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The level of human interaction with Unmanned Aerial Systems varies greatly from remotely 

piloted aircraft to fully autonomous systems.  In the latter end of the spectrum, the challenge lies 

in designing effective algorithms to dictate the behavior of the autonomous agents.  A swarm of 

autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight 

algorithms to negotiate environmental challenges it may encounter during the execution of its 

mission, which may include obstacles and chokepoints.   In this work, a simple algorithm is 

developed to allow a formation of autonomous vehicles to perform point to point navigation 

while avoiding obstacles and navigating through chokepoints.  Emphasis is placed on 

maintaining formation structures.  Rather than breaking formation and individually navigating 

around the obstacle or through the chokepoint, vehicles are required to assemble into 

appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the 

chokepoint, and reassemble into the original formation at the far side of the obstruction.  The 

algorithm receives vehicle and environmental properties as inputs and outputs trajectories for 

each vehicle from start to the desired ending location.  Simulation results show that the algorithm 

safely routes all vehicles past the obstruction while adhering to the aforementioned requirements.  

The formation adapts and successfully negotiates the obstacles and chokepoints in its path while 

maintaining proper vehicle separation. 
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Chapter 1.  Introduction. 

Interest in Unmanned Aerial Vehicle (UAV) research has significantly surged over the past 

decade.  Commonly referred to as drones, these systems provide many advantages over their 

manned counterparts, including reduced risk to human life and the ability to persist over a target 

area for extended periods of time limited only by the amount of fuel the can carry. The level of 

human interaction with UAVs varies greatly from remotely piloted aircraft (RPA), where a pilot 

directly controls the vehicle from a ground station, to fully autonomous systems, where a 

computer is in charge of deciding and executing most or all of the system’s functions while 

human interaction is limited to high level strategic decisions.  This work focuses on the latter end 

of the spectrum.  Autonomous UAVs require algorithms to dictate their behavior and determine 

how they interact with their environment as well as other manned and unmanned systems. 

UAVs can be used for a wide variety of missions, including Intelligence, Surveillance, and 

Reconnaissance (ISR), survey of natural disasters, and even armed combat.  In some cases, it 

proves advantageous to use multiple UAVs for a given mission.  For instance, instead of using 

one large, fast, expensive vehicle to search an area of interest, it may be more convenient to use 

several smaller, slower, less expensive vehicles to perform the same mission in the same amount 

of time.  The hindrance on mission success incurred by the risk of losing a vehicle is 

significantly reduced in latter case.  When multiple autonomous vehicles are used, collision 

avoidance algorithms are needed to ensure safety through proper vehicle separation.  It is often 

desirable to have a swarm of autonomous vehicles move within the environment in distinct, 

structured formations.  This in turn requires formation flight algorithms to prescribe overall 

formation behavior as well as vehicle-formation interactions.  The first part of this work provides 

a survey of some existing collision avoidance and formation flight algorithms. 

A formation of autonomous UAVs may encounter various environmental obstacles during 

the execution of its mission such as large buildings, mountainous regions, or heavily defended 

airspace that must be avoided.  It may also encounter chokepoints like canyon entrances or 

narrow openings in air defenses that require adjustments in formation structures to be safely 

negotiated.  The main goal of this work is to develop a simple algorithm to prescribe the strategy 

a formation of autonomous UAVs should follow to bifurcate around an obstacle or navigate 

through a chokepoint in its environment while maintaining formation structures whenever 

possible. 
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This thesis is organized as follows.  The main problem to be addressed in this work is 

presented in further detail in the next section.  Chapters 2 and 3 present a brief literature review 

of existing collision avoidance and formation flight algorithms, respectively.  Two collision 

avoidance algorithms (Decentralized Reactive Collision Avoidance (DRCA) and Artificial 

Potential Field (APF)) and two formation flight algorithms (Leader-Follower Approach and 

Formation Graph Theory Approach) are discussed in detail.  The proposed algorithm is presented 

in Chapter 4, which represents the bulk of this thesis.  Test setup and simulation results are 

presented in Chapter 5.  Finally, Chapter 6 presents the conclusion and recommendations for 

future improvements. 

 

1.1 Problem Definition 

The problem of navigating a swarm of UAVs through cluttered and dynamic environments has 

been studied before.  In their work with Boeing, Lum et al [1] used vector field navigation to 

synthesize an algorithm that successfully navigated a formation of small scale quadrotor UAVs 

through chokepoints and around static and moving obstacles.  This modular algorithm consisted 

of three different classes of controllers.  The Class 1 controller was in charge of obstacle 

avoidance and was used when the formation needed to bifurcate around an obstacle.  The Class 2 

controller was implemented to navigate the formation through a chokepoint.  Finally, the Class 3 

controller moved the formation in free space and maintained proper inter-vehicle separation.  

The basic idea was that if the formation encountered an obstacle or chokepoint, vehicles would 

break formation and navigate past the obstruction in a similar manner that fluid particles would; 

i.e. vehicles would ride the streamlines created by fluid flow around the obstacle or through the 

chokepoint.  The algorithm was tested in a high fidelity simulation environment before small-

scale quadrotor UAVs were used to validate the algorithm in the Boeing Vehicle Swarm 

Technology Laboratory (VSTL). 

The present work deals with tackling the problem of formation bifurcation around an 

obstacle and chokepoint navigation from a different perspective.  It is desired to design an 

algorithm that provides the logic a formation should follow to subdivide into appropriately 

sized/shaped sub-formations, navigate around the obstacle or through the chokepoint, and merge 

into the original formation at the far end.  These requirements must be met while maintaining 

proper inter-vehicle separation. 
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The algorithm is be designed to work in two dimensions, with the justification that a two 

dimensional domain is more restrictive than a three dimensional domain.  With some 

modifications, the algorithm would in theory be adaptable to three dimensions.  Furthermore, in 

a two dimensional setting, the algorithm could be used for autonomous surface vehicles.  

