_bhope.pdf 

Jackson, J. E., Yost, M. G., Karr, C., Fitzpatrick, C., Lamb, B., Chung, S., . . . Fenske, R. A. (2010). 
Public health impacts of climate change in Washington State: projected mortality risks due to 
heat events and air pollution. Climatic Change, 102, 159-186. 

Janes, H., Sheppard, L., & Lumley, T. (2005). Case-crossover analyses of air pollution exposure data: 
Referent selection strategies and their implications for bias. Epidemiology, 16(6), 717-726. 

Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., . . . Brauer, 
M. (2012, May). Estimated global mortality attributable to smoke from landscape fires. 
Environmental Health Perspectives, 120(5), 695-701. 

Joint Fire Science Program. (2008). Fire and Climate in the Inland Pacific Northwest: Integrating Science and 
Management. Joint Fire Science Program. Fire and Climate in the Inland Pacific Northwest: 
Integrating Science and Management. Fire Science Brief. Issue 8. May 2008. FireScience.gov. 

Keeley, J. E., Fotheringham, C., & Moritz, M. A. (2004, October/November). Lessons from the 
October 2003 Wildfires in Southern California. Journal of Forestry, 26-31. 

Knowlton, K., Rotkin-Ellman, M., Geballe, L., Max, W., & Solomon, G. M. (2011). Six climate 
change-related events in the United States accounted for about $14 billion in lost lives and 
health costs. Health Affairs, 30(11), 2167-2176. 

Kochi, I., Donovan, G. H., Champ, P. A., & Loomis, J. B. (2010). The economic cost of adverse 
health effects from wildfire-smoke exposure: a review. International Journal of Wildland Fire, 
19(7), 803-817. 

Kovalev, V. A., Petkov, A., Wold, C., Urbanski, S., & Hao, W. M. (2009). Determination of smoke 
plume and layer heights using scanning lidar data. Applied Optics, 48(28), 5287-5294. 

Larkin, N. K., & O'Neill, S. M. (2009). The BlueSky smoke modeling framework. International Journal 
of Wildland Fire, 18, 906-920. 

Larkin, N. K., Solomon, R., Strand, T., Krull, C., & Rorig, M. (2009, 12 30). Rapid response field 
observations to calibrate the BlueSky smoke prediction model. Retrieved from Joint Fire Science 
Program: http://www.firescience.gov/projects/06-1-1-12/project/06-1-1-
12_larkin_etal_2009_rapidresponse_jfspfinalreport2.pdf 

Littell, J. S., Oneil, E. E., McKenzie, D., Hicke, J. A., Lutz, J. A., Norheim, R. A., & Elsner, M. M. 
(2010). Forest ecosystems, disturbance, and climatic change in Washington State, USA. 
Climatic Change, 102, 129-158. 



 

88 
 

Mankin, E. (2010, September 20). Monitor the Air - With a Smartphone. Retrieved from University of 
Southern California News: http://news.usc.edu/#!/article/29255/Monitor-the-Air-With-a-
Smartphone 

Merrill, R. (2010). Introduction to Epidemiology. Sudbury: Jones and Bartlett Publishers. 

Mittleman, M. A. (2005). Optimal referent selection strategies in case-crossover studies: A settled 
issue. Epidemiology, 16(6), 715-716. 

Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., & Koenig, J. Q. (2007). 
Woodsmoke Health Effects: A Review. Inhalation Toxicology, 19, 67-106. 

NASA. (2010, September 22). New Map Offers a Global View of Health-Sapping Air Pollution. Retrieved 
from http://www.nasa.gov/topics/earth/features/health-sapping.html 

NASA. (2012). MODIS. Retrieved from National Aeronautics and Space Administration: 
http://modis.gsfc.nasa.gov/about/ 

Northwest Interagency Coordination Center. (2012). Northwest Fire Locations. Retrieved from 
Northwest Interagency Coordination Center: 
http://www.nwccweb.us/information/firemap.aspx 

Northwest Modeling Consortium. (2012). Pacific Northwest Mesoscale Model Weather Forecasts: 
Information. Retrieved from Northwest Modeling Consortium: 
http://www.atmos.washington.edu/mm5rt/info.html 

NSF. (2008). Economist Hedges Bets on Wildfires in California. Retrieved from National Science 
Foundation: 
http://www.nsf.gov/discoveries/disc_summ.jsp?org=NSF&cntn_id=112112&preview=fals
e 

NWCG. (2001). Chapter 10: Air Quality Monitoring. Retrieved from National Wildfire Coordinating 
Group: http://www.nwcg.gov/pms/pubs/SMG/177-186.pdf 

NWCG Fire Use Working Team. (2001). Smoke management guide for prescribed and wildland fire. National 
Interagency Fire Center, Fire Use Working Team. Boise: National Interagency Fire Center. 

NWS. (2006). Wild Fires, How Weather Affects Them. Retrieved from National Weather Service: 
http://www.nws.noaa.gov/om/wfire.shtml 

Okanogan County Community Wildfire Protection Plan Planning Commitee and Northwest 
Management, Inc. (2006). Okanogan County, Washington, All Hazards Mitigation Plan: Volume II. 
Okanogan. 

Pacific Northwest Research Station. (2006). A clear picture of smoke: Bluesky smoke forecasting. Retrieved 
November 5, 2011, from Science Update from the Pacific Northwest Research Station: 
http://www.fs.fed.us/pnw/pubs/science-update-14.pdf 

Patringenaru, I. (2012, December 18). Small, Portable Sensors Allow Users to Monitor Exposure to Pollution 
on Their Smart Phones. Retrieved from News Center at University of California San Diego: 



 

89 
 

http://ucsdnews.ucsd.edu/pressrelease/small_portable_sensors_allow_users_to_monitor_e
xposure_to_pollution_on_thei 

Peterson, J., & Ward, D. (1992). An inventory of particulate matter and air toxic emissions from prescribed fires 
in the United States for 1989 (Final Report). U.S. EPA Office of Air Quality Programs and 
Standards. 

Rothman, K., Greenland, S., & Lash, T. (2008). Modern Epidemiology. Philadelphia: Lippincott 
Williams & Wilkins. 

Ryan, P., & McMahon, C. (1976). Some chemical characteristics of emissions from forest fires. 
Proceedings of the 69th annual meeting of the air pollution control association (pp. 1-21). Portland: Air 
Pollution Association. 

Strand, T., Larkin, N., Rorig, M., Krull, C., & Moore, M. (2011). PM2.5 measurements in wildfire 
smoke plumes from fire seasons 2005-2008 in the Northwestern United States. Journal of 
Aerosol Science, 42(3), 143-155. 

Sugihara, N. G. (2006). Fire in California’s Ecosystems. Berkeley: University of California Press. 

The University Corporation for Atmospheric Research. (2012). Wildfires, Weather & Climate: 
Background on the science, people, and issues involved in wildfire research. Retrieved from The 
University Corporation for Atmospheric Research: 
https://www2.ucar.edu/news/backgrounders/wildfires-weather-climate#shapes 

U.S. Census Bureau. (2012). ZIP Code™ Tabulation Areas (ZCTAs™). Retrieved from U.S. Census 
Bureau: http://www.census.gov/geo/reference/zctas.html 

USDA. (2013). USDA: FY 13 Budget Summary and Annual Performance Plan. Retrieved from 
http://www.obpa.usda.gov/budsum/FY13budsum.pdf 

USFS. (2006). Instrument Descriptions: Real-Time Smoke Particulate Sampling Fire Storm 2000. Retrieved 
from USFS: http://www.fs.fed.us/t-d/pubs/htmlpubs/htm01252832/page07.htm 

USFS. (2012). Active Fire Mapping Program. Retrieved from USFS: 
http://activefiremaps.fs.fed.us/index.php 

Vedal, S. (2002). Update on the health effects of outdoor air pollution. Clinical Chest Medicine, 23(4), 
763-775. 

Ward, D., & Hardy, C. (1991). Smoke emissions from wildland fires. Environmental International, 17, 
117-134. 

Washington State Department of Ecology. (2012). Washington State - Air Monitoring. Retrieved from 
Washington State Department of Ecology: https://fortress.wa.gov/ecy/enviwa/Default.htm 

Washington State Department of Health. (2008). Wildfires Workshop. Retrieved from EPA, Region 
10: 
http://yosemite.epa.gov/R10/airpage.nsf/Air+Toxics/summit+region+x/$FILE/Day2-
Wildfires-Workshop.pdf  



 

90 
 

Westerling, A.L., et al. (2006). Warning and earlier spring increases western U.S. forest wildfire 
activity. Science, 313, 940-943. 

Wong, et al. (2007). Real time air quality monitoring by using internet video surveillance camera. 
Sensors, and Command, Control, Communications, and Intelligence.  

Wu, J., Winer, A. M., & Delfino, R. J. (2006). Exposure assessment of particulate matter air pollution 
before, during, and after the 2003 Southern California wildfires. Atmospheric Environment, 
40(8), 3333-3348. 

