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Appointment scheduling systems have been studied for nearly 60 years. From a decision making 

point of view, related problems can be classified into two categories: static and dynamic. In a 

static scheduling problem, all decisions are made before a clinic session starts; in a dynamic 

scheduling problem, the schedule of future arrivals is revised constantly during the clinic session. 

I categorize my problem as static. Within the research field of static appointment scheduling, 

little attention has been paid to patient no-show until the past decade. As an important aspect of 

patient arrival behaviors, the phenomenon of patient no-show has resulted in huge economic loss 

industry wide. I aim to explore static scheduling approaches to alleviate negative effects of 

patient no-show, with consideration of nonhomogeneous patients, overbooking, and 

nonconventional patient waiting cost structure. 



 

ii 

  



 

iii 

  



 

iv 

One primary contribution of this dissertation is a static analytical model I developed for the 

problem of scheduling patients to queues with consideration of quadratic patient waiting costs, 

nonhomogeneous patient no-show probabilities, and nonhomogeneous patient waiting cost ratios. 

By relaxing the assumptions of constant and identical no-show probabilities and waiting cost 

ratios, Hassin and Mendel’s [25] model becomes a special case of my model. Another major 

contribution lies in my study on a set of heuristics that sequence patients based on their no-show 

probabilities. My numerical studies on three heuristics suggest scheduling patients with higher 

no-show probabilities in front of patients with lower no-show probabilities. It achieves best 

overall system performance as well as patient waiting performance. Last, I integrated the static 

model with a nonconventional overbooking strategy to formulate a problem with a hybrid 

overbooking model which not only determines number of patients to schedule but also 

determines scheduled inter-arrival times. It enables outpatients, inpatients, and emergency 

patients to be considered within a static scheduling environment. By comparing performances of 

three booking heuristics, I recommend scheduling inpatients first when no-show probability is 

low, while scheduling outpatients first when no-show probability is high. 

Patient waiting is reported to be an important index of patient satisfaction in various surveys. 

Almost all appointment scheduling studies assume a linear relationship between patient waiting 

cost and patient waiting time, which might not be correct. The waiting cost of a system with one 

patient waiting for 40 minutes is not equal to another one with 20 patients each waiting for 2 

minutes [34]. Furthermore, it also involves issues of goodwill, service, and “costs to the society”, 

which place a value on patients’ waiting time [8]. Therefore, a nonlinear cost structure of patient 

waiting is desired. To control the complexity of target problems, a majority of the static  
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scheduling literature assumes homogenous patients, which might be oversimplified. For the same 

amount of waiting time, waiting cost varies from one patient to another, due to various 

occupations held by different patients. Similarly, no-show probability needs to be patient specific 

as it’s determined by various patient level attributes (Age, sex, marital status, income, 

appointment delay, etc.). 

I solve a static scheduling problem with patient no-show probability varied among patients. To 

represent the nonlinear nature of the relationship between waiting cost and patient waiting time, I 

formulate the objective function as a total of quadratic patient waiting cost and linear sever idle 

cost. By comparing it to a model with linear waiting cost, I find quadratic waiting cost may 

change my decision of sequencing patients when no-show probability is nonhomogeneous. I 

solve another problem with both patient no-show probability and patient waiting cost ratio varied 

among patients, and compare the performance of three no-show probability based booking 

heuristics: lower no-show first, higher no-show first, and higher no-show in the middle, with the 

purpose of providing simplified heuristics to medical scheduling practices. 

Next, I address a daily scheduling problem of allocating relatively flexible diagnostic capacities 

among three categories of patients: inpatients, who have low level of no-show probability and 

waiting cost ratio; outpatients, who have medium level of no-show probability and waiting cost 

ratio; and emergency patients, who usually show up as walk-in, with extremely high waiting cost 

ratio. To incorporate walk-in emergency patients into the model, I employ an overbooking 

strategy with server overtime allowed. The objective is to maximize system performance in 

terms of net revenue which consists of service revenue, server idle cost, patient waiting cost, and 

patient deny penalty cost. I analyze the model from three perspectives: behavior of optimal  
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schedules, overall system performance, and customer experience. To make the model easy to 

apply, I analyze the model performances under three heuristic booking strategies: all outpatient, 

inpatient first and outpatient first, with three environmental factors (outpatient no-show 

probability, equipment hourly idle cost, and inpatient service fee) are varied. The system is found 

to perform better when server hourly idle cost is greater. This phenomenon is more significant 

when outpatient no-show probability is relatively low. For clinics which also schedule inpatients, 

I recommend using the inpatient first policy when outpatient no-show probability is low; and 

using outpatient first policy when outpatient no-show probability is high. To a certain extent, 

overbooking can alleviate the negative effects brought by patient no-show, but system 

performance still decreases as no-show probability increases. 