 

1.2 Assumptions  

Environmental factors like weather and wind are ignored, and it is assumed that each 

vehicle’s position is known exactly at all times.  It is further assumed that the position of the 

obstacle is known and that the obstacle can be modeled as an ellipse having length, width, and 

orientation.  The algorithm is considered to be a high level controller, with low level 

maneuvering of individual vehicles assumed to be handled by onboard inner-loop controllers.  

As such, the algorithm’s main outputs are waypoint commands to each vehicle, and the vehicle’s 

inner-loop controller is assumed to follow said commands exactly.   
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Chapter 2. Review of Collision Avoidance Algorithms 

Collision avoidance algorithms are necessary for a group of autonomous UAVs to safely interact 

with each other and with the environment.  The main goal of any collision avoidance algorithm 

is to allow vehicles to follow their desired controllers while maintaining safety through proper 

vehicle separation.  Collision avoidance strategies can be grouped into three main categories: 

optimized, prescribed, and force fields [2], [3].  Optimized approaches make use of optimization 

schemes to minimize some cost function in order to find the best possible solution to the 

collision avoidance problem.  Prescribed approaches utilize discrete controllers combined with 

vehicle continuous dynamics to have vehicles follow some prescribed protocol such as executing 

right hand turns when in conflict with oncoming vehicles.  Force field approaches model 

vehicles as charged particles and use feedback techniques to compute appropriate controls.  

Following is an overview of two well-known collision avoidance algorithms from the literature, 

as well as a brief discussion of their applicability to the present work. 

 

2.1 Decentralized Reactive Collision Avoidance 

2.1.1 Overview 

The Decentralized Reactive Collision Avoidance (DRCA) algorithm is based on the collision 

cones concept [4] and consists of two main parts: an optimization-based deconfliction maneuver 

followed by a force field approach for long term deconfliction maintenance [3].  The algorithm 

defines a conflict as a situation in which, if two vehicles continue on their current path with 

constant velocity they will enter a collision sometime in the future.  A collision is defined as a 

situation in which two vehicles come within some minimum distance of each other.  Being partly 

an optimized approach, this algorithm guarantees the existence of solutions given certain 

constraints on the initial conditions.  The DRCA algorithm is distributed by not decentralized 

and requires all-to-all communication [3].  Furthermore, it is assumed that vehicles can be 

modeled as point masses.  The overall approach is depicted below. 
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Figure 2.1  DRCA algorithm flow chart [3] 

If the vehicles are initially sufficiently separated, they are allowed to follow their desired 

controller.  If not, then the algorithm looks at whether or not the vehicles are in a conflict 

according to the aforementioned definition.  If no conflict is detected, then the deconfliction 

maintenance controller continues to keep the vehicles out of conflict.  If a conflict is detected, 

then the deconfliction maneuver is executed to bring the vehicles out of conflict. 

 

2.1.2 Collision Cones 

The DRCA algorithm makes use of the collision cones concept, which is a set of relative 

velocities between two vehicles that will produce a collision in the absence of inputs (see Figure 

2).  The angle   between the relative position vector  ̃   and the relative velocity vector  ̃   being 

greater than or equal to the angle   between the relative position vector and the end of the 

collision cone is a necessary and sufficient condition to assure that there is no conflict, the proof 

of which can be found in [4]. 
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Figure 2.2.  The collision cone is defined as the area between the two dotted lines.  If the relative velocity vector v lies 

within this area, the vehicles are said to be in conflict [3] 

 

2.1.3 Algorithm 

The DRCA Algorithm provides collision avoidance guarantees based on three theorems. 

1. The deconfliction maintenance controller is guaranteed to keep vehicles conflict free if 

the group of vehicles starts conflict free. 

2. The deconfliction maneuver controller is guaranteed to steer vehicles out of conflict and 

prevent them from colliding during the maneuver. 

3. There needs to be a conservative separation criterion to ensure the deconfliction 

maneuver will bring the vehicles to a conflict free state 

Note:  Proofs are omitted for brevity but can be found in [3]. 

The first step of DRCA is to decide when a vehicle needs to perform its deconfliction 

maneuver.  To do this,   is defined to be the set of vehicles performing a deconfliction maneuver 

or in the deconfliction maintenance phase.  It is assumed that each vehicle in   is able to 

broadcast its position and velocity to all other vehicles in  .  A vehicle is allowed to follow its 

controller until it comes into conflict with another vehicle.  When the vehicle enters into a 

conflict, it becomes part of   and executes a deconfliction maneuver. 

The deconfliction maneuver entails choosing a conflict-free velocity vector based on the 

collision cone and quickly accelerating towards it.  The vehicle broadcasts its desired conflict-

free velocity vector while executing this maneuver so as to ensure safety during the maneuver 
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and after the new velocity is established.  Once the vehicle is out of conflict with all other 

vehicles in  , it switches to deconfliction maintenance. 

The deconfliction maintenance phase entails calculating how far a given vehicle’s velocity 

vector is from causing a conflict based on the collision cone [3].  This measure is then used to 

compute how much control can be applied in each direction before a conflict arises.  The 

algorithm then manages how much input is applied in each direction so as to stay away from 

these control limits that would cause a conflict. 

 

2.1.4 Applicability 

When vehicles move in formation, their velocities are nearly identical.  According to the 

definitions prescribed by the DRCA algorithm, each vehicle’s velocity vector is on the verge of 

conflict with every other vehicle’s velocity vector.  The DRCA algorithm will therefore 

command each vehicle’s velocity vector to diverge from every other vehicle’s velocity vector, 

causing the formation to break up.  As a result, the DRCA requires extensive modification if it is 

to be applied to each vehicle individually for the purpose of formation maintenance and 

navigation.  However, if the formation is treated as a single cohesive unit, the DRCA algorithm 

could be implemented between the formation and a static or moving obstacle in the environment. 