 

 
 
 



 

91 
 

Chapter 8:  Tables and Figures 

Chapter 2:  Characterization of Air Pollution 

Table 1: Major Washington Wildfires from 2001-2009 and Available Air Quality Data 

Dates (Start and controlled 
end dates) 

County (location) Name of Fire/Complex Acres Burned Number of available EPA Air 
Quality DataMart Monitors 

8/12/01 - 8/26/01 Okanogan (Western portion of 
Colville Reservation, 12 miles south 
of Okanogan) 

Virginia Lake Fire/Virginia 
Lake Complex 

36,680 - 36,685  1 

8/12/01 - 8/29/01 Okanogan (12 miles south of 
Okanogan) 

St. Mary’s Mission/Virginia 
Lake Complex 

32,980 - 33,071  
 

1 

8/12/01 - 11/19/01 
 

Chelan/Okanogan 
 

Rex Creek, Rex Creek Complex 55,913  Okanogan (1) 

8/17/02 Okanogan  Quartz Mountain 
Complex/Quartz Mountain 
Complex 

12,144  2  

6/29/03  - 10/28/03 Okanogan Fawn Peak Complex/Fawn 
Peak Complex 

81,343  3 

6/29/03 - 10/28/03 
(*12/31/03) 

Okanogan (Methow Forest) Farewell 81,343  3 

8/5/03 - 1/26/04 (*10/30/03) Okanogan (Methow Forest) Needles 21,300  3  

6/26/04 - 11/1/04  Chelan (Chelan Forest) Pot Peak/Sisi Ridge Complex 17,226  1 

7/18/04 - 11/1/04  Chelan (Chelan Forest) Deep Harbor, Pot Peak/Sisi 
Ridge Complex 

29,700  
 

1 

7/24/06 - 11/9/06 (*12/1/06) Okanogan (Okanogan, Methow 
Forest) 

Tripod Complex 113,011 (175,184 when 
combined with Spur 
Peak) 

3 

8/22/06 - 11/9/06 (*12/1/06) Okanogan (Methow Forest) Tatoosh 51,671  3 

7/3/06 - 11/9/06 (*12/1/06) Okanogan (Methow Forest)  Spur Peak 62,173  
 

3 

8/21/06 - 12/1/06 Columbia/Garfield (Walla Walla) Columbia Complex 109,402  
 

Columbia (1) 

8/5/07 - 1/11/08 (*1/7/08) Chelan (Chelan, Chelan Forest) Domke 11,791  3 
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Figure 1: Historical and Current EPA Air Quality DataMart Monitors Addressing PM2.5 

Concentrations 

 

Figure 2: BlueSky Framework (Pacific Northwest Research Station, 2006) 
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Figure 3: 2005 EPA Air Quality DataMart Data for Okanogan County 
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Figure 4: 2006 EPA Air Quality DataMart Data for Okanogan County 
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Figure 5: 2007 EPA Air Quality DataMart Data for Okanogan County 
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Figure 6: Air Quality Monitoring Data from U.S. Forest Service Pacific Wildland Fire 

Sciences Laboratory for August and September 2006 
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Figure 7: 2005 EPA Air Quality DataMart Data for Counties Surrounding Okanogan County 
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Figure 8: 2006 EPA Air Quality DataMart Data for Counties Surrounding Okanogan County 
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Figure 9: 2007 EPA Air Quality DataMart Data for Counties Surrounding Okanogan County 
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Figure 10: Spatial Coverage Differences for 2000 and 2010 Census Data and 2006 ESRI Data 

for Washington Zip Codes 
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Chapter 3:  Epidemiologic Analysis of Air Pollution Impacts on Hospitalizations 

Figure 11: Hospital Locations and Surrounding Counties Based on Proximity 
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Figure 12: Selected Hospitals with Relative Risks Greater than 1 for Respiratory 

Hospitalizations 
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Figure 13: Selected Hospitals with Relative Risks Greater than 1 for Cardiovascular 

Hospitalizations 
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Table 2: Respiratory Hospitalizations from August 14 to September 15, 2006 (Zero PM2.5 

values and values greater than zero in parentheses if there is a change) 

 

 

 

  

Hospital 

 
County 

Respiratory 
Hospitalization 

Total Hospitalizations No Yes 

 Cascade Medical Center Chelan 9 1 10 

Central Washington Hospital Chelan 701 
(655) 

56 (51) 757 (706) 

Columbia Basin Hospital Grant 16 (15) 8 24 (23) 

Coulee Community Hospital Grant 30 (28) 3 33 (31) 

Ferry County Memorial Hospital Ferry 20 5 25 

Island Hospital Skagit 198 
(123) 

20 (17) 218 (140) 

Lake Chelan Community Hospital Chelan 29 (26) 1 (0) 30 (26) 

Lincoln Hospital Lincoln 28 (25) 13 41 (38) 

 Mid-Valley Hospital Okanogan 95 (92) 16 111 (108) 

North Valley Hospital Okanogan 30 (29) 4 34 (33) 

Odessa Memorial Hospital Lincoln 8 0 8 

Okanogan-Douglas Hospital Okanogan 52 3 55 

PeaceHealth Saint Joseph Whatcom 1,120 
(1,008) 

67 (62) 1,187 (1,070) 

Quincy Valley Medical Center Grant 4 2 6 

Samaritan Hospital Grant 265 
(253) 

20 285 (273) 

Skagit Valley Hospital Skagit 518 
(440) 

39 (37) 557 (447) 

United General Hospital Skagit 95 (84) 10 105 (94) 

Wenatchee Valley Hospital Chelan 90 (84) 0 90 (84) 
 

Total  3,308 
(2,955) 

268 
(252) 

3,576 (3,207) 

 



 

105 
 

Table 3: Cardiovascular Hospitalizations from August 14 to September 15, 2006 (Zero PM2.5 

values and values greater than zero in parentheses if there is a change) 

 

Hospital 

 
County 

Cardiovascular 
Hospitalization Total 

Hospitalizations No Yes 

 Cascade Medical Center Chelan 8 2 10 

Central Washington Hospital Chelan 651 (608) 106 (98) 757 (706) 

Columbia Basin Hospital Grant 21 (20) 3 24 (23) 

Coulee Community Hospital Grant 31 (29) 2 33 (31) 

Ferry County Memorial Hospital Ferry 24 1 25 

Island Hospital Skagit 202 (131) 16 (9) 218 (140) 

Lake Chelan Community Hospital Chelan 28 (24) 2 30 (26) 

Lincoln Hospital Lincoln 35 (32) 6 41 (38) 

Mid-Valley Hospital Okanogan 108 (105) 3 111 (108) 

North Valley Hospital Okanogan 30 (29) 4 34 (33) 

Odessa Memorial Hospital Lincoln 7 1 8 

Okanogan-Douglas Hospital Okanogan 54 1 55 

PeaceHealth Saint Joseph Whatcom 965 (894) 222 (176) 1187 (1070) 

Quincy Valley Medical Center Grant 6 0 6 

Samaritan Hospital Grant 267 (255) 18 285 (273) 

Skagit Valley Hospital Skagit 505 (428) 52 (49) 557 (477) 

United General Hospital Skagit 99 (88) 6 105 (94) 

Wenatchee Valley Hospital Chelan 90 (84) 0 90 (84) 
 
Total 

  
3,131 

(2,826) 

 
445 (381) 

 
3,576 (3,207) 
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Table 4:  Respiratory Hospitalizations on Non-Zero PM2.5 Days1  

                                                        
1 In consistent with EPA NAAQS, all PM2.5 values were rounded to the first decimal place for values less than 35 µg/m3. 
For values greater than 35 µg/m3, no decimals are reported and values are rounded to the nearest whole number. 
(http://www.epa.gov/scram001/guidance/guide/Update_to_the_24-hour_PM25_Modeled_Attainment_Test.pdf)  

Hospital Name Respiratory 
Hospitalizations 

Date of Hospitalization Modeled PM2.5 value 
(µg/m³) 

Samaritan Hospital 1 8/18 9.9 

Columbia Basin Hospital 1 8/18 2.9 

Central Washington Hospital 1 8/18 1.4 

Quincy Valley Medical Center 1 8/17 1.1 

United General Hospital 1 8/16 0.9 

Coulee Community Hospital 1  8/18 0.9 

Skagit Valley Hospital 1 8/16 0.4 

Lincoln Hospital 1 8/15 0.4 

PeaceHealth Saint Joseph 3 8/16 0.3 

Okanogan-Douglas Hospital 1 8/17 0.2 

Mid-Valley Hospital 1 8/17 0.2 

Lincoln Hospital 1 8/18 9.4 E-2 

Central Washington Hospital 3 8/14 6.0 E-2 

North Valley Hospital 1 8/17 6.0 E-2 

Lake Chelan Community 
Hospital 

1 9/15 3.4 E-2 

Mid-Valley Hospital 1 9/13 2.2 E-2 

Central Washington Hospital 5 8/16 8.0 E-3 

Central Washington Hospital 1 8/15 4.9 E-3 

Mid-Valley Hospital 1 8/15 3.5 E-3 

United General Hospital 1 8/14 3.4 E-3 

Skagit Valley Hospital 2 8/14 2.8 E-3 

PeaceHealth Saint Joseph 2 8/14 1.7 E-3 

Mid-Valley Hospital 1 9/12 1.5 E-3 

Skagit Valley Hospital    1 8/18 8.9 E-4 

PeaceHealth Saint Joseph 1 8/18 5.6 E-4 

PeaceHealth Saint Joseph 3 8/17 4.5 E-4 

Mid-Valley Hospital 1 8/15 2.4 E-4 

United General Hospital 1 8/15 1.2 E-4 

PeaceHealth Saint Joseph 1 8/15 6.3 E-5 

North Valley Hospital 1 9/7 4.6 E-8 

Mid-Valley Hospital 1 8/28 8.5 E-13 

Okanogan-Douglas Hospital 1 8/23 2.8 E-19 

http://www.epa.gov/scram001/guidance/guide/Update_to_the_24-hour_PM25_Modeled_Attainment_Test.pdf
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Table 5: Cardiovascular Hospitalizations on Non-Zero PM2.5 Days 

 
  

Hospital Name Respiratory 
Hospitalizations 

Date of Hospitalization Modeled PM2.5 value 
(µg/m³) 