  



 

ix 

 

  



 

x 

 

TABLE OF CONTENTS 

Abstract ............................................................................................................................................ i 

LIST OF FIGURES ...................................................................................................................... xii 

LIST OF TABLES ........................................................................................................................ xv 

Chapter 1 INTRODUCTION .......................................................................................................... 1 

1.1. Background ...................................................................................................................... 1 

1.2. Motivation ........................................................................................................................ 2 

1.3. Contributions .................................................................................................................... 4 

1.4. Outline of the dissertation ................................................................................................ 5 

Chapter 2 METHDOLOGY ............................................................................................................ 7 

2.1. Evolution of analytical models ......................................................................................... 7 

2.2. Problem formulation ........................................................................................................ 9 

2.3. Data collection................................................................................................................ 14 

2.4. Solution method ............................................................................................................. 14 

Chapter 3 LITERATRATURE SURVEY .................................................................................... 16 

3.1. A set of problems of scheduling arrivals to queuing systems ........................................ 16 

3.2. Scheduling patients with no-shows ................................................................................ 20 

3.3. Scheduling multiple categories of patients..................................................................... 22 

3.4. Time based cost measurement........................................................................................ 25 



 

xi 

3.5. Scheduling rules ............................................................................................................. 26 

3.6. Studies on patient no-show ............................................................................................ 33 

3.7. New appointment policies .............................................................................................. 36 

Chapter 4 STATIC SCHEDULING FOR PATIENTS WITH NONHOMOGENEOUS NO-

SHOW PROBABILITIES AND NONHOMOGENEOUS WAITING COST RATIOS ............. 38 

4.1. The baseline model with quadratic waiting cost ............................................................ 38 

4.2. The queuing model for patients with nonhomogeneous no-show probabilities ............. 52 

4.3. The queuing model for patients with nonhomogeneous no-show probabilities and 

waiting cost ratios .................................................................................................................... 65 

Chapter 5 A HYBRID OVERBOOKING MODEL FOR MULTI-CATEGORY PATIENTS 

WITH NO-SHOW ........................................................................................................................ 71 

5.1. Assumptions ................................................................................................................... 71 

5.2. Model description ........................................................................................................... 72 

5.3. A base case of the all outpatient policy .......................................................................... 80 

5.4. Heuristic appointment policies ....................................................................................... 86 

Chapter 6 CONCLUSIONS .......................................................................................................... 95 

Chapter 7 FUTURE RESEARCH ................................................................................................ 99 

BIBLIOGRAPHY ....................................................................................................................... 101 

 

  



 

xii 

 

LIST OF FIGURES 

Figure 2.1 Flow chart of model development ................................................................................. 8 

Figure 2.2 Schedule in form of inter-arrival times ....................................................................... 12 

Figure 2.3 Schedule in form of patients to slots assignment ........................................................ 12 

Figure 3.1 An example of the “dome shaped” optimal schedule .................................................. 19 

Figure 3.2 Rule n1 = N / ni = 0 / no xi............................................................................................ 27 

Figure 3.3 Rule n1 = 1 / ni = 1 / constant xi ................................................................................... 28 

Figure 3.4 Rule n1 > 1 / ni = 1 / constant xi ................................................................................... 29 

Figure 3.5 Rule n1 ≥ 1 / ni = 1 / variable xi .................................................................................. 29 

Figure 3.6 Rule n1 = ni > 1 / constant xi ........................................................................................ 30 

Figure 3.7 Rule n1 > ni > 1 / constant xi ........................................................................................ 30 

Figure 3.8 Bailey's rule ................................................................................................................. 32 

Figure 3.9 Block rule .................................................................................................................... 32 

Figure 3.10 Threshold rule ............................................................................................................ 33 



 

xiii 

Figure 4.1 Schedules of the baseline model at N = 10, p = 0.1, θ = 0.5 ....................................... 43 

Figure 4.2 Schedules of the baseline model at N = 10, α = 0.1, θ = 0.5 ....................................... 44 

Figure 4.3 Schedules of Hassin and Mendel’s model at N = 10, p = 0.1, θ = 0.5 ........................ 46 

Figure 4.4 Schedules of the Hassin and Mendel’s model at N = 10, α = 0.1, θ = 0.5 .................. 47 

Figure 4.5 Expected server completion time of the two models at N = 10, p = 0.1, θ = 0.5 ........ 48 

Figure 4.6 Expected server completion time of the two models at N = 10, α = 0.1, θ = 0.5 ........ 49 

Figure 4.7 Total expected patient waiting time of the two models at N = 10, p = 0.1, θ = 0.5 .... 50 

Figure 4.8 Total expected patient waiting time of the two models at N = 10, α = 0.1, θ = 0.5 .... 51 

