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The relative importance of permanent (trend) versus cyclical shocks to GDP has been a

central issue in macroeconomics since the work of Nelson and Plosser (1982). Morley et al.

(2003) find large trend shocks. In contrast, Perron and Wada (2009) argue for a onetime

change in the mean growth rate at 1973:1 to be the only trend shock to the post-war U.S.

real output.

Chapter 1 presents a joint work with Richard Startz. We re-estimate the Perron and

Wada (2009) model conditional on a trend break having occurred at any one quarter. We

then average the conditional estimates of the trend variance over the probability that the

break occurred in a specified quarter. We do this both by an approximate Bayesian model

average in which the conditional estimates are done by maximum likelihood and the date

probabilities are found using the Schwarz (1978) approximation to the Bayesian marginal

likelihood, and an exact Bayesian analysis which incorporates break date uncertainty into

a trend-cycle decomposition of U.S. real GDP. The weight of the evidence supports the

Perron and Wada (2009)’s finding of a fairly small trend variance, but the data does not

provide very strong evidence against the alternative.

As confirmed in Chapter 1, little evidence has been found for the stochastic trends when

researchers allow for adequate number of structural breaks in the growth rates. Therefore

deterministic (linear) trends with structural breaks are often proposed to describe the trend

component for U.S. real output. In Chapter 2, we examine the effect of unknown structural





breaks, including those in the mean growth rate and the covariance matrix, on the evidence

of the stochastic trend for the U.S. postwar quarterly real GDP. We use Bayesian approach to

compare the stochastic trend models with the deterministic (linear) trend models, allowing

for up to four unknown structural breaks in the mean growth rate and/or up to one break

in the shocks’ covariance matrix. We find evidence for two structural breaks in mean: one

around early 1970s, and the other after 2000. Data also identify early 1980s as the date for

a volatility reduction. Conditional on the selected break dates, data favors the stochastic

trend models over deterministic trend models. Exclusions of the stochastic trends and the

effect of ongoing real shocks reported in the literature could be misleading if one ignores

the structural breaks in the error variances and covariances.

In Chapter 3, we present evidence for the changing correlation between U.S. trend and

cycle GDP in the post-WWII period. Researchers usually assume constant trend-cycle

correlation when using unobserved component models to decompose U.S. real output. We

introduce the time varying correlation into a UC model with a random walk mean growth

rate and stochastic volatilities. We find that the estimated correlation is negative but could

be close to zero before 1980s. And it has become more negative since the 1980s till the

end of the sample (2012:4). By allowing the correlation to change over time, we are able to

reconcile some of the debating results from earlier work. Through counterfactural studies,

we show that the change in correlation contributes equally with the reduction in the cycle

volatility to the great moderation. As a by-product, we find evidence for a stochastic trend

and ongoing permanent shocks. We also find some signs of the grow rate slowdown around

1970 and further reduction around 2005.
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Chapter 1

IS IT ONE BREAK OR ONGOING PERMANENT SHOCKS THAT

EXPLAINS U.S. REAL GDP? A BAYESIAN ANALYSIS USING AN

UNOBSERVED COMPONENT MODEL

The relative importance of a nonstationary component in real output has been a key

issue in our understanding of the business cycle at least since Nelson and Plosser (1982).

Using an unobserved component model, Morley et al. (2003) (hereafter MNZ) find that the

trend component of U.S. real GDP has a unit root and accounts for most of the fluctuations

in output. However, Perron and Wada (2009) (hereafter PW) find that once a structural

break in the mean growth rate of real GDP—exogenously set as occurring in 1973:1—is

incorporated in MNZ’s specification, the nonstationary component essentially disappears.

One can think of the dispute as being between a one-time, very large permanent change in

the growth rate versus ongoing permanent shocks to the level of real output.

In this paper we take the MNZ/PW model and allow a break in the GDP process to

occur at any date, rather than in a pre-specified quarter1. It may be useful to think of the

analysis that follows as taking place in several steps. First, we estimate the probability that

a trend break occurred on a specified date for each date in the sample. We then estimate the

probability distribution for the model parameters, notably for the trend variance, conditional

on a break having occurred on a given date. Finally, we integrate the conditional probability

distributions with respect to the probability of the break date to obtain an unconditional

distribution.

For break dates close to PW’s 1973:1 choice, the conditional distributions show a very

small trend variance. For break dates far from 1973:1, the conditional distributions show

a large trend variance-one consistent with the MNZ findings. We do find that the bulk of

1PW also estimate a Clark (1987) type model to support their arguments derived from the fixed break
date model. This alternative model uses a random walk process to approximate an endogenized uncertain
break date. However, it explicitly assumes zero correlation among all shocks and may be subject to the
over-identification critique pointed out by MNZ and Oh and Zivot (2006).
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the probability distribution for the date of the break is close to the date chosen by PW.

As a result, when we integrate the conditional distributions across break dates the mode

of the unconditional distribution is close to the PW finding of a very small trend variance.

However, the probability weight on dates far from PW’s choice is not negligible. This means

that the unconditional distribution is bimodal with the lower mode being fairly close to the

MNZ finding. Or to say it in a different way, the evidence weighs in the direction of a small

trend variance, but the evidence is not strong enough to be conclusive.

Estimation requires two separable steps: estimation of the conditional distributions and

estimation of the probability that the break occurred on a particular date. In section 1.2

of the paper we estimate the conditional distributions by maximum likelihood and the

break-date probabilities using the Schwarz (1978) approximation to the Bayesian marginal

likelihood. The latter can be thought of as using the SIC (also referred to as BIC) for model

weighting instead of as a criterion for model choice. We call this “approximate Bayesian

model averaging”. In this section, the conditional distributions are derived without requiring

specification of a prior.

In section 1.3, we execute a complete Bayesian model averaging, which does require

priors for the conditional distributions. (In both sections the prior for the break date is

that all dates are ex ante equally likely.) The cost of the complete Bayesian approach is

that the results are dependent on priors for the conditional distributions, which is not true

for the approximate Bayesian approach. (The complete Bayesian approach is also more

computationally expensive.) The advantage of the complete approach is that it eliminates

the approximation error in using the Schwarz criterion. As it turns out, the results are fairly

similar for the two approaches and the results are not sensitive to the choice of prior.

Our primary interest is in the unconditional distribution for trend variance. However,

one might wish to compare directly the PW model and the MNZ model with our unknown

break date model. Our model and the PWmodel both assume that a break occurred at some

point. Perhaps the data prefer the no-break MNZ version. Or, conditional on there being a

break, we can ask whether the data clearly identify 1973:1 as the correct choice of break. PW

conducted extensive robustness checks and concluded that the evidence strongly favors a

break and that the break occurred in 1973:1 or at least in a nearby quarter. However, model



3

comparisons can be problematic when one parameter is on the edge of the parameters space

(the trend variance equaling zero). Non-standard tests are required to compare different

break dates2.

We avoid the complication of classical tests by implementing Bayesian model compar-

isons. It is straight forward to compare models in a Bayesian framework by simply com-

paring the marginal likelihoods of different models. With our approximate Bayesian model

averaging, we find modest evidence that a break occurred, although the PW’s choice of the

break date is positively supported if there is assumed to be a break. In our exact Bayesian

estimation, we find that the evidence supports a break and further that it supports PW’s

choice of when the break occurred. However, the evidence is not decisive. In other words,

part of the reason for the dispute in the literature over the size of the variance of the GDP

trend component is that the data does not speak clearly enough to settle the issue.

The remainder of our paper is organized as follows. Section 1.1 specifies our model with

an uncertain break date in the mean growth rate. Section 1.2 describes the approximate

Bayesian model averaging approach and shows results from it. Section 1.3 presents our

exact Bayesian approach and the corresponding results. Section 1.4 concludes our paper.

1.1 The benchmark model: an unobserved component model with an uncertain

break date

Both MNZ and PW adopt an unobserved component (UC) model with a random walk trend

component, an AR(2) cycle component and correlation between the trend and cycle shocks.

The unobserved component, trend-cycle decomposition model is:

yt = τt + ct (1.1)

τt = µt + τt−1 + ηt (1.2)

µt = µ+ 1(t > Tb)d (1.3)

ct = φ1ct−1 + φ2ct−2 + ǫt (1.4)

In the above model, yt is the logarithm of real GDP, which is the sum of the trend

component τt and the cyclical component ct. τt follows a random walk with drift µt. µt is

2See, for instance, Morley and Eo (2013).
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the mean growth rate of the real output, which may or may not be constant. As PW argue

for the possibility of a structural break in the mean growth rate, we also allow for such a

structural change here. As shown by (1.3), there is a permanent change in the mean growth

rate µt one period after the break date denoted by Tb, with the size of change denoted by

d. 1(t > Tb) is an indicator function that is zero until the break date, and takes the value

1 afterwards. In other words, the mean growth rate equals µ in the earlier sample periods,

and µ + d after the break date. The cyclical component ct is assumed to be a stationary

AR(2) process. ηt and ǫt are the shocks to the trend and cycle respectively. We allow for

contemporaneous correlation (ρ) between trend and cycle shocks in the model as follows3:

 ηt

ǫt


 ∼ i.i.d.N




 0

0


 ,


 σ2

η ρσησǫ

ρσησǫ σ2
ǫ




 (1.5)

The model given in (1.1)-(1.5) nests both the model of MNZ, with d = 0 and ση >> 0,

and the PW specification, with d 6= 0 and ση ≈ 0. PW find that once we allow for a break in

the mean growth rate of the trend component at 1973:1, the stochastic variation for trend

GDP becomes insignificant except for periods around the break date. In contrast to the

results in MNZ, the standard deviation of the trend shock is estimated to be close to zero.

Specifically, the standard deviation of the trend shock is estimated to be 1.2368 in MNZ,

while the estimate of the same parameter in PW is 0.104 after allowing for the one-time

trend break. PW argue that their estimation captures a growth rate slowdown around

1973:1 and a deterministic broken-trend model is a better description for the quarterly U.S.

real GDP.

Opinions from the literature vary considerably on the existence and timing of this struc-

tural break in the mean growth rate. For instance, Ben-David and Papell (1998) conduct

a series of classical hypothesis tests and reject the significance of trend breaks in U.S. real

GDP between 1950 and 1990. Chen and Zivot (2010) conduct Bayesian estimation with 130

years of annual data and find that the only possible structural break after 1947 takes place

between 1947 and 1952. Perron and Wada (2009) obtain evidence for the structural trend

break occurring around 1973 using the unobserved component model presented above.

3In this UC representation with an AR(2) cycle, the correlation of ηt and ǫt is identified if neither ση nor
σǫ equals zero.
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In the succeeding sections, we will let the break date be uncertain and estimated by

the data. For the purpose of comparison, we use the same set of data as MNZ and PW

to generate results reported in this paper. The dataset includes quarterly real GDP data

from 1947:1 to 1998:24. We take the model with an uncertain break date as our benchmark.

The fixed break date case (PW) and the no break date case (MNZ) will be considered and

estimated separately.

1.2 An approximate Bayesian model averaging

We propose an approximate Bayesian model averaging (BMA) approach to construct the

approximate Bayesian posterior distribution for parameters of interest. Schwarz (1978)

shows that the approximation of the Bayesian log marginal likelihood consists of the maxi-

mized log-likelihood and a penalty term for model complexity, with the approximation error

bounded. Our approach takes advantage of this approximation to construct the approximate

posterior inferences in our benchmark model.

1.2.1 Methodology

An approximate Bayesian model averaging

Hereafter, we let f(·) denote the probability for discrete variables, and the probability

density for continuous variables without distinction. The method we propose takes the

following steps:

1. Let T denote the total number of observations we have. Conduct exact maximum

likelihood estimation to estimate the model we set up in section 1.1 with every pos-

sible break date. We then obtain a series of maximum likelihood estimators and the

maximized log likelihoods {ℓ̂t} for the MLEs given Tb = t ∈[1,T-1].

