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Described is a laboratory-scale continuous-feed supercritical water gasification (SCWG) system. 

The system is operated using real-world Ponderosa Pine sawmill residues at high biomass 

loadings, short mean residence times (2-5 sec), and 27.7 MPa pressures.  Each run with the 

SCWG system typically processed several 100 g of biomass/water slurry mixture. We evaluated 

the effect of operating temperatures (from 700K to 900K) and biomass feedstock loadings (5% 

to 15% by weight in water) on solids conversion and gaseous product composition. Biomass-to-

gasified product conversion efficiencies ranged from 89% to 99%, by mass. Gaseous products 

were primarily composed of CO2, H2, CH4, and CO, generally in that order of prevalence. The 

highest hydrogen yield, 43% mole percent, was achieved at 900k with a 5% biomass loading. In 

general, low biomass loadings corresponded to higher H2:CO2 ratios, but never did we observe 

stoichiometries that could be explained purely by steam reforming or steam reforming plus 

water gas shift chemistries. Methanation & Hydrogenation chemistry also occurred, but the mole 

fraction of CH4 never exceeded 10%.  We hypothesize that the real-world biomass samples 

used here intrinsically include gas-bubbles in the slurry, enabling partial or complete oxidation to 

occur along with the more conventional SCWG chemistries.  As a result, the observed syngas 

composition was shown to depend more on biomass loading than on processing temperature. 

In-situ Raman testing was also evaluated as a possible means of monitoring SCWG real time.  

Biomass (lignin, cellulose, and hemicellulose) were all detected along with variations in 

concentration.  Additionally effluent composition was verified to not contain intermediary 

compounds.   
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Nominally, biomass has an energy content of 12-18 MJ/kg.  If one solely compares available 

biomass to that of petroleum used (on an energy basis) the net available energy from biomass 

is 7100 petajoules.  If one takes into account these two numbers it is obvious that biomass has 

significant potential as an energy offset.  While the technology and infrastructure for such a 

drastic change has not yet been brought into being, it is our goal to explore novel engineering 

approaches for supporting the use of this resource to the benefit of society.   

At the same time, excess biomass can be an ecological problem for land managers. For 

example, over the past century, policies that aggressively excluded fire from forest lands has 

allowed our forests to suffer from an ‘epidemic of trees’ [HES09].  Restoration of over stocked 

forests is now being carried out to arrest this ‘epidemic’ and return resilience to the landscape 

[HES09]. This so-called fuels reduction effort generates large quantities of waste biomass 

residue [PER05 & POL07]. Furthermore, current timber harvesting practices produce a 

significant amount of waste biomass residue that must be disposed.  Burning this biomass 

residue on site is generally the most cost effective means of removal. This means of disposal, 

though inexpensive, does not make use of the biomass as an energy resource and suffers from 

severe limitations such as air quality impacts and wildfire potential during the burn.  As such, the 

need to find alternative methods and techniques to allow excess biomass to be removed from 

the forest while making use of it as a resource is increasingly important.  Not only does removal 

improve the overall health of a forest, but vital habitats can be restored, along with increased fire 

resiliency and resistance to insects/disease [HES09 & POL07].  Intelligent removal of specific 

types and quantities of biomass is not only a source of sustainable energy, but also of vital 

importance to ensuring a stable environment for all of earth’s inhabitants: plant, animal, and 

human alike [HES09].  
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The transport of biomass from remote parts of the forest to a centralized processing 

facility is an expensive and potentially cost prohibitive portion of the overall process required to 

make use of the energy content within the biomass [ERI08, HAM05, & PET08].  Strategies for 

reducing biomass transportation costs are sought to improve profit margins and increase the 

amount of economically accessible biomass [CUN08 & PET08].  This is especially important 

when considering forest restoration, which often requires the removal of unmerchantable timber 

[POL07].  A number of processes allow for a combined effect of reducing transportation costs 

while upgrading the biomass to a more merchantable product such as liquid fuels, synthesis 

gas, biochar, etc. [POL07 & SEA07]. These densification/conversion techniques can help 

reduce other handling and processing costs as well.  

1.2	Super	Critical	Water	Gasification	

Several technologies are currently emerging for the purpose of converting biomass to 

energy and other value-added products. Gasification, one such technology, is the partial 

oxidation of biomass in order to convert it into the energy-rich and versatile form called syngas 

[MAT05].  This can then be used in fuel cells, diesel engines, or recombined to form larger 

hydrocarbons to serve as drop-in replacement fuels.  Gasification is most often carried out in a 

reactor in which the fuel:air ratio is carefully controlled at about one-third of the stoichiometric 

value for complete combustion [WAN08].  Such systems can be classified on the basis of how 

the product gases are vented off and/or in regards to the method of heating the biomass.  

Primary products produced are carbon monoxide (CO) and hydrogen (H2) although nitrogen 

(N2) and carbon dioxide (CO2) are also present in substantial quantities along with char and ash 

[WAN08]. Key issues include coking within the gasifier and contaminants in the resulting syngas 

(i.e., particulates, tars, alkali, nitrogen, and sulfur compounds) that limit or impact the 

performance of syngas in use [MAT05, YAN06, KRU08, KRU09]. 
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Supercritical water gasification (SCWG) [MAT05, YAN07, KEL07, DIB07] promises to 

solve key issues for biomass gasification. In SCWG, the reactor is pressurized and the 

temperature balanced such that water within the biomass is at its critical point.  The process is 

ideal for wet biomass containing as much as 99% water, eliminating the need to dry materials 

prior to processing and bringing the carbon build-up to <5%. SCWG has been demonstrated in 

the laboratory [YAN06, LU 07, HAO03] and in pilot applications [DIB07]. Initial work has begun 

to uncover the governing mechanisms for SCWG [YAN06, LU 07], but opportunities exist to 

advance the relationships between hardware design, feed composition, syngas quality, 

reliability, and system scalability. 

The primary focus for SCWG research so far has been determining the scope of useable 

feedstocks and performance modeling.  Within the context of feedstock evaluation, simplified 

biomass such as sugars (including glucose, cellulose and lignose) processed in batch reactors 

and/or quartz vials have been investigated by Hao, et al. and Matsumura, et al. [HAO03 & 

MAT05].  It was found that SCW effectively breaks down the base molecules of biomass into 

syngas consisting almost entirely of CO, CO2, CH4, and H2 [HAO03 & MAT05].  Furthermore, it 

was found that the effect of reaction temperature on glucose gasification had a substantial 

impact [HAO03 & MAT05].  Hao determined that at temperatures of 923 K or higher ‘complete’ 

gasification can be achieved and the mass of the product gases can exceed the mass of the 

biomass feedstock due contributions from the breakdown of water [HAO03]. Glucose, cellulose, 

and lignose were all successfully converted to syngas utilizing the process [MAT05].  Overall, 

these prior results suggested that SCWG is a promising conversion process for biomass. 