Figure 4.9 Schedules of the lower no-show first heuristic............................................................ 54 

Figure 4.10 Schedules of the higher no-show first heuristic ........................................................ 55 

Figure 4.11 Schedules of the higher no-show in the middle heuristic .......................................... 56 

Figure 4.12 Expected patient waiting times of the lower no-show the first heuristic .................. 57 

Figure 4.13 Expected patient waiting times of the higher no-show first heuristic ....................... 58 

Figure 4.14 Expected waiting times of the higher no-show in the middle heuristic .................... 59 

Figure 4.15 Total system costs of the three heuristics at different levels of α.............................. 60 



 

xiv 

Figure 4.16 Total system costs of the two heuristics under linear patient waiting cost assumption

....................................................................................................................................................... 62 

Figure 4.17 Total expected patient waiting time of the three heuristics ....................................... 63 

Figure 4.18 Expected server completion times of the three heuristics ......................................... 64 

Figure 4.19 Total system cost of the three heuristics at different levels of β ............................... 68 

Figure 4.20 Total expected patient waiting time of the three heuristics at different levels of β ... 69 

Figure 4.21 Expected server completion time of the three heuristics at different levels of β ...... 70 

Figure 5.1 the threshold value for N under various capacities

  0.2,  =$1,500 ,  $800i i IQ p r i c    ........................................................................................ 78 

Figure 5.2 System net revenues under various capacities   0.2,  =$1,500 ,  $800i i IQ p r i c  

....................................................................................................................................................... 78 

Figure 5.3 Overbook rate vs. capacity   0.2,  =$1,500 ,  $800i i IQ p r i c    ........................... 79 

Figure 5.4 The numerical search for a problem with  9 0.2 ,  $800i IQ p i c     ................. 83 

Figure 5.5 Schedules for N = 9, 10, 11, 12, 13 respectively  9,  0.2 ,  $800i IQ p i c     ....... 83 

Figure 5.6 Average Expected patient waiting time under different values of N ........................... 86 

Figure 5.7 Expected patient waiting times under different values of N........................................ 86 



 

xv 

 

LIST OF TABLES 

Table 3.1 Radiology appointment scheduling studies with consideration of multi-category 

patients .......................................................................................................................................... 25 

Table 3.2 Summary of scheduling rules in radiology practice ..................................................... 33 

Table 3.3 No-show rates of family and primary care clinics ........................................................ 34 

Table 3.4 Estimated parameters for no-show probability functions ............................................. 36 

Table 4.1 Schedules of the baseline model at N = 10, p = 0.1, θ = 0.5 ......................................... 43 

Table 4.2 Schedules of the baseline model at N = 10, α = 0.1, θ = 0.5......................................... 44 

Table 4.3 Schedules of Hassin and Mendel’s model at N = 10, p = 0.1, θ = 0.5 .......................... 46 

Table 4.4 Schedules of the Hassin and Mendel’s model at N = 10, α = 0.1, θ = 0.5 .................... 47 

Table 4.5 Expected server completion time of the two models at N = 10, p = 0.1, θ = 0.5 .......... 48 

Table 4.6 Expected server completion time of the two models at N = 10, α = 0.1, θ = 0.5 ......... 49 

Table 4.7 Total expected patient waiting time of the two models at N = 10, p = 0.1, θ = 0.5 ...... 50 

Table 4.8 Total expected patient waiting time of the two models at N = 10, α = 0.1, θ = 0.5 ...... 51 

Table 4.9 No-show probability vectors of the three booking heuristics ....................................... 53 



 

xvi 

Table 4.10 Schedules of the lower no-show first heuristic ........................................................... 54 

Table 4.11 Schedules of the higher no-show first heuristic .......................................................... 55 

Table 4.12 Schedules of the higher no-show in the middle heuristic ........................................... 56 

Table 4.13 Expected patient waiting times of the lower no-show the first heuristic .................... 57 

Table 4.14 Expected patient waiting times of the higher no-show first heuristic......................... 58 

Table 4.15 Expected waiting times of the higher no-show in the middle heuristic ...................... 59 

Table 4.16 Total costs of the three heuristics at different levels of α ........................................... 60 

Table 4.17 Total system costs of the two heuristics under linear patient waiting cost assumption

....................................................................................................................................................... 62 

Table 4.18 Total expected patient waiting time of the three heuristics ........................................ 63 

Table 4.19 Expected server completion times of the three heuristics ........................................... 64 

Table 4.20 Total system cost of the three heuristics at different levels of β................................. 68 

Table 4.21 Total expected patient waiting time of the three heuristics at different levels of β .... 69 

Table 4.22 Expected server completion time of the three heuristics at different levels of β ........ 70 