2. Approximate the Bayesian marginal likelihood given a break date at time t (St =

4We also conduct our analysis using an updated dataset running through 2008:2. No substantial differ-
ences are found. Details are reported in Appendix A.1
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f(Y |Tb = t)) according to Schwarz (1978)’s approximation:

logSt ≈ ℓ̂t −
k

2
log(T ) (1.6)

where Y = {y1, y2, ...yT }, and k represents the total number of the free parameters in

the model5.

3. According to Bayes rule,

f(Tb = t|Y ) ∝ f(Tb = t)St

If we assume a flat prior f(Tb = t) = 1/(T − 1) for all break dates (equivalently

all possible models in the model space), we can simplify the above posterior to the

following:

f(Tb = t|Y ) ∝ St (1.7)

Thus, we can approximate the posterior of different break dates using

f(Tb = t|Y ) =
f(Tb = t)St∑T−1
t=1 f(Tb = t)St

=
St∑T−1
t=1 St

(1.8)

where St is approximated by (1.6) given the MLE in each model.

4. We are particularly interested in the trend shock volatility ση, which determines the

existence and importance of the random walk component for trend GDP. We illustrate

below how to construct its approximate posterior distribution. Similar approaches can

be applied to other parameters of interest.

According to the Bayes theorem and the law of total probability f(ση|Y ) =
∑T−1

t=1 f(Tb =

t|Y )f(ση|Tb = t, Y ). The posterior density of ση is the mixture density of its pos-

terior under each model. While f(Tb = t|Y ) can be approximated using (1.8),

f(ση|Tb = t, Y ) can be approximated by the square root of a non-central χ2 dis-

tribution as explained below.

5k = 7 for the model with a given break date t. k = 6 for the no break model, as d drops out.
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In order to ensure non-negative variances and −1 ≤ ρ ≤ 1, we need to put constraints

on the parameter space. Instead of a direct restriction on the MLE procedure, we

adopt the following reparameterization:


 σ2

η ρσησǫ

ρσησǫ σ2
ǫ


 =


 Q1 0

Q2 Q3




 Q1 Q2

0 Q3




Unconstrained MLE can be conducted with respect to [Q1, Q2, Q3] and transformed to

obtain valid estimates for [ση, σǫ, ρ] that guarantee a positive semidefinite covariance

matrix. Within each possible model given Tb = t ∈[1,T-1], we obtain Q1’s maximum

likelihood estimator Q̂t
1 and its asymptotic variance Σ̂t

Q1. According to Heyde and

Johnstone (1979) and Chen (1985), the posterior distribution of Q1 can be asymptot-

ically approximated by a normal distribution N(Q̂t
1, Σ̂

t
Q1). Therefore, the conditional

posterior of ση =
√
Q2

1 asymptotically follows

√
χ2
1(

Q̂t2
1

Σ̂t
Q1

).

We thus propose an approximation to the posterior sampling of ση by first sampling

Tb from f(Tb = t|Y ), and then (conditional on the sampled Tb) sampling Q1 from

N(Q̂Tb
1 , Σ̂Tb

Q1). Posterior samples of ση can be obtained by ση = |Q1|.

5. Given the equal prior probability for each break date, we compute the marginal like-

lihood for the benchmark model with an uncertain structural break according to the

following:

f(Y |M) =
T−1∑

t=1

f(Y |Tb = t)f(Tb)

=
1

T − 1

T−1∑

t=1

f(Y |Tb = t) (1.9)

Model comparison

We compare two models based on their posterior odds. To be specific, posterior odds of

Modeli versus Modelj is defined as



8

f(Mi|Y )

f(Mj |Y )
=

f(Mi)

f(Mj)
×

f(Y |Mi)

f(Y |Mj)
(1.10)

If we assume equal prior probability for two models, the posterior odds can be simplified

as the ratio of marginal likelihoods, also known as the Bayes factor Bij = f(Y |Mi)/f(Y |Mj).

We approximate f(Y |Mi) and f(Y |Mi) using (1.6) and (1.9). For convenience, we will

construct 2log(Bij), which is a monotonic transformation of the Bayes factor and commonly

referred as the difference between two BIC statistics. If 2log(Bij) is positive (negative), we

prefer Mi (Mj).

Kass and Raftery (1995) and Raftery (1995) suggest using the following criteria for

significance of model comparison.

2log(Bij) Evidence for Mi, against Mj

0 to 2 Not worth more than a bare mention

2 to 6 Positive

6 to 10 Strong

> 10 Very strong

Table 1.1: Criteria for model comparisons based on twice the log Bayes factor

As a metric for what follows, a BIC difference of 2 corresponds to model odds of 2.7 to

1 and a BIC difference of 6 corresponds to odds of 20 to 1. While there is not an exact

frequentist comparison, note the usual 5 percent significance level implies that if the null is

true the odds are 19 to 1 against rejecting while a 1 percent significance level implies 99 to

1 odds.

1.2.2 Results from the approximate BMA

Break date posterior

The upper panel of Figure 1.1 presents the posterior distribution for all possible break dates

in the mean growth rate from 1947:1 to 1998:1, which is in fact a monotonic transformation
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of the log likelihood given each break date. The most likely break date we find is 1973:1,

which has an approximate posterior probability of 4.51% among all considered. This finding

coincides with PW’s choice of break date. The periods that are relatively more likely to be

the break date mostly locate between 1965 and 1980, which is in line with PW’s findings

that the mean growth rate starts to fall in the late 1960s and becomes stable after the late

1970s with the main changes occurring in 1973-1974.

Approximate posterior probability for each break date

A
pp

ro
xi

m
at

e 
po

st
er

io
r 

pr
ob

ab
ili

ty

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

0.01

0.02

0.03

0.04

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
0

0.2

0.4

0.6

0.8

1

Break dates

C
.D

.F

C.D.F for break dates Tb

Figure 1.1: Approximate posterior distribution of break dates within [1947:1,1998:1].

Note: Shaded areas in the upper panel show the 90% highest posterior density region.
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Approximate posterior for the trend shock volatility

As we are interested in understanding how an uncertain break date affects our inferences

on the trend and cycle of U.S. GDP, we place our focus on the standard deviation ση of the

trend shock ηt. If the estimated ση is significantly far from zero, we find evidence supporting

the stochastic trend in GDP. If ση is estimated to be small and close to zero, GDP may be

better described as a broken linear trend process as argued by PW.

We generate one million posterior samples of the trend shock volatility ση according to

the procedure described in section 1.2.1 and construct the approximate posterior density as

presented in Figure 1.2. Comparing to PW’s results, it is unsurprising that the uncertainty

of ση increases when we incorporate the break date uncertainty. However, as the uncertainty

of ση increases, a second mode occurs in its posterior sample density. As shown in Figure

1.2, the bimodal posterior distribution has the first mode at about 0.08 (close to PW’s

estimates) and the second mode at about 1.2 (close to MNZ’s estimates)6.

As shown in Figure 1.3, the ML estimate of the trend standard deviation is indeed highly

sensitive to the specified break date7. The point estimate of ση stays quite stable at about

1.2 except for the cases with break dates from mid 1960s to early 1980s. Notice that data

assigns about 15%-20% posterior probability mass to the break dates at the two ends of our

sample periods, leading to the occurence of the second mode in the posterior density of ση.

Although the posterior of ση suggests a small stochastic trend component, the existence of

the second mode makes such a conclusion less than certain.

Model comparison

While we are primarily interested in the results of model averaging, we can also conduct

model comparisons. Three models are considered in this section:

I. Benchmark model: uncertain break date, i.e. Tb ∈[1947:1, 1998:1].

6The overall posterior median is at 0.2829 and the posterior mean is at 0.4211. The 90% highest posterior
density intervals are (0.03, 0.68) ∪ (1.08, 1.33).

7The apparent knife-edge appearance of the point estimates in Figure 3 reflects the fact that the likelihood
function is multi-modal, and which mode is the global maximum switches abruptly with the break date
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Figure 1.2: Approximate posterior density for ση (upper panel) and σǫ (lower panel).

II. PW model: fixed break date at 1973:1.

III. MNZ model: no structural break.

Approximation to the log marginal likelihood of these models are computed according to

the methodology described in Section 1.2.1. Results are shown in Table 1.2.

The model that best fits the data is the PW model. Our benchmark model turns out to

have the lowest approximate log marginal likelihood. The MNZ model falls between PW’s
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Figure 1.3: Point estimate of ση for Tb ∈ [1947 : 1, 1998 : 1].

Note: 1. Dotted lines show the 95% confidence intervals. 2. For comparisons, the MLE estimate of ση is

0.1042 assuming the PW break date and 1.2368 assuming no break date.

Model Approx. 2log(Bij)

log marginal likelihood Row over column

PW MNZ

uncertain break date (Ours) -301.3601 -4.4492 -1.4810

Tb = 1973 : 1 (PW) -299.1355 2.9682

no break (MNZ) -300.6196

Table 1.2: Approximate log marginal likelihoods for different models



13

model and ours.

Comparing PW’s model with a fixed break date at 1973:1 to MNZ’s no break date model,

“positive” evidence is found to support the PW model with twice the log Bayes factor equal

to 2.9682. One may conclude that a deterministic trend model with a trend break at 1973:1

is the better description for U.S. GDP, although the evidence is not decisive.

However, once we take into account the break date uncertainty, evidence for the occur-

rence of a trend break is reversed. The data favors MNZ’s no break model over ours with

twice the log Bayes factor at 1.4810 though the difference in the log marginal likelihood is

“minor” according to Table 1.1.

Based on the approximate marginal likelihood, we find positive evidence for PW’s choice

of break date conditional on there being a break. But regarding to the existence of the trend

break, evidence is conflicting and dependent on whether the break date is assumed to be

uncertain. Furthermore, Weakliem (1999) points out and shows examples of the limitation

of BIC based studies. The Schwarz (1978)’s approximation is asymptotically equivalent to

the log marginal likelihood obtained under specific diffuse normal priors8 which may not

be consistent with the actual priors researchers have. To overcome the potential limitation

and reduce the approximation error by BIC, we provide an exact Bayesian analysis in the

next section.

1.3 Exact Bayesian estimation

In this section, we estimate the benchmark model defined by (1.1)-(1.5) using an exact

Bayesian approach. We allow the break date Tb ∈ [1, T − 1] (i.e. [1947:1,1998:1]) to be

estimated together with other parameters. Our Bayesian estimation is conducted using the

MCMC Gibbs sampling approach.

Comparing to our approximate BMA approach proposed in the previous section, the

exact Bayesian approach requires slightly more computation. It, however, provides several

8According to Raftery (1995) and Chow (1981), ignoring the approximation error automatically im-
plies a diffuse parameter prior around the maximum likelihood point estimates. The implied prior is

N(θ̂, (− Ĥ
T
)−1), where θ̂ is the parameters’ maximum likelihood estimates, Ĥ is the Hessian matrix evalu-

ated at θ̂, and T is the sample size. In our case, this prior turns out to be highly diffuse over the reasonable
parameter space.
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advantages. First, priors are directly specified and so are not subject to critiques of the

Schwarz (1978) approximation. Secondly, Bayesian approaches provide direct finite sample

inference. Finally, the trend-cycle decomposition can be obtained as one of the direct

outputs of the Bayesian Gibbs sampling.

1.3.1 Bayesian estimation

The model (1.1)-(1.5) can be rewritten into the state space form:

yt =
[
1 1 0

]
xt (1.11)

xt =




µ

0

0


+




d

0

0


 1(t > Tb) +




1 0 0

0 φ1 φ2

0 1 0


xt−1 +




1 0

0 1

0 0





 ηt

ǫt


 (1.12)

where xt = [τt, ct, ct−1]
′.

In order to ensure that the estimated covariance matrix is positive semidefinite, we

decompose the covariance matrix in the following way:


 σ2

η ρσησǫ

ρσησǫ σ2
ǫ


 =


 1 0

b 1




 σ2

1 0

0 σ2
2




 1 b

0 1


 (1.13)

and directly estimate {σ1, σ2, b} instead of the covariance matrix parameters {ση, σǫ, ρ}.

The posterior samples for the covariance parameters are obtained through transformation.