Yanik, et al. and Lu, et al. investigated SCWG of actual biomass, with a focus on product 

gases [YAN07 & LU 06].  Yanik, et al. tested a total of eight different types of biomass: tobacco 

stalk, corn stalk, cotton stalk, sunflower stalk, corn cob, oreganum stalk, chromium-tanned 

waste, and vegetable-tanned waste [YAN07].  Lu, et al. performed experimentation on wood 
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sawdust, rice straw, rice shell, wheat stalk, peanut shell, corn stalk, corn cob, and sorghum stalk 

[LU 06].  Both groups of experimenters successfully converted the biomass to gaseous products 

(CO, CO2, H, and CH4) [YAN07 & LU 06].  Lu, et al. also discovered small amounts of higher 

hydrocarbons, C2H4 and C2H6, in addition to the formation of oil-like tar observed on the surface 

of the aqueous solution [Lu 06].  Of note is the fact that Yanik, et al. utilized a tumbling batch 

autoclave, whereas Lu, et al. utilized a continuous feed tubular reactor [YAN07 & LU 06].  As 

such Lu, et al. was able to determine that hydrogen yield increases with increasing pressure, 

whereas methane and carbon monoxide show a decrease as pressures increase [Lu 06].  They 

also noted a decrease in carbon along with an increase in hydrogen and methane gases when 

process temperature was raised from 873 k to 923 k [Lu 06].  Increases in residence time 

yielded similar results; methane and hydrogen levels increased as residence time was 

increased from 9s to 46s [Lu 06].  Yanik, et al. utilized a batch process in which biomass was 

held at a fixed temperature/pressure for one hour.  They were unable to determine the effects of 

variations in residence time, temperature, and/or pressure but were able to determine that 

successful conversion from biomass to syngas did occur [YAN07].  Of note were the variations 

in coking for different feedstocks. Yanik proposed that variations in feedstock lignin content was 

responsible, in part for the five-fold variation in coking [YAN07].  However, two feedstocks had 

identical lignin content, but showed a two-fold variation in coking, leading to the conclusion that 

not only lignin amount, but structure can influence coking within the system [YAN07].  There 

were also indications that organic materials other than cellulose, hemicelluloses, and lignin may 

have effects on syngas composition and coking [YAN07].  Yanik, et al. was able to analyze the 

waste water left over from the gasification process and discovered the presence of acetic acid, 

formic acid, furfural, and phenol residues. 

Di Blasia, et al. investigated the use of SCW to remove tar/waste created from an 

updraft gasifier (water content >90%) [DIB07].  The primary purpose of the experimentation 
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performed by Di Blasia, et al. was to determine if it was possible/feasible to use SCW as a 

clean-up process for tar created from pyrolysis type reactions [DIB07].  The actual test 

specimens were gathered downstream of an updraft wood gasification plant [DIB07].  Organic 

compound levels of 6.5-31 g/l were observed, and SCWG converted between 30% and 70% of 

the material [DIB07].  The test specimens contained a total of 23 tar compounds [DIB07].  

Sugars and complex phenols were quickly converted while intermediate products, such as 

furfurals, were slower to decompose [DIB07].  Residence times between 46-114 seconds at 

temperatures of 723-821 K were used with trend analysis showing that higher temperatures and 

increased residence times improve the amount of product gases [DIB07].  Overall the 

experimentation successfully demonstrates the use of SCW as a means of conversion/clean-up 

for liquid effluents generated from other forms of biomass gasification [DIB07]. 

Describing the governing chemical reactions and thermodynamics for SCWG is an 

important element in understanding the performance and products of a system [KEL07, YAN06, 

LU 07]. Though biomass in and of itself can vary greatly, generally all biomass can be 

represented by CxHyOz (e.g., glucose is C6H12O6 and cellulose is a polymers of glucose) 

[HAO03].  While biomass always has some absorbed minerals and other contaminants, the 

simple representation CxHyOz is a suitable descriptor for the majority of biomass components 

(cellulose, hemicellulose and lignin).  The simplest chemical description of SCWG of biomass is 

[KEL07]:  

Biomass + H2O → CO + H2 

CO + 3H2 → CH4 + H2O 

CO + H2O  → CO2 + H2. 

The first reaction is known as steam reforming, in which the biomass is broken down into carbon 

monoxide and hydrogen [KEL07, HAO03, YAN06].  The second reaction, methanation, is the 
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result of the combination of ambient hydrogen and carbon monoxide [KEL07, HAO03, YAN06].  

The third reaction is considered a water gas shift reaction and results from a breakdown of the 

water [KEL07, HAO03, YAN06].  It is believed that temperature and pressure within the system 

determines which of the three reactions will be dominant [LU06].  Higher temperatures and 

pressures favor hydrogen production, while lower ones tend to favor methane production [LU 

06].  Temperatures can range from 650k to 1000k with pressures on the order of 20-35MPa, 

although typical temperatures are 700-800k at pressures near 25 MPa [HAO03, YAN06, 

GUO07].  

Residence time studies by Lu, et al. show H2 & CH4 levels increase as residence time 

increases (9-46s) [LU 06].  The primary purpose of their studies was to focus on the parametric 

effects within the process.  Various forms of biomass were pretreated and mixed in order to 

obtain a uniform mixture of 2 %(w/w) biomass combined with 2 %(w/w) sodium 

carboxymethylcellulose in order to facilitate feeding within the system [LU 06].  Of additional 

importance is the fact that they pre-ground the biomass to 40 mesh prior to mixing [LU06].  

Their experimentation showed that not only did higher residence times result in an increased 

yield of hydrogen, but increased pressure and increased temperature result in improved 

hydrogen output as well [LU 06].  One should note that of the two temperatures tested, 873 K 

and 923 K, higher temperatures resulted not only in improvement of hydrogen production, but 

also in the overall carbon efficiency and net production of all product gases [LU 06].  This is in 

contrast to increasing pressure which had the effect of increasing the hydrogen content while 

decreasing levels of CH4 and CO [LU 06].   

Another important aspect of research in SCW is potential catalyst action from the 

machines involved in the actual processing.  The important aspect of this type of research is to 

try to separate the effects of SCW versus the combined effect caused by metals in combination 

with SCW [RES07, RES08, RES09, & RES10].  Common ideas theorize that platinum, 
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ruthenium, rhenium, and nickel are among the major metal catalysts in SCW gasification of 

biomass [RES07, RES08, RES09, & RES10].  In order to determine their effects a series of 

experiments were carried out in quartz batch reactors by Resende, et al.  These experiments 

not only showed the synergistic effects of reactor materials with SCW’s properties, but also 

attempted to delve further into the nature of the reactions that were occurring.  The following 

reaction pathway was developed to better understand the detailed steps involved in SCWG of 

biomass:  

 Lignin Hydrolysis  (C10H10O3)n + nH2O → nC10H12O4     (1) 

 Monomer Oligomerization nC10H12O4 → (C10H10O3)2 +(C10H10O3)3 +…   (2) 

 Monomer Decomposition:  C10H12O4 → CxHyOz     (3) 

 Steam Reforming I:  CxHyOz + (x-z)H2O → xCO +(x-z +y/2)H2   (4) 

 Steam Reforming 2:   CxHyOz + (2x-z)H2O → xCO2 +(2x-z +y/2)H2  (5) 

 Char Formation:   CxHyOz → wC + Cx-wHyOz     (6) 

 Water-gas Shift:   CO + H2O  → CO2 + H2     (7) 

 Methanation:    CO + 3H2 → CH4 + H2O     (8) 

 Hydrogenation:   CO + 2H2 → CH4 + 1/2O2     (9) 

This more complete set of reaction expressions is especially valuable for interpreting how 

SCWG process variables modify the product selectivity and yield. Resende, et al. showed 

clearly that metal reactors had a significant effect on the quantity of gases produced [RES07, 

RES08, RES09, & RES10].  While no detrimental effects were discovered, it highlights the fact 

that material selection is key in optimizing gas yields and brings to light a possible mechanism 

responsible for variation in yields, such as deactivation of catalytic surfaces [RES07, RES08, 
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RES09, & RES10].  This is vital information for understanding possible variations in data that 

may occur during extended testing.  Resende, et al. carried out experiments in batch reactors 

and showed that SCWG could be achieved at high concentrations of biomass (33%)  [RES07, 

RES08, RES09, & RES10]. This data is promising for metal continuous fed reactors, in that, it 

demonstrates that more favorable thermodynamic concentration may be pursued. 

In summary, previous research has shown the validity of SCWG utilizing a series of 

steps progressing from constituents of biomass to actual biomass with very high water content 

and area-specific feedstocks.  Furthermore, the process has been demonstrated effective in the 

treatment of waste water, illustrating its potential for use as a ‘clean-up’ method after various 

other processes.  While the process offers a variety of advantages, such as removal of the need 

to dry biomass, there are some distinct challenges that continue to pose sizeable obstacles to 

further research and implementation of the process for large-scale industrial use.   

