
c�Copyright 2013

Brandon Lucia

System Support for Concurrent Software Reliability

Brandon Lucia

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2013

Reading Committee:

Luis Ceze, Chair

Mark Oskin

Daniel Grossman

Program Authorized to O↵er Degree:
Department of Computer Science and Engineering

Abstract

System Support for Concurrent Software Reliability

Brandon Lucia

Chair of the Supervisory Committee:

Associate Professor Luis Ceze
Computer Science and Engineering

Parallel and concurrent software is more complex than sequential software because interac-

tions between concurrent computations and the ordering of program events can vary across

executions. This nondeterministic variation is hard to understand and control, introducing

the potential for concurrency bugs. This dissertation addresses two challenges related to

concurrency bugs, focusing on shared-memory multi-threaded programs. First, concurrency

bugs are hard to find, understand, and fix, but debugging is essential to software correctness.

Second, concurrency bugs cause schedule-dependent failures that degrade system reliability.

We develop two new concurrency debugging techniques based on statistical analysis and

novel abstractions of inter-thread communication. These techniques isolate communica-

tions related to bugs and reconstruct failing executions. We show several hardware and

software system designs that e�ciently implement these techniques. We also develop two

techniques for automatically avoiding schedule-dependent failures due to atomicity viola-

tions, a common concurrent program failure. We use specialized serializability analyses to

identify code that should be atomic and system support to enforce atomicity. We implement

these techniques with architecture and system support. Finally, we develop a mechanism

for general schedule-dependent failure avoidance. We use a statistical analysis and lever-

age large communities of deployed systems to learn how to constrain executions to avoid

previously seen failures. We show a software-only distributed system implementation that

avoids real software failures with overheads low enough for production use.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . vii

Chapter 1: The Concurrent Software Reliability Problem 1

1.1 Concurrency and Parallelism in Shared-memory Multi-threaded Programs . . 3

1.2 Concurrency Bugs and Schedule-Dependent Failures 7

1.3 Challenges Addressed by this work . 13

1.4 Contributions . 17

Chapter 2: Bugaboo: Debugging with Context-Aware Communication Graphs . . 21

2.1 Context-Aware Communication Graphs . 22

2.2 Implementing Context-Aware Communication Graph Collection 28

2.3 Debugging with Context-Aware Communication Graphs 30

2.4 Evaluation . 31

2.5 Conclusions, Insights, and Opportunities . 38

Chapter 3: Recon: Debugging with Reconstructed Execution Fragments 41

3.1 Reconstructed Execution Fragments . 43

3.2 Debugging with Reconstructions . 50

3.3 Implementation . 55

3.4 Evaluation . 59

3.5 Conclusions, Insights, and Opportunities . 66

Chapter 4: Architecture Support for Context-Aware Communication Graphs . . . 68

4.1 CACG-HW: Architectural Support for Context-Aware Communication Graphs 69

4.2 Evaluation . 73

4.3 Conclusions, Insights, and Opportunities . 77

i

Chapter 5: Atom-Aid: Avoiding Atomicity Violations 79

5.1 Background on Implicit Atomicity . 82

5.2 Implicit Atomicity Hides Atomicity Violations 84

5.3 Actively Hiding Atomicity Violations . 86

5.4 Design Overview . 89

5.5 Implementing Atom-Aid with Implicit Atomicity and Hardware Signatures . 93

5.6 Evaluation . 96

5.7 Conclusions, Insights, and Opportunities . 105

Chapter 6: ColorSafe: Avoiding Multi-variable Atomicity Violations 107

6.1 Multi-variable Atomicity Violations and Serializability 108

6.2 ColorSafe: Detecting and Avoiding Multi-Variable Atomicity Violations . . . 110

6.3 Architectural Support . 115

6.4 Debugging with ColorSafe . 121

6.5 Evaluating ColorSafe . 122

6.6 Conclusions, Insights, and Opportunities . 130

Chapter 7: Aviso: Avoiding Schedule-Dependent Failures 133

7.1 Schedule-Dependent Failures . 134

7.2 System Overview . 136

7.3 Monitoring Events and Failures . 140

7.4 Generating Constraints and Avoiding Failures 143

7.5 Selecting and Distributing Constraints . 149

7.6 System Implementation . 155

7.7 Evaluation . 157

7.8 Conclusions, Insights, and Opportunities . 167

Chapter 8: Related Work . 170

8.1 Debugging Concurrency Errors . 171

8.2 Avoiding Schedule-Dependent Failures . 188

Chapter 9: Conclusions . 202

9.1 Cross-cutting Themes . 202

9.2 Final Thoughts . 204

Bibliography . 205

ii

LIST OF FIGURES

Figure Number Page

1.1 An illustration of a shared memory multi-threaded program exe-
cution. The threads execute memory accesses (squares) that can read and
write values to a shared memory space. Each thread executes its operations
sequentially, but di↵erent threads’ operations are independent and unordered
by default. Threads can use synchronization operations (circles) to impose an
ordering on operations in di↵erent threads that would otherwise be unordered. 4

1.2 Di↵erent executions of a shared-memory multi-threaded program . 6

1.3 Code with a concurrency bug that can lead to an atomicity violation
failure. 10

1.4 A concurrency bug involving multiple related variables that can
lead to an atomicity violation. 12

2.1 High-level view of how communication graph structure can reveal
a failure. Markers represent memory operations involving shared data. . . . 23

2.2 Debugging an atomicity violation example with a communication
graph. Di↵erent interleavings of the code in (a) yield di↵erent communica-
tion graph edges in (b). 24

2.3 A basic communication graph is often insu�cient for debugging.
Comparing edge sets from failing and non-failing executions’ graph does re-
veal the cause of the failure. 25

2.4 A context-aware graph reveals the cause of a multi-variable atomic-
ity violation. Di↵erent executions produce di↵erent sets of communication
graph edges. Using a context-aware graph, edge di↵erences reveal the com-
munication responsible for the failure. Using a context-oblivious graph, it
does not. 29

2.5 Graph convergence. Graphs reach a convergent structure with an increas-
ing number of executions’ graphs. The figure shows MySQL (a), Apache (b),
and PBZip2 (c). 36

3.1 Recon reconstructs fragments of program execution. 41

3.2 Overview of Recon’s operation. 42

3.3 A buggy program and communication graph. The dashed graph edge
represents the buggy communication. 44

iii

3.4 A buggy program, a failing execution schedule, and its context-
aware communication graph. Nodes represent the execution of operations
in a specific context. Edges represent communication between nodes. Note
that we only include events in nodes’ contexts that appear in our abbreviated
trace for simplicity’s sake. 45

3.5 A timestamped communication graph and corresponding recon-
struction. The graph and reconstruction are based on the program, execu-
tion schedule, and graph in Figure 3.4. 47

3.6 Aggregating reconstructions from many executions. (a) shows re-
constructions of many di↵erent failing program executions. (b) shows the
resulting aggregate reconstruction with confidence values. 50

3.7 Pair-wise feature plots illustrating class separation. The plots show
how e↵ectively each pair of features separate reconstructions of the failure
from others for apache. We only show the top 2000 ranked reconstructions
and points representing reconstructions of the failure are circled. 54

4.1 CACG-HW architectural extensions to a typical multiprocessor.
New architectural components are shaded. 70

5.1 A simple example of an atomicity violation. The read and update
of counter from two threads may interleave such that the counter is incre-
mented only once. 80

5.2 Opportunities for interleaving. (a) shows where interleaving from other
threads can happen in a traditional system. (b) shows where such interleav-
ings can happen in systems that provide implicit atomicity. 81

5.3 Fine- (a) and coarse-grained (b) access interleaving. There are six
possible interleavings for the fine-grained system and two possible interleav-
ings for the coarse-grained system. 83

5.4 Naturally hiding an atomicity violation. The figure shows the bound-
aries of a sequence of instructions intended to be atomic within dynamic
atomic block boundaries. P

hide

is the probability that the entire sequence
executes within the block. 85

5.5 Probability of hiding atomicity violations as a function of dynamic
atomic block size. 86

5.6 Identifying data involved in a potential atomicity violation. Atom-
Aid discovers that counter might be involved in an atomicity violation and
adds it to the hazardDataSet. 90

5.7 Actively hiding an atomicity violation. When counter is accessed, a
block boundary is inserted automatically because counter belongs to the
hazardDataSet. 91

iv

5.8 Block boundary insertion logic. Flowchart showing Atom-Aid’s policy
for inserting dynamic atomic block boundaries. 93

5.9 Signatures used by Atom-Aid to detect likely atomicity violations. 94

5.10 Empirically evaluating natural hiding. Experimental data on the nat-
ural hiding of atomicity violations with implicit atomicity for various block
sizes and bug kernels. Points show empirical data, curves show data predicted
by our analytical model (P

hide

). 100

5.11 Atomicity violations hidden by Atom-Aid. Results are averaged over
all trials and error bars show the 95% confidence interval. 101

6.1 Example atomicity violations. (a) shows a single-variable violation and
(b) shows a multi-variable violation. The example in (b) was distilled from
https://bugzilla.mozilla.org/show bug.cgi?id=73291. 109

6.2 Unserializable color access interleavings. 111

6.3 Example of a unserializable color interleaving. The example corre-
sponds to case 5 in Table 6.2. str and length are left mutually inconsistent. 111

6.4 Overview of how ColorSafe detects multi-variable atomicity viola-
tions. The numbers in the dark circles denote the order of events happening
simultaneously in (a) and (b). 113

6.5 Keeping color access history. 117

6.6 Detecting unserializable interleavings in (a) debugging mode and
(b) deployment mode. In (a), only actual interleavings are being con-
sidered for the serializability test: the current access to a, the local history
item i and the remote history items with k � i. In (b), all items in the
remote history are being considered for the serializability test: local history
item i, followed by local history item j, and all possible remote history items
(k = 0...n� 1). 120

6.7 Violations avoided in bug kernels and full applications. Results are
shown for experiments using manual and malloc data coloring. †We used
a di↵erent system configuration for MySQL. We explain the details in Sec-
tion 6.5.2 (Di�culties with MySQL). 124

6.8 Impact of history item granularity on violation avoidance. The plot
shows the number of atomicity violations avoided in kernel NetIO under
synthetic noise for fine- and coarse-grain history items with a constant history
window. 128

7.1 A schedule-dependent failure in AGet-0.4. 135

7.2 The Avoidance-Testing Duality. 137

v

7.3 Aviso’s components. The compiler and profiler find and instrument events.
The runtime system monitors events and failures and avoids events. The
framework generates constraints, selects likely e↵ective constraints using a
statistical model, and shares e↵ective constraints in a community of software
instances. 138

7.4 Enumerating pairs from a failing execution’s RPB. There are three
threads, and time proceeds left to right. Circles are events, and arcs between
events are event pairs. Arcs for duplicate pairs are omitted. The figure shows
a single 10-event window of events, but selection occurs for all 10-event windows.144

7.5 Constraint Activation. Available constraints are those that Aviso has
made available to the execution. Active constraints are constraint instances
that have been instantiated and can trigger delays. The large, central arrow
signifies Thread 1 executing event B. To the left of the arrow there are no
instances of the constraint (B,A); event B is its activation event, so when B
is executed an instance of the constraint is added to the Active Constraints
set (shaded cloud). Aviso records that Thread 1 is the instance’s activator
in the instance. 145

7.6 How a constraint avoids a failure. The constraint is shown in the cloud
and is made from events B and A; when a thread executes B, the constraint
is instantiated. When another thread executes A, it is delayed. The left side
shows an execution snippet that can be viewed as both an atomicity violation
and an ordering violation. 147

7.7 A use-before-initialization failure from Transmission and the con-
straint that avoids it. 148

7.8 Aviso’s statistical model. The event pair model tracks feature values
for each constraint. The failure feedback model tracks constraints’ failure
rates. The combined model is comprised of the other two, yielding a selection
probability for each constraint. 153

7.9 Aviso’s improvement in reliability. We show data for (a)Memcached,
(b)Apache, (c)AGet, (d)PBZip2, and (e)Transmission. The x-axis shows
execution time in number of trials – logical time ticks for servers, executions
for standalone applications. We ran each program for 8000 trials. The y-
axis shows the the number of failures that have occurred at a given point
in time on a log scale. The top (black) curve shows the worst case: every
execution is a failure. The middle (red) curve shows the reliability of the
baseline, compiled and run completely without Aviso. The bottom (green)
curve shows the reliability with Aviso. 160

7.10 Characterizing Aviso’s behavior. 165

vi

LIST OF TABLES

Table Number Page

2.1 Bug workloads used to evaluate Bugaboo. AV indicates an Atomicity
Violation, OV indicates an Ordering Violation, and MVAV indicates Multi-
Variable Atomicity Violation. 32

2.2 Bug detection accuracy using Bugaboo. We report the number of code
point inspections required before the corresponding bug was found, the num-
ber in parenthesis show the number of distinct functions. Note that one
inspection indicates that zero irrelevant code points needed inspection, since
the bug was found on the first. Results are averaged over five trials. 33

2.3 Debugging e↵ectiveness for BB-SW (word) with di↵erent context
sizes. Dash (—) indicates the bug was not found with the corresponding
context size. 35

2.4 Characterization of BB-SW and communication graphs sizes. 37

3.1 E↵ectiveness of features. The table shows the reliefF rank of each feature
for our C/C++ benchmark programs. 55

3.2 Buggy programs used to evaluate Recon. We used both C/C++ pro-
grams and Java programs and we included a variety of bug types. 60

3.3 Properties of reconstructions for our benchmarks. 61

3.4 Performance of Recon. We shows Recon’s base configuration and many
less-optimized configurations relative to uninstrumented execution. 64

4.1 Bug detection accuracy using CACG-HW. We report the number of
code point inspections required before the corresponding bug was found. The
number in parenthesis show the number of distinct functions. Note that one
inspection indicates that zero irrelevant code points needed inspection, since
the bug was found on the first. Results are averaged over five trials. 74

4.2 Imprecision for di↵erent configurations of CACG-HW. We show im-
precision for line-level and cache-to-cache-only tracking of inter-thread com-
munication. 75

4.3 Characterization of CACG-HW. 76

5.1 Serializability analysis. The table shows the analysis and interpretation
of each interleaving described in [80]. 88

vii

5.2 Cases when an address is added to the hazardDataSet. 92

5.3 Bug benchmarks used to evaluate Atom-Aid. 98

5.4 Characterizing Atom-Aid. The table shows data for both the signature
and non-signature implementations. 103

5.5 Characterization of the bug detection process for real applications
using Atom-Aid. 105

6.1 Bugs used to evaluate ColorSafe. 123

6.2 Characterization of Ephemeral Transactions. The rate of ET starts, % of

useful ETs, and % of conflicting useless ETs for full applications in deployment

mode. Ap2.0 and MySQL were run using malloc coloring, and AGet, manual col-

oring. MySQL was run with the modified configuration described in Section 6.5.2

(Di�culties with MySQL). 124

6.3 Failure avoidance for a variety of ET sizes. Applications marked with
a m were run using manual coloring, because their bugs involve global and
heap variables; All others were run with malloc-coloring. 127

6.4 Impact of noise on ET usefulness. Percentage of useful ETs in NetIO
with synthetic noise, 12,000-instruction total history length, and varied his-
tory item granularity. 128

6.5 Evaluation of ColorSafe for debugging. Number of code points reported by

ColorSafe using deployment mode, debugging mode, and debugging mode with in-

variant post-processing. 130

7.1 Aviso’s runtime overheads. These overheads are relative to baseline ex-
ecution when collecting events only and when collecting events and avoiding
failures. 161

7.2 Aviso’s dynamic behavior. Columns 2 and 3 show the total number of
sharing events and the number of sharing events discarded due to online
pruning. Columns 4 and 5 show the total number and number discarded of
synchronization and signaling events. Column 5 shows the number of times
an event in an available constraint executes, requiring a check to see if the
event activates the constraint. Column 6 shows the number of times a check
actually leads to a constraint’s instantiation. Column 7 shows the number of
times an event is delayed by a constraint. 166

8.1 Categories of prior work discussed in this chapter. 170

viii

ACKNOWLEDGMENTS

This dissertation is the culmination of years of work that I have done under the guidance

of incredible mentors who have led me to where I am from my naive beginnings. First and

especially, I need to thank my advisor, Luis Ceze. I lucked out working with Luis. His

e↵ervescent attitude and creativity have shaped who I am as a researcher and a person.

Luis helped to guide my intuitions and taught me how to really look at, and understand

things. In advising me, Luis has put up with a lot from me, which probably required more

patience than I realize. He has also fueled my wanderlust, by sending me around the world

to preach about the research we’ve done together. Thanks for showing me the ropes, it

really means a lot.

I have also appreciated Mark Oskin’s irreverence and cynicism – well-applied, these yield

the freshest insights. His mentorship has helped me calibrate my personal and professional

worldview. Dan Grossman’s vulcan lucidity and ability to focus on the essential has helped

me to occasionally think before I speak — this ability may come in handy. Susan Eggers’s

advice and experience wrangling undergraduate students has been instructive and I value

having taught alongside her. I appreciate Mike Ernst’s candor, clarity, and willingness to

help me improve my research and exposition.

Looking further back, I am reminded of how I ended up doing research to begin with.

Soha Hassoun at Tufts University led me to my first steps down this path. Without her

influence, I am unsure I would even know that the world of research exists. It was good

times staring down boolean constraint systems for hours in the lab in Halligan Hall. Sam

Guyer, too, helped to guide me toward research while I was at Tufts. I never did get around

to finishing that object inlining code, but working together was enriching, nonetheless.

Looking yet further back, to past mentors from before my time at Tufts is di�cult

because it feels like eons have passed. Several stand out. Ed Dignum gave me self-confidence

ix

and his mentoring trained me to be a speaker. Anthony Cassale saw promise in my interest

in computers early on and I can’t thank him enough for challenging me to write Pac-Man

in Pascal. Todd Koza showed me Linux for the first time and, probably without knowing

it, changed my life.

It is a true privilege to have had such guidance from such incredible mentors.

Aside from my mentors, the student members of SaMPA have also been professionally

and socially enriching during my formative academic years and I must thank them all for

ideas, feedback, and inspiration. Especially: To Joe Devietti for being one of the most

balanced people I know. And of course, for finishing your PhD first; To Adrian Sampson

for giving me something to aspire to when I’m making a talk and for lots of good times at

conferences. To Jacob Nelson for your empathy, ability to make the cluster work, and often

surprising knowledge of very specific subjects. To Nick Hunt, for help writing under fire

and for having the self-awareness to follow your ambitions. To Ben Wood for your spirit of

adventure and awesome connectionist sense of humor, immortalized multiple times in the

proceedings of PoCSci. To Tom Bergan for your candid and constructive way of looking at

things, and your good sense as a real engineer. To Hadi Esmaeilzadeh, for commiseration

over job search gripes when we were both figuring out where we were headed.

In addition to my labmates, I must thank the cohort of others with whom I have

worked during my time as a PhD student. It was a pleasure to collaborate on research

with Hans Boehm, Karin Strauss, Shaz Qadeer, Laura E�nger-Dean, Emily Fortuna, and

Todd Schiller.

Apart from my colleagues, the people in my life deserve gratitude that would fill far more

than the space on this page. Especially: To Nicki for companionship, tolerance, support,

encouragement and sense of belonging. Your perspective on life helps me to keep in mind

what is important and to not take life too seriously. You make me a happy person. To

Tony Fader, for being a great friend, unpretentiously intellectual, and a source of humor and

inspiration. To Matt D’Arcangelis for being a great friend, for temperingly looking outward,

helping me not to forget who I am. To Morgan, Franzi, Greg, Nell, Cli↵, Todd, Pete and

x

everyone else for being wonderful friends over the years. For games nights, barbecues, happy

hours, post-TGIF fun, etc., that happily perforated the work-time of grad school. To the

Racer Sessions and the people that make it special, for keeping me creative and amongst

others who are even more creative. I also must nod to my recent past lives because they put

me where I am now: Julia Verplank, the Quigleys (Katie and Rich), Bop Street Records,

and The Foghorns. Life outside of grad school facilitated life inside grad school and all of

these things are valuable to me.

Finally and especially, I am grateful beyond anything I could write for my family’s

unflagging support for my entire life and throughout my education. My parents influence

and encouragement to seek education is what led me to my ambitions. Summers in Fonda,

NY gave me the work ethic and perspective I needed for a PhD. You were always there when

I needed you whether I realized it at the time or not. To my siblings: it’s been inspiring

that we’re all so individual. It’s often a relief to hang out with you guys.

And to all the people in my life that I’ve forgotten, I appreciate you too.

xi

DEDICATION

To my parents and siblings for making me who I am

—and—

To the people in my life for being who you are.

xii

Der Mensch kann tun was er will; er kann aber nicht wollen was er will.

— Arthur Schopenhauer

xiii

1

Chapter 1

THE CONCURRENT SOFTWARE RELIABILITY PROBLEM

The rate of improvement in performance of sequential computation resulting from device

scaling has begun to lag behind the scaling trend projected by Moore’s Law [95]. A recent

study [42] attributes this change to the failure of device physics to follow the scaling projec-

tions made by Dennard [35]. As a result, system designers have turned to parallelism as the

primary means to increase the performance of programs. Most modern, commercially avail-

able computer systems have multiple processor cores. These parallel computing resources

may be within a multicore chip, within a system across several chips, or even spanning sev-

eral di↵erent machines, as in a warehouse-scale or datacenter computer. To take advantage

of parallel computer systems, programmers must write programs that orchestrate compu-

tations that can run in parallel. Exposing parallel work to parallel computing resources

ensures resources remain utilized, resulting in e�cient, high-performance computation. In

addition to the need for parallel software to utilize parallel computation resources, there is

a similar need by many applications for concurrency. Concurrent computations are logi-

cally simultaneous computations that may share resources. For example, cloud and server

applications must coordinate communication and resource sharing by simultaneous client

requests. Regardless of whether concurrent computations are executed in parallel or mul-

tiplexed on a single computing resource, sharing and communication require concurrency

control.

A goal in writing software – sequential, concurrent, and parallel – is that it should be

written correctly, (without programming errors or “bugs”) and must execute reliably (with-

out “failing”). Software has grown essential to the function of the world, controlling infras-

tructure, facilitating communication, disseminating information, and acting as a platform

for the global economy. When software has bugs that cause it to fail, these essential roles

2

that it plays are interrupted. Sometimes, such interruptions have grave consequences [10]

or cost stakeholders millions of dollars [11]. NIST estimates the cost of preventable software

bugs to be a non-negligible fraction of the GDP of the US [99].

Making software correct and reliable is di�cult. Writing, testing, and debugging software

is a challenge that has been studied for years in academia and industry. A large fraction

of this e↵ort has been devoted to making sequential software correct and reliable. A key

barrier to reliability is that software often has a vast space of possible states, many of

which are dependent on the computation’s input or the environment in which the software

is executing. The state space that emerges, given a program’s structure, possible inputs,

and possible execution environments is highly complex. A programmer must consider all

the possible program states and reason that each behaves according to the specification

of the software. Ensuring that this is the case is usually done through some combination

of careful code-writing, judiciously applied testing, trial and error debugging, and various

development tools. The complexity of the state space is what makes it challenging to create

correct, reliable sequential software.

Concurrency and parallelism exacerbate the di�culty of making correct, reliable soft-

ware. As in sequential software, in concurrent and parallel software, the state space is in

part defined by the program’s structure, the possible inputs, and the environment in which

the program may execute. With concurrency and parallelism, however, the space is funda-

mentally more complex. The often extremely large number of possible interactions between

concurrently executing computations increases the size of the space. The manner in which

computations are carried out in parallel – scheduling, resource allocation, and parallelization

strategy – also impact the size of the state space of the program.

The fundamental increase in complexity for concurrent and parallel software as com-

pared to sequential software presents several challenges to programmers. It is more di�cult

to write programs that correctly execute computations in parallel. It is a challenge to cor-

rectly coordinate the sharing of resources by concurrent computations. It is di�cult to find,

understand, and fix errors related to parallelism and concurrency. The increased complex-

ity of the state space of concurrent and parallel programs makes testing substantially more

complicated. The di�culty in testing means that some bugs will not be found and may

3

surface only in production systems, causing those systems to fail.

The work in this dissertation focuses on the correctness and reliability of concurrent and par-

allel programs. This work develops novel techniques that simplify the process of debugging

concurrent programs and that make software execute reliably in production despite latent

bugs in deployed code. These techniques are realized through the use of novel computer

architecture and system support implemented in both the hardware and software layers of

a computer system. A high-level statement of the thesis of this work follows:

Thesis Statement: Novel system and architecture support addresses the complexity

of concurrent and parallel software by making it easier to debug and by making it

execute without failing, despite bugs in code.

The remainder of this chapter is devoted to providing context for the work in this

dissertation. First, we describe shared-memory multi-threaded programming, the model

of computation around which we conducted this work. Second, we describe the types of

bugs and failures addressed in this work. Third, we discuss the main challenges addressed

in this work. Fourth, we describe each of the contributions of this dissertation in brief,

foreshadowing later chapters that describe them in detail.

1.1 Concurrency and Parallelism in Shared-memory Multi-threaded Programs

While there are many di↵erent models for writing concurrent and parallel software (e.g., [20,

7, 6, 8, 2]), one of the most common is shared-memory multi-threaded programming. The

work in this dissertation focuses on shared-memory multi-threaded programs. Unlike se-

quential programs that have a single thread of control, multi-threaded software has multiple

threads of control. Each thread executes its own instructions in some sequence. Threads

interact by sharing data and synchronizing. To share data, threads perform read and write

operations that load values from and store values to locations in a shared address space.

Operations performed by di↵erent threads are unordered by default: there are no implicit

constraints on the order of execution of di↵erent threads’ operations. Using synchroniza-

tion [57, 72, 5], a programmer can impose an order on two operations in di↵erent threads.

4

Threads

Operation
Ordering

Memory
Access

Synchronization
Operation Unordered

Operations

Figure 1.1: An illustration of a shared memory multi-threaded program execution. The
threads execute memory accesses (squares) that can read and write values to a shared memory space.
Each thread executes its operations sequentially, but di↵erent threads’ operations are independent
and unordered by default. Threads can use synchronization operations (circles) to impose an ordering
on operations in di↵erent threads that would otherwise be unordered.

When two operations are ordered in an execution by executing in the same thread or by

synchronization, the first is said to have happened before the other. The ordering imposed

is referred to as the “happens-before order” [71] for that execution and it is an irreflex-

ive partial order on the events in the execution. Figure 1.1 illustrates several aspects of a

shared-memory multi-threaded program’s execution.

As a program executes, threads observe an execution schedule of their and other threads’

memory and synchronization operations that corresponds to the execution’s happens-before

order. The execution schedule shows the order of operations in an execution and determines

which read operations in the program read values written by which write operations. There

are two important factors that determine the observed execution schedule for a particular

execution.

• Synchronization Order: The order in which synchronization operations are exe-

cuted may vary. The function of synchronization operations is to determine the order

of other operations in a program’s execution. Synchronization operations themselves,

however, do not have a fixed a priori order at the program’s start. Di↵erences in the

timing of operations in di↵erent executions can alter the order in which threads reach

5

synchronization points. The variation in the order in which threads arrive at synchro-

nization points can in turn vary the order of other operations in the execution. These

variations imply that di↵erent executions may have di↵erent execution schedules.

• Data Races: Happens-before is a partial order over the operations in an execution,

meaning some operations are not ordered before or after one another. These operations

are concurrent. A pair of concurrent operations conflict if they both access the same

piece of shared state (i.e., the same variable) and at least one of the operations mod-

ifies the state (i.e., performs a write operation). The concurrency of non-conflicting,

concurrent operations in an execution schedule is inconsequential: such operations do

not access similar state or synchronize, so they cannot have any e↵ect on one another.

In contrast, the execution of two concurrent, conflicting operations constitutes a data-

race. The execution semantics of racy operations is tricky: the accesses conflict, so

their execution order may a↵ect their outcome, but the accesses are concurrent, so

their order – and thus their outcome – is unclear. The outcome of a data-race can

vary nondeterministically from one execution to the next. Data-races are a major

challenge. Section 1.2.1 describes the mechanics of data-races and the problems they

present in more detail.

The execution schedule of a program can vary from one execution to the next because of

data-races and variation in the order of synchronization. That variation implies that there

are many, di↵erent, possible, valid execution schedules for a program. A given execution may

follow any of those schedules – the schedule that an execution follows is nondeterministic

from one execution to the next. Nondeterminism is an important property of shared-memory

multi-threaded programs because di↵erent execution schedules can lead to di↵erent results,

even with the same input.

Figure 1.2 illustrates how operations can execute in a di↵erent order from one execution

to the next, assuming an arbitrary memory model to resolve the order of racy operations.

Figure 1.2(a) shows the pseudocode of a simple program with three threads, T1, T2, and

T3. T1 is assigning a shared pointer, p, to point to a new object and then releasing a lock.

6

P *p =

T1 T2 T3

new P()

A

release(L)

t = q
C

acquire(L)

q = 19;
release(L) p.use()

D
B

(a) A shared-memory multi-
threaded program. Thread 1
assigns p to a new object. Thread
2 assigns q to 19. Thread 3 reads
p and q.

A
C

D

Value of t is 0

B

(b) One possi-
ble execution
schedule.
Thread 2’s read
of q in D sees
that q = 0 be-
cause it executes
before B.

A

C

D

Value of t is 19

B

(c) Another pos-
sible execution
schedule. Thread
2’s read of q in D
sees that q = 19

because it executes
afterB.

A

C
D

CRASH

B

Never
Executes

Value of t is 0
(d) A failing ex-
ecution schedule.
Thread 3’s attempt
to use p in D causes
the program to crash,
because when D ex-
ecutes, Thread 1 has
not yet initialized p.

Figure 1.2: Di↵erent executions of a shared-memory multi-threaded program

T2 acquires the lock, assigns a new value to a shared variable, q, and then releases the lock.

T3 reads the value of q into a local variable, t, and then uses p by dereferencing it. p is

assumed to be uninitialized at the start of the execution. q is assumed to be 0 at the start of

the execution. Figure 1.2(b) shows one execution, leading to one result state. Figure 1.2(c)

shows a di↵erent execution leading to a di↵erent result state.

Figure 1.2(a-c) illustrates that variation in the execution schedule can vary the result

of a computation. Figure 1.2(d) shows how variation in the execution schedule can even

determine whether a computation fails or succeeds. The operations in C and D are not

ordered with the operations in A. When C and D occur in the execution schedule without

observing the result of the code in A, the pointer dereference in D dereferences p before it

has been initialized by the assignment in A. Assuming, as many languages do [4, 24, 88],

that dereferencing an uninitialized pointer is illegal, such a schedule leads to a failure. The

synchronization that the programmer wrote is buggy and permits the execution schedule

shown in part (d) that leads to a failure.

In most programs, most execution schedules behave as the programmer intended. How-

7

ever, as Figure 1.2(d) shows, when the programmer has written buggy code, that code may

permit schedules that cause the program to do something that it was not intended to do

(like crash). The bug in Figure 1.2(a) is a concurrency bug. Concurrency bugs are errors in

code that can lead to schedule-dependent failures. A schedule-dependent failure is any unin-

tended program behavior that is the result of particular orderings of operations in di↵erent

threads. These failures are called “schedule-dependent” because their occurrence depends

on the occurrence of execution schedules that exhibit those particular orderings. Concur-

rency bugs and the schedule-dependent failures they cause are two fundamental barriers to

correctness and reliability in concurrent programs.

1.2 Concurrency Bugs and Schedule-Dependent Failures

In shared-memory multi-threaded programs, concurrency bugs are errors in code that co-

ordinates inter-thread interactions, like ordering operations and sharing data. Concurrency

bugs show up as incorrectly used synchronization operations and patterns of accesses to

memory shared by multiple threads that lead to unintended behavior. There are many

types of concurrency bugs that lead to schedule-dependent failures [79]. The next sections

discuss some of the most common types, including data-races, atomicity violations, ordering

violations, as well as some important variations on these classes of errors.

1.2.1 Data-Races

No discussion of concurrency errors would be complete without a discussion of data-races.

A data-race occurs when two threads each perform an access to the same memory location,

at least one of the threads’ accesses is a write, and the accesses are not ordered by synchro-

nization (i.e., happens-before). Many popular programming language definitions ascribe

executions of programs with data-races undefined [4, 24, 5] or unintuitive [88] semantics.

The intent of these semantics is to permit aggressive instruction reordering optimizations in

compilers and architecture, without excessive restriction from the language. Despite weak

or overly complex language-level semantics, most computer systems execute programs with

data-races and the ordering semantics of racy operations is determined by the architecture

8

level memory model [109, 120, 9, 52]. An architecture’s memory model determines, for each

point in an execution, the value that a read (racy or otherwise) of shared state may observe.

Data-races lead to variation in the execution schedule. All data-races are not necessarily

schedule-dependent failures, but many are and the behavior of data-races is hard to reason

about. Some in the research community take the strong position on data-races that, because

language-level semantics and architecture-level memory models make reasoning about data-

races so di�cult, any code that permits a data-race is buggy and no data-race is benign [23].

Why are data-races so hard to reason about? The root of the di�culty presented

by data-races is that programmers typically reason about their programs assuming a mem-

ory model under which all executions are Sequentially Consistent or SC [71]. In an SC

execution the same order of operations is observed by all threads and threads’ operations

execute in their original program order. Unfortunately, most architecture memory models

do not guarantee SC in all circumstances. Instead, they provide some form of relaxed consis-

tency. Relaxed consistency allows systems to use aggressive optimizations that can reorder

a thread’s operations and cause threads to observe di↵erent execution orders. In executions

with no data-races, these reorderings cannot have any e↵ect on the behavior of the program.

When a program has data-races, however, reorderings involving racy operations can change

the program’s behavior from one execution to the next. Reordering of racy operations can

also result in unintuitive behavior that violates SC and causes a program’s execution to

apparently defy causality. 1

The work in this dissertation does not explicitly address SC violations that stem from data-

races — other work by this author [84, 38] and plentiful work by other authors (e.g., [45, 141,

89, 90]) addresses this dimension of data-races. Instead, this dissertation treats data-races

as sub-sequences of the execution schedule that can vary from one execution to the next,

sometimes leading to failure behavior. These variations may lead to violations of SC, or may

be a source of nondeterminism only. In either case, if the reorderings lead to behavior that

violates the specification of the program, then the code involved in the data-race constitutes

1A detailed discussion of memory models, reordering, and consistency is outside the scope of this disser-
tation. A gentle introduction to the subject can be found in this tutorial [12] and in this primer [124].

9

a concurrency bug. Other types of concurrency bugs discussed in this section may involve

operations that race.

1.2.2 Atomicity Violations

Atomicity violations are another common type of concurrency error. Critical to understand-

ing atomicity violations are the concepts of Atomicity and Isolation.

• Atomicity is a property of a sequence of program operations. A sequence of op-

erations are atomic only if all of their results become observable by other threads

simultaneously. Other threads may observe none of the results of the atomic instruc-

tions or all of the result of the atomic instructions, but never the result of some and

not of others.

• Isolation is a property of a sequence of program operations. A sequence of operations

are isolated if the result of their execution concurrently with code in other threads

is the same as the result of their execution in the absence of other threads. Other

threads may not observably access the same state as an isolated computation while

it is executing, nor may the isolated computation observably access the same state as

the other threads’ computations.

Programmers often intend for a sequence of operations to be atomic and isolated. The

atomicity and isolation of a region of code can be ensured with proper use of synchroniza-

tion. An execution of a program with a concurrency bug that omits or incorrectly uses

synchronization to enforce atomicity may fail due to an atomicity violation. An atomicity

violation is a type of failure that can a✏ict a region of code intended to be atomic and

isolated. If such a region accesses some shared memory locations and its execution is in-

terleaved by instructions in another thread that access the same locations, the interleaving

may violate the atomicity of the region of code.

Figure 1.3 shows how an interleaving permitted by a concurrency bug can lead to an

atomicity violation. The code in Thread 1 deletes and subsequently reallocates the data

10

release(L)

acquire(L)
delete(p);

T1 T2
A

release(L)

acquire(L)
B

p = new P();

release(L)

acquire(L)
C

p.use();

Intended to be
atomic, but locks

fail to enforce
atomicity

(a) A program with a concurrency bug.
The bug permits an atomicity violation, lead-
ing to a failure.

A

C

B

(b) An execution
schedule without an
atomicity violation.
Thread 2’s dereference
of p correctly uses the
reallocated object.

A

C

B
Never

Executes

CRASH

(c) An execution
schedule with an
atomicity violation.
Thread 2’s dereference
of p happens between
delete and new, vio-

lating the atomicity of

those operations. The
atomicity violation
leads to a failure.

Figure 1.3: Code with a concurrency bug that can lead to an atomicity violation failure.

pointed to by p. Thread 1’s code should execute atomically. When Thread 2’s code in-

terleaves between Thread 1’s manipulations of p, Thread 2 dereferences a deleted pointer,

leading to a crash. The code in Thread 1 that should have been atomic is implemented

incorrectly. A single locked critical region should contain the delete and the reallocation,

not two separate regions.

Some interleavings with regions of code intended to be atomic lead to atomicity viola-

tions. The interleavings that lead to atomicity violations are unserializable. Serializabil-

ity [102] is a property of a concurrent execution. A concurrent execution is serializable if its

result is the same as some sequential execution of the regions of code in the execution that

were intended to be atomic. If a region of code was intended to be atomic and the outcome

of that region is changed simply because some other code interleaved between the operations

in that region, then the interleaved execution was unserializable. Put another way, when an

interleaving can change an execution’s behavior, it is unserializable. Atomicity violations

stem from unserializable interleavings of regions of code intended to be atomic. Prior work

11

has shown [44, 48, 80, 136] that if an execution is serializable (with respect to some specified

atomic regions), then there were no atomicity violations.

The connection between atomicity violations and serializability makes serializability a

useful property. Serializability analysis facilitates reasoning about the di↵erence between

atomicity constraints that were implemented by a programmer (e.g., using locks), and those

that were specified in the program’s design (e.g., in a specification). However, the problem of

atomicity violations runs deeper than simply checking the serializability of specified atomic

regions: Often there is no correct specification of the regions of code in a program that

were intended to be atomic. The absence of atomicity specifications has two e↵ects: (1)

Programmers often incorrectly reason about which code should be atomic and isolated. They

use synchronization incorrectly, and write broken code that su↵ers atomicity violations. (2)

Detecting atomicity violations requires inferring atomic code regions, which is di�cult.

Bugs leading to atomicity violations are very common. The work in this dissertation

develops several techniques for debugging such bugs and avoiding atomicity violations.

1.2.3 Ordering Violations

Ordering violations are another common class of concurrent programming mistakes [79].

Ordering errors consist of a pair of operations that should execute in a particular order,

but for which synchronization constraints are absent, permitting them to execute out of

order. Some ordering violations involve accesses that constitute a data-race. Other ordering

violations involve only synchronized accesses, although in these cases, the synchronization

does not enforce the correct order of the operations, only that there is no data-race. To

prevent failures due to ordering violations, programmers must use synchronization to ensure

that the correct event order occurs in all executions. The bug in Figure 1.2(a) leads to an

ordering violation that involves racy accesses to p in A and D.

1.2.4 Multi-variable Concurrency Errors

There are several variants of each of the types of concurrency errors discussed so far. One

important axis along which the errors can vary is the amount of data referred to by oper-

12

ations involved in the error. Prior work has primarily characterized errors as being either

single-variable or multi-variable errors [14, 78, 80, 55, 83, 81, 86]. The operations making

up single-variable errors all access the same memory location; the operations making up

multi-variable errors may access several di↵erent memory locations.

release(L)

acquire(L)
o.str = "a";

T1 T2
A

release(L)

acquire(L)
B

o.len = 1;

release(L)

acquire(L)
C

o.str = "";

Updates to string
and length

should happen
atomically, but the
synchronization

is incorrect

o.len = 0;

(a) A program with a concurrency bug involv-
ing multiple variables. o.str and o.len represent
related properties of a string. When one is update, the
other should also be updated and the updates should
be atomic. Thread 1 is executing buggy code that up-
dates both properties, without atomicity. Thread 2 is
also updating both properties

A

C

B

Bug: o.str = "",
but o.len = 1

(b) An execution sched-
ule with an atomicity vi-
olation. Thread 2’s up-
date of the variables inter-
leaves between Thread 1’s.
At the end of both threads,
the variables’ values are not
consistent with one another.

Figure 1.4: A concurrency bug involving multiple related variables that can lead to an
atomicity violation.

Data-races are inherently single-variable errors because a data-race is defined as a pair of

accesses to the same memory location (although some prior work has expanded the notion

of a data-race to consider races at a coarser data-granularity [129]). Atomicity violations

and ordering violations can involve either a single variable or multiple variables. Multi-

variable variants of atomicity and ordering errors are more complex than their single-variable

counterparts. The complexity arises from the need to consider not just interactions between

threads involving a single piece of state, but rather, arbitrary subsets of the program’s state

(i.e., groups of variables).

Figure 1.4(a) illustrates a multi-variable concurrency bug. The code in the figure has

13

two threads. Both threads are attempting to update two related properties of an object,

o that represents a string’s contents (o.str) and its length (o.len). The properties are

semantically related to one another. If one property is updated, the other must be updated

to maintain the consistency of their relationship. Furthermore, the updates must hap-

pen atomically. Thread 2 correctly uses synchronization to make its updates the variables

atomic. However, Thread 1 uses synchronization incorrectly, failing to ensure the atomicity

of its updates. Figure 1.4(b) shows an execution of this program in which Thread 2’s code

violates the atomicity of Thread 1’s code. When that happens, the result of the two updates

inconsistent: o.str is the empty string ("") and o.len is 1.

1.2.5 Other Concurrency Errors

The list of errors in this section is not comprehensive. Instead, this list has focused on errors

addressed by the work in this dissertation. There are other types of concurrency errors, such

as deadlocks [31] and livelocks, which prevent executions from making any progress, as well

as errors involving thread interactions via shared resources other than shared memory [69].

The work in this dissertation is applicable to some deadlocks and livelocks, but does not

address errors that involve accesses to resources other than shared memory.

1.3 Challenges Addressed by this work

There are two goals to the work in this dissertation: (1) to simplify the process of finding, un-

derstanding, and fixing concurrency bugs; and (2) to develop techniques that automatically

avoid schedules that lead to schedule-dependent failures, even in programs with concurrency

bugs that permit those schedules. Concurrency debugging and schedule-dependent failure

avoidance are essential challenges presented by concurrent and parallel software.

1.3.1 Debugging Concurrency Bugs

The goal of programmers is to find the bugs in their programs and to fix those bugs. Pro-

grammers test their programs and use bug-finding tools to uncover indicators of bugs in

their code, like bug reports and failed test cases. Starting from those indicators, program-

14

mers must then understand the bug and determine what code changes are necessary to fix

it. There are several reasons why debugging concurrency bugs is especially di�cult.

1. Complexity of execution schedule space. The execution schedule can vary from

one run to the next nondeterministically. The space of possible execution schedules

that a program may exhibit is very large. It is often not obvious from code alone

which execution schedules may lead to failure, or even which schedules are possible in

the first place.

2. Implicit inter-thread interaction. Threads in a shared-memory multi-threaded

program interact by reading and writing to shared memory. Unfortunately, it is often

unclear whether a memory operation accesses shared or thread-local state: inter-

thread interaction is implicit. Implicit inter-thread interaction makes it hard for a

programmer to reason about which code might be involved in a concurrency bug.

3. Non-local reasoning. A program operation that accesses shared state or synchro-

nizes has an impact not only on the thread executing the operation, but potentially

on all other threads in the program. A schedule-dependent failure may occur as the

result of such an operation. When such a failure occurs, it is not explicit which other

threads and which other code might have been involved in that failure. Concurrency

bugs involve code in di↵erent threads. Understanding a schedule-dependent failure

that manifests at a point in one thread’s code requires reasoning “non-locally” about

code executing in one or many other threads. Non-local reasoning makes understand-

ing and fixing concurrency bugs di�cult.

The work in this dissertation directly addresses these challenges, using novel techniques

and novel system and architecture support to make concurrency debugging simpler.

This work addresses the challenge posed by the very large space of possible thread

schedules by incorporating and analyzing information from many executions. Using novel

abstractions and analyses, these techniques determine what parts of the execution schedule

are invariant in failing or non-failing executions. Using this information, the techniques in

15

this dissertation focus a programmers’ attention on the parts of a program that are likely

to be related to a schedule-dependent failure.

This work also addresses the challenges posed by implicit inter-thread interaction and

non-local reasoning by developing new abstractions that encode inter-thread interaction

through shared memory. The explicit encoding of inter-thread interaction highlights the

parts of the code in di↵erent threads that interact. Furthermore, the abstraction shows

“both ends” of an interaction between two threads – aiding in understanding local and

non-local e↵ects of an operation. Making implicit interactions explicit and taking a global

view of thread interaction simplify concurrency debugging.

1.3.2 Avoiding Schedule-Dependent Failures

Schedule-dependent failures are the result of concurrency bugs. When concurrency bugs

are not corrected before software is deployed to a production system, schedule-dependent

failures will degrade the reliability of that system. Concurrency bugs are especially prob-

lematic because comprehensive testing for concurrency bugs is infeasible using existing

methods [96, 25]. Lacking comprehensive testing, software is often released with latent

concurrency bugs that only manifest as failures in production. To remain reliable, systems

must execute programs despite these latent errors, avoiding execution schedules that man-

ifest schedule-dependent failures. The work in this dissertation is among the first to study

mechanisms that make systems automatically avoid schedule-dependent failures. There are

several essential challenges systems face in avoiding schedule-dependent failures.

1. Absence of correctness specifications and failure criteria. Programs are fre-

quently written without an explicit specification that describes what their behavior

should be. In the absence of a specification, it is unclear what defines a failure. As a

result of the absence of explicit specifications, systems must infer when a failure has

occurred.

2. Need to intervene before a failure occurs. Techniques for avoiding failures must

intervene before a failure actually causes a problem. The need to be preemptive re-

16

quires a system to infer when a failure is likely, before it has happened. Inference is

di�cult because non-failing execution schedules often closely resemble failing execu-

tion schedules.

3. Preserving program semantics. A systems must change some aspect of a pro-

gram’s execution (e.g., the execution schedule) to avoid an imminent failure. Altering

a program’s execution presents a risk of doing more harm than good, if the alteration

can lead to new and potentially unintended (i.e., failing) program behavior. Alter-

ations to an execution to avoid a failure should not change the executing program’s

semantics.

4. Use in production systems. To remain reliable, systems must avoid failures due to

latent bugs in production. Working in production puts stringent bounds on the accept-

able performance impact of these techniques. Production performance requirements

limit the amount of analysis possible and the permissible cost of failure avoidance

actions.

The techniques for avoiding schedule-dependent failures described in this dissertation

overcome these problems.

One of the main contributions of this dissertation is to show that strategically perturb-

ing a program’s execution schedule avoids many failures without altering program semantics.

The intuition behind this contribution is that many di↵erent schedules are valid and per-

turbing away from a failing schedule toward a non-failing schedule avoids a failure and

remains a correct execution.

The techniques in this work use novel analyses to infer when failures may happen. Some

of the analyses in this work infer likely failures by leveraging bug-specific properties. Other

analyses work by analyzing information from many failing and non-failing executions to

determine what behavior is most likely indicative of an impending failure. Both varieties

of analysis presented do not require explicit specifications of correct behavior or failure

behavior.

17

As required, the failure avoidance mechanisms and the analyses described in this disser-

tation work within the narrow permissible performance window of a production system.

1.4 Contributions

This dissertation tackles the challenges outlined in the previous section with novel system

and architecture support. The mechanisms developed in this dissertation simplify concur-

rency bug debugging and enable systems to avoid schedule-dependent failures, demonstrat-

ing the main thesis of this work.

1.4.1 Architecture and System Support for Debugging Concurrency Errors

This dissertation describes three concrete contributions that use system and architecture

support to simplify the process of debugging concurrency bugs. These three systems are

described in brief here. Chapters 2, 4, and 3 describe them in detail.

• Bugaboo [81] We develop a new abstraction for a concurrent program execution

called the Context-Aware Communication Graph. Context-Aware Communication

Graphs encode inter-thread interactions via shared memory. A graph node repre-

sents the execution of a program instruction in a particular communication context.

Communication context abstractly encodes a partial history of accesses to shared

memory preceding the instruction. We develop a statistical debugging methodology

using context-aware communication graphs and show it is useful for debugging. We

describe a low-complexity, software-based, reference implementation of a tool for col-

lecting context-aware communication graphs. We show that these graphs provide

important information that simplifies concurrency bug debugging in real software.

• Recon [86] We build a debugging methodology based on reconstructed execution

fragments or reconstructions. Reconstructions are short, time-ordered sequences of

communicating instructions derived from context-aware communication graphs (from

Bugaboo). We build a statistical model of reconstructions from a set of executions,

representing each reconstruction with a number of numeric-valued features. We use a

18

simple rank inference heuristic that uses these features to determine which reconstruc-

tions are most likely related to the failure being debugged. We describe an e�cient

system implementation for Java and for C/C++ programs. Our results show that Re-

con precisely pinpoints information that is useful for debugging with few distractions.

We also show that our software implementations have overheads that are comparable

to other widely used debugging tools.

• Architecture Support for Context-Aware Communication Graphs [81] We

develop hardware architectural support for collecting context-aware communication

graphs. Our architecture support uses existing hardware support for cache coherence,

along with some simple meta-data extensions to caches and a small amount of ad-

ditional bu↵ering. We show that the context-aware communication graphs collected

using our architecture support are useful in a technique such as Bugaboo. We also

show that the complexity of our design is reasonable and it eliminates the software

overheads associated with collecting context-aware communication graphs. Finally,

we discuss the use of the architecture extensions in deployed systems to continuously

collect communication graphs from production.

1.4.2 Architecture and System Support for Avoiding Schedule-Dependent Failures

This dissertation describes three concrete contributions that use system and architecture

support to automatically avoid schedule-dependent failures. These three systems are de-

scribed in brief here. Chapters 5, 6, and 7 describe them in detail.

• Atom-Aid [85] We observe that systems with implicit atomicity [27, 32, 132] natu-

rally prevent some schedule-dependent failures due to atomicity violations and char-

acterize the e↵ect. We develop Atom-Aid, which uses implicit atomicity support and

serializability analysis to infer “hazardous” data, likely to be involved in atomicity vi-

olations. We adaptively insert atomic block boundaries to enclose groups of accesses

to hazardous data, to avoid atomicity violations. We show that reporting code where

inferred block boundaries occur identifies code that is likely to be related to an atom-

19

icity violation. We describe a possible system implementation based on an execution

model from prior work that provides implicit atomicity [27]. We show our technique

can avoid failures in real programs without any software overheads or excessive archi-

tectural complexity beyond our base design.