 

2.2 Artificial Potential Fields 

2.2.1 Overview 

Collision avoidance based on artificial potential fields is a reactive approach that takes its 

inspiration from physics.  Vehicles are modeled as charged particles, with equally charged 

particles repelling each other and differently charged particles attracting each other [5].  As such, 

vehicles are arbitrarily assigned negative charges, while their corresponding desired waypoints 

take on positive charges.  Force vectors computed based on these charges are then used to 

calculate each vehicle’s direction of travel. 
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2.2.2 Calculating Force Vectors 

The key step in developing a potential field algorithm is to define a way to calculate the force 

vectors.  There are various ways to implement a force field algorithm, and the level of 

complexity depends on many variables such as the aircraft model used as well as the required 

level of fidelity.  The presently discussed application is a relatively simple implementation that 

was developed for fixed wing aircraft. 

First, some arbitrary parameters such as an oval shaped ‘safety’ zone around each aircraft as 

well as distance traveled in one second are used to define a distance at which the repulsive force 

from another aircraft becomes negligible.  This distance is then used in conjunction with other 

parameters such as negative charge constants from other vehicles to calculate the repulsive force 

emitted by other vehicles.  These repulsive forces are then scaled based on relative angles 

between vehicles to calculate the actual repulsive forces felt by the vehicle in question.  The 

attractive force felt from the vehicle’s desired waypoint is taken as a constant.  Finally, the 

attractive force is added to all the repulsive forces from other vehicles to calculate the total force 

felt by a given vehicle, which determines its direction of travel.  Calculation details and 

equations can be found in [5], [6]. 

 

2.2.3 Algorithm 

The main complexity in force-field based collision avoidance lies in how the repulsive and 

attractive forces are calculated.  Once these forces are added into a single force vector for each 

aircraft, the algorithm to execute the collision avoidance is quite simple.  If the force vector lies 

outside the maximum turn rate of the particular aircraft model used, then the algorithm 

commands the vehicle to turn as quickly as it can towards the force vector direction.  If the force 

vector lies within the turn rate limit of the vehicle, then the algorithm commands the vehicle to 

turn to match the prescribed force vector angle exactly. 

 

2.2.4 Applicability 

A simple implementation of force field based collision avoidance can be used on each vehicle within 

a formation to maintain proper inter-vehicle separation.  However, due to their reactive nature, 

artificial potential field algorithms are not as effective for high level formation obstacle avoidance. 
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Chapter 3.  Review of Formation Flight Algorithms 

Formation flight algorithms are necessary for a group of autonomous UAVs to safely navigate its 

environment in a structured formation.  The main goal of any formation flight algorithm is to 

dictate the rules and strategies individual vehicles should follow as they perform various tasks in 

close formation to other vehicles while maintaining proper inter-vehicle separation.  Inherent in 

any formation flight algorithm is the need for collision avoidance guarantees.  This can often be 

accomplished with various tools from the literature such as a potential field approach like the one 

discussed in the preceding section.  Following is an overview of two formation flight algorithms, 

as well as a brief discussion of their applicability to the present work. 

 

3.1 Leader-Follower Approach 

3.1.1 Overview 

This approach addresses the UAV formation flight problem from a leader-follower perspective 

using optimal control theory, where a designated formation leader receives and follows 

formation trajectory commands and the followers derive their trajectories relative to the leader 

[7].  Vehicles are modeled as points of unit mass with decoupled, second order dynamics.  The 

model is purely kinematic with direct control of acceleration in each of the three dimensions.  

Computed relative to the leader, each follower’s position is determined based on current 

formation needs and environmental factors such as spatial restrictions. 

 

3.1.2 Simultaneous Tracking in Finite Time 

The algorithm uses an optimal control approach to track multiple trajectories in finite time.  

Given twice differentiable set of desired trajectories, the algorithm defines an error signal in each 

of the states and uses this information to compute the control law to drive the system to track the 

desired trajectory [7]. 

 

3.1.3 Applicability 

The overall formation strategy used in the present work is a simple implementation of the leader-

follower idea.  High level formation maneuvering is prescribed by one part of the algorithm, 
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which decides how the formation behaves as it encounters an obstacle (i.e. divide into sub-

formations).  The paths to be followed by the other vehicles in the formation are then derived 

relative to the leader.  These desired trajectories can then be made twice differentiable via 

filtering and applied to a given aircraft model’s inverse dynamics to derive the appropriate 

controls using optimal control theory. 

 

3.2 Control Graph Theory 

3.2.1 Overview 

Control graph theory prescribes and enumerates all possible control graphs (or formation 

representations) and coordinates the transition between any two formation configurations for a 

given set of nonholonomic vehicles [8], [9].  Formations are modeled as triples describing the 

leader, the shape, and the control graph.  This approach is a tool that can be useful in the 

development of a formation flight algorithm, for it provides a framework to represent and model 

a formation of autonomous vehicles mathematically using simple matrix manipulation. 

 

3.2.2 Modeling Formations 

Groups of mobile robots can be described by a triple (     ), where   is a group variable 

representing the motion of the leader,   is a set of shape variables which dictates the position of 

the followers relative to the leader, and   is a control graph describing the strategy or behavior 

that the members of the formation should follow.  Figure 3 below shows an example of a control 

graph, presented in both visual (left) and graphical or matrix (right) form. 

 

Figure 3.1.  Control graph describing one possible formation configuration for a group of six vehicles [8] 

The absence of 1’s in the first column indicates that the leader (R1) derives its control from no 

other vehicle in the formation.  The 1 in the first row of the second column indicates that R2 

derives its control relative to R1 only, while the 1’s in the first and second rows of the third 
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column implies that R3 derives its control relative to R1 and R2.  The relative interactions 

between robots can be arbitrarily chosen to vary the relative spacing and angles.  This allows for 

simple yet systematic formation changes as shown in Figure 4. 