Key obstacles for moving SCW from the realm of research to that of industrial use are: 

(1) reducing the water content required to carry/process the feedstock (thereby improving the 

energy balance whilst reducing preprocessing), (2) expanding data on the selection of 

feedstocks to include those locally available, and (3) developing viable continuous feed reactors 

in order to move away from batch reactions, thus increasing speed/volume of material 

processed.  Of note is that continuous feed reactors are typically plagued by coking issues 

[GUO07].   

The Pacific Northwest in particular could benefit significantly from industrial scale SCWG 

as this region suffers from a significant amount of residual biomass in the form of wood.  This 

woody waste offers vast potential as an energy source if it can be utilized.  To date there is not 

any data on SCW syngas produced from woody biomass species.  This thesis research makes 

a significant contribution to meeting the need for such SCWG data and processes. 
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CH2: Summary of Research Objectives 

2.1 Design	&	Build	Supercritical	Water	Gasification	System		

 Our first objective was to design and build the first continuous feed SCWG system 

capable of processing ‘high’ concentrations of woody biomass.  No UW facility currently has a 

reactor; thus, a major component of this project was the design and construction of such a 

device.  The majority of previous researchers have used simple batch reactors.  Batch reactions 

are, however, not necessarily indicative of how feedstocks may react in a continuous reactor.  

Current research setups utilize commercially available pumps for pressurization.  Because 

these pumps are typically not capable of moving multiphase media (solids+fluids) and/or 

withstanding the temperatures involved in SCW gasification of such media, only finely ground 

suspended particles (or dissolved sugars) with extremely high water content have been tested 

as feedstock.  It was the goal of this research to reduce this barrier by testing a more 

representative feedstock/media.   

2.2	Testing	of	SCW	Gasified	Ponderosa	Pine		

 The objective of this experiment was to test Ponderosa Pine in a SCW reactor.  The 

novelty of the test comes not only from the woody feedstock being processed in a continuous 

feed reactor, but also the extremely high concentration of biomass used here as compared to 

previous research [MAT05].  Ponderosa Pine was processed with biomass concentrations of 5x, 

10x, 15x the levels of typical previous continuous feed reactors (1% by mass) [MAT05].  This 

was performed through a temperature range of 700-900K in 100 degree increments.  The mass 

of the water/gas output was monitored ‘real-time’ via a Metler Toledo scale.   A knockout drum 

was then vented into a GC for analysis.  The residual mass of water was also weighed in order 

to close the loop on the mass balance.  Electrical energy input into the system was also 

measured and recorded.   
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2.3	Evaluate	Raman	Spectroscopy	for	Use	in	Syngas	Produced	by	SCW	Gasification		

 Here we performed real-time optical diagnostics that have the capability of process 

control, an important aspect of any commercial technology.  Gas Chromatography is the current 

means most researchers use to analyze the syngas produced.  This requires samples to be 

drawn, moisture content managed, and measurements taken.  The whole process can take 

several minutes.  In contrast, Raman Spectroscopy offers a tool by which to potentially measure 

syngas as it is created within the reactor in near real time.  It is one of the only technologies 

capable of withstanding the extreme temperatures and pressures involved in SCWG, with 

measurements taking seconds instead of minutes.  Furthermore, Raman offers the ability to 

detect solids, liquids, and gases.  This offers significant advancement in that the decomposition 

of biomass into syngas occurs via an unknown route.  At best researchers have performed 

batch reactions in quartz capillaries and been able to visually observe the process [SMI09].  The 

process for conducting this investigation was to introduce a Raman probe into the SCW system 

during feedstock processing and compare results from the aforementioned Ponderosa Pine 

experiment, thereby validating (or disproving) the possible use of this technique in a SCW 

system. Real time gas stream analysis will allow near complete control over the output syngas 

making it ideal for the predictable production of hydrocarbons from biomass. 

CH3: Approach to Achieve The Objectives 

3.1	Design	&	Build	Supercritical	Water	Gasification	System	

 The creation of a SCW environment can be envisioned as a series of sub-steps. If one 

abstracts SCW into a simple definition of water that is at very high pressure and temperature, a 

designer can see that the key aspects are pressurization and heating whilst ensuring the flow of 

material through the system.  As such the system was broken into a series of subsections that 

fed, pressurized, and then heated biomass.  Figure 3.1.1 illustrates the basic process flow 

diagram for our continuously fed apparatus. The gasifier system consists of two vertical feed 
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tubes that hold the biomass slurry. The feed tubes alternately load a pair of piston/cylinders that 

are used to raise the slurry pressure to a level needed to achieve supercritical conditions.  One 

achieves continuous high pressure flow to from the paired cylinder/feed system via a y-coupler 

and check-valve system. The reactor section is where the mixture is brought to supercritical 

temperatures. The reactor, made of 304 stainless steel, was heated with a series of four 

nichrome radiative heating elements with voltage controllers and operated at temperatures 

between 700 and 900 K. The reactor volume was 32 ml, and it was estimated that slurries 

reached supercritical conditions within the first few millimeters of entering the reactor.  A 

backpressure throttle valve downstream of the reactor was used to maintain pressure in the 

reactors at 27.2 MPa, whereas flow rate (and hence residence time in the reaction zone) was 

controlled with a needle valve on the reactor exit via educing a choked flow condition. 

Pressurized product syngas was directed to a dead-end knockout drum where the liquid and 

gas were separated for subsequent analysis. For simplicity in this laboratory scale system, all 

waste heat from the product stream was dumped to the surroundings rather than thermally 

integrated with feedstock preheating. The knockout drum was stored at room temperature until 

analysis.  Our biomass slurry flow rates (and hence residence times in the tubular reactor) were 

set between 1 and 5 gram/second with the needle valve.  

Because of the high biomass loadings (5 to 15% by mass) and use of a needle valve, 

the flow sometimes displayed a slug-like behavior as it passed through the valve and into the 

reactor. To improve this at high solid loading, the 10% and 15% used 20 or 40 mesh sieved 

biomass. While higher levels of processing to produce finer biomass could further improve flow, 

we sought to test samples with minimal preparation. Table 7.6.1 in the Appendix annotates the 

particle size and approximate flow rates through the device. All product streams represent 

cumulative product acquired in the knockout drum over a long averaging time compared to this 

slug-like variation.  
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methods were looked at, but in the end, a hydraulic ram assembly was decided upon.  This was 

due to the anticipated low cycle time between pistons, the need to reduce costs, and the desire 

to maintain simplicity.  A key obstacle to utilizing hydraulic actuation was the extreme force that 

would need to be withstood in order for the system to work.  A second, but equally important 

obstacle was the difficulty of maintaining system alignment throughout the assembly’s length 

(necessary for a piston to properly seal in its parent cylinder).   

The pump section was to be comprised of nominal 2 inch diameter cylinders.  In order to 

pressurize these to the design pressure of 5,000psi the frame would have to withstand 7.7 tons 

of force per cylinder (force = pressure x area).  If both pistons were actuated simultaneously the 

resultant force would exceed 15 tons.  It was also desired that the entire system be portable and 

have a high safety factor.  The end result was a skid type design comprised of two halves linked 

by cross members.  By designing the frame in two pieces it made assembly of the system 

simpler in addition to making the frame portable by hand.  In order for this approach to be used, 

the forces from the rams had to be transferred along a single axis lest the cross member prove 

insufficient.  Mild steel push-blocks were used for this purpose.  Mounting one block at the rear 

to the rams and another to the front end of the piston/cylinder assembly allowed for forces to be 

distributed into the larger, load-carrying members while avoiding any cross loading.    