We specify independent proper priors for all parameters estimated. Inverse gamma

priors IG(100, 0.5)9 are assumed for σ2
1 and σ2

2. These priors are diffuse and do not have

finite moments. Therefore, a heavy weight will be put on sample information. We assume

somewhat informative normal priors for φ1 ∼ N(1, 1), φ2 ∼ N(0, 1) and b ∼ N(0, 1). As

noted in de Pooter et al. (2008), µ and d are nearly unidentified when the samples of φ1

and φ2 get very close to the non-stationary region. In this case, arbitrary real values for µ

9We follow Koop (2003) for the definition of inverse gamma (IG) distribution. If x > 0 follows inverse
gamma distribution IG(s−2, ν), the probability density function of x is defined as:

f(x; s−2
, ν) = (

2s−2

ν
)−

ν

2
1

Γ( ν
2
)
x
−

ν

2
−1

exp(−
ν

2s−2x
)

where Γ(·) is the gamma function.
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and d can be drawn and cause the Gibbs sampler to have difficulty in moving away from

the nonstationary region. To avoid such situations, we impose truncations for µ ∈ [0, 2] and

d ∈ [−0.5, 0.5]. We assume uniform priors for µ and d over the truncated areas and develop

truncated normal posteriors accordingly. While the above priors are broadly consistent with

estimates from the literature, we emphasize that our estimation results are robust to more

diffuse priors10. Lastly, we assume a flat proper prior for Tb such that all dates from 1947:1

to 1998:1 have equal probability to be the break date in the mean growth rate. Therefore,

the joint prior density is the product of all the above marginal prior densities. We present

prior moments and quantiles in Table 1.3.

We use the Gibbs sampling approach to draw posterior samples for parameters. We run

the Gibbs sampler for 300,000 times and save every 10th draw to reduce the autocorrelation

within samples. We thus obtain 30,000 draws from the Gibbs procedures and discard the

first 10,000 to avoid the effect of the initial values. To guarantee the convergence of the

Gibbs sampler, we divide our samples, excluding the burn-in draws, into three sets–a first

set of 6000 draws, a middle set of 7000 draws and a last set of 7000 draws. We find that the

posterior distribution and estimates based on the three subsets don’t vary much, suggesting

the convergence of our MCMC samples.

Define θ = [µ, φ1, φ2, ση, σǫ, ρ, d]. Let (·)(k) denote the the kth posterior draw of the

latent variable xt or the parameters. Y denotes all the observed quarterly log real GDP

{y1, y2, ...yT }. The kth step in our Gibbs sampler involves the following blocks:

1. Draw
{
x
(k)
t : t = 1, ...T

}
∼ f(x1, ...xT |Y, θ

(k−1), T b(k−1)) using the simulation smoother

developed by Durbin and Koopman (2002).

2. Draw
[
φ
(k)
1 , φ

(k)
2

]
∼ f(φ1, φ2|Y, x

(k)
t , σ

(k−1)
ǫ ) given that the second row in (1.12) has

the following regression form:

ct =
[
ct−1 ct−2

]

 φ1

φ2


+ ǫt (1.14)

10As robustness check, we set the variance for the normal priors to be 10 and priors for σ2
1 and σ2

2 to be
IG(100, 0.1), and get essentially the same results.
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The posterior samples for
[
φ
(k)
1 , φ

(k)
2

]
must guarantee the stationarity of the process

{ct : t = 1, ..., T}. Therefore, we discard nonstationary draws and regenerate new ones

until they meet the stationary requirement.

3. Draw
[
µ(k), d(k)

]
∼ f(µ, d|Y, x

(k)
t , σ

(k−1)
η ) given the regression in the first row of (1.12):

τt − τt−1 =
[
1 1(t > Tb)

]

 µ

d


+ ηt (1.15)

4. Draw
[
σ
(k)
1 , σ

(k)
2

]
∼ f(σ1, σ2|Y, x

(k)
t , µ(k), d(k), φ

(k)
1 , φ

(k)
2 , b(k−1)). Residual terms [η̂t, ǫ̂t]

′

can be obtained from the simulation smoother in the first step. Define η∗t = ηt ∼

N(0, σ2
1) and ǫ∗t = −bηt + ǫt ∼ N(0, σ2

2), and we have the following:

B−1


 η̂t

ǫ̂t


 =


 η̂t

−bη̂t + ǫ̂t


 =


 η̂∗t

ǫ̂∗t


 ∼ N




 0

0


 ,


 σ2

1 0

0 σ2
2




 (1.16)

where

B =


 1 0

b 1




We can then draw
[
σ2
1, σ

2
2

]
separately from two inverse Gamma distributions.

5. Draw b(k) ∼ f(b|Y, x
(k)
t , µ(k), d(k), φ

(k)
1 , φ

(k)
2 , σ

(k)
2 ). Given the second row in (1.16), we

have a standard regression to sample b:

ǫ̂t = η̂tb+ ǫ∗t (1.17)

where ǫ∗t ∼ N(0, σ2
2). We can construct the posterior samples for [ση, σǫ, ρ] according

to (1.13).

6. Draw Tb(k) ∼ f(Tb|Y, θ(k)). According to Wang and Zivot (2000), given the flat

proper prior assumed for Tb,

f(Tb|Y, θ) =
f(Y |Tb, θ)f(Tb|θ)

f(Y |θ)

∝ f(Y |Tb, θ)f(Tb)

∝ f(Y |Tb, θ) (1.18)
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More details on the Gibbs sampling are summarized in Appendix A.2.

Given that the PW and the MNZ models are both nested models for our benchmark,

we use same priors for the unrestricted parameters in the nested models as we do for the

benchmark model. Bayesian model comparisons can be conducted using the Bayes factor

and criteria defined in Section 1.2.1. The Bayesian marginal likelihood of each model can

be numerically computed using Chib (1995)’s method.

1.3.2 Bayesian estimation results

We present the Bayesian estimation results in Table 1.3. Posterior statistics after discarding

the initial burn-in samples are shown. 90% highest posterior density intervals are also

provided in Table 1.3.

Our Bayesian inferences are in line with our approximate results reported earlier. The

most likely break dates center around 1965-1980 period as shown in Figure 1.4. The posterior

mode is 1973:1 which has a posterior probability of 2.8%.

The estimated standard deviation for trend shock is slightly smaller than that for the

cycle shocks, but contains more uncertainty. The size of the structural trend break d has a

posterior mean of -0.2755, significantly non-zero.

Figure 1.5 reports the exact Bayesian posterior density for ση. The posterior density

under the PW and the MNZ specifications are also reported for comparison. Our Bayesian

results show an even more significant bimodal distribution and stronger evidence for the

nonstationary component. The first mode is at about 0.45, which is a little further away

from zero when compared to PW’s estimate. The second mode is at about 1. There are

about 65% of posterior samples for ση centering around the first mode and 35% around the

second one. We believe that the finite sample results reveal the limited power of the current

data to clearly identify whether or not the stochastic component is important for the U.S.

real output.

Model comparisons are constructed using the estimated log marginal likelihoods. We

again use twice the log Bayes factor and the criteria in Table 1.1 to compare different models.

The same three models are considered and all estimated by full Bayesian approaches.
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Figure 1.4: Posterior distribution of break dates.

Note: In the upper panel, all (including both dark and light) shaded areas represent the 90% HPD

intervals, while the dark ones represent the 70% HPD intervals.

Different from our approximate results, we find consistent and stronger evidence for

the existence of a structural break (as reported in Table 1.4). PW’s model and ours are

“positively” supported by data against MNZ’s no break date model. However, the marginal

likelihood of our model is only slightly lower than PW’s model. Twice the log Bayes factor
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Figure 1.5: Posterior density of ση (upper panel) and σǫ (lower panel).

is 1.7314 for the PW model vs. the benchmark model, favoring the PW’s choice of break

date but not decisively.

To more clearly observe how the uncertain ση affect the trend-cycle decomposition, we

report our estimated trend and cycle in Figure 1.6. Based on the samples obtained from the

Gibbs samplers, we can estimate the trend component of U.S. real GDP by the posterior

sample mean with no reliance on the point estimate of parameters. Our trend estimate
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Figure 1.6: Posterior estimate of cycles for benchmark model.

Note: Shaded areas represent the NBER recession periods.

suggests a stochastic trend but much smoother than what MNZ suggest. The estimated

cycles mostly lie between PW and MNZ’s cycles.

1.4 Conclusion

We conduct both an approximate BMA and an exact Bayesian estimation to endogenize the

break date uncertainty for the trend-cycle decomposition of U.S. real GDP. We find positive

evidence for a structural break in the mean growth rate of the U.S. real output, most likely

taking place around 1970s, based on our Bayesian estimation.

While our estimation results are mostly in line with those reported in PW, the data
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does not definitively settle the question. When we allow the break date to vary rather than

being fixed at 1973:1, we are more uncertain about the relative importance of the permanent

trend shock ηt than either PW or MNZ are. We show, by both methods, that the posterior

distribution of the trend shock volatility ση exhibits a bimodal distribution where there is

a significant probability, although not larger than the alternative, for it to be larger than 1.

The estimated trend component from our Bayesian approach shows some volatility.

In summary, the evidence favors the position of PW that once a single structural break

is accounted for the variance of the trend component of GDP is relatively small. However,

the evidence is much less than decisive when uncertainty about the break date is accounted

for properly.
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Benchmark model: with an uncertain break date

Log marginal likelihood:-297.2713

Prior Posterior

median 90% quantile mean median 90% HPD*

µ 1 (0.1, 1.9) 0.9442 0.9494 (0.77, 1.09)

φ1 1 (-0.64, 2.64) 1.4395 1.4712 (1.24,1.69)

φ2 0 (-1.64, 1.64) -0.5610 -0.5750 (-0.77,-0.35)

ση 0.24 (0.05, 17.31) 0.6714 0.5711 (0.14,1.24)

σǫ 0.61 (0.08, 65.65) 0.6885 0.6515 (0.36,1.05)

ρ 0 (-1, 1) 0.2377 0.4139
(-0.90,0.15)∪

(0.45,1)

d 0 (-0.48, 0.48) -0.2513 -0.2755 (-0.49,-0.08)

median 90% quantile median mode 90% quantile**

Tb 1972:3 (1949:3, 1995:4) 1971:4 1973:1 (1953:2, 1989:2 )

Posterior***

PW model: fixed break date MNZ model: no break date

Log marginal likelihood:-296.4056 Log marginal likelihood:-299.2063

mean median 90% HPD mean median 90% HPD

µ 0.9621 0.9654 (0.89,1.02) 0.8238 0.8283 (0.71,0.92)

φ1 1.4559 1.4688 (1.30,1.57) 1.4188 1.4702 (1.14,1.71)

φ2 -0.5567 -0.5640 (-0.67,-0.39) -0.4467 -0.5806 (-0.78,-0.34)

ση 0.5019 0.4602 (0.04,0.6) 0.8525 0.8458 (0.30,1.42)

σǫ 0.6439 0.6147 (0.44,0.98) 0.7566 0.7306 (0.34,1.14)

ρ 0.5297 0.8129 (-0.16,0.98) -0.1001 -0.3782 (-0.95,0.50)

d -0.3062 -0.3146 (-0.39,-0.18) —

Tb 1973:1 (fixed) —

* HPD refers to highest posterior density interval.

** We report the 70% and 90% HPD for Tb in Figure 4.

*** Priors for the unrestricted parameters in PW and MNZ models are the same as

those in the benchmark.

Table 1.3: Bayesian Inferences.
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Model Log marginal likelihood 2log(Bij)

Row over column

PW MNZ

uncertain break date(Ours) -297.2713 -1.7314 3.8702

Tb=1973:1(PW) -296.4056 5.6016

no break(MNZ) -299.2064

Table 1.4: Log marginal likelihoods and model comparisons.
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Chapter 2

STOCHASTIC TRENDS AND STRUCTURAL BREAKS

Evidence on the stochastic trend component, or the implied unit roots, in the macroeco-

nomic time series is usually found to be sensitive with respect to the assumption of structural

breaks. For U.S. real output data, it is usually reported that one can reject the unit root

hypothesis with adequate numbers of trend breaks incorporated1. In other words, except

for a number of large but infrequent permanent shocks, shocks affecting the real output are

temporary whose effect will eventually vanish.