 

Figure 3.2.  Formation change using Control Graph Theory [9] 
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Chapter 4.  Algorithm Development 

The main goal of this algorithm is to provide the strategy that a formation of autonomous 

vehicles should follow as it transverses the space between two points while avoiding an obstacle 

or navigating through a chokepoint along the way.  The overall scenario is displayed in Figure 5.  

The obstacle is modeled as an ellipse having a major axis, minor axis, and orientation.  The 

algorithm intakes vehicle properties such as number of vehicles, desired speed, starting and 

desired ending formation leader location, as well as obstacle properties such as location, shape, 

and side clearances (represented by artificial horizontal barriers), and outputs the trajectories that 

each vehicle should follow as the formation bifurcates around the obstacle with the requirement 

that each subgroup of vehicles should assemble into appropriately sized/shaped sub-formations. 

 

Figure 4.1.  Algorithm overview scenario 

In a real world scenario, the formation’s starting and ending locations can take any values, 

producing any value for the heading the formation travels in.  For simplicity, this algorithm 

assumes that the real world scenario has undergone a coordinate transformation so as to orient 

the path of travel from south to north as depicted, with the justification that the desired vehicle 

trajectories outputted by this algorithm can then be easily transformed back to the real world 

scenario using the inverse coordinate transformation.  In the absence of any obstacles, the 

formation should follow a straight path from the desired starting to the desired ending location.  

The obstacle may be exactly aligned with or partially obstructing the formation’s path.  The 

algorithm should decide whether to route the entire formation around the obstacle or split it into 
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smaller sub-formations.  Spacing constraints on both sides of the obstacle are included to allow 

for the algorithm to handle other environmental obstacles such as chokepoints (by closing off 

one path) as depicted in Figure 6. The artificially imposed barriers could also represent the 

beginning of restricted airspace or other areas that must be avoided.  The algorithm must 

therefore consider lateral spacing constraints in addition to the obstacle’s relative positioning in 

deciding how to split the formation.   

 

Figure 4.2.  Chokepoint scenario 

 The algorithm is broken down into four phases, each of which handles a portion of the 

maneuvering from starting to ending location.  During Phase 1, the formation travels in a straight 

path for an arbitrary amount of time, simulating the time period before the formation receives 

information about the presence of the obstacle.  During Phase 2, the algorithm decides whether 

or how to split the formation and directs the formation(s) to the appropriate lateral positioning 

alongside the obstacle and parallel to the formation’s original heading (vertical).  In Phase 3, the 

formation or sub-formations travel alongside and clear the obstacle. Finally, in Phase 4, the 

formations converge on the desired ending location and morph into the original formation.  All 

phases are depicted in Figure 7.  Phases 1 and 3 are straight line trajectories while Phases 2 and 4 

are sinusoidal.  The remainder of this section describes how the algorithm executes each phase. 
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Figure 4.3.  Overview of phases of algorithm 

4.1 Phase 1 

During Phase 1 the formation moves in a straight path toward its goal until it receives 

information about an obstacle in its way.  This information is assumed to come from sensors on 

board or other external source.  The algorithm assumes full knowledge of the obstacle’s position 

and geometry and is not concerned with how this information is obtained.  First, the leader is 

commanded to move forward an arbitrary distance at constant velocity.  The algorithm then 

computes each vehicle’s desired trajectory relative to the leader using a database of formation 

configurations based on the number of vehicles in the simulation and the available spacing.  As 

Figure 8 shows, formations are always symmetric and have a delta shaped front end whenever 

possible.  Separation between the vehicles’ centroids is three times the vehicle radius and is 

imposed by multiplying the vehicle radius with a dummy variable                . 

 

Figure 4.4.  Sampling of formation configurations 
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4.2 Phase 2 

During Phase 2, the formation prepares to clear the obstacle by changing its shape, lining up to 

either side of the obstacle, splitting into smaller sub-formations, or a combination thereof.  

Factors such as obstacle positioning and relative clearance on either side of the obstacle are 

considered.   

 

4.2.1 Determining Bifurcation Behavior 

The first step in executing Phase 2 is deciding how many vehicles to send to each side of the 

obstacle.  This is done by evaluating a series of conditional statements involving the obstacle’s 

position, side clearances, and number of vehicles in the simulation. 

 First, some useful parameters are computed to be compared to the prescribed clearance on 

either side of the obstacle to aid in the execution of the conditional statements to follow.  The 

variable             , the minimum distance that any vehicle may be from the obstacle, is 

defined to be equal to the vehicle radius.  Next,          is defined as the minimum clearance 

required for a single vehicle to pass through and is calculated as follows 

          (                   )       (1) 

Similarly, the minimum clearances required for two, three, and four vehicles to pass through 

side by side are calculated.  These measures aid in the algorithm’s decision process to determine 

how/if to split up the formation. 

             (               )                   (2) 

          [      (               )              ]   (3) 

                                 (                   )  (4) 

The starting formation’s width is then calculated based on the number of vehicles used and 

the formation catalog from Figure 8.  If the left clearance is smaller than and the right clearance 

is at least as large as         , then all vehicles are routed to the right side of the obstacle.  On 

the other hand, if the right clearance is smaller than and the left clearance is at least as large as 

        , all vehicles are routed to the obstacle’s left side.  If the clearances on both sides of the 

obstacle are smaller than this minimum single vehicle spacing requirement, then the algorithm 

commands the formation to stop at the end of Phase 1.  If none of these conditions are met, 

further conditional statements are imposed.   
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If the obstacle’s x-position places it to the left of the formation centroid at the end of Phase 

1, the following protocol is used.  If the clearance on the right side is at least as large as        

or it is smaller than        provided that the left clearance is also smaller than       , then 

the algorithm commands all vehicles that at the end of Phase 1 are lined up with or to the right of 

the obstacle’s centroid to move to right of the obstacle.  The remaining vehicles move left.  