 System alignment is vital for the proper operation of a piston-cylinder system.  A major 

drawback of the pump section was the need for relatively long pieces and extremely high 

tolerances.  The tolerance requirement was dictate by the O-ring gland design, with an end 

result of 0.00025 inches of radial interference.  This had to be maintained along the 18 inch 

hydraulic rams throughout their entire 12 inch stroke.  Furthermore, since the entire gasifier was 

designed and built with basic machinery donated to UW, a relatively high amount of discrepancy 

between the two piston sections could exist.  In the end a free floating design was decided upon 

so that the gasifier could float between the piston connecting pins and the front end of the 
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occurred.  Eventually a bronze material was found that thermally matched the stainless steel 

cylinders and offered the advantage of being self-lubricating.  A set of pistons incorporating the 

new material and hemispherical design were constructed and installed.  No further issues have 

occurred and the system has operated without any signs of galling or mechanical wear. 

 To date coking has been a major issue in SCW gasification of biomass and often leads 

to system failure within hours [MAT05].   Coking results from biomass being exposed to 

temperatures below the gasification range, but above the carbonization temperature [HAS07].  

Typically this range begins around 200oC and continues up to the super critical range where 

gasification can occur [HAS07].  To address this issue, the author designed a y-coupler (Figure 

3.1.5) for the reactor system that could function as an anti-coking technology.   In order to 

maintain thermal control of the biomass, active cooling channels were built into the y-coupler of 

the system.  This allowed the reactor section and the biomass it contained to be at super critical 

temperatures while ensuring that biomass upstream of the reactor remained below the coking 

range.  Furthermore, the reactor was designed to have a significantly lower thermal mass than 

the y-coupler/pump sections.  This design decision was based based on the concept that heat 

transfer has a limited number of drivers: temperature differential, transfer area, thermal 

conductivity, and net thermal energy.  The temperature differential was set with respect to the 

coking limitation and SCW operating temperatures.  It was desired to incorporate this feature 

while ensuring a high safety factor within the reactor.  Leak-before-break criteria were used in 

order to ensure that critical crack propagation did not occur [DOW07].  For stress calculations 

cylindrical pressure vessel formulas were used [SHI01].  These are depicted below: 
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[MAT05, RES07, RES08, RES09, & RES10]. Most SCWG studies have used batch reactors, 

though one continuous SCWG of biomass has been previously described [LU06].  Research is 

needed to understand the performance of real-world feedstocks operated at high solid loading, 

especially in continuous feed systems. Due to the large energy input needed to create 

supercritical water, it is to keep biomass loading high.  

Here we present a novel continuous flow SCWG reactor and evaluate the feedstock, 

Ponderosa Pine, at solid loadings an order of magnitude higher than prior work. Our studies 

offer new insight into the effect of how biomass to water ratios affects syngas production and 

provide new information on continuous feed system requirements. We seek to advance the 

understanding of relationships between hardware design, feed composition, syngas quality, 

reliability, and scalability. 

 

4.2	Materials	&	Methods	

Ponderosa Pine feedstock was obtained from an industrial saw mill directly from the 

production line (Figure 4.2.1).  This feedstock was chosen due to its local availability and 

because it would allow for the testing of a real, modestly processed woody biomass resource.  

Samples were run with un-processed saw dust and ground biomass (20 and 40 mesh).  The 20 

mesh and 40 mesh samples are prepared using a Wiley mill via sequential grinding.  
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. 

5% Biomass 
10% Biomass 15% Biomass 

90gram biomass 

(dry weight) 

180gram biomass 

(dry weight) 

270gram biomass       

(dry weight) 

1690 grams DI Water 1600 grams DI Water 1500 grams DI Water 

Table 4.2.2: Biomass/Water Ratios for GC Experimentation 

 The condensed product in the knockout drum is analyzed for each set of processing 

parameters to get the feedstock conversion efficiency.  The solids remaining in the condensed 

product are separated using a Buchner funnel, dried, and weighed.  The mass of product solid 

is compared to the initial feedstock Ponderosa Pine dry mass to obtain the biomass conversion.    

 

4.3	Results	and	Discussion	

The major products of SCW gasification are non-condensable gases. Nonetheless, 

examination of the condensable products from the knockout drum (Figure 4.3.1) is useful for 

visually illustrating important features of the biomass conversion process. Column A of Fig. 

4.3.1 shows the three original feedstocks, from 5% biomass (top) to 15% (bottom) biomass. At 

5%, the solids settle, whereas the 15% solids feedstock has the consistency of peanut butter.  

Columns B-D show examples of the condensed product for each of the feedstock slurries after 

processing at progressively higher temperatures (Column B is 700 K, Column C is 800K, and D 

is 900K). The condensed product from the knockout drum readily separates into a solid fraction 

on the bottom of each sample tube and a supernatant liquid.  The photographs qualitatively 

suggest that, under all conditions used here, the biomass is largely converted into gaseous 

products (given the reduction in solids content); we quantify this conversation later. 

Nonetheless, there is a great deal that can be learned from the images alone.  
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A slight discoloration is clearly present in the liquid supernatant of Columns B-D in 

Figure 4.3.1. The supernatant liquid is transparent, with no turbidity, meaning the color is from 

soluble species rather than suspended solids.  The complex reaction network proposed by 

Resende (Eqs. 1-9) show the production of intermediate molecular weight lignin hydrolysates 

and carbohydrate-like decomposition products, both of which are likely to be partially or fully 

soluble. There are substantial supernatant color differences between the 5% sample and the 

10% or 15% sample, but little change in color as a function of temperature (cf. Columns C-D for 

a given Biomass %). These observations suggest that biomass fraction is a larger driver for the 

formation of soluble products than is temperature under our conditions. Preliminary Raman 

spectroscopy measurements on the supernatant liquid (not shown) suggest that the 

concentrations of these soluble organic compounds are very dilute. In addition to the soluble 

organic compounds made via gasification, any soluble salts that enter with the biomass will also 

end up in the liquid supernatant stream. Though outside the scope of this study, detailed study 

of the supernatant may be warranted to understand how this dilute product stream composition 

changes with processing conditions. Though not a large fraction of the total biomass conversion 

products, soluble components in the water may impact water treatment or recycling as one 

considers process scale-up and cost.  

In the bottom of each sample container are fine particles of biomass and higher 

molecular weight (i.e., insoluble) reaction products from reaction equation (2) or (7).  We view all 

the solid products as “unconverted” biomass, even though much of it is likely to be high 

molecular weight reaction product or insoluble inorganic material that entered with the biomass 

stream. The solid fraction appears to be significant (by volume), especially in the high biomass 

concentration images of Fig. 4.3.1, but it actually comprised a small fraction of the total 

feedstock biomass by weight.  In all cases studied, the filtered and weighed solids fraction in the 

product stream is 11% or less of the total dry solid added to the feedstock slurry.  Overall, we 
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see a nominal biomass conversion efficiency of roughly 95% across all runs we performed. 

While biomass conversion is generally highest at higher temperatures, no process run was 

below 89% conversion of the biomass. In short, the lack of significant quantities of high 

molecular weight solids or intermediate molecular weight soluble fractions means that the 

preponderance of biomass entering the system (between 89% and 100%) are converted to non-

condensable gases over the range of conditions used here.  
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  The syngas composition is shown in Figures 4.3.2A & 4.3.2B for the full range of 

conditions explored here.  As noted in the Methods section, these data include both triplicate 

process runs (shown individually in Figure 4.3.2A, with each set of conditions demarked by 

vertical lines) and 5 separate samplings of the syngas for each run. Figure 4.3.2B combines the 

triplicate process runs into a single average data point in order to make trends more visible.  

The measurement order was randomized. The data show that errors associated with 

chromatography are small compared to run-to-run variations under nominally identical 

conditions, as expected (especially given the challenges of flow control for the viscous biomass 

slurries).  