Less attention is given to comparing how the breaks in variances of shocks affect the

evidence for stochastic trends. Using real GDP data, Murray and Nelson (2000) find that

the Augmented Dickey-Fuller test rejects unit roots too often if researchers fail to allow

for heteroskedasticity. Morley et al. (2012) reject the stationary hypothesis when allowing

for pre-specified breaks in both mean and variances using a likelihood ratio test. However,

Meligkotsidou et al. (2011) find that ignoring structural breaks occurred at unknown dates

in the error variances may be responsible for not rejecting the unit root hypothesis with

international data of interest rates, exchange rates and CPI.

This paper aims to examine the effect of unknown structural breaks, including those

in mean growth rates and the covariance matrices of shocks, on the evidence of stochastic

trend for the U.S. postwar quarterly real GDP. We use Bayesian approach to compare the

stochastic trend models with the deterministic (linear) trend models within an unobserved

component framework. We formally incorporate up to four unknown structural breaks

in the mean growth rate and/or up to one break in the shocks’ covariance matrix. The

1Perron (1989) assumes a level shift at 1929 and a change in mean growth rate at 1973. He reverses most
unit root rejections in Nelson and Plosser (1982), although his conclusions are partially reversed later
by Zivot and Andrews (1992) who considered the breaks as unknown. Ben-David et al. (2003) extend
Zivot and Andrews (1992)’s approach to incorporate a second unknown break of each kind and reject unit
roots on more series than Zivot and Andrews (1992). More comprehensive reviews include, for instance,
Maddala and Kim (1999) and Haldrup et al. (2012).
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most appropriate number of breaks are selected by Bayesian marginal likelihood. And the

corresponding break dates are estimated by data.

Specifically, we consider four settings for structural breaks: no break, breaks only in mean

growth rates, breaks only in covariance matrices and the general models containing both

breaks. In each setting, we estimate the stochastic trend models and their counterparts with

deterministic trends by restricting the trend variances to be zero. The marginal likelihoods

are computed for each model and used as the criteria for the model selections. A Bayesian

“unit root testing” can therefore be conducted as comparing the best-fit stochastic trend

model with the best-fit deterministic trend model using their marginal likelihoods.

As a preview of our findings, we identify two structural breaks in mean and one structural

break in the covariance matrix for both stochastic and deterministic trend models. In

addition, using the selected break dates, the estimated trend variances for the stochastic

trend models are smaller after allowing for mean breaks. However, the best-fit one is still

slightly favored against the best-fit deterministic alternative. Our results are close to the

Morley et al. (2012) findings but the evidence against deterministic trends is weaker.

Furthermore, we conduct model comparisons within the same structural break setting.

We find that the deterministic trend is favored only when there are breaks in mean but

no break in variances and covariances. It confirms the usual finding that allowing for

adequate amount of mean breaks provides evidence against stochastic trends. However,

such rejections of unit roots may be misleading if one ignores the break in the covariance

matrix.

The remainder of the paper is organized as follows. Section 2.1 sets up the model we

use. Section 2.2 describes the Bayesian methodology. We report the empirical results in

Section 2.3 and conclude in Section 2.4.

2.1 An unobserved component model

2.1.1 model

The unobserved component (hereafter UC) models are used to decompose the real output

into the trend and cycle components to study the relative importance of the permanent
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shocks. The idea is that permanent shocks can affect the long-run trend of GDP, while

the effect of transitory shocks will eventually vanish thus only affect the “cycle” of the real

output. In this section, we introduce a basic UC model which nests both stochastic trend

and deterministic trend models.

Following Morley et al. (2003) and Perron and Wada (2009), the unobserved component,

trend-cycle decomposition model is:

yt = τt + ct (2.1)

τt = µt + τt−1 + ηt (2.2)

ct = φ1ct−1 + φ2ct−2 + ǫt (2.3)

In the above model, yt is the logarithm of real GDP, which is the sum of the trend

component τt and the cyclical component ct. τt follows a random walk with drift µt. µt is

the mean growth rate of the real output, which may or may not be constant. The cyclical

component ct is assumed to be a stationary AR(2) process. ηt and ǫt are the shocks to the

trend and cycle respectively. We allow for contemporaneous correlation (ρt) between trend

and cycle shocks in the model as the following2:

 ηt

ǫt


 ∼ i.i.d.N




 0

0


 ,Σt


 (2.4)

where

Σt =


 σ2

ηt ρtσηtσǫt

ρtσηtσǫt σ2
ǫt


 (2.5)

It has been found in the literature that structural breaks can influence the evidence for

the unit root thus evidence for the stochastic trends. Assume there are M structural breaks

in the mean growth rate µt occurring at Tm1, Tm2, ..., TmM .

µt = µ+

m=M∑

m=1

dm1(t > Tmm) (2.6)

2In this UC representation with an AR(2) cycle, the correlation of ση and σǫ is identified if neither ση

nor σǫ equals zero.
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{dm : m = 1, 2, ...,M} being significantly non-zero suggests the significance of the structural

change in the mean growth rate.

Moreover, Kim and Nelson (1999a) and McConnell and Perez-Quiros (2000) find em-

pirical evidence for the so-called “Great Moderation”—a significant reduction in the real

output volatility in the US economy after the early 1980s. Assume there are N structural

breaks in the covariance matrix Σt occurring at Tv1, T v2, ..., T vN .

σηt =
N+1∑

j=1

ση,j1(Tvj−1 ≤ t ≤ Tvj) (2.7)

σǫt =
N+1∑

j=1

σǫ,j1(Tvj−1 ≤ t ≤ Tvj) (2.8)

ρt =
N+1∑

j=1

ρj1(Tvj−1 ≤ t ≤ Tvj) (2.9)

where Tv0 = 0 and TvN+1 = T .

The parameters of the covariance matrix in equation (2.5) are now replaced with the

ones defined by (2.7)-(2.9).

If σηt is non-zero, the trend component τt is a random walk with drift. We denote

the model as the Stochastic-Trend (hereafter ST) representation. We call the above model

with an explicit zero restriction on σηt (as well as ρt accordingly) the Deterministic-Trend

(hereafter DT) representation. Note that allowing for a random walk component does not

impose a stochastic trend. If σηt is estimated to be near zero, τt becomes near deterministic

overtime. In this case, the assumption of the stochastic trend may become unnecessary and

thus penalized by the Bayesian marginal likelihood.

2.1.2 Settings of structural breaks and selection of break dates

We consider the following four settings of structural breaks and accordingly 8 types of

models:

As notations for model types, ST and DT represent Stochastic-Trend and Deterministic-

Trend representation as mentioned earlier. “0” denotes the models without any structural

breaks. “M” suggests that there are structural breaks in the mean growth rate µt in the
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ST: unrestricted σηt DT: σηt = ρt = 0

S1: No structural breaks ST0 DT0

S2: only breaks in µt STM DTM

S3: only breaks in Σt STV DTV

S4: breaks in both µt and Σt STMV DTMV

form of (2.6). “V” suggests the assumption of structural breaks in the covariance matrix

Σt set up by (2.7)-(2.9).

We allow for up to 4 structural breaks in the mean growth rate and up to 1 structural

break in the covariance matrix3. Posterior sampling and computation of the marginal

likelihoods are constructed according to the approaches described in Section 2.2.

Within each type of models, the number of structural breaks is selected according to

the highest marginal likelihood except that we exclude models with boundary break dates

estimation. To be specific, the break dates conditional on a specific number of breaks are

estimated by the posterior modes. The particular model is excluded if there is one break

date estimated to be within 3 quarters from the beginning or the end of the sample period,

or within 3 quarters from the adjacent break date.

2.1.3 Testing for the existence of stochastic trends

The tests of stochastic trends can be viewed as model comparisons in the Bayesian frame-

work.

Given the selected break date under the ST and DT specification, the posterior odds of

ST against DT representation can be defined as the ratio of their posterior model probability.

If the ratio is larger than one, the ST representation is more favored by the data. On the

contrary, we have evidence for the DT representation if the ratio is smaller than one. We

evaluate the significance of the evidence according to the criteria described in Section 2.2.3.

3In unreported exercise, we also allow for two structural breaks in the covariance matrices. However, the
posterior modes of the second break dates turn out to be either close to the end of the sample period or
very close to the posterior modes of the first break dates. Estimations point to the single structural break
case even though we allow for more.
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For the purpose of comparisons with some of the earlier results, we can also restrict our

tests within a certain setting simply by comparing the best-fit ST and DT models within

the same setting.

2.2 Approaches for Bayesian estimation and model comparisons

The model (2.1)-(2.5) can be rewritten into the state space form:

yt =
[
1 1 0

]
xt (2.10)

xt =




µt

0

0


+




1 0 0

0 φ1 φ2

0 1 0


xt−1 +




1 0

0 1

0 0





 ηt

ǫt


 (2.11)

where xt = [τt, ct, ct−1]
′. µt and the covariance matrix Σt are set up as in Section 2.1.1,

which may have M and N structural breaks.

In order to ensure that the estimated covariance matrix is positive semidefinite, we

decompose the covariance matrix in the following way:

 σ2

η,j ρjση,jσǫ,j

ρjση,jσǫ,j σ2
ǫ,j


 =


 1 0

bj 1




 σ2

1,j 0

0 σ2
2,j




 1 bj

0 1


 (2.12)

with j = 1, 2, ..., N +1. We directly estimate {σ1,j , σ2,j , bj} instead of the covariance matrix

parameters {ση,j , σǫ,j , ρj}. The posterior samples for the covariance parameters are obtained

through transformation.

2.2.1 Prior specifications

We assume independent priors for all parameters.

Conditional on M breaks in mean (N breaks Σt), we assume a discrete uniform prior for

the break dates over all ordered subsequences of length M (N). This prior assumes that all

combinations of break dates are equally likely.

Inverse gamma priors IG(100, 0.5)4 are assumed for σ2
1n and σ2

2n with n = 1, 2, ...N +1.

These priors are diffuse and do not have finite moments. Therefore, a heavy weight will be

put on sample information.

4We follow Koop (2003) for the definition of inverse gamma (IG) distribution. If x > 0 follows inverse
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We assume somewhat informative normal priors for φ1 ∼ N(1, 1), φ2 ∼ N(0, 1) and

bn ∼ N(0, 1) for n = 1, 2, ...N + 1. And we assume truncated uniform priors for µ ∼ U [0, 2]

and dm ∼ U [−1, 1] for m = 1, 2, ...M .

Therefore, the joint prior density is the product of all the above marginal prior densities.

2.2.2 Gibbs approach

We use the Gibbs sampling approach to draw posterior samples for parameters. We run the

Gibbs sampler for 200,000 times and save every 10th draw to reduce the autocorrelation

within samples. We thus obtain 20,000 draws from the Gibbs procedures and discard the

first 10,000 to avoid the effect of the initial values. To guarantee the convergence of the

Gibbs sampler, we divide our samples, excluding the burn-in draws, into three sets–a first

set of 3000 draws, a middle set of 4000 draws and a last set of 3000 draws. We find that the

posterior distribution and estimates based on the three subsets don’t vary much, suggesting

the convergence of our MCMC samples.

Define θ = [µ, φ1, φ2, σηn , σǫn , ρn, dm]. x̃ denotes the series of variable x for all time

periods. The Gibbs sampling for the most general model contains the following blocks.

1. {τt, ct : t = 1, ...T} |θ, ỹ.

2.
[
φ
(k)
1 , φ

(k)
2

]
|c̃.

3. [µ, d1, d2, ..., dM ] |τ̃ .

4. Σ1,Σ2, ...,ΣN+1|ỹ and other parameters.

5. Tm1, ..., TmM , T v1, ..., T vN |ỹ.

For the nested models, simply skip the irrelevant blocks.