Failure to meet these requirements indicates that the right clearance only allows vehicles to move 

through in a single file (inefficient due to dramatic formation changes required) and that the left 

clearance is at least as large as       .   

The obstacle’s positioning (left of the formation) would favor sending more vehicles to the 

right; however, clearance constraints (large clearance of the left, small on the right) would favor 

sending more vehicles to the left.  Because moving a large number of vehicles in a single file is 

inefficient, a compromise must be reached.  First, the algorithm counts how many vehicles are 

lined up with or to the right of the obstacle’s centroid.  Clearly, due to the geometry of this 

situation more vehicles are lined up with or to the right of the obstacle centroid.  Since it is 

desired to avoid the inefficient situation in which a large number of vehicles move in single file, 

the algorithm routes one half of the counted vehicles to the right, sending the remainder to the 

left. 

If the obstacle’s x-position places it to the right of the formation’s centroid at the end of 

Phase 1, the exact opposite of the aforementioned protocol is employed.  In the case where the 

obstacle centroid lies directly in the path of the formation, further conditional statements are 

imposed. 

If the either the right or left clearances are greater than the formation’s width, then the 

following logic is employed.  If the clearance on the right side is at least as large as        or it 

is smaller than        provided that the left clearance is also smaller than       , then 

vehicles lined up to the right of the obstacle centroid are routed right, and vehicles that are 

initially left of the centroid are routed left.  Because formations are triangular in shape whenever 

possible and symmetric, in the case where the obstacle and formation centroids are in line there 

will always be one or more vehicles that are exactly aligned with the obstacle’s centroid.  These 

vehicles are split evenly during the bifurcation, and the right is given the additional vehicle in 

case of an odd number.  If the right clearance is less than and the left clearance is greater than 
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       (failure to meet previous conditional statement), then the additional vehicle is assigned 

to the left side when an odd number of vehicles are aligned with the obstacle’s centroid.  

In the case where neither the right nor left clearances are greater than the formation’s width, 

the following protocol is used.  The number of vehicles directed to each side is proportioned 

according to the relative sizing of the clearances; i.e. if the left clearance is 30% greater than the 

right clearance, vehicles are given assignments such that 30% more vehicles will end up 

avoiding the obstacle around its left side, rounded to the nearest vehicle.  This procedure is not 

also used in the case where side clearances are large (as discussed in preceding paragraph) 

because in that case obstacle positioning proves more relevant than clearance measures.  The 

entire decision process to determine how many vehicles to send to each side of the obstacle is 

depicted in a flow chart in Figure A1 of Appendix A. 

At this point, the algorithm has decided how many vehicles will go to each side of the 

obstacle.  The next step is to determine vehicle ending locations at the end of phase 2. 

 

4.2.2 Determining Vehicles’ Locations at End of Phase 2 

In order to determine each vehicle’s trajectory during Phase 2, the algorithm needs to have 

knowledge of the vehicles’ starting locations and desired ending locations at the end of this 

phase.  These starting and ending coordinates are then fed to a different part of the algorithm 

which computes smooth sinusoidal trajectories for each vehicle (to be discussed later).  The 

ending locations depend on a combination of factors as the following process will show.  

Because vehicles’ locations are computed relative to a chosen leader, the algorithm must first 

determine each sub-formation’s leader’s desired location and the end of Phase 2.  These ending 

locations depend on the obstacle’s positioning, available side clearances, number of vehicles 

assigned to each side of the obstacle, and corresponding formation configuration derived from all 

of the above. 

 The first immediate task for the algorithm at this point is to compute the x and y coordinates 

of each sub-formation leader’s ending locations at the end of Phase 2.   

In the case where the algorithm has decided that all vehicles should be routed to the left of 

the obstacle, the following logic is used.  First, the left formation’s width is calculated based on 

the number of vehicles routed left (in this case all), the left clearance, and the appropriate 

formation shape.  The formation shape is changed as required to ensure it fits through the left 
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opening using a modified version of the same function used to compute the relative position of 

vehicles in the original formation.  The way the algorithm is set up, the starting formation 

location and the goal location are aligned vertically; i.e. have the same x-coordinates.  If the 

formation’s right edge is left of the obstacle’s left edge and the formation’s left edge is right of 

the left barrier’s end, then the formation leader’s ending x-coordinate for Phase 2 is the same as 

the goal’s x-coordinate as shown in Figure 9.  The ending x-coordinate is depicted as a line 

because the y-coordinate is later computed using an iterative process (to be later discussed) 

which ensures the formation covers the least possible distance during the avoidance maneuver.   

 

Figure 4.5.  Formation leader's x-coordinate at end of Phase 2 

Still considering the case where all vehicles are routed left, if the obstacle’s left edge is left 

of the formation’s right edge and the left clearance is large enough to not necessitate a formation 

change, then the leader’s x-coordinate at the end of Phase 2 is defined such that the formation 

will pass through the left opening as close to the obstacle’s left edge as possible (but never less 

than the minimum allowed distance             ).  Figure 10 depicts this scenario. 
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Figure 4.6.  Formation leader's x-coordinate during left avoidance maneuver 

 On the other extreme, if the left barrier end is right of the formation’s left edge, the 

algorithm defines the formation leader’s x-coordinate at the end of Phase 2 such that the 

formation travels the least possible distance to the goal as shown in Figure 11. 

 

Figure 4.7.  Formation leader's x-coordinate to minimize travel distance 

 Finally, if the left clearance is less than or equal to the formation’s width, the algorithm 

defines the leader’s x-coordinate exactly in the middle of the opening regardless of obstacle 

positioning as shown in Figure 12. 
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Figure 4.8.  Formation leader's x-coordinate at end of Phase 2 when left opening is less than or equal to the original 

formation's width 

 With the formation leader’s x-coordinate at the end of Phase 2 defined, the algorithm then 

computes the leader’s y-coordinate.  The simplest way to ensure the formation clears the obstacle 

safely is to define the y-coordinate such that the formation leader’s position at the end of Phase 2 

is aligned horizontally with the obstacle’s bottom edge as in Figure 11.   