 Figures 4.3.2A & 4.3.2B show that the expected four non-condensable gas species (H2, 

CH4, CO, and CO2) were detected within each sample with the exception of the 700K & 900K 

runs at a 5% biomass loading in which CO and CH4 were not detected. CO2 is the dominant 

component, and hydrogen is second most prevalent in most cases. The concentration of CO 

can be appreciable, but CH4 was never observed above a 10% molar fraction. Based on NIST 

thermodynamic data, the equilibrium coefficient (KP) for the exothermic water gas shift reaction 

(Eq. 7) ranges from roughly 9.5≥KP≥2.5 over the temperature range of our experiments. 

Thermodynamically, this means water gas shift chemistry is always biased toward the products 

CO2 and H2, though at higher temperatures less so. In all cases, the high water activity during 

our reaction conditions strongly favors the production of CO2 and H2 via the water gas shift 

chemistry. Combining the fact that we have high biomass conversion and equilibrium chemistry 

favoring H2 and CO2, it is not surprising to see these as the dominant products.  However, the 

fact that CO is present at molar fractions comparable to (or greater) than H2 in several of the 

high biomass loading experiments, suggests there is more to the story.  Kinetics, not just 

thermodynamics, may also play a role in our short residence time experiments.   For example, 

previous research has been done with residence times as high as 75 minutes [RES07, RES08, 
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RES09, RES10] whereas the residence times used here are a few seconds. As we show below, 

plotting the data in Figures 4.3.2A & 4.3.2B in different ways helps illuminate thermodynamic 

and kinetic considerations for this system, as well as uncover the potential role of adventitious 

oxygen in these realistic high biomass feedstocks.   

 

 



 

Figure
triplicat

e 4.3.2 (A): 
te measurem

Syngas com
ments dema
GC replicat

mposition fo
arked by ve
te measure

33 

or all indivi
ertical lines.
ments of ga

dual proces
.  Error bars
as concentr

ss runs, wit
s indicate v
rations.   

th each set 
variations in

of 
n the 



 

Figure 44.3.2 (B): Syyngas comp
measurem

position for 
ments avera

34 

collated pr
aged into a s

rocess runs
single data

s, with each
a point.   

 

 set of triplicate 



 35 

Figure 4.3.3 plots the syngas composition as a function of biomass concentration at 

each temperature (A: 700K, B: 800K, and C: 900K).  In each case, we present the average 

composition from the triplicate runs.  An unambiguous trend is seen in the gas composition, and 

it is largely independent of temperature. Specifically, one sees that CO2 production is high in all 

cases, and rises as the biomass concentration increases. H2 production starts high (comparable 

to CO2) and falls with increasing biomass concentration.  Finally, CO production is negligible for 

the 5% biomass case and grows as biomass concentration increases.  As we noted earlier, in 

all cases the conversion of solid biomass to non-condensable gases is high (nominally 95% 

over the temperature and biomass concentration range). Fig. 4.3.3 (A-C) shows that the fuel 

value of the mixture is highest at low biomass concentrations. Looking at the fuel composition 

for 5% biomass alone, one sees that higher temperatures favor more hydrogen production.  

This trend coincides with previous research [KEL07, HAO03, RES07, RES08, RES09, RES10, 

& YAN06].  That said, one should keep in mind this is based on the gas composition.  If one 

takes into account that the conversion efficiency is nominally 95% for all runs the 10% and 15% 

biomass loadings create a larger quantity of syngas.  For high hydrogen concentrations, the 

best gaseous fuels are made at low biomass loadings and higher temperatures.  For raw 

heating value of the syngas, higher biomass concentrations may be favorable as the increase in 

net volumes of gas increase.  Table 4.3.1 below denotes the nominal heating values for each of 

the process conditions.  For scale-up purposes, higher temperature operation (where the fuel 

properties are best) is ideal for process heat integration throughout the plant, enabling a high 

energy efficiency production process. 
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Table 4.3.1: Molar fraction of combustible gases within the syngas for each operating 
parameter and associated net heating value for that mixture 

 

 The modest impact of temperature on conversion, and the strong impact of biomass 

concentration on syngas composition, suggests that inter- and intra-particle transport processes 

may be equally important to chemical kinetics. At the same time, because nearly all of the 

biomass converts to non-condensable gases, if thermodynamics dominated, one would expect 

to see the water gas shift push the gases to a nearly pure mixture of H2 and CO2 at all 

temperatures and biomass concentrations explored here.  There clearly is a complex mix of 

transport and reaction occurring in our system. 

 

 

 

Sample

Hydrogen 

(mol%)

Methane 

(mol%)

Carbon Monoxide 

(mol%)

Heating Value 

HHV (kJ/mol)

700@5 34.2% 0.0% 0.0% 97.6

800@5 41.7% 3.7% 1.5% 156.4

900@5 43.7% 0.0% 0.0% 124.8

700@10 17.1% 2.0% 4.5% 79.0

800@10 17.9% 5.6% 11.3% 132.8

900@10 16.7% 5.5% 8.0% 119.7

700@15 10.5% 0.6% 5.2% 50.0

800@15 8.4% 3.8% 17.3% 107.3

900@15 22.9% 4.2% 10.7% 133.6
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Not only do the data indicate coupled transport and reaction, but there is also evidence 

that reactions (1-9) cannot fully describe the gas stoichiometries we observe. To better illustrate 

this point, Figure 4.3.4 shows the average stoichiometric ratio for the product gas as a function 

of process variables. Here we compare H2, CO, and CH4 against the CO2.  The data show that 

the ratio of H2:CO2 is almost 1:1 for the 5% biomass mixture at higher temperatures, and drops 

below that at higher loadings and lower temperatures.  The H2:CO2 stoichiometric ratio never 

exceeds 1. 

We can compare the experimentally observed stoichiometry to estimates from the 

reaction steps that involve H2, CO, and CO2, namely, Steam Reforming 1 (Eq. 4), Steam 

Reforming 2 (Eq. 5), and water gas shift (Eq. 7). The stoichiometry of a hexose or pentose 

should be approximately equal to that from cellulose or hemicellulose degradation in SCW 

(cellulose and hemicellulose comprise approximately 70% of the mass of ponderosa pine). 

Simple carbohydrates have approximate stoichiometries given by x=n, y=2n, and z=n in Eqs. (4) 

and (5). With this assumed composition, Steam Reforming 1 produces a gas stoichiometric ratio 

H2:CO of 1:1.  Note that no CO2 is produced directly in Steam Reforming 1, but if the Water Gas 

Shift proceeds to the right (as expected), the final gas stoichiometry ratio H2:CO2 is 2:1.  Steam 

Reforming 2 directly produces a stoichiometry ratio H2:CO2 of 2:1.  Lignin has less intrinsic 

molecular oxygen than carbohydrates, so the H2:CO2 ratio would likely exceed 2:1 for our 

experiments, by any of the chemical pathways represented in (1-9).  The significantly lower 

H2:CO2 ratios we observe in our experiments indicate there could be an alternative oxygen 

source, since molecular oxygen in the biomass and water should generate a stoichiometry near 

2:1. Additionally, H2 loss from connections in the system and migration could explain part of the 

imbalance. 
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Where might this oxygen come from? The data show that the H2:CO2 ratio declines 

precipitously as biomass concentration increases, suggesting the oxygen is linked to the 

biomass. Given that the biomass stoichiometry is reasonably well known, and that it is not 

strongly oxygenated, we propose that air bubbles are trapped within the slurry. The slurry 

viscosity increases dramatically as the biomass concentration increases from 5% to 15% 

(becoming peanut butter-like). This means that bubbles entrained during blending are less likely 

to be released during the soaking period.  In short, we believe there is partial oxidation occurring 

in our system via the oxygen from air.  This means air entering with our real-world samples may 

subject the biomass to the additional chemistries. 