More details on the Gibbs sampling are summarized in Appendix B.2.

gamma distribution IG(s−2, ν), the probability density function of x is defined as:

f(x; s−2
, ν) = (

2s−2

ν
)−

ν

2
1

Γ( ν
2
)
x
−

ν

2
−1

exp(−
ν

2s−2x
)

where Γ(·) is the gamma function.
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2.2.3 Marginal likelihood and Bayes factor

We compare two models based on their posterior odds. To be specific, posterior odds of

Modeli versus Modelj is defined as

f(Mi|Y )

f(Mj |Y )
=

f(Mi)

f(Mj)
×

f(Y |Mi)

f(Y |Mj)
(2.13)

where f represents probability mass or density and Y stands for data information. If we

assume equal prior probability for two models, the posterior odds can be simplified as the

ratio of marginal likelihoods, also known as the Bayes factor Bij = f(Y |Mi)/f(Y |Mj).

For convenience, we will construct 2log(Bij). If 2log(Bij) is positive (negative), we prefer

Mi (Mj).

Kass and Raftery (1995) and Raftery (1995) suggest using the following criteria for

significance of model comparison.

2log(Bij) Evidence for Mi, against Mj

0 to 2 Not worth more than a bare mention

2 to 6 Positive

6 to 10 Strong

> 10 Very strong

Table 2.1: Criteria for model comparisons based on twice the log Bayes factor.

2.3 Results

2.3.1 Break dates selections

The break dates selected for all types of models are presented in Table 2.2. For both ST

and DT representations, assuming two breaks in mean and one break in the covariance

matrix yield the highest marginal likelihood. And the number of structural breaks chosen
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are consistent across models although the estimated break dates are not. Except for the

deterministic trend model with a break only in the covariance matrix (the DTV model),

all models identify 1983:2 as the break date for the covariance matrix, around when the

Great Moderation is considered to occur5. As for the breaks in mean, the first structural

break is estimated to occur from 1968:3 to 1973:4, consistent with the timing for the growth

rate slowdown found by, for instance, Perron and Wada (2009). The second mean break

is estimated to be at 2006:1 with the stochastic trend models and at 2002 (quarter 2 or 4)

with the deterministic trend models.

More detailed results conditional on numbers of breaks and settings are reported in

Appendix B.1.

2.3.2 Testing for the stochastic trends

From the previous section, we select the STMV and DTMV models with two breaks in mean

and one break in the covariance matrix as the best-fit stochastic trend and deterministic

trend representations. According to the marginal likelihood, the stochastic trend model is

better supported by the data as it has a higher log marginal likelihood being compared with

the deterministic trend model . However, the twice log Bayes factor for STMV over DTMV

is 0.68, suggesting that the evidence is not particularly strong.

The posterior estimates for the best-fit STMV and DTMVmodels are shown in Table 2.3.

We find evidence for two growth rate slowdowns and one volatility reduction. The evidence

is similar whether we allow the trend component to be stochastic or not. Specifically, the

posterior samples for the size of change in the mean growth rates (d1 and d2) mostly lie below

zero. As for the change in the variance and covariance matrix, the volatility reduction is

quite significant if we assume broken deterministic trend. However, it is less significant when

we allow for a stochastic trend. Although the estimated variances in the chosen stochastic

trend model decrease after the structural break, the 90% highest posterior density regions

for variances in the pre-break and post-break period overlap.

5For model DTV, the break date estimated is 1947:1, the first quarter in our sample period. Together with
the low marginal likelihood, it in fact suggests that no structural break in variance should be considered
if we don’t allow for breaks in mean. We report it simply as it is the only model within the type.
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While the stochastic trend is slightly preferred, the trend shock volatility σηt is estimated

to be 0.54 before 1983:2 and 0.32 afterwards. The estimates are much smaller than what

are usually reported by stochastic trend models.

To compare with the literature, we also conduct model comparisons within each setting.

Table 2.4 shows the results comparing the best-fit ST and DT models within the same

setting of breaks. If twice the log Bayes factor is positive (negative), data favors stochastic

trend (deterministic trend) models. Deterministic trend is preferred only when the mean

growth rate but not the covariance matrix exhibits structural breaks. Stochastic trends are

preferred in other settings.

It’s been widely reported in the literature that the unit-root hypothesis can be rejected if

all the large and infrequent permanent shocks are accounted for by mean breaks. However,

our results show that the seemingly strong rejections could result from not incorporating the

break in the covariance matrix. And such rejections may not be robust after we incorporate

the changes in the covariance matrix.

2.4 Conclusion

In this paper, we examine the effect of unknown structural breaks, including those in mean

growth rates and the covariance matrix, on the evidence of the stochastic trend for the U.S.

postwar quarterly real GDP. We use Bayesian approach to compare the stochastic trend

(ST) models with the deterministic (linear) trend (DT) models, allowing for up to four

unknown structural breaks in the mean growth rate and/or up to one break in the shocks’

covariance matrix. We find evidence for two structural breaks in mean, one around early

1970s, and the other after 2000. Data also clearly identifies early 1980s as the date for

volatility reductions.

Conditional on the chosen break dates, we find slight evidence for the stochastic trend

models although the estimated trend variances are smaller comparing to earlier estimates

reported in the literature. The bottom line is, the stochastic trend and the ongoing real

shocks, even if not dominating, are at least not ignorable.
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Models with stochastic trends

Breaks in mean µt Breaks in covariance

LMLmatrix Σt

# of breaks Break dates # of breaks Break dates

ST0 — — — — -360.02

STM 2 1968:3, 2006:1 — — -356.35

STV — — 1 1983:2 -334.06

STMV* 2 1972:2, 2006:1 1 1983:2 -330.46

Models with deterministic trends

Breaks in mean µt Breaks in covariance

LMLmatrix Σt

# of breaks Break dates # of breaks Break dates

DT0 — — — — -362.94

DTM 2 1973:2, 2002:4 — — -354.50

DTV — — 1 1947:1 -399.57

DTMV* 2 1973:4, 2002:2 1 1983:2 -330.80

* Best-fit ST and DT models.

LML–Log marginal likelihood.

Notations for models:

0–There is no break. M–There are breaks in the mean growth rate.

V–There are breaks in the covariance matrix.

Table 2.2: Selected break dates for each type of models.
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STMV DTMV

M 2 2

Tm1 1972:2 (1952:4, 2003:3) 1973:4 (1954:2, 1999:4)

Tm2 2006:1 (2000:4, 2008:3) 2002:2 (1988:4, 2007:4)

N 1 1

Tv1 1983:2 (1982:1, 1984:1) 1983:2 (1982:1, 1984:3)

µ 0.92 (0.80, 1.02) 0.92 (0.83, 1.02)

d1 -0.18 (-0.45, 0.03) -0.17 (-0.33, -0.01)

d2 -0.31 (-0.55, -0.09) -0.34 (-0.56, -0.07)

φ1 1.48 (1.34, 1.61) 1.37 (1.27, 1.46)

φ2 -0.53 (-0.66, -0.40) -0.41 (-0.50, -0.31)

ση1 0.54 (0.17, 0.98) —

σǫ1 0.92 (0.58, 1.29) 1.11 (1.01, 1.23)

ρ1 0.13 (-0.56, 0.92) —

ση2 0.32 (0.11, 0.75) —

σǫ2 0.51 (0.30, 0.80) 0.54 (0.48, 0.61)

ρ2 -0.33 (-0.96, 0.22) —

LML -330.46 -330.80

Note:

Numbers in the parentheses are 90% highest posterior density regions.

LML-Log marginal likelihood.

STMV-Stochastic trend model with breaks in both mean and the covariance matrix.

DTMV-Deterministic trend model with breaks in both mean and the covariance matrix.

Table 2.3: Bayesian estimation for the best-fit STMV and DTMV models.
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Model 2 log Bayes Factor

S1 ST0 vs. DT0 5.84

S2 STM vs. DTM -3.70

S3 STV vs. DTV 131.02

S4 STMV vs. DTMV 0.68

Notations for settings and models:

ST–Stochastic Trend. DT–Deterministic Trend.

S1: No structural break. S2: There are breaks in µt.

S3: There are breaks in Σt. S4: There are breaks in both µt and Σt.

Table 2.4: Model comparisons within each setting.
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Chapter 3

HAS THE TREND-CYCLE CORRELATION OF GDP CHANGED? A

TIME-VARYING PARAMETER ESTIMATION FOR THE

POST-WWII U.S. REAL GDP

Nelson and Plosser (1982) first find evidence for the existence of a stochastic trend in US

real output. A stochastic trend suggests that there are ongoing permanent shocks affecting

the business cycles, leaving a possibility of interactions between the permanent shocks and

the transitory shocks of the real output. Morley et al. (2003) show that the trend-cycle

decompositions (thus the estimated output gaps) based on unobserved component (UC)

models are sensitive to the specification of the trend-cycle correlation.

Attempts have been made to estimate the correlation between trend and cycle GDP.

However, reported estimates for the trend-cycle correlation of US real output vary from

around zero to around -0.9. Most of the existing studies assume constant trend-cycle cor-

relation. And the point estimates for the correlation tend to be more negative in studies

using more recent data1. For instance, Clark (1989) reports a slightly negative point esti-

mate (-0.12) for the correlation with wide confidence interval expanding from -0.4 to +0.3.

But Morley et al. (2003), Oh and Zivot (2006), and Sinclair (2009) find evidence for the

correlation being around -0.9.

This paper revisits the issue by introducing a time varying correlation into a flexible UC

model for the post-WWII quarterly US real GDP. We find that some of the contradicting

results in the existing literature can be reconciled by allowing the trend-cycle correlation to

change overtime.

We introduce the time-varying correlation into the otherwise standard UC model, which

was first introduced Harvey and Todd (1983) and Clark (1987) to account for the changes

in the mean growth rate. Our model also assumes stochastic volatility to take account of

1Advocates for the deterministic GDP trend, such as Perron and Wada (2009), automatically imply zero
trend-cycle correlations.
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the “Great Moderation”—empirical findings about volatility reductions in a lot of macroe-

conomic series after early 1980s. Notice that there is no theoretical exclusion for the time-

varying correlation between trend and cycle GDP. In general, different underlying shocks

or interacting mechanisms imply different levels of correlations2. And we do not have any

reason to believe a priori that the factors affecting the business cycle does not change over

time, nor should a certain type of mechanism dominate in all periods.

Based on our flexible framework, we find that the correlation mostly lie below zero for

the postwar period. Our estimates show significant changes in the trend-cycle correlation.

Specifically, the estimated correlation is negative but could be close to zero before 1980s.

And the correlation has become significantly more negative since the 1980s till the end of

the sample (2012:4). Our estimation seems to be a synthesis of some earlier contradicting

results. The estimated correlation before 1980s is close to what is reported in Clark (1989),

and the level after 1980s is consistent with the large and negative estimates by more recent

papers (such as Morley et al. (2003) and Sinclair (2009)) which incorporate recent data.

The major changes we find in the correlation occurs around 1981-1984.

Kim and Nelson (1999a) and McConnell and Perez-Quiros (2000) first find evidence for

the reduction in the U.S. real output volatility in the early 1980s. Our UC model allow us

to further identify whether both the trend and cycle components experience such volatility

changes. Our results suggest significant volatility reduction in cyclical GDP around the

early 1980s while the estimated trend variance only drops slightly. A counterfactural study

suggests that the changes in the correlation and cycle volatility accounts (equally) for almost

all volatility reductions in the Real GDP. Further more, an interesting implication is that

the volatility stays at a relatively low level till the end of the sample (2012:4). Although

the Great Recession from 2007 to 2009 created some turmoils, the volatility returns to a

low level after the recession.

Our estimation also shed some light on some of the debates regarding the trend of U.S.

2For example, Clark (1989) suggests that a surge in business investment could generate positive
correlations-a cyclical upturn together with improving longer-run output and capacity. On the contrary,
an increase in disability benefits might increase consumption temporarily but degrade long-run output,
causing negative correlations. Negative correlation can also occur due to the “time to built” effect or
the slow adjustment process after a permanent productivity shock (as suggested in Morley (2007)).Weber
(2011) has a review on the theoretical interpretations of the correlation between the trend and cycle GDP



39

real output. We find some signs of the grow rate slowdown around 1970 and a further

reduction around 2005. However, distinct from the argument made by Perron and Wada

(2009), the permanent changes in the mean growth rate alone are not enough to explained

all of the permanent changes in the real output. We find evidence for ongoing permanent

shocks and a stochastic trend.