 

Figure 4.9.  Simplest way to define leader's y-coordinate for safe avoidance 

However, given the possible complexity of the obstacle’s geometry, a more intricate 

approach should be used to ensure the vehicles follow the shortest path around the obstacle from 

start to goal.  Starting with the case shown in Figure 13, the algorithm computes each vehicle’s 

sinusoidal trajectory from starting location to the Phase 2 ending locations shown in Figure 13.  

As long as no vehicle’s trajectory comes within              of the obstacle’s edge, the 

algorithm moves the leader’s y-position forward by an arbitrarily small amount and repeats this 

procedure.  The other vehicle’s positions are recomputed relative to the leader’s new position 
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and the sinusoidal trajectories are recomputed.  Once any vehicle’s trajectory breaks this 

minimum separation requirement with the obstacle’s edge, the algorithm chooses the last safe 

leader’s y-coordinate as the optimal value.  Figure 14 depicts this process. 

 

Figure 4.10.  Result of iteration process to produce furthest possible sub-formation leader ending y-coordinate 

If the optimal y-coordinate according to the presented scheme is such that the southernmost 

vehicle in the formation ends up being north of the obstacle’s upper edge at the end of Phase 2, 

the algorithm chooses the leader’s y-coordinate at the end of Phase 2 such that the southernmost 

vehicle is aligned with the obstacle’s upper edge.  This ensures the vehicles can begin their 

convergence maneuver onto the goal as early as possible.  In this case, the algorithm skips Phase 

3 and goes immediately into Phase 4. 

    In the case where the algorithm has decided that all vehicles should be routed to the right 

of the obstacle, a similar approach as the one presented above is used with all conditions 

reversed and all equivalent values mirrored across the vertical axis.  The last case to consider is 

where the formation splits into two smaller formations as it bifurcates around the obstacle.  In 

this case the algorithm also follows the same overall approach treating each side of the problem 

as individual entities with their corresponding number of vehicles and formation shapes, given 

the problem geometry.  

 At this point, the algorithm knows each sub-formation leader’s location at the end of Phase 2 

and computes each vehicle’s ending location relative to the leaders.  It also knows the number of 

vehicles assigned to each side of the obstacle, but lacks knowledge of which vehicles should go 

to which side.  The next step is to assign specific vehicles to each side based on the total number 
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of vehicles and the outcome of the decision process in section 4.2.1, and to compute their 

trajectories during Phase 2. 

4.2.3 Computing Trajectories during Phase 2 

At this point the algorithm has knowledge of all vehicles’ starting locations in the original 

formation, the number of vehicles assigned to each side of the obstacle, as well as each desired 

sub-formation configuration and position at the end of Phase 2.  The next step is to decide which 

vehicles to send to each side.  Once these assignments are made, the trajectory computation 

phase reduces down to inputting each vehicle’s starting as well as its corresponding location at 

the end of Phase 2 (as previously computed) into a function that defines a sinusoidal trajectory 

between those two points.   

The assignment process is done in a systematic way and is hard coded into an extensive file 

containing a large number of conditional statements that cover all possibilities for assignments 

given the problem geometry.  As an example, if the algorithm decides a formation of 10 vehicles 

should be split such that three vehicles go right and the right clearance is large enough for a delta 

formation of three to pass through, the algorithm commands the three right-most vehicles in the 

original formation to break off.  Based on their positions in the original formation, these vehicles 

are assigned positions in the smaller sub-formation such that their individual sinusoidal 

trajectories will not intercept one another during the maneuver.  Once all trajectories are defined 

for Phase 2, the algorithm proceeds to defining trajectories for Phase 3 if necessary. 

 

4.3 Phase 3 

During Phase 3, the vehicles move straight past and parallel to the obstacle’s vertical axis.  This 

phase only exists for a given side if that sub-formation’s southernmost vehicle is south of the 

obstacle’s upper edge at the end of Phase 2.  In this case, the algorithm commands the sub-

formation forward until the southernmost vehicle is aligned with the obstacle’s northernmost 

point.  The algorithm then enters the final phase as it commands the sub-formations to converge 

onto the goal and reform into a single unit. 
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4.4 Phase 4 

In this phase, the algorithm reverses the process done during Phase 2.  It assigns each vehicle in 

the sub-formations to their original positions in the initial formation.  Taking each vehicle’s 

position at the end of Phase 3 and their supposed positions in the final formation, the algorithm 

computes smooth sinusoidal trajectories for each vehicle.  These trajectories do not intercept and 

keep the vehicles out of conflict. 
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Chapter 5.  Test Setup and Results 

The algorithm is synthesized and runs on Matlab.  It takes information about the vehicles and the 

environment as inputs and outputs the trajectories each vehicle should follow to move in 

structured formations from a starting to a goal location while avoiding an obstacle given possible 

side spacing constraints.  Being parameterized by time, the trajectories can then be used in 

conjunction with a specific vehicle model’s inverse dynamics to produce appropriate inputs to 

drive the system to track the trajectories. 

For testing purposes, several scenarios were chosen to demonstrate the algorithm’s effectiveness 

at accomplishing the task it is designed for.  In the proceeding section, these scenarios are shown 

along with corresponding discussions.  

1. The formation is to encounter an obstacle head on, split into approximately equally sized 

sub-formations as it bifurcates around the obstacle, and reform at the far end.  

2. The formation is to encounter an obstacle at an angle, recognize the need to route the 

entire or part of the formation around the obstacle, and reach a target point at the far end 

of the obstacle. 