Partial Oxidation:        ܥ௫ܪ௬ ௭ܱ 	൅ 		
ሺ௫ା௬/ଶି௭ሻ

ଶ
	ܱଶ 		→ ܱܥݔ		 ൅		

௬

ଶ
 ଶܱ .  (10)ܪ	

and 

 Combustion:           ܥ௫ܪ௬ ௭ܱ 	൅ 		 ሺݔ െ
௭

ଶ
൅

௬

ସ
ሻ	ܱଶ 		→ ଶܱܥݔ		 ൅		

௬

ଶ
 ଶܱ   (11)ܪ	

Partial oxidation and combustion are undesirable side reactions that produce no hydrogen until 

the water gas shift reaction converts any CO from (10) into H2 and CO2.  If Eq. (10) is the 

dominant reaction producing CO, rather than Reforming 1, the maximum expected H2:CO2 ratio 

would be 1:1, which is close to our highest observed molar ratios. With sufficient oxygen, Eq. 

(11) suggests the reactor would produce neither H2 nor CO.  The molar ratios in the high 

biomass concentration data of Figure 8 suggests that partial oxidation and/or combustion 

chemisty are important for setting the final gas stoichiometry, and that Water Gas Shift has not 

achieved thermodynamic equilibrium in our reactor. 
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4.4	Conclusions	

 A new feedstock, Ponderosa Pine, has been gasified utilizing continuous feed SCW 

gasification.  This adds to the existing body of literature and helps to demonstrate the 

robustness of the process.  For all parameters tested conversion rates are consistently high 

(nominally 95%).  Of significant note is the indication that using a processing rate that is much 

faster than that of previous research can result in higher concentrations of H2 at lower process 

temperatures than previously thought [KEL07, HAO03, RES07, RES08, RES09, RES10, & 

YAN06].  Furthermore consistent variations in syngas composition with biomass feed 

concentration are shown.  Under our conditions variations in biomass concentration are more 

important than temperature for determining product gas composition.  this supports the practical 

goal of decreasing water concentration in the process, which reduces the energy input needed 

for gasification.  Clear trends are shown that favors H2 production at 5% concentrations of 

biomass versus 10% & 15% respectively, however all samples under all mixtures and 

concentrations did gasify. Additionally, it was shown that higher concentrations produce not only 

more syngas, but can result in a higher hearting value as well.  Current reactions thought to 

occur in SCWG do not sufficiently describe all of the observed behavior.  One possible 

explanation is the introduction of oxygen via air entrainment into the slurry at higher slurry 

concentrations.  

 

CH	5:	Evaluate	Raman	Spectroscopy	for	Use	in	Syngas	Produced	by	SCW	Gasification		

5.1	Background	

Raman spectroscopy is a measurement technique based upon the Raman effect.  This 

effect was first discovered in 1927 and is based upon the scattering of light when it impacts a 

molecule [KNE99].  When this occurs, three possible types of scattering can result: Rayleigh, 
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 Water can behave differently depending upon its state, which affects its behavior during 

Raman measurements.  Typical water behaves differently than super critical water in a variety 

of ways.  Research on super critical water itself shows the level of change that can occur 

pending its temperature and pressure [IKU98].  Regardless, throughout all temperature and 

pressure ranges Raman measurements of SCW were able to be obtained. 

 This author’s research attempts to validate the use of Raman Spectroscopy as a tool for 

real time analysis of SCW gasification.  Currently researchers are using offline gas 

chromatography to determine syngas mixtures but are unable to monitor the actual production 

of syngas [MAT05].  Because SCW gasification allows one to vary the composition of the 

syngas, having real time data gives the ability to adjust parameters to match a desired output.  

The importance of this for any industrial process is monumental.   

  

5.2	Materials	&	Methods	

Ponderosa Pine feedstock was obtained from an industrial saw mill directly from the 

production line.  This feedstock was chosen due to its local availability and because it would 

allow for the testing of a real, modestly processed woody biomass resource.  Samples were run 

with 20 mesh ground with a Wiley mill using sequential grinding. Distilled water is added to the 

sawdust to achieve a 5% biomass concentration (1690 grams Di water for every 90 grams of 

dry biomass). The biomass/water slurry was allowed to sit overnight so that the wood was 

saturated.  This mixture was then used for our continuously fed apparatus. 

 For these measurements a Rxn-1 system from Kaiser Optical Systems Inc. was used.   

The system utilizes a 785 nm laser with a 400mW power rating.  The device uses a Holoplex 

grating with an aperture ratio of ƒ/1.8 for simultaneous collection of Raman data across the 

entire spectrum.  Kaiser’s MR series probe head is used in order to connect the laser to custom 
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build sapphire ball probes.  The patent for these probes is owned by Brian Marquardt, the 

collaborator for this experiment.  These probes offer a significant advantage over traditional 

ones in regards to focal length.  Furthermore they are designed with Hastelloy connections, 

which are ideal for high temperature/pressure experiments.   

All measurements were acquired using cosmic ray removal for clean spectra.  Offline 

acquisitions were run for a total 30mins with 30 scans (30s each) for the blank (water) and the 

filtered product and 90 scans (30s each) for the unfiltered biomass slurry. Online acquisitions 

(super critical conditions) were a total 2mins with 30 scans (2s each) with the probe inserted 

mid-length along the reactor.  Spectra are reported in counts per second to account for 

acquisition time differences and analysis was done using the Wire 2.0 software. Baselines were 

modeled well with cubic spline functions, thus producing flat baselines for subsequent analysis. 

Spectral peaks were then fitted to standard Vogt distribution profiles, and curve fit parameters 

were used to calculate integrated peak areas.  

 

5.3	Results	&	Discussion	

 The first ever measurements of Ponderosa Pine during the gasification process in super 

critical water were obtained.  This demonstrates a new and exciting possible means for real-

time monitoring of super critical water gasification of actual biomass.  High fluorescence was 

evident, however after base-lining spectra that very closely match those obtained in previous 

research at ambient temperatures and pressures were obtained [KAC00, MEY11, OST06].  

Furthermore it was noticed that the level of fluorescence rose as samples were entered into the 

reactor.  This offers a possible means of determining the biomass concentrations within the 

system.  Table 5.3.1 below shows the expected peaks of cellulose and their vibrational modes 

at ambient temperature and pressure. 
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Table 5.3.: Expected Peaks for cellulose [OST06] 

Lignin has fewer peaks with shifts occurring at 1587, 1591, 1594, 1603, and 1606 cm -1 
[MEY11].  Hemicellulose typically shows shifts at 1026, 1034, 1041, and 1064, 1078, cm-1 
[KAC00]. The Raman spectra for the gases expected in the syngas are as follows: Carbon 
Monoxide ~ 2000 cm-1 (weak), Carbon Dioxide ~ 1350 cm-1 (strong), Hydrogen ~ 4150 cm-1 
(medium), and Methane ~ 2900 cm-1 (strong) [AND77, GRE03, JOU05, & MAH84].  These 
correspond to gas chromatography measurements made in previous research in this system 
with identical operating parameters.  Figure 5.3.1 below shows three spectra obtained in-situ. 