The remaining of the paper is organized as follows. We present the model set-up in

Section 3.1. Section 3.2 shows the estimation methodologies. We discuss the results and

implications in Section 3.3. We conclude in Section 3.4.

3.1 A UC model with time varying parameters

A lot of researchers use unobserved component (UC) models to decompose the real output

into the trend and cycle components and study the relative importance of the permanent

shocks. The logic is that permanent shocks can affect the long-run trend of GDP, while

the effect of transitory shocks will eventually vanish thus only affect the “cycle” of the real

output.

Following Harvey and Todd (1983) and Clark (1987), the basic unobserved component

we use for trend-cycle decomposition is:

yt = τt + ct (3.1)

τt = µt−1 + τt−1 + ηt (3.2)

µt = µt−1 + ζt (3.3)

ct = φ1ct−1 + φ2ct−2 + ǫt (3.4)

In the above model, yt is the logarithm of real GDP, which is the sum of the trend

component τt and the cyclical component ct. τt follows a random walk with drift. µt is the

mean growth rate of the real output, which also follows a random walk when ζt is non-zero.

The cyclical component ct is assumed to be a stationary AR(2) process. ηt and ǫt are the

shocks to the trend and cycle respectively.

Given (3.2)-(3.3), both the level and the slope (i.e. the mean growth rate) of the trend

GDP are allowed to change over time by a random walk mechanism. Alternative specifica-

tions for a changing slope in the literature are to extend the constant mean growth rate to
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allow for structural breaks or Markov switching mechanisms. The benefit of our set-up is

that we do not need to specify break dates, number of structural changes required in the

structural break models, nor the number of states needed in the Markov switching models3.

It is also a convenient approximation for the cases where multiple changes and levels may

occur4.

The covariance matrix of [ηt, ζt, ǫt]
′ has three variances and three correlations to be

identified. According to Oh and Zivot (2006), the correlation between ηt and ζt needs

to be specified for identification, as well as one of the other two correlations. We choose

to leave the correlation between ηt and ǫt being estimated while restricting the remaining

two correlations to be zero. Interactions between ηt and ǫt are usually of interests in the

literature. It corresponds to the use of (3.3) to capture the relatively rare permanent changes

in the mean growth rate while there may be ongoing trend shocks (such as productivity

shocks) affecting the level of the growth rate and interacting with the cycle disturbance.

In practice, it may be difficult to identify the correlation between ζt and ǫt if it is not pre-

specified. The standard deviation for ζt is usually estimated to be very small for post war

U.S. quarterly output (see, for instance, Clark (1987), Perron and Wada (2009) and Kim

and Nelson (1999b) ). Weak identification is quite likely due to one of the variance being

close to zero. Therefore, we set up the covariance matrix in the following way:




ηt

ǫt

ζt


 ∼ i.i.d.N







0

0

0


 ,




σ2
ηt σ2

ηǫt 0

σ2
ηǫt σ2

ǫt 0

0 0 σ2
ζt





 (3.5)

Note that the covariance matrix is time-varying. Therefore, the model allows us to incor-

porate the empirical findings of “Great Moderation” and examine whether the correlation

3However, a random walk mechanism implies that the change in the parameter is smooth while a structural
break or Markov switching usually implies an abrupt change.

4A non-zero ζt implies that GDP is I(2) which is usually not supported by popular diagnostics such as
ADF test. As a matter of fact, we find that the estimation of σζ is very small such that it can be hard to
distinguish it from an I(1) process from the statistical point of view. But a small yet nonzero σζ allows
µt to evolve relatively smoothly over time. This result is consistent with what is usually reported for
post war quarterly output, for instance, Clark (1987), Kim and Nelson (1999b), Oh and Zivot (2006) and
Perron and Wada (2009).
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has changed or not. Following the literature of multivariate stochastic volatility such as

Cogley and Sargent (2005) and Primiceri (2005), assume that

Σt =




σ2
ηt σ2

ηǫt 0

σ2
ηǫt σ2

ǫt 0

0 0 σ2
ζt


 (3.6)

=




1 0 0

bt 1 0

0 0 1







eh1t 0 0

0 eh2t 0

0 0 eh3t







1 bt 0

0 1 0

0 0 1


 (3.7)

= BtHtB
′
t (3.8)

where

hit = hit−1 + νit, νit ∼ N(0, σ2
νi), i = 1, 2, 3 (3.9)

bt = bt−1 + wt, wt ∼ N(0, σ2
w) (3.10)

The decomposition of the variance covariance matrix Σt is a convenient device. The

“structural” shocks [ηt, ǫt, ζt]
′ are considered as linear combinations of three independent

shocks whose variances are governed by the diagonal elements in matrixHt. The interactions

among the three independent shocks are controlled by matrix Bt, which also affects the

covariances among [ηt, ǫt, ζt]
′. Specifications in (3.9) and (3.10) allow all elements in the

covariance matrix to change freely over time.

A recent paper, Weber (2011), also examines the change in the trend-cycle correlation

of U.S. real output and attempts to study the causal structural for the monthly IP data.

He finds no significant changes in the correlation, which is distinct from the results reported

in this paper. While the quarterly real GDP data we use may exhibit different statistical

properties, it may worth noting that he only allows for one pre-specified structural break

at February 1984. And allowing for more than one structural break in his model would

yield unclear form of overidentification restrictions. Such overidentification framework may

not be appropriate for the flexible structures we assume in this paper, especially when we
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find evidence for more than just a simple structural break for the correlation changes with

quarterly GDP data.

While the empirical finding of a changing trend-cycle correlation is useful to find out

the major mechanisms driving the business cycles, it is impossible to discuss the causal

economic structures without placing further structural assumptions on our UC model as

what Weber (2011) does. Theoretical or structural implications of our findings should be

further explored but beyond the scope of this paper.

3.2 Methodology

A convenient way to estimate the models with time-varying parameters and stochastic

volatilities is to use Bayesian estimation. A Bayesian Gibbs sampling approach will be used

for estimation.

The UC model consisting of (3.1)-(3.4) can be rewritten into the state space form:

yt =
[
1 0 1 0

]
xt (3.11)

xt =




1 1 0 0

0 1 0 0

0 0 φ1 φ2

0 0 1 0



xt−1 +




1 0 0

0 0 1

0 1 0

0 0 0







ηt

ǫt

ζt


 (3.12)

where xt = [τt, µt, ct, ct−1]
′ and the the disturbances [ηt, ǫt, ζt] are assumed to follow a

multivariate normal distribution with their covariance matrix specified by (3.5)-(3.10).

Priors for parameters are assume to be independent with each other. We assume normal

priors N(1.3, 1) and N(−0.7, 1) for the AR coefficients φ1 and φ2. Priors for variances σ2
νi

and σ2
w are assumed to follow independent inverse gamma distribution IG(102, 0.1). For

random walk state variables τt, µt, hit and bt, the simulation smoother approach we use

requires specifying the prior distributions for the initial states τ1, µ1, hi1 and b1. Initial

states are assumed to follow independent normal distributions. The mean values are given

according to the estimation of the subsample from 1947:1 to 1959:3 (50 sample points)

assuming no parameters instability. We impose large variance (10) such that the priors
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are only weakly informative. Robustness checks are conducted with different priors for the

initial states and sensitivity is only found for the estimates in the early sample periods.

We use the Gibbs sampler approach to draw posterior samples for parameters. The

Gibbs sampler has a sample size of 20,000 while the first half of the posterior samples are

dropped for convergence.

Define θ = [φ1, φ2, σηt, σǫt, ρt, σζt : t = 1, 2, ...T ]. Let (·)(k) denote the the kth posterior

draw of the latent variable xt or the parameters. Y denotes all the observed quarterly log

real GDP {y1, y2, ...yT }. The kth step in our Gibbs sampler involves the following blocks:

1. Draw
{
x
(k)
t : t = 1, ...T

}
∼ f(x1, ...xT |Y, θ

(k−1)) using the simulation smoother devel-

oped by Durbin and Koopman (2002).

2. Draw
[
φ
(k)
1 , φ

(k)
2

]
∼ f(φ1, φ2|Y, x

(k)
t , σ

(k−1)
ǫ ) given that the third row in (3.12) has the

following regression form:

ct =
[
ct−1 ct−2

]

 φ1

φ2


+ ǫt (3.13)

The posterior samples for
[
φ
(k)
1 , φ

(k)
2

]
must guarantee the stationarity of the process

{ct : t = 1, ..., T}. Therefore, we discard nonstationary draws and regenerate new ones

until they meet the stationary requirement.

3. Draw
[
σ
(k)
νi , i = 1, 2, 3

]
and {hit : i = 1, 2, 3, t = 1, 2, ..., T}. Residual terms [η̂t, ǫ̂t, ζ̂t]

′

can be obtained from the simulation smoother in the first step. Define η∗t = ηt ∼

N(0, σ2
1t), ǫ∗t = −bηt + ǫt ∼ N(0, σ2

2t) and ζ∗t = ζt ∼ N(0, σ2
3), and we have the

following:

B−1
t




η̂t

ǫ̂t

ζ̂t


 =




η̂∗t

ǫ̂∗t

ζ̂∗t


 ∼ N







0

0

0


 ,




σ2
1t 0 0

0 σ2
2t 0

0 0 σ2
3t





 (3.14)
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where

Bt =




1 0 0

bt 1 0

0 0 1




While
{
hit = log(σ2

it), i = 1, 2, 3
}
follow random walks, we can use the method pro-

posed by Kim et al. (1998) to sample {hit : i = 1, 2, 3, t = 1, 2, ..., T}. And given in-

verse Gamma priors,
[
σ
(k)
νi , i = 1, 2, 3

]
have inverse Gamma posteriors and can be

easily sampled.

4. Draw b
(k)
t and σw. Given the second row in (3.14) and the random walk assumption

on the evolving of bt, we have a state space regression to sample bt as the state variable

and σw as the hyperparameter using similar approach as in Step 1:

ǫ̂t = η̂tbt + ǫ∗t ǫ∗t ∼ N(0, σ2
2t) (3.15)

bt = bt−1 + wt, wt ∼ N(0, σ2
w) (3.16)

We can then construct the posterior samples for [σηt, σǫt, σζt, ρt] according to (3.8).

More details on the Gibbs sampling are summarized in Appendix C.1.

3.3 Results

We use the US quarterly real GDP data from 1947:1 to 2012:4. The parameters are esti-

mated by the posterior median and the 16th-84th posterior percentiles are reported. Results

of the time invariant parameters and their posterior percentiles are shown in Table 3.1. The

rest are shown in Figures (3.1)-(3.5).

3.3.1 Has the correlation changed?

We find time varying correlations between the trend and cycle GDP (Figure 3.1). The

estimated correlation stays negative throughout the whole sample periods. Only small

proportion of the posterior samples in the early sample periods are positive, which are,
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Parameters Prior Posterior median 16-84th percentiles

φ1 N(1.3, 1) 1.264 [1.089,1.391]

φ2 N(−0.7, 1) -0.438 [-0.547,-0.311]

σν1
√
IG(102, 0.1) 0.030 [0.009,0.147]

σν2
√
IG(102, 0.1) 0.242 [0.148,0.368]

σν3
√
IG(102, 0.1) 0.014 [0.007,0.038]

σw
√
IG(102, 0.1) 0.011 [0.006,0.022]

Table 3.1: Posterior estimates for time invariant parameters and the 16th-84th percentiles.

however, excluded by the 16-84th percentiles reported5. In most of the time before 1980s,

the estimated correlation is slightly negative with posterior median around -0.5. Starting

from the late 1980s, the estimated correlation stays stable around -0.85.