Samaritan Hospital 1 8/18 9.9 

Columbia Basin Hospital 1 8/18 2.9 

Central Washington 
Hospital 

5 8/18 1.4 

United General Hospital 1 8/16 0.9 

Central Washington 
Hospital 

1 8/17 0.9 

North Valley Hospital 1 8/15 0.7 

Skagit Valley Hospital  1 8/16 0.5 

Lincoln Hospital  1 8/15 0.4 

Columbia Basin Hospital  2 8/15 0.3 

PeaceHealth Saint Joseph  8 8/16 0.3 

Island Hospital  1 8/16 0.2 

Samaritan Hospital  1 8/15 0.2 

Samaritan Hospital  1 8/14 0.1 

Lake Chelan Community 
Hos 

1 8/23 6.9 E-2 

Central Washington 
Hospital 

3 8/14 6.0 E-2 

North Valley Hospital  1 9/11 5.5 E-2 

Lake Chelan Community 
Hos 

1 8/29 3.2 E-2 

Columbia Basin Hospital  1 8/16 3.0 E-2 

Central Washington 
Hospital 

3 8/16 8.0 E-3 

Central Washington 
Hospital 

3 8/15 4.9 E-3 

Skagit Valley Hospital  2 8/14 2.8 E-3 

North Valley Hospital  1 9/5 2.1 E-3 

PeaceHealth Saint Joseph  11 8/14 1.7 E-3 

United General Hospital  1 8/18 1.3 E-3 

Skagit Valley Hospital  1 8/18 8.9 E-4 

Skagit Valley Hospital  5 8/17 6.4 E-4 

Island Hospital  1 8/18 6.1 E-4 

PeaceHealth Saint Joseph  7 8/18 5.6 E-4 

PeaceHealth Saint Joseph  6 8/17 4.5 E-4 

Island Hospital  1 8/17 3.9 E-4 

Skagit Valley Hospital  2 8/15 1.1 E-4 

Island Hospital  1 8/15 7.2 E-5 

PeaceHealth Saint Joseph  10 8/15 6.3 E-5 

Mid-Valley Hospital  1 8/31 2.2 E-5 
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Table 6:  Comparison of R’s for Hospitalizations (based on hospital zip code) on Non-Zero 

and Zero Modeled Particulate Matter Days  

Hospital Zip Code Respiratory 
Hospitalization R 

Respiratory 
Hospitalizations 
on Non-Zero PM 

Days 

Cardiovascular 
Hospitalization R 

Cardiovascular 
Hospitalizations 
on Non-Zero PM 

Days 

Cascade Medical 
Center 

98826 0 0 0 0 

Central 
Washington 
Hospital 

98801 1.217 10 0.923 15 

Columbia Basin 
Hospital 

98823 0.8 1 0.6/0 = N/A 3 

Coulee 
Community 
Hospital 

99133 2.8 1 0 0 

Ferry County 
Memorial 
Hospital 

99166 0 0 0 0 

Island Hospital 98221 0 0 1.867 4 

Lake Chelan 
Community 
Hospital 

98816 0.030/(0/0) = 
N/A 

1 0.060/(0/0) = 
N/A 

2 

Lincoln Hospital 99122 2.818 2 3.1 1 

Mid-Valley 
Hospital 

98841 0.335 5 0.368 1 

North Valley 
Hospital 

98855 0.571 2 1.714 3 

Odessa 
Memorial 
Hospital 

99159 0/0 = N/A 0 0 0 

Okanogan-
Douglas Hospital 

98812 0.235 1 0 0 

PeaceHealth 
Saint Joseph 

98225 0.982 10 1.307 42 

Quincy Valley 
Medical Center 

98848 5.6 1 0/0 = N/A 0 

Samaritan 
Hospital 

98837 0.295 1 0.7 2 

Skagit Valley 
Hospital 

98273 0.64 4 1.502 11 

United General 
Hospital 

98284 3.107 3 3.625 2 

Wenatchee 
Valley Hospital 

98001 0/0 = N/A 0 0/0 = N/A 0 
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Table 7:  Number of Non-Zero/Zero PM Days and Respiratory Hospitalizations on Non-

Zero/Zero PM Days 

Hospital Zip Code Respiratory 
Hospitalizations 
on Non-Zero PM 

Days 

Respiratory 
Hospitalizations 
on Zero PM Days 

Number of Non-
Zero PM Days 

Number of Zero 
PM Days 

Cascade Medical 
Center 

98826 0 1 9 24 

Central 
Washington 
Hospital 

98801 10 46 5 28 

Columbia Basin 
Hospital 

98823 1 7 5 28 

Coulee 
Community 
Hospital 

99133 1 2 5 28 

Ferry County 
Memorial 
Hospital 

99166 0 5 5 28 

Island Hospital 98221 0 20 5 28 

Lake Chelan 
Community 
Hospital 

98816 1 0 33 0 

Lincoln Hospital 99122 2 11 2 31 

Mid-Valley 
Hospital 

98841 5 11 19 14 

North Valley 
Hospital 

98855 2 2 21 12 

Odessa 
Memorial 
Hospital 

99159 0 0 5 28 

Okanogan-
Douglas Hospital 

98812 1 4 17 16 

PeaceHealth 
Saint Joseph 

98225 10 57 5 28 

Quincy Valley 
Medical Center 

98848 1 1 5 28 

Samaritan 
Hospital 

98837 1 19 5 28 

Skagit Valley 
Hospital 

98273 4 35 5 28 

United General 
Hospital 

98284 3 7 4 29 

Wenatchee 
Valley Hospital 

98001 0 0 5 28 
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Table 8:  Number of Non-Zero/Zero PM Days and Cardiovascular Hospitalizations on 

Non-Zero/Zero PM Days 

Hospital Zip Code Cardiovascular 
Hospitalizations 
on Non-Zero PM 

Days 

Cardiovascular 
Hospitalizations 
on Zero PM Days 

Number of Non-
Zero PM Days 

Number of Zero 
PM Days 

Cascade Medical 
Center 

98826 0 2 9 24 

Central 
Washington 
Hospital 

98801 15 91 5 28 

Columbia Basin 
Hospital 

98823 3 0 5 28 

Coulee 
Community 
Hospital 

99133 0 2 5 28 

Ferry County 
Memorial 
Hospital 

99166 0 5 5 28 

Island Hospital 98221 4 12 5 28 

Lake Chelan 
Community 
Hospital 

98816 2 0 33 0 

Lincoln Hospital 99122 1 5 2 31 

Mid-Valley 
Hospital 

98841 1 2 19 14 

North Valley 
Hospital 

98855 3 1 21 12 

Odessa Memorial 
Hospital 

99159 0 1 5 28 

Okanogan-
Douglas Hospital 

98812 0 1 17 16 

PeaceHealth 
Saint Joseph 

98225 42 180 5 28 

Quincy Valley 
Medical Center 

98848 0 0 5 28 

Samaritan 
Hospital 

98837 2 16 5 28 

Skagit Valley 
Hospital 

98273 11 41 5 28 

United General 
Hospital 

98284 2 4 4 29 

Wenatchee 
Valley Hospital 

98001 0 0 5 28 
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Table 10: Logistic Regression for All Hospitalizations (non-lag, non-sensitive) 

 
Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.009 .028 .101 1 .751 .991 .937 1.048 

Ages 15-44   .034 5 1.000    

Ages 0-4 -.003 .129 .000 1 .983 .997 .774 1.285 

Ages 5-14 -.009 .197 .002 1 .963 .991 .674 1.456 

Ages 45-64 -.009 .056 .028 1 .867 .991 .888 1.105 

Ages 65-84 -.006 .052 .012 1 .912 .994 .898 1.101 

Ages 85 and older .000 .073 .000 1 .996 1.000 .867 1.152 

Female -.002 .043 .003 1 .958 .998 .916 1.086 

Constant -1.338 .050 713.122 1 .000 .262   

a. Variable(s) entered on step 1: mean, agecat_reference, sex. 
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Table 11: Logistic Regression for All Hospitalizations (non-lag, sensitive) 

 
 
 
 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -.009 .028 .100 1 .751 .991 .937 1.048 

Female .000 .042 .000 1 .999 1.000 .922 1.085 

Ages 15-64   .000 2 1.000    

Ages 0-14 .000 .108 .000 1 .999 1.000 .809 1.235 

Ages 65 and older .000 .042 .000 1 .996 1.000 .921 1.085 

Constant -1.344 .039 1163.145 1 .000 .261   

a. Variable(s) entered on step 1: mean, sex, agecat_sensitive_reference. 
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Table 12: Logistic Regression for All Hospitalizations (interaction terms, non-lag, non-sensitive) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.012 .073 .026 1 .873 .988 .856 1.141 

Female -.011 .094 .015 1 .904 .989 .823 1.188 

mean by Female -.036 .065 .314 1 .575 .964 .849 1.095 

Ages 15-44   .189 5 .999    

Ages 0-4 -.007 .184 .001 1 .971 .993 .692 1.425 

Ages 5-14 -.025 .260 .009 1 .923 .975 .586 1.623 

Ages 45-64 -.028 .104 .071 1 .789 .973 .794 1.192 

Ages 65-84 -.029 .100 .082 1 .775 .972 .799 1.182 

Ages 85 and older .010 .135 .005 1 .942 1.010 .775 1.315 

Ages 15-44 * mean    3.958 5 .555    

Ages 0-4 by mean -.138 .233 .352 1 .553 .871 .552 1.375 

Ages 5-14 by mean .177 1.062 .028 1 .868 1.193 .149 9.564 

Ages 45-64 by mean .060 .076 .624 1 .430 1.062 .915 1.233 

Ages 65-84 by mean .079 .077 1.059 1 .303 1.082 .931 1.259 

Ages 85 and older by 
mean 

-.328 .262 1.568 1 .210 .720 .431 1.204 

Ages 15-44 * male    .032 5 1.000    

Ages 0-4 by female .027 .267 .010 1 .921 1.027 .609 1.732 

Ages 5-14 by female .003 .419 .000 1 .994 1.003 .441 2.280 

Ages 45-64 by female .014 .125 .012 1 .911 1.014 .794 1.294 

Ages 65-84 by female .019 .118 .025 1 .874 1.019 .808 1.285 

Ages 85 and older by 
female 

.006 .161 .001 1 .969 1.006 .734 1.378 

Constant -1.327 .086 238.776 1 .000 .265   
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Table 13: Logistic Regression for All Hospitalizations (interaction terms, non-lag, sensitive) 

  
Variables in the Equation 

 
B S.E. Wald Df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean .021 .057 .132 1 .717 1.021 .914 1.140 

female .002 .058 .001 1 .971 1.002 .895 1.122 

mean by female -.047 .062 .575 1 .448 .954 .845 1.077 

Ages 15-64   .010 2 .995    

Ages 0-14 .006 .144 .002 1 .968 1.006 .758 1.334 

Ages 65 and older -.005 .067 .006 1 .938 .995 .873 1.134 

Ages 15-64 * mean    .567 2 .753    

Ages 0-14 by mean -.154 .216 .511 1 .475 .857 .561 1.308 

Ages 65 and older by 
mean 

.009 .065 .020 1 .888 1.009 .889 1.146 

Ages 15-64 * male    .008 2 .996    

Ages 0-14  by female .015 .219 .005 1 .945 1.015 .661 1.559 

Ages 65 and older by 
female 

.006 .085 .005 1 .944 1.006 .851 1.189 

Constant -1.345 .048 770.837 1 .000 .261   

a. Variable(s) entered on step 1: mean, sex, mean * sex , agecat_sensitive_reference, agecat_sensitive_reference * mean , 
agecat_sensitive_reference * sex . 
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Table 14: Logistic Regression for Respiratory Hospitalizations (non-lag, non-sensitive) 

 

 

 

 

 

 

 

 

 

 

Table 15: Logistic Regression for Respiratory Hospitalizations (non-lag, sensitive) 

  

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean .012 .101 .015 1 .902 1.013 .830 1.235 

Ages 15-44   .059 5 1.000    

Ages 0-4 -.052 .354 .021 1 .884 .950 .474 1.902 

Ages 5-14 -.049 .465 .011 1 .917 .953 .383 2.371 

Ages 45-64 -.030 .281 .012 1 .914 .970 .559 1.684 

Ages 65-84 -.005 .261 .000 1 .985 .995 .596 1.661 

Ages 85 and older -.036 .285 .016 1 .900 .965 .553 1.685 

female -.008 .145 .003 1 .954 .992 .746 1.318 

Constant -1.305 .249 27.494 1 .000 .271   

a. Variable(s) entered on step 1: mean, agecat_reference, sex. 
 