Table 5.1 Threshold values, total net revenues, and schedules under various capacities

  0.2,  =$1,500 ,  $800i i IQ p r i c    ........................................................................................ 79 



 

xvii 

Table 5.2 Baseline model parameter values ................................................................................. 81 

Table 5.3 Objective function values and schedules for N = 9, 10, 11, 12, 13 respectively

 9,  0.2 ,  $800i IQ p i c     .................................................................................................... 84 

Table 5.4 Expected patient waiting times for N = 9, 10, 11, 12, 13 respectively

 9,  0.2 ,  $800i IQ p i c     .................................................................................................... 85 

Table 5.5 Notation and parameter values of three heuristic booking policies .............................. 87 

Table 5.6 Patient type assignment of the three heuristic booking policies ................................... 88 

Table 5.7 System net revenue (in $1,000) of all outpatient policy ............................................... 90 

Table 5.8 System net revenue (in $1,000) of outpatient first policy............................................. 90 

Table 5.9 System net revenue (in $1,000) of inpatient first policy ............................................... 90 

Table 5.10 Schedules for all outpatient policy.............................................................................. 92 

Table 5.11 Schedules for outpatient first policy ........................................................................... 93 

Table 5.12 Schedules for inpatient first policy ............................................................................. 94 

 

  



 

xviii 

 

ACKNOWLEDGEMENTS 

Throughout my Ph.D. studies, I have received encouragement and generous support from many 

kind people around me, without whom it would not be possible for me to complete this 

dissertation. 

Above all, I would like to express my deepest gratitude to my Ph.D. supervisor, Prof. Ricard 

Storch. The insights and support I received from him has been invaluable to my academic 

advancement and personal development. His guidance on various aspects such as choosing a 

research direction, setting a bar for my dissertation, and developing methodologies has made this 

dissertation a thoughtful and fruitful journey for me. At the times when I was struggling to 

balance between life, research, and work, his patience and friendship greatly helped me continue 

to persevere. 

I would like to acknowledge the academic and technical support of the department of Radiology 

at the University of Washington, especially my reading committee member Prof. Norman 

Beauchamp, for his enthusiasm of my research topic and insights on choosing a right modality as 

my research subject. I also thank Mr. Daniel Lane and Mr. Erik Christianson from the University 

of Washington Medical Center for their support in my work flow observation and empirical data 

collection. 

My thanks also go to the member of my reading committee, Prof. Archis Ghate, for sharing his 

ideas on improving the general structure of my dissertation, and Prof. Santosh Devasia for 



 

xix 

accepting to be a GSR, and Prof. Christina Mastrangelo for accepting to be my committee 

member. 

I would like to thank the following colleagues at UW ISE and Amazon Outbound Transportation 

for their sincere friendship: Wei Wang, Pengbo Zhang, Lihui Shi, Hongrui Liu, Lei Chen, Huan 

Nguyen, Stephen Swan, Eric Jones, Michael Campion, Raghav Mehra, Marc Armstrong, Yumin 

Deng, Di Wu. My thanks also go to Daisy Fu, my friend in China, for her trust and 

understanding. 

Finally, I would like to thank my parents, who always supported me during my entire academic 

career. 

  



 

xx 

 

DEDICATION 

To my family 



 

xxi 

  



 

 

Chapter 1 INTRODUCTION 

1.1. Background 

In 2009, the total U.S. health expenditure reached $2.5 trillion, which represents 17.6% of the 

nation's Gross Domestic Product (GDP) [10]. Although decelerating, the U.S. health care 

spending growth rate was constantly higher than the GDP growth rate in the past 10 years.  

Obviously, more public investment is needed to finance health care, which makes it a huge 

burden for the country. In such a fast-growing industry, hospitals that fail to maintain cost 

effective operations struggle to survive financially [21]. Therefore, health care providers face a 

great deal of pressure to reduce costs and to improve efficiency. 

On the other hand, timely access to medical services becomes a significant business concern in 

the health care industry. A study by Strunk and Cunningham [62] shows an increase from 24.4% 

to 27.4% for general examination appointments with Appointment Delay longer than three 

weeks. In a major report on health care quality conducted by the Institute of Medicine [30], 

“timeliness” is identified to be a key aim for improvement. Patient waiting is costly, not only 

because of the direct economic losses they cause, but also because of the potential losses in 

patient satisfaction they may bring. Therefore, it is regarded as key to delivering good clinical 

outcomes (i.e. volume of patients receiving services); it is also reported to be an important index 

of patient satisfaction in various surveys. Hospitals and clinics have been struggling to reduce 

long patient waiting time. Depending on time horizon, patient waiting can be classified into two 

types: indirect waiting and direct waiting. Indirect waiting, also known as appointment delay, is 
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defined as the time span between an appointment request is made and actual appointment time; 

direct waiting is defined as the time a patient spends in the queue, waiting for receiving medical 

services. In this study, I focus on direct waiting, which I name as patient waiting for the rest of 

this paper, unless the contrary is explicitly stated. 