• ColorSafe [83] We extend Atom-Aid’s analysis to handle multi-variable atomicity

violations. We apply “colors” to groups of data, giving the same color to related data.

We develop a “color-space” variant of atomic-set serializability analysis [55] to infer

sets of same-colored hazardous data that are likely to be involved in an atomicity

violation. We develop an analysis that, guided by the set of hazardous data colors,

identifies sequences of code that should be atomic. We use transactional memory

support to enclose groups of accesses to hazardous data in the same transaction,

making them atomic. We show that inferred atomic sequences are also helpful in

pointing out where bugs may exist in code. We show that ColorSafe avoids failures due

to multi-variable atomicity violations in real programs. We describe an architecture

implementation that does not require support for implicit atomicity and thus has

lower complexity than Atom-Aid. We show that our implementation does not impose

software overheads and has only modestly high implementation complexity.

• Aviso [82] We develop a software-only system for automatically avoiding schedule

dependent failures. Aviso monitors events during a programs execution. When a

failure occurs, Aviso records a history of events from the failing execution. It uses

this history to generate schedule constraints that perturb the order of events in the

execution to avoid schedules that lead to failures in future program executions. Aviso

leverages scenarios where many instances of the same software run, using a statistical

model of program behavior and experimentation to determine which constraints most

e↵ectively avoid failures. We show that Aviso decreases failure rates for a variety of

important desktop, server, and cloud applications by orders of magnitude, with an

average overhead of less than 20% and, in some cases, as low as 5%.

20

This dissertation continues by proceeding with a chapter discussing each of these con-

tributions. Chapters 2 – 4 focus on concurrency bug debugging. Chapters 5 – 7 center on

schedule-dependent failure avoidance. Each of these chapters includes a terminal section

entitled “Conclusions, Opportunities, and Insights”. Each one of these sections recapitu-

lates the contributions of its chapter, describes its chapter’s most important concepts and

insights, and describes the limitations and opportunities for future work on its chapter’s

subject. Following the chapters that discuss the contributions of this dissertation is a sum-

mary of related prior research in Chapter 8. Chapter 9 concludes with a brief statement of

cross-cutting themes that show up in the work in this dissertation and some final thoughts.

21

Chapter 2

BUGABOO: DEBUGGING WITH CONTEXT-AWARE COMMUNICATION GRAPHS

Concurrent programming errors often manifest as interactions between threads that

programmers did not anticipate. The main mode of interaction between threads in shared-

memory multi-threaded programs is for threads to read and write data to parts of the

memory space that they share. When threads share data through memory, those threads

are communicating. Inter-thread communication occurs when one thread writes a value to

shared memory and another thread reads or overwrites that value. Communication graphs

are a class of graph abstractions that can represent the inter-thread communication that

took place in a multi-threaded program execution. In the simplest form of communication

graph, nodes represent static memory operations and edges represent inter-thread commu-

nication between pairs of static memory operations. The pattern of inter-thread commu-

nication that occurs during a program’s execution and the corresponding communication

graph directly result from the order of operations in the execution’s schedule. As discussed

in Chapter 1, each di↵erent execution can exhibit a di↵erent schedule and, as a result, a

di↵erent corresponding communication graph. The main hypothesis of this chapter is that

executions leading to schedule-dependent failures include some characteristic inter-thread

communication. Communication graphs from failing executions therefore di↵er in structure

from graphs corresponding to non-failing executions.

We leverage our main hypothesis in a technique to identify and understand concurrency

bugs. Given some communication graphs corresponding to non-failing program executions

and some others corresponding to failing program executions, we compute the di↵erences

between the failing and non-failing executions’ graphs. Looking at these graph di↵erences

focuses on what is essential to the failure behavior and atypical of non-failing program

behavior, which is helpful for understanding and fixing the underlying bug. The biggest

22

advantage of our graph-based approach to debugging is that it is general: it does not rely

on heuristics that are specific to a class of concurrency bugs. Using communication graphs

is useful for finding any failure that stems from an unintended pattern of inter-thread

communication, which includes most concurrency bugs.

A fundamental challenge we face in designing such an approach, however, is developing

a satisfactory communication graph abstraction. This task presents two conflicting design

constraints. Our abstraction must include as much information as is necessary to di↵erenti-

ate between failing and non-failing executions’ communication behavior. At the same time,

our abstraction must also include as little information as is su�cient, remaining amenable

to online collection in e�cient space and time. In this chapter, we develop the context-aware

communication graph. Context-aware communication graphs are a communication graph

abstraction that strikes a balance between these design goals. The guiding insight of our

context-aware communication graph design is that nodes represent a dynamic instance of

a particular static code point, as it executes in a particular communication context. The

communication context of a node abstractly encodes inter-thread communication opera-

tions preceding the execution of the instruction represented by the node. Context-aware

communication graphs are discussed in detail in Section 2.1.

In this chapter we introduce Bugaboo a new technique and system design that is useful

for debugging multi-threaded programs. Bugaboo makes several key contributions. First,

we describe context-aware communication graphs. Second, we propose a debugging tech-

nique that uses context-aware communication graphs to find the code related to a schedule-

dependent failure. Third, we describe a simple implementation of Bugaboo’s context-aware

communication graph collection mechanism, which uses software support only. Finally, we

evaluate our techniques and show that they are useful for debugging a variety of complex

concurrency bugs, with a modest programmer e↵ort.

2.1 Context-Aware Communication Graphs

Our approach to concurrency bug debugging begins with a bug report that describes a

schedule-dependent failure and an input that sometimes leads to that failure. A programmer

using our technique runs the program repeatedly with the failure-triggering input. Bugaboo

23

collects inter-thread communication graphs from each execution. Some executions fail and

others do not; the programmer annotates each graph as having come from either a failing

or a non-failing execution. Bugaboo then analyzes the collected graphs to detect di↵erences

between the failing and non-failing graphs that are likely to be related to the failure. The

key idea is that presence or absence of certain edges distinguish a correct execution’s graph

from an incorrect execution’s graph. In this way, graph di↵erences directly reflect buggy

communication.

Figure 2.1 illustrates this concept. Figure 2.1(a) shows an event ordering bug taken from

MySQL-4.1.8. Figure 2.1(b) shows the communication graphs obtained from a correct (top)

and an incorrect execution (bottom). In the incorrect execution there is no communication

between the store to dynamicId in Thread 1 and the load in Thread 2, so Thread 2 reads

uninitialized data. Comparing these graphs directly points to the communication that

is characteristic of the failing execution. We discuss graph processing in more detail in

Section 2.3.

NodeState::setDynamicId(...,int id,...)

{ ...

 dynamicId = id;

 ...

}

int MgmtSrvr::Status(...)

{ ...

 myId = node.dynamicId;

 ...

}

Thread 1 Thread 2

Ordering violation bug from MySQL. Thread 1 initializes dynamicId. In
incorrect executions, Thread 2 reads the data before it is initialized.

(a)

✓

✕

Graphs from multiple executions
classified as correct or incorrect.

(b)

Figure 2.1: High-level view of how communication graph structure can reveal a
failure. Markers represent memory operations involving shared data.

2.1.1 Context-Oblivious Communication is Insufficient for Concurrency Debugging

A key part of using communication graphs for debugging is deciding what information is

encoded by our chosen graph abstraction. A very simple communication graph abstraction

represents static code points with nodes and communication between static code points

via shared memory with edges. We call this very simple abstraction a “context-oblivious”

communication graph. Context-oblivious graphs do not encode any information about which

24

dynamic instance of a particular static code point participated in communication. Generally,

we call information that distinguishes one dynamic instance of a code point from another

the “context” of that dynamic instance. One of the main contributions of this chapter is to

show that a context-oblivious communication graph does not encode su�cient information

for a general approach to concurrency bug debugging.

In a context-oblivious communication graph, schedule-dependent failures may lead to

graph edges that are present only in failing executions’ graphs; therefore simple graph dif-

ferences might point to buggy code points. For example, consider the bug in Figure 2.2(a),

extracted from MySQL: if the read access of log type in Thread 2 interleaves between the

two writes in Thread 1, a failure occurs. Figure 2.2(b) shows a communication graph result-

ing from a union of graphs from a failing and a non-failing execution. The bad interleaving

in (a) leads to the dashed edge in (b) that only appears in failing executions.

if(log_type != CLOSED){

 //Update Logged

}else{

 //Update Erroneously Ignored

}

(a)
Atomicity Violation bug from MySQL. Arrows represent

interleavings. Dashed arrow represents buggy interleaving.

(b)
Communication graph. Dashed edge
appears in incorrect execution only.

log_type = CLOSED;

...

log_type = LOG_BIN;

Thread 1 Thread 2

Figure 2.2: Debugging an atomicity violation example with a communication
graph. Di↵erent interleavings of the code in (a) yield di↵erent communication graph
edges in (b).

As illustrated by Figure 2.2, context-oblivious graphs can be used to debug some con-

currency bugs, but they cannot be used to debug many others. This is because graphs from

executions exhibiting schedule-dependent failures often contain edges that are also present in

graphs from non-failing executions. Figure 2.3(a) shows a multivariable atomicity violation,

in which two variables representing a string and its length are not updated atomically. The

read accesses of str and len in Thread 2 will get inconsistent data if they interleave with

the write accesses in Thread 1 and cause an atomicity violation. However, as Figure 2.3(b)

shows, this interleaving does not lead to a unique edge in the communication graph. The

lack of any di↵erence between the failing and non-failing executions’ graphs makes it impos-

25

sible to isolate any communication event as being characteristic of the failure using graph

di↵erences.

To recapitulate, the edges in the communication graph that are the result of the atomicity

violation are also present in a graph from a non-failing execution. The context-oblivious

communication graph is lacking because it does not distinguish between di↵erent dynamic

instances of the code points involved in this failure. In Figure 2.3, the dynamic instances

of the code points in Thread 2 that occur between the two operations in Thread 1 are

characteristic of the failure. In contrast, the dynamic instances that both occur either

before or after the operations in Thread 1 are indicative of correct behavior.

(a)
Multi-variable atomicity violation example. Arrows
represent a few possible interleavings. Dashed

arrows represent buggy interleaving.

{ ...

 __ = str;

 ...

 __ = len;

}

{ ...

 str = newStr;

 ...

 len = newLen;

}

Thread 1 Thread 2

char *str; // shared variables

int len;

(b)
Communication graph. Dashed edges represent

buggy communication. Edges alone can not
distinguish correct/incorrect communication.

Figure 2.3: A basic communication graph is often insu�cient for debugging.
Comparing edge sets from failing and non-failing executions’ graph does reveal the cause
of the failure.

2.1.2 Adding Communication Context to Communication Graphs

One way of distinguishing between di↵erent dynamic instances of a static code point is by

making nodes directly represent dynamic memory operations. Such a “fully dynamic” com-

munication graph distinguishes between all di↵erent dynamic instances of every static code

point. A key design concern in this work is to ensure that communication graph collection

is time and space e�cient. Fully dynamic communication graphs are e↵ectively traces of all

memory operations from an execution. Such a graph structure is impractical because its size

is unbounded, growing with execution time. Graph size that scales with execution length

fails to satisfy our space-e�ciency design constraint. We propose context-aware commu-

26

nication graphs, a new communication graph abstraction that distinguishes between some

di↵erent dynamic instances of communicating code points, but remains bounded in size and

is not significantly larger than a context-oblivious communication graph.

The key aspect of a context-aware communication graph is that nodes represent a combi-

nation of static memory instruction and the communication context in which the instruction

executed. The communication context of a memory instruction is the sequence of poten-

tially communicating memory instructions observed by the executing thread immediately

prior to the execution of the memory instruction. We obtain each memory instruction’s

communication context by monitoring potentially communicating memory operations that

are observed by a thread. The communication context is an abstract encoding of these

observed operations. We encode memory operations that make up the context as context

events by discarding the data and instruction address of the operations, keeping only the

operation type.

There are four types of context events:

1. LcRd, a read of data recently written by a remote thread

2. LcWr, a write to data recently read or written by a remote thread

3. RmRd, a remote read of data recently written locally

4. RmWr, a remote write to data recently read or written locally

As a thread observes context events, it inserts them into a context queue, which is a

fixed-size FIFO. When a thread executes a communicating memory operation that must

be added to the context-aware communication graph, the contents of the thread’s context

queue is the communication context of that memory operation’s graph node. Context size

is arbitrary, and the longer it is, the more ordering information is encoded in the graph.

An important property of communication context is that context events are collected

for any potentially communicating memory operations, regardless of its instruction or data

address. With this property, communication context abstractly encodes the global order

27

of inter-thread communication operations – precisely the information that is important for

distinguishing between failing and non-failing patterns of communication.

Formalism and Properties of Context-aware Communication Graphs Formally,

a context-aware communication graph is defined as G = (V,E), where v 2 V is a tuple

(inst, ctx), and each edge (u, v) 2 E is a pair of these tuples. An edge ((u.inst, u.ctx), (v.inst, v.ctx))

is present in G if during the execution from which G was constructed, two conditions held:

1. Condition 1: a thread executed u.inst when that thread’s context queue contained

u.ctx and wrote a value to a shared memory location, x

2. Condition 2: a di↵erent thread than the one in Condition 1 executed v.inst when

that thread’s context queue contained v.ctx and read or overwrote the value written

to x by u.inst in Condition 1

.

Context-aware communication graph nodes distinguish between some di↵erent dynamic

instances of static instructions, which are directly represented as nodes in context-oblivious

graphs. Each node in a context-oblivious communication graph therefore maps to multiple

nodes in a context-aware communication graph from the same execution. If the context-

oblivious communication graph of an execution has N
s

nodes, a context-aware communica-

tion graph of the same program execution will have at mostN
s

⇥C nodes, where C is number

of all possible communication contexts in which a memory access can execute. Since there

are four types of events, C = 4S , where S is the context size. We experimentally determined

(Section 2.4.3) that a context of five events (1024 possible contexts) is enough to capture

enough ordering to detect all types of concurrency bugs discussed in the literature. In prac-

tice, the addition of context does not mean that a context-aware communication graph is

1024 times bigger, because each node executes in a small fraction of possible contexts. Our

experiments (Section 2.4.6) never showed an increase larger than 50-fold.

Figure 2.4 shows how context-aware communication graphs can be used to debug con-

currency bugs. Figure 2.4(a) shows multiple executions of the buggy code in Figure 2.3(a).

28

For each execution, it shows the executed sequence of memory operations. The symbols

in parenthesis represent the communication context of each thread at the point when the

communication happened. For example, refer to the first execution (top) in Figure 2.4(a):

the first operation on the left (write to str) was executed after two remote reads had been

observed by the local node, so the context at that point is (RmRd, RmRd); the context

becomes (RmRd,RmRd,LcWr) after that operation when the next operation on the left is

executed (write to len). This sequence of context updates illustrates how the context adds

an abstract encoding of the global operation order to the communication graph.

Figure 2.4(b) shows that, unlike a context-oblivious communication graph, a context-

aware communication graph makes it possible to identify the failure-inducing communica-

tion that occurs between the write to str and read from str. Recall that context-oblivious

communication graphs are limited in exposing concurrency bugs because there are no edges

that are only present in the graphs of incorrect executions. With context-aware graphs

there are edges that are only present in graphs of incorrect executions.

2.2 Implementing Context-Aware Communication Graph Collection

At the algorithmic level, context-aware communication graph collection is a dynamic analy-

sis. Each thread tracks its current communication context. As memory operations execute

and communication occurs, communication graph edges are added to the graph.

We describe a software implementation of Bugaboo, BB-SW, that is appropriate for

use on commodity multiprocessors with modest run time and storage overheads. BB-SW

was implemented using the Pin binary instrumentation framework. BB-SW instruments

memory accesses with calls to our runtime that monitor those memory accesses and build

the communication graph. Our runtime has three key data-structures: (1) a last writer table

that maps each memory location to an entry containing the instruction address, thread ID,

and communication context of the last writer. This table can be configured to track memory

locations at word or line granularity; (2) a per-thread array that implements each thread’s

context queue; and (3) a graph data-structure that stores the context aware communication

graph itself.

Whenever a thread reads from or writes to a memory location, the thread checks the

29

(∅)

(RemRd)

(RemWr)

(RemWr, LocRd)

(RemWr, RemWr)

(RemWr, RemWr, LocRd)

(∅)

(LocWr, RmRd, RmRd)

(LocWr)

(RemRd, RemRd)

(RemRd, RemRd, LocWr)

(b)
Context-aware communication graph.

Dashed edges come from bad interleavings.

(a)
A few of the possible interleavings and their corresponding

communication contexts from code in Figure 4(a). Dashed arrows
correspond to bad interleavings.

 str = newStr;(∅)

 __ = str;
 ...
 __ = len;

(RemWr)

(RemWr, LocRd)

 str = newStr;
 ...
 len = newLen;

(RemRd, RemRd)

(RemRd, RemRd, LocWr)

 __ = str;
 ...
 __ = len;

(∅)

(LocRd)

 str = newStr;
 ...
 len = newLen;

(∅)

(LocWr)

 __ = str;
 ...
 __ = len;

(RemWr, RemWr)

(RemWr, RemWr, LocRd)

Thread 1 Thread 2

(∅)

(RemRd)

len = newLen; (LocWr, RemRd, RemRd)

...

(∅)

(RemWr, LocRd, LocRd)

(∅)

Non-buggy
Execution

Buggy
Execution

Non-buggy
Execution

(context)(context)

...

...

...

...

...

...

(RemWr)

...
(LocRd, LocRd)

(LocRd, LocRd, RemWrite)

(LocWr)

(LocWr, RemRd)

(LocWr, LocWr)

(LocWr, LocWr, RemRd)

Figure 2.4: A context-aware graph reveals the cause of a multi-variable atomicity viola-
tion. Di↵erent executions produce di↵erent sets of communication graph edges. Using a context-
aware graph, edge di↵erences reveal the communication responsible for the failure. Using a context-
oblivious graph, it does not.

last writer table to determine which thread last wrote that location. If the last write was

performed by a di↵erent thread, the thread executes code to add a new edge to the graph.

The source node of the new edge is created with the last writer’s instruction address and

context. The edge’s sink node is created with the thread’s executing instruction and the

contents of the thread’s context queue.

To maintain the communication context, whenever a thread accesses a location last

written by another thread, it records a corresponding LcRd or LcWr event identifier in its

context queue. The thread that last wrote that location records a corresponding RmRd or

RmWr event in its context. The size of the event FIFO queue is fixed at five and when full,

the oldest element is discarded.

30

2.3 Debugging with Context-Aware Communication Graphs

We develop a method for concurrency bug debugging with context-aware communication

graphs. Using our debugging technique, the programmer collects a large set of commu-

nication graphs and annotates each as having come from a failing or non-failing program

execution. Bugaboo then compares the set of failing graphs to the set of non-failing graphs

and reports a list of edges that distinguish failing executions from non-failing ones.

Collecting and Labeling Graphs

The first step in this debugging methodology is for the programmer to run the application

multiple times using BB-SW, collecting a communication graph from each execution. The

programmer then labels each graph as having come from a failing or non-failing execution.

The process of collecting failing and non-failing graphs can be assisted by testing tools that

attempts to force bugs to happen [96, 105]. Our labeling process assumes that the program-

mer classifies an execution as failing if the failure being debugged manifests, regardless of

whether other failures manifest.

Analyzing Graphs and Ranking Code Points

Once graphs have been collected from many executions and labeled, our analysis produces

a set of failure-only graphs. There is a failure-only graph for each graph from a failing

execution. A failing execution’s failure-only graph contains the set of edges that occur in

that failing execution’s graph, but not in any non-failing execution’s graph.

Computing the failure-only graphs cuts down the set of edges under consideration sub-

stantially, compared with the original set of graphs from failing executions. However, each

failure-only graph contains two classes of edges: (1) edges in the graph because they are

related to the cause of the failure; and (2) edges in the graph because there is a large diver-

sity of program behavior and many edges occur only in failing program executions simply

by chance. Our tools goal is to isolate the first kind of edges (those related to the bug) and

to de-emphasize the second kind of edges (those in the graph by chance). To accomplish

this goal, we assign a rank to each of the code points in the failure-only graphs.

31

To compute a code point’s rank, we rely on a prior assumption about the distribution

of di↵erent contexts in which a code point executes. We assume that a code point tends

to execute in a small, invariant set of contexts when that code point is not involved in

causing a failure. Our rank function looks for instances of a code point that deviate from

this assumption, executing in failing executions, in an unusual context. Such code points

receive a higher rank than those that adhere to this assumption.

To find such code points, we analyze each edge in each failure-only graph. We first break

each analyzed edge into its two constituent code points. The rank of a code point, CP , is

defined as: rank
CP

=
P

x2X
CP

F

CP,x

F

CP,⇤
. X

CP

is the set of contexts that occur in nodes with

code point CP in any failure-only graph. F
CP,x

is the number of failure-only graphs in

which code point CP exists in a node with context x. F
CP,⇤ is the total number of graphs

(failure-only and non-failing) in which CP occurs in a node, regardless of context and across

all runs. We sort the list in ascending rank order. In Section 2.4.2 we demonstrate that

this method is very e↵ective at detecting concurrency errors, despite a few irrelevant code

points that get a high rank.

2.4 Evaluation

This evaluation aims to: (1) demonstrate that our debugging methods based on context-

aware communication graphs detect bugs accurately, leading to few unnecessary code in-

spections; (2) characterize size and accuracy of our graphs; (3) characterize the behavior

and performance of BB-SW.

2.4.1 Experimental Setup and Methodology

We conducted our experiments using our full implementation of BB-SW, described in Sec-

tion 2.2. We used three categories of workloads: full applications, bug kernels, and synthetic

buggy code. Table 2.1 shows the workloads used. The full applications were chosen based

on previous literature on bug detection [79, 85, 139]. To exercise buggy code in Apache,

we enabled bu↵ered logging, and used a custom script which launched 10 simultaneous re-

quests for a static resource. For our experiments with MySQL, we enabled binary logging,

and used the included sql-bench utility, modified to execute 50 instances of the test-insert

32

benchmark in parallel. For PBZip2, we decompressed a bzip compressed text file contain-

ing a communication graph from our tool. For AGet we fetched a software archive from a

remote server, and interrupted the download with the Unix interrupt signal. In AGet and

PBZip2, we added Unix usleep calls to more frequently cause the bug to manifest itself.

Our bug kernels were extracted from Mozilla and MySQL. They are 300-600 line extracts

including buggy code from these applications. We used bug kernels to capture the essence

of bugs, and make in-depth experimental analysis less cumbersome. This methodology has

been used successfully in prior work in this area [80, 85, 139]. Finally, we used several

synthetic bug benchmarks. Several of these were used in prior work on atomicity violation

detection [80, 85], and we added a synthetic ordering violation bug.

Name Version Type Description

S
y
n
t
h
e
t
i
c

BankAcct n/a AV
Two threads try to update a bank account balance
simultaneously, and an update is lost.

CircularList n/a AV
Many threads remove elements from head of queue and append them to tail of queue.
Lack of atomicity of remove/append leads to incorrect append order.

LogAndSweep n/a AV
A log is written by many threads, and periodically flushed.
Missing atomicity constraint leads to log corruption.

MultiOrder n/a OV
Two threads’ repeated accesses to a shared variable
must be interleaved. No code constraint enforces interleaving.

B
u
g

K
e
r
n
e
l

Moz-jsStr 0.9 MVAV
To compute avg. string length, total number of strings and total string length
are tracked. Non-atomic updates can permit these to become inconsistent

Moz-jsInterp 0.8 MVAV
Cache data structure is populated, and flag indicating cache occupancy is set. Lacking
atomicity constraints, interleaving read may read flag while it is inconsistent with cache.

Moz-macNetIO 0.9 MVAV
Read of “valid” flag in conditional test and outcome of conditional
can be interleaved, and data invalidated.

Moz-TxtFrame 0.9 MV
During update of bu↵er o↵set and bu↵er text length variables,
inconsistent values can be read by interleaving read.

MySQL-IdInit 4.1.8 OV
Query of database node ID should be ordered with assignment of node ID
but absent ordering constraints lead to incorrect ID in query reply.

F
u
l
l
A

p
p
.

MySQL-BinLog 4.0.12 AV
Attempts to log data during log rotation do not properly handle
log being closed, leading to unlogged database transactions.

Apache-LogSz 2.0.48 AV
Concurrent updates to length of text in bu↵er can cause dropped
update, leading to corruption of bu↵er. Can lead to crashes and log corruption.

PBZip2-Order 0.9.1 OV
Termination of worker thread loops is not ordered with deletion of
pthread cond. var. data structure. Accesses to deleted cond. var. causes crash.

Aget-MultVar 0.4 MVAV
Value of shared var. should be consistent with # bytes written to output file. Lacking
atomicity constraint permits read of inconsistent value of shared var. in signal handler.

Table 2.1: Bug workloads used to evaluate Bugaboo. AV indicates an
Atomicity Violation, OV indicates an Ordering Violation, and MVAV indicates
Multi-Variable Atomicity Violation.

2.4.2 Efficacy

We applied the debugging methodology described in Section 2.3 to each benchmark program.

Recall that the output of BB-SW is a rank-ordered list of code points, the first of which

is most likely related to the failure being debugged. We measure the quality of the output

by the number of code points ranked higher than the first code point that is part of the

33

bug, i.e., the number of inspections required before the bug is found. All results presented

are averaged over 5 trials. For each trial, we collected graphs from 25 failing runs and 25

non-failing runs. We justify the number of runs in Section 2.4.5. Table 2.2 lists each bug,

whether we were able to detect it with and without context (Columns 2-3), and the number

of code point and function inspections required to find the bug (Columns 4-5).

Overall, our results demonstrate that our technique accurately pin-points concurrency

errors, even in very large software packages. We isolated code points related to the bug in

each benchmark with only a few code inspections. In many cases, a code point related to

the bug was the first code point reported.

Benchmark
Debuggable Debuggable # of Code Inspections Required

without with BB-SW Line BB-SW Word
Context Context Granularity Granularity

BankAcct No Yes 4.0 (1.0) 3.6 (1.4)
CircularList No Yes 1.2 (1.0) 2.6 (1.2)
LogAndSweep No Yes 1.0 (1.0) 1.0 (1.0)
MultiOrder No Yes 1.0 (1.0) 1.0 (1.0)
Moz-jsStr No Yes 1.0 (1.0) 1.0 (1.0)
Moz-jsInterp No Yes 2.6 (1.6) 1.8 (1.0)
Moz-macNetIO No Yes 5.0 (3.6) 3.0 (1.6)
Moz-TxtFrame No Yes 1.8 (1.4) 3.4 (1.0)
MySQL-IdInit Yes Yes 1.0 (1.0) 1.0 (1.0)
MySQL-BinLog No Yes 28.4 (19.2) 34.2 (21.2)
Apache-LogSz No Yes 8.8 (7.2) 13.2 (10.8)
PBZip2-Order No Yes 10.8 (2.6) 6.6 (2.0)
AGet-MultVar No Yes 1.0 (1.0) 1.0 (1.0)

Table 2.2: Bug detection accuracy using Bugaboo. We report the number
of code point inspections required before the corresponding bug was found, the
number in parenthesis show the number of distinct functions. Note that one
inspection indicates that zero irrelevant code points needed inspection, since the
bug was found on the first. Results are averaged over five trials.

2.4.3 The Importance of Communication Context

Column 2 (Detected without Ctx) and Column 3 (Detected with Ctx) in Table 2.2 show

that, with just one exception, we can debug the bugs in our evaluation using context-

aware communication graphs, but not context-oblivious ones. The exception is an ordering

violation bug: MySQL-IdInit. We can debug this bug without context because there is a

pair of memory accesses that communicates only during failing runs. For the other bugs,

without context, there were no context-oblivious communication graph edges in graphs from

34

our experimental executions that occurred only during failing executions.

Our dependence on context does not mean other techniques will not find these bugs.

For example, AVIO can detect some of the atomicity violations that require context (e.g.,

BankAccount) because AVIO uses a heuristic specific to atomicity violations. At the time

of the initial publication on this work [81], however, we were unaware of another approach

that was useful for debugging the multivariable atomicity violations in Table 2.1.

2.4.4 Detecting Bugs With Context-Aware Communication Graphs

Columns 4, and 5 in Table 2.2 show the number of code point inspections to find a code

point related to the bug. In Bugaboo’s ranked list of reports, there is a code point related

to the bug for all of the programs in our evaluation. Most experiments required few unnec-

essary code inspections and, in some cases, none at all. The application requiring the most

inspections was MySQL-BinLog, with approximately 34 (in 21 di↵erent functions), which

is a reasonable number considering that the code consists of over one million lines. For

Apache-LogSz, which has over 220k lines of code, we only needed to look at 8.8 code points

on average to find code related to the bug. For Aget-MultVar, a smaller application with

less than 5k lines of code, there was never any code point ranked higher than code related

to the bug.

Comparing Columns 4 and 5 shows the e↵ect of tracking last writer meta-data at the

granularity of a word (i.e., 64 bits), versus tracking it at the granularity of a cache line

(i.e., 64 Bytes). Comparing these results shows that there is little change in debugging

precision with the change in meta-data granularity. This result suggests that tracking last

writer meta-data at cache line granularity is a good idea, requiring less total storage for

meta-data and reducing interference between program data accesses and meta-data accesses

in the cache. This result also shows that tracking last writer meta-data is amenable to

implementation in hardware, using per-cache-line last writer meta-data. We discuss such a

hardware implementation in Chapter 4.

35

Sources of Irrelevant Reports

There are two main reasons irrelevant code points are sometimes highly ranked. First,

nondeterministic multi-threaded execution may lead to potentially rare, but correct com-

munication. If su�ciently rare, or if only ever observed in failing executions, these may

be ranked highly, in spite of being correct. Second, because failure behavior tends to be

infrequent, when buggy code executes, the resultant communication context might also be

infrequent with respect to subsequent communicating instructions not involved in the bug.

This rare communication can lead to these involved instructions also having a rare con-

text and appearing as bugs in our ranking. Both of these data sparsity problems can be

mitigated by using communication graphs from more program executions.

2.4.5 Effect of Context Size

Benchmark None 1-Entry 2-Entry 3-Entry 4-Entry 5-Entry
BankAcct — 2.0 2.0 2.4 3.4 3.6
CircularList — — 7.2 3.4 3.2 2.6
LogAndSweep — — 2.2 2.8 1.6 1.0
MultiOrder — — 2.8 1.0 1.0 1.0
Moz-jsStr — 1.0 1.0 1.0 1.0 1.0

Moz-jsInterp — — — 1.6 1.8 1.8
Moz-macNetIO — 1.2 1.0 1.4 2.2 3.0
Moz-TxtFrame — — 3.4 2.8 2.8 3.4
MySQL-IdInit 1.0 1.0 1.0 1.0 1.0 1.0
MySQL-BinLog — — 522.6 128.8 60.0 34.2
Apache-LogSz — 25.2 6.4 7.2 9.8 13.2
PBZip2-Order — — — — 6.6 6.6
AGet-MultVar — 3.8 3.8 1.4 1.0 1.0

Table 2.3: Debugging e↵ectiveness for BB-SW (word) with
di↵erent context sizes. Dash (—) indicates the bug was not found
with the corresponding context size.

Table 2.3 shows how Bugaboo’s bug detection ability varies with the context size. Note

that some bugs cannot be found with context size lower than 4 (PBZip2-Order). For

MySQL-BinLog, the number of inspections required to find the bug is high unless a longer

context is used. For most applications, as context grows, the number of irrelevant inspections

goes down, which is expected since more ordering information is available to distinguish

memory accesses involved in bugs. We chose Bugaboo’s default context size to be 5 because

36

we wanted to favor better bug coverage and lower unnecessary inspections even if at the

cost of increasing graph size.

0 5 1
0

1
5

2
0

2
5

Additional Runs

0

20

40

60

80

100

%
 E

d
g
e
s
 A

d
d
e
d

5-entry Context
4-entry Context
3-entry Context
2-entry Context
1-entry Context
No Context

0 5 1
0

1
5

2
0

2
5

Additional Runs

0

20

40

60

80

100

%
 E

d
g
e
s
 A

d
d
e
d

0 5 1
0

1
5

2
0

2
5
Additional Runs

0

20

40

60

80

100

%
 E

d
g
e
s
 A

d
d
e
d

(a)
MySQL

(b)
Apache

(c)
PBZip2

Figure 2.5: Graph convergence. Graphs reach a convergent structure with an increasing
number of executions’ graphs. The figure shows MySQL (a), Apache (b), and PBZip2 (c).

We now show that after few program runs, the number of unobserved communication

graph edges in each additional run decreases rapidly, i.e., we obtain a convergent commu-

nication graph quickly. Figure 2.5 shows the number of new communication graph edges

observed during each program execution as a fraction of the total size of the union of graphs

from all prior executions. As expected, with longer contexts, more executions are necessary

to reach a convergent graph.

The set of observed edges converges, as indicated by the sharp drop-o↵ in new commu-

nication graph edges, after about 10-15 executions. The data show that as the length of

the context increases, the number of executions required to converge increases as well. The

increase occurs because as the context gets longer, each static instruction corresponds to a

larger set of nodes (i.e., one node for each distinct context). At a few points in the sequence

of executions, the fraction of edges added is greater for smaller context sizes. This apparent

inversion occurs because graphs with longer contexts are larger, and the percent increase in

edges contributed by a particular execution is lower for larger graphs. These results show

that the number of executions required to collect a convergent graph is proportionate to

the length of the context, and that for any context size, very few executions are necessary.

This justifies the choice of 25 runs for our evaluation, since it is su�cient for convergence.

37

2.4.6 Characterization

Our characterization has two goals: to assess the performance cost of BB-SW; and to mea-

sure the typical size of context-aware communication graphs. We did this characterization

using the full applications from Table 2.1 as well as the PARSEC [17] benchmark suite, since

synthetic bugs and bug kernel executions lack adequate diversity for such a characterization.

Benchmark
BB-SW Graph Sizes
Slow- w/o Context w/ Context

down(x) # Nodes # Edges # Nodes # Edges
blackscholes 128 51 104 230 472

canneal 80 216 437 2025 4055
dedup 451 227 750 3784 11570
ferret 26 398 821 572 1216

fluidanimate 4623 284 831 15692 38570
freqmine 3845 1050 2228 41455 85142
swaptions 2151 168 676 5103 15633

vips 5025 1326 2942 56016 115178
x264 1260 2347 4799 68067 137071

AGet-MultVar 15 58 135 154 376
PBZip2-Order 19 59 145 208 451
Apache-LogSz 13 672 1361 1797 3635
MySQL-BinLog 166 1303 3271 20435 48861

Table 2.4: Characterization of BB-SW and communication graphs sizes.

Overheads of BB-SW

Column 2 of Table 2.4 shows the slowdown caused by BB-SW compared to the application

running natively, without any instrumentation. As expected, BB-SW causes significant

performance degradation, because each memory operation requires a call into the runtime

to update the communication graph and each thread’s context queue. The cost of the action

varies depending on how frequently inter-thread communication occurs in the application.

For some applications, such as Apache-LogSz and AGet, we saw tolerable slowdown of about

15x. For some applications (e.g., Vips), the cost was significantly higher, reaching three

orders of magnitude at worst. This is on par with popular dynamic analysis tools such

as Valgrind [98]. Our initial implementation of BB-SW in this work is a simple research

prototype and is not heavily optimized. Chapter 3 describes a more highly optimized

implementation of context-aware communication graph collection.

38

Graph Sizes

Columns 3-6 of Figure 2.4 show the size of communication graphs with and without con-

text. The size of the communication graph for an execution is determined by the frequency

and diversity of inter-thread communication in that execution. The first noticeable trend is

that context-aware communication graphs (Columns 5 and 6) are significantly larger than

context-oblivious communication graphs (Columns 3 and 4). This is expected, since in-

structions can execute in multiple contexts. For none of the applications did these graphs

exceed 100k nodes and 200k edges in size. Using a straightforward adjacency matrix rep-

resentation, context-aware graphs never exceed 1 MB in size. The low storage overhead

makes it feasible to use context-aware communication graphs during debugging.

2.4.7 Case Study: Configuration error in dedup

We conducted a case study using BB-SW to debug a configuration error in dedup, one of

the PARSEC applications. We reconfigured the hash table data structure used in dedup so

that it was built with a configuration documented as unsafe for multi-threaded execution

— we enabled dynamic hash re-sizing. We then used BB-SW to collect graphs from 50

executions, using the buggy configuration. We labeled and processed the collected graphs

using our debugging methodology. After examining just 6 code points, we discovered an

atomicity violation that occurs when the buggy configuration is used, alongside a developer

comment describing that the code was not safe if threading is enabled. While this bug is

a documented configuration error, and not a new bug, we consider the ease with which we

found the involved code a further validation of the e↵ectiveness of our technique.

2.5 Conclusions, Insights, and Opportunities

Inter-thread communication is a fundamental property of multi-threaded program execu-

tions. Understanding di↵erences between communication in failing and non-failing program

executions is helpful to understanding concurrency bugs. Communication is helpful because

concurrency bugs are the result of unintended interactions between threads and communi-

cation is the primary mode of inter-thread interaction.

39

This chapter described a method for debugging challenging concurrency errors using an

abstract graph encoding of inter-thread communication. The key to our approach is in the

design of the context-aware communication graph abstraction, the representation of commu-

nication our technique relies on. Using these graphs we developed Bugaboo, a comprehen-

sive framework for debugging concurrency bugs that manifest as unintended inter-thread

communication – including single- and multi-variable ordering and atomicity violations. We

developed BB-SW, a software reference implementation of Bugaboo using binary instrumen-

tation and showed that it is e↵ective. BB-SW identifies code points involved in concurrency

bugs and did so with run time and space overheads tolerable for debugging.

Insights. There are two important insights in the work in this chapter. First, we dis-

covered that a context-aware communication graph that corresponds to a failing program

execution is structurally di↵erent from one that corresponds to a non-failing execution.

This insight enables using di↵erences in communication graph structure to find concurrency

bugs. Looking only at communication, rather than relying on bug-specific heuristics makes

our approach to debugging general.

Second, we showed that context-oblivious graphs that do not di↵erentiate between di↵er-

ent dynamic instances of code points are inadequate for debugging in general. Context-aware

communication graphs overcome this limitation by abstractly encoding information about

the relative order of communication events in the execution, in the form of communication

context.

Opportunities. In Bugaboo, we focused on developing, collecting, and characterizing

context-aware communication graphs and their role in debugging. The work in Bugaboo

creates several interesting opportunities, some of which are covered in future chapters of

this dissertation, and some of which are left to future work.

Bugaboo, as discussed in this chapter, does not discuss the role of hardware and archi-

tectural support for collecting context-aware communication graphs. Chapter 4 discusses

the role of hardware support in implementing Bugaboo.

Bugaboo uses a very rudimentary ranking function to find buggy code points. First,

after conversion to the failure-only graph, Bugaboo’s ranking function considers only code

points, not communication graph edges. Ranking with the information couched in edge

40

frequencies is a more potent way of discovering code relevant to a bug. Second, Bugaboo

reports individual code points related to the bug. Reporting pairs of code points involved

in communication, or reporting complexes of code points that reflect communication and

temporal sequencing is a better aid to the non-local reasoning required to solve hard con-

currency bugs. Chapter 3 addresses these limitations by refining the information that is

reported and enriching the ranking function with more information about failed execution

behavior.

One major opportunity not addressed by the work in this dissertation is a large scale

characterization of communication graphs. A statistical analysis that looks at structural

graph properties, or even spectral graph properties may reveal fundamental characteristics of

inter-thread communication. Looking at graphs and more general behavioral characteristics

(e.g., performance, quality of service) in the large, we may garner insights about how to

better write or execute programs. Communication graphs could play a role in IDEs to

aid developers. Communication graphs could play a role in dynamic compilers or runtime

systems to aid in resource allocation or recompilation decisions. There may even be a role

for communication graphs in discovering and enforcing security properties, as these graphs

are an abstract representation of information flow among threads.

41

Chapter 3

RECON: DEBUGGING WITH RECONSTRUCTED EXECUTION FRAGMENTS

Chapter 2 illustrated that Bugaboo is e↵ective for debugging. However, neither Buga-

boo, nor other prior approaches (like those discussed in Chapter 8), are a panacea for

concurrency bugs. There are several essential limitations to prior techniques. First, many

prior approaches to detect bugs report too little information to understand bugs: a sin-

gle communication event [81, 121, 139] or the thread preemptions from buggy runs [25, 96].

However, concurrency bugs are complex and involve code points distributed over a code base

and in multiple threads, requiring more information to be fully understood. To understand

such bugs, developers benefit from seeing a portion of the execution illustrating the actual

code interleaving that led to a failure. Second, replay-based approaches [137, 106] often

report too much information – e↵ectively, the entire execution schedule. Replay makes bugs

reproducible, but programmers must sift through an entire execution trace to comprehend

bugs. Finally, many techniques are tailored to a specific class of concurrency errors [80, 104],

limiting their applicability. It is infeasible to anticipate every possible error scenario and

design a tool targeting each. Hence, generality is crucial.

A

B

C

D

E

A

E
B

D

C

Thread 1 Thread 2

...

...

RA
ReconBuggy

Communication

Correct
Communication

Memory
Operation

R
e
c
o
n
s
tru
c
tio
n

Figure 3.1: Recon reconstructs fragments of program execution.

42

In this chapter, we propose Recon, a new approach to concurrency debugging based on

reconstructions of buggy executions. A reconstruction is a short, focused fragment of the ex-

ecution schedule surrounding a shared-memory communication event. Figure 3.1 illustrates

what a reconstruction is and how a reconstruction relates to an execution. Reconstructions

are based on context-aware communication graphs, as introduced in Chapter 2. Using these

graphs, Recon builds reconstructions that show the interleaving that caused buggy behav-

ior, rather than just some of the code points involved. Reconstructions are general, as they

make few assumptions about the nature of bugs — Recon does not look for bug-specific

patterns. Consequently, reconstructions help programmers understand the bugs that lead

to failures caused by arbitrary sub-sequences of a multi-threaded execution schedule.

Observe Bug
and Create Test

Find Bug Using
Reconstructions

Programmer

Collect Graphs
From Many
Executions

Generate
Reconstructions

and Rank

Recon

Figure 3.2: Overview of Recon’s operation.

Figure 3.2 shows an overview of Recon’s basic operation. The process begins when

a programmer observes a bug or receives a bug report. The programmer then derives

a test case designed to trigger the bug, and runs the test multiple times using Recon.

Recon collects a communication graph from each execution, and the programmer or test

environment labels each graph as buggy or non-buggy, depending on the outcome of the

test. Recon then builds reconstructions from edges in buggy graphs; for each one, Recon

computes statistical features to quantify the likelihood that it is related to the bug. Recon

uses the features to compute a rank for each reconstruction and presents them in rank order.

43

With Recon, we make several contributions:

• We propose the concept of reconstructing fragments of multi-threaded executions and

develop an algorithm that builds reconstructions from communication graphs.

• We propose a set of features to describe reconstructions and use statistical techniques

to identify reconstructions that illustrate the root cause of bugs.

• We develop optimization techniques to build communication graphs e�ciently.

• We implement Recon for both C/C++ and Java. Our evaluation uses bugs from

the literature, including several large applications and shows that Recon precisely

identifies bugs and their corresponding reconstructions. We include a case study in

which we use Recon to understand and fix an unresolved bug.

3.1 Reconstructed Execution Fragments

The goal of Recon is to simplify debugging by presenting the programmer with a short,

focused, temporally ordered reconstruction of the events that were responsible for buggy

behavior. Our technique for reconstructing execution fragments is based on a specialized

version of the context-aware communication graph abstraction developed in Chapter 2.

Communication Graphs. Before describing how Recon uses context-aware communi-

cation graphs, this section briefly reviews the basics of communication graphs and context-

aware communication graphs by looking at an example.

Figure 3.3(a) shows an atomicity violation bug that was found in the mysql database

server. In this example, the two writes to log type in Thread 1 should not be interleaved by

reads of log type in another thread. However, a read of the log type variable by Thread

2 may interleave Thread 1’s accesses. The result is that database accesses are not logged,

which is a security issue. The accesses to log type in this example are not ordered by

synchronization, meaning this bug also contains data races. However, even if all accesses

were placed in individual critical sections protected by the same lock, the atomicity violation

would remain, even in the absence of any data-races.

44

Thread 1
862:log_type = CLOSED;

 //rotate log

863:log_type = LOGBIN;

Thread 2
1042: if(log_type != CLOSED) {
 // log database access
 } else {
 // BUG:
 // access not logged!
 }

862: log_type = CLOSED; 863: log_type = LOGBIN;

1042: if(log_type != CLOSED; Node

(b) Communication Graph

(a) Program
OK!

OK!

Figure 3.3: A buggy program and communication graph. The dashed graph edge represents
the buggy communication.

Without guidance, a developer is unlikely to see the following useful, but non-obvious

property of the code in Figure 3.3(a): In buggy executions of this program, the read in

Thread 2 reads a value written by the first write in Thread 1, but in correct executions

the read in Thread 2 reads a value written by the second of Thread 1’s writes. Tracking

communication between instructions in di↵erent threads of a program captures this property.

Figure 3.3(b) illustrates the communication in buggy and correct executions of this code as

a communication graph.

A node in a communication graph represents a program instruction. An edge indicates

a communication event involving the instructions represented by its source and sink nodes.

An edge’s source represents the write instruction whose result was read or overwritten by

the instruction represented by the sink node.

Using communication graphs, a developer can find the bug in Figure 3.3 by focusing

on suspicious communication events that tend to occur in buggy runs, but not in correct

runs. Debugging with communication graphs is one of the motivating ideas behind Recon.

Rather than just considering the presence or absence of individual communication events in

a graph, we reconstruct temporal sequences of communication events and, using machine

learning, infer which sequences most likely illustrate a bug’s cause.

45

 class Queue { ...
 Queue(){
 46: items = ...;
 47: qsize = 0;
 }
 synchronized dequeue(){
115: if (qsize == 0) return null;
117: qsize--;
118: return items[...];
 }
 synchronized size(){
133: return qsize;
 } }

 class Spider { ...
 public void run(){
167: while (...) {
168: if (q.size() == 0) {
170: continue; }
 ...
189: item = q.dequeue();
 ...
195: x = item.getD();
 } }

133: return qsize;

...

115: if (qsize == 0)
115: return null;
...
195: item.getD();
NullPointerException!

133: return qsize;
...
117: qsize--;

Tim
e

47: qsize = 0;
LocWr

133: return qsize;
RemWr, RemWr

Thread 0
 46: items = ...;
 47: qsize = 0;

133: return qsize;
RemRd, RemWr, RemWr

117: qsize--;
LocRd, RemRd, RemWr, RemWr

115: if (qsize == 0)
RemWr, RemRd, LocRd, RemWr, RemWr

(c) Context-Aware Communication Graph

1

2

3
4

1

3

4

Communication Context

Implicit assumption:
q.size() != 0

Bug: another thread dequeues last queue
entry here; this thread dequeues null;
NullPtrException at line 195.

(a) Program

(b) Execution Trace

<uninitialized> 46: items = ...;

Node

Sh
ou

ld
 b

e
at

om
ic

Thread 1 Thread 2

2

Figure 3.4: A buggy program, a failing execution schedule, and its context-aware commu-
nication graph. Nodes represent the execution of operations in a specific context. Edges represent
communication between nodes. Note that we only include events in nodes’ contexts that appear in
our abbreviated trace for simplicity’s sake.

3.1.1 Context-Aware Communication Graphs

Section 2.1.1 showed that simple, context-oblivious communication graphs are insu�cient

for general bug detection. Figure 3.4 introduces a running example showing a simplified

version of a bug in weblech, a multi-threaded web crawler. This example again illustrates

the insu�ciency of context-oblivious graphs. Figure 3.4(a) shows the program, which has an

atomicity violation involving a shared queue. The check of the queue’s size on line 168 should

be atomic with the dequeue operation performed on line 189 to ensure that there is always

an item to dequeue when calling dequeue(), but the programmer has not implemented

this atomicity constraint. Figure 3.4(b) shows an execution trace manifesting the bug. In

this trace, the size() and dequeue() calls in Thread 2 interleave between the size() and

dequeue() calls in Thread 1. Since the queue is emptied by Thread 2, Thread 1’s call to

dequeue() returns null, which is stored in the local variable item. Thread 1 later crashes

with a NullPointerException when trying to invoke the getD() method on this null item.

The problematic communication here is Thread 1’s read of the queue’s qsize field on line

46

115; it reads a value written by Thread 2 at line 117 rather than the same value Thread 1

read from qsize the last time, at line 133. However, looking at this communication alone

is insu�cient to find the bug, as it occurs in both buggy and non-buggy executions.

The solution to this problem is to add communication context to nodes. Context is

a short (e.g., 5 entries) history of context events that occurred before the node’s instruc-

tion executed. Context events are Local Reads, Local Writes, Remote Reads, and Remote

Writes. “Local” events are executed by the thread that executed the node’s instruction,

and “Remote” events are those executed by any other thread. Context events represent

memory operations performed by any instruction to any address and only events’ types

(e.g.,“Remote Read”) are stored in a node’s context. Context-aware nodes represent the

execution of an instruction in a particular communication context, as opposed to just an

instruction. Threads watch for events and maintain their current context. When a thread

communicates, the resulting node is identified by the instruction and the thread’s current

context.

Figure 3.4(c) shows a context-aware communication graph generated by the trace in

Figure 3.4(b). Each numbered circle maps an event in the trace to a corresponding graph

edge. Edge 4 occurs when the buggy interleaving occurs, but not in correct executions

because its nodes’ contexts are unique to buggy executions. Context-aware graphs provide

a means to distinguish buggy communication from correct communication in more complex

bugs when context-oblivious graphs fail to do so.

Timestamped Communication Graphs

We specialize the context-aware communication graph abstraction to encode ordering be-

tween non-communicating nodes, by adding a timestamp to each node indicating when the

node’s instruction executed. We call this new graph abstraction the timestamped commu-

nication graph; interchangeably referring to them as just “graphs” hereafter.

Graph Construction. We collect graphs by keeping a last-writer record for each memory

location composed of: (1) the thread that last wrote the location; (2) the instruction address

and context of the write; and (3) a timestamp for the access. When a memory operation

47

is performed by a di↵erent thread than the last-writer, an edge is added to the graph. The

edge’s source node is populated with the instruction address, context and timestamp stored

in the location’s last-writer record. The sink node is populated with the instruction address,

context, and timestamp of the operation being performed.