 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean .012 .101 .015 1 .903 1.012 .830 1.235 

female -.011 .143 .006 1 .938 .989 .747 1.310 

Ages 15-64   .023 2 .989    

Ages 0-14 -.030 .257 .014 1 .907 .970 .586 1.606 

Ages 65 and older .006 .159 .001 1 .970 1.006 .737 1.374 

Constant -1.325 .151 77.252 1 .000 .266   

a. Variable(s) entered on step 1: mean, sex, agecat_sensitive_reference. 
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Table 16: Logistic Regression for Respiratory Hospitalizations (interaction terms, non-lag, non-sensitive) 

 

 

 

 
 
 
 
  

Variables in the Equation 

 
B S.E. Wald Df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.240 .390 .380 1 .538 .787 .366 1.688 

female -.168 .477 .124 1 .725 .845 .332 2.152 

mean by female .314 .363 .747 1 .387 1.369 .672 2.791 

Ages 15-44   .193 5 .999    

Ages 0-4 -.112 .484 .054 1 .816 .894 .346 2.307 

Ages 5-14 .078 .554 .020 1 .888 1.081 .365 3.202 

Ages 45-64 -.102 .411 .062 1 .803 .903 .404 2.018 

Ages 65-84 -.073 .378 .038 1 .846 .929 .443 1.949 

Ages 85 and older -.074 .440 .029 1 .865 .928 .392 2.197 

Ages 15-44 * mean    1.068 5 .957    

Ages 0-4 by mean .062 .587 .011 1 .916 1.064 .337 3.365 

Ages 5-14 by mean -23.443 33.572 .488 1 .485 .000 .000 2.485E18 

Ages 45-64 by mean .064 .235 .075 1 .784 1.067 .672 1.692 

Ages 65-84 by mean -.344 .627 .301 1 .583 .709 .208 2.421 

Ages 85 and older by mean -.117 .537 .048 1 .827 .890 .311 2.547 

Ages 15-44 * male    .108 5 1.000    

Ages 0-4 by female .146 .722 .041 1 .840 1.157 .281 4.765 

Ages 5-14 by female .210 1.320 .025 1 .873 1.234 .093 16.402 

Ages 45-64 by female .130 .569 .052 1 .820 1.138 .373 3.471 

Ages 65-84 by female .167 .527 .100 1 .752 1.181 .421 3.318 

Ages 85 and older by female .113 .583 .038 1 .846 1.120 .357 3.507 

Constant -1.223 .343 12.698 1 .000 .294   

Variable(s) entered on step 1: mean, sex, mean * sex , agecat_reference, agecat_reference * mean , agecat_reference * sex . 
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Table 17: Logistic Regression for Respiratory Hospitalizations (interaction terms, non-lag, sensitive) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.204 .356 .330 1 .566 .815 .406 1.638 

female -.079 .263 .091 1 .763 .924 .552 1.546 

mean by female .319 .365 .766 1 .381 1.376 .673 2.815 

Ages 15-64   .018 2 .991    

Ages 0-14 -.041 .327 .016 1 .901 .960 .505 1.823 

Ages 65 and older -.004 .234 .000 1 .986 .996 .630 1.574 

Ages 15-64 * mean    .446 2 .800    

Ages 0-14 by mean -.039 .662 .003 1 .953 .962 .263 3.522 

Ages 65 and older by mean -.266 .399 .443 1 .506 .767 .351 1.676 

Ages 15-64 * male    .033 2 .983    

Ages 0-14 by female .055 .543 .010 1 .919 1.057 .364 3.065 

Ages 65 and older by female .057 .320 .032 1 .857 1.059 .566 1.982 

Constant -1.294 .190 46.353 1 .000 .274   

 

 
Table 18: Logistic Regression for Cardiovascular Hospitalizations (non-lag, non-sensitive) 

 

  

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.163 .160 1.039 1 .308 .849 .620 1.163 

Ages 15-44   .018 3 .999    

Ages 0-4 -.011 .294 .001 1 .971 .989 .556 1.759 

Ages 5-14 -.024 .284 .007 1 .933 .976 .560 1.704 

Ages 45-64 -.008 .312 .001 1 .979 .992 .538 1.827 

Female .004 .119 .001 1 .972 1.004 .795 1.268 

Constant -1.322 .278 22.687 1 .000 .267   

a. Variable(s) entered on step 1: mean, agecat_reference, sex. 
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Table 19: Logistic Regression for Cardiovascular Hospitalizations (non-lag, sensitive) 

 

 

 

 

 

  

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1
a
 mean -.164 .160 1.043 1 .307 .849 .620 1.162 

Female .006 .118 .002 1 .962 1.006 .798 1.267 

Ages 0-14 -.011 .124 .008 1 .928 .989 .775 1.262 

Constant -1.332 .107 154.113 1 .000 .264   

a. Variable(s) entered on step 1: mean, sex, agecat_sensitive_reference. 
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Table 20: Logistic Regression for Cardiovascular Hospitalizations (interaction terms, non-lag, non-sensitive) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1
a
 mean -3.125 4.118 .576 1 .448 .044 .000 140.663 

Female -.039 .560 .005 1 .945 .962 .321 2.885 

mean by female -.385 .483 .636 1 .425 .680 .264 1.753 

Ages 15-44   .185 3 .980    

Ages 0-4 -.145 .386 .140 1 .708 .865 .406 1.844 

Ages 5-14 -.148 .379 .152 1 .697 .863 .410 1.814 

Ages 45-64 -.184 .439 .176 1 .675 .832 .352 1.966 

Ages 15-44 * mean    1.256 3 .740    

Ages 0-4 by mean 3.034 4.125 .541 1 .462 20.780 .006 67413.277 

Ages 5-14 by mean 3.167 4.122 .590 1 .442 23.728 .007 76589.051 

Ages 45-64 by mean 3.766 4.209 .801 1 .371 43.211 .011 165364.249 

Ages 15-44 * male    .062 3 .996    

Ages 0-4 by female .097 .609 .025 1 .873 1.102 .334 3.632 

Ages 5-14 by female .044 .583 .006 1 .940 1.045 .333 3.276 

Ages 45-64 by female .101 .640 .025 1 .874 1.106 .316 3.876 

Constant -1.202 .364 10.938 1 .001 .300   

a. Variable(s) entered on step 1: mean, sex, mean * sex , agecat_reference, agecat_reference * mean , agecat_reference * sex . 
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Table 21: Logistic Regression for Cardiovascular Hospitalizations (interaction terms, non-lag, sensitive) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.205 .312 .430 1 .512 .815 .442 1.503 

female .051 .218 .055 1 .814 1.053 .686 1.615 

mean by female -.454 .503 .817 1 .366 .635 .237 1.700 

Ages 0-14 -.017 .157 .011 1 .915 .983 .723 1.338 

Ages 0-14 by mean .298 .391 .581 1 .446 1.347 .626 2.900 

Ages 0-14 by female -.033 .259 .016 1 .899 .968 .583 1.608 

Constant -1.337 .122 120.132 1 .000 .263   

a. Variable(s) entered on step 1: mean, sex, mean * sex , agecat_sensitive_reference, agecat_sensitive_reference * mean , 
agecat_sensitive_reference * sex . 
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Table 22: Logistic Regression for All Hospitalizations (interaction terms, non-sensitive, comparison of modeled air quality 

using mean of 3 days prior against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.041 .087 .219 1 .640 .960 .810 1.138 

mean_321daysbefore -.062 .139 .200 1 .654 .940 .716 1.234 

Ages 15-44   .434 5 .994    

Ages 0-4 .010 .193 .003 1 .959 1.010 .692 1.475 

Ages 5-14 .073 .277 .070 1 .791 1.076 .626 1.851 

Ages 45-64 -.046 .110 .175 1 .675 .955 .770 1.185 

Ages 65-84 -.032 .106 .090 1 .764 .969 .787 1.192 

Ages 85 and older -.001 .142 .000 1 .993 .999 .756 1.320 

Female -.001 .099 .000 1 .994 .999 .823 1.213 

Ages 15-44 by mean    4.224 5 .518    

Ages 0-4 by mean -.141 .265 .284 1 .594 .868 .516 1.460 

Ages 5-14 by mean 1.459 1.213 1.446 1 .229 4.300 .399 46.331 

Ages 45-64 by mean .025 .093 .073 1 .787 1.025 .855 1.230 

Ages 65-84 by mean .071 .089 .637 1 .425 1.074 .902 1.279 

Ages 85 and older by mean -.373 .318 1.380 1 .240 .689 .370 1.283 

Ages 15-44 by male    .586 5 .989    

Ages 0-4 by female -.191 .291 .428 1 .513 .826 .467 1.463 

Ages 5-14 by female -.127 .448 .080 1 .777 .881 .366 2.121 

Ages 45-64 by female .013 .132 .010 1 .919 1.013 .783 1.312 

Ages 65-84 by female -.012 .125 .009 1 .926 .988 .774 1.263 

Ages 85 and older by female -.012 .170 .005 1 .942 .988 .707 1.379 

 Ages 15-44 by     mean_321daysbefore    3.503 5 .623    

 Ages 0-4 by mean_321daysbefore .115 .342 .112 1 .737 1.121 .574 2.191 

Ages 5-14 by mean_321daysbefore -.383 .715 .287 1 .592 .682 .168 2.769 

Ages 45-64 by mean_321daysbefore .241 .146 2.729 1 .099 1.272 .956 1.693 
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Ages 65-84 by mean_321daysbefore .109 .140 .605 1 .436 1.115 .847 1.469 