One plausible way to provide timely access appears to be hiring more physicians and supporting 

staff, which is not only costly but also unrealistic in terms of the insufficient supplies. Thus, it's 

challenging to maintain cost effectiveness while offering timely access to patients. Appointment 

scheduling systems deal with balancing between maintaining cost efficiency and providing 

timely access to care. An effective scheduling system can help reach a reasonable level of 

appointment delay/patient waiting without increasing costs. 

1.2. Motivation 

Since the 1950s, numerous studies on appointment scheduling have been done. However, within 

this research field, little attention has been paid to patient no-show until 2000s. As an important 

aspect of patient’s arrival behaviors, the phenomenon of patient no-show has a significant impact 

on overall efficiency of the appointment scheduling systems. High no-show rates have been 

reported to result in huge economic loss industry wide. Pesata et al. [56] reported 14,000 missed 

appointments in a pediatric practice which resulted in an estimated loss of over a million dollars. 

Moore et al. [49] reported 31% of the total appointments at a family practice clinic were missed 

or cancelled, which caused a corresponding estimated a loss between 3% and 14% of annual 

revenues. BBC News [3] reported 12 million general practice appointments missed in the UK in 

a single year, which costs 250 million GBP. Since 2000s, appointment scheduling systems with 

consideration of patient no-show have been intensively studied. Nevertheless, a majority of the 
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literature has assumed constant and identical no-show probabilities. In medical practices, it’s 

unrealistic to estimate no-show probabilities of different patients with a fixed value, as it ranges 

from as low as 3% to as high as 80% [1]. Even within the same service type, it varies 

significantly depending on various other factors (appointment delay, patient attributes etc.). 

There is a need for nonhomogeneous no-show probabilities in static appointment scheduling 

problems. 

As an important component of overall appointment scheduling system performance, patient 

waiting cost has been assumed by almost all related literature to be linearly related with patient 

waiting time, which might not be correct. As pointed out by Klassen and Rohleder [34], the 

waiting cost of a system with one patient waiting for 40 minutes doesn’t equal to another one 

with 20 patients each waiting for 2 minutes. From the point view of heath care providers, the 

former is usually considered as a quality incident, which costs much more than the latter, as 

tolerated waiting. Furthermore, it also involves issues of goodwill, service, and “costs to the 

society”, which place a value on patients’ waiting time [8]. Even for the same amount of waiting 

time, waiting cost varies from one patient to another, due to various occupations held by 

different patients. Therefore, nonlinear patient waiting cost and nonhomogeneous waiting cost 

ratios are desired to provide a more realistic representation of patients. 

The radiology department of a hospital typically faces demand from three groups of patients: (i) 

outpatients, who are scheduled to come, usually featured with low level of no-show probability 

and waiting cost; (ii) inpatients, who either wait for a call or are scheduled with reserved slots, 

usually featured with medium level of no-show probability and waiting cost; and (iii) emergency 

patients, who show up as walk-in, featured with extremely high waiting cost, are usually served 
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depending on urgency. However, limited research attention has been paid to the static scheduling 

problems dealing with inpatients, outpatients, and emergency patients. 

1.3. Contributions 

I first demonstrate that there is a need for quadratic patient waiting cost measurement, from 

operational, psychological, and social perspectives. With this purpose, I formulate a static 

scheduling problem which determines patient inter-arrival times to minimize a total of quadratic 

patient waiting cost and linear server idle cost, with patient no-show probability and waiting cost 

ratio fixed. By enumerating values of no-show probability, I find that sensitivity of scheduled 

patient inter-arrival time to patient no-show probability varies from one patient to another, with 

the inter-arrival times among first several patients more sensitive to no-show probability than the 

inter-arrival times among the last several patients. I relax the assumption of constant and 

identical no-show probabilities used in previous studies. By comparing the performance of three 

no-show probability based booking heuristics, I recommend scheduling patients with higher no-

show probabilities to the first several slots of a clinical session. This heuristic can help clinics 

achieve better system performance while reducing overall and patient specific waiting times. I 

further relax the assumption of constant and identical patient waiting cost ratio. Under the new 

model, the higher no-show first heuristic still outperforms the other two heuristics, in terms of 

overall system cost; although it has the highest waiting time it achieves the shortest completion 

time. I observe that the higher no-show first is a robust heuristic against a wide range of 

parameters. 