3. The formation is to encounter an obstacle head on or at an angle, recognize spacing 

constraints on either side of the obstacle, divide into appropriately sized/shaped sub-

formations as it bifurcations around the obstacle, and reform at the far end. 

4. A chokepoint is placed in the formation’s path both head-on and offset to one side, 

requiring the formation to change its shape to successfully navigate through it.   
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5.1 Head-on Obstacle in Free Space 

The first scenario has a formation of 10 vehicles encountering a circular obstacle directly in its 

path with no lateral spacing constraints as depicted in Figure 15 

 

Figure 5.1.  Formation of 10 vehicles to avoid circular obstacle in path of travel 

 In this case, the algorithm’s logic dictates that the formation split up into equally sized sub-

formations as it bifurcates around the obstacle.  Figure 16 shows that the formation behaves as 

expected; it sub-divides into two 5-vehicle formations, transverses the obstacle parallel to its 

longitudinal axis, and reforms at the end.  At the end of the maneuver, each vehicle assumes its 

original position in the larger formation. 

 

Figure 5.2.  Trajectories followed by 10 vehicles as they bifurcate around obstacle 
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Figure 17 below shows the minimum distance that any vehicle comes from any other vehicle 

at any point during the maneuver.  Notice that no vehicle’s centroid ever comes within         

of any other vehicle’s centroid (a condition which would indicate a collision).   

 

Figure 5.3.  Minimum vehicle separation during 10 vehicle avoidance maneuver 

During Phase 1, all vehicles move in formation towards the goal.  Their separation remains 

constant as they stay in formation during this phase.  This is denoted by the horizontal line on the 

initial portion of the plot in Figure 17.  In Phase 2, vehicles break formation as they move to their 

assigned locations on either side of the obstacle and begin forming up in their respective sub-

formations.  During this phase, some vehicles may speed up while others may slow down as they 

attempt to establish their positions in the sub-formations at the same point in time.  As a result, 

minimum inter-vehicle separation decreases but stays far from reaching the collision threshold of 

twice the vehicle radius.   

As vehicles reform into their smaller sub-formations, the minimum separation distance once 

again regains its original constant value, indicating their relative velocities have stabilized to zero 

and the vehicles are moving in rigid formations past the obstacle.  Analogous but opposite to the 

behavior in Phase 2, during Phase 4 vehicles once again come closer to one another as they 

accelerate toward their original positions in the initial formation and attempt to reach their goals 

simultaneously. 
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5.2 Offset Obstacle in Free Space 

 The second scenario shows a formation of 10 vehicles encountering an elliptical obstacle 

partially in the formation’s path with no lateral spacing constraints as depicted in Figure 18 

 

Figure 5.4. Formation of 10 vehicles to avoid elliptical obstacle partially in its path 

 Consistent with the bifurcation behavior described in the algorithm development, in this case 

vehicles initially aligned left of the obstacle’s centroid are to diverge to the left while those lined 

up to the right of the obstacle’s centroid are supposed to move right to avoid the obstacle.  This 

ensures vehicles cover the least possible distance during the maneuver.  Figure 19 shows that the 

formation behaves as expected, with each vehicle assuming a position on the smaller sub-

formation which keeps its trajectory out of conflict with other vehicles during the maneuver. 

 

Figure 5.5. Trajectories followed by 10 vehicles as they bifurcate around elliptical obstacle 
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Figure 20 shows that as expected, no vehicle’s centroid ever comes within         of any 

other vehicle’s centroid at any time during the simulation.   

 

Figure 5.6. Minimum vehicle separation during 10 vehicle avoidance maneuver  

The minimum separation between vehicles behaves in a similar fashion as previously 

discussed.  During Phases 1 and 3, minimum separation remains constant and corresponds to the 

pre-determined separation distance imposed by the algorithm as vehicles move in formation 

during these phases.  Minimum separation approaches but stays far from collision distance when 

vehicles split up and reform into the appropriate formation configurations based on the present 

phase. 

 

5.3 Head-on Obstacle with Spatial Restrictions 

The next scenario used to test the algorithm involves a formation of 12 vehicles encountering an 

obstacle directly in its path as shown in Figure 21.  This time, however, spacing restrictions have 

been included to evaluate the algorithm’s behavior under this more restrictive environment. 
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Figure 5.7.  Formation of 12 vehicles avoiding elliptical obstacle head-on with spacing constraints 

 In the absence of the spacing constraints, the algorithm would evenly divide the formation.  

However, due to the larger opening on the right side of the obstacle, the algorithm proportionally 

divides the formation according to the relative spacing available.  The spacing available on the 

left requires vehicles to form up in single file, while vehicles on the right assemble into as wide a 

formation as possible given the spacing restriction.  Figure 22 below shows that under the same 

scenario as that depicted above, a larger right opening allows the algorithm to assemble the right 

sub-formation into a wider diamond shape for more time efficient maneuvering.   

Furthermore, due to a larger right to left spacing ratio, Figure 22 shows that the algorithm 

routes an extra vehicle to the right of the obstacle.  However, as previously discussed, in the case 

where the space available on either side is larger than the width of the original formation, the 

algorithm does not follow this relative proportioning protocol.  In the present case, unrestricted 

right spacing coupled with such a routing logic would produce a situation in which all vehicles 

are routed to the right of the obstacle, which is a less efficient than sending some vehicles 

through the small opening on the left of the obstacle given the obstacle’s central positioning. 



30 

 

 

Figure 5.8.  Effect of larger right to left spacing ratio on formation bifurcation behavior 

Figure 23 shows the minimum distance that any vehicle comes from any other vehicle at any 

point during the simulations shown in Figures 21 and 22, respectively.  Note the typical graph 

shapes consistent with the algorithm’s behavior previously explained.  The approximate 

symmetries displayed by the dynamic portions of the graph at the beginning and end of the 

maneuver is a testament to the fact that Phase 4 acts very much like a mirror or reverse version 

of Phase 2 as vehicles move to regain their original positions in the larger formation. 