To limit the size of the graph, we only record the most recent pair of timestamps for an

edge, i.e., the timestamp is not used to identify a node, only the instruction and context

are. When adding a communication edge to the graph, if the edge already exists, only the

timestamps are updated. By overwriting timestamps, we lose some ordering information, so

we call our extension a lossy timestamp. Figure 3.5(a) shows an example of a timestamped

communication graph. The graph is similar to the one in Figure 3.4, except that each node

now has a timestamp indicating when it occurred.

 G
ra

ph
 E

dg
e

(a)Timestamped Communication Graph

Lossy Timestamps

133: return qsize;
RemWr,RemWr 25

 133: return qsize;
RemRd,RemWr,RemWr 38

117: qsize--;
LocRd,RemRd,RemWr,RemWr 50

115: if(qsize == 0)
RemWr,RemRd,LocRd,RemWr,RemWr 59

DownloadQueue.Java:47

DownloadQueue.Java:133

DownloadQueue.Java:133

DownloadQueue.Java:117

DownloadQueue.Java:115

47: qsize = 0;
LocWr 19

Suffix

Body

PrefixDownloadQueue.Java:46
 <uninitialized>

11
46: items = ...;

14

(b)Reconstruction

Figure 3.5: A timestamped communication graph and corresponding reconstruction. The
graph and reconstruction are based on the program, execution schedule, and graph in Figure 3.4.

3.1.2 Reconstructions

A reconstruction is a schedule of communicating memory operations that occurred during

a short fragment of an execution. In this section, we describe the process of building a

reconstruction around a single, arbitrary communication event (i.e., graph edge). Section 3.2

describes how we identify the reconstructions most likely related to bugs, and Section 3.3.3

details the entire debugging process.

48

Building Reconstructions from Graphs

Recon builds reconstructions starting from an edge in a graph. A reconstruction should

include the memory operations that executed in a short window prior to the source node,

between the source and the sink nodes, and in a short window following the sink. These

regions of the execution are called the prefix, body, and su�x of the reconstruction, re-

spectively. Given a graph from a single execution, we can compare nodes’ timestamps to

determine whether the operation represented by a node occurred in the prefix, body, or

su�x of a reconstruction. More precisely, we include nodes timestamped earlier than the

edge’s source in the prefix. Analogously, we include nodes with timestamps ordered after

the edge’s sink in the su�x. Finally, the body includes all nodes ordered between the source

and the sink.

The size of the window of nodes considered in computing the prefix and su�x is arbitrary.

With a larger window, there is a greater chance that unrelated nodes are included in a

reconstruction. With a smaller window, fewer unrelated nodes are likely to end up in a

reconstruction, but we risk excluding events related to the bug that occur far away from

the communication event. A reasonable window size heuristic is to use the length of the

communication context of a node. Using the context length, we include nodes that were

influenced by, or influenced the context of the sink or source.

Simpler Debugging Using Reconstructions

Figure 3.5(b) shows the reconstruction Recon produces from the graph in Figure 3.5(a). This

reconstruction illustrates the buggy interleaving of queue operations shown in Figure 3.4(b).

It includes all the code points involved in the bug, and presents them in the order that leads

to buggy behavior. In buggy runs, the read of the queue’s size on line 133 and the dequeue

on line 115 are interleaved by the dequeue at line 117. This buggy interleaving is clear in

the reconstruction: line 133’s node is in the body and line 115’s node is in the su�x. The

interleaving dequeue operation at line 117 is the sink node, which is ordered between the

body and the su�x. Hence, the reconstruction clearly expresses this buggy interleaving of

code.

49

This example illustrates a key contribution of reconstructions. Looking at the buggy

edge between line 117’s node and line 115’s node does not explicitly indicate the bug – it

suggests the involvement of the queue, but not the atomicity violation involving line 133.

Instead, the reconstruction built around the non-buggy edge between line 47’s node and

line 117’s node illustrates the bug, showing all three involved code points and the buggy

execution order.

3.1.3 Aggregate Reconstructions

We have described how to build a reconstruction for a single edge from a single execution.

We can aggregate reconstructions from a set of runs to see how frequently code points occur

in a region of a reconstruction across executions. This information allows us to define our

confidence that a code point belongs in a region.

We compute a reconstruction for each edge in each execution’s graph. We then aggregate

the reconstructions of each edge across the executions by computing the union of each of

their prefixes, the union of each of their bodies, and the union of each of their su�xes,

producing the aggregate prefix, body, and su�x. A node may occur in multiple di↵erent

regions in an aggregate reconstruction, if, for instance, in half of executions it appeared in

the prefix, and in half it appeared in the body. Nodes in the same region in an aggregate

reconstruction are unordered with one another, but are ordered with the source and the

sink of the edge in the reconstruction, and with nodes in other regions. The lack of ordering

within a region is because nodes’ timestamps may came from di↵erent executions, so they

cannot be compared.

When aggregating reconstructions, we associate a confidence value with each node in

a region. The confidence value is equal to the fraction of executions in which that node

appeared in that region. The confidence value of a node in a region represents the likelihood

that a node occurs in that region. In Section 3.2, we discuss using confidence values to

identify reconstructions likely related to buggy behavior.

Figure 3.6 shows an example of the aggregation process — Figure 3.6(a) shows recon-

structions produced from 4 di↵erent executions, and Figure 3.6(b) shows the aggregate

50

F

G

(a)Reconstructions From Multiple Runs

A

B

C

D

F

G

B

A

C

D

F

G

A

B

C

E

F

G

B

A

C

D

F

G

B

BA

D

(b)Aggregate Reconstruction

A

E

C

50% 50%

50% 50% 100%

75% 25%

Run 1 Run 2 Run 3 Run 4 Prefix
B

ody
Suffix

A
ggregate
Prefix

A
ggregate
B

ody
A

ggregate
Suffix

Confidence Values

Figure 3.6: Aggregating reconstructions from many executions. (a) shows reconstructions
of many di↵erent failing program executions. (b) shows the resulting aggregate reconstruction with
confidence values.

reconstruction produced from these 4 reconstructions. In this example, node A appears in

the prefix of half of the reconstructions and appears in the body in half of the reconstruc-

tions. The prefix and body of the aggregate reconstruction therefore both include node A,

and assign it a confidence value of 50%. Node C appears in the body of all of the individual

reconstructions, so it appears in the body of the aggregate reconstruction with a confidence

value of 100%.

3.2 Debugging with Reconstructions

Recon’s debugging process has four steps. First, the program is run under Recon several

times, yielding a set of communication graphs labeled buggy or non-buggy (Section 3.1.1).

Second, Recon selects edges from each buggy graph based on how often they co-occur with

failure behavior. Third, for each edge selected in the previous step, Recon builds and

aggregates reconstructions (Sections 3.1.2 and 3.1.3). The last step is to determine which

reconstructions will most likely help a user understand the bug. To do so, we develop

features describing reconstructions and use them to compute a rank for each reconstruction.

We now discuss our proposed features.

51

3.2.1 Features of Reconstructions

A key design concern is that features are general. A feature that targets one bug type or

pattern is not as useful. If we choose features that are not general, we bias our search

toward some bugs and miss others entirely. For example, serializability analysis of memory

access interleavings has been used to detect atomicity violations [80, 104]. However, it does

not detect ordering bugs, or any multi-variable bugs.

Our features should capture as much information as necessary to discriminate reconstruc-

tions of buggy fragments of an execution from reconstructions of non-buggy fragments. The

three features we use are: Buggy Frequency Ratio, which focuses on the correlation between

communication events and buggy behavior; Context Variation Ratio, which focuses on vari-

ations in communication context that co-occur with failure behavior; and Reconstruction

Consistency, which looks at the consistency with which sequences of code points occur in

reconstructions from failing executions. We describe our features below in detail and verify

their e�cacy empirically using a feature importance metric from machine learning [68].

Buggy Frequency Ratio (B)

Intuition. A reconstruction’s Buggy Frequency Ratio, or B value, describes the correla-

tion between the frequency of the communication event from which the reconstruction was

built, and the occurrence of buggy behavior. The motivation for this feature is that we are

interested in events in an execution that occur often in buggy program runs, but rarely, or

never, in non-buggy runs.

Definition. For each aggregate reconstruction, assume #Runs
b

buggy runs and #Runs
n

non-buggy runs. Assume the reconstruction’s edge occurred in EdgeFreq
b

buggy runs and

in EdgeFreq
n

non-buggy runs. The fraction of buggy runs in which the edge occurred is:

Frac
b

=
EdgeFreq

b

#Runs
b

52

The fraction of non-buggy runs in which the edge occurred is:

Frac
n

=
EdgeFreq

n

#Runs
n

We define B as:

B =
Frac

b

Frac
n

(3.1)

If a reconstruction’s edge occurs in many buggy runs and few non-buggy runs, B is large.

Conversely, if the edge occurs often in non-buggy runs and rarely in buggy runs, B is small.

If the edge never occurs in a non-buggy run, but occurs in buggy runs, then it is very

likely related to the bug. However, in such a case, Frac
n

is 0. Unless we handle this case

specially, B is undefined. In this corner case, we give Frac
n

a value that is smaller than the

value produced if the edge occurs in one non-buggy run (by assigning Frac
n

= 1
#Runs

n

+1).

This yields large B values for these important edges.

Context Variation Ratio (C)

Intuition. The Context Variation Ratio (C) quantifies how variation of contexts of com-

municating code points correlates with buggy execution. We can determine the pair of

communicating code points in the edge around which a reconstruction is built, since a node

is identified by an instruction and context. We can then determine all edges involving that

pair of code points, regardless of context. After that, we then compute the set of all contexts

in which the pair communicated. In a program that has frequent, varied communication,

there are many contexts in this set; in a program with little or unvarying communication,

the set is small. We consider a reconstruction suspicious if the pair of code points form-

ing the edge around which the reconstruction was built execute in a substantially di↵erent

number of contexts in failing runs than in non-failing runs.

Definition. For a reconstruction built around an edge between two code points, we define

#Ctx
b

to be the number of contexts in which the code points communicated in buggy runs,

and #Ctx
n

to be the number in non-buggy runs. C is the ratio of the absolute di↵erence of

#Ctx
b

and #Ctx
n

to the total number of contexts for the pair of code points in non-buggy

53

and buggy runs. We define C as:

C =
|#Ctx

b

�#Ctx
n

|
#Ctx

b

+#Ctx
n

(3.2)

Large C values indicate a disparity in communication behavior between buggy and

non-buggy runs. Hence, a reconstruction with a large C value more likely illustrates the

communication pattern that led to buggy behavior.

Reconstruction Consistency (R)

Intuition. Reconstruction Consistency (R) is the average confidence value over all code

points in an aggregate reconstruction. R is useful because code points that consistently

occur in reconstructions of buggy executions are likely related to the cause of the bug.

As described in Section 3.1.2, each node in an aggregate reconstruction has an associated

confidence value that represents the frequency with which it occurs at a certain point in

that reconstruction. In an aggregate reconstruction produced from sets of buggy runs, a

node with a high confidence value occurs consistently in the same region of a reconstruction

in those buggy runs. Such nodes’ operations are therefore likely to be related to the buggy

behavior in those runs. Reconstructions containing many high confidence nodes reflect a

correlation between the co-occurrence of those nodes’ code points in the order shown by the

reconstruction, and the occurrence of buggy behavior.

Definition. We compute R for a reconstruction as the average confidence value over all

its nodes. Formally, for a reconstruction with prefix region P , body B, and su�x S and

where V (n, r) is the confidence value of node n in region r, we define R as:

R =

P
p2P

V (p, P) +
P
b2B

V (b, B) +
P
s2S

V (s, S)

|P |+ |B|+ |S| (3.3)

Nodes in a reconstruction with a large R value tend to occur in the reconstructed order

when buggy behavior occurs. Such reconstructions are therefore more likely to represent

problematic interleavings and to be useful for debugging.

54

3.2.2 Using Features to Find Bugs

By construction, large values for B, C, or R indicate that a reconstruction is likely to be

buggy. Therefore, we give each reconstruction a score equal to the product of all non-zero

features’ values. We rank reconstructions, with highest scoring reconstruction first.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

on
st

ru
ct

io
n

C
on

si
st

en
cy

Buggy Run Frequency Ratio

(a) B vs. R

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
on

te
xt

 V
ar

ia
tio

n
R

at
io

Buggy Run Frequency Ratio

(b) B vs. C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
on

te
xt

 V
ar

ia
tio

n
R

at
io

Reconstruction Consistency

Nonbuggy
Buggy

(c) R vs. C

Figure 3.7: Pair-wise feature plots illustrating class separation. The plots show how e↵ec-
tively each pair of features separate reconstructions of the failure from others for apache. We only
show the top 2000 ranked reconstructions and points representing reconstructions of the failure are
circled.

Empirical validation of B, C, and R. We now quantitatively justify our features

using real buggy code (we describe our experimental setup in Section 3.4). We assessed

the discriminatory power of our features using Weka’s [54] ReliefF [68] feature selection

function. The magnitude of a feature’s ReliefF value is greater if the distance between points

of di↵erent classes is greater along that feature’s dimension, on average. The magnitude of

a feature’s ReliefF value corresponds to how well it discriminates between classes.

Table 3.1 shows ReliefF values for several C/C++ applications. All features’ ReliefF

values are non-zero, meaning they are useful for classification, and many have ReliefF values

close to 1.0. The relative importance of features varies by program.

For apache, B and R are the most useful. C is less important, indicating there is a

similar amount of context variation in buggy and non-buggy runs. Figure 3.7 illustrates the

relative importance of the features graphically, with pair-wise feature plots. Figure 3.7(a)

shows that when viewed along the axes of highest ReliefF, there is clear segregation of buggy

and non-buggy reconstructions. In the plot, buggy points tend to the upper right, meaning

55

ReliefF Rank
Program B R C
apache 0.99 0.91 0.16
mysql 0.20 0.59 0.76
pbzip2 0.26 0.28 0.28
aget 0.84 0.91 0.16

Table 3.1: E↵ectiveness of features. The table shows the reliefF rank of each feature for our
C/C++ benchmark programs.

they have larger feature values than non-buggy points. Figures 3.7(b) and (c) reiterate the

class segregation along the B and R axes, and illustrate the less clear division along the C

axis.

pbzip2’s ReliefF values are smaller than other applications’ values. The disparity indi-

cates that in each dimension, pbzip2’s buggy and non-buggy points tend to be nearer to

one another than in other applications. Hence, ranking by a single feature is inadequate to

isolate bugs precisely. However, in the three-dimensional space of all features, buggy and

non-buggy reconstructions are far apart. As our results in Section 3.4.2 confirm, ranking

using all three features isolates the reconstruction of the bug in pbzip2.

Our ReliefF feature analysis, emphasizes two properties of our technique: (1) our features

precisely classify buggy reconstructions to identify bugs; and (2) considered together, our

features are more powerful than each individually.

3.3 Implementation

We implemented two versions of Recon, one for C/C++, using Pin [87], and one for Java,

using RoadRunner [46]. The implementation has three parts: (1) tracking communication,

(2) collecting graphs, and (3) generating and ranking reconstructions.

3.3.1 Tracking Communication

To track communication, we maintain a meta-data table. This table maps each memory

location to an entry containing its last-writer record and a list of threads that have read from

the location since its last write called the sharers list. Each thread has a communication

context. A thread’s context is a queue of events, as described in Section 3.1. We use a

56

5-entry context.

When a thread writes to a memory location, it updates the location’s last-writer record

with its thread ID, the instruction address of the write, its current context, and the current

timestamp. If the writing thread is di↵erent from the last writer, it does three things: (1)

update its context with a local write event; (2) update the context of each thread in the

sharers list with a remote write event; and (3) clear the sharers list.

When a thread reads a location, it looks up the last writer thread in the last-writer

record. If the reading thread is di↵erent from the last writer, it does three things: (1)

update its context with a local read; (2) update the last writer thread’s context with a

remote read; and (3) add the reading thread to the memory location’s sharers list.

For C/C++, we implement the meta-data table as a fixed size hash table of 32 million

entries. To find a memory location’s meta-data, we index with the address modulo the

table size. We use a lossy collision resolution policy: on a hash collision, an access may

read or overwrite another colliding location’s meta-data. We ignore stack accesses, as they

are rarely involved in communication. For Java, we use RoadRunner’s shadow memory

to implement a distributed meta-data table. Its size scales with allocated memory and

it does not su↵er from collisions. Unique identifiers of memory access instructions in the

bytecode replace instruction addresses. Contexts are stored as integers, using bit fields. We

instrument accesses to fields and arrays, but not local variables.

3.3.2 Timestamped Communication Graphs

Each thread maintains its own partial communication graph. Partitioning the communica-

tion graph over all threads makes adding an edge a thread-local operation, which is critical

for performance. When a thread tries to add an edge, it first searches the graph for the

edge. If the edge is already in the graph, the thread overwrites the existing timestamps

with the timestamps of the edge being added. If not, a new edge is created. When a thread

ends, it merges its partial graph into a global graph. Once all partial graphs are merged

into the global graph, it is written to a file.

For C/C++, we use the RDTSC x86 instruction to track timestamps. Recon maintains

57

communication graphs as a chaining hash table. Separately for the source and sink node,

the hash function sums the entries in each node’s context. Each node’s sum is then XORed

with the node’s instruction address. The result of the computation for the source node is

then XORed with the result of the computation for the sink, producing the hash key. For

Java, we generate timestamps from the system time. We implement communication graphs

as adjacency lists, using hash sets. Nodes are indexed by (instruction address, context)

pairs.

3.3.3 Generating and Ranking Reconstructions

We generate and rank reconstructions with the following process. We separately load sets of

buggy and non-buggy graphs into memory and create a list of nodes ordered by timestamp

for each buggy run. At this point, we compute C and B for each edge in the set of buggy

graphs. We then rank these edges by their B values. Next, we generate reconstructions for

the top 2000 edges ranked by B, using the algorithm described in Section 3.1.2. To limit

the size of the reconstructions produced, we limit the number of code points in each region.

To do so, we exclude from a reconstruction any node that has a confidence value less than

half the region’s maximum confidence value. After computing reconstructions, we compute

their R values and their ranks, and output them in rank order.

3.3.4 Optimizing Graph Collection

We use two optimizations to reduce overheads: (1) we reduce the number of instructions for

which analysis is required and (2) we permit an instrumentation data-race to avoid locking

overheads.

Selectively Tracking Memory Operations

The simplest way of reducing graph collection overhead is monitoring fewer memory opera-

tions. We develop two optimizations to do so. They can lead to lost or spurious edges, but

our results (Section 3.4) show that Recon’s accuracy is una↵ected.

58

First Read Only. Repeated reads to a memory location by the same thread are likely

redundant. We therefore develop the first-read optimization: threads only perform analysis

on their first read to each location after a remote write to that location. Not performing

updates on these subsequent reads is analogous to performing analysis only on cache read

misses. Due to the frequency and temporal locality of reads, this optimization eliminates

many updates.

This optimization is lossy. If a thread repeatedly reads the result of a write, only its

first read is reported. If subsequent reads are performed in di↵erent code with di↵erent

contexts they will not cause edges to be added to the graph. Additionally, context events

corresponding to ignored reads are not published to threads’ contexts, which may result in

fewer distinct contexts and edges.

First Write Only. Repeated writes by the same thread are often redundant or non-

communicating. Under the first-write optimization, a thread only updates the last-writer

table and sharers list on a write to a memory location x when it is not the last thread to

write x. This optimization is noisy. If a thread that is not the last writer of x writes to x

and does not update x’s meta-data on subsequent writes, another thread’s read of x may

see outdated meta-data and add a spurious edge with incorrect context information to the

graph.

Intentional Instrumentation Races

On every memory access, threads check the last writer of the location they are accessing to

determine what analysis operations must be performed, as described in Section 3.3.1. To

ensure threads observe consistent meta-data, they acquire a lock on each access.

We observe, however, that due to temporal locality these checks are often performed

by the location’s last writer. In such situations, reading all meta-data is unnecessary. The

cost of acquiring the lock just to check the last writer outweighs the cost of the check itself.

To mitigate this cost, we can perform the check without holding the lock, which we call

the racy-lookups optimization. If, based on the check, a thread determines it must perform

further analysis or update the meta-data, it acquires the lock. Only the check to determine

59

the location’s last writer races.

In principle, data-races can lead to undefined behavior [24] or memory inconsistency [88].

In practice, there are only two inconsistent outcomes of this optimization. The first is that

the last writer performs a check that indicates it is not the last writer. In this case, the

checking thread last wrote the meta-data. On x86 the thread will correctly read its own

write, making this situation impossible. In Java, our meta-data writes are well ordered and

the read involved in the check is ordered with its meta-data update. As a result, the checking

thread can only ever correctly read that it was the last writer. The other inconsistency is

when a check indicates to a thread that it is the last writer when it is not. This situation

is possible in x86 and Java. On x86, the check reports that the checking thread is the last

writer, so it does no analysis. Because the check was not synchronized, however, another

thread’s update to the last-writer field may have been performed, but not yet made visible

to all threads. In this case, the checking thread should have seen the update and added an

edge, but it did not. This situation can also arise because our instrumentation is not atomic

with program accesses.

In practice, this e↵ect has little impact on our analysis. Furthermore, the statistical

nature of Recon is robust to noise, so such omissions do not impact Recon’s bug detection

capability.

3.4 Evaluation

There are several components to our evaluation. We show that our ranking technique is

e↵ective at finding bugs and the reconstructions Recon produces are useful and precise.

We show that Recon remains e↵ective with very few program runs. We describe a case

study of our experience fixing a previously unresolved bug. Finally, we show that with our

optimizations, Recon’s overheads are similar to the overheads of other analysis tools and

overall data collection time is short.

3.4.1 Experimental Setup

We evaluated Recon’s ability to detect concurrency bugs using the buggy programs de-

scribed in Table 3.2. We used a set of full applications, as well as several bug kernels. Our

60

Category Program Version Bug Type
C
/
C
+
+

Bug Kernel

logandswp n/a Atomicity Violation
circlist n/a Atomicity Violation
textreflow Mozilla 0.9 Multi-Variable Atomicity Violation
jsstrlen Mozilla 0.9 Multi-Variable Atomicity Violation

Full App.

apache httpd 2.0.48 Atomicity Violation
mysql mysqld 4.0.12 Atomicity Violation
pbzip2 pbzip2 0.9.1 Ordering Violation
aget aget 0.4 Multi-Variable Atomicity Violation

J
a
v
a Bug Kernel

stringbu↵er JDK 1.6 Multi-Variable Atomicity Violation
vector JDK 1.4 Multi-Variable Atomicity Violation

Full App. weblech weblech 0.0.3 Atomicity Violation

Table 3.2: Buggy programs used to evaluate Recon. We used both C/C++ programs and
Java programs and we included a variety of bug types.

bug kernels are shorter programs with bugs extracted from the literature (stringbuffer,

vector, circlist, logandswp), and buggy sections of code extracted from the Mozilla

project (textreflow, jsstrlen). Our benchmarks encompass many bug types observed in

the wild [79] including ordering bugs and single and multiple variable atomicity bugs. We

ran each application in Recon with all optimizations. Our test script labeled graphs based

only on externally observable failure symptoms (e.g., crashes, corrupt output, etc.).

We evaluated Recon’s runtime and memory overhead using the PARSEC benchmark

suite [17] with its simlarge input for our C/C++ implementation. For Java, we used 6

applications from the DaCapo benchmark suite [18] with default inputs and all the Java

Grande benchmarks [122] with size A inputs. We ran PARSEC and Java Grande with 8

threads; we let the DaCapo benchmarks self-configure based on the number of processors

and did not instrument the DaCapo harness. We also ran 4 additional full applications,

each with 8 threads: mysql, a database server, tested using the sysbench OLTP benchmark

with the default table size (10,000) for the performance measurements and table size 100 for

debugging; apache, a web server, tested using ApacheBench; aget, a download accelerator,

tested fetching a large web file; and pbzip2, a compression tool, tested compressing a 100MB

text file. For performance measurements, we ran the uninstrumented version and Recon,

with the first-read, first-write, and racy-lookups optimizations. We also ran three less-

optimized configurations to understand the impact of each optimization: “Base” analyzes

all memory accesses; “FR” uses just the first-read optimization; “FR/W” adds the first-

61

Sensitivity Collect
Rank # Code Pts. In Code Pts To # Buggy Time

Program of Bug Rel. Irr. Order? Missing w/ 5 w/ 15 (h:m:s)
logandswp 1 6 1 Yes 0 1 1 —
circlist 1 3 3 Yes 0 1 1 —
textreflow 1 8 0 Yes 0 1 1 —
jsstrlen 1 7 0 Yes 0 1 1 —
apache 1 5 5 Yes 0 1 1 0:27:32
mysql 1 8 7 Yes 0 34 9 0:07:08
pbzip2 1 11 0 Yes 1 2 1 1:51:56
aget 1 4 2 Yes 0 8 1 0:59:41
stringbu↵er 1 6 0 Yes 0 1 1 —
vector 1 6 0 Yes 0 1 1 —
weblech 1 6 28 Yes 0 4 1 0:13:36

Table 3.3: Properties of reconstructions for our benchmarks.

write optimization. We ran all experiments on an 8-core 2.8GHz Intel Xeon with 16GB of

memory and Linux 2.6.24. The Java tool used the OpenJDK 64-bit Server VM 1.6.0 with

a 16GB max heap. We report results averaged over 10 runs of each experiment.

3.4.2 How Effectively Does Recon Find Bugs?

We produced reconstructions from the graphs we collected, and ranked them as described

in Section 3.2.2. We examined the highest-ranked reconstruction that illustrated the bug

and analyzed the key properties of that reconstruction. Table 3.3 summarizes our findings.

False Positives. The most important result in Table 3.3 is that for all applications, the

top-ranked reconstruction revealed the bug, as shown in Column 2. This result demonstrates

that our ranking technique e↵ectively directs programmer attention to buggy code with

no distracting false positives. This result also corroborates the results from Section 3.2.2,

showing that our features precisely isolate buggy reconstructions.

Unrelated Code in Reconstructions. Columns 3 and 4 in Table 3.3 show the number of

relevant and irrelevant code points were included in the bug’s reconstruction. We consider

a code point related if it performed a memory access that read or wrote a corrupt or

inconsistent value, or if it is control- or data-dependent on the buggy code. In most cases,

virtually all code in the reconstruction is relevant to the bug. However, some reconstructions

include code points unrelated to their bug. In aget, the two irrelevant code points are in

62

straight-line code sequences with related code points, at a distance of less than five lines.

Such nearby but irrelevant code is not likely to confuse a programmer.

In mysql’s case, five out of seven unrelated code points are in straight-line sequences

with relevant code. The remaining two in mysql’s reconstruction, and all five in apache’s

reconstruction, were not in straight-line code with relevant points. Instead, they were in

another function that was the caller or a callee of a function containing relevant code.

Developers debugging programs are likely to understand such caller-callee relationships,

suggesting that these code points will not be too problematic.

weblech had several irrelevant code points in its reconstruction (28). The reason for

their inclusion is that the bug usually occurs at the start of the execution. At this point, con-

structors have only just initialized data at a variety of code points in the program, resulting

in many edges being added between initialization code and other code. The initialization

code is easy to identify, especially with program knowledge. These code points clutter the

reconstruction, but the bug is reported accurately.

Reconstruction Order Accuracy. Column 5 shows whether or not the code points in

the reconstruction were shown in the order leading to buggy behavior. Code points appear

in an order that leads to buggy behavior in all cases. In logandswp, the last code point

in the buggy execution order appears in both the prefix and su�x of the reconstruction,

because the code point is in a loop, however, the buggy interleaving is clear.

Missing Code Points. Column 6 shows the number of code points directly involved in

the bug that were omitted from the reconstruction. Only one case lacked any involved code

points: The code points in pbzip2’s reconstruction all relate to establishing the corrupted

state condition required for a crash to occur. The actual crashing access is not included.

Sensitivity to Number of Buggy Runs. Columns 7 and 8 illustrate Recon’s sensitivity

to the number of buggy runs used. Column 7 shows the rank of the bug’s reconstruction

using 25 non-buggy runs and 5 buggy runs. Column 8 shows the rank using 25 non-

buggy and 15 buggy runs. Even with very few buggy runs, Recon gives a high rank to

63

reconstructions of the bug. Using fewer buggy runs does not impact precision substantially,

except for mysql. Excluding mysql, Recon ranked the bug’s reconstruction 8th or better

with just 5 buggy runs, and first with 15 buggy runs. For mysql, using fewer runs caused

Recon to rank some non-buggy reconstructions above the bug’s — 33 with 5 buggy runs, and

8 with 15 buggy runs. As shown in Column 2, Recon always ranked the bug’s reconstruction

first with 25 buggy runs. These results show that with very few buggy runs, Recon can

find bugs with high precision. In cases where a small number of buggy runs is insu�cient,

adding more runs increases Recon’s precision.

Graph Collection Time. Column 9 shows that the total time required for graph collec-

tion (for 25 buggy and 25 non-buggy graphs) is small. In our experiments, all applications

took under two hours; apache, mysql, and weblech all took under 30 minutes. These data

show that Recon is not only e↵ective at detecting real bugs in these full applications, but

also reasonably fast.

3.4.3 Case Study: Debugging an Unresolved Bug

The weblech bug is open and unresolved in the program’s bug repository. While the bug

has been discussed previously [63], we were unaware of any details of the bug prior to this

case study. We used Recon to find the problem, and we were able to write a fix using

Recon’s output and our limited program knowledge.

We began with a bug report describing intermittent non-termination. Using the input

from the report, we were able to reproduce the bug in about 1 in 15 runs. We then

ran the application repeatedly and watched the output to identify the hang. We noticed

that, consistently, at least one thread crashed on a null pointer dereference during hanging

runs. We collected 25 buggy and 25 non-buggy runs, identifying bugginess by watching for

unhandled exceptions. We then produced reconstructions from these runs.

The first reconstruction reported was related mostly to object constructors, but also in-

cluded evidence of several accesses to a shared queue data structure, as well as a suspicious

while loop termination condition involving the queue’s size. The body of the reconstruction

contained the initialization of and accesses to the size of the queue. The sink of the recon-

64

Slowdown (x) Slowdown (x)
Name Recon FR/W FR Base Name Recon FR/W FR Base

A
p
p
s.

weblech 1.1 1.2 1.2 1.1

P
A
R
S
E
C

dedup 5.5 5.8 5.8 13.8
pbzip2 1.3 1.3 1.3 1.5 canneal 6.8 6.8 6.5 14.9
aget 1.9 1.9 1.9 1.9 freqmine 8.8 52.6 56.6 223.8
apache 5.4 31.7 31.7 177.1 fluidanimate 9.8 9.9 10.1 9.8
mysql 23.9 102.1 127.2 129.9 streamcluster 10.1 10.1 10.3 10.1

D
a
C
a
p
o

pmd 5.6 5.8 6.0 6.3 blackscholes 14.4 17.8 18.0 40.9
avrora 5.6 7.9 10.3 27.8 ferret 14.6 70.9 73.1 537.3
tomcat 6.9 6.2 6.7 9.1 bodytrack 14.9 116.2 120.8 595.5
xalan 7.1 7.0 7.5 10.8 facesim 15.8 18.8 19.2 29.2
luindex 8.2 9.1 14.3 20.6 swaption 17.9 96.0 100.6 383.7
lusearch 17.3 18.1 22.7 22.6 x264 18.9 218.4 236.8 697.4

Java Grande 74.9 85.1 88.4 563.7 vips 28.8 230.6 257.6 996.8

Table 3.4: Performance of Recon. We shows Recon’s base configuration and many less-optimized
configurations relative to uninstrumented execution.

struction’s edge was an access to the queue data structure in the dequeue method. In the

su�x of the reconstruction was another call to the queue’s dequeue method. As we described

in Section 3.1.1, such an interleaving of a dequeue call between an access to the queue’s

size and a subsequent dequeue call violates the atomicity of the pair of operations. The

atomicity violation leads to a thread crashing early due to the NullPointerException we

observed. Crashing prevents the thread from correctly updating the variable for the while

loop to read. The crash is therefore also responsible for the program’s non-termination, as

described in the bug report. We fixed the bug by extending a synchronized block including

the queue size check and the dequeue. With our fix, we didn’t see the buggy behavior in

several hundred runs – we conclude that we fixed the bug based on the information provided

by Recon.

3.4.4 Performance

In Table 3.4, we report run times relative to uninstrumented execution for Recon and the

three less-optimized configurations. The main result is that Recon imposes slowdowns as

low as 34% for C/C++ (pbzip2) and 13% for Java (weblech).

Slowdown for full applications never exceeds 24x, even during an industrial strength test

of a commercial database (mysql). For PARSEC, we saw slowdowns ranging from 5.5x to

28x, showing that Recon performs well on applications with a variety of sharing patterns.

65

We saw comparable results for DaCapo: overheads of Recon ranged from 5.6x to 17.3x.

Interestingly, overheads tended to be more severe for applications that perform infre-

quent sharing, than those that share often. For example, dedup, which uses shared queues,

and avrora, which exhibits a high-degree of fine-grained sharing [18], both had fairly low

overheads, around 6x. In contrast, swaptions has infrequent synchronization [17] and

threads in lusearch interact very little [18] – both su↵ered higher overheads, around 18x.

This trend is further illuminated by the Java Grande benchmarks; these are primarily data-

parallel scientific computations that perform little sharing [122]; their average overhead is

75x. Nonetheless, Recon is e�cient in applications with high-frequency sharing and for all

the mainstream applications we tested.

E↵ectiveness of Optimizations. Comparing “FR” with “Base” and “Recon” with

“FR/W” in Table 3.4, we see that the first-read and racy-lookup optimizations, respec-

tively, significantly improve performance. Comparing “FR/W” and “FR”, we see that the

first-write optimization has a less significant e↵ect in general — likely because writes are less

common than reads — but for mysql and lusearch, the first-write optimization is clearly

important.

The data show that our optimizations are essential to Recon’s e�ciency. For many

applications, our optimizations reduce Recon’s slowdown by orders of magnitude. apache

is one such application: without optimizations, apache’s slowdown is 177x, making full-

scale tests nearly impossible due to timeouts and unhandled delay conditions in the code.

Optimizations reduce this to just 5.4x, enabling Recon to be used with real bug-triggering

inputs.

In our experiments, we used PARSEC’s simlarge inputs to make experimenting with

unoptimized configurations feasible, but there is no need to scale inputs for use with Recon.

We also experimented with PARSEC’s native input, using Recon with all optimizations:

Experiments finished quickly, and we saw slowdowns nearly identical to the simlarge input.

The optimizations have less impact on our Java implementation, but still account for

significant speedups (e.g., avrora, luindex). For most Java benchmarks, the racy-lookup

optimization had little e↵ect. Java uses several techniques that significantly reduce the cost

66

of acquiring locks [67]. It is likely that the racy-lookup optimization is less beneficial than

in C/C++ because the cost of locking is lower in Java to begin with.

Memory Overhead. The C/C++ Recon implementation uses a fixed-size 4GB meta-

data table, dominating memory overheads in our experiments. Graphs are small in com-

parison. The table is large enough that the impact of hash collisions was negligible. In

a memory-constrained setting, a smaller table could be used at the expense of decreased

precision due to hash collisions. In Java, each field and array element is shadowed by a

meta-data location: memory overhead scales roughly linearly with the program’s footprint.

Peak overheads in the optimized version ranged from 2.5x to 16x.

3.5 Conclusions, Insights, and Opportunities

In this chapter we introduced Recon, a novel and general approach to isolating and under-

standing all types of concurrency bugs. Recon works by reconstructing fragments of buggy

executions that are likely the result of a bug, providing su�cient yet succinct information

to help programmers understand the cause of concurrency bugs, rather than just showing

the code involved or reproducing an entire buggy execution.

Reconstructions show the schedule of execution that led to the bug, clearly exposing its

root cause. Reconstructions are built by observing multiple executions of a program and col-

lecting timestamped context-aware communication graphs, which encode information about

the ordering of inter-thread communication events. We developed a simple statistics-based

approach to identify buggy reconstructions. We proposed three bug-independent features

of reconstructions that together precisely isolate reconstructions of buggy executions. In

order to provide e�cient collection of timestamped graphs, we used several techniques that

significantly reduce runtime overheads. We implemented Recon for C/C++ and Java and

evaluated it using large software. Our results show Recon reconstructs buggy executions

with virtually no false positives, and that collecting the data comprising reconstructions

takes just minutes.

Insights. There are several key insights in this chapter. We showed that informa-

tion about communicating instructions is only part of the concurrency debugging story.

67

Temporal sequencing information together with communication better illustrates bugs than

either on their own. Reconstructed execution fragments from failing program executions

illustrated that failure behavior is consistent. The important parts of an execution happen

reliably when the failure happens. Reporting those parts in reconstructions is what makes

Recon e↵ective.

Opportunities. Recon paves the way for future research in several directions. Recon-

structions do not include information about the data involved in the operations that make

them up. Including information about which data structures or which variables are involved

may be a helpful way of providing more information to programmers.

Recon’s overheads, while substantially lower than many similar techniques, are still high

in some cases. It would be interesting in the future to study the trade-o↵s of the information

a system collects, for the debugging value of that information. Sampling instrumentation

is one possibility for reducing overheads. Static control-flow and data-flow analyses may

also yield insights into instrumentation points that are redundant. Eliminating redundant

instrumentation would reduce overheads. As Chapter 4 will describe, hardware support

can accelerate communication graph collection. Integrating a hardware design with Recon’s

debugging methodology is also likely to be profitable.

Other work that is likely to be of interest in the future is to use Recon’s approach to ad-

dress nondeterministic performance problems in concurrent code. If the performance issues

are due to concurrent behavior that manifests in communication graphs, reconstructions

may be helpful for programmers trying to understand their cause. A key challenge is that

while correctness, as framed in this work, is a binary criterion – the program fails or does

not fail – performance is continuous, for example, as throughput varies between 0 and an

observed maximum. It is likely that performance is modal; di↵erent reconstructions may

correspond to di↵erent performance modes, helping understand the cause of the modality.

68

Chapter 4

ARCHITECTURE SUPPORT FOR CONTEXT-AWARE COMMUNICATION GRAPHS

Chapters 2 and 3 described Bugaboo and Recon, two techniques for debugging concur-

rency errors based on context-aware communication graphs. One of the main sticking points

in Bugaboo and Recon is the high run time overhead of the software-based tools used to

collect graphs. Recon’s optimizations are designed to make the time requirements manage-

able, but with a 75X worst case slowdown, collecting 25 to 50 communication graphs can

take a very long time in some cases.

Bugaboo’s and Recon’s runtime overheads are typically practical for debugging; the

alternative is to spend the weeks or months (or even years in some cases [138]) to fix

concurrency bugs using conventional techniques. However, many concurrency bugs manifest

only rarely, requiring many program executions. Furthermore, collecting graphs only “in the

lab”, during debugging ignores a wealth of data available “in the wild”. Production systems

are executing widely deployed programs e↵ectively constantly. Collecting graphs from every

deployed system executing a program – when crashes occur and during non-failing execution

– would alleviate the pain of graph collection during debugging.

The key to in situ graph collection is a mechanism for collecting graphs that imposes a

run time overhead on the execution that is tolerable for end users. The overhead tolerability

threshold for end users is substantially lower than for developers. In this work, we develop

an architecture-level implementation of a context-aware communication graph collection

mechanism that aims for zero run time overhead. Such a mechanism requires the cost and

complexity of custom hardware, but after paying that tax up front, users of systems can

collect context-aware communication graphs unfettered by software slowdowns.

69

4.1 CACG-HW: Architectural Support for Context-Aware Communication Graphs

Implementing context-aware communication graph collection using architecture support re-

quires a mechanism for monitoring communication between processors. When communica-

tion occurs, such an implementation can update the graph by adding edges and can update

threads’ context queues. This section assumes a graph formalism that is the same as the one

discussed in chapters 2 and 3 and describes CACG-HW, our proposed architecture support

for Context-Aware Communication Graph collection in HardWare.

CACG-HW tracks communication graph edges and context events as cores in a multipro-

cessor communicate. The cache coherence protocol in typical shared-memory multiproces-

sor systems provides much of the support that CACG-HW needs to track communication.

Whenever threads executing on di↵erent processors communicate, coherence messages are

sent between those processors. CACG-HW takes advantage of existing coherence message

support and a small amount of cache line meta-data to e�ciently implement the last writer

table in hardware. In our design, each processor’s cache records the instruction address and

context of the last write to each of its lines. When communication occurs and a coherence

message is sent between processors, the coherence message includes the last writer meta-

data. When a processor receives a cache coherence message containing meta data, it has

the last writer information that it needs to construct a new communication graph edge.

CACG-HW has five components: (1) a per-processor context register that keeps track of

recent communication events; (2) coherence message extensions to carry last writer meta-

data information; (3) cache line extensions to track the instruction address and context

of each line’s last write; (4) a software-visible table to store communication graph edges

as they are added to the graph; and (5) a software runtime that periodically reads the

graph edges collected, preserving the graph for debugging. Figure 4.1 shows an overview of

CACG-HW’s extensions to a commodity multiprocessor.

Tracking the Communication Context

CACG-HW treats cache-to-cache transfers as potentially communicating memory opera-

tions that generate context events. The four context events discussed in Section 2.1.2 map

70

Meta-Data

(b)
Extensions to a bus-based commodity multiprocessor.

Ctx

P1

$

Ctx

P2

$

Ctx

Pn

$

CT

(a)
Extensions to a typical cache line.

Context Writer Instruction Address

10 Bits 64 Bits

Tag, Data, etc.

Figure 4.1: CACG-HW architectural extensions to a typical multiprocessor. New
architectural components are shaded.

directly to cache coherence events. We assign each relevant cache coherence event a two-bit

code: local read miss (LcRd); local write miss or upgrade miss (LcWr); incoming invalida-

tion (RmWr); and incoming read request (RmRd).

To implement the context queue, we use a FIFO of context events. The FIFO is used

as a shift register. When a coherence event occurs, its corresponding event code is shifted

into the context queue FIFO. Each processor in the system has its own context register

(Figure 4.1(b)). As in BB-SW, we keep five events of context, so our context registers are

ten bits long.

Last Writer Meta-Data and Coherence Message Extensions

Precisely keeping track of communicating instructions requires keeping last-writer infor-

mation at the granularity of words (or potentially bytes) for all of memory. This is too

complex and expensive to implement in hardware. We choose two simplifications to reduce

hardware complexity at the cost of some information loss. First, we track communication

at cache-line granularity. False sharing might lead to edges that are not actual communica-

tion. Second, we monitor only inter-thread communication that happens via cache-to-cache

71

transfers. When a line with last writer meta-data is evicted, its meta-data is discarded.

Future accesses to the evicted line will not record communication involving the operation

in the discarded meta-data. As our data show (Section 4.2), the information loss is not

significant and does not limit the bug detection capability of our techniques.

We add meta-data to each cache line to keep track of the instruction address and context

of the last write to the line, which together are the source node of a graph edge. The

meta-data stores the last writer instruction’s virtual address and the contents of the last

writer processor’s context queue at the time when the last writer instruction was executed.

Assuming a 5 entry context, comprising 10 bits and an instruction address width of 64 bits,

the total space overhead is 74 bits per cache line. Using a narrower instruction encoding

(e.g., 48 bits) or a communication context with fewer events would result in lower space

overhead. Figure 4.1(a) illustrates our extensions to the cache line.

A cache line’s last writer meta-data is updated when a processor writes to a line that

is in neither exclusive nor modified state, i.e., during a write or upgrade miss. As a result,

meta-data updates are only as frequent as write/upgrade misses.

Last writer meta-data is carried between processors in an extension to existing coher-

ence messages. Without loss of generality, we assume the underlying system has a MESI

cache coherence protocol. We augment read reply and invalidate acknowledgment coherence

messages to include meta-data extensions.

• Read Reply When a processor receives a read request for a cache line that it has

cached, it sends a read reply to the requester. The processor includes last writer

meta-data for the involved line in its read reply coherence message. This coherence

extension enables CACG-HW to track read-after-write (RAW) communication.

• Invalidate reply (ack). When a processor receives an invalidation message for a line

that it has cached, it sends an invalidation acknowledgment to the processor that sent

the invalidation. The recipient of the invalidation includes the last writer meta-data

of the invalidated cache line in its invalidation acknowledgment coherence message.

This coherence extension enables CACG-HW to track write-after-write (WAW) com-

munication.

72

Communication Table

The purpose of the Communication Table (CT) is to store communication graph edges

during execution. The CT is organized as a fixed size FIFO queue. Each entry contains the

instruction address and context of the source and sink of a communication edge. The size

of each entry is 148 bits – 64 bits for each of the node’s instruction addresses, summing to

128 bits and 10 bits for each node’s context, together contributing the remaining 20 bits.

The CT, shown in Figure 4.1(b), can be organized either as a centralized or distributed

data-structure. Since there are no global consistency properties that need to be kept, each

processor can have its own CT, posing no scalability issues.

There are three events that require an edge to be added to the graph, leading to a write

to the CT: invalidate acknowledgment events, read reply events, and read misses serviced

from memory.

• Invalidate acknowledgment. When a processor attempts to write a line and sends

an invalidation to other processors, it collects invalidate acknowledgment coherence

messages. Invalidate acknowledgments in CACG-HW contain meta-data describing

the last writer of the line being invalidated. When the invalidating processor receives

an acknowledgment containing meta-data, it adds an entry to the CT for a new com-

munication graph edge. The source of the edge is created using the meta-data in the

acknowledgment. The sink of the edge is created using the address of the instruction

that caused the invalidation to be sent and the contents of the invalidating proces-

sor’s context queue. Adding a CT entry on receiving an invalidation acknowledgment

captures inter-thread WAW communication.

• Read reply. When a processor attempts to read a line and sends a read request to

other processors, it collects read reply coherence messages. Read replies in CACG-HW

contain meta-data describing the last writer of the line being requested. When the

requesting processor receives a read reply containing meta-data, it adds an entry to

the CT for a new communication graph edge. The source of the edge is created using

the meta-data in the read reply. The sink of the edge is created using the address

73

of the instruction that caused the read request and the contents of the requesting

processor’s context queue. Adding a CT entry on receiving a read reply captures

inter-thread RAW communication.

• Read miss serviced from memory. When a processor sends a read request for a

line and receives no replies containing meta-data from other processors, the read miss

is serviced from memory. When the requesting processor determines a read request

is serviced from memory, it adds an entry to the CT for a new communication graph

edge. In this case, the edge represents an access to a line that is uninitialized or has

not been recently shared. The source of the edge is created with a special “NULL”

instruction and context. The sink of the edge is created using the address of the

reading instruction and the contents of the reading processor’s context queue. Adding

a CT entry for read misses serviced from memory captures accesses to uninitialized

or infrequently shared data.

4.1.1 Context-Aware Communication Graphs in Production Systems Using CACG-HW

CACG-HW’s support for collecting context-aware communication graphs is o↵ the critical

path of an execution, so it causes negligible performance degradation. Therefore we can use

it in a deployment scenario to continuously collect an execution’s communication graph.

When a failure occurs during a production execution on a deployed system, the graph pro-

duced from that failing execution can be collected and sent back to developers for debugging

using the techniques described in Bugaboo. Periodically, graphs from non-failing executions

could also be sent back to developers for use in program understanding or debugging.

4.2 Evaluation

We evaluated our design of CACG-HW to characterize its overheads and justify our design

choices.

74

4.2.1 Experimental Setup and Methodology

We evaluated CACG-HW using a simulator based on Pin [87] and SESC [115]. The simu-

lator models a 16-node multiprocessor, with 32KB 8-way associative L1 Caches – a design

that is similar to the Intel Core architecture. We modeled a MESI cache coherence protocol

enforcing coherence at the L1. We modeled our cache meta-data extensions, communication

context queues, coherence message extensions to transfer meta-data, and a 16k-entry com-

munication table that generated traps to our software layer. We used the same benchmarks

to evaluate CACG-HW that were discussed in Section 2.4.1.

Benchmark # of Inspections Required
BankAcct 1.4 (1.0)
CircularList 2.2 (1.2)
LogAndSweep 1.0 (1.0)
MultiOrder 1.0 (1.0)
Moz-jsStr 1.8 (1.0)
Moz-jsInterp 1.0 (1.0)
Moz-macNetIO 1.4 (1.0)
Moz-TxtFrame 1.0 (1.0)
MySQL-IdInit 1.0 (1.0)
MySQL-BinLog 34.0 (24.4)
Apache-LogSz 12.0 (10.6)
PBZip2-Order 14.5 (4.8)
AGet-MultVar 1.0 (1.0)

Table 4.1: Bug detection accuracy using CACG-HW. We report the num-
ber of code point inspections required before the corresponding bug was found.
The number in parenthesis show the number of distinct functions. Note that one
inspection indicates that zero irrelevant code points needed inspection, since the
bug was found on the first. Results are averaged over five trials.

4.2.2 Debugging Efficacy

We collected communication graphs using our simulated hardware implementation of CACG-

HW for the applications listed in Column 1 of Table 4.1. We applied the debugging method-

ology described in Chapter 2 and in Column 2 of Table 4.1, we report the number of code

inspections required to isolate a code point related to the bug in each benchmark. The key

result is that in few code point inspections (between 1 and 34 points) or function inspec-

tions (between 1 and 24) a programmer is led to code involved in the bug. The results show

that CACG-HW yields results very similar to those obtained using BB-SW, the software

75

graph collection tool described in Chapter 2. This data illustrates that with hardware sup-

port, little enough precision is lost in graph collection that our debugging technique remains

e↵ective.

4.2.3 Impact of Graph Collection Imprecision

As discussed in Section 4.1, we traded precision for lower complexity in CACG-HW. Com-

pared to whole-memory communication tracking at word granularity, there are two sources

of imprecision in CACG-HW: (1) communication tracking at a cache-line granularity; and

(2) considering only cache-to-cache transfers as communication (i.e., the impact of evic-

tions). We quantify imprecision introduced by line-level tracking and evictions by com-

puting the number of distinct communicating code points that were present in the graph

collected using whole-memory word-level tracking (as used by BB-SW) but not present in

the graph produced by CACG-HW. Table 4.2 breaks down the results by the source of

imprecision. Column 2 shows the impact of line-granular tracking and Column 3 shows the

impact of line-granular tracking, combined with the impact of evictions. Column 2 shows

that imprecision added by line tracking ranged from 17% to 27% and Column 3 shows that

imprecision added by cache-to-cache and line tracking is about twice that.

Benchmark
% Imprecision Introduced

Line Granularity Line Gran. & Evictions
MySQL-BinLog 27.43 54.51
Apache-LogSz 25.57 59.09
PBZip2-Order 26.32 59.65
AGet-MultVar 16.67 33.33

Table 4.2: Imprecision for di↵erent configurations of
CACG-HW. We show imprecision for line-level and cache-to-
cache-only tracking of inter-thread communication.