The generalized model developed in Chapter 4 can be well applied to a practical case with 

inpatients and outpatients, as both of these two types of patients can be scheduled in advance, no-
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show probabilities and waiting cost ratios could be estimated based on patient attributes. In 

Chapter 5, to include walk-in emergency patients in a static scheduling problem, I develop a 

hybrid overbooking model with relatively flexible appointment capacity, by relaxing the 

assumption of scheduling fixed number of patients, including service revenue and patient deny 

costs in the objective function, and allowing a certain level of server overtime. Under the new 

model, I find that the optimal schedules do not follow the well-known dome shape, moreover, 

expected patient waiting time tends to increase non-monotonically, which is contradictory with 

my observation from the previous work without overbooking in Chapter 4. For a very limited 

improvement on system net revenue, the optimal solution results into huge sacrifice of patient 

waiting, therefore, it’s not recommended to book patients to maximum. The numerical study 

results of three type based patient sequencing policies indicate that the model performs better 

when server hourly idle cost is greater. This phenomenon is more significant when outpatient no-

show probability is relatively low. For clinics which also schedule inpatients, I recommend using 

the inpatient first policy when outpatient no-show probability is low and using outpatient first 

policy when outpatient no-show probability is high. To a certain extent, overbooking can 

alleviate the negative effects brought by patient no-shows, but system performance still 

decreases as no-show probability increases. 

1.4. Outline of the dissertation 

The remainder of this dissertation is organized as follows. 

Chapter 3 gives review of relevant literature. 
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Chapter 4 first solves a static scheduling problem with fixed no-show probability. Under the 

quadratic waiting cost assumption, the effects of variable waiting cost ratios and no-show 

probabilities are analyzed. It then relaxes the assumption of constant and identical no-show 

probabilities and compares the performance of three no-show probability based booking 

heuristics: lower no-show first, higher no-show first, and higher no-show in the middle. It 

another problem with both patient no-show probability and patient waiting cost ratio varied 

among patients. The following three questions are answered in this chapter 

 How should patients been sequenced based on estimated no-show probabilities? 

 Does quadratic waiting cost affect the decision on sequencing patients? If yes, how? 

 Do variable waiting cost ratios impact the decision on sequencing patients? If yes, how? 

Chapter 5 extends the generalized queuing model developed in Chapter 4 to a hybrid 

overbooking model. The objective is to maximize system net revenue which consists of service 

revenue, server idle cost, patient waiting cost, and patient deny penalty cost. Solutions are 

analyzed from three perspectives: behavior of optimal schedules, overall system performance, 

and customer experience. The performance of the model is tested under three heuristic booking 

policies: all outpatient, inpatient first and outpatient first, with three environmental factors 

(outpatient no-show probability, server hourly idle cost, and inpatient service fee) are varied. 

Chapter 6 summarizes my major findings throughout this dissertation and discusses their 

potential implementations to practices. 

The dissertation ends in Chapter 7 with potential directions for future research extensions. 
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Chapter 2 METHDOLOGY 

From a decision making point of view, appointment scheduling problems can be static or 

dynamic. In a static scheduling problem, all decisions are made before a clinic session starts; in a 

dynamic scheduling problem, the schedule of future arrivals can be revised during the clinic 

session. All the problems studied in this dissertation are categorized as static. 

The objective of this dissertation is to find good static appointment scheduling systems 

(including decisions on inter-arrival times, sequence of patients based on no-show probabilities 

or patient types, and number of patients to schedule), which attempt to alleviate negative 

effectives of patient no-show, by optimizing pre-defined system performance measures 

(consisting of patient waiting, server idle time, service revenue, and patient deny penalty), with a 

more realistic representation of radiology environment. To achieve this goal, nonhomogeneous 

patients, overbooking, and a nonconventional patient waiting cost structures are considered. 

2.1. Evolution of analytical models 

The research part of this dissertation starts with a review on the following streams of literature: i) 

a set of problems of scheduling arrivals to queuing systems, ii) general appointment scheduling 

problems with patient no-shows, iii) scheduling multiple categories of patients, iv) scheduling 

rules, v) studies on patient no-shows, vi) time based cost measurement, and vii) new appointment 

policies. It extends from the first literature stream, with a series of assumptions relaxed. Figure 

2.1 depicts the stepwise approach it takes to develop the analytical models. 
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Figure 2.1 Flow chart of model development 
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Starting with the analytical model by Hassin and Mendel [25], I first apply the concept of 

Taguchi’s loss function to modeling patient waiting cost as a quadratic function of patient 
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waiting time. Then I relax the assumption of constant and identical no-show probabilities. I 

further relax the assumption of constant and identical waiting cost ratios among patients. Finally, 

I relax the assumption of fixed number of patients to schedule, by applying a nonconventional 

overbooking strategy which allows a certain level of server overtime. 

2.2. Problem formulation 

The subject radiology facility is modeled as a queuing system, with a single Markovian server. 