Ages 85 and older by 
mean_321daysbefore 

.176 .213 .680 1 .410 1.192 .785 1.812 

mean_321daysbefore by female .027 .123 .049 1 .826 1.028 .807 1.308 

mean by female -.032 .078 .166 1 .683 .969 .831 1.129 

Constant -1.328 .091 214.294 1 .000 .265   

a. Variable(s) entered on step 1: mean, mean_321daysbefore, agecat_reference, sex, agecat_reference * mean , agecat_reference * sex , 
agecat_reference * mean_321daysbefore , mean_321daysbefore * sex , mean * sex . 
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Table 23: Logistic Regression for All Hospitalizations (interaction terms, non-sensitive, comparison of modeled air quality 

using median of 3 days prior against mean on hospitalization day)  

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -.048 .081 .354 1 .552 .953 .813 1.117 

female -.009 .095 .008 1 .928 .991 .823 1.195 

mean by female .001 .073 .000 1 .991 1.001 .867 1.156 

 Ages 15-44   .447 5 .994    

Ages 0-4 -.011 .187 .004 1 .952 .989 .685 1.427 

Ages 5-14 -.022 .266 .007 1 .935 .978 .580 1.649 

Ages 45-64 -.042 .106 .160 1 .689 .959 .779 1.179 

Ages 65-84 -.040 .102 .153 1 .696 .961 .787 1.173 

Ages 85 and older .022 .137 .027 1 .870 1.023 .782 1.338 

 Ages 15-44 by mean    4.192 5 .522    

Ages 0-4 by mean -.112 .238 .221 1 .639 .894 .561 1.425 

Ages 5-14 by mean .401 1.101 .133 1 .716 1.493 .173 12.921 

 Ages 45-64 by mean -.008 .089 .009 1 .925 .992 .833 1.180 

Ages 65-84 by mean .088 .082 1.159 1 .282 1.092 .931 1.281 

Ages 85 and older by mean -.393 .299 1.728 1 .189 .675 .376 1.213 

 Ages 15-44 by male   .302 5 .998    

Ages 0-4 by female -.104 .277 .141 1 .707 .901 .523 1.551 

Ages 5-14 by female -.047 .438 .012 1 .914 .954 .404 2.250 

Ages 45-64 by female .006 .127 .002 1 .962 1.006 .784 1.290 

Ages 65-84 by female .024 .120 .041 1 .839 1.025 .810 1.297 

 Ages 85 and older by female -.022 .164 .017 1 .895 .979 .710 1.350 

median_of_means_321daysbefore .076 .172 .196 1 .658 1.079 .771 1.511 

 Ages 15-44 
by median_of_means_321daysbefore  

  
1.424 5 .922 
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Ages 0-4 by 
median_of_means_321daysbefore 

-.066 .772 .007 1 .932 .936 .206 4.246 

Ages 5-14 by 
median_of_means_321daysbefore 

-.302 1.396 .047 1 .829 .739 .048 11.401 

Ages 45-64 by 
median_of_means_321daysbefore 

.154 .168 .840 1 .359 1.167 .839 1.622 

Ages 65-84 by 
median_of_means_321daysbefore 

-.005 .171 .001 1 .976 .995 .711 1.392 

Ages 85 and older by 
median_of_means_321daysbefore 

.146 .317 .212 1 .645 1.157 .622 2.154 

median_of_means_321daysbefore by 
female 

-.037 .147 .063 1 .802 .964 .722 1.286 

Constant -1.326 .087 230.596 1 .000 .265   

a. Variable(s) entered on step 1: mean, sex, mean * sex , agecat_reference, agecat_reference * mean , agecat_reference * sex , 
median_of_means_321daysbefore, agecat_reference * median_of_means_321daysbefore , median_of_means_321daysbefore * sex . 
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Table 24: Logistic Regression for All Hospitalizations (interaction terms, sensitive, comparison of modeled air quality using 

mean of 3 days prior against mean on hospitalization day) 

 Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.035 .071 .248 1 .619 .965 .839 1.110 

mean_321daysbefore .069 .100 .472 1 .492 1.071 .880 1.304 

female .015 .062 .062 1 .804 1.015 .900 1.146 

mean_321daysbefore by 
female 

-.026 .109 .057 1 .812 .974 .787 1.207 

mean by female -.028 .076 .142 1 .707 .972 .838 1.127 

Ages 15-64   .115 2 .944    

Ages 0-14 .048 .152 .099 1 .753 1.049 .779 1.414 

Ages 65 and older -.003 .071 .002 1 .964 .997 .867 1.146 

Ages 15-64 by male    .362 2 .834    

Ages 0-14 by female -.140 .236 .350 1 .554 .870 .548 1.381 

Ages 65 and older by 
female 

-.019 .091 .045 1 .832 .981 .821 1.172 

Ages 15-64 by 
mean_321daysbefore  

  
.284 2 .868 

   

Ages 0-14 by 
mean_321daysbefore 

-.130 .281 .212 1 .645 .878 .506 1.525 

Ages 65 and older by 
mean_321daysbefore 

.022 .111 .039 1 .844 1.022 .822 1.270 

Ages 15-64 by mean    .286 2 .867    

Ages 0-14 by mean -.092 .217 .181 1 .671 .912 .596 1.395 

Ages 65 and older by 
mean 

.019 .078 .062 1 .804 1.019 .876 1.187 

Constant -1.355 .052 683.974 1 .000 .258   

a. Variable(s) entered on step 1: mean, mean_321day 
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Table 25: Logistic Regression for All Hospitalizations (interaction terms, sensitive, comparison of modeled air quality using 

median of 3 days compared against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -.056 .067 .703 1 .402 .945 .829 1.078 

Female .008 .059 .017 1 .896 1.008 .897 1.132 

mean by female .007 .070 .009 1 .924 1.007 .878 1.155 

median_of_means_321daysbefore .165 .130 1.599 1 .206 1.179 .913 1.521 

median_of_means_321daysbefore by 
female 

-.063 .137 .214 1 .643 .938 .717 1.228 

Ages 15-64   .012 2 .994    

Ages 0-14 .013 .147 .007 1 .932 1.013 .759 1.351 

Ages 65 and older -.003 .068 .002 1 .965 .997 .872 1.140 

Ages 15-64 by mean    .709 2 .701    

Ages 0-14 by mean -.087 .216 .162 1 .687 .917 .600 1.401 

Ages 65 and older by mean .048 .071 .450 1 .502 1.049 .913 1.205 

Ages 15-64 by 
median_of_means_321daysbefore  

  
.200 2 .905 

   

Ages 0-14 by 
median_of_means_321daysbefore 

-.152 .658 .053 1 .818 .859 .236 3.123 

Ages 65 and older by 
median_of_means_321daysbefore 

-.055 .136 .163 1 .687 .947 .725 1.236 

Ages 15-64 by male   .184 2 .912    

Ages 0-14 by female -.095 .228 .173 1 .677 .910 .582 1.421 

Ages 65 and older by female .003 .087 .001 1 .975 1.003 .845 1.189 

Constant -1.354 .050 743.099 1 .000 .258   

a. Variable(s) entered on step 1: mean, sex, mean * sex , median_of_means_321daysbefore, median_of_means_321daysbefore * sex , 
agecat_sensitive_reference, agecat_sensitive_reference * mean , agecat_sensitive_reference * median_of_means_321daysbefore , 
agecat_sensitive_reference * sex . 
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Table 26: Logistic Regression for Respiratory Hospitalizations (interaction terms, non-sensitive, comparison of modeled air 

quality using mean of 3 days prior compared against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald Df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a  Mean .084 .380 .049 1 .824 1.088 .516 2.293 

mean_321daysbefore -.346 .923 .140 1 .708 .708 .116 4.321 

female -.300 .489 .377 1 .539 .741 .284 1.932 

mean_321daysbefore by 
female 

-.311 .489 .405 1 .525 .733 .281 1.911 

mean by female -.031 .388 .006 1 .937 .970 .454 2.073 

 Ages 15-44   .354 5 .997    

Ages 0-4 -.176 .499 .124 1 .724 .839 .315 2.230 

Ages 5-14 -.093 .584 .025 1 .874 .912 .290 2.863 

Ages 45-64 -.241 .428 .318 1 .573 .786 .340 1.818 

Ages 65-85 -.132 .391 .115 1 .735 .876 .407 1.885 

Ages 85 and older -.132 .454 .084 1 .771 .876 .360 2.135 

 Ages 15-44 * mean    1.006 5 .962    

Ages 0-4 by mean -.419 .690 .368 1 .544 .658 .170 2.542 

Ages 5-14 by mean -19265.629 11230286.275 .000 1 .999 .000 .000 . 

Ages 45-64 by mean .075 .256 .085 1 .770 1.078 .652 1.781 

 Ages 65-84 by mean -1.263 1.702 .551 1 .458 .283 .010 7.950 

 Ages 85 and older by mean -.065 .532 .015 1 .902 .937 .330 2.657 

Ages 15-44 * 
mean_321daysbefore  

  
3.215 5 .667 

   

Ages 0-4 by 
mean_321daysbefore 

3.000 4.112 .532 1 .466 20.077 .006 63544.422 

Ages 5-14 by 
mean_321daysbefore 

-12317.977 204795.791 .004 1 .952 .000 .000 . 
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Ages 45-64 by 
mean_321daysbefore 

.848 .998 .723 1 .395 2.336 .331 16.503 

Ages 65-84 by 
mean_321daysbefore 

.116 .973 .014 1 .905 1.123 .167 7.556 

Ages 85 and older by 
mean_321daysbefore 

.132 1.188 .012 1 .911 1.141 .111 11.712 

 Ages 15-44 * male    .305 5 .998    

Ages 0-4 by female .074 .749 .010 1 .922 1.076 .248 4.674 

Ages 5-14 by female 11.635 158.410 .005 1 .941 112932.998 .000 7.791E139 

Ages 45-64 by female .249 .591 .177 1 .674 1.282 .403 4.079 

Ages 65-84 by female .258 .544 .226 1 .634 1.295 .446 3.758 

Ages 85 and older by 
female 

.229 .601 .145 1 .703 1.257 .387 4.080 

Constant -1.111 .353 9.928 1 .002 .329   

a. Variable(s) entered on step 1: mean, mean_321daysbefore, sex, mean_321daysbefore * sex , mean * sex , agecat_reference, agecat_reference * 
mean , agecat_reference * mean_321daysbefore , agecat_reference * sex . 
 