Section 4.2.2 showed that neither source of imprecision a↵ects Bugaboo’s ability to ac-

curately detect bugs. There are two reasons for that. First, we do not detect bugs based on

absolute graph properties, but rather, by detecting graph anomalies — a property relative

to the emergent communication invariants in a set of graphs. These anomalies manifest

themselves even in graphs collected using line addresses, because aberrant communication

events (potential bugs) still render themselves as rare edges, just as they do at word gran-

76

ularity. Second, cache evictions are not likely to have a significant impact on bug detection

capability. The reason is that all the operations involved in a schedule-dependent failure

typically occur in a short span of dynamic instructions. The communication events not

captured due to cache evictions are ones which would have resulted from communication

over a long spans of instructions — long enough for data to be evicted from the cache —

and are thus unlikely to be of any use in debugging.

4.2.4 Characterization

Our characterization aims to understand the overheads in CACG-HW and assess its perfor-

mance cost. We did this characterization using the full applications from Table 2.1 as well

as a subset of the PARSEC [17] benchmark suite run with their “simlarge” input set. 1

Benchmark
Misses per 10k Mem Ops Sources of Overhead in CACG-HW

Read Write Coherence
M-D Wr / CT Wr. / Traps /
10k MOp 10k MOp 10M MOp

blackscholes 212.41 53.93 0.02 266.36 212.55 11.3
canneal 429.33 15.23 0.00 444.57 429.33 6.2
dedup 5.00 0.49 0.05 5.53 5.09 0.1
ferret 33.70 23.96 0.08 57.74 33.78 0.0
fluidanimate 27.15 8.38 0.25 35.78 27.69 1.6
freqmine 137.59 37.90 0.01 175.50 137.68 8.0
swaptions 23.53 98.60 0.51 122.65 25.09 1.5
vips 254.72 67.42 0.05 322.19 254.81 15.5
x264 75.22 28.09 0.00 103.30 75.22 4.4
AGet-MultVar 10.50 0.25 8.39 19.14 18.91 0.0
PBZip2-Order 0.02 0.00 0.00 0.03 0.02 0.0
Apache-LogSz 3.27 3.78 0.03 7.08 3.31 0.0
MySQL-BinLog 129.15 32.85 0.18 162.18 129.41 6.3

Table 4.3: Characterization of CACG-HW.

Overheads of CACG-HW

The main sources of overhead in CACG-HW are writes to cache line meta-data, writes to

the CT, and traps to software when the CT is full. Column 5 in Table 4.3 shows that the

number of meta-data updates is typically less than 200 per 10,000 memory operations, and

is as few as 3 in 1 million memory operations. Meta-data updates happen only during cache

misses (Columns 2, 3 and 4) and can be fully overlapped with the misses, being completely

1We omitted some benchmarks that would not run in our simulator due to memory limitations.

77

o↵ the critical path. They therefore do not impose any performance cost. The number of

CT updates (Column 6) is predominantly less than 35 per 10,000 memory operations. CT

updates are done simultaneously with cache coherence transactions and the operation to

perform is a simple FIFO bu↵er insertion, so it imposes negligible runtime overhead.

The most costly overhead is performing a software trap when the CT is full. Column

7 shows that traps happen just a few times per 10 million memory instructions. These

events are very infrequent and unlikely to be a major performance problem. Moreover,

it is possible to dedicate a spare core to read the communication table, reducing the cost

further. During trap handling, writes to the CT are simply discarded. While this may result

in a small number of missed graph edges, it enables uninterrupted execution during trap

handling, making it e↵ectively a zero-overhead operation. Another way to mitigate the cost

of frequent CT traps is to use a larger CT. The downside to this approach is that increasing

the size of the CT increases the on-chip bu↵ering requirements, which can be expensive to

design and to keep powered.

Several applications stand out with higher costs: freqmine, vips, MySQL-BinLog and

x264. These applications have 10 to 20 times more edges in their communication graphs

and much higher cache miss rate (Columns 2, 3 and 4), indicating that they have more

widespread and frequent communication. This ultimately leads to higher frequency traps

to read out the communication table, but even for these applications, the frequency of traps

is only about 1 per million memory operations, which is unlikely to impede performance.

4.3 Conclusions, Insights, and Opportunities

This chapter described CACG-HW, a hardware architectural mechanism for collecting

context-aware communication graphs. CACG-HW collects graphs in a multiprocessor sys-

tem. CACG-HW leverages existing cache coherence support and per-cache-line meta-data

to implement graph collection. Our design eliminates almost all of the software runtime

overheads associated with graph collection and our hardware extensions are o↵ the critical

path of the execution. CACG-HW’s performance is acceptable for production systems.

Insights. The main insight in this chapter is that there is useful information that is

already being tracked by existing architecture-level mechanisms. This chapter shows how

78

such information — in this case, inter-processor communication — can be exposed through

architectural extensions to an analysis like Bugaboo or Recon.

Opportunities. Many of the opportunities for this work going forward are the same

as those in Chapters 2 and 3. One especially interesting direction for future work is study-

ing the role of graph collection in production systems, which is enabled by CACG-HW.

In production, graph collection can serve as an underlying mechanism for implementing

invariant-guided execution [139], or as support for a failure avoidance mechanism like the

one described in Chapter 7.

A shortcoming of this work is the need to approximate communication by monitoring

only cache-to-cache transfers. The reason for this limitation is that it is too expensive to

keep and update meta-data for all of memory all the time. A profitable direction for research

going forward is to look for new ways to keep whole-memory meta-data that are space- and

time-e�cient.

Finally, another opportunity to go further with the work in this chapter is to take

advantage of the information furnished by existing cache coherence mechanisms. Systems

already monitor this information. Creating an interface to expose it to analyses more

broadly would empower systems. Chapters 5 and 6 begin down this path, by looking

at mechanisms that expose coherence to dynamic analyses implemented in architectural

extensions.

79

Chapter 5

ATOM-AID: AVOIDING ATOMICITY VIOLATIONS

Code that fails to enforce necessary atomicity can lead to schedule-dependent failures

in production systems. A recent comprehensive study [79] found that atomicity violations

accounted for about two thirds of all studied, non-deadlock concurrency bugs. This chapter

describes a technique and system support that avoids schedule-dependent failures due to

atomicity violations.

The goal of the work in this chapter is to dynamically enforce the atomicity of sequences

of operations that were intended to be atomic, but were not made atomic using synchro-

nization. The mechanism we develop works by arbitrarily grouping contiguous sequences of

dynamic instructions into dynamic atomic blocks (“blocks”) that execute atomically with

respect to operations in other threads. Like prior work [27, 132, 125], we rely on an exe-

cution model in which every instruction executes inside a block. We refer to this style of

execution as providing implicit atomicity for sequences of operations in the same block.

Implicit atomicity reduces the amount of interleaving of operations executing in dif-

ferent threads, because interleavings can happen only at a block granularity. One of our

main findings in this chapter is that implicit atomicity avoids atomicity violations. When

a sequence of operations that should be atomic happen to execute together in the same

dynamic atomic block, they are guaranteed to execute atomically, whether the programmer

correctly implemented the atomicity or not.

We build on this finding and propose Atom-Aid, a new technique for avoiding failures

due to atomicity violations. Atom-Aid works by dividing the dynamic instruction stream

into blocks, like in an execution model with implicit atomicity. However, rather than es-

tablishing block boundaries arbitrarily, as in implicit atomicity, Atom-Aid does so using a

heuristic. Atom-Aid’s heuristic uses serializability analysis to identify regions of code that

80

should execute atomically. Atom-Aid attempts to establish block boundaries that execute

all instructions in each such region in the same block, ensuring their atomicity.

Figure 5.1 shows a simple example: counter is a shared variable, and both the read

and update of counter are inside distinct critical sections under the protection of lock L.

However, the code is still incorrect as a call to increment() from another thread could be

interleaved between the read and update of counter, leading to incorrect behavior: two

concurrent calls to increment() could cause counter to be incremented only once.

int counter; // shared variable
 // protected by lock L

void increment() {
 int temp;

 lock (L);
 temp = counter;
 unlock (L);

 temp++;

 lock (L);
 counter = temp;
 unlock (L);
}

The read and

update of counter

should have

happened inside the

same critical section

Bad interleavings of

remote thread

lock (L);
temp = counter;
unlock (L);

temp++;

lock (L);
counter = temp;
unlock (L);

Figure 5.1: A simple example of an atomicity violation. The read and update of counter
from two threads may interleave such that the counter is incremented only once.

The likelihood that an atomicity violation occurs is linked to the number of opportunities

for code to interleave in a way that violates the assumptions about atomicity made by

the programmer. Figure 5.2(a) shows a sequence of operations that read, increment, and

update a shared counter variable called counter. The programmer has failed to enforce

the atomicity of the read, increment, and update, but for correctness those operations must

execute atomically. The figure shows four points in the execution where instructions in

the region of code that should be atomic can be interleaved at a fine grain by instructions

from a di↵erent thread, leading to a failure. In contrast, Figure 5.2(b) shows that with

the code grouped into atomic blocks, a much smaller set of points in the execution when

such interleavings can happen because the operations that were intended to be atomic are

executing in the same dynamic atomic block. In these cases, the dynamic atomic block

avoids the atomicity violation (and hence the failure), despite the fact that the incorrectly

written code does not prevent this behavior. The observation that failures can be avoided

81

by reducing the potential for interleaving of operations in di↵erent threads is one of the key

contributions of this chapter. In Section 5.2, we explain and analyze this observation in

detail.

...

lock(L)

ld $R1←[counter]

unlock(L)

inc $R1

lock(L)

st [counter]←$R1

unlock(L)

...

...

lock(L)

ld $R1←[counter]

unlock(L)

inc $R1

lock(L)

st [counter]←$R1

unlock(L)

...

(a)

Opportunities

for interleaving

(b)

Implicit atomic blocks

arbitrarily defined by

the processor

Figure 5.2: Opportunities for interleaving. (a) shows where interleaving from other threads
can happen in a traditional system. (b) shows where such interleavings can happen in systems that
provide implicit atomicity.

This chapter makes several contributions. First, we make the fundamental observation

that systems with implicit atomicity naturally avoid some atomicity violations. We analyze

and illustrate this observation with a probability study and empirical evidence. Second,

we propose Atom-Aid, a novel failure avoidance mechanism using architecture support to

detect likely atomicity violations and heuristically determine dynamic atomic block bound-

aries. Atom-Aid’s mechanisms both detect and avoid atomicity violations without requiring

any human intervention or program annotation. To the best of our knowledge, this chap-

ter describes the first work on dynamically avoiding schedule-dependent failures without

requiring global checkpointing and recovery [112, 123, 136]. To aid in debugging and fixing

programs that su↵er from atomicity violations, Atom-Aid also reports code that is likely

to be involved in atomicity violations. Third, we evaluate our technique using buggy code

from real applications showing that Atom-Aid is able to reduce the occurrence of a failures

due to potential atomicity violations by orders of magnitude.

82

5.1 Background on Implicit Atomicity

In execution models with implicit atomicity, memory operations in the dynamic instruction

stream are arbitrarily grouped into atomic blocks. Recent examples of such systems, like

BulkSC [27], Atomic Sequence Ordering (ASO) [132], TCC [56, 131] and Implicit Transac-

tions [125] enforce consistency at the coarse granularity of blocks, rather than individual

instructions. These systems provide implicit atomicity because blocks do not correspond

to anything in the program code – a contrast to the explicit atomic blocks of transactional

memory systems. Typically, systems with implicit atomicity take periodic checkpoints (e.g.,

every 2,000 dynamic instructions) forming blocks of dynamic instructions that appear to

execute atomically and in isolation.

Atom-Aid takes advantage of two interesting properties of implicit atomicity. First,

implicit atomicity reduces the number of points in a program’s execution when instructions

in one thread can be interleaved by instructions in another thread. Interleaving can only

happen at the granularity of dynamic atomic blocks and the e↵ects of remote threads are

visible only at block boundaries. Figure 5.3 contrasts fine-grained interleaving with coarse-

grained interleaving. In Figure 5.3(a), interleaving can happen between any instructions

(shown on the left side) and there are six possible execution schedules (shown on the right

side). In Figure 5.3(b), interleaving opportunities happen only between blocks and there

are far fewer possible execution schedules — only two in this example.

The second interesting property is that software is oblivious to the granularity of the

atomic blocks in an execution model that provides implicit atomicity. This granularity-

independence allows the system to arbitrarily define block boundaries and to adjust the

size of blocks dynamically without a↵ecting program correctness or the memory semantics

observed by the software.

Atom-Aid can be implemented in any architecture that supports implicit atomicity or,

more generally, any system that supports forming arbitrary atomic blocks from the dynamic

instruction stream. However, for the purpose of illustration, in this work we assume an un-

derlying system similar to BulkSC [27] or TCC [56], in which processors repeatedly execute

atomic blocks separated by checkpoints — no dynamic instruction is executed outside an

83

b1
b2

a1
a2

(a) (b)

PA

Possible
fine-grain

interleavings

...

PB
a1
a2

b1
b2

Processors Possible
coarse-grain
interleavings
a1
a2

b1
b2

a1
a2

PA PB
b1
b2

Atomic
Blocks

Processors

a1
a2
b1
b2

a1
b1
a2
b2

b1
b2
a1
a2

Figure 5.3: Fine- (a) and coarse-grained (b) access interleaving. There are six possible
interleavings for the fine-grained system and two possible interleavings for the coarse-grained system.

atomic block. To provide a more detailed review of such architectures, we now briefly

describe one such system, BulkSC, as its mechanisms naturally provide much of what an

implementation of Atom-Aid needs.

5.1.1 BulkSC: A Typical Implicit Atomicity System

Bulk [28] is a set of hardware mechanisms that simplify the support of common opera-

tions in environments with multiple speculative threads (or tasks) such as Transactional

Memory (TM) and Thread-Level Speculation (TLS). A hardware module called the bulk

disambiguation module (BDM) dynamically summarizes the addresses that a task reads

and writes into read (R) and write (W) signatures, respectively. A signature is an inexact

encoding of addresses following the principles of Bloom filters [19], which are subject to

aliasing. Consequently, a signature represents a superset of the original address set. The

BDM also includes units that perform signature operations like union and intersection.

BulkSC leverages a cache hierarchy with support for Bulk operations and a processor

with e�cient checkpointing. The memory subsystem is extended with an arbiter to guaran-

tee a total order of commits. As a processor speculatively executes an atomic block (called

a “chunk” in BulkSC), it bu↵ers updates to memory in the cache and generates a Read

and a Write signature. When some chunk, i, completes, the processor sends the arbiter

a request to commit, together with signatures R
i

and W
i

. The arbiter intersects R
i

and

W
i

with the W signatures of all the currently-committing chunks. If all intersections are

84

empty, W
i

is saved in the arbiter and also forwarded to all interested caches for commit.

Each cache uses W
i

to perform bulk disambiguation and potentially abort local chunks in

case a conflict exists. Chunks are periodic and boundaries are chosen arbitrarily (e.g., every

2,000 instructions). Forward progress is guaranteed by reducing chunk sizes in the presence

of repeated chunk aborts.

5.2 Implicit Atomicity Hides Atomicity Violations

Systems with implicit atomicity reduce the likelihood that an atomicity violation manifests

itself by preventing atomicity violations from being exposed. An atomicity violation is

exposed when instructions that should be atomic execute in di↵erent atomic blocks and

nothing in the code enforces the atomicity of those instructions. When instructions that

should be atomic execute in the same atomic block – regardless of whether the code enforces

the atomicity of those instructions – the potential for an atomicity violation involving those

instructions is hidden. As a system with implicit atomicity arbitrarily forms dynamic atomic

blocks, simply by chance, some atomicity violations are hidden. We call this phenomenon

natural hiding.

Achieving the same e↵ect of implicit atomicity statically, by having a compiler auto-

matically insert arbitrary transactions in a program, is a challenge. Doing so could reduce

performance or prevent forward progress [21]. Neither is a problem in this work because

we assume implicit atomicity and systems that support implicit atomicity provide forward

progress guarantees [27, 56].

5.2.1 Probability Study

In comparison with conventional fine-grained execution models, implicit atomicity’s natural

hiding lowers the probability that an atomicity violation is exposed. Our analysis considers

a sequence of d instructions that should be executed atomically, constituting a potential

atomicity violation. We consider a system with implicit atomicity that uses dynamic atomic

blocks constructed of c dynamic instructions. P
hide

is the probability that all d instructions

that should be atomic execute in the same atomic block — i.e., P
hide

is the probability that

the atomicity violation is hidden.

85

Figure 5.4 illustrates how we derive P
hide

. If the first instruction in the sequence that

should be atomic is within the first (c� d) instructions of a block, then the entire sequence

executes atomically within that block, hiding the atomicity violation. With this model, we

can express the probability of hiding an atomicity violation as shown in Figure 5.4.

atomic block
boundary

code
intended to
be atomic

c

(c-d)th
instruction

dCode intended atomic can
start anywhere in here

and it will be in the same
block and hence atomic

P
hide

=

(
0 if c < d
c�d+1

c

if c � d

Figure 5.4: Naturally hiding an atomicity violation. The figure shows the boundaries of a
sequence of instructions intended to be atomic within dynamic atomic block boundaries. Phide is
the probability that the entire sequence executes within the block.

An instruction granularity system e↵ectively executes dynamic atomic blocks including

only a single instruction (c = 1). In such systems, P
hide

= 0, because, by definition, an

atomicity violation involves at least two instructions (d � 2). This is consistent with the

intuition that an instruction granularity system cannot hide atomicity violations. Natural

hiding is limited by the length of dynamic atomic blocks. If a sequence of instructions that

should be atomic is longer than the number of instructions in an atomic block (d > c),

then P
hide

= 0 as well. Despite this limitation, implicit atomicity naturally hides some

atomicity violations without ever increasing the likelihood that they manifest or changing

the program’s semantics.

Figure 5.5 shows the probability of hiding atomicity violations for sequences of instruc-

tions of varied length as the dynamic atomic blocks size increases, according to the expres-

sion of P
hide

shown in Figure 5.4. As expected, we observe that increasing the block size

increases the probability that an atomicity violation is hidden, but that increase is subject

to diminishing returns. From our experiments, we observe that typical sequences of instruc-

tions that should be atomic tend be around 500 to 750 instructions. Assuming a block size

86

0 1000 2000 3000 4000 5000 6000 7000 8000
Size of Block (Instructions)

0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

of
 H

id
in

g
At

om
ic

ity
 V

io
la

tio
n

100 insns
250 insns
500 insns
750 insns
1000 insns
1500 insns
2000 insns

Violation Size

Figure 5.5: Probability of hiding atomicity violations as a function of dynamic atomic
block size.

of 2,000 instructions, we observe in Figure 5.5 that the expected probability of naturally

hiding these typical atomicity violations is 63-75%.

5.3 Actively Hiding Atomicity Violations

As we described in Section 5.1, block boundaries in systems with implicit atomicity are arbi-

trary and varying their placement cannot a↵ect a program’s memory semantics. Atom-Aid

takes advantage of the flexibility defining block boundaries by using a heuristic to auto-

matically determine where to place boundaries to further increase the probability of hiding

atomicity violations. Atom-Aid’s heuristic detects potential atomicity violations. Once a

potential atomicity violation is detected, Atom-Aid inserts a block boundary immediately

before the first memory access in the sequence of operations involved in the violation. The

goal of Atom-Aid’s strategy to inserting boundaries is to make all of the instructions in the

detected potential atomicity violation execute in the same block. Atom-Aid infers where

critical sections should be in the dynamic instruction stream and inserts block boundaries to

87

make those critical regions atomic. Atom-Aid’s boundary insertion strategy is transparent

to software and it is oblivious to synchronization constructs that might be present in the

code.

5.3.1 Detecting Potential Atomicity Violations Using Serializability Analysis

The key to Atom-Aid is precisely detecting when in an execution a potential atomicity vio-

lation may occur. Atom-Aid’s heuristic for detecting potential atomicity violations relies on

a property of a program’s execution called serializability. If an execution has no atomicity

violations it is serializable. A serializable execution is equivalent to some sequential execu-

tion of the groups of instructions intended to be atomic by the programmer (a “serialized”

execution). In an execution, such regions of instructions may interleave one another and

remain serializable if the result of the execution is equivalent to that of some serialized

execution.

Conversely, if an execution su↵ers an atomicity violation, the execution is not serializ-

able — i.e., there is no equivalent serialized execution that produces the same final state.

Serializability analysis determines whether interleavings of accesses to a shared variable are

serializable. Lu et al. [80] used serializability analysis to identify unserializable access in-

terleavings (i.e., potential atomicity violations) detected by their AVIO system. Table 5.1

reproduces the analysis presented in [80]. The column “Interleaving” represents the in-

terleaving in the format A

B

 C, where A and B are the pair of local memory accesses

interleaved by C, the access from a remote thread. For example, R

R

 W corresponds to

two local read accesses interleaved by a remote write access.

Atom-Aid detects potential atomicity violations by monitoring how memory accesses in

an atomic block are interleaved by memory accesses from other blocks in the system, as

those other blocks complete. When Atom-Aid detects at least two recent accesses (e.g., in

the current block) to a variable a by a local thread and at least one recent access to a by

a remote thread, it looks at the types of the accesses involved and applies serializability

analysis. If the local accesses were intended to be atomic, the remote accesses interleaved

them, and the interleaving was unserializable then an atomicity violation has occurred.

88

Interleaving Serializable? Comment

R R Yes —
R

R W No
Interleaved write makes two local reads

R inconsistent.

R R Yes —
W

R W No
Local write may depend on result of read, which

W is overwritten by remote write before local write.

W R Yes —
R

W W No Local read does not get expected value.
R

W R No
Intermediate value written by first write is made

W visible to other threads.

W W Yes —
W

Table 5.1: Serializability analysis. The table shows the analysis and interpretation of each
interleaving described in [80].

Even if the interleaving did not occur, if the local accesses should be atomic and some

remote accesses executed proximally to them, those remote accesses may interleave the

local accesses under some future execution of the same code. Atom-Aid treats interleavings

and potential interleavings as potential atomicity violations.

When Atom-Aid finds a potential atomicity violation, it starts monitoring the variable

involved in the accesses. When the local thread accesses that variable again, Atom-Aid

decides if a block boundary should be inserted. Atom-Aid maintains a history of memory

accesses for use in serializability analysis by recording the read and write sets of the most

recent local dynamic atomic blocks and recently committed remote blocks.

Figures 5.6 and 5.7 show how Atom-Aid’s heuristic is applied to a counter increment

example, assuming BulkSC provides implicit atomicity. Atom-Aid maintains the read and

write sets of the previously committed blocks: R
P

and W
P

, respectively. Recall that in

BulkSC, processors committing blocks send their write sets to other processors in the system,

giving Atom-Aid’s analysis the information it needs about what was written recently by

89

remotely completing blocks (W
RP

).

In Figure 5.6, processors P1 and P2 are both executing increment(). There is a chance

that the read and update of counter will be atomic due to natural hiding, but in Figure 5.6

that did not happen. The read of the counter is inside the previously committed block

(P), but the update is part of the currently executing block (C). When counter is updated

in C, Atom-Aid determines that it was read by the previous local block (counter 2 R
P

)

and recently updated by a remote processor (counter 2 W
RP

). This pattern of accesses

characterizes a potential atomicity violation.

When Atom-Aid detects this potential atomicity violation, it starts monitoring counter.

Atom-Aid monitors a variable by making it a member of the hazardDataSet, a per-processor

set of variables involved in a potential atomicity violation. Later (Figure 5.7), when P1 ac-

cesses counter again, Atom-Aid detects that counter 2 hazardDataSet and a block bound-

ary should be inserted before the read from counter is executed. This increases the chances

that both accesses to counter will be enclosed in the same block, making them atomic.

While the atomicity violation in Figure 5.6 is exposed, it does not mean it has manifested

itself. Also, as will be explained in the next section, even if the atomicity violation is

naturally hidden, Atom-Aid is still able to detect it. This shows that Atom-Aid is able to

detect atomicity violations before they manifest themselves.

In the following sections, we explain in detail how the detection algorithm works and

how Atom-Aid decides where to place block boundaries. We also describe an architecture

built around signature operations that implements the mechanisms used by the algorithm.

5.4 Design Overview

There are two main parts to Atom-Aid’s design. First, Atom-Aid tracks memory access

histories to detect potential atomicity violations. Second, Atom-Aid uses an extension to

architecture support for implicit atomicity to determine dynamic atomic block boundaries,

aiming to hide atomicity violations and avoid failures.

90

P2P1
...
lock(L)
ld $R1←[counter]
unlock(L)
inc $R1
lock(L)
st [counter]←$R1
unlock(L)
...

...
lock(L)
ld $R1←[counter]
unlock(L)
inc $R1
lock(L)
st [counter]←$R1
unlock(L)
...

WRP

WP
RP

WC
RC

[counter] ∈ RP

[counter] ∈ WRP
⇒

[counter] might be
involved in an atomicity

violation, add it to
hazardDataSet

Figure 5.6: Identifying data involved in a potential atomicity violation. Atom-Aid discovers
that counter might be involved in an atomicity violation and adds it to the hazardDataSet.

5.4.1 Detecting Potential Atomicity Violations

When Atom-Aid finds two or more accesses by a thread to the same address and one recent

access by another thread to that same address, Atom-Aid examines the types of accesses to

determine whether they are potentially unserializable. If they are, Atom-Aid treats them

as a potential atomicity violation.

Atom-Aid needs to track three pieces of information:

1. The type t (read or write) and address a of the memory operation currently executing

2. The read and write sets of the current and previously committed dynamic atomic

block, which we refer to as R
C

, W
C

, R
P

and W
P

, respectively

3. The read and write sets of dynamic atomic blocks committed by remote processors

while the previously committed local block was executing (referred to as R
RP

and

91

...
lock(L)
ld $R1←[counter]
unlock(L)
inc $R1
lock(L)
st [counter]←$R1
unlock(L)
...

[counter] ∈ hazardDataSet
⇒ force a boundary insertion.

Default
atomic

block size

P1

Figure 5.7: Actively hiding an atomicity violation. When counter is accessed, a block bound-
ary is inserted automatically because counter belongs to the hazardDataSet.

W
RP

), together with read and write sets of blocks committed by other processors

while the current local block is executing (referred to as R
RC

and W
RC

).

Table 5.2 shows how this information is used to determine whether a group of accesses

constitute a potential atomicity violation. The first column shows the type of a local

memory access, the second column shows which interleavings Atom-Aid tries to identify

when it observes this local memory access, and the third column shows a logical expression

referring to tracked read and writes sets illustrating how Atom-Aid identifies interleavings

of interest.

For example, consider the first two cases: when the local memory access is a read, the

two possible non-serializable interleavings are R

R

 W and W

R

 W . To detect if either of

them has happened, Atom-Aid uses the corresponding set expressions in the third column.

Specifically, to identify a potential R

R

 W interleaving, Atom-Aid first checks whether a

can be found in any of the local read sets (a 2 R
C

_ a 2 R
P

). If it is, Atom-Aid then

checks whether a can also be found in any of the remote write sets of a block committed by

another processor while either the previous local block was executing (a 2 W
RP

) or since

the beginning of the current local block (a 2 W
RC

). If the condition is satisfied, Atom-

Aid identifies address a as potentially involved in an atomicity violation and adds it to

92

the processor’s hazardDataSet. Note that this case is not necessarily an atomicity violation

because the remote write might not have actually interleaved between two reads. Also, since

Atom-Aid keeps only two blocks worth of history, it is only capable of detecting atomicity

violations that are shorter than the size of two blocks. This limitation to access history

tracking is not problematic, however, because Atom-Aid cannot hide atomicity violations

larger than a single dynamic atomic block.

Local Op. Interleaving Expression

Read

R W
(a 2 RC _ a 2 RP)^

R (a 2WRC _ a 2WRP)

W W
(a 2WC _ a 2WP)^

R (a 2WRC _ a 2WRP)

Write

R W
(a 2 RC _ a 2 RP)^

W (a 2WRC _ a 2WRP)

W R
(a 2WC _ a 2WP)^

W (a 2 RRC _ a 2 RRP)

Table 5.2: Cases when an address is added to the hazardDataSet.

5.4.2 Adjusting Dynamic Atomic Block Boundaries

After an address is added to the processor’s hazardDataSet, every access to this address

by the local thread triggers Atom-Aid. If Atom-Aid placed a block boundary right before

all accesses that trigger it, Atom-Aid would not actually prevent any atomicity violation

from being exposed. To see why, consider Figure 5.7 again. Suppose the address of variable

counter has been previously inserted in the hazardDataSet. When the load from counter

executes, it triggers Atom-Aid, which can then place a block boundary right before this

access. When the store to counter executes, it triggers Atom-Aid to again insert a block

boundary. If it indeed placed a boundary at that point, Atom-Aid would actually expose

the atomicity violation, rather than hiding it as intended.

There are other situations in which inserting a block boundary is undesirable. Multiple

block boundaries should not be inserted in the case of an atomicity violation involving

many accesses. Instead, Atom-Aid should to place just a single block boundary before the

93

first access. When an address has just been added to the hazardDataSet Atom-Aid should

not eagerly insert block boundaries. In this case, it is likely that the local thread is still

manipulating the corresponding variable, in which case the absence of a block boundary

may be beneficial.

To determine whether to place a boundary, Atom-Aid uses a simple policy consisting

of two conditions. Figure 5.8 shows this policy in a flowchart. The first condition (1)

determines that Atom-Aid never breaks a block into multiple smaller blocks more than

once — after a boundary is inserted to avoid a potential violation, the newly created block

is always as large as the default block size. The second condition (2) determines that, if

Atom-Aid adds any address to the hazardDataSet during the execution of a given block, it

cannot insert a boundary during that block’s execution, breaking it into two blocks.

Address a is accessed

a ∈ hazardDataSet?No Yes

Do nothing

Yes

Insert boundary

Yes Boundary
inserted in current

block already ?

1

Current block
changed

hazardDataSet ?

No

2

No

Figure 5.8: Block boundary insertion logic. Flowchart showing Atom-Aid’s policy for inserting
dynamic atomic block boundaries.

5.5 Implementing Atom-Aid with Implicit Atomicity and Hardware Signatures

We based our Atom-Aid implementation on BulkSC because its signatures o↵er a convenient

way of storing blocks’ read and write sets. To collect the information required by Atom-

Aid’s detection heuristic (described in Section 5.4), we add three pairs of signatures to

the original BulkSC design. Figure 5.9 shows all the signatures required by Atom-Aid.

Signatures R
C

and W
C

, which hold the read and write sets of the currently executing block,

94

are used by BulkSC for disambiguation and memory versioning. Signatures R
P

andW
P

hold

the read and write signatures of the previously committed block. When a block commits,

R
P

and W
P

are overwritten with the values in R
C

and W
C

, respectively. R
RC

encodes

the addresses of all data for which remote read requests were received while the current

block is executing. Likewise, W
RC

encodes the addresses of all data written by remote

processors while the current block executes. When a block commits, signatures R
RC

and

W
RC

are copied into signatures R
RP

and W
RP

, respectively, which thus encode the remote

operations that happened during the execution of the previous block. If a block is aborted

(i.e., due to a memory conflict), only signatures R
C

and W
C

are discarded, keeping the rest

of the memory access history intact.

WP
RP

WC
RC

Previous
block (P)

Current
block (C)

WRP
RRP

WRC
RRC

st

ld

st

ld

from other
processors' W

signatures

Signatures
for local
blocks

Signatures
encoded with

remote
accesses

remote reads
(downgrades)

Figure 5.9: Signatures used by Atom-Aid to detect likely atomicity violations.

The hazardDataSet itself is implemented as a signature as well. When a processor

accesses an address, a check to determine if the address is in the hazardDataSet is done with

a simple membership operation on the signature. The hazardDataSet could alternatively be

implemented as an extension to the cache tags. An extra bit per cache line tag indicates

whether or not the corresponding line address is part of the hazardDataSet. When a cache

line is accessed, this bit is checked to determine whether the corresponding address belongs

to the hazardDataSet.

95

Data Tracking Granularity

Both the signature and cache-based implementations can support word-granularity ad-

dresses. With the signature-based implementation, this can be done by simply encoding

word addresses as opposed to line addresses. With the cache-based implementation, this can

be done by having one bit per word in a cache line to indicate whether the corresponding

word is present in the hazardDataSet.

The trade-o↵ between these two implementations is one between complexity and ef-

fectiveness. While a signature-based implementation is simpler and does not require the

address to be present in the cache, it su↵ers from aliasing (false positives), especially if the

hazardDataSet contains many data addresses. With the cache-based implementation, there

is no aliasing but the implementation of this approach is more complex. In addition, the

hazardDataSet information of a particular cache line is lost on cache displacements.

Debugging Support

As mentioned earlier, we want Atom-Aid to be useful for debugging tools as well. We

envision doing this by making the hazardDataSet visible to software and providing a fast

user-level trapping mechanism that is triggered at every memory access to addresses in

hazardDataSet.

Discussion

While we have assumed a BulkSC-like system, other systems that support implicit atom-

icity can take advantage of the core algorithm in Atom-Aid. For example, in TCC [56]

disambiguation is not done with signatures, but write sets are still sent between processors

on commit. It is possible to record the information Atom-Aid needs by augmenting TCC

with structures to hold the incoming write sets when remote processors commit. It is also

possible to use similar structures to hold the read and write sets for previously executed

atomic blocks. One key requirement for any implementation of Atom-Aid is that the un-

derlying system providing implicit atomicity guarantees forward progress and the insertion

of arbitrary block boundaries does not compromise that guarantee. BulkSC and TCC both

96

provides this guarantee.

With minor extensions, Atom-Aid can also be implemented in systems that do not

support full-fledged implicit atomicity, as long as they provide a mechanism for forming

atomic blocks dynamically. O↵-the-shelf transactional memory architectures [3] are an

interesting platform for studying such an implementation, though we relegate that study to

future work.

The run time overhead of the architectural structures required by Atom-Aid is negligi-

ble. Membership operations with signatures are very fast because they do not involve any

associative search and require only simple logic [28, 117]. As a result, accessing signatures is

likely to be much faster than accessing the cache to read or modify data. Also, all accesses

to signatures required by both the atomicity violation detection algorithm and the block

boundary insertion policy can be done in parallel. In case the hazardDataSet is implemented

as an extension to the cache tags, it is also unlikely that accessing it will a↵ect performance

because both the data and the bit indicating that the corresponding address is part of the

hazardDataSet can be fetched simultaneously.

Preserving signatures across context switches poses some complexity. The underlying

implicit atomicity model is likely to provide a mechanism for preserving read and write

sets already — this mechanism can be re-purposed to preserve the additional read and

write sets required by Atom-Aid, as well as the hazardDataSet. If the cost of preserving

these signatures across context switches is excessive in time or space, the signatures can

be discarded. While discarding these signatures may lead to some missed detections or

boundary insertions, it cannot lead to incorrect behavior or altered program semantics.

Furthermore, Atom-Aid is a best e↵ort probabilistic failure avoidance mechanism – there are

no guarantees that need to be upheld, so trading detection precision for reduced complexity

is a reasonable trade-o↵.

5.6 Evaluation

We have several goals in evaluating Atom-Aid. First, we characterize atomicity violations

in a set of bug kernels and full application benchmark programs. Second, we experimen-

tally validate and characterize the ability of implicit atomicity to naturally hide atomicity

97

violations in our benchmarks. Third, we show that Atom-Aid’s block boundary insertion

heuristic hides more atomicity violations than natural hiding. Fourth, we characterize Atom-

Aid’s behavior and evaluate its sensitivity to an implementation that uses signatures, versus

a precise implementation. Fifth and finally, we describe the applicability of the information

collected by Atom-Aid to the problem of debugging the code that leads to the atomicity

violations in our benchmark programs.

5.6.1 Simulation Infrastructure

We model a system similar to BulkSC [27] using the Pin [87] dynamic binary instrumen-

tation infrastructure. Our model includes atomic-block-based execution, using signatures

to represent read and write sets, and the mechanisms required by Atom-Aid’s algorithm.

Unless otherwise noted, the signature configuration used is the same as in [28]. Since the

simulator is based on binary instrumentation and runs workloads in a real multiprocessor

environment, it is subject to nondeterminism. For this reason, we present all of our results

averaged over a large enough number of runs, with error bars showing the 95% confidence

interval for the average.

Our simulations determine, for each benchmark, whether a sequence of instructions that

should be atomic to avoid a failure is fully enclosed within a dynamic atomic block and the

atomicity violation is, therefore, hidden. To determine how often Atom-Aid hides atomicity

violations, we explicitly annotated the beginning and end of regions of code that should

be atomic. Our simulation model then dynamically checks if these markers fall within the

same dynamic atomic block. If so, the corresponding atomicity violation is hidden and

it is exposed otherwise. It is important to note that these annotations are not used by

Atom-Aid’s algorithm in any way — their sole purpose is to evaluate the techniques we

propose.

5.6.2 Simulated Workloads

For our experiments, we use two types of workloads: bug kernels and full applications. The

purpose of using bug kernels is to generate extreme conditions in which potential atomicity

98

violations occur more often than in real applications. We also include entire applications

(MySQL, Apache, XMMS) to assess how e↵ective Atom-Aid is under realistic execution

conditions. For the MySQL runs, we used a multi-threaded variant of the SQL-bench test-

insert workload, which performs insert and select queries. For Apache runs, we used the

ApacheBench workload. For XMMS, we played a media file with the visualizer on.

We created bug kernels from real applications described in prior work on atomicity viola-

tions [49, 80, 136]. We ensured the atomicity violation in the original application remained

intact in the kernel version. Wherever possible, we also included program elements that

a↵ect timing, such as I/O, to mimic realistic interleaving behavior in the kernel workloads.

Table 5.3 lists the workloads we use in our evaluation. We provide the number of

threads each workload uses, the average, minimum, maximum, and standard deviation

values of number of instructions in each region that should be atomic. We also include a

brief description of each bug.

Atom. Vio. Size
Bug Bug

Thds Avg. S.D. Range Description
Type Name

k
e
rn

e
ls

Apache-extract 2 973 18.63 909-1014 Kernel version of above Apache log system bug.

BankAccount 2 85 1.21 81-91
Shared bank account data structure bug.Simultaneous
withdrawal and deposit with incorrectly synchronized
program may lead to inconsistent final balance.

BankAccount2 2 2407 1.38 2403-2411 Same as previous, with larger atomicity violation.

CircularList 2 587 1.88 585-595
Shared work list data ordering bug. Removing,
processing, and adding work units to list
non-atomically may reorder work units in list.

CircularList2 2 3593 2.92 3588-3608 Same as previous, with larger atomicity violation.

LogProc&Sweep 5 278 1.69 272-282
Shared data structure NULL dereference bug. Threads
inconsistently manipulate shared log. One thread
sets log pointer to NULL, another reads it and crashes.

LogProc&Sweep2 5 2498 5.55 2489-2514 Same as previous, with larger atomicity violation.
MySQL-extract 2 239 0.40 239-243 Kernel version of above MySQL log system bug.

StringBu↵er 2 556 0.00 556-556
java.lang.StringBu↵er overflow bug [49]. On append,
not all required locks are held. Another thread may
change bu↵er during append. State becomes inconsistent.

re
a
l

Apache 25 464 0.00 464-464
Logging bug in Apache httpd-2.0.48. Two threads access
same log entry without holding locks and change entry
length. This leads to missing data or crash.
Security backdoor in MySQL-4.0.12. While one thread closes

MySQL 28 722 8.37 713-736 file and sets log status to closed, other thread accesses
log. Logging thread sees closed log, and discards entries.
Visualizer bug in XMMS-1.2.10, a media player. While

XMMS 6 586 6.93 572-595 visualizer is accessing PCM stream data, data in PCM
can be changed, or freed, causing corruption or crash.

Table 5.3: Bug benchmarks used to evaluate Atom-Aid.

99

The sequences of instructions intended to be atomic vary in length, by benchmark,

from around 80 to around 3,600 dynamic instructions. The violation sizes found in real

applications are as large as several hundred instructions, never exceeding one thousand

instructions. We believe that the reason these atomicity violations are relatively short is

because long atomicity violations are easier to find during testing, since they are bound

to manifest more often. The violations found in most bug kernels are similar in size to

the real applications. We also used a second, modified version of three kernels in which

we added more instructions to the sequence intended to be atomic. Our goal with these

modified kernels was to evaluate Atom-Aid with longer atomicity violations (BankAccount2,

CircularList2 and LogProc&Sweep2). Note that, for Apache and MySQL, the violation sizes

in the full application and the kernel versions are di↵erent. This is because in Apache-extract

there was additional work in generating random log entries, and MySQL-extract does not

use MySQL’s custom implementation of memcpy.

The real applications we study use a relatively larger number of threads than kernels,

ranging from 6 to 28 threads. Most bug kernels use only 2 threads because they are su�cient

to manifest the atomicity violation. For the experiments we present in Section 5.6, we

simulated each of the bug kernels forty times for each dynamic atomic block size, varying

the block size from 750 to 8,000 instructions. We ran each of the real applications five times,

with a block size of 4,000 instructions.

5.6.3 Natural Hiding

We validated the probability study in Section 5.2.1 by running the workloads from Table 5.3

in our simulator configured as a system with implicit atomicity but without Atom-Aid. We

varied the block size and measured how often sequences of dynamic instructions that should

be atomic execute within the same block – i.e., how often the atomicity violation was hidden.

Figure 5.10 shows the percentage of atomicity violations naturally hidden for each of

the bug kernels as the block size increases. The lines in the plot correspond to P
hide

(see

Figure 5.4) for the average violation size of each bug kernel shown in Table 5.3. Most

experimental data points are very close to the lines derived from the analytical model. This

100

verifies the accuracy of the model as well as our hypothesis that systems with implicit

atomicity naturally hide atomicity violations. While Figure 5.10 does not include data for

real applications, the left bar of each cluster in Figure 5.11(b) shows that natural hiding

occurs in real applications as well, with a block size of 4,000 instructions. These data also

match our analytical model.

0 1000 2000 3000 4000 5000 6000 7000 8000
Size of Block (Instructions)

0

20.0

40.0

60.0

80.0

100.0

Pe
rc

en
t o

f A
to

m
ic

ity
 V

io
la

tio
ns

 H
id

de
n

BankAccount
MySQL-extract
LogProc&Sweep
StringBuffer
CircularList
Apache-extract
BankAccount2
LogProc&Sweep2
CircularList2

Figure 5.10: Empirically evaluating natural hiding. Experimental data on the natural hiding
of atomicity violations with implicit atomicity for various block sizes and bug kernels. Points show
empirical data, curves show data predicted by our analytical model (Phide).

Implicit atomicity with block sizes as small as 4,000 dynamic instructions naturally hides

70% or more of the atomicity violations for nine of the twelve workloads. The remaining

workloads have artificially large atomicity violations that prevent natural hiding at block

sizes of 2,000 dynamic instructions or fewer, and keep the probability of natural hiding lower

than for other workloads at larger block sizes. As the block size increases, this di↵erence is

gradually reduced.

101

5.6.4 Actively Hiding Atomicity Violations

This section assesses how well Atom-Aid avoids failures by hiding atomicity violations,

improving on the already very e↵ective natural hiding of implicit atomicity. Figure 5.11(a)

shows the percentage of atomicity violations hidden by Atom-Aid for each bug kernel as the

block size increases, whereas Figure 5.11(b) contrasts the hiding e↵ects of Atom-Aid with

natural hiding alone, for real applications.

Apache-extract

BankAccount

BankAccount2

CircularList
CircularList2

LogProc&Sweep

LogProc&Sweep2

MySQL-extract

StringBuffer

(a) Bug kernels.

0

20.0

40.0

60.0

80.0

100.0

pe
rc

en
t o

f a
to

m
ic

ity
 v

io
la

tio
ns

 h
id

de
n

Chunk size
750 insns
1000 insns
1500 insns
2000 insns
4000 insns
6000 insns
8000 insns

Apache
MySQL

XMMS

(b) Real applications. Chunks of 4,000 instructions.

0

20.0

40.0

60.0

80.0

100.0

Natural hiding
Active hiding

86.2

99.0

81.5

99.9

85.4

98.8

��������	

������

Figure 5.11: Atomicity violations hidden by Atom-Aid. Results are averaged over all trials
and error bars show the 95% confidence interval.

The data show that Atom-Aid is able to hide very nearly 100% of atomicity violations

in our benchmarks, including real applications, with dynamic atomic blocks of only 4,000

dynamic instructions. With even smaller block sizes, Atom-Aid hides the majority of atom-

icity violation instances. Notable exceptions are Apache-extract and the three bug kernels

with artificially longer atomicity violations. As explained in Section 5.6.3, these larger atom-

icity violations cannot be hidden by blocks shorter than the span of dynamic instructions

that should have been atomic. Apache-extract su↵ers from block boundaries being inserted

too early in the execution, which decreases the chance of hiding atomicity violations when

smaller block sizes are used. However, the problem disappears when block sizes reach 4,000

dynamic instructions because blocks become large enough to enclose both the access that

led to the too-early boundary and the atomicity violation in its entirety.

Overall, Atom-Aid’s boundary insertion heuristic is capable of hiding a much larger

fraction of atomicity violation instances than natural hiding alone. In comparison with

102

the o↵-the-shelf computing systems of today, Atom-Aid reduces the number of exposed

atomicity violations by several orders of magnitude, hiding more than 99% of atomicity

violations in most benchmarks.

5.6.5 Characterization and Sensitivity

Table 5.4 characterizes Atom-Aid’s behavior by providing data collected from each of the

bug kernels. We only use kernels in this study, as opposed to real applications, because

they provide a more controlled environment for our measurements and they run faster in

our simulator.

Columns 2 and 3 reproduce data from Figures 5.10 and 5.11, respectively. They show

the percentage of hidden atomicity violations with natural hiding and using our boundary

insertion algorithm for a block size of 4,000 dynamic instructions. Again, while about 67%

of atomicity violations are hidden naturally on average, Atom-Aid’s boundary insertion

algorithm is able to hide nearly 100% of them.

Column 4 (% Inserted Boundaries) shows what fraction of blocks created by the block

boundary insertion heuristic as the program executes, while Column 5 (% Unnecessary

Boundaries) shows what percentage of these additional blocks does not help hide atomicity

violations. % Unnecessary Boundaries is large for some workloads, showing that Atom-

Aid may often insert block boundaries unnecessarily. However, % Inserted Boundaries is

typically low, so even if it creates many unnecessary blocks, Atom-Aid still adds only a

small fraction of all blocks. This implies Atom-Aid is unlikely to have noticeable impact on

performance [27].

Columns 6 and 7 illustrate the behavior of Atom-Aid’s atomicity violation detection

algorithm. Column 6 (hazardDataSet Size) shows how many distinct data addresses, at a

line granularity, are identified as involved in a potential atomicity violation. Atom-Aid’s

algorithm selects, on average, only four data items as being potentially involved in an

atomicity violation. Column 7 (# Boundary PCs) shows how many distinct static memory

operations in the code caused Atom-Aid’s heuristic to insert a block boundary. On average,

it inserts boundaries at only three code points. These results show that Atom-Aid selectively

103

identifies data addresses and points in the program that are potentially involved in atomicity

violations. These can be reported to a programmer who in turn has reasonably precise

information about the potential atomicity violation and can use it to debug the application.

We further explore this aspect of Atom-Aid in Section 5.6.6.

Natural Signature-Based Atom-Aid Exact Atom-Aid
Hiding % Insert % Unnec. hazardDataSet # Bound. % Insert % Unnec.

Benchmark % Hide % Hide Bound. Bound. Size PCs % Hide Bound. Bound.
Apache-extract 75.77 99.03 4.4 79.4 5 3 99.94 1.1 16.7
BankAccount 97.84 99.99 12.5 75.2 4 3 99.99 6.4 50.4
BankAccount2 39.6 100.00 11.7 74.8 4 3 100.00 6.1 49.6
CircularList 71.14 99.95 12.5 0.0 2 2 99.95 12.5 0.0
CircularList2 9.92 99.90 11.1 0.1 2 2 99.90 11.1 0.1
LogProc&Sweep 93.14 99.88 12.4 0.2 11 4 99.89 12.4 0.4
LogProc&Sweep2 37.64 99.73 11.0 0.1 2 2 99.78 11.0 0.1
MySQL-extract 91.89 100.00 18.8 46.1 3 6 100.00 18.7 45.6
StringBu↵er 86.21 100.00 6.2 0.0 3 2 100.00 6.2 0.0
Average 67.02 99.83 11.2 30.6 4 3 99.94 9.5 18.1

Table 5.4: Characterizing Atom-Aid. The table shows data for both the signature and non-
signature implementations.

So far, we have discussed data on an implementation of Atom-Aid that exclusively uses

hardware signatures for disambiguating accesses performed during block execution, detect-

ing block interleaving, and maintaining the hazardDataSet. Exact Atom-Aid corresponds to

the behavior of a non-signature based implementation of Atom-Aid. For that, all signatures

in the design presented in Section 5.5 are simulated ideally as unlimited size exact sets —

there is no aliasing when detecting potential violations or when determining if a memory

address is in the hazardDataSet. We present these results in the group of columns entitled

Exact Atom-Aid in Table 5.4. The behavior of the exact implementation of Atom-Aid would

be similar to the behavior of an implementation that uses cache tag extensions as a way of

keeping the sets of addresses.

First and most important, % Hide for the exact implementation (Column 8) is nearly

the same as % Hide for the signature-based implementation (Column 3), showing that the

impact of signature imprecision on the e↵ectiveness of Atom-Aid is negligible. % Inserted

Boundaries (Columns 4 and 9) is, on average, higher for the signature-based Atom-Aid,

because aliasing in signatures causes boundaries to be inserted more frequently. However,

104

the di↵erence is small. The di↵erence in the frequency of boundary insertions is also re-

flected in the percentage of unnecessary boundary insertions (Columns 5 and 10), which is

significantly lower for Exact Atom-Aid.

5.6.6 Debugging Discussion

Showing that Atom-Aid is able to hide almost all atomicity violations demonstrates that the

algorithm inserts block boundaries in appropriate places. Atom-Aid is also able to report

the program counter (PC) of the memory instruction where boundaries were inserted. These

places in the program are the boundaries of potentially incorrectly specified critical sections

so they can be used to aid the process of locating bugs in the code. While a detailed analysis

of a complete debugging tool is outside of the scope of this work, we were able to use the

feedback from Atom-Aid to locate the code for the bugs in MySQL and Apache used in

past work on bug detection [80, 136], and to detect a bug in XMMS not studied in the prior

literature.

We used the following process to locate bugs: (i) collect the set of PCs where block

boundaries were inserted; (ii) group PCs into the line of code and function in which they

appear; and, finally, (iii) traverse the resulting list of functions, from most frequently ap-

pearing to least, examining the lines of each function, from the most frequently appearing

line to least. Using this process, we were able to locate a code point related to each of the

bugs in our evaluation by inspecting a relatively small number of points in the code.