The scheduling horizon is one static non-evolving clinical session consisting of a fixed number 

of equal-length appointment slots. Patients are scheduled to arrive punctually at their 

appointment times, with certain chances of being no-shows. 

2.2.1. Performance measurement 

To be comparable with previous studies on scheduling arrivals to queuing systems, Chapter 4 

uses a classic combination of two time based cost measurements: patient waiting cost and server 

idle cost, but in a different way, where patient waiting cost is not linearly related with patient 

waiting time. By employing an overbooking strategy, Chapter 5 takes service revenue and 

patient deny penalty cost into consideration. 

 Time based cost measurement 

In Chapter 4, the objective function is a total of quadratic patient waiting cost and linear server 

idle time cost. Patient waiting time is reported to be a direct indicator of patient satisfaction, 

while server idle time is considered as a waste of valuable medical resource. A combined cost 
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function of patient waiting and server idle time has been used by a majority of appointment 

scheduling papers, to name a few: [16], [43], [40], [57], [14], [15], [36], [25], and [50]. 

However, all studies mentioned above assume a linear relationship between patient waiting cost 

and patient waiting time, which might not be correct. To address this issue, I decided to model 

patient waiting cost as quadratic to waiting time. To the best of my knowledge, only Laganga 

and Lawrence [37] apply a quadratic patient waiting cost to the objective function. They did a 

thorough comparison between linear and quadratic cost functions. I distinguish my study by 

comparing the two functions within a context of nonhomogeneous no-show probabilities, and I 

find that quadratic waiting cost may change my decision on choosing the best scheduling policy. 

 Service revenue 

From each patient served, the MRI facility collects a certain amount of service revenue, in the 

form of an insurance fee charge. In most general hospitals, scanning fees charged on outpatients 

are much higher than those charged on inpatients. For the numerical study in Chapter 5, I keep 

the parameter setting for outpatient revenue at $1,500, and vary inpatient revenue from a low of 

$300 to a high of $1,000. 

 Patient deny penalty cost 

Unlike overbooking in hotel/airline industries, denying a scheduled patient usually don’t incur 

direct penalty cost.  Instead, it involves various indirect costs which are difficult to quantify. For 

inpatients, I approximate it with the opportunity cost of one extra day stay in the hospital, due to 

the fact of denying an inpatient causes longer unpaid stay; while for outpatients, I estimate it 

with a combination of cost of scheduling, potential staff overtime cost, and loss of goodwill. 
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2.2.2. Decision variable 

The most commonly used decision variable for appointment scheduling problems is the schedule 

itself. A review of various representations of schedules is given in Chapter 3. As part of the 

hybrid overbooking model, the number of patients to schedule is also considered in Chapter 4. 

 Schedule 

Depending on the nature of a problem that is of interest, there are primarily two types of 

formulations for appointment schedules: i) inter-arrival times, and ii) patients to slots. The 

former is a vector of times between scheduled arrivals for fixed number of patients, on a 

continuous time basis. It can be expressed as X = (x1,…, xi,…, xN-1) where xi is scheduled inter-

arrival time between ith patient and (i + 1)st patient, and N is the number of patients scheduled 

(see Figure 2.2); the latter is a vector of the numbers of patients assigned to each appointment 

slot, usually patients are required to arrive at the beginning of his/her slot, on a discrete time 

basis (see Figure 2.3). It can be expressed as N = (n1,…, ni,…, nK) where ni is the number of 

patients scheduled to the ith slot, and K is the number slots for a clinic session. A common 

assumption shared by these two formulations is that appointment slots are of constant equal-

length. 
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Figure 2.2 Schedule in form of inter-arrival times 
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Figure 2.3 Schedule in form of patients to slots assignment 
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In general, the latter is frequently used in medical overbooking studies, for example, [37], [38] 

and [75]. However, in this dissertation, the former is chosen as part of decision variables in a 

hybrid overbooking model in Chapter 5. 

 Number of patients to schedule 
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The hybrid overbooking model developed in Chapter 5 schedules more patients than the capacity 

of a clinic session. Thus, determining the optimal number of patients to schedule becomes one of 

the objectives. 

 Patient sequence 

One major contribution of this dissertation is a set of heuristics gained from sequencing patients 

based on their no-show probabilities or types. The numerical studies suggest scheduling patients 

with higher no-show probabilities in front of patients with lower no-show probabilities when 

there is no overbooking. In a case with overbooking, the numerical studies suggest scheduling 

inpatients first when no-show probability is relatively low, and outpatients first when no-show 

probability is relatively high. 