Although the posterior median of the correlation show variations overtime with the major

changes in the early 1980s, the 16th-84th percentiles for periods before and after the early

1980s overlap as shown in Figure 3.1. However, it is more informative to examine the joint

distribution of the correlations from two periods rather than the marginal distribution of

one correlation. To this end, we construct the difference between the samples for correlation

at 1980:1 and the correlation at every quarter after it. Specifically, for the kth iteration in

the Gibbs sampler, we compute

∆ρ
(k)
t = ρ

(k)
1980:1 − ρ

(k)
t , t∈[1980:1,2012:4]. (3.17)

The median and the 16th-84th percentiles of ∆ρt are presented in Figure 3.2. The posterior

samples mostly lie above zero, showing significant evidence for the change in correlation

occurring at the early 1980s.

5For the samples in the first few sample points, confidence intervals may include zero if we change the
initial values.
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3.3.2 Implications on the Great Moderations

Empirical evidence has been found in the literature for a real output volatility reduction

after 1984. Within our framework, we can investigate the volatility of which component has

contributed to the “Great Moderation”. We find only mild reduction in the trend volatility

σηt (Figure 3.3) but significant drop in the cyclical volatility σǫt (Figure 3.4) after 1984.

The major changes occur around early 1980s, consistent with the estimated date by, for

instance, Kim and Nelson (1999a) and McConnell and Perez-Quiros (2000).

Many empirical studies on the “Great Moderation” are based on reduced form ARIMA

models for real GDP. It is interesting to compare our results with those in the literature by

converting our UC model into the implied ARIMA(2,2,3) representation:

(1− φ1L− φ2L
2)(1− L)2yt = (1 + θ1L+ θ2L

2 + θ3L
3)ut (3.18)

where ut
i.i.d
∼ N(0, σ2

ut). The parameters of the above ARIMA(2,2,3) model are functions of

the parameters of our UC model. Oh and Zivot (2006) show the equations for parameter

conversion. Not surprisingly, the variation in the volatility parameter σut (as shown in

Figure 3.6) is in line with those findings of great moderation after 1984 (e.g. Kim and

Nelson (1999a)).

Different from the pure reduced form studies, the UC-model-implied ARIMA represen-

tation provide a chance to conduct a counterfactural study to understand the impact of

changes in the volatility of the trend and cycle shocks and changes in the correlation be-

tween them. Specifically, we want to investigate whether we could have observed the “Great

Moderation” if only one of the above three components changes as estimated after 1980:1.

And We compute the implied σu in the ARIMA representation holding the other two of ρt,

σηt and σǫt at the levels of 1980:1. Counterfactural results are shown in Figure 3.7. The

changes in ρt and σǫt alone can respectively reduce σut by about half of the actual volatility

reduction. But changing σηt alone barely changes σut after 1984.

Another interesting finding is that σu remains at low level after 1984 except for some

turmoils created by the Great Recession from 2007-2009.
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3.3.3 Other implications

Is there growth rate slowdown?

Perron (1989) and Perron and Wada (2009) identify a productivity slowdown for US in the

1970s. We find some signs of the growth rate slowing down, although not smoothly. Our

estimated µt (Figure 3.5) is similar to the one reported in Kim and Nelson (1999b). There

are two high growth rate periods: early 1950s and early 60s, while the mean growth rate

started to fall after 1965. The average level of µt seems to be lower after 1970s and further

decreases after about 2005.

As the estimated µt suggests a reduction in the mean growth rate during the Great

Recession, the implied output gap was not as large as what people would have expected.

Figure 3.8 presents the estimated output gap by our model. Magnitudes of the cycles remain

relatively small until the end of the sample.

Is the trend GDP stochastic?

Samples for σηt (Figure 3.3) stays significantly above zero over time. Distinct from what is

claimed in Perron and Wada (2009) who assumes the correlation is constant overtime, the

change in mean growth rate does not seem to be the only source for the permanent changes

in the US real GDP.

On the other hand, the standard deviation for ζt is estimated to be around 0.1 and

stable over time. It’s slightly larger than what is usually reported in the literature but still

quite small. Therefore, it is not likely that the changes in mut can account for most of the

permanent changes in the trend component.

3.4 Concluding remarks

In this paper, we present evidence for the changing correlation between the trend and

cycle GDP in postwar U.S. by introducing the time varying correlation into a UC model

with random walk mean growth rate and stochastic volatility. We find that the estimated

correlation is negative but could be close to zero before 1980s. And it has become more

negative since the 1980s till the end of the sample (2012:4). By allowing the correlation to



48

change over time, we are able to synthesize some of the debating results from earlier work.

Through counterfactural study, we show that the change in correlation contributes equally

with the reduction in the cycle volatility to the great moderation.

As a by product, we find evidence for a stochastic trend and ongoing permanent shocks.

We also find some signs of the grow rate slowdown around 1970 and further reduction around

2005.
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Figure 3.1: Estimated correlation between trend and cycle: ρt
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Figure 3.2: Estimation of difference between correlation at 1980:1 and correlation after that.
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Figure 3.3: Estimated standard deviation for trend shock: σηt
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Figure 3.4: Estimated standard deviation for cycle shock: σǫt
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Figure 3.5: Estimated mean growth rate: µt
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Appendix A

APPENDIX TO CHAPTER 1

A.1 Results with updated data

We repeat our analysis on the updated data to 2008:2. Results are mostly in line with those

reported earlier except for quantitative changes.

The most likely break date is 1969:3, with the posterior probability of 1.99%. The break

dates within the 70% HPD region mostly locate from 1965 to 1980, as shown in Figure A.1.

The Bayesian estimated results are presented in Table A.1.

The upper panel in Figure A.2 presents the Bayesian posterior density for ση. The

bimodal distribution is similar to that reported in Section 1.3.2, with two modes at 0.45

and 1.05. There are around 70% posterior samples centering around the first mode and the

remaining 30% around the second mode. The estimated GDP cycles are reported in Figure

A.3.

Model comparison results, reported in Table A.2, do not vary much qualitatively com-

pared to our earlier results.

A.2 The Gibbs sampling used in Section 1.3

Define θ = [µ, φ1, φ2, ση, σǫ, ρ, d]. Let (.)(k) denote the the kth posterior draw of the latent

variable xt or parameter. Y denotes all the observed quarterly log real GDP {y1, y2, ...yT }.

The kth step in our Gibbs sampler used in Section 1.3 involves the following blocks:

• Draw
{
x
(k)
t : t = 1, ...T

}
∼ f(x1, ...xT |Y, θ

(k−1), T b(k−1)) obtained from the simulation

smoother developed by Durbin and Koopman (2002). We then obtain τ
(k)
t and c

(k)
t as

the first two elements in x
(k)
t .

• Draw
[
φ
(k)
1 , φ

(k)
2

]
∼ f(φ1, φ2|Y, x

(k)
t , σ

(k−1)
ǫ ).
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Posterior probability for each break date
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Figure A.1: Posterior distribution of break dates with data up to 2008:2.

Note: In the upper panel, all (including both dark and light) shaded areas represent the 90% HPD

intervals, while the dark ones represent the 70% HPD intervals.

Stack (1.14) by time, we have

Yc = CΦ+ ǫ

where Yc =
{
c
(k)
3 , ..., c

(k)
T

}′
, ǫ = {ǫ3, ..., ǫT }

′ i.i.d.
∼ N(0, 1/hǫ) with hǫ = (σ

(k−1)
ǫ )−2,
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Figure A.2: Posterior density of ση (upper panel) and σǫ (lower panel) with data up to
2008:2.

Φ = {φ1, φ2}
′ and

C =




c2 c1
...

ct−1 ct−2

...

cT−1 cT−2
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Decomposed cycle
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Figure A.3: Posterior estimate of trend and cycle for benchmark model.

Note: Shaded areas represent the NBER recession periods.

Given multivariate normal prior N(Φ0, VΦ0) for Φ, the posterior distribution follows

a multivariate normal distribution N(Φ̃, ṼΦ), where

ṼΦ = (V −1
Φ0 + hǫC

′C)−1 (A.1)

Φ̃ = ṼΦ(V
−1
Φ0 Φ0 + hǫC

′Yc) (A.2)

The posterior samples for
[
φ
(k)
1 , φ

(k)
2

]
must guarantee the stationarity of the process.

Therefore, we discard nonstationary draws and regenerate new ones until they meet
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the stationary requirement.

• Draw
[
µ(k), d(k)

]
∼ f(µ, d|Y, x

(k)
t , σ

(k−1)
η ).

Stack (1.15) by time, we have

Yτ = D


 µ

d


+ η

where Yτ =
{
τ
(k)
2 − τ

(k)
1 , ..., τ

(k)
T − τ

(k)
T−1

}′
, η = {η2, ..., ηT }

′ i.i.d.
∼ N(0, 1/hη) with hη =

(σ
(k−1)
η )−2 and

D =




1 0
...

1 1(t > Tb)
...

1 1




Given uniform priors µ ∼ [0, 2] and d ∼ [−0.5, 0.5], the posterior distribution follows

a truncated multivariate normal distribution. It’s equivalent to sample the posterior

from N(M̃, ṼM ) and discard the samples out of the truncated region, where

ṼM = (hηD
′D)−1 (A.3)

M̃ = hηṼMD′Yτ (A.4)

• Draw
[
σ
(k)
1 , σ

(k)
2

]
∼ f(σ1, σ2|Y, x

(k)
t , µ(k), d(k), φ

(k)
1 , φ

(k)
2 , b(k−1)).

According to (1.16),


 η∗t

ǫ∗t


 ∼ N




 0

0


 ,


 σ2

1 0

0 σ2
2




 (A.5)

We assume independent priors for h−1
i = σ2

i ∼ IG(s−2
i0 , νi0) with i = 1, 2. It’s equiva-

lent to assume a Gamma prior G(s−2
i0 , νi0) for hi. The posterior of hi, in this case, is
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G(s̃−2
i , ν̃i), where for i = 1, 2

ν̃i = T + νi0 (A.6)

s̃21 =
η∗

′

η∗ + ν10s
2
10

ν̃1
(A.7)

s̃22 =
ǫ∗

′

ǫ∗ + ν20s
2
20

ν̃2
(A.8)

η∗ = [η
∗(k)
1 , ..., η

∗(k)
T ]′ (A.9)

ǫ∗ = [ǫ
∗(k)
1 , ..., ǫ

∗(k)
T ]′ (A.10)

• Draw b(k) ∼ f(b|Y, x
(k)
t , µ(k), d(k), φ

(k)
1 , φ

(k)
2 , σ

(k)
2 ). Stack (1.17) by time, we have

ǫ̂ = Eb+ e∗

where ǫ̂ =
{
ǫ̂
(k)
1 , ..., ǫ̂

(k)
T

}′
, E =

{
η̂
(k)
1 , ..., η̂

(k)
T

}′
and e∗ = {ǫ∗1, ..., ǫ

∗
T }

′ i.i.d.
∼ N(0, 1/hs2)

with hs2 = (σ
(k)
2 )−2. η̂

(k)
t and ǫ̂

(k)
t are residuals in the first two rows in (1.12).