Table 5.5 shows some data on our experience finding atomicity violations in real applica-

tions. The first group of columns (Program Totals) shows the total number of files, functions,

and lines of code for the entire application. The second group (Boundary Insertion Points)

shows the number of files, functions, and lines of code for which Atom-Aid inserted block

boundaries while the application executed. The third group (# of Inspections) shows the

number of files, functions, and lines of code we had to inspect before we located a bug.

For Apache, only 85 lines of code in 6 files needed to be inspected to locate the bug. For

MySQL, the number is larger (more than 300), but MySQL has a larger code base, with

105

almost 400,000 lines of code. We identified a bug in XMMS that was not previously known1

after inspecting only 9 lines of code. Overall, the information provided by Atom-Aid is

useful in directing the programmer’s attention to the right region of code, even if using a

simple heuristic like the one we present here. However, more sophisticated techniques, like

those in Chapter 3, result in even more e↵ective debugging.

Program Totals Boundary Insertion Points # of Inspections
Program Files Func. Lines Files Func. Lines Files Func. Lines
Apache 729 3361 290k 52 206 956 6 8 85
MySQL 871 15231 394k 44 228 681 27 84 353
XMMS 268 1368 81k 7 23 42 2 4 9

Table 5.5: Characterization of the bug detection process for real applications using Atom-
Aid.

5.7 Conclusions, Insights, and Opportunities

This chapter described a mechanism for avoiding atomicity violations. We showed how ex-

isting coarse-grained execution models that provide implicit atomicity avoid some atomicity

violations by default. We showed that serializability analysis applied to parts of a program’s

execution history can identify likely atomicity violations. Combining implicit atomicity with

serializability analysis, we developed Atom-Aid, a mechanism that more precisely avoids

atomicity violations, than implicit atomicity alone. We described how Atom-Aid can be

implemented in a straightforward way in an architecture that provides implicit atomicity.

We then evaluated our system and showed it is e↵ective at avoiding failures and can provide

useful debugging information.

Insights. There are several major insights that we gained in developing Atom-Aid.

First, in this work, we discovered that it is possible to perturb a shared-memory multi-

threaded execution without breaking the semantics of the program executing. Atom-Aid

uses this technique to avoid failures and lays the groundwork for other techniques in Chap-

ters 6 and 7. Second, we discovered the phenomenon of “natural hiding” of atomicity

violations by systems with implicit atomicity. Third, we found it possible to build a system

1The XMMS project leads were contacted regarding the bug. However, no feedback was ever received.

106

that is e↵ective at avoiding failures, but also provides debugging benefit, making it useful

during both development and in production systems.

Opportunities. Atom-Aid is largely a starting point. We showed that avoiding failures

is possible by perturbing execution schedules. One major limitation of our approach is the

reliance on implicit atomicity. There are no commercial systems with implicit atomicity.

Chapter 6 describes a di↵erent architecture that is similar to Atom-Aid that obviates the

need for implicit atomicity, instead relying on transactional memory support alone.

A second limitation of this work is the inability of this technique to handle atomicity

violations involving multiple di↵erent variables. The serializability analysis we use is limited

to looking at a single variable, but many violations involve groups of data. Chapter 6

generalizes the analysis used in this chapter to overcome this limitation.

Finally, the mechanism for avoiding failures used in this chapter is limited in that it

cannot deal with arbitrary schedule-dependent failures (e.g., ordering violations). The work

in Chapter 7 addresses this shortcoming by using a di↵erent theoretical framework that

covers schedule-dependent failures in general.

107

Chapter 6

COLORSAFE: AVOIDING MULTI-VARIABLE ATOMICITY VIOLATIONS

The previous chapter described Atom-Aid, a system for dynamically detecting and avoid-

ing failures in concurrent programs that result from atomicity violations. Atom-Aid, like

most prior work on detecting and debugging atomicity violations [136, 80, 44], focused

on situations involving a series of accesses to a single variable that were intended to be

atomic. Focusing on only single-variable violations leaves techniques fundamentally limited

in helping with a wide variety of bugs.

One reason that prior work has focused on single variable situations is that the complex-

ity of the state required and number of cases to be considered when identifying multi-variable

atomicity violations grows quickly with the number of variables involved. Also, until recently

it was unclear that multi-variable bugs are common. However, recent prior work [78, 79]

finds that multi-variable concurrency bugs show up with troubling frequency: roughly one

third of atomicity violations involve multiple variables. Errors involving multiple variables

are likely to be more di�cult for programmers to understand and fix than those involving a

single variable. Their frequency and di�culty make multi-variable atomicity violations an

important problem to solve.

In this chapter, we develop a general solution that attacks both single- and multi-variable

atomicity violations using a single set of simple architectural mechanisms. The mechanisms

we develop are useful useful during development for detecting and debugging programming

errors that lead to atomicity violations and also useful in production for avoiding failures

due to atomicity violations. Like Atom-Aid, our technique works by identifying potential

atomicity violations using serializability analysis. The key observation that di↵erentiates

this work is that we can create sets of variables that we call colors and apply a specialized

serializability analysis that considers colors, rather than individual variables. Using a color-

108

based serializability analysis, our technique is able to detect and avoid single- and multi-

variable atomicity violations.

Our approach builds on the insights of prior work: we use the concept of assigning

colors to data from data-centric synchronization [26, 126], we use a variant of the serializ-

ability analysis developed for bug detection [80, 136], and we use a variant of the failure

avoidance mechanism that we developed in Atom-Aid [85]. We combine these techniques

in a novel way in a system that we call ColorSafe. By grouping variables into colors, our

detection mechanism considers sets of variables, rather than individual variables. Detect-

ing interleavings of accesses to same-colored data that should have been atomic enables our

mechanism to detect both single- and multi-variable atomicity violations. By targeting both

classes of atomicity violations, ColorSafe is more general than prior work that focused on

single-variable violations only. ColorSafe avoids failures due to these atomicity violations by

preventing unintended interleavings using dynamic atomic blocks. In this chapter, we call

these blocks ephemeral transactions because, unlike Atom-Aid, which required complex ar-

chitectural support for implicit atomicity [56, 27, 32], ColorSafe requires only a mechanism

to dynamically start and end atomic blocks, like standard transactional memory support.

ColorSafe has two modes of operation: debugging mode and deployment mode. Debug-

ging mode collects more information than deployment mode and uses a stricter criterion

for detecting atomicity violations with fewer false positives. Deployment mode provides dy-

namic bug avoidance with higher recall and lower precision than debugging mode. The key

to deployment mode is its use of a less strict criterion for detecting potential bugs that has

fewer false negatives at the cost of more false positives. By having these two complementary

modes, ColorSafe is useful throughout the entire software lifecycle: during development and

after deployment. Providing utility for the lifetime of a system makes adding these mech-

anisms to a processor more compelling to processor manufacturers. Moreover, the same

mechanisms are used to support both modes.

6.1 Multi-variable Atomicity Violations and Serializability

This section reviews atomicity and serializability, which were first introduced in Chapters 1

and 5 and connects these concepts to multi-variable atomicity violations.

109

Consider the example shown in Figure 6.1(a). The shared variable ctr is being incre-

mented by two threads simultaneously, which may lead to an atomicity violation: the write

from Thread 2 can interleave with the read and write from Thread 1 and cause a counter

increment to be lost. The read and write of ctr should have been atomic. This example

shows a a single-variable atomicity violation, because it involves only accesses to ctr. Ad-

ditionally, this interleaving is unserializable: assuming each thread’s two accesses to ctr

should execute as an atomic block, there is no sequential execution of those blocks that

produces the same final state as the interleaved execution.

int length; // shared variables
char *str; // protected by lock L

...

lock(L);

tptr = str;

unlock (L);

...

lock(L);

tlen = length;

unlock(L);

Thread 1
...

lock(L);

str = newstr;

unlock(L);

...

lock(L);

length = 15;

unlock(L);

Thread 2

(a)

Single-variable atomicity violation. Concurrent

increments to ctr might lose an update.

int ctr; // shared variable
 // protected by lock L

...

lock(L);

temp = ctr;

unlock (L);

temp++;

lock(L);

ctr = temp;

unlock(L);

Thread 1
...

lock(L);

temp = ctr;

unlock (L);

temp++;

lock(L);

ctr = temp;

unlock(L);

Thread 2

(b)

Multivariable atomicity violation.

Thread 1 reads inconsistent str/length.

Figure 6.1: Example atomicity violations. (a) shows a single-variable violation
and (b) shows a multi-variable violation. The example in (b) was distilled from
https://bugzilla.mozilla.org/show bug.cgi?id=73291.

Figure 6.1(b), shows a multi-variable atomicity violation. Two shared variables, str and

length, are used to express related properties of a string. After Thread 1 reads the str

pointer, Thread 2 updates both variables. Thread 1 subsequently reads a value of length

inconsistent with the value of str that it read. The inconsistency could later lead to a crash

or silent data corruption failure. Note that, if the regions of code accessing each individual

variable are considered separately (e.g., read and write of str), the example does not

show an atomicity violation. Conversely, if the updates to str and length are considered

together as a unit, the atomicity violation is clear: two reads by Thread 1 interleaved by

writes in Thread 2. Importantly, these accesses are unserializable with respect to the group

containing str and length, because no serial execution of the threads’ code regions would

produce the same result as the interleaved one.

110

To ensure that the examples in Figure 6.1 do not experience failures, the programmer

should have enclosed the groups of memory operations intended to be atomic in a single

critical section. In prior work, Vaziri et al. [126] provide a serializability analysis of code

regions including accesses involving two di↵erent variables. In ColorSafe, we develop a

generalization of serializability analysis that detects single- and multi-variable atomicity

violations.

6.2 ColorSafe: Detecting and Avoiding Multi-Variable Atomicity Violations

Grouping variables into colors enables detection of multi-variable atomicity violations. The

algorithm ColorSafe takes advantage of data coloring to detect and dynamically avoid single-

and multi-variable atomicity violations.

6.2.1 Leveraging Data Coloring

Detecting multi-variable atomicity violations is challenging because conventional serializ-

ability analysis consider accesses to a single memory location only. Instead, a multi-variable

analysis must consider interleavings of accesses to di↵erent data. A multi-variable atomicity

violation is depicted in Figure 6.1(b). Thread 1 is performing separate updates of the str

and length variables that should occur atomically together. When Thread 2 interleaves its

updates between Thread 1’s operations – an atomicity violation – the final values of str

and length are inconsistent. To apply the serializability-based reasoning from prior work

[85, 80] to this example, we must consider str and length as a single unit of data to detect

the atomicity violation. This concept of considering groups of variables together, instead of

single variables alone, is the cornerstone of ColorSafe.

We propose to associate colors with shared variables, giving related variables the same

color. ColorSafe monitors interleavings of accesses to colors to determine whether they are

serializable the same way AVIO [80] and Atom-Aid [85] did for interleavings of accesses to

individual memory locations. In Figure 6.1(b), str and length would be given the same

color since they are semantically related. A serializability analysis that considers colors

shows that this example consists of two reads interleaved by at least one remote write to

the same color, which is unserializable.

111

In Table 6.2, we enumerate possible multi-variable unserializable interleavings. Note that

Cases 1-4 are unserializable from a single-variable point of view as well. Case 5 extends the

serializability analysis from prior work because it is unserializable only if multiple variables

are involved. To understand Case 5, consider the example in Figure 6.3. The writes from

Thread 2 interleaved with the writes from Thread 1, leaving the consistency between length

and str compromised: str may point to ptr2 but length will have value 10. By assigning

str and length the same color, ColorSafe’s extended serializability analysis deems the

pictured interleaving serializable.

Case Interleaving Description

1 R W
The interleaving write might make the

R second read read inconsistent data.
2 R W The second write might write data based on

W stale or inconsistent data.
3 W W

The read might get data from the interleaving
R write and therefore get inconsistent data.

4 W R The interleaving read might get inconsistent
W data.

5 W W The interleaving write may leave the
W color inconsistent (Figure 6.3).

Figure 6.2: Unserializable color access interleavings.

...

lock(L);

str = ptr1;

unlock (L);

...

lock(L);

length = 10;

unlock(L);

int length; // shared
char *str; // variables

Thread 1
...

lock(L);

str = ptr2;

unlock(L);

...

lock(L);

length = 15;

unlock(L);

Thread 2

Figure 6.3: Example of a
unserializable color in-
terleaving. The example
corresponds to case 5 in
Table 6.2. str and length

are left mutually inconsis-
tent.

Grouping semantically related variables into colors and performing serializability analysis

detection based on accesses to colors, simplifies the detection of multi-variable atomicity

violations. Coloring data e↵ectively reduces the high complexity of detecting multi-variable

atomicity violations [78, 126] to the lower complexity of detecting single-color (or single-

variable) atomicity violations.

Coloring Data. Data can be colored manually or automatically. Manual coloring requires

the programmer to annotate which data are semantically related to one another. Manual

coloring therefore is likely to yield more precise information about relationships between

data. Manual coloring requires source code annotations, by which the programmer conveys

the semantic relationship between variables. Grouping related data manually has been used

in past work to associate synchronization constraints with data (e.g., atomic sets [126],

112

coloring [26], and locking discipline [92]) but, to our knowledge, never to detect and avoid

bugs.

Automatic coloring does not require programmer e↵ort, but is likely to less accurately

capture relationships among data. There are many ways of automatically coloring data.

Simple strategies include assigning the same color to all fields of a struct, to all blocks of

memory allocated by the same malloc() call, or even entire object instances if using object-

oriented languages. Exhaustively exploring di↵erent coloring techniques is outside the scope

of this work. We do, however, explore both manual coloring and automatic coloring to give

the reader a flavor of the di↵erences. We evaluate one automatic coloring technique by giving

the same color to data allocated together (“malloc coloring”). Past work has addressed ways

of finding correlations between variables [78], but it did not address atomicity violations.

Such work is complementary and ColorSafe can use its correlations to color data.

6.2.2 Detecting Unserializable Color-Access Interleavings

ColorSafe detects atomicity violations by detecting unserializable interleavings of regions

of code that are likely to have been intended to be atomic. If two regions of code were

intended to be atomic, they interleave their operations in an execution, and that interleav-

ing is unserializable, then an atomicity violation is occurring and may lead to a failure. It

is important to note that unserializable interleavings are not necessarily manifestations of

atomicity violations. However, for an atomicity violation to manifest itself, it is necessary

that an unserializable interleaving happens. Moreover, unserializable interleavings, espe-

cially in a short window, are strong indicators of atomicity violation bugs [80, 85]. Hence,

we detect likely bugs by detecting unserializable interleavings.

In this section, we explain how ColorSafe detects actual unserializable interleavings in

debugging mode. The next section explains its di↵erences from deployment mode. The

atomicity violation detection mechanism used by ColorSafe has three components: (1) a

history of accesses performed by the local processor (local history); (2) a history of accesses

performed by remote processors (remote history); and, (3) a set of rules that determine

whether the interleaving of accesses in the history is serializable.

113

Since our goal is to detect whether accesses to colors are serializable, ColorSafe’s access

histories record an ordered history of accesses including the color of the accessed data. This

means the data addresses of memory accesses need to be translated to colors before accesses

can be inserted into the history. Local accesses are inserted into the local history as the local

processor performs them. Remote access histories are built by monitoring remote memory

accesses to data recently shared between threads. Section 6.3.2 describes how remote access

monitoring can be performed e�ciently in an architecture implementation by monitoring

cache coherence messages. Local and remote histories are kept separately and ColorSafe

retains some information about the relative order of groups of local and remote accesses.

To detect atomicity violations, ColorSafe assumes accesses in its histories constitute re-

gions intended to be atomic. Under this assumption, ColorSafe then determines whether

any unserializable interleaving of those regions in the local and remote histories exists ac-

cording to Table 6.2. Figure 6.4 shows an example of this process using the same code from

Figure 6.1(b), which is reproduced in Figure 6.4(a) and contains a multi-variable atomicity

violation involving two variables. Variables str and length are both colored RED. The

numbers in the dark circles denote the order of accesses. The accesses are inserted into

their corresponding history as they happen (Figure 6.4(b)). Accesses 2 and 3 performed

by Thread 2 are inserted as writes into Thread 1’s remote history (2’ and 3’). As soon as

access 4 is performed, ColorSafe detects that the accesses in the history are unserializable,

matching Case 1 in Table 6.2 (two reads interleaved by a write).

...

lock(L);

tptr = str;

unlock (L);

...

lock(L);

tlen = length;

unlock(L);

int length; // shared
char *str; // variables
// both are given color RED

Thread 1

...

lock(L);

str = newstr;

unlock(L);

...

lock(L);

length = 15;

unlock(L);

Thread 2

2
1

4

3

1

Local

History

Rem.

History

rd RED

wr RED

wr RED

rd RED

2'

4

2

3

3'

Invalidate coherence

event from processor

running Thread 2

rd RED, rd RED interleaved by wr RED

is unserializable (Case 1)

Local

History

Rem.

History

rd RED

rd RED

different sets are compared in

debugging and deployment mode

deployment

debugging

(a) (b) (c)

Thread 1

Figure 6.4: Overview of how ColorSafe detects multi-variable atomicity viola-
tions. The numbers in the dark circles denote the order of events happening simultane-
ously in (a) and (b).

114

Recent work [79, 85] shows that to detect atomicity violations histories can be fairly

small, on the order of tens of thousands of instructions at most. This is intuitive because

the longer the distance between operations that should have been atomic, the greater the

chance that the bug manifests itself during testing. Therefore, the hard bugs that escape

testing tend to be the ones that occur in a short window.

6.2.3 Debugging vs. Deployment Mode

The previous section described what we call debugging mode, as it soundly detects in-

terleavings that are definitely unserializable. In deployment mode, ColorSafe attempts to

dynamically avoid atomicity violations by (1) detecting when an atomicity violation may

happen, and (2) dynamically starting an ephemeral transaction to prevent an unserializable

interleaving from happening.

In deployment mode, we aim to detect potentially unserializable interleavings that are

related to potential atomicity violations. The avoidance mechanism can then be triggered

before an unserializable interleaving actually happens, to prevent it from happening. We

relax the criterion used to detect unserializable interleavings in debugging mode such that it

covers interleavings that could potentially happen in a future execution of the same code. A

potentially unserializable interleaving is one involving a pair of operations in the local history

that, if interleaved by some access in the remote history, would have been unserializable

according to Table 6.2. For example, consider the scenario in Figure 6.4: if the remote

writes to RED had happened anywhere in the remote history window, even if they did not

actually interleave with the reads from RED in the local history, this would be detected

as a potentially unserializable interleaving. Figure 6.4(c) illustrates the di↵erence between

debugging and deployment mode.

The intuition behind this definition of a potentially unserializable interleaving is that,

because ColorSafe observed an unserializable interleaving that almost happened, it could

observe the actual interleaving at a future point in the execution. This could result in

an atomicity violation manifesting itself, which is what ColorSafe is trying to avoid. It

is possible that potentially unserializable interleavings are, in fact, just benign accesses.

115

In this case, the only e↵ect is that ColorSafe initiates unnecessary bug avoidance actions.

While this is not a correctness problem and typically not a performance problem either,

the system provides hooks to the programmer to disable avoidance actions in performance

sensitive parts of the code.

Once a potentially unserializable interleaving is detected, the color of the data accessed is

inserted into a set called the HazardColorSet. From then on, all accesses to data whose color

is in the HazardColorSet trigger an ephemeral transaction of a finite size. The ephemeral

transaction will make the short period of the execution beginning with these accesses appear

to execute atomically and in isolation, e↵ectively preventing any unwanted interleaving

with remote accesses from happening in the meantime. The goal is that this ephemeral

transaction will begin with the first instruction of an atomicity violation and be long enough

to cover all local memory accesses involved in the violation, consequently preventing its

manifestation.

Ephemeral transactions are transactions dynamically inferred by ColorSafe and do not

correspond to any program annotation. It is important to point out that the ephemeral

transactions inserted by ColorSafe cannot, in any way, break the semantics of the pro-

gram, since the resulting interleaving of accesses with ephemeral transactions is still a valid

interleaving with respect to the program semantics. Section 6.3.4 provides details.

6.3 Architectural Support

ColorSafe needs four basic architectural mechanisms: support for data coloring (Section 6.3.1);

histories of recent memory accesses, in terms of colors (Section 6.3.2); a means of detecting

unserializable interleavings based on the access histories (Section 6.3.3); and, for bug avoid-

ance, a way of maintaining the set of colors involved in unserializable interleavings together

with support for ephemeral transactions (Section 6.3.4).

6.3.1 Support for Data Coloring

ColorSafe represents the color of data items as meta-data (memory tags). There have been

several proposals to support memory tagging for various purposes, such as security and

information flow tracking [34, 142] and as support for new programming models [26]. To

116

support ColorSafe, we chose a design similar to Colorama [26], which is based on the Mon-

drian Memory Protection scheme [133]. Mondrian provides an e�cient way to associate

protection information with arbitrary regions of memory by using a hierarchical multilevel

permissions table. ColorSafe uses the same structure but stores ColorIDs instead of per-

mission information. We call this table the Multilevel Color Table. Based on the number of

colors required in the applications used in our experiments, we used a 12-bit ColorID field.

The Multilevel Color Table resides in memory and is accessible by all processors. Its

ranges of addresses are expanded to keep the ColorID information at the desired granu-

larity (word, line, page, etc.). The Color Lookaside Bu↵er (CLB) directly caches coloring

information from the Color Table to provide fast lookup. To look up an address, the pro-

cessor checks the CLB. In case of a miss, the processor fetches the entry from the Multilevel

Color Table in memory. Software can update color information in user-mode by writing to

the Multilevel Color Table. When the color table is written, the CLB needs to eventually

be updated, but not immediately. ColorSafe can tolerate this transient color information

incoherence, since this will not a↵ect program semantics in any way.

Note that there are alternatives to providing support for data coloring. For example,

Loki [142] proposes a multi-granular tagging mechanism, in which tags can be associated

with whole pages and, only when necessary, expanded to individual words to provide fine-

grain tagging. Such a scheme would also be adequate for our purposes. Yet another alter-

native would be to add a ColorID field on a per cache line basis. We opted not to do this

for three reasons: (1) we want to allow arbitrary coloring without forcing the user to adjust

data layout; (2) the Multilevel Color Table is more space e�cient; and, (3) we did not want

to alter sensitive structures in the memory hierarchy.

6.3.2 Color Access Histories

In ColorSafe, each processor stores information about the recent history of color accesses

in a history bu↵er. A history bu↵er holds four types of histories: (1) local read, (2) local

write, (3) remote read, and (4) remote write.

ColorSafe keeps tens of thousands of instructions worth of history. Therefore it needs

117

a resource-e�cient way of keeping them, as we cannot use a searchable FIFO with tens of

thousands of items. We chose to encode the color of accesses in bloom-filter-based signa-

tures [28]. This way, each of the four history types is a signature file organized as a FIFO

queue, in which each signature is a superset hash-encoding of ColorIDs of memory accesses

for an arbitrary number of dynamic instructions. Since only colors, instead of individual ad-

dresses, are recorded into signatures, the amount of imprecision (aliasing) in the signatures

is low. Figure 6.5(a) shows a color access signature file.

(a)

Color Access Signature File

...
Total

History
Window

Signature
of referenced

ColorIDs

(b)

History Buffer

LocR
0

LocR
1

LocRn-2

LocR
n-1

...

Read Write
LocW

0

LocW
1

LocW
n-2

LocW
n-1

...

Local History

RemR
0

RemR
1

RemR
n-2

RemR
n-1

...

Read Write
RemW

0

RemW
1

RemW
n-2

RemW
n-1

...

Newest
History

Item
(Hn-1)

Total
History
Window

Remote History

Figure 6.5: Keeping color access history.

ColorSafe divides the execution of a program into epochs, arbitrary length sequences of

consecutive dynamic instructions (e.g., 400). A history item is a set of four signatures (one

of each history type) that contains color accesses collected during an epoch. Figure 6.5(b)

shows a complete history bu↵er, which is a set of history items that covers the last n epochs

of execution. When an epoch ends, both local and remote accesses start being encoded in

the next history item. In summary, a history item H
i

consists of a Local Read signature

LocR
i

, a Local Write signature LocW
i

, a Remote Read signature RemR
i

, and a Remote

Write signature RemW
i

.

Note that ColorSafe sacrifices information about the relative order of operations within

a history item. Information about the relative order across history items is preserved,

though. The trade-o↵ in determining the history item granularity (assuming fixed total

history window) is one of precision versus cost. Smaller history items (finer granularity) im-

prove precision by preserving more relative order information and su↵er from less signature

aliasing. Larger (coarser-grain) history items use less storage and comparison logic, since

fewer history items are necessary and consequently fewer intersection operations need to be

performed.

118

Collecting Local Access Information. Local access information can be easily obtained.

ColorSafe uses the mechanism described in Section 6.3.1 to look up the ColorID for each

load and store issued locally. The resulting ColorID is then encoded in the appropriate local

read and write signatures for the current history item. When an epoch completes, accesses

start being inserted in the next history item.

Collecting Remote Access Information. The ColorSafe atomicity violation detection

algorithm requires processors to monitor remote memory accesses that access data that

was recently shared. ColorSafe monitors such remote memory accesses by monitoring cache

coherence messages. Read requests and invalidations signify that a remote read or write has

occurred. When such a coherence message is received, a corresponding access is inserted

into the remote history.

Recording remote color accesses requires minimal additional cache coherence protocol

support. To collect color information for remote accesses, we augment coherence requests

without a↵ecting coherence protocol functionality in any way. On a read miss, the proces-

sors retrieve the color information of the data being accessed (actual referenced address,

as opposed to block address) and appends it to the coherence request sent to potential

sharers. When a processor receives a coherence request from a remote processor, it adds

the ColorID in the request to its current remote read signature. Likewise, an invalidate

request generated by a write miss or a write on shared miss is augmented with a ColorID.

Receiving processors add the ColorID to their current remote write signature. ColorSafe

needs color information only for accesses that cause inter-processor communication, and so

it is su�cient to piggyback on coherence protocol messages.

Relying on coherence messages means that ColorSafe detects atomicity violations in-

volving only data that has been shared and cached by di↵erent processors shortly before

or during violation. Atomicity violations essentially involve data that is shared by di↵erent

processors, so there is nothing lost by not monitoring accesses to unshared data. The re-

striction that sharing must have occurred shortly before or during the atomicity violation

is also not problematic. An eviction from an involved processor’s cache may result in a

coherence message not being sent for some accesses. However, evictions are not likely to be

a problem because atomicity violations tend to involve regions of code that are relatively

119

short [85, 80]. Data are likely to remain in the cache for the entire violation.

6.3.3 Detecting Unserializable Interleavings

ColorSafe detects unserializable interleavings by intersecting signatures in the history bu↵er.

A signature intersection is a simple bit-wise AND. For example, suppose we want to detect

whether Case 1 in Table 6.2 happened in the history bu↵er. Using the symbols in Fig-

ure 6.5(b), ColorSafe computes LocR
i

\ LocR
j

\RemW
k

, for all i and j, where i 6= j, and

for values of k that depend on whether ColorSafe is in debugging mode or deployment mode,

which we discuss shortly. If the resulting signature is not empty, then it is likely that the

execution contains an unserializable interleaving involving the color(s) in the resulting set.

Testing for the remaining cases in Table 6.2 is analogous, except signatures of the applicable

type are intersected.

Two issues remain: (1) determining when to evaluate the detection expression and (2)

choosing values of k. These choices depend on whether ColorSafe is in debugging mode or

in deployment mode.

Debugging mode. In debugging mode, we want ColorSafe to detect only unserializable

interleavings that actually occur. We also want to know the instruction address of the

memory operation that led to the interleaving. Therefore we choose k such that i k and

we use a set containing only the most recent memory operation issued locally as the second

local set in the intersection (instead of all possible H
j

). This implies that only history

items that actually interleave history item H
i

and the most recent memory operation are

considered. Figure 6.6(a) illustrates this process. If the resulting set is not empty, then an

unserializable interleaving involving the just-issued memory instruction is reported. This

includes both the instruction address and the type of interleaving (cases in Table 6.2). Note

that for e�ciency, the set of all intersections need not be evaluated from scratch at every

memory operation, because the partial intersection between local and remote history items

can be reused until the corresponding history items are pushed out of the history bu↵er.

Deployment mode. In deployment mode, we want ColorSafe to detect potentially unseri-

alizable interleavings. Hence, ColorSafe performs 3-way intersections consisting of all pairs

120

LocR
0

LocR
1

LocRn-2

LocR
n-1

...

RemW
0

RemW
1

RemW
n-2

RemW
n-1

...

U

(a)

Debugging Mode

i = 1 k = 0..n-1

Most Recent

MemOp a

U

U

U
If not empty

report interleaving

involving a

. .
 .

LocR
0

LocR
1

LocRn-2

LocR
n-1

...

RemW
0

RemW
1

RemW
n-2

RemW
n-1

...

U

U

U

U

U

(b)

Deployment Mode

i = 0, j = 1 k = 0..n-1

Add To

HazardColorSet

. .
 .

Figure 6.6: Detecting unserializable interleavings in (a) debugging mode and
(b) deployment mode. In (a), only actual interleavings are being considered for the
serializability test: the current access to a, the local history item i and the remote history
items with k � i. In (b), all items in the remote history are being considered for the
serializability test: local history item i, followed by local history item j, and all possible
remote history items (k = 0...n� 1).

of distinct local signatures and each remote signature, regardless of whether the history

items actually interleave (i.e., k = 0...n�1), shown in Figure 6.6(b). When the result set is

not empty, it is added to the HazardColorSet. Also, we do not need to know the instruction

that led to a potential atomicity violation — we need only the colors to enable dynamic

avoidance. This allows us to perform detection only at the end of an epoch instead of at

each memory access, which significantly decreases the frequency of intersection operations.

6.3.4 Support for Dynamic Avoidance of Multi-variable Atomicity Violations

Whenever a potentially unserializable interleaving happens in deployment mode, ColorSafe

adds the color involved to the HazardColorSet. Each ColorSafe processor has its own Haz-

ardColorSet. This set is also encoded as a signature. Insertions are a bit-wise OR operation

between the detection intersections’ results and the HazardColorSet itself. Upon a memory

access, the processor checks whether the access’ ColorID is in the HazardColorSet. If so, it

starts an ephemeral transaction to prevent a potentially unserializable interleaving. If there

is an ephemeral transaction already in progress, the event is ignored, i.e., transactions do

not nest.

Implementing Ephemeral Transactions. Ephemeral transactions can be implemented

as typical memory transactions [3, 1]. Unlike regular transactions, though, ephemeral trans-

121

actions are implicit, as they do not rely on code markers. As such, they do not guarantee

that a set of dynamic instructions will always execute atomically and in isolation. An

ephemeral transactions implementation must provide strong atomicity, since they must roll

back in the event of conflicts with any remote accesses and attempt to execute again. To

guarantee forward progress, an ephemeral transactions implementation can must recognize

repeated rollbacks, as in prior work [27]. On detecting repeated rollbacks, ColorSafe can

then reduces the size of the ephemeral transaction until it is able to commit or falls back to

non-transactional execution.

6.3.5 Discussion on Hardware Complexity

Although ColorSafe requires additional hardware support, its cost is reasonable and lever-

ages well understood technology. Mechanisms to keep track of sets of addresses and memory

tagging have been proposed before (e.g., Mondrian Memory Protection [133] and Loki [142],

IBM 801 [29]). Mondrian and Loki use hierarchical data structures to map memory regions

to tags, keeping storage overheads manageable. The bu↵ers and logic required to handle

history items are very simple, since they are based on address signatures [28, 117]. The ad-

ditional support in the coherence protocol involves only an extra field in request messages

and does not change any protocol state machine. Finally, support for transactional memory

is being considered for actual o↵-the-shelf processors [3, 1].

6.4 Debugging with ColorSafe

We have developed a debugging methodology that accompanies ColorSafe’s debugging

mode. The program counters where ephemeral transaction are inserted indicate points

where potential atomicity violations occurred. We report the set of such program counters

for programmers to examine.

We refine the set of program counters reported using an invariant-based technique. The

key idea is to focus on program counters reported consistently in a set of program executions

to reduce the rate of false positives.

Invariant-based reduction of false positives. ColorSafe’s invariant mechanism requires

developers to run the program multiple times and classify each execution as buggy or non-

122

buggy by according to whether a failure occurred. For each execution, ColorSafe reports

the set of program counters where unserializable interleavings were detected and the type

of interleaving (Table 6.2). We call each pair made up of a program counter and an in-

terleaving type a detection identifier. The set of detection identifiers from buggy runs are

added to the buggySet, and those from non-buggy execution are added to nonBuggySet.

We then set-subtract nonBuggySet from buggySet, producing the vioSet. This set contains

the detection identifiers for unserializable interleavings that occurred only during the buggy

runs. These are the points in the code on which a developer should focus to locate the bug.

In Section 6.5.4, we show that this simple technique actually prunes most false positives.

6.5 Evaluating ColorSafe

Our goals in evaluating ColorSafe are to assess how well deployment mode dynamically

avoids atomicity violations (Section 6.5.2) and at what performance cost (Section 6.5.2), to

understand design trade-o↵s (Section 6.5.2 and Section 6.5.2), and to assess how accurately

debugging mode locates bugs in the code (Section 6.5.4).

6.5.1 Experimental Setup

We evaluated ColorSafe in a simulator built using the Pin [87] binary instrumentation frame-

work [87]. The simulator models all ColorSafe structures, including the Multilevel Color

Table, translation of data addresses to colors, the history bu↵er, unserializable interleaving

detection using signature operations on history items, the HazardColorSet, and ET support.

The simulator models both debugging and deployment mode. In debugging mode, it pro-

duces the unserializable interleaving detection output that is used by our invariant-based

debugging framework. In deployment mode, the simulator determines how often atomicity

violations were avoided by determining whether the violation executed entirely within an

ET. To assess performance impact, we model ET conflicts.

We use a variety of benchmarks consisting of “bug kernels” and full applications. Ta-

ble 6.1 provides a description of each kernel and application, along with the portion of

the dynamic execution spent in buggy code (Column 4) and the interleaving pattern that

causes the bug (Column 5). The bug kernels are segments of buggy code extracted from

123

full applications. We extracted five kernels from various versions of the Mozilla Project,

all previously discussed in the literature [78, 79]. We paid special attention to maintaining

the original data structure hierarchies and the layout of the code surrounding the bug. As

our full applications workloads, we use the AGet parallel download accelerator, the Apache

httpd webserver and the MySQL database server. To exercise the buggy regions of Apache,

we used scripts to repeatedly launch 100 concurrent requests. We exercised the MySQL bug

using a version of the sql-bench benchmark modified to execute many concurrent requests.

The bug in AGet involves a signal handler, so to exercise the buggy code, we fetched a file

from a network resource, and interrupted the transmission with a Unix signal.

Name Description % Bug Ex. Intlv. Type

Kernel

nsText
Mozilla-0.9: During update of string bu↵er

0.19% WRW
o↵set and length, inconsistent data can be read.

NetIO
Mozilla-0.9: Read of flag and conditional

0.14%
%

RWW
write can be interleaved, invalidating data.

jsStr
Mozilla-0.9: Between update to string bu↵er and length,

0.22% WRW
inconsistent data can be read by remote read.

interp
Mozilla-0.8: Between table update and flag update

2.8% WWW
interleaving can make table inconsistent.

msgPane
Mozilla-0.8: Interleaving read of flag indicates content loaded

0.22% WRW
in msg. pane before content is loaded.

Full

Ap2.0
Apache-2.0.48: Character bu↵er and string length made

0.91% WRW
inconsistent by concurrent accesses.

AGet
AGet-0.4: During update of log contents/length, inconsistent

0.47% WRW
data can be read by signal handler.

MySQL
MySQL-3.23.57: Accesses can be logged out of order by highly

33.21% WWW
concurrent access to replay log.

Table 6.1: Bugs used to evaluate ColorSafe.

We experiment with both manual coloring and malloc-coloring, as described in Sec-

tion 6.2.1. To perform manual coloring, we added explicit annotations to the code to

associate colors with data. For malloc-coloring, our simulator monitors calls to memory

allocation functions and assigns a new color to the allocated region.

6.5.2 Deployment Mode: Bug Avoidance

We start by showing that ColorSafe is able to avoid most atomicity violations in bug kernels

and applications. All experiments had epochs of 400 instructions, a total history window of

12,000 instructions (i.e., 30 history items), and 3,000-instruction ETs. Table 6.7 shows the

number of violation instances avoided.

124

% Avoided
Benchmark Manual Malloc

Kernel

nsText 99.95 99.95
NetIO 99.95 99.95
jsStr 100 100
interp 99.95 0

MsgPane 99.95 0

Full App.
Ap2.0 98.72 94.18
AGet 99.28 0

MySQL † 77.0 71.4

Figure 6.7: Violations avoided in bug
kernels and full applications. Re-
sults are shown for experiments using
manual and malloc data coloring. †We
used a di↵erent system configuration for
MySQL. We explain the details in Sec-
tion 6.5.2 (Di�culties with MySQL).

App.
% ET% in % Usfl % in % Usls % in Usls
Start ETs ET Usfl ET Cflct ET w/ Cflct

Ap2.0 0.02 38.4 7.4 5.8 4.1 3.2
AGet 0.005 12.8 63.8 10.7 6.4 1.1

MySQL 0.003 24.7 9.0 20.2 0.5 1.2

Table 6.2: Characterization of Ephemeral
Transactions. The rate of ET starts, % of use-
ful ETs, and % of conflicting useless ETs for
full applications in deployment mode. Ap2.0
and MySQL were run using malloc coloring, and
AGet, manual coloring. MySQL was run with the
modified configuration described in Section 6.5.2
(Di�culties with MySQL).

For bug kernels, ColorSafe avoids nearly 100% of the violation instances using manual

coloring. Malloc-coloring is capable of avoiding almost all atomicity violations in most

kernels, but it is not e↵ective for all kernels. The bugs in interp and msgPane each involve

accesses to one global variable, and one dynamically allocated variable. They are not

allocated together, so using malloc-coloring does not capture their correlation. As a result

ColorSafe is unable to avoid these bugs.

Table 6.7 shows that ColorSafe avoids nearly all atomicity violations in our full applica-

tion benchmarks. In runs of Ap2.0, ColorSafe avoids virtually all instances of the violation,

using both manual and malloc-coloring. Malloc-coloring has a slightly lower rate of avoid-

ance. This is because ETs triggered by accesses to data unrelated to the violation end up

preventing useful ETs from proceeding. In runs of AGet, ColorSafe avoids more than 99%

of instances of the violation using manual coloring. The bug in AGet involves a dynami-

cally allocated variable and a global variable, so unfortunately malloc-coloring is unable to

identify their correlation.

Di�culties with MySQL. ColorSafe was unable to avoid violation instances in MySQL

using our standard configuration. This is because the violation is nearly 20,000 instructions

long, and cannot execute entirely within an ET of 3,000 instructions. We re-ran MySQL

using 64,000-instruction ETs, 1,000-instruction epochs, and a total history window of 30,000

125

instructions. With this configuration, ColorSafe avoids 77% of the violations using manual

coloring, and 71.4% of violations using malloc-coloring. ColorSafe’s less-than-perfect avoid-

ance using even this configuration results from longer ETs triggered in response to false

positive detections that prevent useful ETs from beginning over a much longer window.

Could Avoidance Happen by Chance? A Comparison with Random Ephemeral

Transactions. One may wonder whether the bug avoidance achieved by ColorSafe would

be possible simply by starting ETs at random points. Here we show empirically that this

is not the case. Consider an experiment using AGet. Using 3,000-instruction ETs and at

random starting about 5 per 100,000 dynamic instructions (the rate of transaction starts

for AGet using standard ColorSafe) avoids 1.8% of all violations. ColorSafe is able to avoid

99.28% of all violations using the same configuration. Performing the same experiment with

Ap2.0, we see that random ETs avoid only 6.97% of violations. ColorSafe avoids 98.72% of

violations. Results were similar for other benchmarks. This stark contrast shows empirically

that ColorSafe avoids significantly more potential atomicity violations than chance.

Performance Overheads

ColorSafe in deployment mode imposes modest impact on performance. We now discuss

and quantify the key sources of overheads, which are coloring support and ETs. ColorSafe

leverages existing cache coherence support to handle the exchange of color information

between processors. As a result, communicating color information imposes negligible run

time overhead. Color information lookup depends on the meta-data scheme underlying

ColorSafe. While a lookup is not free, the cost is minimized using caches for meta-data

information. Moreover, color information is mostly read-only (i.e., written only at allocation

time). This means that any additional overhead associated with meta-data writes is unlikely

to a↵ect performance.

The main sources of performance degradation in ColorSafe are the bookkeeping overhead

of ETs and the cost of re-executing ETs due to conflicts. In Table 6.2, we report the

percentage of dynamic instructions that triggered an ET (% ET Start), the number of ETs

that were useful in preventing an atomicity violation (% Usfl ETs), and the percentage of

126

useless ETs that experienced a conflict (% Usls Cflct). We report the number of ET starts

as a fraction of the total number of dynamic instructions to quantify how often the overhead

of starting an ET is incurred. The fraction of useful ETs is a measure of how often the

cost of an ET was worthwhile, because it prevented a violation. The fraction of conflicting

useless ETs quantifies the amount of work wasted in ETs that did not avoid an atomicity

violation and still had to be re-executed. In Table 6.2, we also show the fraction of total

dynamic instructions that executed inside ETs (% in ETs), the fraction that executed in

useful ETs (% in ET Usfl), and the fraction that executed in useless ETs that had conflicts

(% in Usls ET w/ Cflct). We report data only for full applications, as kernels execute in

tight loops around buggy code, making them unsuitable for this analysis.

There are two important results in these data. First, for all applications, the rate at

which ETs are triggered is very low: 3 ETs per 100,000 instructions for MySQL, 5 per

100,000 for AGet, and 20 per 100,000 for Ap2.0. The low frequency of ET starts indicates

that the cost of starting, ending and verifying ETs will have little e↵ect on performance.

We also see a relatively small fraction (12–38%) of the execution is executed transactionally.

Second, very little computation is wasted by re-executing useless ETs. The data show

that the fraction of useful ETs ranges from 7.4% (Ap2.0) to 63.8% (AGet). At first glance

this may suggest that useless ETs are frequent, and hence problematic. However, the rate

of aborts for useless ETs is very low — just 0.5% for MySQL, and at most 6.4% in AGet.

The work wasted in these useless, aborted ETs amounts to just a small fraction of dynamic

instructions, from 1.1% to 3.2%. Thus, if an ET is useless, it rarely experiences a conflict,

and very little work is wasted. If an ET is useful, it is more likely to abort, but we consider

it profitable to sacrifice this small amount of performance in exchange for prevention of

buggy behavior. Additionally, only a small fraction of the execution (5.8%–20.2%) executes

in useful ETs and incur the higher likelihood of abort.

Sensitivity to Ephemeral Transaction Length

Table 6.3 shows avoidance for each application as the size of ETs is varied between 3,000

and 15,000. For all the bugs we considered (except the very long MySQL bug), ColorSafe’s

127

avoidance is stable for the ET sizes shown. This insensitivity to ET size shows two things:

(1) large ETs do not inhibit the avoidance capability of ColorSafe; and (2) there is flexibility

in the selection of this design parameter. We chose a default ET size of 3,000 instructions;

any smaller, and we risk being unable to avoid modestly large violations; any larger and we

increase the chances of unnecessary abort.

App.
% Violations Avoided

3,000 5,000 10,000 15,000
Inst ET Inst ET Inst ET Inst ET

nsText 99.95 99.95 99.95 99.95
NetIO 99.95 99.95 99.95 99.95
jsStr 100.0 100.0 100.0 100.0

interpm 99.95 99.95 99.95 99.95
msgPanem 99.95 99.90 99.90 99.95
AGetm 99.28 97.93 99.10 99.18
Ap2.0 94.18 90.55 98.64 94.16

Table 6.3: Failure avoidance for a variety of ET sizes. Applications marked with a
m were run using manual coloring, because their bugs involve global and heap variables;
All others were run with malloc-coloring.

Sensitivity to History Buffer Configuration

The history bu↵er configuration determines which interleavings are observable by ColorSafe

and a↵ects which unserializable interleavings can be detected. We now evaluate the e↵ect

of varying the history bu↵er configuration. We do this by injecting “noise” into a bug

kernel to simulate high-frequency concurrent access to shared data. We added noise by

allocating additional data unrelated to the bug in the kernel. Randomly, 1% of the time,

these data were given the same color as the data involved in the bug. During execution, five

extra threads, in addition to the threads originally in the benchmark, repeatedly access the

“noise data”. They make a random number of accesses between 1 and 10 and determine

whether to read or write by “flipping a coin”. The rate at which these additional threads

access data is the “noise level” of the experiments.

Figure 6.8 shows avoidance in the presence of noise, with a fixed total instruction history

(12,000 instr.) and using both coarse (1,200 instr.) and fine (400 instr.) history items. These

data show that as the noise level decreases, avoidance improves. We see the improvement

because as noise decreases, the number of ETs triggered by accesses unrelated to the bug

decreases, permitting useful ETs to proceed (recall ETs don’t nest).

128

 100 90 80 70 60 50 40 30 20 10
Noise Level

0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Pe
rc

en
t o

f V
io

la
tio

ns
 A

vo
id

ed

Fine-Grain History Items
Coarse-Grain History Items

Figure 6.8: Impact of history item granular-
ity on violation avoidance. The plot shows the
number of atomicity violations avoided in kernel
NetIO under synthetic noise for fine- and coarse-
grain history items with a constant history win-
dow.

Amt. Noise
% Usf. ETs
Fine Coarse

100 6.47 5.35
90 7.05 6.19
80 8.06 6.65
70 8.40 7.04
60 9.85 7.83
50 10.88 8.91
40 11.72 9.61
30 11.90 10.62
20 13.36 10.26
10 13.11 11.71

Table 6.4: Impact of noise on ET
usefulness. Percentage of useful ETs
in NetIO with synthetic noise, 12,000-
instruction total history length, and varied
history item granularity.

This figure also shows that using fine- rather than coarse-grain history items improves

avoidance. The reason is that fine-grain history items encode the relative order of memory

accesses more precisely. Using coarse history items, more accesses occur within the same

history item and are considered simultaneous. This prevents ColorSafe from seeing an

interleaving of these accesses. When fine-grain history items are used, ColorSafe is able to

observe these interleavings, enabling earlier detection of buggy interleavings.

Table 6.4 shows the proportion of useful ETs in these experiments. There is an in-

verse relationship between the noise level and the fraction of useful ETs. This relationship

corroborates our above conclusion: avoidance is impeded in the presence of noise because

more ETs are useless. The data also show that using fine-grain history items results in a

larger fraction of useful ETs. This is in agreement with our findings from Figure 6.8, that

fine-grain history items lead to more precise detection.

6.5.3 Characterizing Meta-Data Requirements

The size of the color meta-data in ColorSafe is derived from the total number of necessary

colors. In our experiments using malloc-coloring, we saw as few as 265 colors in Ap2.0,

around 900 colors in MySQL, and as many as about 4,015 colors (in jsStr). Using manual

coloring, we saw just a single color in most cases (kernels, AGet, MySQL) and at most

129

5 colors in Ap2.0. These numbers represent the total number of coloring events (e.g.,

allocations) in the execution.

We chose to use 12 bits of meta-data to represent colors in ColorSafe. For manual

coloring, 12 bits provides ample space, according to our experimental results. Using malloc-

coloring, capacity will be an issue for applications that frequently allocate memory. One

way of handling this is to recycle colors when their associated memory is deallocated. Also,

at additional cost, ColorSafe could be implemented with wider meta-data fields.

6.5.4 Debugging Mode: Locating Bugs in the Code

We focused on full applications for our debugging experiments. We collected the report of

unserializable interleavings generated by ColorSafe using both manual coloring and malloc-

coloring (when possible). We present a comparison of the detection capability in deployment

mode versus debugging mode to show the e↵ect of a stricter detection policy. We quantify

the report in terms of code points — i.e., lines of code to inspect.

Using malloc-coloring in debugging mode, ColorSafe reported a large number of detec-

tion code points — 1,493 for Ap2.0. By applying invariant-based processing, we saw a

marked reduction in detections to just 58. This much smaller set of detections would lead

a programmer directly to a bug, or short of that, would help a programmer decide how to

manually color data.

We foresee ColorSafe being more useful for debugging if data structures that are sus-

pected to be related to a bug are manually colored by a developer. We consider it reasonable

to assume a programmer would be able to do this, given a standard bug report, output from

ColorSafe using malloc-coloring, and knowledge about the data structures in the program.

Table 6.5 shows the number of code points produced by ColorSafe using manual coloring.

We show results for deployment mode (Column 2), debugging mode (Column 3), and using

our invariant approach described in Section 6.4 (Column 4). ColorSafe is able to detect the

bug in Ap2.0, with only 2 false positives (3 code points) in deployment mode, and just 1

false positive (2 code points) in debugging mode. ColorSafe detects the bug in AGet with

just a handful of false positives as well, in both deployment mode, and debugging mode.

130

Two other facts stand out among these data. First, there is a decrease in detections from

deployment mode to debugging mode. This is because debugging mode has a stricter policy

for determining that an interleaving is unserializable (Section 6.2.2). There is a reduction

of approximately 21% (256 code points) in the number of code points reported for MySQL,

and 17% (4 code points) for AGet. However, further improvement is still desirable — even

necessary — with hundreds of code points left to sift through for MySQL. This brings

us to our second result: The reduction in reports resulting from applying invariant-based

processing is dramatic. Invariant-based pruning eliminates hundreds of false positives for

MySQL, leaving 40 code points to be analyzed in a software package of over a million lines.

For AGet, we reduce the number of code points reported to just 8.

This shows that ColorSafe debugging, coupled with manual coloring and our invariant-

based approach, leads to very few false positives. The reason that the invariant based

approach works so well is that interleavings that occur in non-buggy executions and those

that occur in buggy runs tend to be very similar. These similarities are filtered out by our

invariant-based approach, leaving only relevant detections. In addition, the nondeterminism

in multiprocessor systems provides diversity of behavior when we execute the application

multiple times. It is realistic to assume that the programmer can manually color data

because it requires only local reasoning, when the data is declared (or allocated). Reasoning

of this sort is the basis of prior proposals focusing on data-centric synchronization models [26,

57, 126].

Benchmark
Detections

Deployment Debugging Post-Processed
Ap2.0 3 2 2
AGet 24 20 8

MySQL 821 677 40

Table 6.5: Evaluation of ColorSafe for debugging. Number of code points
reported by ColorSafe using deployment mode, debugging mode, and debugging
mode with invariant post-processing.