 

129 
 

Table 27: Logistic Regression for Respiratory Hospitalizations (interaction terms, non-sensitive, comparison of modeled air 

quality of median of 3 days prior against mean on hospitalization day) 

 
Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a mean -.349 .409 .728 1 .393 .706 .317 1.572 

female -.190 .480 .158 1 .691 .827 .323 2.117 

mean by female .430 .376 1.308 1 .253 1.538 .735 3.216 

 Ages 15-44   .453 5 .994    

Ages 0-4 -.117 .490 .057 1 .811 .890 .341 2.322 

 Ages 5-14 .021 .558 .001 1 .969 1.022 .342 3.048 

Ages 45-64 -.227 .421 .289 1 .591 .797 .349 1.821 

Ages 65-84 -.096 .385 .062 1 .804 .909 .427 1.932 

Ages 85 and older -.144 .449 .103 1 .748 .866 .359 2.088 

 Ages 15-44 * mean    .620 5 .987    

Ages 0-4 by mean .383 .679 .318 1 .573 1.466 .387 5.550 

Ages 5-14 by mean -23.476 53.133 .195 1 .659 .000 .000 1.075E35 

Ages 45-64 by mean .058 .239 .060 1 .807 1.060 .664 1.693 

Ages 65-84 by mean -.078 .580 .018 1 .893 .925 .297 2.882 

Ages 85 and older by mean .018 .525 .001 1 .973 1.018 .363 2.850 

 Ages 15-44 * male    .323 5 .997    

Ages 0-4 by female .020 .743 .001 1 .979 1.020 .238 4.379 

Ages 5-14 by female .228 1.323 .030 1 .863 1.256 .094 16.803 

Ages 45-64 by female .234 .576 .165 1 .684 1.264 .408 3.912 

Ages 65-84 by female .236 .531 .198 1 .657 1.266 .447 3.584 

Ages 85 and older by female .141 .592 .057 1 .811 1.152 .361 3.674 

median_of_means_321daysbefore .157 1.512 .011 1 .917 1.171 .060 22.654 

 Ages 15-44 *  
median_of_means_321daysbefore  

  
2.258 5 .812 
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Ages 0-4 by 
median_of_means_321daysbefore 

-11.032 17.896 .380 1 .538 .000 .000 2.766E10 

Ages 5-14 by 
median_of_means_321daysbefore 

1.097 18.317 .004 1 .952 2.994 .000 1.169E16 

Ages 45-64 by 
median_of_means_321daysbefore 

.321 1.545 .043 1 .836 1.378 .067 28.461 

Ages 65-84 by 
median_of_means_321daysbefore 

-.590 1.578 .140 1 .709 .554 .025 12.223 

Ages 85 and older by 
median_of_means_321daysbefore 

-.031 1.765 .000 1 .986 .969 .031 30.805 

median_of_means_321daysbefore by 
female 

-.492 .815 .364 1 .546 .611 .124 3.022 

Constant -1.169 .349 11.235 1 .001 .311   

a. Variable(s) entered on step 1: mean, sex, mean * sex , agecat_reference, agecat_reference * mean , agecat_reference * sex , 
median_of_means_321daysbefore, agecat_reference * median_of_means_321daysbefore , median_of_means_321daysbefore * sex . 
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Table 28: Logistic Regression for Respiratory Hospitalizations (interaction terms, sensitive, comparison of modeled air quality 

using mean of 3 days prior against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1
a
 Mean .031 .364 .007 1 .932 1.032 .506 2.104 

mean_321daysbefore .279 .314 .790 1 .374 1.322 .714 2.445 

female -.146 .279 .275 1 .600 .864 .500 1.493 

mean_321daysbefore by 
female 

-.198 .428 .213 1 .644 .821 .355 1.900 

mean by sex(1) .067 .374 .032 1 .859 1.069 .513 2.226 

Ages 15-64   .010 2 .995    

Ages 0-14 .026 .343 .006 1 .939 1.027 .524 2.011 

Ages 65 and older .023 .248 .009 1 .925 1.024 .630 1.663 

Ages 15-64 by male    .103 2 .950    

Ages 0-14 by female -.039 .573 .005 1 .946 .962 .313 2.959 

Ages 65 and older by 
female 

.088 .337 .069 1 .793 1.092 .564 2.116 

Ages 15-64 by  
mean_321daysbefore  

  
2.093 2 .351 

   

Ages 0-14 by 
mean_321daysbefore 

-.889 1.526 .339 1 .560 .411 .021 8.182 

Ages 65 and older by 
mean_321daysbefore 

-.561 .403 1.932 1 .165 .571 .259 1.258 

Ages 15-64 by mean    .500 2 .779    

Ages 0-14 by mean -.141 .534 .069 1 .792 .869 .305 2.476 

Ages 65 and older by mean -.325 .462 .494 1 .482 .723 .292 1.787 

Constant -1.266 .202 39.263 1 .000 .282   

a. Variable(s) entered on step 1: mean, mean_321daysbefore, sex, mean_321daysbefore * sex , mean * sex , agecat_sensitive_reference, 
agecat_sensitive_reference * sex , agecat_sensitive_reference * mean_321daysbefore , agecat_sensitive_reference * mean . 
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Table 29: Logistic Regression for Respiratory Hospitalizations (interaction terms, sensitive, comparison of modeled air quality 

using median of 3 days prior against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -.312 .369 .715 1 .398 .732 .355 1.509 

Female -.038 .270 .020 1 .887 .962 .567 1.632 

mean by female .427 .377 1.284 1 .257 1.532 .732 3.206 

median_of_means_321daysbefore .420 .393 1.144 1 .285 1.522 .705 3.287 

median_of_means_321daysbefore 
by Female 

-.328 .683 .231 1 .631 .720 .189 2.746 

Ages 15-64   .049 2 .976    

Ages 0-14 .062 .334 .034 1 .854 1.063 .553 2.046 

Ages 65 and older .047 .241 .038 1 .845 1.048 .653 1.682 

Ages 15-64 by mean    .264 2 .876    

Ages 0-14 by mean .290 .653 .197 1 .657 1.336 .372 4.802 

Ages 65 and older by mean -.066 .381 .030 1 .862 .936 .443 1.976 

Ages 15-64 by 
median_of_means_321daysbefore  

  
2.463 2 .292 

   

Ages 0-14 by 
median_of_means_321daysbefore 

-10.432 12.532 .693 1 .405 .000 .000 1370158.106 

Ages 65 and older by 
median_of_means_321daysbefore 

-.801 .593 1.822 1 .177 .449 .140 1.436 

Ages 15-64 by male    .088 2 .957    

Ages 0-14 by female -.112 .566 .039 1 .843 .894 .295 2.709 

Ages 65 and older by female .042 .326 .016 1 .898 1.043 .550 1.976 

Constant -1.325 .196 45.474 1 .000 .266   

a. Variable(s) entered on step 1: mean, sex, mean * sex , median_of_means_321daysbefore, median_of_means_321daysbefore * sex , 
agecat_sensitive_reference, agecat_sensitive_reference * mean , agecat_sensitive_reference * median_of_means_321daysbefore , 
agecat_sensitive_reference * sex . 
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Table 30: Logistic Regression for Cardiovascular Hospitalizations (interaction terms, non-sensitive, comparison of modeled air 

quality using mean of 3 days prior against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -2.944 4.596 .410 1 .522 .053 .000 429.886 

mean_321daysbefore .200 .382 .274 1 .601 1.221 .578 2.583 

female -.044 .575 .006 1 .939 .957 .310 2.955 

mean_321daysbefore by female .063 .418 .022 1 .881 1.065 .469 2.416 

mean by female -.080 .447 .032 1 .858 .923 .384 2.218 

 Ages 15-44   .430 3 .934    

Ages 0-4 -.198 .399 .248 1 .619 .820 .375 1.792 

Ages 5-14 -.243 .391 .387 1 .534 .784 .364 1.688 

Ages 45-64 -.169 .451 .140 1 .708 .845 .349 2.043 

 Ages 15-44 * mean    1.860 3 .602    

Ages 0-4 by mean 2.848 4.599 .383 1 .536 17.250 .002 141729.881 

Ages 5-14 by mean 2.794 4.609 .367 1 .544 16.342 .002 137032.502 

Ages 0-4 by mean 4.305 4.746 .823 1 .364 74.095 .007 811430.664 

Ages 15-44 *  mean_321daysbefore    2.045 3 .563    

Ages 0-4 by mean_321daysbefore -.389 .468 .691 1 .406 .677 .271 1.697 

Ages 5-14 by mean_321daysbefore .112 .459 .059 1 .807 1.118 .455 2.748 

Ages 45-64 by mean_321daysbefore .386 .620 .387 1 .534 1.470 .437 4.953 

Ages 15-44 * male    .363 3 .948    

Ages 0-4 by female .156 .623 .062 1 .803 1.169 .344 3.965 

Ages 5-14 by female .065 .598 .012 1 .914 1.067 .330 3.444 

Ages 45-64 by female -.089 .660 .018 1 .893 .915 .251 3.340 

Constant -1.172 .374 9.829 1 .002 .310   

a. Variable(s) entered on step 1: mean, mean_321daysbefore, sex, mean_321daysbefore * sex , mean * sex , agecat_reference, 
agecat_reference * mean , agecat_reference * mean_321daysbefore , agecat_reference * sex . 
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Table 31: Logistic Regression for Cardiovascular Hospitalizations (interaction terms, non-sensitive, comparison of modeled air 

quality using median of 3 days prior against mean on hospitalization day) 

  Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1
a
 mean -3.427 4.346 .622 1 .430 .032 .000 162.455 

female -.026 .563 .002 1 .963 .974 .323 2.939 

mean by female .017 .391 .002 1 .965 1.017 .473 2.188 

 Ages 15-44   .250 3 .969    

Ages 0-4 -.166 .393 .178 1 .673 .847 .392 1.829 

Ages 5-14 -.177 .385 .211 1 .646 .838 .394 1.783 

 Ages 45-64 -.216 .446 .234 1 .628 .806 .336 1.931 

 Ages 15-44  by mean    1.787 3 .618    

Ages 0-4 by mean 3.308 4.349 .579 1 .447 27.336 .005 137474.087 

Ages 5-14 by mean 3.149 4.353 .523 1 .469 23.309 .005 118311.661 

Ages 45-64 by mean 4.239 4.444 .910 1 .340 69.369 .011 420263.596 

 Ages 15-44 by male   .151 3 .985    

Ages 0-4 by female .110 .613 .032 1 .858 1.116 .336 3.711 

Ages 5-14 by female .015 .586 .001 1 .979 1.016 .322 3.205 

Ages 45-64 by female -.027 .647 .002 1 .966 .973 .274 3.461 

median_of_means_321daysbefore .087 .699 .016 1 .901 1.091 .277 4.298 

 Ages 15-44 by 
median_of_means_321daysbefore  

  
5.381 3 .146 

   

Ages 0-4 by median_of_means_321daysbefore -.713 1.108 .414 1 .520 .490 .056 4.300 

Ages 5-14 by median_of_means_321daysbefore .452 .798 .321 1 .571 1.572 .329 7.503 

Ages 45-64 by median_of_means_321daysbefore 2.017 1.160 3.025 1 .082 7.517 .774 72.972 

median_of_means_321daysbefore by female -.874 .721 1.469 1 .226 .417 .102 1.715 

Constant -1.176 .369 10.150 1 .001 .308   

 
a. Variable(s) entered on step 1: mean, sex, mean * sex , agecat_reference, agecat_reference * mean , agecat_reference * sex , 
median_of_means_321daysbefore, agecat_reference * median_of_means_321daysbefore , median_of_means_321daysbefore * sex . 
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Table 32: Logistic Regression for Cardiovascular Hospitalizations (interaction terms, sensitive, comparison of modeled air 

quality using mean of 3 days prior against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -.155 .295 .275 1 .600 .857 .480 1.528 

mean_321daysbefore -.092 .255 .128 1 .720 .913 .553 1.505 

female .094 .230 .165 1 .684 1.098 .699 1.724 

mean_321daysbefore by female .214 .341 .396 1 .529 1.239 .635 2.417 

mean by female -.234 .540 .188 1 .664 .791 .274 2.280 

Ages 0-14 -.045 .169 .073 1 .788 .956 .687 1.330 

Ages 0-14 by female -.114 .273 .173 1 .677 .893 .523 1.524 

Ages 0-14 by mean_321daysbefore .417 .329 1.611 1 .204 1.518 .797 2.892 

Ages 0-14 by mean .218 .513 .180 1 .672 1.243 .455 3.398 

Constant -1.354 .132 105.909 1 .000 .258   

a. Variable(s) entered on step 1: mean, mean_321daysbefore, sex, mean_321daysbefore * sex , mean * sex , agecat_sensitive_reference, 

agecat_sensitive_reference * sex , agecat_sensitive_reference * mean_321daysbefore , agecat_sensitive_reference * mean . 
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Table 33: Logistic Regression for Cardiovascular Hospitalizations (interaction terms, sensitive, comparison of modeled air 

quality using median of 3 days prior against mean on hospitalization day) 

Variables in the Equation 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Mean -.193 .330 .341 1 .559 .825 .431 1.576 

Female .060 .222 .073 1 .788 1.062 .687 1.641 

mean by female -.076 .483 .025 1 .875 .927 .359 2.389 

median_of_means_321daysbefore -.417 .585 .508 1 .476 .659 .209 2.075 

median_of_means_321daysbefore by 
female 

-.468 .467 1.006 1 .316 .626 .251 1.563 

Ages 0-14 -.019 .161 .014 1 .907 .982 .717 1.344 

Ages 0-14 by mean -.017 .437 .002 1 .969 .983 .418 2.314 

Ages 0-14 by 
median_of_means_321daysbefore 

.937 .661 2.007 1 .157 2.552 .698 9.333 

Ages 0-14 by female -.086 .264 .106 1 .744 .918 .547 1.539 

Constant -1.331 .125 112.576 1 .000 .264   

a. Variable(s) entered on step 1: mean, sex, mean * sex , median_of_means_321daysbefore, median_of_means_321daysbefore * sex , 
agecat_sensitive_reference, agecat_sensitive_reference * mean , agecat_sensitive_reference * median_of_means_321daysbefore , 
agecat_sensitive_reference * sex . 
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Chapter 4: Evaluation of the U.S. Forest Service Air Pollution Model 
 

Table 34: Public Health Population Impacts in Okanogan and Surrounding Counties (Based on proximity)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zip Code Total Population (based 
on 2010 U.S. Census 
Populations) 

Dates above 35 µg/m³ Maximum 
modeled PM2.5 

value (µg/m³) 
above 35 µg/m³ 

98822 1,874 9/15 
9/16 
9/12 
9/3 
9/7 
9/2 
9/11 
9/5 
9/4 
9/1 

436 
332 
324 
318 
253 
227 
188 
138 
116 

98856 2,182 8/17 
9/15 
9/1 
9/14 
8/25 
9/3 

168 
165 
138 
82 
63 
58 

98862 1,916 8/20 61 

 SUM: 5,972   
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Table 35: 2006 Counties of Interest and PM2.5 Air Quality Monitors2 

County Latitude Longitude Agency  City 

Okanogan*3 48.364267 -120.121115 EPA Twisp 

 48.477198 -120.190562 EPA Winthrop 

 48.387531 -119.928671 EPA Twisp Forest 

 48.555533 -119.750983 USFS Conconully  

 48.599983 -120.166950 USFS Eight Mile site 

 48.962167 -119.445617 USFS Oroville 

 48.131817 -118.971000 USFS Nespelem  

Grant* 47.130336 -119.272598 
 

EPA Moses Lake  

Chelan* 47.412222 -120.318333 EPA Wenatchee 

 47.598863 -120.664702 EPA Leavenworth 

Skagit 48.410311 -122.337849 EPA Mount Vernon 

 48.731420 -121.065815 
 

EPA Rockport 

 48.544722 -117.903611 EPA Colville 

Whatcom 48.762778 -122.440278 EPA Bellingham 

 48.731420 -121.065815 EPA North Cascades 

Stevens* 48.070967 -118.198717 USFS Fruitland 

 48.601967 -118.05955 USFS Kettle Falls 

Adams* 47.128611 -118.381944 EPA Ritzville 

Benton* 46.21835 -119.204153 EPA Kennewick 

Franklin* 46.575597 -119.000705 EPA Mesa 

Kittitas* 46.996111 -120.545278 EPA Ellensburg 

 47.399815 -121.427096 EPA Snoqualmie Pass 

Klickitat* 45.664223 -121.001945 EPA Lyle 

 45.749818 -121.401159 EPA White Salmon 

Lewis* 46.624347 -121.386869 EPA Naches 

Pierce* 47.2656 -122.3858 EPA Tacoma 

 47.211 -122.357 EPA Puyallup 

 47.1864 -122.4517 EPA Tacoma Sheridan 

 47.14 -122.3003 EPA Puyallup (Two) 

 46.784722 -121.738333 EPA Packwood 

Yakima** 46.38024 -120.33266 EPA Toppenish 

 46.59678 -120.512215 EPA Yakima 

 

  

                                                        
2 Air quality monitors were not available for Lincoln, Douglas, and Ferry counties in the EPA Air Quality DataMart 

during the time period of this analysis.  

3 Asterisks (*) indicate counties that were later determined to have had smoke impacts above 1000 µg/m3 based on 
cumulative model data. 
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Table 36: Cumulative Smoke Impacts in Washington Counties during 33-Day Study Period 

 
County 

Sum of 33 days for 
county (ug/m3) 

Average per day for 
county (ug/m3) Area (meters squared) 

Okanogan 9,757 296 13,826,900,000 

Yakima 9,065 275 11,243,100,000 

Chelan 5,770 175 7,681,610,000 

Lewis 4,786 145 6,407,160,000 

Grant 2,861 87 7,157,870,000 

Benton 2,392 72 4,574,050,000 

Stevens 1,929 58 6,599,200,000 

Skamania 1,909 58 4,120,140,000 

Adams 1,859 56 5,080,340,000 

Pend Oreille 1,705 52 3,683,680,000 

Pierce 1,441 44 4,574,050,000 

Klickitat 1,391 42 4,853,380,000 

Franklin 1,330 40 3,282,140,000 

Kittitas 1,149 34.8 6,110,370,000 

Douglas 979 29.7 4,835,920,000 

Ferry 910 27.6 5,883,420,000 

Lincoln 906 27.5 6,005,620,000 

Whitman 608 18.4 5,621,540,000 

Walla Walla 597 18.1 3,369,430,000 

Whatcom 547 16.6 6,564,290,000 

Spokane 545 16.5 4,556,590,000 

Skagit 512 15.5 4,940,670,000 

Cowlitz 496 15.0 2,950,440,000 

Snohomish 448 13.6 5,831,040,000 

Clark 361 10.9 1,798,200,000 

Grays Harbor 300 9.1 5,865,960,000 

Columbia 244 7.4 2,164,820,000 

Garfield 201 6.1 1,937,860,000 

Asotin 179 5.4 1,710,900,000 

King 134 4.1 5,883,420,000 

Jefferson 123 3.7 5,656,460,000 

Mason 121 3.7 2,810,770,000 

Clallam 57 1.7 6,878,540,000 

Pacific 57 1.7 3,020,270,000 

Wahkiakum 17.8 0.5 855,452,000 

Thurston 14.2 0.4 2,077,530,000 

Island 13.2 0.4 1,309,370,000 

Kitsap 10.6 0.3 1,466,490,000 

San Juan 7.3 0.2 1,641,070,000 
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Table 37: Smoke Impact Statistics for Washington Zip Codes during 33-Day Study Period 