 

Raman Shift (cm‐1) Vibration mode

3500‐3200 OH Stretch

3000‐2800 CH, CH2 Stretch

1476 HCH and HOC bend

1376 HCC, HCO, and HOC bend

1334 HCC, HCO, and HOC bend

1290 HCC and HCO bend

1118 CC and CO stretch

1095 CC and CO stretch

516‐379 Skeletal (CCC, COC, OCC, and OCO) bend
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 Monomer Oligomerization nC10H12O4 → (C10H10O3)2 +(C10H10O3)3 +…   (2) 

 Monomer Decomposition:  C10H12O4 → CxHyOz     (3) 

 Steam Reforming I:  CxHyOz + (x-z)H2O → xCO +(x-z +y/2)H2   (4) 

 Steam Reforming 2:   CxHyOz + (2x-z)H2O → xCO2 +(2x-z +y/2)H2  (5) 

 Char Formation:   CxHyOz → wC + Cx-wHyOz     (6) 

 Water-gas Shift:   CO + H2O  → CO2 + H2     (7) 

 Methanation:    CO + 3H2 → CH4 + H2O     (8) 

 Hydrogenation:   CO + 2H2 → CH4 + 1/2O2     (9) 

By following this proposed reaction chemistry it can be seen that a number of products can 

possibly be formed.  The spectra of the effluent is so close to that of the distilled water that it is 

nearly indistinguishable.  Previous research demonstrated a nominal conversion efficiency of 

95% under these parameters.  Figure 5.3.5 shows the sample prior to processing and the 

effluent prior to being filtered.  While some color is evident in the effluent, the spectra below are 

a strong indicator that the unconverted biomass did not undergo any chemistry changes that 

would have resulted in it being dissolved in the effluent.   
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previous research done under these parameters in that it shows that there are no identifiable 

compounds appearing in the effluent. 

CH6:	Recommendations	and	Future	Work	

In order to increase understanding of syngas makeup and feedstock, future work should 

focus exploring the phenomenon causing the shift in syngas between the 5% and 10% biomass 

concentration levels.  Additionally increasing biomass loadings beyond 15% should be explored 

in order to determine the minimal water concentration for gasification to still occur in continuous 

flow systems.  This would result in a better understanding of the maximum energy efficiency that 

could be obtained by SCW gasification.  Further experimentation where variation of syngas due 

to process times is explored could offer another means by which to control syngas composition. 

In order to increase understanding of in-situ testing, future work should focus exploring 

the spectra and attempting to isolate more compounds.  As this system encompasses a very 

complicated reaction pathway, the more understanding that can be obtained the higher its 

potential of large scale industrial use.  Additionally increasing biomass loadings beyond 5% 

should be explored in order to determine if Raman Spectroscopy can be used to monitor higher 

biomass loadings in continuous flow systems.   
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Appendix 

7.1	Other	work/projects	accomplished	during	Phd	

 Construction of Fuel Cell Test Stand 

 Fuel Cell Class Winter 2008 

 Fuel Cell Class Spring 2008 

 USAF Biofuels Project 

 CPAC Proposal ($5,000) 

 Environmental Innovation Challenge 2010 (2nd place - $5,000) 

 Environmental Innovation Challenge 2011 (3rd place - $2,500) 

 Foster School of Business Competition (Sweet 16) 

 Jone’s Milestone Competition 2011 ($15,000) 

 Establishment of Carbon Cultures (C Corp Founded 2012) 

 Innovation Showcase 2012 

 IGERT Student/TA 

 Shop Master Mechanical Engineering  

 Engineers Without Borders 

 Jackson School Guatemala Project 

 US NCAGS Liaison South Korea 

 

7.2	Pyrolysis/Kilns	

Aside from gasification, pyrolysis is another possible technique for converting biomass to 

a denser, more useable product.  Pyrolysis is a thermally driven process wherein the existing 

wood structure is broken into a number of possible products.  The process is performed in an 

oxygen limited environment and produces gases, liquids, and/or solids depending on the 
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temperature and process times involved.  Slow, fast, and flash pyrolysis are three typical 

classifications with temperatures ranging from 300-1000o C [GOY06 & LIN09].  Of the three, 

slow pyrolysis is the most suited for the production of solids. 

The solid produced from slow pyrolysis, referred to as biochar, char, and/or charcoal has 

a number of uses and has been produced for millennia [SYR06].  Currently, uses for biochar 

range from soil amendments, to refining steel, to use as a fuel [CHI93, LIN09, MUY99].  Aside 

from altering biomass to a more useable product, slow pyrolysis offers the additional 

advantages of increasing energy density and reducing water [SHA92] in the resulting product.  

These combined aspects form a very promising solution to the multifaceted problem of 

removing biomass from the forest whilst overcoming the issue of transportation costs. 

The method of production techniques vary but can be broken into categories along a few 

basic kiln types.  Each of these kilns has a variety of advantages in addition to a number of 

disadvantages.  While it might seem counterintuitive, the majority of kilns utilize technology that 

is hundreds if not thousands of years old [SEI08].  The efficiencies of these kilns can be as low 

as 8% [SEI08].  Further complicating the issue is that traditional kiln technology actually causes 

more pollution than open burning of the wood [ADA09].  This is due to the release of low 

molecular weight hydrocarbons that are unburned during the process.  It is estimated that 

Kenya and Zambia alone pollute over 10.7 billion m3 of air each year from the making of 

charcoal [ADA09].  When one looks at the total number of countries throughout the world that 

make char the numbers can be astounding.   Industrial kilns offer a reprieve from the issue of 

conversion efficiency but usually at an increased transportation cost since industrial kilns are 

usually not located at the site where the biomass is generated.  The cost of having to transport 

the biomass greater distances can be cost prohibitive.   
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7.4	Determine	Conversion	Efficiency	of	Mobile	Pyrolysis	System	

   

Introduction	

The mobile blanket kiln is a new technology inspired by the Bioenergy IGERT.  As such 

a number of its operating parameters have yet to be determined.  Of these, the system’s 

conversion efficiency is one of the most important.  This parameter plays a key role in the 

environmental impact and financial potential of the technology.  Key parameters required in the 

determination of this parameter are the mass before and after processing, the water content of 

the biomass and the char, and the temperature profile. 

Experimental	Methods	

 Mass balance before and after burns was determined by means of an industrial scale.  

The biomass will be bagged into a series of bags and weighed.  After completion of the burn, 

biochar will be collected and weighed again.  It is important for the data to be relevant, that is  

burns must be of a representative size and biomass type be representative as well.  To date this 

process has been completed six with the use of Alder from a slash pile in the Pacific Research 

Forest and Ponderosa Pine from the Yakama reservation.  For the first burn the net weight of 

the pre-burn biomass was 295kg.  Post burn weight was 64.9kg.  This biochar was allowed to 

air-dry for 1 month in order to ensure that minimal water residue was present and the re-

weighed resulting in a mass of 55.34kg (conversion efficiency of 31%).  The evaporated water 

was accounted for and used as a baseline for future burns. It is important to note it takes 

several weeks for water to fully evaporate but it is anticipated will be nominally 30% confirming 

the first burn’s results. 

Water content before and after burn is a key parameter in determining the actual 

conversion efficiency.  Green wood nominally contains 50% water; however, wood from piles 

that have been exposed to the elements can become water-logged and contain more moisture.  
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Bone dry wood contains 8-10% water content.  This variability of water content in different 

biomass samples means it is necessary to get a representative measure of the water content 

present in each batch of biomass for each burn.  Due to the large size of the piles and variability 

of the pieces it is necessary to choose  a number of random pieces.  The pieces are then oven 

dried.  The weights are monitored and as the moisture content asymptotes, it allows for 

calculation of the water content.  There are other methods for measuring moisture content such 

as using a small, self-contained moisture analyzer but, due to the small sample size they can 

accommodate, could lead to possible errors within the data.  For the conducted burn, moisture 

contents ranged from 42-47%.  It is important to note that while biochar is hydrophobic, water 

can still adhere to outer surfaces resulting in erroneous results if not allowed to evaporate.  

Therefore, in the first experiment, in order to attempt to find the bounds for how much water 

actually adhered to the surface, biochar was allowed to air-dry for 1 month in order to ensure 

that minimal water residue was present and the re-weighed.  The net change was from a post-

burn weight of 64.9kg to a final mass of 55.34kg.  This delta was approximately 15%.  For all 

further burns this adjustment of 15% residual water weight was accounted for in calculations.  