6.6 Conclusions, Insights, and Opportunities

This chapter introduced ColorSafe, an architecture that simplifies concurrency bug debug-

ging and dynamically avoids schedule-dependent failures. A major contribution of ColorSafe

131

is its ability to handle both single- and multi-variable atomicity violations. The key idea is

to group semantically related variables into colors and to perform serializability analysis in

the “color space”. Color-space serializability analysis enables detection of likely atomicity

violations involving sets of variables, not just a single variable.

ColorSafe has two modes of operation: debugging mode, which produces detailed in-

formation about how and where atomicity violations may have happened and deployment

mode, which is less precise, but uses transactional memory support to avoid failures with-

out a↵ecting the semantics of the program. Our results show that ColorSafe e↵ectively

avoids atomicity violations in both bug kernel benchmarks and several real applications,

including Apache and MySQL. ColorSafe is e�cient and avoids atomicity violations with

little performance overhead. ColorSafe’s debugging mode precisely identifies code related

to atomicity violations with few false positives, using a simple invariant-based technique to

prune spurious reports.

Insights. There are several major insights that we gained from this work. We showed

that there is synergy between existing techniques for failure avoidance [85, 27, 56, 32],

data-centric synchronization [26], and atomicity debugging [80, 85]. We also showed that

instruction interleaving behavior in failing and non-failing program executions is largely

similar. The similarity was essential to ColorSafe’s debugging methodology. We also showed

that hardware transactional memory support is adequate to avoid atomicity violations –

transactions-all-the-time, like Atom-Aid used (Chapter 5) is not required for e↵ective failure

avoidance.

Opportunities. There are several interesting avenues for future work stemming from

ColorSafe. One interesting direction is to determine whether hardware support is funda-

mentally required for the style of failure avoidance used by Atom-Aid and ColorSafe. There

are two ways this style of failure avoidance could be realized without hardware support. One

way is to build a runtime system that dynamically identifies potential atomicity violations

(like ColorSafe’s hardware mechanism does) and to use a software transactional memory

implementation to enforce the required atomicity property. Another way would be to distill

out likely atomicity requirements and modify program code to enforce those constraints

using synchronization like locks, or explicitly expressed transactions.

132

The main limitation of both Atom-Aid and ColorSafe is that they do not deal with

concurrency bugs in general. Atom-Aid and ColorSafe address failures due to atomicity

violations only. Chapter 7 addresses this shortcoming with a failure avoidance mechanism

that is e↵ective for a much more general class of concurrent program failures.

133

Chapter 7

AVISO: AVOIDING SCHEDULE-DEPENDENT FAILURES

This chapter describes a technique for avoiding general schedule-dependent failures,

without relying on bug-specific heuristics. Chapters 5 and 6 described Atom-Aid and Col-

orSafe, two techniques that also focused on avoiding schedule-dependent failures, due to

atomicity violations. Atomicity violations are an important and widespread concurrent

program failure mode. Focusing on atomicity violations allows these techniques to take

advantage of serializability, a property that is uniquely helpful for detecting and avoiding

problems related to atomicity. The drawback of focusing on such a specialized property is

that these techniques are not generally applicable to arbitrary concurrent program failures.

Designing a general schedule-dependent failure avoidance mechanism presents many in-

teresting challenges. Such a system must monitor program execution to collect the informa-

tion needed to identify likely failures. Monitoring must be e�cient because failure avoidance

is most useful in deployed systems, where performance is paramount. Such a system also

requires precise techniques to identify failures using the collected data and mechanisms to

influence the program’s execution to avoid failures; as with monitoring, such mechanisms

must be e�cient. Furthermore, systems should avoid failures without requiring modifica-

tions to hardware or changes to the way programmers write their programs.

We overcome these challenges in this chapter. Our main contribution is a novel, auto-

mated technique for avoiding schedule-dependent failures. We develop an e�cient system

for collecting relevant program events at run-time in deployed software. When a program

instance fails, we use the information collected by our system to generate hypotheses about

what caused the failure. Then, leveraging the fact that we often have a number of deployed

instances of the same software, we develop a predictive statistical model and an empirical

framework to identify which hypothesis is most likely to be correct. Based on that hypoth-

134

esis, we influence future program executions by perturbing the thread schedule to avoid

subsequent failures.

We implement these ideas in Aviso, a distributed system that coordinates many deployed

instances of a program to cooperatively learn how to prevent failures. Our system works on

commodity hardware with minimal impact on software and the development process. Our

evaluation on several real-world desktop, server, and cloud applications shows that Aviso

e↵ectively and e�ciently avoids schedule-dependent failures. In one test, Aviso reduced the

failure rate of a buggy version of Memcached, a popular key-value store, by two orders of

magnitude. Fixing the bug took developers about a year and their fix imposed about 7%

performance overhead [36]. Aviso worked without developer intervention and in minutes

found an e↵ective constraint that imposed only a modestly higher overhead of about 15%.

The remainder of this chapter describes Aviso in greater detail. Section 7.1 provides

background that explains how Aviso avoids schedule-dependent failures. Section 7.2 reviews

Aviso’s design goals and architecture, while Section 7.3 relates how Aviso decides which

events to monitor during an execution and how events and failures are to be monitored. We

describe how Aviso generates candidate constraints after a failure in Section 7.4 and how it

determines which candidate constraint e↵ectively prevents failures as well as inter-system

constraint sharing in Section 7.5. Section 7.6 provides implementation details. Sections 7.7–

7.8 evaluate and characterize Aviso, contrast it with prior work, and summarize our findings.

7.1 Schedule-Dependent Failures

A program’s execution experiences a schedule-dependent failure when threads execute a

particular sequence of events that leads to a crash, contract violation (e.g., assertion), or

state corruption. Schedule-dependent failures are the result of programming errors, such as

absent or incorrectly used synchronization.

Figure 7.1(a) illustrates how a programming error leads to a failure using an example

from AGet-0.4, a multi-threaded download accelerator. Figure 7.1(a) shows a snippet of

a failing multi-threaded execution. The failure is an atomicity violation: Thread 1 writes

bytes to a file (pwrite(...) on line 116) and then adds the number of bytes written

to the file to a shared counter (incrementing bwritten on line 121). The failure occurs

135

when Thread 2 asynchronously reads the value of bwritten on line 41, between the call to

pwrite() and the increment that follows. The programmer has omitted synchronization

operations in Thread 2, permitting that thread to read an intermediate value. Note that

if Thread 2’s read was delayed, and Thread 1’s update was allowed to proceed, the failure

could have been avoided.

116:dw =
 pwrite(...);

41: h.bwritten =
 bwritten;

Thread 2

Resume.cDownload.c

Thread 1

BUG:Stale value of bwritten read by Thread 2

121:bwritten +=
 dw;

(a) A failing execution. The failure occurs when
Thread 2 reads a stale value of bwritten.

41: h.bwritten =
 bwritten;

After Download.c:116,
Delay Resume.c:41)

Constraint116:dw =
 pwrite(...);

Thread 2Thread 1

121:bwritten +=
 dw;

The delayed read gets the correct value

Constraint Activated

Delayed

(b) Avoiding the failure. The constraint delays
Thread 2, reordering operations to avoid the failure.

Figure 7.1: A schedule-dependent failure in AGet-0.4.

7.1.1 Bug Depth

Recent concurrency testing work [25] formally characterized concurrency errors using the

notion of bug depth. A bug’s depth is the minimum number of pairs of program events that

must occur in a particular order for that bug to manifest a failure [25]. Note that a single

bug can lead to di↵erent failures under di↵erent execution schedules. A di↵erent set of event

pair orderings is necessary to manifest each di↵erent failure and a failure occurs only if all

its necessary orderings are satisfied. Typically, most schedules do not satisfy all orderings

required to cause any particular failure, so executions usually do not fail.

This fact poses a key challenge to multi-threaded testing. To expose a bug during testing

by causing a failure, systems must enforce a number of orderings on the execution schedule

that is greater than or equal to the bug’s depth. The larger the bug’s depth, the more work

is needed to ensure that a failure occurs [25]. The bug in Figure 7.1(a) has depth 2 because

two pairs of events must execute in a particular order for the failure to manifest: Thread

136

2’s read must follow Thread 1’s pwrite call and must precede Thread 1’s bwritten update.

If the first ordering were not upheld, Thread 2 would correctly see the value of bwritten

before any of Thread 1’s operations. If the second ordering were not upheld, Thread 2

would correctly see the result of Thread 1’s operations.

7.1.2 The Avoidance-Testing Duality

In this work, we make the observation that a failure caused by a bug of any depth can be

avoided by perturbing just one pair of events in the sequence that leads to the failure. Given

a chain of pairs of events that must be ordered to manifest a failure in testing, perturbing

the schedule to reorder any of the pairs “breaks the chain”, preventing that failing schedule

from occurring. This observation suggests a duality between testing for schedule-dependent

failures and avoiding them: testing requires enforcing all of a conjunction of pair orderings to

exercise a failing schedule; avoidance requires reordering events in any of those pair orderings

to avoid a failing schedule. Avoiding a particular failing schedule leads the execution to a

new schedule. Avoidance is successful if the new schedule does not lead to a failure, which

is likely the case since there are typically significantly more failure-free schedules than

schedules with failures.

Figure 7.2(a) illustrates bug depth. The circles are program events and the arrows

represent pair orderings necessary to lead to a failure. There are d orderings, so assuming

the figure shows the fewest possible orderings for the bug to cause a failure, the bug has

depth d. Figure 7.2(b) contrasts testing and failure avoidance. Exposing a bug during

testing requires satisfying a conjunction of d pair orderings, whereas the failure is avoided

if a single pair of events is reordered.

7.2 System Overview

This section provides an overview of Aviso’s system architecture and design constraints.

We then walk through Aviso’s failure avoidance mechanism with an example, and explain

how Aviso facilitates cooperative, empirical failure avoidance in a community of software

instances.

137

Failing
Event

Sequence

Necessary
Event

Ordering

P1
P2

Pd

Bug Depth = d

(a) Pair orderings necessary for the fail-
ure to occur. There are d orderings, so the
bug responsible for the failure has depth d
(assuming the figure shows the fewest order-
ings for the bug to cause a failure).

Testing

Avoidance

P1 /\ P2 /\ ... /\ Pd
¬ P1 \/ ¬ P2 \/ ... \/ ¬ Pd

Testing must enforce all necessary orderings.
Avoidance must reorder at least one.

(b) Contrasting testing with failure avoidance.
Testing aims to expose bugs, so all orderings must be
satisfied. Avoidance aims to prevent failures by reorder-
ings the events in any ordering.

Figure 7.2: The Avoidance-Testing Duality.

7.2.1 System Architecture

Figure 7.3 presents Aviso’s four components: (1) the profiler, (2) the compiler, (3) the

runtime system, and (4) the framework.

Profiler and Compiler. After development, the programmer runs Aviso’s profiler, which

determines what program operations to monitor. The profiler sends an event profile to

Aviso’s compiler. The compiler uses the event profile to add event-handling runtime calls

to the binary and links the binary to the Aviso runtime to produce an Aviso-enabled exe-

cutable.

Runtime. The Aviso runtime system monitors and keeps a short history of events during

program execution. The runtime also watches for failures and alerts the framework when

they occur. Periodically during execution and when execution fails, the runtime sends its

event history to the framework. The runtime can also perturb the execution schedule using

schedule constraints (see below) that it receives from the framework.

Framework. Aviso-enabled executables run in the Aviso framework and the two com-

municate via a simple messaging API. The framework collects event histories and failure

information sent by the runtime. It generates schedule constraints from this information

and sends them to the runtime when Aviso-enabled executables start running. The frame-

work selects constraints to send using a statistical model that predicts which constraints

138

are most likely to avoid failures; it builds the model using aggregated history and failure

information. By aggregating information from and sending constraints to many program

instances, the framework enables program instances to cooperatively avoid failures.

Profiler

Runtime System
Sends event

histories & failures

Compiler

Identifies
Events

Add Events
to ProgramSends event profile

Produces Aviso-Enabled
Executable

Sends constraints

Framework

Generate Constraints
from Event Histories

Select Constraints w/
Statistical Model

Build Statistical Model
From Histories & Failures

Distribute Constraints

Original
Program

Deployment

Collect Event Histories
Monitor Failures

Aviso-Enabled Executable

Avoid Failures with Constraints
Community of program instances

API over
HTTP

Figure 7.3: Aviso’s components. The compiler and profiler find and instrument events. The
runtime system monitors events and failures and avoids events. The framework generates constraints,
selects likely e↵ective constraints using a statistical model, and shares e↵ective constraints in a
community of software instances.

Design Requirements

Our goal is to build a system that is general enough to avoid failures due to a broad

class of concurrency errors in a deployment setting. This goal presents us with conflicting

design constraints: For the sake of generality, the runtime should monitor as many program

operations as possible, to capture a large variety of failure behaviors. However, monitoring

imposes a time and space overhead, and building a system intended for use in deployment

necessitates high performance. Aviso should find e↵ective constraints quickly and permit

as few failures as possible. To do so, Aviso must leverage prediction to identify e↵ective

constraints without having to directly observe their impact on the program’s behavior.

139

Aviso is additionally constrained because programmer time is valuable and understanding

and fixing concurrency errors is di�cult, error-prone, and time consuming. Our system

should require as little as possible from the programmer.

7.2.2 Avoiding Failures with Schedule Constraints

Aviso leverages the avoidance-testing duality introduced in Section 7.1.2 to avoid failures.

Aviso uses schedule constraints to perturb an execution’s thread schedule with the goal of

reordering events in the execution whose original order leads to a failure.

A constraint is based on a pair of events observed by Aviso in a failing program execution.

It is “activated” when the first event in its pair executes. When a constraint is active and

a thread tries to execute the second event in the constraint’s pair, Aviso delays the thread,

reordering some events in the execution. If the original order of the reordered events was

necessary for a failure to occur, reordering the events will avoid the failure. Such reorderings

are the key to Aviso’s failure avoidance mechanism. We provide more details on avoidance

in Section 7.4.2.

Figure 7.1(b) shows how Aviso uses a constraint to avoid a failure. The constraint is

made from a pair of events: the first event is Thread 1’s pwrite call at Download.c, line

116, and the second event is Thread 2’s read of bwritten at Resume.c, line 41. When the

first event is executed, the constraint is activated. While the constraint is active, Thread

2 attempts to execute the second event, and it is delayed for a fixed period. During this

delay, Thread 1’s bwritten update executes atomically with its pwrite call, preventing the

failure. Later, when Thread 2 resumes execution, it reads the correct value of bwritten.

7.2.3 Cooperative Empirical Failure Avoidance

Aviso is an empirical failure avoidance system. When a failure occurs, it generates a set of

constraints from its event history (see Section 7.4). Each constraint is a hypothesis about

how to prevent the failure. Aviso decides which constraints are most likely to avoid failures

and instructs program instances to use those constraints. It is an empirical system because it

uses a combination of predictive statistical modeling and experimentation to select e↵ective

140

constraints. As Aviso observes more execution behavior, it refines its model, improving its

selections. The details of constraint selection are described in Section 7.5.

Aviso is also a cooperative failure avoidance system. It leverages communities of com-

puters running the same program to select e↵ective constraints in two ways. First, Aviso’s

statistical model is built using information drawn from a community of program instances.

Second, Aviso distributes constraints to all members of a community. A constraint that

consistently avoids failures for some members can be distributed to other members, sharing

its benefit.

7.3 Monitoring Events and Failures

Aviso’s profiler identifies program operations relevant to concurrent program behavior. The

compiler inserts event-handling runtime calls into Aviso-enabled executables before each

operation. Aviso works on deployed programs, so determining which operations should be

treated as events determines the overhead of event handling. Aviso uses static and dynamic

analyses to prune the detected set of events. Aviso’s runtime traces events during execution

and monitors for failures.

7.3.1 Identifying Relevant Program Events

Aviso focuses on concurrency errors, so we restrict our attention to events related to con-

currency. There are three types of events that Aviso monitors: (1) synchronization events,

(2) signal events, and (3) sharing events. Synchronization events are lock and unlock opera-

tions, thread spawn, and join operations that can be identified by matching synchronization

library (e.g., pthread) calls. Aviso can handle other types of synchronization, as well (e.g.,

CAS) if the programmer identifies them as synchronization.

Signal events are functions that handle signals. They are of interest because signals may

be delivered and handled asynchronously. Signal events are identified by instrumenting

signal handler registration functions (e.g., signal()) and functions that explicitly wait for

signal delivery (e.g., sigwait()).

Sharing events are more di�cult to identify because they cannot be identified by looking

only at syntactic properties of a program. Instead, Aviso identifies sharing events using a

141

sharing profiler before application deployment, i.e., during testing. The sharing profiler

monitors threads’ accesses to shared data. When a thread accesses data that has been

accessed by another thread during the execution, the operation the thread is executing is

considered to be a sharing event. Sharing events are reported by the profiler and inserted

into the deployment binary by Aviso’s instrumenting compiler. Aviso identifies events by

their instruction address and a fixed-length prefix of the call stack when the event occurs.

7.3.2 Pruning and Instrumenting Events

Handling events too frequently leads to high performance overheads. To mitigate that issue,

we use two techniques to reduce the number of handled events. First, our instrumenting

compiler uses dominance pruning to eliminate instrumentation of some events. Second, our

runtime system uses online pruning to limit the number of events that are handled.

Dominance Pruning (Static) Analysis. When compiling a function and before opti-

mization, Aviso’s compiler computes the set of dominators for each instruction. We use the

computed dominance relationships to prune the set of candidate events. Given a pair of

events (p, q), if p dominates q, then for every execution of q, there was a prior execution of

p. Hence, tracking only p captures nearly as much information as tracking both p and q. In

this situation, we remove q from the set of candidate events. If p and q are far apart in the

code, dominance pruning might discard useful events. However, our analysis did not pose

problems in our experiments for several reasons. First, dominance pruning does not apply

to synchronization events, and synchronization events often occur near sharing events. Sec-

ond, we identify sharing events using profiling, which is approximate; dominance pruning

makes the approximation only slightly less precise. Third, dominance pruning operates at

function granularity, limiting the distance between p and q to the length of a function at

most. Fourth, if events are far apart, the dominance relation still conveys information about

the interleaving of events along certain control flow paths. This information is less precise

but still useful to prevent failures.

Online Pruning. To further reduce overheads, Aviso uses online pruning to adaptively

reduce the number of events handled. During execution, Aviso tracks the interval between

142

consecutive events. If two events occur within 1µs of one another, they likely encode redun-

dant information, and Aviso discards the second of the two. Discarding events is, in e↵ect,

dynamically coalescing a sequence of events that occur within 1µs of one another into a

single event, represented by the first in the sequence.

7.3.3 Tracing Important Program Events

When generating schedule constraints, Aviso focuses on pairs of events that occurred in a

single failing program execution. When an execution fails due to a concurrency bug, the

event sequence that caused the failure must have occurred during that execution. Aviso

focuses on program events that occurred just before the failure. These events are likely to be

related to the failure because some code point must have triggered the failure (e.g., caused

a crash, emitted buggy output, violated a contract, etc.); these events must have occurred

shortly before the symptom of the failure was manifested. This observation suggests that

a backward scan over a trace of events from the point of failure is likely to encounter the

events involved in the failure.

We therefore designed the Aviso runtime to maintain a totally ordered history of events

recently executed by any thread, called the Recent Past Bu↵er, or RPB, for the execution.

The RPB is a fixed-size queue; the size could vary across implementations, but it should be

on the order of hundreds of events. We used an RPB that holds at most 1000 events from

each thread. Across most of our experiments, we saw an average event frequency of around

500µs, so each thread’s RPB covers about the last 0.5s of its execution. Half a second is

likely to be long enough to capture events related to a failure, as prior work suggests that

such events often occur over short windows of execution [85, 79, 80]. When an event is

executed, the oldest event in the RPB is dequeued and discarded, and the newest event

is enqueued. When a failure occurs, the RPB contains a history of the execution’s final

moments and is likely to include the events that led to the failure.

143

7.3.4 Monitoring Program Failures

For crashes and assertion failures, the runtime preserves the RPB before the program ter-

minates. For other failures, Aviso monitors for ad hoc failure conditions and preserves the

contents of the RPB when failure conditions are met.

The best way to detect non-crash failures depends on the failure’s symptom. Identify-

ing arbitrary failures automatically is a di�cult problem, and doing so comprehensively is

outside the scope of this work. However, simple solutions often work well; e.g., validating

output is often adequate. In our tests with Memcached, we added an assertion that encodes

a simple data structure invariant, preventing the use of deallocated storage. Section 7.7.1

describes our experience adding failure monitors to programs for the subset of our tests that

required it.

In general, given an error report that describes a failure’s symptom, an ad hoc failure

monitor can be added to the Aviso framework to handle any failure diagnosis criteria. Using

failure monitors is not always necessary – Aviso deals with fail-stop errors by default. When

necessary, adding failure monitors is less risky and onerous than patching code or writing a

workaround [134].

7.4 Generating Constraints and Avoiding Failures

After a failure, the framework examines the RPB and enumerates event pairs that could

potentially have led to the failure. For each pair, it generates a candidate constraint that

perturbs the thread schedule around the events in the pair. A candidate is e↵ective if its

perturbation avoids a failure. The framework selects candidate constraints to make available

to future program executions that can use them to avoid failure. In Section 7.5 we discuss

how Aviso selects e↵ective candidates.

7.4.1 Generating Candidate Constraints

We take a straightforward approach to selecting event pairs to generate constraints. The

framework considers pairs of events in execution order in the RPB, (B,A), that were exe-

cuted by di↵erent threads. It selects these pairs under the constraint that between B and

144

A no event was executed by the thread that executed B. Note that between events in a

pair, other uninvolved threads may execute other unrelated events.

Figure 7.4 illustrates the process of enumerating event pairs. Notice that Thread 1’s

first execution of E is not part of a pair because it is immediately followed by B in the

same thread. Also notice that Thread 2’s F and Thread 3’s X form a pair in spite of their

separation by Thread 1’s executions of E.

Thread 1 E B

Thread 2 A

C E E E E

F

Time

Event PairR
ec

en
t P

as
t

Bu
ffe

r

XThread 3 Event

Figure 7.4: Enumerating pairs from a failing execution’s RPB. There are three threads, and
time proceeds left to right. Circles are events, and arcs between events are event pairs. Arcs for
duplicate pairs are omitted. The figure shows a single 10-event window of events, but selection
occurs for all 10-event windows.

To limit the number of constraints generated, we rely on the assumption that events that

comprise e↵ective constraints occur within a short window; we consider only event pairs

separated by fewer than 10 events in the RPB. This assumption is reasonable for several

reasons. First, prior work on finding and avoiding concurrency bugs [121, 85, 83, 128, 105, 66]

suggests that the events involved in schedule-dependent failures often occur within a short

window of the program’s execution (i.e., hundreds or thousand of instructions). Second, each

event in the RPB represents a span of the program’s execution, not a single instruction. Due

to our online pruning approach (Section 7.3.2), two consecutive events in the same thread

are at least 1µs apart, meaning that each event can represent thousands of instructions.

Hence, a 10-event window covers a part of the execution large enough to contain useful

event pairs.

145

7.4.2 Avoiding Failures

Each event pair corresponds to a schedule constraint. The first event in the pair is the

constraint’s “activation event”, and the second event is the “delay event”.

When a program instance starts, the framework makes a set of constraints available to

the program instance. Every constraint starts as inactive. Inactive constraints have no

e↵ect on the program’s execution. When a constraint’s activation event is executed, the

constraint is instantiated, and added to a set of active constraints. The runtime system

records the ID of the thread that executed the activation event as the “activator” in the

constraint instance. A thread may have at most one instance of a constraint active, but if

several di↵erent threads execute a constraint’s activation event, each thread will instantiate

its own instance of the constraint. Figure 7.5 illustrates the constraint activation process.

Available
Constraints

Active
Constraints

Thread 1
executes B

Instantiate
 with

Activator = Thread 1

X E
Activation Event Delay Event

X E
Activator:
 Thread 3

B A
Activator:
 Thread 1

X E
Activator:
 Thread 3

B A X EB A

B A

Figure 7.5: Constraint Activation. Available constraints are those that Aviso has made available
to the execution. Active constraints are constraint instances that have been instantiated and can
trigger delays. The large, central arrow signifies Thread 1 executing event B. To the left of the arrow
there are no instances of the constraint (B,A); event B is its activation event, so when B is executed
an instance of the constraint is added to the Active Constraints set (shaded cloud). Aviso records
that Thread 1 is the instance’s activator in the instance.

When a thread executes the constraint’s delay event, Aviso decides whether to perturb

the execution. To do so, it compares the executing thread to the activator of each constraint

instance. If the thread executing the delay event is the same as the activator of a constraint

instance, Aviso does nothing and execution continues. If it is di↵erent, Aviso delays that

thread’s execution. The delay perturbs the execution schedule by permitting threads other

than the delayed one to continue their execution ahead of the delayed event. The reordering

of these other threads’ events with the delayed event is Aviso’s strategy for preventing

146

failures, as we described in Section 7.2.

Practical Issues with Constraints

There are several practical issues related to pair-based constraints.

Delay Length. Events delayed by constraints cannot be delayed indefinitely without

impeding forward progress. Delays must be long enough to reorder events that would lead

to failures, but short enough that their impact on performance is tolerable. We empirically

determined that 1ms achieved this balance well across our benchmarks: any shorter and

Aviso was unable to prevent failures in some cases; any longer and performance degraded

without improvement in failure avoidance. We show data in Section 7.7 that further support

our choice of delay length.

Composing Constraints. It is important that Aviso not be limited to preventing

only one failure due to one bug at a time. Most programs have more than one bug. Each

bug may lead to a di↵erent failure. To deal with this problem, Aviso can make a collection

of constraints available to threads, each with di↵erent activation and delay events. When

any constraint’s activation event is encountered, the executing thread instantiates that

constraint. Threads can instantiate multiple di↵erent constraints simultaneously to avoid

multiple di↵erent classes of failures. Section 7.5 describes how Aviso decides when multiple

constraints should be available to be instantiated.

Why Do Event Pairs Make Effective Constraints?

Section 7.1 discussed the relationship between schedule-dependent failures and bug depth:

if we invert one of the d event pair orderings necessary for a bug of depth d to cause a failure,

we prevent the failure. In general, Aviso is e↵ective if it generates constraints that reorder

such events, like the one in the center part of Figure 7.6. We now describe how Aviso can use

the constraint in Figure 7.6 to avoid two concrete classes of failures – atomicity violations

and ordering violations.

Avoiding Atomicity Violations. Figure 7.6 shows how constraints avoid atomicity vio-

lations. It depicts two threads with Thread 1 executing events B and C, which should not

147

Atomicity Violation
Failure occurs when A interleaves
B and C, which, the constraint
prevents.

"After B, Delay A"

Constraint
B,A

Thread 1
B

C

A

Thread 2
Constraint Activated

A is Delayed...
A

Ordering Violation
Failure occurs when A precedes
C. B precedes C in Thread 1.
The constraint reorders A after
C, preventing the failure.

Delay

Figure 7.6: How a constraint avoids a failure. The constraint is shown in the cloud and is
made from events B and A; when a thread executes B, the constraint is instantiated. When another
thread executes A, it is delayed. The left side shows an execution snippet that can be viewed as
both an atomicity violation and an ordering violation.

be interleaved by other events. Thread 2 is executing event A. The atomicity violation oc-

curs if A happens between B and C. Note that there are two points in the execution where

the failure can occur – just after A executes or just after C executes. In either case, the

constraint prevents the failure. When Thread 1 executes B, it instantiates the constraint.

When Thread 2 tries to execute A, it is delayed. During the delay, Thread 1 safely executes

C. The delay prevents the failure by reordering A after C, rather than between B and C.

Avoiding Ordering Violations. Figure 7.6 also shows how constraints avoid ordering

violations. To view the figure as an ordering violation, assume a failure occurs when Thread

2 executes A before event C.

Avoiding ordering failures is challenging because when the failure manifests, execution

may fail just after C or just after A. If the program fails just after A, C will never execute

and will therefore not appear in the RPB after the failure, so the Aviso framework will be

unable to use it to form a constraint. To handle these failures, Aviso relies on the presence of

a third event, B, executed by the same thread as C (Thread 1). In failing runs, B executes

just before C would have and is added to the RPB. When A executes and the failure occurs,

B is in the RPB followed by C. If C had executed, it would have immediately followed A.

Hence, A following B in the RPB of a failing run indicates that the incorrect ordering of A

and C is likely to have occurred.

148

session.cpp:278 h->shared =
 tr_sharedInit();

session.cpp:282 h->bandwidth =
 tr_bandwidthNew();

platform.c:222 lock(h->lock);

bandwidth.c:251 assert(h->bandwidth);

event.c:388 event_callback(...);

B

A
C

D

Never executes Assertion Failure!

Thread 1 Thread 2

(a) A failing execution. Events are identified by the labeled circles.

Time

Effective ConstraintBThread 1

Thread 2 D A
Assertion FailureRecent Past

Buffer assert(h->bandwidth);

(b) The RPB just after the failure. Arcs indicate the event pairs Aviso enumerates and uses to
generate constraints. The dashed arrow indicates that the pair (B,A) corresponds to a constraint that
e↵ectively avoids the failure by delaying Thread 2’s execution of A until after Thread 1 executes B.

Figure 7.7: A use-before-initialization failure from Transmission and the constraint that
avoids it.

The constraint in the figure is formed from B and A. When Thread 1 executes B, it

activates the constraint. Later, when Thread 2 tries to execute A, it is delayed by the

constraint. The delay gives C a chance to execute, preceding A. When the delay expires,

A executes after C, avoiding the failure.

7.4.3 Constraint Generation Example: Transmission

Figure 7.7 illustrates a failure that can occur when Transmission-1.42, a multi-threaded

bittorrent client, is starting up. Figure 7.7(a) shows an execution of the events that

lead to a failure. The execution fails when Thread 2 reaches assert(h->bandwidth) at

bandwidth.c:251 before Thread 1 assigns h->bandwidth at session.cpp:282. In this

situation, h->bandwidth is uninitialized, so the assertion fails.

Figure 7.7(b) shows an RPB snippet immediately after the execution fails, illustrating

how Aviso finds an e↵ective constraint. The situation in Figure 7.7 corresponds to the

ordering violation situation in Figure 7.6. The e↵ective constraint depicted delays A (Thread

149

2’s lock acquire at platform.c:222), making it execute after C (Thread 1’s assignment at

session.cpp:282). This reordering prevents a failure because h->bandwidth is initialized

by Thread 1 before the assertion executes.

7.5 Selecting and Distributing Constraints

After an execution fails, the Aviso framework generates a large set of candidate constraints

to assess which can prevent failures. It selects the constraints most likely to avoid failures

and distributes them to new program instances when they start up.

7.5.1 Selecting Constraints

Aviso selects constraints using a two-part statistical model. The first part of the model

is the event pair model that represents properties of event pairs, as they occur in correct

and failing executions. The second part, the failure feedback model, empirically determines

which constraints are most e↵ective by tracking each constraint’s impact on the program’s

failure rate. As Aviso progressively observes more failing and non-failing program runs, its

models improve, yielding better selections.

Event Pair Model

The event pair model represents each constraint with a vector of features. The value of

each of these features is di↵erent for each constraint and is derived from execution behavior

observed by Aviso in failing and non-failing executions. The magnitude of a constraint’s

feature vector determines how likely the constraint is to be e↵ective.

There are two main concerns related to the event pair model: (1) Collecting the infor-

mation that goes into building the model; and (2) Describing and computing the features’

values for each pair.

Collecting Model Information The event pair model synthesizes information in RPBs

from both non-failing and failing program executions. When Aviso collects an RPB, it

updates the event pair model by recomputing each constraint’s feature values.

The model uses the information in RPBs from failing program executions. In Section 7.4

150

we described how Aviso collects post-failure RPBs to generate constraints. Aviso uses

those RPBs to update its event pair model. Aviso also collects RPBs from non-failing

program executions. To do so, Aviso samples the state of the RPB very rarely during correct

executions. At a uniformly randomized interval between 0.1s and 20s, Aviso interrupts

execution, captures the state of the RPB, and uses it to update the event pair model. Note

that if Aviso samples an RPB, just before a failure occurs, the RPB may contain events

related to the failure. To keep these events out of its set of correct RPBs, Aviso waits a

fixed period of 5s before incorporating the correct run RPB into its model. If in the interim

the execution fails, the sampled RPB is discarded.

Features. Aviso represents each constraint with a vector of three features: ordering invari-

ance, co-occurrence invariance, and failure correlation. Feature values are between 0 and 1.

We engineered our feature representation so that larger feature values indicate a constraint

is more likely to prevent a failure.

Ordering Invariance (OI) helps identify constraints whose events occur in one order in non-

failing runs, but the opposite order in failing runs. Given a constraint built from a pair of

events, (B,A), its OI
B,A

value is:

OI
B,A

=

P
c2CorrectRuns

f c

A,BP
c2CorrectRuns

f c

A,B

+ f c

B,A

where f c

x,y

represents the number of times the pair x, y appears in the RPB sampled from

correct run c. Note that the value of OI is larger if (A,B) occurs much more often in

correct runs than (B,A). A large OI value suggests (B,A) is anomalous in correct runs

and therefore related to the failure. Hence, perturbing the execution around (B,A) is more

likely to avoid the failure.

Co-Occurrence Invariance (CI) identifies constraints whose pairs of events tend not to occur

together in non-failing runs. Given a constraint built from a pair of events, (B,A), its CI
B,A

value is:

CI
B,A

= 1.0�
P

c2CorrectRuns

f c

B,AP
c2CorrectRuns

[
P

y 6=A

f c

B,y

+
P

x 6=B

f c

x,A

]

151

Note that the fraction part of CI is large if B and A occur together frequently in non-failing

runs, or if B and A occur with other events infrequently in non-failing runs. Both of these

conditions suggest the pair (B,A) is not an anomaly in non-failing runs. We invert the

sense of the fractional term subtracting it from 1.0. As a result, the value of CI is larger

if B and A more often occur in non-failing executions in pairs with di↵erent events, rather

than with one another.

Failure Correlation (FC) identifies pairs of events that occur frequently in failing executions.

Given a constraint built from a pair of events, (B,A), its FC
B,A

value is:

FC
B,A

=
F
B,A

F

where F is the total number of failing executions and F
B,A

is the total number of failing

executions in which (B,A) occurred at least once. A large FC value suggests that B and

A tend to occur consistently as a pair in failing executions and are therefore related to the

failure; therefore perturbing the execution around (B,A) is likely to avoid the failure.

FC is unlike CI and OI in two ways. First, CI and OI are computed based on RPBs from

non-failing executions; FC is computed using data from failing executions. Second, unlike

CI and OI, FC is computed using F
B,A

and F – numbers of executions, rather than numbers

of occurrences of pairs (e.g., f c

B,A

). This is because the frequency of a pair unrelated to a

failure in a failing execution may be di↵erent because the execution terminated early due to

the failure. Such di↵erences act as noise in our model. Instead, our method for computing

FC factors out this source of noise.

Failure Feedback Model

The second mechanism Aviso uses to select constraints is the failure feedback model. This

model records the failure rate, FR, observed for each constraint. The model also records

the failure rate with no constraints available. If the program’s failure rate is low (i.e., many

non-failing runs, few failing runs) when a particular constraint is active, it is likely that that

constraint helps avoid failures more than others.

Every time the program terminates, the failure feedback model is updated. If the pro-

152

gram exited normally, Aviso increments the model’s record of the number of non-failing runs

for all constraints available to the program instance during that execution. If the program

fails, Aviso updates the model’s record of the number of failing runs.

Dealing with Long-Running Programs To keep the failure feedback model up to date,

programs send Aviso a message indicating success or failure when they terminate. However,

long-running programs like servers terminate infrequently. If a constraint is e↵ectively

preventing failures, the program may run indefinitely. In this case, Aviso might never

update the failure feedback model to reflect the success of the constraint. To handle long-

running programs, we add a facility to Aviso to record “logical time” ticks. To use logical

time, we rely on the programmer to add markers to the code that represent progress in

the application. Each call sends the framework a message, telling it to increment the non-

failing execution count of each constraint the program is using; hence, a logical time tick

in a long-running program is e↵ectively a “non-failing run”. We found these calls trivial

to insert, even into large and unfamiliar programs. For example, in our experiments with

Apache and Memcached, we incremented logical time after 1,000 and 10,000 requests were

processed, respectively.

Combined Avoidance Likelihood Model

The framework selects constraints by querying its combined avoidance likelihood model,

which incorporates both the failure feedback model and the event pair model. The combined

avoidance likelihood model is a probability distribution with an entry for each constraint.

The value of a constraint’s entry is the likelihood that it is e↵ective as predicted by the

event pair model, scaled by an exponential function of the constraint’s observed failure

rate, as recorded in the failure feedback model. Concretely, the amount of probability mass

contributed by a constraint, (B,A) is:

P
B,A

= (CI
B,A

⇥OI
B,A

⇥ FC
B,A

)
| {z }

Event Pair Model

⇥ er1⇥(1.0�FR

B,A

)�r2 + s| {z }
Failure Feedback Model

where r1, r2 are parameters of the exponential function used in the model and s is a

153

smoothing factor that keeps the model defined and bounded by 0 and 1. We chose r1 = 8,

r2 = 0.7, and s = 0.001. These choices cause the function to peak when FR = 0 and bottom

out at 0.001 (s).

The intuition behind the combined model is the following. The event pair model is

predictive – the model’s features encode our inductive bias, and data (RPBs) refine the

model’s predictions. The failure feedback model uses feedback to scale predictions made by

the event pair model. The scaling factor varies exponentially with the constraint’s failure

rate – constraints that fail often are exponentially less likely to be selected than ones that fail

rarely or never. As failures and non-failing runs occur, Aviso refines its models. Over time,

e↵ective constraints’ probabilities in the combined model grow and ine↵ective constraints’

probabilities decrease.

Figure 7.8 illustrates the combined model. Failure correlation (FC) is computed based

on RPBs from observed failures. Co-occurrence invariance (CI) and Order invariance (OI)

are computed based on RPBs sampled from correct execution. The failure feedback model

maintains failure rate values for each constraint, computed by monitoring constraint failures.

Aviso uses the combined model to select constraints according to a probability function

composed of the event pair and failure feedback models, as shown.

Event Pair Model
Failure Feedback Model

Combined
Model

 Correct
RPBs

er1×(1.0−FRB,A)−r2 + s
Failing
RPBs

CIB,A

OIB,A

FCB,A

FCB,A x OIB,A x CIB,A

Constraint Selection

(B,A)

Constraint
Failures

FRB,A

PB,A

Figure 7.8: Aviso’s statistical model. The event pair model tracks feature values for each con-
straint. The failure feedback model tracks constraints’ failure rates. The combined model is com-
prised of the other two, yielding a selection probability for each constraint.

154

7.5.2 Distributing Constraints

All constraints start equally likely to be drawn. As program instances run, Aviso samples

non-failing RPBs and stores them as the program runs. When the program fails, the

framework generates constraints. The framework initializes the event pair model using the

stored RPBs and the combined model assigns each constraint an initial probability based

on the event pair model. The failure feedback model is ignored at this point because before

any executions, all constraints’ failure rates are undefined. Later, when a program instance

starts, it queries Aviso for constraints. Aviso selects a constraint and sends it to the instance.

Aviso periodically instructs program instances to run with no constraints to establish

the application’s baseline failure rate. Initially, Aviso sends no constraint 10% of the time;

the rate drops to 1% after seeing enough executions without any constraints to establish

95% statistical confidence that the observed baseline failure rate is within 5% of its actual

value, assuming a binomial distribution of failures.

We continuously compute �2 statistics for each constraint to determine the significance of

the di↵erence of the constraint’s observed failure rate and the baseline failure rate. We use a

2x2 contingency table and consider a di↵erence to be significant if the �2 test indicates it to

be with at least 95% probability. When a constraint that significantly decreases the failure

rate is identified, Aviso uses that constraint 75% of the time. However, Aviso continues to

draw constraints from the combined model for two reasons: (1) it is important to keep the

baseline failure rate up to date; constraints may lose their significance if the baseline rate

changes. (2) there may be other constraints with larger significant decreases in failure rate;

halting its exploration, Aviso may settle for a non-optimal constraint.

Handling Multiple Failures

Up to this point, our discussion has assumed that all failures can benefit from a common

pool of constraints. However, programs are likely to have more than one type of failure,

stemming from more than one bug. Aviso also deals with multiple failures. The key is to

maintain a separate model for each failure class. A failure class is identified by the content

of the RPB at the point of failure. When a failure occurs, the post-failure RPB is compared

155

to the RPBs collected from failures in each failure class, using symmetric set di↵erence. The

RPB is assigned to the class to which it is most similar. If the set of events in the RPB is

not at least 80% similar to the set of events in any existing failure class, a new failure class

is created.

When a program instance starts and queries the framework for constraints, Aviso selects

a constraint from each failure class according to its own model. The program instance is

then sent one constraint per class. The constraint-less failure rate information is shared

across classes. On a failure or successful run, all classes’ models are updated.

There may be two unrelated failures that occur with similar RPBs. If the failures

are assigned to the same class, only one constraint will be applied to starting program

instances. As a result, it is possible that only one failure or the other will be prevented. We

accommodate this situation by allowing Aviso to split a failure class in two if no constraint

significantly decreases the failure rate after a fixed number of experiments. The purpose of

this process is to select two constraints for what was previously a single failure class and

thereby prevent both failures.

7.6 System Implementation

We built a complete implementation of Aviso including the profiler, instrumenting compiler,

runtime system, and the constraint selection and avoidance-sharing framework. 1 We

implemented the sharing profiler using Pin [87]. Dominance pruning and event placement

were implemented in LLVM [73]. The framework and runtime were implemented from

scratch.

7.6.1 Framework Implementation

The framework was implemented in about 3000 lines of Go code. The statistical models

and constraint generation were implemented from scratch in the framework.

The framework exposes a messaging API. The API provides calls for the runtime to query

for constraints, to send RPBs for sampled, non-failing periods and after failures occur, and

1Aviso is available for download at the authors’ website.

156

to send logical time ticks. The API works over the network, via HTTP. The framework and

runtime-enabled program instances form a distributed system that implements Aviso. Using

HTTP as the messaging protocol for the distributed system makes it flexible, portable,

and suitable for use in cloud environments such as Google AppEngine or Amazon EC2.

Furthermore, its simple interface lets the framework be trivially replicated and lets replicas

be load balanced for further scalability. Replicas’ statistical models could be kept consistent

via consensus or simply operate independently.

7.6.2 Runtime Implementation

We implemented the runtime in a library with an event handling API. Synchronization,

signal, and sharing events make calls to the API. When a thread makes an event call,

it records the event with a timestamp in a thread-local queue. When the thread ends,

the timestamped events are serialized to a file. Timestamps are collected at nanosecond

resolution using clock gettime’s CLOCK MONOTONIC clock. We use thread-local event queues

and timestamps to collect events because they are faster than an earlier version of our

system, which used a serializing event queue shared across threads.

Constraints are shared object plugins to the runtime. Each exposes a factory method

to instantiate its constraint. When the program starts up, the runtime receives constraint

descriptions as text. The runtime uses a simple, custom, templated code generator to

produce C++ code from the text. The framework then calls out to gcc to compile the

code to a shared library that is loaded by the program. Program instances cache compiled

constraints, so code generation and compilation need be performed only once; subsequent

executions that call for the same constraint can reuse the previously generated constraint

plugin.

The runtime was built for concurrent performance. Its only shared data structure is

the state associated with active constraints; everything else is thread-local. Accesses to the

shared structure are rare: each thread has a thread-local list of events that may require

an access to the shared structures. The common case is for a thread executing an event

to check its list and continue without accessing the shared structure. Only when a thread

157

hits an event involved in a constraint must it consult the shared structure. This arrange-

ment minimizes the chance that Aviso’s data-structures will lead to serialization and poor

performance.

7.7 Evaluation

We evaluate Aviso along several dimensions. First, we show Aviso’s e�cacy in avoiding

failures. Second, we show that Aviso’s overheads are reasonable both during data collection

and when actively avoiding failures. Third, we characterize Aviso’s constraint selection

process. Finally, we characterize Aviso’s dynamic behavior.

7.7.1 Experimental Setup

We evaluated Aviso using several buggy parallel programs.

Out-of-the-Box Benchmarks. Our main results are based on experiments with one

cloud application, one server application, and one desktop application made to run with

Aviso “out of the box”.

Memcached-1.4.4 is an in-memory key value store with an atomicity violation that leads

to data-structure corruption and lost updates under heavy update load. We added a single

assertion that detects the data-structure corruption when a thread writes to a deallocated

table cell and aborts execution. The data-structure invariant that our assertion checks is

the cause of the lost updates, but the assertion is oblivious to the lost update problem; to

write the assertion, a programmer would not need to understand the lost update failure.

We manually added a single Aviso call to the server to send a logical time update every

10,000 requests. Inserting this call was trivial even without being familiar with the codebase.

For profiling, we initialized a key-value store with 10 keys storing integers that 8 threads

accessed. We used a mix of accesses that was 90% reads and 10% updates. For tests, we

used a 10-key store and the same thread count and operation mix.

Apache-2.0.46 is a web server with atomicity violations in its in-memory cache subsystem

that lead to crashes when concurrently servicing many php script requests. Our server

setup is Apache with mod php loaded, in-memory caching enabled, and serving the time

158

of day via a php script. We added a single Aviso call to send a logical time update every

10,000 requests. As with Memcached, inserting the call was trivial. For profiling, we used

ApacheBench to issue 1,000 requests from 8 concurrent request threads for a static html

page, then 1,000 requests from 8 threads for our php time server. For tests, we let the server

run continuously until a failure. We sent time-of-day requests in groups of 10,000. To vary

the workload, each group of requests was sent by a number of threads uniformly randomly

chosen to be between 2 and 8.

AGet-0.4 (Figure 7.1) is a download accelerator with an atomicity violation in its signal

handler that leads to output corruption. To detect failures, we manually added an assertion

that aborts when it detects output corruption. The assertion compares a count of bytes

written to the downloaded file to the sum of per-thread byte counts. The symptom of the

failure is that these counts are not equal. Note that adding this assertion did not require

understanding how to prevent the failure. We needed to understand only that the number

of written bytes reported by AGet should match the number of bytes in the output file.

To profile AGet, we downloaded a 1MB file using 8 threads from a local network resource

twice, once letting it complete and once interrupting it with SIGINT. To test AGet, we

started downloading a 700MB Linux image and interrupted the download with a SIGINT

after 1s.

Schedule-patched Benchmarks. To further demonstrate Aviso’s applicability, we con-

ducted experiments with two other desktop programs. Unlike our first three benchmarks, we

altered these two programs to amplify their failure rate. We applied patches that use sleep

statements to lead execution toward failing schedules, similar to prior work [139, 140, 60].

These schedule patches are not essential – Aviso could be applied without them; we used

them to facilitate experiments. Despite the patches, these results show Aviso’s e↵ectiveness

for several reasons. First, the program is unchanged except for a single call to usleep.

Second, the increased failure rate does not a↵ect constraint generation or selection, except

to reduce the time required for both. Third, events involved in the failure are identical in

the patched and non-patched versions.

159

Transmission-1.42 (Figure 7.7) is a bittorrent client with a use-before-initialize error that

leads to an assertion failure. To profile Transmission, we downloaded a Linux iso torrent

without the schedule-altering patch. We ran tests on Transmission by running with the

schedule-altering patch applied and downloading a non-existent torrent, which triggers the

failure, causing a crash.

PBZip2-0.9.1 is a compression utility with a use-after-free error that leads to a crash.

To profile PBZip2, we ran it under our profiler and first compressed, then decompressed,

a 10MB text file. We experimented with PBZip2 by compressing a 250MB file. Aviso

diagnosed the failure by watching for crashes and failed assertions.

7.7.2 Bug Avoidance Efficacy

Our main finding is that Aviso made our benchmarks fail less frequently, as shown on the

plots in Figure 7.9. The plots show on a log scale the number of failures observed in our

experiments for Aviso and for the baseline without Aviso, as well as a theoretical worst

case. The slope at a point on a curve is the instantaneous failure rate at that point.

For all benchmarks, Aviso’s curve is lower than the baseline, indicating a decrease in the

number of failures experienced. In Apache’s case, Aviso decreased the number of failures

exhibited in our experiments by two orders of magnitude. Memcached saw a decrease in

failures of more than an order of magnitude. Other cases had less pronounced decreases,

but still benefited from Aviso.

These data elucidate how Aviso searches for the most e↵ective constraint. For the first

few runs of the program, the number of failures for Aviso is commensurate with the number

for the baseline. During these first runs, Aviso is building and refining its statistical model.

After a few runs, Aviso’s model guides it to an e↵ective constraint. At this point, the slope

of the curve becomes flatter than the baseline, i.e., Aviso begins to consistently choose a

constraint or constraints that avoid failures.

160

10K

8K

Fa

ilu
re

s

Number of Trials

(a) Memcached

10

100

1K

10K

2K 4K 6K 8K

(b) Apache

10

100

1K

10K

2K 4K 6K 8K

(c) AGet

10

100

1K

10K

2K 4K 6K 8K

(d) PBZip2

10

100

1K

10K

2K 4K 6K 8K

Worst Case
Baseline

Aviso

(e) Transmission

Figure 7.9: Aviso’s improvement in reliability. We show data for (a)Memcached, (b)Apache,
(c)AGet, (d)PBZip2, and (e)Transmission. The x-axis shows execution time in number of trials –
logical time ticks for servers, executions for standalone applications. We ran each program for 8000
trials. The y-axis shows the the number of failures that have occurred at a given point in time on
a log scale. The top (black) curve shows the worst case: every execution is a failure. The middle
(red) curve shows the reliability of the baseline, compiled and run completely without Aviso. The
bottom (green) curve shows the reliability with Aviso.

7.7.3 Performance

Table 7.1 shows that Aviso’s runtime overhead is low. Column 2 is the overhead of event

monitoring only. The overhead ranges from less than 3% for PBZip2 to 26.2% for AGet,

with an average overhead of 13.4%. These results show that when Aviso is only collecting

information, the performance overhead is tolerable.

Collection and Avoidance Overhead. Column 4 shows the combined overhead of event

monitoring and avoidance. Avoiding failures does not prohibitively increase Aviso’s over-

head. For Memcached, the overhead is about the same as that of event collection alone; for

Transmission, our worst case increase, the overhead is 20.7% greater than the overhead of

event collection.