  

Figure 5.9.  Minimum vehicle separations during 12 vehicle obstacle avoidance for smaller (left) and larger (right) 

available right spacing 

 Due to the larger number of vehicles used coupled with the spacing restrictions, Figure 23 

shows that the minimum distances that any vehicle gets from any other vehicle during these 

simulations come very close to the minimum allowed distance of        .  Though not by 

much, the minimum distance during the second simulation is greater than the first.  This seems 
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reasonable given that the total available clearance is larger for the latter, allowing the right sub-

formation to assemble into a wider diamond shape.   

An argument could be made that vehicles effectively collide during the above simulations.  

However this could be easily remedied by conservatively modeling vehicles’ radii as their actual 

radii plus some fixed constant amount.  Assuming that this is not feasible, another way to 

conservatively implement the algorithm to ensure safety would be to make the standard in-

formation vehicle separation larger.  Recall that the variable                 is used as an 

arbitrary variable by which the vehicle radius is multiplied to define the separation distance for 

vehicles in a formation.  Figure 24 shows the effect of increasing in-formation vehicle separation 

by setting                .  Notice that the minimum separation distances during these 

simulations remain well off the collision distance. 

 

Figure 5.10.  Effect of larger in-formation vehicle separation on minimum vehicle separations during 12 vehicle obstacle 

avoidance for smaller (left) and larger (right) available right spacing 

 

5.4 Offset Obstacle with Spatial Restrictions 

Next, let us consider a scenario in which the algorithm must carefully weigh the obstacle’s 

positioning versus the spatial constraints to decide how to divide the formation.  Figure 25 shows 

a formation of 14 vehicles avoiding an obstacle partially in its path with complex lateral spacing 

constraints.  In-formation vehicle separation factor has been kept at                . The 

obstacle’s location (left of the formation’s centroid) favors routing more vehicles to the right of 

the obstacle, while the larger space on the obstacle’s left favors routing more vehicles to the 
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obstacle’s left side.  Following the logic and conditional flow presented in the Phase 2 flowchart 

in Appendix A, the algorithm decides to send 7 vehicles left and 6 to the right.  The minimum 

vehicle separation chart on the right shows characteristic behavior consistent with previous 

scenarios. 

  

Figure 5.11.  Formation of 13 vehicles avoiding offset elliptical obstacle with spacing constraints 

5.5 Chokepoint 

Reducing one of the side clearances to zero allows the algorithm to behave as if the 

environmental obstacle in the vehicle’s way is a chokepoint.  Here the obstacle radius has been 

reduced to almost zero.  Figure 26 depicts a formation of 10 vehicles negotiating a relatively 

large head-on chokepoint.  

 

Figure 5.12.  Formation of 10 vehicles navigating through a chokepoint 

Notice that the formation changes it shape to adapt to the narrow passage and successfully 

reforms into its original configuration at the far end.  The vehicles could easily pass by in single 
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file or in two-abreast column formation.  However, the algorithm chooses the widest possible 

formation configuration as this allows for a more efficient transition.  Figure 27 shows a similar 

scenario with a narrower opening offset to the right of the formation’s path.  Notice that once 

again, the algorithm chooses the widest possible formation configuration and safely navigates the 

formation through the narrower chokepoint. 

  

Figure 5.13.  Formation of 10 vehicles navigating through a narrow offset chokepoint 
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Chapter 6. Conclusion 

The algorithm presented in this work provides the strategy that a group of autonomous vehicles 

should follow to navigate between two points in structured formations while negotiating 

environmental obstructions such as obstacles and chokepoints.  The algorithm takes in 

information about the environment such as vehicle properties as well as location and geometry of 

the obstruction and outputs trajectories for each vehicle to follow as they bifurcate around the 

obstacle or navigate through a chokepoint.  These trajectories could then be used in conjunction 

with a particular vehicle model’s inverse dynamics to produce the appropriate inputs and track 

the desired trajectories. 

 Simulation results show that the algorithm successfully performs the task it was designed 

for.  The formation is able to adapt to its environment as it transverses the space from the starting 

point to its goal location.  The algorithm commands the formation to divide and/or change its 

shape to navigate around the obstacle or through chokepoints.  Sub-formations acquire 

appropriate shapes to account for lateral spacing constraints.  Minimum vehicle separation 

analysis showed that increasing the default in-formation inter-vehicle separation reduces the 

chance of vehicles coming within collision distance of one another vehicle during the dynamic 

phases of the maneuvering.  Overall, the algorithm proved effective at safely navigating a large 

group of vehicles through environmental obstructions such as obstacles and chokepoints. 

 

6.1 Future Work 

There are several ways in which this work could be furthered or improved in preparation for 

implementation on a real system.  At present, individual vehicle assignments to a given position 

within a given sub-formation are made based on an extensive hard coded list of possible 

scenarios depending on parameters such as number of vehicles assigned to each side (which is 

determined based on the flow chart presented in Appendix A), available side clearances, and 

obstacle’s geometry and positioning.  Finding a way to automate this assignment process would 

greatly simplify the computational burden currently imposed by the nearly ten thousand lines of 

code this assignment process currently requires given the large number of possibilities.  Due to 

this limitation, the present algorithm works for up to fourteen vehicles.  Automating the 

assignment process would allow for any number of vehicles to be used in the simulations.  
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Furthermore, a simple force field collision avoidance algorithm could be implemented on each 

vehicle to provide a layer of collision avoidance guarantees as the current basis for collision 

avoidance lies in the algorithm’s heuristic vehicle assignment processes previously discussed.  

Another topic of future work would be to validate the algorithm’s usefulness by tracking the 

outputted trajectories with vehicle dynamics and implementing it on a real system like the small 

scale quadrotors in use at the Boeing VSTL.  
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APPENDIX A 

 

Figure A1 