County 
Minimum 
(ug/m3) 

Maximum 
(ug/m3) 

Range 
(ug/m3) 

Average 
(ug/m3) 

Standard 
Deviation 
(ug/m3) 

Okanogan 1.5 674.1 672.6 12.3 34.5 

Yakima 2.4 63.3 61.0 14.1 12.7 

Chelan 1.3 2729.8 2728.5 13.1 129.8 

Lewis 0.1 63.9 63.8 13.0 19.0 

Grant 1.5 15.9 14.4 7.0 4.0 

Benton 4.9 14.0 9.0 9.1 2.3 

Stevens 1.7 19.5 17.8 5.1 2.8 

Skamania 2.4 36.7 34.3 8.1 6.8 

Adams 1.5 15.6 14.1 6.4 4.5 

Pend 
Oreille 

2.3 41.6 39.2 8.1 7.1 

Pierce 0.1 66.3 66.3 5.5 10.4 

Klickitat 3.1 8.8 5.7 5.0 1.3 

Franklin 1.8 13.4 11.6 7.1 3.0 

Kittitas 0.4 12.3 11.9 3.3 2.3 

Douglas 1.5 6.5 5.1 3.5 1.1 

Ferry 1.4 10.1 8.7 2.7 1.6 

Lincoln 1.6 10.0 8.5 2.6 1.4 

Whitman 1.5 2.4 1.0 1.9 0.3 

Walla Walla 1.8 5.3 3.6 3.1 0.9 

Whatcom 0.0 4.6 4.6 1.5 1.2 

Spokane 1.7 2.6 0.9 2.1 0.2 

Skagit 0.2 8.4 8.2 1.8 1.6 

Cowlitz 0.3 6.4 6.1 2.9 1.7 

Snohomish 0.1 5.3 5.2 1.3 1.0 

Clark 3.1 5.0 1.9 3.5 0.3 

Grays 
Harbor 

0.0 4.8 4.7 0.9 0.9 

Columbia 1.6 2.6 1.0 2.0 0.2 

Garfield 1.7 2.0 0.3 1.8 0.1 

Asotin 1.7 2.1 0.4 1.8 0.1 

King 0.1 11.6 11.6 0.4 0.9 

Jefferson 0.1 12.1 12.1 0.4 0.7 

Mason 0.1 26.7 26.7 0.7 2.9 

Clallam 0.0 0.4 0.4 0.1 0.1 

Pacific 0.1 0.6 0.5 0.3 0.1 

Wahkiakum 0.3 0.7 0.4 0.4 0.1 

Thurston 0.1 0.9 0.9 0.1 0.1 

Island 0.1 0.3 0.2 0.2 0.0 

Kitsap 0.1 0.2 0.1 0.1 0.0 

San Juan 0.0 0.2 0.1 0.1 0.0 
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Table 38: Descriptive Statistics for U.S. Forest Service (non-enforceable) and U.S. Environmental Protection Agency 

(enforceable) Monitor Data Compared Against U.S. Forest Service Model Data 

Descriptive Statistics 

 N Range Minimum Maximum Sum Mean Std. 
Deviation 

Variance Skewness Kurtosis 

      Std. 
Error 

   Std. 
Error 

 Std. 
Error 

Model air 
concentration values 
 

1056 62.962 0.000 62.962 267.534 0.253 0.073 2.367 5.605 21.733 0.075 528.992 0.150 

Ground monitor air 
concentration values 

832 424.550 0.400 424.950 18238.130 21.921 1.591 45.900 2106.795 5.926 0.085 41.168 0.169 

Valid N (listwise) 832                         

 
 

Table 39: Descriptive Statistics for U.S. Forest Service Monitor Data (non-enforceable) Compared Against U.S. Forest Service 

Model Data 

Descriptive Statistics 

 N Range Minimum Maximum Sum Mean Std. 
Deviation 

Variance Skewness Kurtosis 

      Std. 
Error 

   Std. 
Error 

 Std. 
Error 

Model air concentration 
values 
 

231 6.037 0.000 6.037 45.271 0.196 0.047 0.718 0.515 5.666 0.160 36.916 0.319 

Ground monitor air 
concentration values 

178 422.090 2.860 424.950 10211.280 57.367 6.555 87.451 7647.640 2.751 0.182 7.482 0.362 

Valid N (listwise) 178                         
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Table 40: Descriptive Statistics for U.S. Environmental Protection Agency Monitor Data (enforceable) Compared Against U.S. 

Forest Service Model Data 

Descriptive 
Statistics 

 N Range Minimum Maximum Sum Mean Std. Deviation Variance Skewness Kurtosis 

      Std. Error    Std. Error  Std. Error 

Model air 
concentration 
values 
 

825 62.962 0.000 62.962 222.263 0.269 0.092 2.652 7.031 19.766 0.085 429.963 0.170 

Ground 
monitor air 
concentration 
values 

654 107.890 0.400 108.290 8026.850 12.273 0.513 13.132 172.441 3.452 0.096 15.966 0.191 

Valid N 
(listwise) 

654                         
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Table 41: Public Health Population Impacts in 14 Counties (Based on cumulative smoke 
impacts) 

 

  

                                                        
4 Two zip codes that had associated modeled air quality were not included in this table because there were no zip code 
population data associated with them; those two zip codes were 98229 and 99144.  

Zip Code
4
 Total Population (based on 

2010 U.S. Census 
Populations) 

Dates above 35 µg/m³ Maximum modeled 
PM2.5 value (µg/m³) 
above 35 µg/m³ 

98822 1,874 9/15 
9/16 
9/12 
9/3 
9/7 
9/2 
9/11 
9/5 
9/4 
9/1 

435.996 
346.961 
332.432 
323.826 
317.620 
252.697 
227.288 
188.272 
138.143 
115.757 

98856 2,182 8/17 
9/15 
9/1 
9/14 
8/25 
9/3 

167.680 
164.991 
138.195 
82.093 
62.615 
58.235 

98862 1,916 8/20 60.976 

98937 3,355 8/17 62.962 

98903 13,522 8/17 61.853 

98377 2,043 8/17 36.617 

98361 1,209 8/17 63.469 

98355 634 8/17 35.853 

98304 794 8/17 41.547 

 SUM: 27,529   
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Figure 14: 33-Day Air Quality Sum of Modeled Smoke Impacts  

 

 

Figure 15: Top 14 Counties (75th percentile) Impacted by Cumulative Wildfire Smoke 
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Figure 16: Hospital Locations and 14 Counties of Cumulative Smoke Impacts 

 

  



 

146 

 

Figure 17: Modeled PM2.5 Values (U.S. Forest Service model) Versus Actual Monitor PM2.5 Values (U.S. Forest Service and U.S. 

EPA from August 14 to September 15, 2006 Daily Averages 
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Figure 18: Modeled PM2.5 Values (U.S. Forest Service model) Versus Actual Monitor PM2.5 Values (U.S. Forest Service only) from 

August 14 to September 15, 2006 Daily Averages 
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Figure 19: Modeled PM2.5 Values (U.S. Forest Service model) Versus Actual Monitor PM2.5 Values (U.S. EPA) from August 14 to 

September 15, 2006 Daily Averages 
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Figure 20: Model versus Monitor PM2.5 Values for Conconully (Okanogan County, USFS) 

 

Figure 21: Model versus Monitor PM2.5 Values for Eight Mile (Okanogan County, USFS) 
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Figure 22: Model versus Monitor PM2.5 Values for Nespelem (Okanogan County, USFS) 

 

Figure 23: Model versus Monitor PM2.5 Values for Omak (Okanogan County, USFS) 
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Figure 24: Model versus Monitor PM2.5 Values for Twisp Forest (Okanogan County, EPA) 
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Figure 25: Model versus Monitor PM2.5 Values for Twisp Third Ave (Okanogan County, 

EPA) 
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Figure 26: Model versus Monitor PM2.5 Values for Winthrop (Okanogan County, EPA) 
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Chapter 5: Research Limitations 

Figure 27: Monitoring Locations in Washington State against Modeled Smoke Plume on 

August 14, 2006 
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Figure 28: Monitoring Stations in Zip Codes 98862 and 98856 Within Modeled Smoke Plume 

on August 14, 2006 
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Chapter 6:  Policy Implications 

 

Table 43: Per-unit Economic Value Used in U.S. EPA (1999) (Kochi, et al. 2010) 

 U.S. EPA value 
(US$ 2007)  

Dickie and Messman 
(2004)  

Mortality $7,600,000  

Hospital admissions   

     All respiratory (ICD-9 460-519) $10,971  

     All cardiovascular (ICD-9 393-429) $15,105  

Emergency department visits for asthma $308  

Respiratory illness and symptoms   

     Acute bronchitis (ICD-9 466) $71 $202 (adult), $380 (child) 

Asthma attack of moderate or worse asthma day (ICD-9 
493) 

$50  

Acute respiratory symptoms (ICD-9 460-465) $28 1-day symptom: $90 
(adult),  $190 (child) 

Upper respiratory symptoms (ICD-9 470-478—diseases of 
upper respiratory tract) 

$30  

Lower respiratory symptoms (Bronchitis = ICD-9 466,  
490, 491) 

$19  

Shortness of breath, chest tightness or wheeze $8 1-day shortness of breath: 
$190 (child) 

Work days loss $131  

Mid restricted-activity days $60  
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Chapter 7:  Conclusion 

 

Figure 29: NASA MODIS Satellite Image from September 19, 20126 

 

                                                        
6 Image obtained from: http://www.nasa.gov/mission_pages/fires/main/usa/20120920-
wash.html?fb_action_ids=3965989862366&fb_action_types=og.likes&fb_source=hovercard 

http://www.nasa.gov/mission_pages/fires/main/usa/20120920-wash.html?fb_action_ids=3965989862366&fb_action_types=og.likes&fb_source=hovercard
http://www.nasa.gov/mission_pages/fires/main/usa/20120920-wash.html?fb_action_ids=3965989862366&fb_action_types=og.likes&fb_source=hovercard