161

Performance Overhead
Coll. Only Coll. & Avoid

Transmission 8.8% 29.5%
AGet 26.2% 30.7%
PBZip2 2.6% 5.5%
Memcached 17.3% 16.7%
Apache 12.1% 15.9%

Table 7.1: Aviso’s runtime overheads. These overheads are relative to baseline execution when
collecting events only and when collecting events and avoiding failures.

PBZip2 has very low overhead for both event collection and avoidance because threads

spend a majority of the execution in a compression routine in libbz2. Avoidance adds

little to the overhead because the most e↵ective constraint for PBZip2 involves events that

execute during shutdown; constraint activation checks and delays need only occur during

shutdown, so they do not impede the execution.

AGet’s event collection overhead is high relative to our other benchmarks because a

majority of the program’s execution is in a tight loop that includes two event calls. AGet’s

avoidance overhead is only slightly higher than its collection overhead because the events

involved in the constraints that Aviso found e↵ective execute only during signal handling.

The increased overhead is due to an increase in constraint activation checks, not delays.

Memcached’s overhead is nearly the same for both collection and avoidance: the con-

straints that Aviso found e↵ective are not activated in the program’s common case. The

events involved in e↵ective constraints execute only when the number of digits in the number

stored in one of Memcached’s table cells increases, which occurs rarely.

The key finding, then, is that when collecting events only, Aviso imposes a low perfor-

mance penalty. When avoiding failures, the overhead is only slightly higher.

Contrasting Improved Reliability with Aviso’s Overhead The data show that

Aviso’s overhead is non-negligible. These overheads are acceptable for two main reasons.

First, the increase in reliability comes immediately and without the need for the programmer

to understand how to fix the program. Patches are hard to write correctly, and hand-written

patches may introduce bugs or degrade performance. For example, Memcached developers

162

left the failure we studied unpatched for nearly a year after its initial report. They cited a

7% performance “regression” as one roadblock to committing a patch [36]. Aviso imposes

a roughly similar performance overhead (16.7%) to the manually crafted solution and de-

creases the rate at which the failure occurs by nearly two orders of magnitude. Aviso does

not require the programmer to understand how to fix the bug, let alone correctly patch the

code to fix it. Furthermore, because Aviso operates automatically the gap between the first

failure and Aviso’s failure avoidance is a few minutes rather than the year required for the

manual patch.

Second, Aviso’s performance overhead saves programs from the potentially severe costs

associated with failures. For example, Memcached’s failure is a lost update that permits the

store to be periodically corrupted but to continue executing. In safety-critical applications,

data corruption is likely worse than performance degradation. Aviso provides the option of

avoiding Memcached’s data corruption at the cost of a modest performance hit.

7.7.4 Constraint Generation and Selection

Figure 7.10 characterizes how Aviso generates and selects constraints. Figure 7.10(a) shows

that Aviso needs to experiment with only a small fraction of the constraints it generates

to find e↵ective constraints. Notice that the lower portion of the bars is considerably

smaller than the upper portion: Aviso made only a small fraction of constraints available

to program instances. Aviso e↵ectively avoids failures, so this result shows that it selects

e↵ective constraints without having to observe many program instances.

Figure 7.10(b) shows that the number of constraints that Aviso makes available to

program instances is small and for most of our benchmarks, most of the execution time

was spent using a single e↵ective constraint. These data reinforce the findings from Fig-

ure 7.10(a), i.e., Aviso finds e↵ective constraints after selecting and distributing only a few

using its statistical model.

For Apache, Memcached, and AGet, the constraint represented by the bottom bar seg-

ment was used by Aviso for 92-99.7% of the execution time during our tests. For PBZip2,

the bottom two bar segments account for nearly 80% of execution time; Aviso chose between

163

these two constraints a majority of the time. These frequently chosen bottom segments all

represent constraints that led to a statistically significant decrease in failure rates.

In concert with Figure 7.10(a), this result illustrates how Aviso works: Aviso initially

selects e↵ective constraints without having to experiment with them or directly observe

their impact on failure rates. It chooses good constraints without experimenting by using

its predictive event pair model. After initially selecting a constraint that turns out to be

e↵ective (i.e., the event pair model’s prediction was a good one), the failure feedback model

biases Aviso to select the same constraint again. The data directly show this phenomenon.

For example, in Apache’s case, Aviso selected 16 di↵erent constraints, experimented with

each, and observed their impact on the failure rate. The 16th turned out to be e↵ective,

preventing nearly all future occurrences of the failure. Due to the constraint’s success, the

failure feedback model ensured it was subsequently selected.

Aviso selects and tests constraints di↵erently for Transmission than for the other bench-

marks. Transmission’s lower 14 bar segments provided a significant decrease in the failure

rate. Aviso used one of these 14 constraints for about 85% of execution time.

The data in Figure 7.10(c) explain why Transmission is di↵erent and help further char-

acterize Aviso’s event pair model. The bar height shows the ratio of the total number of

constraints generated during our experiments to the total number of pairs in the event pair

model that were observed in sampled correct RPBs. We call this ratio the coverage of the

model. If the event pair model has fewer pairs than constraints – i.e., has low coverage – it

is likely to predict e↵ective constraints poorly. If the model has more pairs, it is more likely

to be useful in assigning meaningful selection probabilities to more constraints. Note that

coverage may exceed 1.0 if pairs in the model never show up in a post-failure RPB.

Transmission’s model coverage is zero. The structure of Transmission’s failure explains

why: the failure occurs very early in the program’s execution. The event pair model is

primarily built from RPBs sampled from portions of correct execution. Transmission crashes

early, so no RPBs are sampled and the event pair model is of little use. Transmission’s zero

model coverage explains why Aviso was forced to experiment with more di↵erent constraints.

Instead of predicting e↵ective constraints, Aviso relied on the results of its experiments –

the failure feedback model – to determine which constraints worked best.

164

Our other benchmarks had event pair models with higher coverage. Apache’s model

contained nearly the same number of pairs as there were constraints. Memcached and AGet

also had models with high coverage. Looking back to Figures 7.10(a) and (b), the impact

of higher model coverage is clear. For benchmarks with higher model coverage, the fraction

of constraints used is lower and the fraction of execution time spent using a small number

of e↵ective constraints is higher.

In summary, Figure 7.10(a–c) shows that when Aviso’s statistical model has observed

enough correct execution behavior, it makes good predictions, and Aviso is e↵ective. If the

model has low coverage, Aviso still selects e↵ective constraints using its failure-feedback

model.

7.7.5 Characterizing Dynamic Behavior

Using an instrumented version of the Aviso runtime, we characterized its dynamic behavior.

For these experiments, we fixed a few runtime parameters: we chose the constraint used

most frequently by Aviso during our main experiments, and we used a single fixed-size

input. For PBZip2, we used the 250MB input file. For AGet, we downloaded a Linux image

and interrupted execution (without crashing). For Apache, we issued 1M requests from 8

concurrent request threads. For Transmission, we downloaded a Linux image torrent, while

for Memcached, we ran 80,000 client requests.

Figure 7.10(d) plots the rolling average time between events in µs during our experi-

ments. These data justify Aviso’s delay length. Recall that to avoid failures, events must

be reordered by delays. In order to reorder events, events must be delayed long enough to

allow an event in another thread to execute. The data show that the delay time is longer

than the average inter-event time of most benchmarks. In the average case, a delay will

reorder some events. Despite PBZip2’s large average inter-event time, Aviso’s delay length

is adequate because the length of the interval between events involved in the failure is less

than the delay length.

The data in Figure 7.10(d) also help explain Aviso’s overheads. For PBZip2, the average

time between events is several orders of magnitude larger than for other applications. The

165

0

500

1K

1.5K

2K

2.5K

Apache
Memcached

AGet PBZip2
Trans.

C

on
st

ra
in

ts

16K

(a) Characterizing constraint genera-
tion. The bar height represents the total
number of constraints generated after any
failure that occurred during our experiments.
The lower, red segment shows the number of
constraints that were actually made available
to a program instance by Aviso.

 0

 0.2

 0.4

 0.6

 0.8

 1

Apache
Memcached

AGet PBZip2
Trans.

Fr
ac

tio
n

of
 E

xe
cu

tio
n

Ti
m

e

(b) Characterizing constraint selection.
Each bar corresponds to a di↵erent bench-
mark. Each segment corresponds to a dif-
ferent constraint. The height of a segment
represents the fraction of execution time dur-
ing vetting that ran with that segment’s con-
straint. The total number of segments in a
bar is the number of constraints Aviso exper-
imented with.

 0

 0.2

 0.4

 0.6

 0.8

 1

Apache
Memcached

AGet PBZip2
Trans.

M
od

el
 C

ov
er

ag
e

(c) Characterizing of Model Coverage.
Bar height represents model coverage: the
ratio of the total number of constraints gen-
erated to the total number of pairs in the
event pair model that were observed in sam-
pled correct RPBs.

0
200
400
600
800

1000
1200
1400

Apache
Memcached

AGet PBZip2
Trans.

In
te

r-e
ve

nt
 T

im
e

(µ
se

co
nd

s) 136K 40K

Delay Length

Sharing
Sync./Sig.

(d) Characterizing inter-event time.
Bars show rolling average time between
events in µs. The left (red) bar reflects shar-
ing events and the right (green) bar, synchro-
nization and signal events. Longer intervals
mean events are less frequent. The horizontal
line shows Aviso’s delay length.

Figure 7.10: Characterizing Aviso’s behavior.

length of the interval makes sense because PBZip2 spends most of its time in a compression

library call. It is likely that PBZip2’s long time between events contributes to the low

overhead reported in Table 7.1. Each of the other benchmarks has a shorter interval between

events than PBZip2. Correspondingly, the event collection overheads in Table 7.1 for the

166

Sharing Events Sync/Sig Events Constraints
Evts # Discard # Evts # Discard # Chks # Strt # Delays

Apache 44.6M 37.9M 1.5M 34K 27K 65 56
Memcached 200K 13K 1.2M 204K 87K 16 87
AGet 46K 0 92K 2 46K 5 40
PBZip2 227 0 1042 4 81 8 8
Transmission 10.6M 5.0M 2.0M 5 96 1 1

Table 7.2: Aviso’s dynamic behavior. Columns 2 and 3 show the total number of sharing events
and the number of sharing events discarded due to online pruning. Columns 4 and 5 show the
total number and number discarded of synchronization and signaling events. Column 5 shows the
number of times an event in an available constraint executes, requiring a check to see if the event
activates the constraint. Column 6 shows the number of times a check actually leads to a constraint’s
instantiation. Column 7 shows the number of times an event is delayed by a constraint.

other benchmarks are slightly higher than PBZip2’s.

AGet, with the highest performance overhead, has several events in its inner loop. We

expected these events to result in a short interval between events, explaining its overhead.

However, as Figure 7.10(d) shows, AGet’s inter-event interval was moderately longer than

most other cases. Table 7.2 shows data that explain AGet’s performance and further char-

acterizes Aviso.

The data in the table illustrate several di↵erent sources of overhead: excessively frequent

events, leading to many discarded events; constraint activation checks; and delays due to

constraints. AGet’s overhead is likely to come from frequent constraint activation checks.

In AGet, 1 out of every 3 events requires the extra computation of a constraint activation

check. In contrast, 0.4% of Apache’s and 7.25% of Memcached’s events required such checks.

Constraint activation checks require holding a lock and accessing shared state, so they are

more costly than those that do not.

The data in Table 7.2 show that a large fraction of Apache’s events (over 80%) were

discarded due to online pruning. The high rate of discards suggests that events are frequent;

the very short inter-event time shown in Figure 7.10(d) corroborates this fact. Intuitively,

such high-frequency events seem like a performance problem; however, Apache’s event fre-

quency did not impose excessive overhead – around 15%. Most of Apache’s events did not

require activation checks, instantiations, or delays. As a result, its events were inexpensive,

requiring just a few accesses to thread-local memory. The absence of complex computation

167

or serialization on global state is likely the reason for Apache’s low overhead.

Delays were very infrequent across all our benchmarks, occurring mostly in uncommon

case code. In PBZip2, 8 worker threads delayed a cleanup thread. In Transmission, a delay

during startup code prevented a use-before-initialization error. In Apache, a delay during

a request cache flush prevented a crash. In AGet, a delay during signal handling prevented

a crash. In Memcached, a delay during a rare-case update prevented data corruption.

To summarize, delays were not a problem in our tests because they were infrequent and

in rare-path code. Event frequency alone did not dictate performance, although having very

infrequent events seemed to lead to lower overhead (e.g., PBZip2). Constraint activation

checks seemed to be a more costly source of overhead than we expected, especially when

events were frequent (e.g., AGet).

7.8 Conclusions, Insights, and Opportunities

We presented Aviso, a system that automatically avoids concurrency-related program fail-

ures by empirically determining fault-free execution schedules. Aviso leverages a community

of instances of a program and uses statistical techniques to quickly determine which pro-

gram events (and their order) are the culprit of a failure. We built Aviso in software only

(not relying on special hardware) and our evaluation showed that Aviso increases reliabil-

ity significantly (orders of magnitude reduction in failure rate in some cases) and leads to

overheads acceptable in real production runs.

Insights. There are several major insights in this chapter. First, we showed that

schedule perturbation can avoid schedule-dependent failures in a general way. Second, we

showed that careful execution monitoring is essential to e�ciently collecting data required

to identify parts of an execution schedule that lead to failures. Third, we showed that

there is “wisdom” even in crowds of machines: incorporating event histories from various

failing executions yields enough information for Aviso to automatically generate and isolate

e↵ective schedule constraints. Fourth, we showed that in some cases (e.g., Memcached) the

overhead of automatic failure avoidance is similar to the overhead of a manual patch, but

that the time to avoidance is far lower in the automatic case.

168

Opportunities. This chapter also presents several rich veins of future research. Aviso

uses a rudimentary statistical model. A model in future work could incorporate quality of

service criteria, such as throughput. Doing so enables balancing failure avoidance e↵ective-

ness with overall system performance. A model in future work could also rely on static

analysis to better identify parts of code that are more or less likely to be related to a failure.

Machine learning over information extracted by a static analysis of the program could be a

fruitful approach.

Aviso’s schedule constraints are very simple and could be improved in future work. The

key limitation of Aviso’s schedule constraints are that they use a delay to perturb the sched-

ule. A delay-based mechanism eliminates the risk of causing deadlock, but also provides no

guarantee that failures will be avoided. Future work could develop an analysis that finds

not just pairs of events around which the schedule should be delayed, but rather precisely

identifies when a fruitful perturbation has occurred. Determining when perturbations have

occurred requires inter-thread coordination, which could be expensive, and more sophisti-

cated code analysis to identify which events should be involved.

Aviso also presents several limitations in terms of security and privacy. Aviso’s constraint

selection model is subject to potential “poisoning” attacks by adversarial members of a

community of software instances. An attacker may know that some schedule perturbation

exposes a security exploit. That attacker may then send a large set of curated event histories

to Aviso. The set of histories, if cleverly designed, could lead Aviso to generate constraints

that are likely to expose the exploit. Privacy is also a concern that Aviso does not address.

Systems using Aviso are required to send event histories back to the Aviso server. While

event histories do not reveal information about data being processed by a program, code

point histories may be adequate to reveal sensitive information.

Aviso’s performance overheads, while low enough for many production environments,

are high enough to be problematic in some situations where latency is critical. There are

many ways Aviso’s performance overheads can be reduced. One way is to more aggressively

prune instrumentation, focusing on only instrumentation that is determined to be important

for avoiding failures. Sampling instrumentation points may prove beneficial. Another espe-

cially exciting future research direction for reducing the overheads associated with Aviso is

169

to explore the role of hardware support. General hardware support for executing a pair of

events in a particular order would be of use to Aviso for implementing constraints. Such a

mechanism may also be useful for implementing reactive programming models, synchroniza-

tion libraries, or other language-level features. Hardware support may also aid in reducing

the overhead associated with monitoring events in Aviso. By tracking memory operations

at the level of the hardware, the software overheads (e.g., cache e↵ects, additional code) of

tracking are eliminated. In addition, a hardware mechanism for event tracking is also likely

to be useful for a variety of applications, including bug detection techniques (e.g., Recon)

and other failure avoidance mechanisms (e.g., Atom-Aid and ColorSafe).

Finally, as future work, Aviso may also be useful as a component of a synchronization

synthesis engine. Schedule constraints are a simple, partial form of synchronization. By

running a program written without synchronization under Aviso, schedule-dependent fail-

ures exposed during testing could lead to many Aviso-generated schedule constraints. These

constraints, in aggregate, may be enough to make the program run correctly in a concurrent

environment without the need for the programmer to spend time and e↵ort writing synchro-

nization code. Combining information about QoS, like throughput, might provide additional

value, enabling synthesis to choose constraints that minimize performance overhead.

170

Chapter 8

RELATED WORK

Prior work related to this dissertation falls into two main categories: work on debugging

and bug detection and work on failure avoidance. The discussion of work in each category

further breaks work down according to its scope or mechanism. This chapter is not compre-

hensive. Instead, in each category, this chapter aims to include a selection of foundational

papers and some state-of-the-art papers. The goal of including foundational work is to set

the context for current work. The goal of including state-of-the-art work is to draw timely

comparisons to the work in this dissertation.

For each prior e↵ort that is covered, this chapter provides a brief summary to facilitate

reading without needing to refer to prior work. This chapter then compares each prior tech-

nique with the work in this dissertation, highlighting similarities and di↵erences. Table 8.1

illustrates the categorization of related work used in this chapter.

Overview of Related Work by Category

Debugging Avoidance

Data-Race Detection Data-Race Exceptions
Atomicity Violation Debugging Avoiding SC Violations
Communication-Based Debugging Synchronization Synthesis
Event-Sequence-Based Debugging Avoiding Atomicity Violations
Multi-variable Errors Online Patching and Patch Synthesis
Exposing and Reproducing Failures Schedule Memoization
Statistical Debugging Determinism

Table 8.1: Categories of prior work discussed in this chapter.

171

8.1 Debugging Concurrency Errors

The key challenges to debugging concurrency errors lie in understanding variations in inter-

thread interactions and event orderings in a failing execution schedule. Prior work has

looked at these problems in di↵erent ways.

8.1.1 Data-Race Detection

Early work developed fundamental abstractions for understanding ordering in concurrent

computation. Lamport’s Happens-Before relation provides a framework for analyzing the

order of events in a distributed system [70]. Subsequent work by others developed the

notion of vector clocks [43, 91], capturing a better partial order that includes orders implied

by causality. Lamport also developed the definition for SC [71] in early work. Happens-

before and SC are fundamental properties of concurrent software and are relied upon by a

tremendous amount of subsequent work in the field. Lamport’s work is directly relevant to

error detection. The most common formulation of a data-race defines data-races using the

happens-before relation.

Following Lamport’s work, there have been many di↵erent approaches to data-race de-

tection – some software and others hardware; some static and other dynamic; some precise

and some approximate.

Precise Software Data-Race Detectors Early dynamic approaches to data-race de-

tection were focused on restricted classes of programs, such as those written in Fortran

without nested parallelism [58]. These techniques directly computed the happens-before

relation over memory accesses to find races.

FastTrack [45] is the current state of the art precise (no false positives, no false negatives)

happens-before data-race detector. Fast-track uses specialized vector clocks to track the

happens-before relation for memory accesses. FastTrack gets high performance because it

does not track a full vector clock for data that have not been read-shared since their last

write. The authors prove that their technique detects at least the first data-race in an

execution precisely.

172

Adve et al [13] discuss the extension of precise data-race detection techniques to systems

with relaxed memory semantics. Their work formalizes the semantics of a precise, happens-

before data-race detector in an execution with races, showing that it is possible to guarantee

at least the first race will be correctly reported, under certain reasonable assumptions about

the system.

Hardware Data-Race Detectors Min, et al [93] use hardware support to detect data-

races in executions of fork-join parallel programs. The described system adds meta-data to

each cache line that abstractly encodes the time of its last write. The meta-data, coupled

with information gleaned from the exchange of cache coherence messages is su�cient to

identify some racy memory accesses. With bounded size caches and imprecision introduced

by cache line aliasing, the technique approximates happens-before, enabling the detection

of racy accesses.

Around the same time as Min et al, Gharachorloo et al [51] developed a technique

that tracks the completion order of in-flight memory accesses on relaxed memory model

architectures. The goal is to conservatively determine when re-ordered memory accesses

may have caused a violation of sequential consistency.

ReEnact [111] uses hardware support designed to support Thread-Level Speculation

(TLS) to implement a low-overhead data-race detector. ReEnact works by using the order-

ing on TLS epochs induced by synchronization to determine if two memory accesses in the

program are concurrent and constitute a data-race. The mechanism e↵ectively implements

a vector clock using the TLS versioning and conflict detection support.

CORD [110] detects data-races using hardware support that computes an approximation

of the happens-before relation for accesses to shared memory. The mechanism relies on scalar

clocks (as opposed to full vector clocks), a small set of timestamps added to cache lines and

a main memory timestamping mechanism. CORD is similar in spirit to ReEnact, though

it trades o↵ some precision to reduce the complexity of the design.

Lockset Data-Race Detection Eraser [119] is a lockset based race detector. The key

idea behind lockset-based techniques like Eraser is that the set of locks held when a shared

173

memory location is accessed should be consistent from one access to the next. Eraser tracks

the set of locks held by a thread when a memory location is accessed. If there is no lock that

is consistently held across all accesses to the memory location, Eraser reports that there is

not a consistent locking discipline governing accesses to the location. Lockset analysis does

not require a race to occur in order to report it to a programmer – only that the locking

discipline is inadequate to ensure races do not occur. Reporting potential races when locking

discipline violations are detected is a strength of lockset detectors. The downside of lockset

analysis is that it reports some false positives. Lockset analysis has been combined with

happens-before analysis in hybrid software race detection analysis [141, 108]. HARD [145]

is a hardware implementation of lockset race detection analysis.

Comparison with this work Data-races are a source of execution schedule variation

and are often concurrency bugs. Data-races are the first type of concurrency bugs that

were widely studied, serving as a jumping-o↵ point for other research on concurrency bugs,

including the work in this dissertation.

Data-race detectors help programmers understand non-local e↵ects in a program by

revealing pairs of unordered operations. Racing pairs of accesses can interact in unintuitive

ways, subject to the memory model of the system executing the program. As Bugaboo and

Recon makes non-local interactions between communicating accesses explicit, race detection

makes non-local memory ordering interactions between racy accesses explicit.

Several of these mechanisms are similar to the work in this dissertation in their imple-

mentation requirements. As Bugaboo uses per cache line meta-data to track last writers,

Min et al [93] tracks access sets using cache line extensions. Their mechanism is relevant

because Min et al predates our work by twenty years and solves a related problem using a

similar mechanism.

Like Bugaboo’s hardware implementation, Atom-Aid, and ColorSafe, Min et al also used

the coherence protocol to monitor thread interactions. Cache coherence tricks have been

used in many systems, notably those supporting transactional memory, but the use in this

prior work is especially relevant because it is for concurrency bug detection.

ReEnact and CORD are mentioned because they track happens-before memory ordering

in hardware during an execution. ReEnact uses complex multi-versioning TLS support.

174

CORD tracks happens-before without TLS support, but is approximate and limits its race

detection to cached data – precision is lost when data are evicted from the cache. These

systems’ implementations of dynamic concurrency analysis in hardware is like the ones used

in collecting context-aware communication graphs.

Lockset-based techniques are relevant to concurrency bug detection in general. Further-

more, some lockset techniques have the interesting property that using dynamic analysis,

they can detect data-races that could, but did not, occur in a monitored execution. Our

goal in Atom-Aid and ColorSafe is detecting and avoiding potential errors and our pursuit

of that goal was inspired in part by lockset race detectors.

8.1.2 Atomicity Violation Debugging

Artho et al [14] was among the first e↵orts to characterize atomicity violations for shared-

memory programs, calling them high-level data-races. In that work, a high-level data-race is

the result of a programming error that fails to ensure the atomicity of memory accesses that

should have been atomic. The authors introduce criteria for finding such errors by inferring

atomicity constraints intended by the programmer. The analysis identifies views, which are

sets of memory locations accessed in the same locked critical region. A thread’s views are

computed and compared to views collected by other threads. If one thread accesses data

together in the same view and another thread accesses the same data separately in di↵erent

views, a view consistency violation is reported. The presence of a view consistency violation

implies the presence of an atomicity violation.

Researchers have investigated static analysis to detect potential atomicity violations and

prove the absence of atomicity violations [47, 118, 130]. The techniques rely on a type and

e↵ect system for expressing and checking the atomicity of methods in a program. The

authors prove that if a program typechecks under their type and e↵ect system, there can

be no violations of the methods’ specified atomicity properties. The authors use Lipton’s

theory of reduction [76] and static race detection together to check the atomicity properties.

Several dynamic approaches to checking for atomicity violations also exist. Flanagan

et al [44, 48] develop dynamic analyses to check atomicity properties. Atomizer [44] uses

175

modified lockset analysis to detect when the atomicity of atomic blocks is violated during an

execution. Velodrome [48] analyzes execution traces and computes the extended happens-

before relation for operations. Extended happens-before combines conventional happens-

before with the execution order equivalence of operations in the same transaction. Both

dynamic analyses report atomicity violations, Velodrome with higher precision and Atomizer

with higher recall [48].

SVD [136] is another dynamic approach to detecting atomicity violations. Unlike the

dynamic analyses discussed already, SVD does not require an atomicity specification (i.e.,

atomic annotations). Instead, SVD infers Computational Units (CUs) that approximate

atomic regions. CU inference is heuristic, considers control and data-dependences, and does

not rely on specified synchronization. SVD then uses serializability analysis based on two-

phase locking to detect the presence of atomicity violations with respect to the inferred

CUs. These potential violations are then reported to the programmer.

AVIO [80] is a technique that detects pairs of instructions that execute atomically,

without another thread unserializably interleaving an operation between them, during a set

of training runs. The set of pairs of instructions are called access interleaving invariants (AI

Invariants). AVIO builds up a set of AI Invariants from correct program executions and then

monitors during subsequent executions for violations of those AI Invariants. Unserializable

interleavings of AI-Invariant instruction pairs indicate a likely atomicity violation bug, which

is reported to the programmer. The authors show that AVIO can be implemented in

hardware with high performance or in software with lower performance than the hardware

implementation, but higher precision.

AtomTracker [97] is an atomic region inference technique and atomicity violation detec-

tor. Like AVIO, AtomTracker monitors a set of executions and infers atomic regions based

on observations of correct executions. Unlike AVIO, AtomTracker considers atomic units

larger than instruction pairs. It uses a trace-based instruction merging analysis to deter-

mine atomic groups of instructions. AtomTracker then uses the inferred atomic regions in

a dynamic analysis that identifies atomicity violations.

AtomFuzzer [103] uses a very simple heuristic technique for identifying atomicity viola-

tions. AtomFuzzer assumes that if the same lock is acquired, released, and re-acquired in

176

the same function, an atomicity violation is likely to have occurred. The heuristic hinges on

two assumptions: (1) between a release and an acquire in the same function other threads

are likely to interleave accesses; and (2) accesses split across two critical regions in the same

function probably should have been written to execute in the same critical region.

Comparison with this work

Atomicity violations are an important class of errors, singled out by Atom-Aid and

ColorSafe and dealt with by Aviso, Bugaboo, and Recon. Several prior techniques [97, 80,

136, 48] use serializability analysis, which we make heavy use of in this work.

These prior techniques illustrate a wide variety of methods for inferring atomicity of

operations in a program, using program structure, dependences, serializability, and error-

specific heuristics. Many di↵er from our work in the way they infer which code should be

atomic. AVIO finds pairs of accesses to the same memory location that are never inter-

leaved in training runs and assumes they should be atomic. AtomTracker extends AVIO’s

analysis to finds sequences of accesses that were never interleaved during training. SVD and

AtomFuzzer take a code-centric approach, using dependence information and heuristics to

determine atomic blocks.

The inference heuristic we use in Atom-Aid and ColorSafe di↵ers from prior work. Our

technique infers atomicity of fixed-length sequences of instructions beginning with an access

to data previously involved in an unserializable interleaving. Our technique was inspired by

the pair-based approach used in AVIO that was used later adapted by AtomTracker. We

generalize AVIO’s heuristic from pairs to arbitrary, fixed-length sequences and specialize the

heuristic to focus on sequences beginning with an access to certain suspect data. Heuristics

like ours and AVIO’s are simple and program semantics oblivious. The simplicity leads to

some false positives, but a↵ords straightforward implementation in hardware. False positives

are bad because they waste programmer time, but we show that using post-processing, we

can eliminate many false positives. AVIO takes a similar step, relying on invariance over

many executions to deal with false positives. Additionally, our main focus in Atom-Aid

and ColorSafe is avoiding failures, not debugging. False positives may decrease run time

performance by triggering spurious avoidance actions, but will not waste programmer time.

Secondly, our debugging approach in Bugaboo and Recon is more general than these

177

approaches. Our work includes support to detect atomicity violations, but also addresses

other types of errors. The key to our approach is that instead of tracking atomicity directly,

we track communication. Failures due to many types of errors including atomicity bugs

manifest as communication graph anomalies. Our generality is a key advantage over bug-

specific techniques.

Thirdly, AVIO and AtomTracker build a rigid model of program behavior – if an in-

variant pair or atomic unit is observed during training executions, it is inferred to be an

access interleaving invariant. These models do not incorporate behavior from failing runs.

Information from failing runs is potentially valuable in determining which operations should

be atomic. Furthermore, the models do not track the frequency with which each inferred

atomicity constraint is expressed in program execution. A model that tracks frequencies

can associate a confidence measure with each inferred atomic region. In contrast to AVIO,

Bugaboo and Recon build a more flexible model of program behavior. Our model incor-

porates information from both failing and non-failing program executions. Our model uses

continuous-valued features derived from observed executions, rather than binary invariants,

as in AVIO.

Aviso’s model takes an even more general and flexible view of atomicity. Aviso deals

uniformly with atomicity violations and other bugs, using an analysis rooted in the concept

of bug depth [25]. Aviso is more general because it includes atomicity violations, but is

not limited to them. Aviso is more flexible, because it incorporates information from many

executions, failing and non-failing, and its statistical model adaptively determines what

code is likely responsible for a failure.

8.1.3 Communication-Based Debugging

Prior approaches that use information about inter-thread communication to identify bugs

are closely related to Bugaboo and Recon.

DefUse [121] analyzes invariants over the flow of data from definitions in one thread to

uses in another thread to detect bugs. The authors reason from a set of three patterns

of data-flow between threads, each tailored to handle a particular failure mode: the first

178

for some types of atomicity bugs and ordering bugs, the second for the remaining types

of atomicity bugs, and the third primarily for sequential bugs. The authors train a model

of program behavior consisting of these invariants. The technique detects violations of the

invariants and reports them, ranked by an ad hoc ranking function.

DMTracker [50] is a technique for finding inter-thread communication bugs designed for

MPI programs. The main idea of DMTracker is to monitor many program executions and

build up a set of data movement (DM) invariants. DM invariants encode how data flows

from one thread to another, between a pair of instructions. The technique uses a training

phase to identify DM invariants and then flags violations of the invariants as potential

errors.

Comparison with this work

These techniques are included in this chapter because they are related to Bugaboo and

Recon in their goal and their approach. There are several fundamental di↵erences, however.

While DefUse uses communication information, it is essentially pattern-based, relying

on a small set of patterns tailored to only certain kinds of ordering and atomicity errors.

Bugaboo and Recon are not pattern-based, instead relying on the invariance of arbitrary

parts of a communication graph. The lack of reliance on ad hoc patterns permits our

technique to detect a more general class of errors than can be detected using DefUse’s

invariants. One class of errors our work can detect that DefUse cannot detect are errors

involving multiple pairs of communicating accesses to multiple di↵erent memory locations.

A pattern could be added to DefUse to handle such cases, but the approach does not

generalize well.

DMTracker, while not pattern based, is fundamentally limited in the class of errors it

can detect. The main limitation is that DM invariants encode only communication. We

show in Chapter 2 that many errors cannot be detected using communication alone. Our

solution was to add communication context to communication graph nodes, distinguishing

di↵erent dynamic instances of instructions. Our work was inspired by DMTracker, because

our basic approach is similar to the DM invariant concept.

Another contrast between DefUse, DMTracker, and our work is in what is reported to the

developer and why. DefUse and DMTracker report the inferred invariant that was violated to

179

programmers because violated invariants are likely to be related to the failure. In Bugaboo,

our goal was similar – Bugaboo aims to report communication anomalies that are related

to a failure. Recon, however, furnishes the programmer with a reconstruction of a focused

portion of the program’s execution around a communication event inferred to be relevant to

an error. Recon essentially solves a di↵erent problem than DefUse, DMTracker, or Bugaboo:

rather than identifying a pair of communicating code points related to a failure, Recon builds

a model of program behavior and generates a likely execution fragment surrounding pairs

of communicating accesses. Recon then uses the model to infer which reconstructions are

most likely related to the failure.

DefUse and DMTracker are based on software instrumentation and data collection. Due

to its complexity, it is unlikely that DefUse could be made e�cient enough for always-on

deployed use. The authors of DMTracker report that it is e�cient enough for always-on use

with only a small run time overhead on a set of scalable HPC benchmarks. It seems unlikely

that the technique can be made as e�cient on less scalable benchmarks, or programs that

use less structured concurrency constructs (i.e., not MPI). In contrast, our initial work that

developed the context-aware communication graph abstraction proposed both a software

implementation with debugging-time use in mind and a hardware implementation with

always-on use in mind. We show that with hardware support, collecting communication

graphs can be made e�cient enough for use in deployed software.

8.1.4 Event-Sequence-Based Debugging

ConSeq [143] is a concurrency error debugging technique similar to Bugaboo and Recon.

ConSeq works by using static analysis to identify potential failure sites in a program, (e.g.

assertions, etc). ConSeq then statically looks at short backward program slices starting from

each failure site. The goal is to capture critical reads in the slice. Critical reads read data

that propagates to the failure point, leading to the failure. ConSeq collects multi-threaded

traces and tries to perturb the multi-threaded execution schedule to find new, feasible traces

that would change the value obtained by the critical read and potentially cause a failure.

If such a perturbation, critical read, and failure point are located, they are reported to the

180

programmer as a potential error.

ConMem [144] is a concurrency error debugging technique very similar to ConSeq [143].

ConMem focuses on concurrency errors that lead to memory errors (null pointer derefer-

ences, etc). The key idea to ConMem is to examine multi-threaded traces and, using a set

of perturbation patterns, identify perturbations of the trace that could lead to a memory-

bug-related failure. The tool then reports the pattern and the operations involved to help

a programmer understand the error.

Falcon [104] works by examining an execution and isolating interleaving patterns from a

set of patterns corresponding to common concurrency-related failures. The tool records how

frequently instances of a pattern occur in failing and non-failing runs of the program. Using

this frequency information, Falcon isolates interleaving sequences that occur often in failing

runs and not often in non-failing runs. These sequences are reported to the programmer.

Comparison with this work

ConSeq is most related to Recon. There are several key di↵erences. First, our work and

ConSeq solve di↵erent problems. ConSeq develops machinery to perturb an execution trace

to produce a new trace that represents a failure. The potentially failing trace is exercised

to try to produce a failure and information about the failure is reported. In contrast,

Recon focuses on debugging an observed failure. Recon starts from a failed test case or

bug report. Recon composes snippets from failing executions likely to be related to the

failure and reports them to help the programmer see what went wrong. The di↵erence

between ConSeq and Recon is that ConSeq aims to find new failures and Recon focuses

on helping programmers understand reported failures. Recon statistically models a set of

failing executions. ConSeq, instead, works from a single execution and generates feasible

failing executions.

Second, ConSeq must limit its static analysis component, due to the large space of slices

and critical reads. In contrast, when Recon builds reconstructions, it only needs to consider

the space of events observed in failing executions. Recon bounds a reconstruction’s size, but

only to limit the amount of noise in the output reconstruction, not because of the perfor-

mance of our algorithm. Recon can therefore consider including events in a reconstruction

that occurred in a span of instructions that ConSeq cannot capture in a bounded slice.

181

ConSeq and ConMem are related to Aviso because all of these analyses perturb observed

event sequences to assess their impact. Aviso analyzes perturbations to find alternate

sequences that prevent failures. ConSeq and ConMem analyze perturbations to find feasible

execution schedules that can lead to failures.

ConMem and Falcon are related to Bugaboo and Recon as well, but with several es-

sential di↵erences. ConMem and Falcon are both pattern-based, relying on a library of

patterns associated with types of memory-related failures (ConMem) and access interleav-

ings (Falcon). Pattern-based reasoning, while simpler to characterize and implement, is

fundamentally less flexible than communication-based analysis: any failure not represented

by an included pattern will not be detected. Note that while communication-based analysis

will miss any failure that does not manifest in a CACG or reconstructions, we show that

the class of errors we detect subsumes the class dealt with by ConMem and Falcon.

Falcon is also similar to Bugaboo and Recon in its statistical modeling of pattern in-

stances. Falcon’s model includes information collected from both failing and non-failing

executions to quantify the “suspiciousness” of each pattern instance. Bugaboo and Recon

also build a model using information from failing and non-failing executions. Unlike Fal-

con’s single-featured model, our model uses several features of the executions we analyze,

incorporating information about communication context, common instructions sequences,

and the frequency of communication events.

8.1.5 Multi-variable Errors

Prior work has detected programming errors involving accesses to multiple di↵erent memory

locations. These papers are included in this chapter because in ColorSafe, we focus on the

multi-variable atomicity violation problem. Furthermore, in Bugaboo and Recon, we aim

to address single- and multi-variable bugs.

Early work on atomicity violations did not distinguish between single- and multi-variable

concurrency bugs, referring to all of them simply as high-level data-races [14]. This prior

work addresses high-level data-races by computing “views”, which are multi-variable groups

that should be updated atomically. These groups are the same as the ones used in ColorSafe

182

to avoid multi-variable atomicity violations.

Researchers have used atomic-set serializability [55] to identify potential concurrency

errors. Atomic-set serializability is a generalization of serializability from individual memory

locations to sets of locations. In their initial work on the subject [127], the authors identified

11 patterns of accesses to multiple related memory locations that can lead to unserializable

behavior. The set is complete in the sense that all method executions will be serializable

given that none of the 11 patterns appears in the execution. In later work [55], the authors

develop a very similar dynamic analysis that detects and reports atomic-set serializability

violations. The dynamic analysis uses a finite state machine abstraction to represent the

progression of an execution through each of the unserializable memory access sequences. If a

state machine reaches an accept state, there has been an atomic-set serializability violation.

The authors assume that related data are given explicitly by a programmer or expressed in

class definitions. All reported errors are with respect to the data relations provided to the

analysis.

Von Praun and Gross developed a related technique called object race detection [129].

The essential idea is to approximate precise data-race detection by tracking objects, rather

than individual memory words. The authors implement a specialized form of Eraser’s

lockset analysis [119] that manipulates data at the granularity of objects and uses a stricter

definition of the locking discipline, permitting only one lock per object. The authors’ main

focus is, in fact, not the detection of errors involving multiple memory accesses, but rather

to improve the performance of standard race detection using a coarse approximation.

MUVI [78] is a technique for automatically inferring which accesses in a program are

correlated with one another and using inferred access correlations to identify programming

errors. The authors develop a simple definition under which two memory accesses occur

together – they execute in the same function and there are fewer than a specified number of

statements between them (statically). To identify access correlations, the authors analyze

the source code, finding sets of accesses that occur together. Next, they make use of a the

FPClose [53] itemset mining algorithm to determine which sets of accesses occur frequently.

Finally, guided by a set of common programming errors, the authors develop heuristics that

use their inferred access sets to find programming errors involving multiple accesses.

183

Comparison with this work

These techniques are related to ColorSafe, which primarily focuses on multi-variable

errors and to Bugaboo and Recon, which address many multi-variable errors. In ColorSafe,

we were inspired by Hammer et al [55] in our use of serializability analysis modified to

reason over grouped data.

There are several key di↵erences between our work and these techniques. ColorSafe

avoidsmulti-variable atomicity violations in addition to detecting them. Failure avoidance in

ColorSafe is further contrasted with prior work on atomic-set-serializability in Section 8.2.3.

Bugaboo and Recon detect a more general class of errors than these techniques. Bugaboo

and Recon detect single-variable and multi-variable atomicity and ordering violations; these

prior techniques focus on multi-variable atomicity violations. Bugaboo and Recon take an

orthogonal approach to detecting multi-variable errors. Bugaboo and Recon do not rely on

data-grouping or serializability properties. Bugaboo finds multi-variable errors by finding

anomalies in the CACG distinguished by variation in communication context, which ab-

stractly encodes accesses to multiple memory locations. Recon characterizes multi-variable

errors errors by including multiple communicating accesses in each reconstruction. MUVI

is largely orthogonal to all of our work. MUVI’s focus is inferring related data. ColorSafe

relies on trivial data-grouping heuristics, or assumes data are grouped a priori. Bugaboo

and Recon do not need information about grouped data.

8.1.6 Exposing and Reproducing Failures

Much of our debugging work has focused on the problem of starting from a program failure,

inferring the error that caused the failure, and providing information to help fix the error.

Other prior work has focused on the related but orthogonal goal of explorative testing to

expose new program failures. These techniques are included in this chapter because of the

important link between testing (finding errors) and debugging (fixing errors).

CTrigger [105] is a technique for exposing atomicity violations. CTrigger analyzes pro-

gram traces. The analysis finds perturbations of the trace that lead to unserializable inter-

leavings of groups of accesses. After finding such perturbations, CTrigger runs the program

184

repeatedly, inserting delays to try to force the execution to exercise the unserializable inter-

leaving. If the forced interleaving causes a failure, CTrigger reports the likely error and the

conditions to reproduce it. If the interleaving does not lead to a failure, CTrigger reports

nothing.

CHESS [96] is a directed testing technique. CHESS replaces the thread scheduler used by

the program being tested with a special scheduler designed to expose more thread schedules

than the default scheduler. The key idea in CHESS is to use directed, iterative search over

the space of possible thread interactions. CHESS runs a concurrent program one thread

at a time. When a thread reaches a yield point (synchronization, etc) CHESS deschedules

it and schedules another thread. After observing such an execution, CHESS attempts to

insert a small number of preemptions to perturb the schedule, producing a new schedule.

The hope is that perturbing the execution will cause new failures will occur.

Burckhardt et al [25] developed a technique similar to CHESS for exploring the space

of possible thread schedules of a program to surface new concurrency errors. The authors

introduce the notion of bug depth. Bug depth is a property of a concurrency bug and is

the number of pair-wise event orderings required in an execution for that bug to cause a

failure. The authors use an iterative testing strategy based on assigning a priority order to

threads and scheduling them according to that priority. The authors use their priority-based

scheduler and the notion of bug depth to formally state the probability that an error will

be exposed as a failure.

In the same vein, there has been a great deal of work on schemes to record and replay

executions [135, 116, 94]. The goal of these techniques is not exposing new failures, but

rather recording nondeterminism during live executions. Recorded executions allows failing

executions to be precisely reproduced during debugging.

Comparison with this work

These testing techniques are primarily concerned with the first step in dealing with con-

currency errors: finding an execution that leads to a failure. In contrast, our debugging

work is primarily concerned with the next step: given a failure, help a programmer un-

derstand and fix the error that caused it. It is likely that our debugging work would be

complemented well by such explorative testing techniques: they can find the failure, and we

185

can show the programmer how to fix the bug.

Our work on reconstructing program execution fragments bears some similarity to the

proposals that report execution schedules from failing executions. Our work di↵ers in the

amount of information provided. CHESS and Burckhardt et al yield an entire execution

schedule, along with a set of “preemption points” required to trigger the failure. While

extremely valuable for reproducing a failure, this information is not necessarily helpful for

debugging. The reason is that an entire schedule may be billions of operations – clearly too

much information for a programmer to digest. The set of preemption points may be useful in

showing the programmer approximately where to look to in their program to find the error.

However, the preemption points are not guaranteed to occur near the accesses involved in

the error – the preemption points need only permit the sequence of instructions that leads to

the failure. In contrast, Recon provides a focused sub-sequence of the schedule of execution

around a pair of communicating instructions inferred to be related to the failure.

Explorative testing and replay are instrumental in dealing with concurrency errors. They

complement our work nicely by exposing new failures and making failure reproducible. Our

techniques are able to then point to focused parts of a program likely to be involved in

causing those failures.

Another important connection between this area of prior work and the work in this

dissertation is to Aviso. Aviso is based on the Testing-Avoidance Duality, described in

Chapter 7. The testing-avoidance duality is based on the concept of bug depth, proposed

in the Burckhardt et al work. Characterizing what causes bugs to lead to failures was an

instrumental step along the path to developing Aviso, a technique for automatically avoiding

those failures.

8.1.7 Statistical Debugging Techniques

There have been several techniques proposed for both sequential and concurrent programs

that rely on statistically modeling programs and program executions to help find anomalies

and errors.

Daikon [41] is a technique for automatically detecting invariants from program behavior.

186

The technique works by analyzing execution traces and computes properties of program

state (e.g., variables) and of expressions over program state (e.g., x > 5). Properties that

hold consistently over a trace are reported as invariants. Invariants can be used for a

variety of things, such as helping to identify programming errors that lead to invariants

being violated, making the detected implicit invariants explicit in the code, and improving

the quality of program test suites. Daikon is relevant to this work because it is among the

first work combining dynamic analysis and statistical reasoning over program behavior with

correctness in mind.

Engler et al [40] developed a technique for finding programming errors by looking for

deviant behavior. Their static analysis builds a statistical model of typestate changes and

data- and control-flow patterns that they call their set of “beliefs”. Beliefs are based on

a set of “templates” formulated by the authors. The strength of a belief is proportional

to the frequency with which a pattern is observed. The authors’ checker uses the belief

model to find deviant behavior – instances of a template not in accordance with strongly

held beliefs. The authors tool reports deviant behavior as an error. This technique is not

explicitly targeted to concurrency, but is able to cover some concurrency errors (e.g., mutex

typestate errors).

Cooperative Bug Isolation [75, 74] (CBI) is a technique for finding bugs in programs

that relies on collecting execution properties from deployed software. The technique works

by adding lightweight instrumentation to programs that samples state such as variable val-

ues and control-flow properties. The system also monitors for failures. Sampled execution

properties and failure information are analyzed o✏ine using statistical inference and ma-

chine learning to determine which sampled behavior is most likely to be related to a failure.

Cooperative Crug Isolation [61] (CCI) is a follow-on to CBI that focuses on finding concur-

rency errors. CCI uses the CBI approach, but samples events from program executions that

are related to concurrent program behavior. The events that CCI adds to CBI are patterns

of thread interleavings that correspond to particular concurrency error manifestations (un-

serializable interleavings, for example). The main novelty of CCI is developing a method

for e�ciently sampling concurrent behavior.

Comparison with this work

187

While not strictly focused on concurrency issues, these techniques use statistical and

invariant models of software to aid in debugging. Furthermore these techniques are useful

for dealing with a variety of failure modes, including some related to concurrency, warranting

their discussion in this chapter.

In addition to the use of statistical modeling of program behavior like Bugaboo and

Recon, these technique bear additional similarity to our work.

Daikon and the work of Engler et al work from the premise that the common case is

likely to be correct and that deviations from the common case are more likely to be errors.

Bugaboo and Recon rely on the same idea. CBI takes advantage of correlations between the

frequency of certain program behaviors, and the occurrence of failures. Bugaboo, Recon,

and Aviso employ the same idea: if some behavior tends to occur when some failure also

tends to occur, that behavior may be related to that failure.

There are several di↵erences between our work and these techniques.

First, Bugaboo, Recon, and Aviso di↵er from CBI in that CBI relies heavily on sam-

pling to collect data and the collected data comes from many di↵erent program instances.

In contrast, our work focuses on the related but di↵erent problem of e�ciently and contin-

uously collecting information from a single program instance. In Bugaboo, we did so using

hardware, which is a contrast to CBI’s use of sparse sampling. Sampling and hardware

acceleration are likely complementary – our technique could potentially be implemented

using sparse sampling (a possible avenue for future work), and CBI may benefit from some

hardware support to make its per-node analysis costs lower.

Second, our work uses execution properties related to concurrency. Bugaboo and Re-

con focus on communication and Aviso focuses on short multi-threaded event traces. By

contrast, these prior techniques (except CCI) are not specifically concerned with concur-

rency. Using such features allows these techniques to cover a wide range of programming

errors, including many types of sequential errors. However, the lack of explicit considera-

tion of concurrency errors means that some purely schedule-dependent failures may not be

well-handled by these techniques.

CCI focuses on concurrency issues, but, being pattern-based, is limited in generality

compared to Bugaboo and Recon. Note, however, that the authors of the CCI work are pri-

188

marily concerned with the issue of e�ciently sampling events in concurrent execution, not on

developing new detection criteria for classes of errors. As such, CCI is likely complementary

to our work in the same way as CBI.

Aviso is connected to prior techniques on statistical debugging and bug detection be-

cause Aviso’s mechanism for avoiding failures relies on a statistical model. Aviso’s model

represents schedule constraints, di↵ering considerably from those used in prior work that

represent bug-specific properties or semantic program properties.

8.2 Avoiding Schedule-Dependent Failures

The field of automatically avoiding software failures is somewhat less mature than the field

of detecting and debugging errors. This section discusses several important categories of

automatic failure avoidance, including foundational work in the area.

8.2.1 Avoiding SC Violations

Ceze’s BulkSC [27], Vallejo et al’s Kilo-Instruction Processor [32], and Wenisch et al’s Store-

Wait-Free Processor [132] detect SC violations in order to enforce SC. The goal of these

techniques is to make use of continuous speculation to reap the performance benefits a↵orded

by relaxed memory semantics, but ensure executions are SC.

To expose performance, these techniques execute programs as coarse-grained speculative

blocks. Instruction reorderings are permitted inside blocks, exposing the performance ben-

efits a↵orded by relaxed memory models. Using scalable store-bu↵ers and disciplined block

ordering [132], a modified re-order bu↵er and load-queue design [32], and Bulk disambigua-

tion of coarse grained speculative regions [28], all three designs prevent SC violations, while

at the same time permitting aggressive optimizations allowed by weaker memory models.

Comparison to this work

We showed in Atom-Aid and ColorSafe that systems like these that provide implicit

atomicity avoid not just SC violations, but also some atomicity violations. Atom-Aid and

ColorSafe dovetail with these prior e↵orts because they develop a policy for dividing atomic

blocks that avoids atomicity violations more e↵ectively than implicit atomicity alone.