Given normal prior N(b0, Vb0) for b, the posterior distribution follows a normal distri-

bution N(b̃, Ṽb), where

Ṽb = (V −1
b0 + hs2E

′E)−1 (A.11)

b̃ = Ṽb(V
−1
b0 b0 + hs2E

′ǫ̂) (A.12)

• Draw Tb(k) ∼ f(Tb|Y, θ(k)). According to (1.18), we can draw Tb from a multinomial

distribution where f(Tb|Y, θ) = f(Y |Tb,θ)
∑T−1

t=1
f(Y |Tb=t,θ)

Note that the fixed break date and the no break date model can be also estimated by

the above Gibbs sampler with corresponding blocks skipped for the restricted parameters.
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Benchmark model: with an uncertain break date

Log marginal likelihood:-336.9226

Prior Posterior

median 90% quantile mean median 90% HPD*

µ 1 (0.10, 1.90) 0.9278 0.9315 (0.77, 1.08)

φ1 1 (-0.64, 2.64) 1.4300 1.4581 (1.24,1.67)

φ2 0 (-1.64, 1.64) -0.5505 -0.5613 (-0.75,-0.37)

ση 0.24 (0.05, 17.31) 0.6185 0.5439 (0.16,1.02)

σǫ 0.61 (0.08, 65.65) 0.6505 0.6261 (0.34,0.98)

ρ 0 (-1.00, 1.00) 0.2030 0.3292
(-0.90,-0.40)∪

(-0.15,1.00)

d 0 (-0.48, 0.48) -0.1839 -0.1929 (-0.43,0)

median 90% quantile median mode 90% quantile**

Tb 1977:2 (1949:4, 2004:4) 1971:4 1969:3 (1952:2, 2003:3 )

Posterior***

PW model: fixed break date MNZ model: no break date

Log marginal likelihood:-336.6105 Log marginal likelihood:-338.2757

mean median 90% HPD mean median 90% HPD

µ 0.9563 0.9572 (0.88,1.04) 0.8325 0.8351 (0.75,0.91)

φ1 1.4518 1.4609 (1.28,1.65) 1.4466 1.4866 (1.23,1.72)

φ2 -0.5443 -0.5474 (-0.72,-0.36) -0.5674 -0.5809 (-0.77,-0.40)

ση 0.4538 0.4193 (0.08,0.79) 0.7149 0.6483 (0.27,1.19)

σǫ 0.5991 0.5803 (0.35,0.86) 0.6456 0.6110 (0.31,0.98)

ρ 0.5838 0.8614 (-0.4,1.00) 0.0951 0.0302
(-0.90,0.20)∪

(0.60,1.00)

d -0.2200 -0.2212 (-0.33,-0.11) —

Tb 1973:1 (fixed) —

* HPD refers to highest posterior density interval.

** We report the 70% and 90% HPD for Tb in Figure 4.

*** Priors for the unrestricted parameters in PW and MNZ models are the same as

those in the benchmark.

Table A.1: Bayesian Inferences with data up to 2008:2.
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Model Log marginal likelihood BIC difference

Row over column

PW MNZ

uncertain break date(Ours) -337.2264 -1.6492 2.1190

Tb=1973:1(PW) -336.6105 3.7682

no break(MNZ) -334.1752

Table A.2: Log marginal likelihoods and model comparisons with data up to 2008:2.
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Appendix B

APPENDIX TO CHAPTER 2

B.1 Estimation of break dates for S2 and S4.

Model M=1 M=2 M=3 M=4

STM LML -358.77 -356.35 -356.32 -357.41

Tm 2002:2 1968:3, 2006:1 1973:2, 1969:1,2006:1,

2006:1,2012:3 2008:2,2012:3

DTM LML -355.01 -354.50 -354.87 -354.93

Tm 1973:2 1973:2, 2002:4 1969:1, 1947:4, 1969:1,

1978:4, 2005:3 2002:2, 2005:3

Note: LML-log marginal likelihood.

Sample Period: 1947:1-2012:4

Table B.1: Estimated break dates for S2.
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Model M=1 M=2 M=3 M=4

STMV LML -331.33 -330.46 -331.47 -334.99

Tm 2002:2 1972:2, 2006:1 1969:3, 1969:1, 2002:2,

2006:1, 2006:1 2002:2, 2006:1

Tv 1983:2 1983:2 1983:2 1983:2

DTMV LML -331.44 -330.80 -332.40 -334.04

Tm 2002:2 1973:4, 2006:1 1969:1, 1969:1,2002:2,

2002:2, 2006:1 2002:2, 2006:1

Tv 1983:2 1983:2 1983:2 1983:2

Note: LML-log marginal likelihood.

Sample Period: 1947:1-2012:4

Table B.2: Estimated break dates for S4 with N=1.
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B.2 Details on the Gibbs sampler

Let θ denote all the parameters except for the break dates. Let (.)(k) denote the the kth

posterior draw of the latent variable xt or parameters. Y denotes all the observed quarterly

log real GDP {y1, y2, ...yT }. The kth step in our Gibbs sampler used in Section 2.2 involves

the following blocks:

• Draw
{
x
(k)
t : t = 1, ...T

}
∼ f(x1, ...xT |Y, θ

(k−1), T b(k−1)) obtained from the simulation

smoother developed by Durbin and Koopman (2002). We then obtain τ
(k)
t and c

(k)
t as

the first two elements in x
(k)
t .

• Draw
[
φ
(k)
1 , φ

(k)
2

]
∼ f(φ1, φ2|Y, x

(k)
t , σ

(k−1)
ǫ ).

Stack the second row of (2.11) by time, we have

Yc = CΦ+ ǫ

where Yc =
{
c
(k)
3 , ..., c

(k)
T

}′
, ǫ = {ǫ3, ..., ǫT }

′ i.i.d.
∼ N(0, 1/hǫt) with hǫt = (σ

(k−1)
ǫt )−2,

Φ = {φ1, φ2}
′ and

C =




c2 c1
...

ct−1 ct−2

...

cT−1 cT−2




Given multivariate normal prior N(Φ0, VΦ0) for Φ, the posterior distribution follows

a multivariate normal distribution N(Φ̃, ṼΦ), where

ṼΦ = (V −1
Φ0 + hǫC

′C)−1 (B.1)

Φ̃ = ṼΦ(V
−1
Φ0 Φ0 + hǫC

′Yc) (B.2)

The posterior samples for
[
φ
(k)
1 , φ

(k)
2

]
must guarantee the stationarity of the process.

Therefore, we discard nonstationary draws and regenerate new ones until they meet

the stationary requirement.
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• Draw
[
µ(k), d

(k)
1 , d

(k)
2 , ..., d

(k)
M

]
∼ f(µ, d|Y, x

(k)
t , σ

(k−1)
ηt ).

Stack the first row of (2.11) by time, we have

Yτ = D




µ

d1
...

dM



+ η

where Yτ =
{
τ
(k)
2 − τ

(k)
1 , ..., τ

(k)
T − τ

(k)
T−1

}′
, ηt = {η2, ..., ηT }

′ i.i.d.
∼ N(0, 1/hηt) with

hηt = (σ
(k−1)
ηt )−2.

Given uniform priors µ ∼ [0, 2] and d ∼ [−1, 1], the posterior distribution follows a

truncated multivariate normal distribution. It’s equivalent to sample the posterior

from N(M̃, ṼM ) and discard the samples out of the truncated region, where

ṼM = (hηD
′D)−1 (B.3)

M̃ = hηṼMD′Yτ (B.4)

• Draw
[
σ
(k)
1,j , σ

(k)
2,j , bj

]
∼ f(σ1, σ2|Y, x

(k)
t , µ(k), d(k), φ

(k)
1 , φ

(k)
2 , b(k−1)) for j = 1, 2, ..., N +

1. The following steps are based on sample periods from Tvj−1 to Tvj of length of Tj .

Residual terms [η̂t, ǫ̂t]
′ can be obtained from the simulation smoother in the first step.

Define η∗t = ηt ∼ N(0, σ2
1,j) and ǫ∗t = −bjηt + ǫt ∼ N(0, σ2

2,j), and we have the

following:

B−1
j


 η̂t

ǫ̂t


 =


 η̂t

−bj η̂t + ǫ̂t


 =


 η̂∗t

ǫ̂∗t


 ∼ N




 0

0


 ,


 σ2

1,j 0

0 σ2
2,j




 (B.5)

where

Bj =


 1 0

bj 1




We assume independent priors for h−1
i,j = σ2

i,j ∼ IG(s−2
i0 , νi0) with i = 1, 2. It’s

equivalent to assume a Gamma prior G(s−2
i0 , νi0) for hi,j . The posterior of hi,j , in this
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case, is G(s̃−2
i,j , ν̃i,j), where for i = 1, 2

ν̃i = Tj + νi0 (B.6)

s̃21 =
η∗

′

η∗ + ν10s
2
10

ν̃1
(B.7)

s̃22 =
ǫ∗

′

ǫ∗ + ν20s
2
20

ν̃2
(B.8)

η∗ = [η
∗(k)
Tvj−1+1, ..., η

∗(k)
Tvj

]′ (B.9)

ǫ∗ = [ǫ
∗(k)
Tvj−1+1, ..., ǫ

∗(k)
Tvj

]′ (B.10)

For bj , the posterior sample can be obtained by the second row in (B.5) as a standard

regression problem.

We can then construct the posterior samples for [ση,j , σǫ,j , ρj ] according to (2.12).

• Draw Tm
(k)
j ∈ (Tmj−1, Tmj+1) for j = 1, 2, ...,M . We can draw Tm

(k)
j from a

multinomial distribution where

f(Tmj |Y, θ, Tmj−1, Tmj+1) =
f(Y |Tmj , Tmj−1, Tmj+1θ)

∑Tmj+1−1
t=Tmj−1+1 f(Y |Tmj = t, Tmj−1, Tmj+1, θ)

and Y are observations between Tmj−1 and Tmj+1.

Tv
(k)
j ∈ (Tvj−1, T vj+1) for j = 1, 2, ..., N + 1 can be sampled in a similar way.
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Appendix C

APPENDIX TO CHAPTER 3

C.1 The Gibbs sampling used in Section 3.2

1. Draw
{
x
(k)
t : t = 1, ...T

}
∼ f(x1, ...xT |Y, θ

(k−1)) using the simulation smoother devel-

oped by Durbin and Koopman (2002). We then obtain τ
(k)
t µ

(k)
t and c

(k)
t as the first

three elements in x
(k)
t .

2. Draw
[
φ
(k)
1 , φ

(k)
2

]
∼ f(φ1, φ2|Y, x

(k)
t , σ

(k−1)
ǫ ). Stack (3.13) by time, we have

Yc = CΦ+ u

where Yc =
{
c
(k)
t /σ

(k−1)
ǫt , t = 3, 4, ...T

}′
, u = {u3, ..., uT }

′ i.i.d.
∼ N(0, 1), Φ = {φ1, φ2}

′

and

C =




c2/σ
(k−1)
ǫ3 c1/σ

(k−1)
ǫ3

...

ct−1/σ
(k−1)
ǫt ct−2/σ

(k−1)
ǫt

...

cT−1/σ
(k−1)
ǫT cT−2/σ

(k−1)
ǫT




Given multivariate normal prior N(Φ0, VΦ0) for Φ, the posterior distribution follows

a multivariate normal distribution N(Φ̃, ṼΦ), where

ṼΦ = (V −1
Φ0 + C ′C)−1 (C.1)

Φ̃ = ṼΦ(V
−1
Φ0 Φ0 + C ′Yc) (C.2)

3. Draw
[
σ
(k)
νi , i = 1, 2, 3

]
and {hit : i = 1, 2, 3, t = 1, 2, ..., T}. Residual terms [η̂t, ǫ̂t, ζ̂t]

′

can be obtained from the simulation smoother in the first step. According to (3.14),
{
hit = log(σ2

it), i = 1, 2, 3
}
follow random walks. We can use the method proposed by

Kim et al. (1998) to sample {hit : i = 1, 2, 3, t = 1, 2, ..., T}.
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We assume independent priors for σ2
νi ∼ IG(s−2

i0 , νi0) with i = 1, 2, 3. It’s equivalent

to assume a Gamma prior G(s−2
i0 , νi0) for σ−2

νi . The posterior of σ−2
νi , in this case, is

G(s̃−2
i , ν̃i), where for i = 1, 2

ν̃i = T + νi0 (C.3)

s̃2i =
ν̂ ′ν̂ + νi0s

2
i0

ν̃i
(C.4)

ν̂ = [h
(k)
i2 − h

(k)
i1 , ..., h

(k)
iT − h

(k)
i(T−1)]

′. (C.5)

4. Draw b
(k)
t and σw. Given the second row in (3.14) and the random walk assumption

on the evolving of bt, we have a state space regression to sample bt as the state variable

using similar approach as in Step 1. And we can sample σw given draws of b
(k)
t using

inverse Gamma posterior similar to how we sample σνi, i = 1, 2, 3:

ǫ̂t = η̂tbt + ǫ∗t ǫ∗t ∼ N(0, σ2
2t) (C.6)

bt = bt−1 + wt, wt ∼ N(0, σ2
w) (C.7)

We can then construct the posterior samples for [σηt, σǫt, σζt, ρt] according to (3.8).