While it would have been preferable to store and dry all samples, the volume of material 

prohibited such.  It should be kept in mind that only fully converted biochar was counted.  All 

pieces that were not friable were considered unconverted, resulting in a fairly conservative 

conversion efficiency. 

The processing temperature of biomass plays a significant role in its retained mass and 

properties [ANT00, ANT03, & SYR05].  This variability in temperature profile can result in mass 

differences between burns.  As such it is necessary to ensure that all burns conducted, match 

as closely as possible in terms of process temperature.  Temperature monitoring is done via a 

series of k-type thermocouples in a probe configuration throughout the pile.  Temperature 

control is achieved by varying the aperture size on a series of vents incorporated onto the 
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blanket kiln.  By monitoring airflow it is possible to vary the temperature within the system. At 

400o C the stoichiometric conversions of cellulose is approximated by C6H10O5  3.75C0.60O0.13 

+ 2.88H2O + 0.5CO2 + 0.25CO + C1.5H1.25O0.38 [ANT03].   

In order to obtain a better grasp of the properties of the biochar a thermogravimetric 

analysis (TGA) was performed on experiments 4-6.  Thermogravimetric analysis offers a simple 

but effective means by which to characterize some of the aspects of the char produced by the 

mobile kiln.  The technique works via the use of a precision balance contained within a furnace 

that can be heated/cooled precisely.  Furthermore, the environment can be controlled by 

introducing any variety of gases into the system.  Types of gases can range from inert to those 

that allow combustion. For the purpose of the TGA, biochar was oven dried at 93oC and then 

ground to a 40 mesh using a Wiley Mill grinder.  The test procedure involved 3 steps: 1) heating 

biochar at a rate of 20°C/min to 110°C and holding for 5 min to determine moisture content,  

2) heating from 110°C at 20°C/min to 900°C and holding for 20 min in order to determine 

percentage of volatiles, and finally  

3)  introducing oxygen to combust char and determine ash content.   

This three step process was performed with biochar samples from the last 3 field experiments. 

 

Results	

 

The net result for the 1st burn conducted with the latest geometry system was a 31% 

efficiency of conversion.  For that burn, the net weight of the pre-burn biomass was 295kg.   

Biochar was allowed to air-dry for 1 month in order to ensure that minimal water residue was 

present and then re-weighed resulting in a mass of 55.34kg (conversion efficiency of 31%).   
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amount of non-converted material (due to not allowing enough cook time).  Notwithstanding 

these two outliers, the mobile kiln has shown itself quite consistent in all measured parameters 

with a nominal efficiency around 30%.  This far exceeds that of contemporary on-site kilns and 

demonstrates the effectiveness of the technology [SEI08 & KAN93]. 

 

7.5	Safety	Factor	Calculations	

For	feed	tank	analysis	

Stainless steel 304 – matweb: http://www.matweb.com/search/DataSheet.aspx?MatID=12674 

σult=73,200psi=505MPa   Kic=approx 200MPa*m1/2 

σyield=31,200psi=215MPa 

CTE= 9.89 µin/in-°F (17.8 µm/m-°C) @250oC 

Thermal Conductivity= 112.0 BTU-in/hr-ft²-°F  (16.2 W/m-K)  

σyield  Verified on McMaster Carr website (supplier) as 30kpsi.  Used most conservative value:  

For Feed Tank Calculations: 

σyield  = 30,000psi 

critical crack size=1/π*(Kic/σ)2= (calculated at yield stress) =1/π*(200/215)2=0.275m>>thickness 
(therefore leak before crack criteria met). 

σ୪ି୫ୟ୶ ൌ
୮୰౟

మ

୰౥
మି୰౟

మ ൌ
ହ,଴଴଴୮ୱ୧∗ଵ౟

మ

ଵ.଻ହ౥
మିଵ౟

మ =2,420psi 

σ୲ି୫ୟ୶ ൌ
୮ሺ୰౥మା୰౟

మሻ

୰౥
మି୰౟

మ =
ହ,଴଴଴୮ୱ୧ሺଵ.଻ହ౥మାଵ౟

మሻ

ଵ.଻ହ౥
మିଵ౟

మ =9,850psi 

Safety factor =σyield/σmax=30,000/13,000= 3.05 (for maximum design operating pressure of 
5,000psi=34.47MPa) 

 

For	reactor	analysis		

Inconel 625 – matweb:  http://www.matweb.com/search/DataSheet.aspx?MatID=17402 

σult=110,000psi=760MPa @ 1200oF (650oC) Kic=approx 700MPa*m1/2 
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σyield=42,100psi=290MPa @ 1200oF (650oC) 

CTE= 7.11 µin/in-°F (12.8 µm/m-°C) 

Thermal Conductivity= 68.0 BTU-in/hr-ft²-°F  (9.80 W/m-K) 

σyield verified on McMaster Carr website (supplier).  Discrepancy due to testing temperature in 
that supplier lists a yield of 55kpsi (most conservative value used for calculations) 

For Reactor Calculations: 

σyield=42,100psi=290MPa @ 1200oF (650oC) 

critical crack size=1/π*(Kic/σ)2= (calculated at yield stress) =1/π*(700/290)2=1.855m>>thickness 
(therefore leak before crack criteria met). 

σ୪ି୫ୟ୶ ൌ
୮୰౟

మ

୰౥
మି୰౟

మ ൌ
ହ,଴଴଴୮ୱ୧∗଴.ଵଶହ౟

మ

଴.ହ౥
మି଴.ଵଶହ౟

మ =333 psi 

σ୲ି୫ୟ୶ ൌ
୮ሺ୰౥మା୰౟

మሻ

୰౥
మି୰౟

మ ൌ
ହ,଴଴଴୮ୱ୧ሺ଴.ହ౥మା଴.ଵଶହ౟

మሻ

଴.ହ౥
మି଴.ଵଶହ౟

మ =5,670psi 

Safety factor =σyield/σmax=42,100/5,667= 7.43 yield & 19.4 failure 

 

For	Check	Valve	Housing	analysis	

Stainless steel 309 – matweb: http://www.matweb.com/search/DataSheet.aspx?MatID=12724 

σult=55,100=380MPa @ 1200oF (650oC) 

σyield=21,800psi=150MPa @ 1200oF (650oC) 

CTE= 9.28 µin/in-°F (16.7 µm/m-°C) 

Thermal Conductivity= 108.0 BTU-in/hr-ft²-°F  (15.6 W/m-K) 

σyield verified on McMaster Carr website (supplier).  Discrepancy intentionally due to testing 
temperature in that supplier lists a yield of 40kpsi @ room temperature.  The value at elevated 
testing temperature was intentionally used as the check valve housings will be in contact with 
biomass directly upstream of the reactor.  The temperatures here will be below reactor 
temperatures (650oC +-50) but this was done to give an extremely conservative safety value.  
Of note is that the check valves will be upstream of the cooling Y coupler (guaranteeing a 
significantly lower temperature in the check valve housings). 

For Check Valve Calculations: 

σyield  = 21,800psi 
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σ୪ି୫ୟ୶ ൌ
୮୰౟

మ

୰౥
మି୰౟

మ ൌ
ହ,଴଴଴୮ୱ୧∗ଷ/଼౟

మ

ହ/଼౥
మିଷ/଼౟

మ =2,813 psi 

σ୲ି୫ୟ୶ ൌ
୮ሺ୰౥మା୰౟

మሻ

୰౥
మି୰౟

మ =
ହ,଴଴଴୮ୱ୧ሺହ/଼౥మାଷ/଼౟

మሻ

ହ/଼౥
మିଷ/଼౟

మ =10,625 psi 

Safety factor =σyield/σmax=21,800/10,625= 2.05 (for maximum design operating pressure of 
5,000psi=34.47MPa) 
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7.6	Conversion	Efficiency,	Flow	Rate,	and	Mesh	Size	information	

 

 

Table 7.6.1: Approximate Flow Rate & Particle Size in System 
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