189

8.2.2 Data-Race Exceptions

Goldilocks [39] is a precise race detector that is not based on vector clocks. Instead,

Goldilocks maintains a record of the locks held when each memory location was accessed,

as well as which threads may access the location at each point during the execution. As the

program executes, threads update the contents of these sets based on their synchronization

operations. When a memory location is accessed by a thread not in its thread set, or that

doesn’t hold the proper locks, a race is reported. The Goldilocks algorithm is a modified

version of the lockset algorithm [119]. A distinguishing feature of Goldilocks is that it pro-

vides fail-stop semantics when data-races occur – the proposed implementation causes the

Java Virtual Machine to throw a DataRaceException when Goldilocks detects a race.

DRFx [90] is a memory model designed to provide reasonable semantics for programs

containing data-races in the presence of compiler and hardware optimizations. The key idea

to DRFx is to use a special compiler to add fences to a program that split it into regions.

The program is compiled and optimized like normal, except that compiler optimizations

introducing speculative memory operations are prohibited. When the program executes, the

DRFx hardware monitors region execution and traps whenever two regions are executing

concurrently, both access the same memory location and at least one access is a write.

DRFx provides a guarantee that if no trap occurs, no violation of SC has occurred and if

a trap occurs, then a data-race has occurred (but not necessarily an SC violation). The

authors describe hardware and compiler support for implementing DRFx that inserts fences

strategically to avoid unbounded bu↵ering requirements during execution and to e�ciently

monitor for data-races.

The author’s own related work on Conflict Exceptions [84] is an execution model that

prevents data-races from causing SC violations. Conflict Exceptions works by dividing

the execution into spans of code containing no synchronization, called synchronization-free

regions (SFRs). Conflict Exceptions shows that if two SFRs overlap and contain memory

operations that conflict (i.e., constitute a data-race) then the program may experience

an SC violation. In that situation Conflict Exceptions throws an exception, halting the

execution. In contrast, if SFRs do not overlap or do not conflict, then no SC violation is

190

possible, so Conflict Exceptions lets the execution continue. The guarantee provided by

Conflict Exceptions is that all exception-free executions are SC and if an exception occurs,

then there was a data-race in the execution. Conflict Exceptions uses hardware support to

implement its execution model.

Comparison with this work

Goldilocks, DRFx, and Conflict Exceptions are most similar to Atom-Aid, ColorSafe,

and Aviso. They key similarity to these prior techniques is that all of these techniques aim

to limit the potential harm that can result from data-races. These prior techniques do so by

stopping the execution once it is possible that an SC violation has occurred. The work in

this dissertation also aims to limit the harm that concurrency bugs can cause. Rather than

simply stopping an execution when a failure may have occurred, the work in this dissertation

tries to avoid potential failures. Atom-Aid and ColorSafe perturb the execution schedule

using transactional memory; Aviso perturbs the schedule using delays.

A major di↵erence between the work in this dissertation and these prior e↵orts is that

these prior e↵orts aim to provide support for language-level memory models. In contrast,

the work in this dissertation aims only to avoid failures, not to furnish guarantees to a

language implementation.

8.2.3 Synchronization Synthesis

Prior work on synchronization synthesis is related to Atom-Aid, ColorSafe, and Aviso.

Autolocker [92] is a static approach to avoiding concurrency errors by automatically

synthesizing synchronization constraints for atomic regions. AutoLocker assumes a pro-

gramming model that uses explicit atomic regions for synchronization. The synchronization

constraints are implemented by the AutoLocker compiler using locks. The locks that need

to be held at each program point are computed using annotations provided by the pro-

grammer explaining which lock protects which data. The result of the AutoLocker analysis

is a program that is correctly synchronized with respect to the atomicity constraints and

mapping from data to locks specified by the programmer.

In the same vein as AutoLocker, Hammeret al [55] develop a technique for automatically

191

synthesizing synchronization constraints based on atomic-set serializability. The authors

then show that static analysis can add synchronization to prevent atomic-set serializability

violations. The system adds lock-based synchronization to the program. A lock is associated

with each atomic set. Before the first access to any variable in the set, the set’s lock is

acquired. Before returning from a function manipulating a set of variables, the lock is

released. The analysis ensures that locks are correctly held to prevent any data-races or

atomic-set serializability violations.

Ceze et al [26] develop system support for data-centric synchronization (DCS). DCS

is a method for associating related data with one another by assigning them the same

color. There is a “critical section” associated with each color. The authors describe a

programming model for assigning colors to data and system and architectural support for

entering and exiting critical regions and tracking the map from data to their color. A

thread enters a color’s critical region on its first access to data of that color. The thread in

the critical region leaves the critical region when some later “exit” condition is met – e.g.,

a function return. DCS is closely related to atomic-set serializability, as DCS essentially

provides synchronization that ensures atomic-set serializability1 with respect to an explicitly

provided “color scheme” and does so with hardware support. The mapping from data to

colors is maintained by the proposed system using a specialized version of the Mondriaan

Memory Protection system [133].

Another interesting data-point in this area is ReEnact [111], already discussed in Sec-

tion 8.1.1. The relevance to our failure avoidance work is that ReEnact has a limited facility

to “repair” data-races by matching them against a database of race patterns. ReEnact then

uses TLS support to prevent the data-race in the future.

Comparison with this work

There are several key similarities between this work and our work. These techniques and

our work both aim to ensure the atomicity and correct ordering of groups of accesses intended

by the programmer to be synchronized. Furthermore, like Atom-Aid and ColorSafe, DCS

1This is true only if DCS uses transactions. Using a one-lock-per-color scheme enforces a coarser seri-
alization than is required for atomic-set serializability. For example, two threads performing concurrent
sequences of read-only accesses to a color would be serialized unnecessarily under the lock-based scheme

192

uses hardware support to change the execution schedule and prevent failures. ReEnact is

similar to Aviso in that it starts from a failure and generates schedule constraints for future

executions to prevent failures. The mechanism in ReEnact di↵ers (requiring TLS hardware),

but ReEnact and Aviso both aim to enforce learned schedule constraints at run time.

There are also several key di↵erences between our work and these techniques. First,

in contrast to these approaches, our technique is not itself a synchronization mechanism,

like DCS and the Hammer et al work. Instead, Atom-Aid, ColorSafe, and Aviso operate

independently of programmer specified synchronization. Our technique is composable with

synchronization synthesized by AutoLocker, DCS or Hammer et al and can provide benefit,

even in cases where the programmer has incorrectly specified synchronization constraints.

Second, because Atom-Aid and ColorSafe are not a synchronization model and so do not

need to provide strong correctness properties, they can be less conservative than these prior

techniques. DCS serializes conflicting groups of accesses to a color by di↵erent threads.

DCS conservatively starts transactions on any access to colored data for which a transac-

tion is not already in progress, to keep the colored data consistent. Hammer et al inserts

synchronization to prevent all possible atomic-set serializability violations – many never ac-

tually occur in practice, but are synchronized away nonetheless. Our technique only starts

a transaction on an access to data previously involved in an unserializable interleaving and

for which there is not already a transaction in progress.

These techniques are related to Aviso in that it empirically derives synchronization con-

straints. However, Aviso solves a fundamentally di↵erent problem than these techniques.

These techniques focus on generating synchronization constraints for the entire program,

starting from a program and a correctness specification. Aviso synthesizes schedule con-

straints involving specific parts of a program, after observing a failure. Furthermore, the

constraints generated by these prior techniques are intended to be used for the lifetime of

software. Aviso is intended to be triage, preventing failures until a patch can be released.

8.2.4 Avoiding Atomicity Violations

Techniques for avoiding atomicity violations are related to Atom-Aid, ColorSafe, and Aviso.

193

Isolator [113] is a technique for ensuring the atomicity and isolation of accesses by one

thread in a lock-based critical region, even in the presence of accesses to the same variables

in another thread outside a critical region. When a thread enters a critical region, it copies

the pages containing the data to be accessed and sets the page protections on the original

pages to trigger a fault if another thread accesses them. The thread in the critical region

manipulates the copied pages during the critical region. If another thread accesses the

original pages, a protection fault occurs and the thread is made to wait by the system

for a fixed period of time. During that time, the thread in the critical region can finish

its accesses. After finishing its critical region, the thread copies the modified pages back

to the original pages and removes the page protections to prevent subsequent faults. The

technique forces racy accesses that race with accesses in a critical region in another thread

to occur after the critical region rather than during the critical region.

ToleRace [114] is another technique for ensuring that accesses made in a critical region

are atomic and isolated, in spite of racy accesses made concurrently with the critical region.

The authors first provide a characterization of the races they detect and tolerate, which

they call asymmetric races. Using their characterization, they describe their technique,

which, like Isolator, changes program behavior in critical regions. They key idea is to make

local copies of data upon entering a critical region (i.e., acquiring a lock). All accesses

to data made during a critical region are made to the local copies and upon leaving the

critical region, modified local copies of the data are copied back to their original locations.

The authors describe an implementation based on binary instrumentation that implements

copying and deals with a variety of synchronization types.

Kivati [30] is a static analysis and dynamic run time monitor for avoiding atomicity

violations. Kivati works by first using static analysis to infer which pairs of accesses may

need to be atomic. Kivati’s analysis looks at each function and conservatively approximates

which data might be shared. The analysis then looks at the control-flow graph for the

function and finds pairs of accesses to the same shared variable that may be consecutive.

The analysis marks such pairs with inferred atomicity constraints. At runtime, before

the first of a pair of accesses executes, Kivati sets a hardware watchpoint on the data

being accessed. If any thread except the thread executing the pair accesses the data, the

194

watchpoint is tripped indicating an atomicity violation would have occurred, were it not for

the watchpoint trap. The access that caused the trap is delayed and replayed later when

it does not cause an atomicity violation. To minimize the frequency of watchpoint traps,

Kivati uses specialized serializability analysis to strategically use watchpoints only where

unserializable interleavings may occur.

Comparison with this work

These techniques are closely related to Atom-Aid, ColorSafe, and Aviso. At a high level,

these techniques and our work are related in that all aim to prevent atomicity violations.

These techniques focus on a particular class of atomicity violation errors, included in the

class of atomicity violations dealt with by our techniques.

Despite these similarities, our techniques di↵er in several ways from Isolator, ToleRace,

and Kivati.

First, Atom-Aid and ColorSafe target a broader class of atomicity violations than Isolator

and ToleRace. Aviso targets a broad class of concurrency failures that includes atomicity

violations. In order for Isolator and ToleRace to prevent failures, at least some of the code

involved in a failure must be correctly synchronized (i.e., in a critical region). Relying on

existing synchronization facilitates the Isolator and ToleRace analysis and reduces the set

of program points that must be analyzed (and potentially transformed). The simplicity

leads to good performance, but makes the techniques useful in fewer situations than our

techniques.

Second, the mechanisms underlying our techniques operate completely orthogonally to

these techniques. Our techniques apply to programs after they have been compiled, manip-

ulating memory accesses at the level of hardware in the case of Atom-Aid and ColorSafe.

With such a low level of abstraction from the execution, our techniques are likely to compose

well with higher level techniques like Isolator and ToleRace.

Third, these techniques di↵er from our work in their approach to inferring which accesses

should be atomic. As with our work, these techniques use heuristics for determining which

sequences of accesses should be made atomic. Isolator and ToleRace assume accesses in

lock-based critical regions should be atomic with respect to all other accesses, not just

those protected by the same lock. Kivati assumes consecutive accesses in the same function

195

to the same program-level variable should be atomic. Atom-Aid and ColorSafe assume

dynamic sequences of accesses beginning with an access to suspect data should be atomic.

Aviso is more focused, empirically determining which access sequences should be atomic.

8.2.5 Online Patching and Patch Synthesis

Wu et al develop Loom [134], a technique that allows programmers to write restricted

patches that prohibit certain thread schedules. The system interprets the patches and en-

forces multi-threaded schedule constraints. The system is implemented with a focus on

availability and as such, patches can be applied without stopping the program being exe-

cuted. The key to the system’s availability guarantees lies in a safety analysis that deter-

mines when new synchronization instrumentation code can be added without introducing

an error.

Jin et al [59] develop AFix, a technique that automatically patches programming errors

to eliminate concurrency bugs detected using prior automatic error detection techniques.

The key idea is to use error reports for single-variable atomicity violation bugs with a

static analysis that generates synchronization constraints. The generated synchronization

constraints prevent the atomicity-violating interleaving reported by the bug detection tool.

The system’s analysis makes special considerations to ensure that added synchronization

operations do not cause deadlocks and tries to find e�cient patches.

CFix [62], Jin et al’s follow-on work to AFix, takes a more general approach to the

problem of automatically patching concurrency bugs. CFix uses bug detection tools as a

“subroutine”. Using those tools, CFix finds bugs and tries to generate synchronization

code to enforce mutual exclusion and ordering constraints that prevent those bugs from

manifesting as failures. The key di�culties that CFix overcomes are the potential for low

performance introduced by the automated patches and the potential for deadlock introduced

by inserted synchronization code.

Perkins et al develop ClearView [107], a system for general automatic patch generation.

The technique works by building a model of observed invariant behavior over a period of

non-failing execution. When a failure is detected, the system finds a set of invariants that

196

were violated. Based on these invariants, the system generates a set of candidate patches.

Candidate patches are empirically evaluated. Those that do nothing or negatively a↵ect

future executions (i.e., cause crashes) are discarded. Those that are e↵ective are left applied

to the application, preventing future failures.

Comparison with this work

Loom, AFix, and ClearView are related to Aviso. The main similarities are that like

these systems, Aviso patches software automatically and without requiring programmers to

go through the trouble of rewriting programs.

There are several distinctions between these techniques and Aviso, however.

Loom is outpaced by AFix, ClearView, and Aviso in its degree of automation. Loom

requires programmers to provide patches that fix bugs to the system. In order to provide

a patch, a programmer must understand the error behavior adequately to describe how to

prevent it. Often the most di�cult part of dealing with a concurrency error is developing

such an understanding. As a result, Loom is mainly e↵ective only for errors that are

already well-understood. In contrast, AFix, ClearView, and Aviso all focus on deriving the

“understanding” of the bugs automatically, without the participation of the programmer.

AFix focuses on a narrow stripe of concurrency defects – single-variable atomicity viola-

tions. These are an important category of errors, but restricting focus to only this category

of errors limits the applicability of AFix. Furthermore, AFix is also limited to the class of

atomicity violations that can be detected by the detection technique that underlies AFix

(in the reference implementation, CTrigger [105]). CFix is more general than AFix. While

AFix relies on CTrigger to identify atomicity violation root causes, CFix abstracts the bug

detection tool, allowing any to be used. CFix’s generality is dictated only by the generality

of the underlying detection tool.

In contrast to AFix, Aviso is more general. Aviso can generate schedule constraints that

prevent atomicity violations and ordering violations involving one or many variables. The

generality of CFix and Aviso are hard to compare because Aviso relies on observing deployed

execution and CFix relies on good bug detection tools. On the one hand, detection tools

are sometimes limited in the bugs they can find, which could make CFix less capable than

Aviso, which can deal with any schedule-dependent failure that shows up in production.

197

On the other hand, CFix’s use of detection tools may help expose unlikely failures earlier

than they might show up in production, allowing it to attack more bugs more quickly than

Aviso.

There are many mechanical di↵erences in the way Aviso, CFix, and AFix operate. AFix

and CFix are more labor-intensive than Aviso. AFix and CFix require a programmer to

use the underlying bug detection tools, providing appropriate test inputs and monitoring

test executions. In contrast, Aviso only requires a system to run in production and is fully

automated from end to end, after software is deployed. Aviso is a dynamic mechanism,

avoiding failures by applying schedule constraint in its runtime, during the execution. CFix

and AFix are static techniques that use their analysis results to modify the program’s code.

ClearView is invariant-guided, making use of Daikon [41] to provide invariants. Daikon is

not explicitly tuned to focus on concurrency errors, so there are likely important concurrency-

related failures that ClearView would not be able to handle. In contrast, Aviso is explicitly

focused on concurrency-related failures. While di↵erent in their focus, ideas in ClearView

and ideas in Aviso may be complementary to one another.

8.2.6 Cooperative Failure Avoidance

There are some important instances of cooperative failure avoidance, related to Aviso, that

show up in prior work.

Exterminator [100] is a technique for automatically avoiding failures due to heap memory

errors. The key idea is to exploit memory space randomization to find where errors may

occur. Exterminator creates “online patches” to avoid those errors in future executions.

Di↵erent program instances can also cooperatively share and combine patches.

Communix [64] is a technique that automatically avoids deadlock failures. The key

idea in Communix is that many program instances use the Dimmunix [65] algorithm to

find patterns of lock acquires that lead to deadlock. Dimmunix can then prescribe, for

each of these, how to avoid that deadlock. Then Communix provides a mechanism that

di↵erent software instances can use to share and compare deadlock avoidance strategies.

Communix is, therefore, a collaborative mechanism for improving the precision and coverage

198

of Dimmunix.

Comparison with this work

Exterminator and Communix are most similar to Aviso. Like Aviso, Exterminator and

Communix leverage large communities of software instances. A key di↵erence is that Aviso

generates a large set of hypothetical schedule perturbations, each of which might avoid

a failure, and distributes them to participating instances. Exterminator largely relies on

randomization and variation within instances to find e↵ective fixes. Then, Exterminator uses

instance collaboration to combine patches. Communix is like Exterminator in that patches

are determined by single instances, using the Dimmunix algorithm. Similarly to Aviso,

patches can be shared between instances in Communix, like Aviso’s schedule constraints.

A major di↵erence between these systems and Aviso is their applicability. Extermina-

tor focuses on a subset of memory errors. Communix targets bugs that can be detected

by Dimmunix. In contrast, Aviso targets general schedule-dependent failures. Deadlocks

that Dimmunix can detect are schedule-dependent, so they are handled by Aviso. Aviso

does not explicitly deal with memory errors and Exterminator does not explicitly address

concurrency, making it di�cult to assess the overlap in their applicability.

8.2.7 Schedule-Memoization-Based Failure Avoidance

PSets [139] is a multiprocessor design that avoids failures by using special system support

for schedule memoization. PSets works by starting with a training phase. During the

training phase the system observes many non-failing execution schedules. In each non-

failing execution, the system tracks the predecessor of each memory access. The predecessor

of an access is an access that preceded that accesses, accessed the same memory location,

and executed in a di↵erent thread. After training, PSets uses the set of predecessors for each

access to constrain the execution schedule. If an access is about to occur and its predecessor

is an access that was never its predecessor during training, the access is delayed and in some

cases the predecessor is rolled back. The goal in doing so is to force the schedule back to an

observed schedule that was seen during training and so is more likely to have been tested.

Tern [33], like PSets, works by memoizing correct executions. However, unlike PSets,

199

Tern’s goal is slightly di↵erent. Tern aims to provide stable deterministic execution. While

Tern does not provide determinism in the sense of other approaches to deterministic execu-

tion [37, 15, 101], it ensures that similar inputs execute under the same concurrent schedule.

The way that Tern achieves this goal is by memoizing schedules. Before each scheduling

decision is made, a data-structure containing previously memoized schedules is queried. If

at that point in some prior execution a scheduling decision was made and memoized, the

same decision can be made again, without risk of a concurrency failure.

Dimmunix [65] is a system that can avoid some deadlock bugs. Dimmunix works by

monitoring the order of lock acquires during program executions. When a system reaches

a likely deadlock state, Dimmunix analyzes the order of lock acquires from that execution.

The analysis reports sequences of lock acquires that are likely to have been responsible for

causing that deadlock. Dimmunix can use those sequences in future executions to avoid

experiencing those same deadlocks again.

Comparison with this work

Schedule memoization techniques are, in a sense, dual to the technique we use to avoid

failures in Aviso. Schedule memoization works by observing execution schedules that do

not lead to failures and adhering to those schedules in future executions using explicit

scheduling constraints. In contrast, Aviso works by observing execution schedules that do

lead to failures and avoiding those schedules in future executions using explicit scheduling

constraints.

We have not evaluated this, but Aviso is likely to be more flexible and adaptive to

new situations than PSets, because Aviso does not use a fixed set of memoized schedules.

Instead, when a failure occurs, Aviso can learn new failure-avoiding constraints on the fly

and add them to the set of constraints avoiding failures in the application.

Aviso is related to Dimmunix. Both reason about event sequences that are likely to have

led to a failure. Both systems also use those event sequences to prevent failures in future

executions. Aviso di↵ers from Dimmunix in that it targets a more general class of bugs than

just deadlocks, like Dimmunix. Unlike Aviso, Dimmunix limits its search for constraints

on future execution schedules to information from a single execution. In contrast, Aviso

incorporates information from many failing and non-failing execution schedules into its

200

schedule constraint selection model.

8.2.8 Determinism

Deterministic execution is a technique for executing concurrent programs and adhering

to a single thread schedule for each execution on the same input. The key idea is to

eliminate scheduling decisions that occur during an execution and have an impact on the

order in which events execute. There have been a large number of recent e↵orts in the area

of deterministic multi-threaded execution. Some techniques rely on hardware [37], some

on compiler and runtime support [101, 15], some on system support [16, 77], and some

on determinism guarantees provided by the programming language [22]. Providing a full

survey of these techniques is outside the scope of this dissertation, but there are several

things worth mentioning about deterministic execution to relate it to this work.

Comparison with this work

Deterministic multi-threaded execution is most related Aviso because deterministic sys-

tems and Aviso both restrict the space of possible thread schedules. Determinism is more

generally related to our work because it was developed to improve the state of concurrent

programming, debugging, and reliability.

There are several main di↵erences between deterministic multithreading work and the

work in this dissertation. First, determinism does not necessarily avoid failures. It may, if a

non-failing schedule is executed. However, failing schedules may be executed by determin-

istic systems as well. Deterministic schedule constraints aim to reduce the space of possible

schedules, not to avoid schedules that lead to failures. Aviso focuses on avoiding failures,

without the broader aim to reduce the space of execution schedules in general.

Second, our work and determinism both improve the state of concurrent program debug-

ging. However, our approach di↵ers from the deterministic approach in a fundamental way:

the debugging benefit of determinism is mainly that failures are reproducible. Bugaboo and

Recon do not address reproducibility. They focus on rooting out focused portions of an

execution related to a failure.

Third, it is possible that determinism simplifies testing concurrent software [37, 15, 101].

201

Testing is not addressed by our work.

202

Chapter 9

CONCLUSIONS

The pervasion of parallel computer architectures and inherently concurrent applications

necessitates concurrent and parallel software. Ensuring the correctness and reliability of

concurrent and parallel software is a more complex task than doing so for sequential pro-

grams. This complexity opens the door for many types of concurrency bugs. Concurrency

bugs are very di�cult to find, diagnose, and fix. Concurrency bugs that go unnoticed

can cause schedule-dependent failures in production systems, degrading the reliability of

those systems. Eliminating the barriers to creating correct, reliable concurrent programs

is a challenge of critical importance to computer science and the world. The work in this

dissertation aims to reduce those barriers.

The thesis of this dissertation is that system and architecture support can simplify con-

currency bug debugging and can enable systems to automatically avoid schedule-dependent

failures despite latent concurrency bugs. Chapters 2–7 described several designs that demon-

strate this thesis. Each chapter’s “Conclusions, Insights, and Opportunities” discusses the

specific conclusions, limitations, and future directions of the work in that chapter. In addi-

tion to those, there are some cross-cutting themes worth mentioning here.

9.1 Cross-cutting Themes

There are several important cross-cutting themes in this work.

9.1.1 Architecture and System Support Across the System Stack

One major theme throughout the work in this dissertation is the application of system and

architecture support through the layers of the system stack – from hardware, to low-level

software, to the distributed system level, and to the application level. Developing support

203

across the stack facilitates looking at a problem through the right “lens of abstraction” and

balancing important trade-o↵s like performance and precision.

Examples of this theme abound: Bugaboo uses hardware support to collect information

for a dynamic analysis that is exposed to a programmer through a software engineering

tool. Atom-Aid and ColorSafe encode a dynamic analysis in hardware that shares an inter-

face with the synchronization mechanism in low-level software. Atom-Aid and ColorSafe’s

debugging facilities further exposes information up the stack to facilitate debugging. Aviso

applies compiler, runtime library, and distributed system support to avoid failures.

9.1.2 Exploiting Execution Schedule Variation

The amount of variation in the multi-threaded execution schedule is one of the key challenges

to correctly writing shared-memory multi-threaded programs. The work in this dissertation

overcomes the challenge posed by schedule variability by directly taking advantage of it.

Atom-Aid, ColorSafe, and Aviso capitalize on schedule variation by perturbing schedules

that would lead to failures so that di↵erent, non-failing schedules execute instead. Atom-Aid

and ColorSafe vary the execution schedule by selectively applying atomicity. Aviso varies

the execution schedule by directly manipulating the order of select pairs of operations.

Bugaboo and Recon also take advantage of execution schedule variation. The property

these techniques exploit is that some parts of the execution schedule vary more than others.

By observing a diversity of varied execution schedules, Bugaboo and Recon establish what

does and does not vary. Contrasting invariant parts of an execution schedule with variant

parts helps Bugaboo and Recon reveal parts of a program related to failures being debugged.

9.1.3 Leveraging Collective Behavior and Statistical Modeling

Several techniques in this dissertation use information about the collective behavior of sys-

tems to build useful models of those systems’ behavior. Bugaboo and Recon aggregate

information from many program executions to find behavior invariant in failing and non-

failing executions. Aviso relies on the cooperation of a population of program instances to

find e↵ective schedule constraints. Incorporating information from many program execu-

204

tions facilitates building statistical models of system behavior. The work in this dissertation

uses such statistical models, which improve as the amount of data collected increases.

9.1.4 Utility for System Lifetime

The mechanisms described in this dissertation are useful for a system’s lifetime: during

development and in production. Atom-Aid, ColorSafe, and Aviso avoid schedule-dependent

failures, which provides benefit to production systems, and also produce reports of likely

bugs to programmers, which are useful for development. Bugaboo and Recon are useful

for development-time debugging. When combined with hardware support for collecting

context-aware communication graphs, these techniques become useful after deployment by

furnishing developers with graphs from failing production runs.

9.2 Final Thoughts

This dissertation showed that with system and architecture support the challenges associ-

ated with complex concurrent and parallel software can be made manageable. Support for

debugging and failure avoidance improves the quality of software and its eventual reliability

in production. The work in this dissertation illustrates several concrete instances of system

and architecture support that accomplish this goal. This work, combined with related and

future work on testing, bug detection, and new programming models, moves the software

world toward correct, reliable concurrency and parallelism, overcoming its fundamental

complexities.

205

BIBLIOGRAPHY

[1] Advanced synchronization facility proposed architectural specification. http://

developer.amd.com/wordpress/media/2013/02/45432-ASF_Spec_2.1.pdf.

[2] The go programming language specification. http://golang.org/ref/spec.

[3] Intel architecture instruction set extensions programming reference. http://

software.intel.com/sites/default/files/m/9/2/3/41604.

[4] International standard - programming languages - c. http://www.open-std.org/

jtc1/sc22/wg14/www/docs/n1570.pdf.

[5] The open group base specifications issue 6 ieee std 1003.1, 2004 edition. http://

pubs.opengroup.org/onlinepubs/007904975/basedefs/pthread.h.html.

[6] The opencl specification document revision 19. http://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf.

[7] Openmp application program interface. http://www.openmp.org/mp-documents/

spec25.pdf.

[8] Parallel programming and computing platform cuda nvidia. http://www.nvidia.

com/object/cudahomenew.html.

[9] The sparc architecture manual. http://www.sparc.com/standards/SPARCV9.pdf.

[10] U.s.-canada power system outage task force final report on the august 14, 2003
blackout in the united stats and canada: Causes and recommendations. https:

//reports.energy.gov/BlackoutFinal-Web.pdf.

[11] Summary of the amazon ec2 and amazon rds service disruption in the us east region.
http://aws.amazon.com/message/65648/, April 2011.

[12] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. Computer, 29(12):66–76, December 1996.

[13] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer. Detecting
data races on weak memory systems. In Proceedings of the 18th annual international
symposium on Computer architecture, ISCA ’91, pages 234–243, New York, NY, USA,
1991. ACM.

206

[14] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. In
NDDL/VVEIS, pages 82–93, 2003.

[15] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Core-
det: a compiler and runtime system for deterministic multithreaded execution. In
ASPLOS, 2010.

[16] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: safe multi-
threaded programming for c/c++. In Proceedings of the 24th ACM SIGPLAN confer-
ence on Object oriented programming systems languages and applications, OOPSLA
’09, pages 81–96, New York, NY, USA, 2009. ACM.

[17] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: characterization and architectural implications. In Proceedings of
the 17th international conference on Parallel architectures and compilation techniques,
PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[18] Stephen M. Blackburn, Robin Garner, Chris Ho↵mann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dinck-
lage, and Ben Wiedermann. The dacapo benchmarks: java benchmarking develop-
ment and analysis. In Proceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, OOPSLA ’06,
pages 169–190, New York, NY, USA, 2006. ACM.

[19] Burton H. Bloom. Space/time trade-o↵s in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, July 1970.

[20] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55–69, August 25 1996. (An
early version appeared in the Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’95), pages 207–216, Santa
Barbara, California, July 1995.).

[21] Colin Blundell, E. Lewis, and Milo Martin. Deconstructing Transactional Seman-
tics: The Subtleties of Atomicity. In Workshop on Duplicating, Deconstructing, and
Debunking, 2005.

[22] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Je↵rey Overbey, Patrick Simmons, Hyojin Sung, and
Mohsen Vakilian. A type and e↵ect system for deterministic parallel java. In Proceed-
ings of the 24th ACM SIGPLAN conference on Object oriented programming systems

207

languages and applications, OOPSLA ’09, pages 97–116, New York, NY, USA, 2009.
ACM.

[23] Hans-J. Boehm. How to miscompile programs with ”benign” data races. In Proceedings
of the 3rd USENIX conference on Hot topic in parallelism, HotPar’11, pages 3–3,
Berkeley, CA, USA, 2011. USENIX Association.

[24] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory
model. In Proceedings of the 2008 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’08, pages 68–78, New York, NY, USA, 2008.
ACM.

[25] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. A randomized scheduler with probabilistic guarantees of finding bugs.
In Proceedings of the fifteenth edition of ASPLOS on Architectural support for pro-
gramming languages and operating systems, ASPLOS ’10, pages 167–178, New York,
NY, USA, 2010. ACM.

[26] Luis Ceze, Pablo Montesinos, Christoph von Praun, and Josep Torrellas. Colorama:
Architectural support for data-centric synchronization. In Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer Architecture,
HPCA ’07, pages 133–144, Washington, DC, USA, 2007. IEEE Computer Society.

[27] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: bulk en-
forcement of sequential consistency. In Proceedings of the 34th annual international
symposium on Computer architecture, ISCA ’07, pages 278–289, New York, NY, USA,
2007. ACM.

[28] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation of
speculative threads in multiprocessors. In Proceedings of the 33rd annual international
symposium on Computer Architecture, ISCA ’06, pages 227–238, Washington, DC,
USA, 2006. IEEE Computer Society.

[29] A. Chang and M. F. Mergen. 801 Storage: Architecture and Programming. ACM
Transactions Computer Systems, February 1988.

[30] Lee Chew and David Lie. Kivati: fast detection and prevention of atomicity violations.
In Proceedings of the 5th European conference on Computer systems, EuroSys ’10,
pages 307–320, New York, NY, USA, 2010. ACM.

[31] E. G. Co↵man, M. Elphick, and A. Shoshani. System deadlocks. ACM Comput. Surv.,
3(2):67–78, June 1971.

208

[32] Adrián Cristal, Oliverio J. Santana, Mateo Valero, and José F. Mart́ınez. Toward
kilo-instruction processors. ACM Trans. Archit. Code Optim., 1:389–417, December
2004.

[33] Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. Stable deterministic
multithreading through schedule memoization. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10, pages 1–13,
Berkeley, CA, USA, 2010. USENIX Association.

[34] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexible information
flow architecture for software security. In Proceedings of the 34th annual international
symposium on Computer architecture, ISCA ’07, pages 482–493, New York, NY, USA,
2007. ACM.

[35] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design
of ion-implanted mosfets with very small physical dimensions. 9, October 1974.

[36] Memcached Developers. Issue 127: incr/decr operations are not thread safe.
http://code.google.com/p/memcached/issues/detail?id=127.

[37] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. Dmp: deterministic
shared memory multiprocessing. In Proceedings of the 14th international conference
on Architectural support for programming languages and operating systems, ASPLOS
’09, pages 85–96, New York, NY, USA, 2009. ACM.

[38] Laura E�nger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm.
Ifrit: interference-free regions for dynamic data-race detection. SIGPLAN Not.,
47(10):467–484, October 2012.

[39] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-
aware java runtime. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’07, pages 245–255, New York,
NY, USA, 2007. ACM.

[40] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: a general approach to inferring errors in systems code. In
Proceedings of the eighteenth ACM symposium on Operating systems principles, SOSP
’01, pages 57–72, New York, NY, USA, 2001. ACM.

[41] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. Ph.D., Uni-
versity of Washington Department of Computer Science and Engineering, Seattle,
Washington, August 2000.

209

[42] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th
annual international symposium on Computer architecture, ISCA ’11, pages 365–376,
New York, NY, USA, 2011. ACM.

[43] C. J. Fidge. Timestamps in message-passing systems that preserve the partial order-
ing. Proceedings of the 11th Australian Computer Science Conference, 10(1):5666.

[44] Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic atomicity checker
for multithreaded programs. Sci. Comput. Program., 71:89–109, April 2008.

[45] Cormac Flanagan and Stephen N. Freund. Fasttrack: e�cient and precise dynamic
race detection. Commun. ACM, 53(11):93–101, November 2010.

[46] Cormac Flanagan and Stephen N. Freund. The roadrunner dynamic analysis frame-
work for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, PASTE ’10, pages
1–8, New York, NY, USA, 2010. ACM.

[47] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for
atomicity: Static checking and inference for java. ACM Trans. Program. Lang. Syst.,
30:20:1–20:53, August 2008.

[48] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: a sound and
complete dynamic atomicity checker for multithreaded programs. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming language design and implemen-
tation, PLDI ’08, pages 293–303, New York, NY, USA, 2008. ACM.

[49] Cormac Flanagan and Shaz Qadeer. A type and e↵ect system for atomicity. In
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design
and implementation, PLDI ’03, pages 338–349, New York, NY, USA, 2003. ACM.

[50] Qi Gao, Feng Qin, and Dhabaleswar K. Panda. Dmtracker: finding bugs in large-
scale parallel programs by detecting anomaly in data movements. In Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, SC ’07, pages 15:1–15:12, New
York, NY, USA, 2007. ACM.

[51] Kourosh Gharachorloo and Phillip B. Gibbons. Detecting violations of sequential
consistency. In Proceedings of the third annual ACM symposium on Parallel algorithms
and architectures, SPAA ’91, pages 316–326, 1991.

[52] J. R. Goodman. Cache consistency and sequential consistency. Technical Report no.
61, SCI Committee, March 1989.

210

[53] G Grahne and J Zhu. E�ciently using prefix-trees in mining frequent itemsets. 2003.

[54] Mark Hall, Eibe Frank, Geo↵rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11(1):10–18, November 2009.

[55] Christian Hammer, Julian Dolby, Mandana Vaziri, and Frank Tip. Dynamic detec-
tion of atomic-set-serializability violations. In Proceedings of the 30th international
conference on Software engineering, ICSE ’08, pages 231–240, New York, NY, USA,
2008. ACM.

[56] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency. In Proceedings of the
31st annual international symposium on Computer architecture, ISCA ’04, pages 102–,
Washington, DC, USA, 2004. IEEE Computer Society.

[57] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun. ACM,
17:549–557, October 1974.

[58] Robert Hood, Ken Kennedy, and John Mellor-Crummey. Parallel program debugging
with on-the-fly anomaly detection. In Proceedings of the 1990 ACM/IEEE conference
on Supercomputing, Supercomputing ’90, pages 74–81, Los Alamitos, CA, USA, 1990.
IEEE Computer Society Press.

[59] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated
atomicity-violation fixing. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’11, pages 389–400, New
York, NY, USA, 2011. ACM.

[60] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. Instrumentation and sampling
strategies for Cooperative Concurrency Bug Isolation. In OOPSLA, 2010.

[61] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. Instrumentation and sam-
pling strategies for cooperative concurrency bug isolation. In Proceedings of the ACM
international conference on Object oriented programming systems languages and ap-
plications, OOPSLA ’10, pages 241–255, New York, NY, USA, 2010. ACM.

[62] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Automated
concurrency-bug fixing. In Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, OSDI’12, pages 221–236, Berkeley, CA, USA,
2012. USENIX Association.

211

[63] P. Joshi and K. Sen. Predictive typestate checking of multithreaded java programs.
In Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, pages 288–296, Washington, DC, USA, 2008. IEEE
Computer Society.

[64] Horatiu Jula, Pinar Tozun, and George Candea. Communix: A framework for collab-
orative deadlock immunity. In Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks, DSN ’11, pages 181–188, Washington,
DC, USA, 2011. IEEE Computer Society.

[65] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. Deadlock
immunity: enabling systems to defend against deadlocks. In Proceedings of the 8th
USENIX conference on Operating systems design and implementation, OSDI’08, pages
295–308, Berkeley, CA, USA, 2008. USENIX Association.

[66] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data race bugs:
telling the di↵erence with portend. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XVII, pages 185–198, New York, NY, USA, 2012. ACM.

[67] K. Kawachiya, A. Koseki, and T. Onodera. Lock reservation: Java locks can mostly
do without atomic operations. In OOPSLA, 2002.

[68] Igor Kononenko. Estimating attributes: Analysis and extensions of relief. In European
Conference on Machine Learning, 1994.

[69] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Junfeng Yang, and Jason
Nieh. Pervasive detection of process races in deployed systems. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
353–367, New York, NY, USA, 2011. ACM.

[70] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21:558–565, July 1978.

[71] Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28:690–691, September 1979.

[72] Butler W. Lampson and David D. Redell. Experience with processes and monitors in
mesa. Commun. ACM, 23:105–117, February 1980.

[73] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, CGO ’04,
pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

212

[74] Ben Liblit Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
Public deployment of cooperative bug isolation. In In Proceedings of the Second
International Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS 04), pages 57–62. ACM Press, 2004.

[75] Benjamin Robert Liblit. Cooperative Bug Isolation. PhD thesis, University of Cali-
fornia, Berkeley, December 2004.

[76] Richard J. Lipton. Reduction: a method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, December 1975.

[77] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: e�cient deter-
ministic multithreading. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 327–336, New York, NY, USA, 2011.
ACM.

[78] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li,
Raluca A. Popa, and Yuanyuan Zhou. Muvi: automatically inferring multi-variable
access correlations and detecting related semantic and concurrency bugs. In Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating systems principles, SOSP
’07, pages 103–116, New York, NY, USA, 2007. ACM.

[79] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In Proceedings of
the 13th international conference on Architectural support for programming languages
and operating systems, ASPLOS XIII, pages 329–339, New York, NY, USA, 2008.
ACM.

[80] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: detecting atomicity
violations via access interleaving invariants. In Proceedings of the 12th international
conference on Architectural support for programming languages and operating systems,
ASPLOS XII, pages 37–48, New York, NY, USA, 2006. ACM.

[81] Brandon Lucia and Luis Ceze. Finding concurrency bugs with context-aware com-
munication graphs. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages 553–563, New York, NY, USA,
2009. ACM.

[82] Brandon Lucia and Luis Ceze. Cooperative empirical failure avoidance for multi-
threaded programs. In Proceedings of the eighteenth international conference on Ar-
chitectural support for programming languages and operating systems, ASPLOS ’13,
pages 39–50, New York, NY, USA, 2013. ACM.

213

[83] Brandon Lucia, Luis Ceze, and Karin Strauss. Colorsafe: architectural support for
debugging and dynamically avoiding multi-variable atomicity violations. In Proceed-
ings of the 37th annual international symposium on Computer architecture, ISCA ’10,
pages 222–233, New York, NY, USA, 2010. ACM.

[84] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm. Conflict
exceptions: simplifying concurrent language semantics with precise hardware excep-
tions for data-races. In Proceedings of the 37th annual international symposium on
Computer architecture, ISCA ’10, pages 210–221, New York, NY, USA, 2010. ACM.

[85] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-aid: Detecting
and surviving atomicity violations. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 277–288, Washington, DC,
USA, 2008. IEEE Computer Society.

[86] Brandon Lucia, Benjamin P. Wood, and Luis Ceze. Isolating and understanding con-
currency errors using reconstructed execution fragments. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’11, pages 378–388, New York, NY, USA, 2011. ACM.

[87] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo↵
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and implemen-
tation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[88] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’05, pages 378–391, New York, NY, USA, 2005. ACM.

[89] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace: e↵ective
sampling for lightweight data-race detection. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and implementation, PLDI ’09,
pages 134–143, New York, NY, USA, 2009. ACM.

[90] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish
Narayanasamy. Drfx: a simple and e�cient memory model for concurrent program-
ming languages. In Proceedings of the 2010 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’10, pages 351–362, New York, NY,
USA, 2010. ACM.

[91] Friedemann Mattern. Virtual time and global states of distributed systems. In Cos-
nard M. et al., editor, Proc. Workshop on Parallel and Distributed Algorithms, pages
215–226, North-Holland / Elsevier, 1989. (Reprinted in: Z. Yang, T.A. Marsland
(Eds.), ”Global States and Time in Distributed Systems”, IEEE, 1994, pp. 123-133.).

214

[92] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchronization
inference for atomic sections. In Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’06, pages 346–
358, New York, NY, USA, 2006. ACM.

[93] Sang L. Min and Jong-Deok Choi. An e�cient cache-based access anomaly detection
scheme. In Proceedings of the fourth international conference on Architectural support
for programming languages and operating systems, ASPLOS IV, pages 235–244, New
York, NY, USA, 1991. ACM.

[94] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording and determin-
istically replaying shared-memory multiprocessor execution ef?ciently. In Proceedings
of the 35th Annual International Symposium on Computer Architecture, ISCA ’08,
pages 289–300, Washington, DC, USA, 2008. IEEE Computer Society.

[95] Gordon E. Moore. Readings in computer architecture. chapter Cramming more
components onto integrated circuits, pages 56–59. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2000.

[96] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing heisen-
bugs in concurrent programs. In Proceedings of the 8th USENIX conference on Op-
erating systems design and implementation, OSDI’08, pages 267–280, Berkeley, CA,
USA, 2008. USENIX Association.

[97] Abdullah Muzahid, Norimasa Otsuki, and Josep Torrellas. Atomtracker: A compre-
hensive approach to atomic region inference and violation detection. In Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’43, pages 287–297, Washington, DC, USA, 2010. IEEE Computer Society.

[98] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’07, pages 89–100, New
York, NY, USA, 2007. ACM.

[99] NIST. The Economic Impacts of Inadequate Infrastructure for Software Testing.
http://www.nist.gov/director/prog-ofc/report02-3.pdf, 2002.

[100] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Exterminator: Automati-
cally correcting memory errors with high probability. Commun. ACM, 51(12):87–95,
December 2008.

[101] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: e�cient determin-
istic multithreading in software. SIGPLAN Not., 44(3):97–108, March 2009.

215

[102] Christos H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, 26(4):631–653, October 1979.

[103] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation detection
in concurrent programs. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages
135–145, New York, NY, USA, 2008. ACM.

[104] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon: fault localiza-
tion in concurrent programs. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 245–254, New York,
NY, USA, 2010. ACM.

[105] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger: exposing atomicity violation
bugs from their hiding places. SIGPLAN Not., 44(3):25–36, March 2009.

[106] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee,
and Shan Lu. Pres: probabilistic replay with execution sketching on multiprocessors.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pages 177–192, New York, NY, USA, 2009. ACM.

[107] Je↵ H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan,
Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically
patching errors in deployed software. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, SOSP ’09, pages 87–102, New York, NY,
USA, 2009. ACM.

[108] Eli Pozniansky and Assaf Schuster. E�cient on-the-fly data race detection in mul-
tithreaded c++ programs. In Proceedings of the ninth ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPoPP ’03, pages 179–190, New
York, NY, USA, 2003. ACM.

[109] Charles Price. MIPS IV Instruction Set, Revision 3.2. MIPS Technologies, Mountain
View, CA, September 1995.

[110] Milos Prvulovic. Cord: Cost-e↵ective and nearly overhead-free order recording and
data race detection. In Proceedings of the 12th symposium on High-Performance
Computer Architecture, pages 316–326, 2006.

[111] Milos Prvulovic and Josep Torrellas. Reenact: using thread-level speculation mecha-
nisms to debug data races in multithreaded codes. In Proceedings of the 30th annual
international symposium on Computer architecture, ISCA ’03, pages 110–121, New
York, NY, USA, 2003. ACM.

216

[112] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. Revive: cost-e↵ective architec-
tural support for rollback recovery in shared-memory multiprocessors. In Proceed-
ings of the 29th annual international symposium on Computer architecture, ISCA ’02,
pages 111–122, Washington, DC, USA, 2002. IEEE Computer Society.

[113] Sriram Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani.
Isolator: dynamically ensuring isolation in comcurrent programs. In Proceedings of
the 14th international conference on Architectural support for programming languages
and operating systems, ASPLOS XIV, pages 181–192, New York, NY, USA, 2009.
ACM.

[114] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul
Nagpal, and Karthik Pattabiraman. Detecting and tolerating asymmetric races. In
IEEE Transactions on Computers, 2011.

[115] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. SESC Simulator, January 2005.
http://sesc.sourceforge.net.

[116] Michiel Ronsse and Koen De Bosschere. Recplay: a fully integrated practical
record/replay system. ACM Trans. Comput. Syst., 17(2):133–152, May 1999.

[117] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Imple-
menting signatures for transactional memory. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 123–
133, Washington, DC, USA, 2007. IEEE Computer Society.

[118] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Automated
type-based analysis of data races and atomicity. In PPOPP, pages 83–94, 2005.

[119] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: a dynamic data race detector for multi-threaded programs. SIGOPS
Oper. Syst. Rev., 31(5):27–37, October 1997.

[120] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.
Myreen. x86-tso: a rigorous and usable programmer’s model for x86 multiprocessors.
Commun. ACM, 53:89–97, July 2010.

[121] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen,
and Weimin Zheng. Do i use the wrong definition?: Defuse: definition-use invariants
for detecting concurrency and sequential bugs. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages and applications,
OOPSLA ’10, pages 160–174, New York, NY, USA, 2010. ACM.

217

[122] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande benchmark suite.
In Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ’01, pages 8–8, New York, NY, USA, 2001. ACM.

[123] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improving the Availability of
Shared Memory Multiprocessors with Global Checkpoint/Recovery. In International
Symposium on Computer Architecture, 2002.

[124] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consis-
tency and Cache Coherence. Synthesis Lectures on Computer Architecture. Morgan
& Claypool Publishers, 2011.

[125] Enrique Vallejo, Marco Galluzzi, Adrin Cristal, O Vallejo, Ramn Beivide, Per Sten-
strm, James E. Smith, Mateo Valero, and Grupo De Arquitectura De Computadores.
Implementing kilo-instruction multiprocessors. In In Proceedings of the 2005 IEEE
International Conference on Pervasive Services, 2005.

[126] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints
with data in an object-oriented language. SIGPLAN Not., 41(1):334–345, January
2006.

[127] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints
with data in an object-oriented language. In Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’06,
pages 334–345, New York, NY, USA, 2006. ACM.

[128] Haris Volos, Andres Jaan Tack, Michael M. Swift, and Shan Lu. Applying transac-
tional memory to concurrency bugs. SIGARCH Comput. Archit. News, 40(1):211–222,
March 2012.

[129] Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings
of the 16th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’01, pages 70–82, New York, NY, USA, 2001.
ACM.

[130] Liqiang Wang and Scott D. Stoller. Static analysis of atomicity for programs with
non-blocking synchronization. In PPOPP, pages 61–71, 2005.

[131] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia Ge, Christos
Kozyrakis, and Kunle Olukotun. A practical fpga-based framework for novel cmp
research. In Proceedings of the 2007 ACM/SIGDA 15th international symposium on
Field programmable gate arrays, FPGA ’07, pages 116–125, New York, NY, USA,
2007. ACM.

218

[132] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos.
Mechanisms for store-wait-free multiprocessors. In Proceedings of the 34th annual
international symposium on Computer architecture, ISCA ’07, pages 266–277, New
York, NY, USA, 2007. ACM.

[133] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protection.
SIGARCH Comput. Archit. News, 30(5):304–316, October 2002.

[134] Jingyue Wu, Heming Cui, and Junfeng Yang. Bypassing races in live applications
with execution filters. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, OSDI’10, pages 1–13, Berkeley, CA, USA, 2010.
USENIX Association.

[135] Min Xu, Rastislav Bodik, and Mark D. Hill. A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proceedings of the 30th annual
international symposium on Computer architecture, ISCA ’03, pages 122–135, New
York, NY, USA, 2003. ACM.

[136] Min Xu, Rastislav Bod́ık, and Mark D. Hill. A serializability violation detector for
shared-memory server programs. SIGPLAN Not., 40(6):1–14, June 2005.

[137] Min Xu, Mark D. Hill, and Rastislav Bodik. A regulated transitive reduction (rtr)
for longer memory race recording. In Proceedings of the 12th international conference
on Architectural support for programming languages and operating systems, ASPLOS
XII, pages 49–60, New York, NY, USA, 2006. ACM.

[138] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairava-
sundaram. How do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering,
ESEC/FSE ’11, pages 26–36, New York, NY, USA, 2011. ACM.

[139] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-
memory multi-processor. SIGARCH Comput. Archit. News, 37(3):325–336, June 2009.

[140] Jie Yu and Satish Narayanasamy. Tolerating concurrency bugs using transactions as
lifeguards. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO ’43, pages 263–274, Washington, DC, USA, 2010.
IEEE Computer Society.

[141] Yuan Yu, Tom Rodehe↵er, and Wei Chen. Racetrack: e�cient detection of data race
conditions via adaptive tracking. In Proceedings of the twentieth ACM symposium on
Operating systems principles, SOSP ’05, pages 221–234, New York, NY, USA, 2005.
ACM.

219

[142] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. Hardware
enforcement of application security policies using tagged memory. In Proceedings of the
8th USENIX conference on Operating systems design and implementation, OSDI’08,
pages 225–240, Berkeley, CA, USA, 2008. USENIX Association.

[143] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. Conseq: detecting concurrency bugs through sequential errors.
In Proceedings of the sixteenth international conference on Architectural support for
programming languages and operating systems, ASPLOS ’11, pages 251–264, New
York, NY, USA, 2011. ACM.

[144] Wei Zhang, Chong Sun, and Shan Lu. Conmem: detecting severe concurrency bugs
through an e↵ect-oriented approach. In Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and operating systems, ASPLOS
’10, pages 179–192, New York, NY, USA, 2010. ACM.

[145] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted lockset-
based race detection. In Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, HPCA ’07, pages 121–132, Washington,
DC, USA, 2007. IEEE Computer Society.