2.2.3. Service time 

Identical and constant service times are used by many studies for all patients or one category of 

patients, to reduce the complexity of the problems. It’s a common assumption especially for 

dynamic scheduling problems such as [23], [22], and [54]. It could be justified by the fact that 

appointment slots are generally fixed and doctors try to finish their service on time. In general, 

the use of equal-length appointment slots is more suitable in the scenarios that medical services 

are delivered with less uncertainty. For example, it could be reasonable to assume equal-length 

service times for diagnostic imaging, while unrealistic to assume it for surgical services. Even for 

radiology, preparing patients takes significantly different times for different groups of patients. 

For example, female patients with more jewelry take a longer time than male patients. For static 

scheduling problems, due to the nature of its simplicity, variable service times are usually used. 
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Most studies assume independent and identically distributed exponential service times to make 

the models tractable. Throughout this dissertation, I assume service times are independent and 

identically distributed. 

2.3. Data collection 

Operations data on MRI service times and no-show is collected from the Radiology Information 

System (RIS) [12], which is owned and maintained by the University of Washington Medical 

Center (UWMC) and its affiliated facilities. The RIS data is stored in form MS SQL databases, 

which can be accessed via Crystal Reporting. 

By specifying scheduled date between March 1
st
 2013 and March 31

st
 2013, modality as “MR”, 

and department as “MR”, 1,136 MRI appointment records are obtained. After further excluding 

the appointment records with reason code of “DUPLICATE EXAM SCHEDULED IN ERROR” 

and “WRONG DATE”, I obtain a sample of 1,130 effective data points. Among the 1,130 MRI 

appointments, 93 fall into one of the following reason codes: “Patient Did Not Show”, “Patient 

Cancelled”, “Rescheduled”, and “Patient Discharged”, which are considered as no-shows in my 

numerical studies. Within the same sample, 791 appointments have both effective values of 

begin datetime and end datetime. Service time is calculated by subtracting begin datetime from 

end datetime. Average service time for these 791 appointments is approximately 46 minutes. 

Revenue and cost related data is collected from public statistics or reviewed literature.  

2.4. Solution method  
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All the models are coded in Matlab. Solutions are obtained by using the fmincon function in the 

Matlab optimization toolbox, which is designed to solve problems of minimizing a constrained 

nonlinear multivariate objective function. By choosing the “Active Set” optimization strategy, 

the function performs line search using Sequential Quadratic Programming (SQP) method. 

SQP method is one of the most successful methods for computing numerical solutions of 

nonlinearly constrained optimization problems. At each iteration, it models a nonlinear 

programming problem by a Quadratic Programming (QP) sub-problem and solves it with an 

approximate solution. It then uses the approximate solution to generate a better approximate 

solution in the next iteration. This process creates a sequence of approximates which, when 

certain conditions are satisfied, converges to an optimal solution.  

Given an appropriate choice of QP sub-problem, SQP can be viewed as an extension of Newton 

and quasi-Newton methods to constrained optimization problems. It shares two common 

attributes with Newton like methods: i) rapid convergence when iterates are close to the solution, 

and ii) possible erratic behavior when iterates are far from the solution [6]. The success of SQP 

methods depends heavily on the speed and accuracy of the algorithms chosen for solving QP 

sub-problems. 
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Chapter 3 LITERATRATURE SURVEY 

Patient appointment scheduling has been studied intensively since 1950s. As the first to draw 

research attention to this research area, [2], [73], and [42] demonstrate the use of quantitative and 

simulation tools can significantly improve the performance of an appointment scheduling system. 

From then on, numerous studies have been conducted to approach this topic from various 

perspectives. Before the 2000s, most of the research efforts had been devoted to the problems of 

scheduling homogeneous outpatients to find an optimal balance between patient costs and server 

costs. Recent research trends lie in taking inpatients and emergency patients into consideration, 

exploring appointment policies that can handle multiple patient classes with a variety of arrival 

behaviors (no-show, late cancellation, and walk-in, etc.) Refer to [8], [14], and [48] for 

comprehensive reviews of outpatient appointment scheduling literature. 

This dissertation is related with the following distinct streams of literature: 

3.1. A set of problems of scheduling arrivals to queuing systems 

I start this dissertation with a review of the studies on S(N)/M/1 problems which schedule arrival 

times of N homogeneous patients to a single Markovian server with independent and identical 

exponential service times. Pegden and Rosenshine [55] solve the cases of N = 2 and N = 3, they 

obtain explicit expressions of solutions, and prove them to be optimal by demonstrating that the 

objective functions are convex. For the problem with N ≥ 4, they provide a recursive algorithm 

using gradient search to obtain a solution numerically. Stein and Cote [60] formulate the 

recursive algorithm with a transition matrix, and compute solutions with reduced-gradient search. 
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Hassin and Mendel [45][25] incorporate a constant no-show probability p into the S(N)/M/1 

problem. Based on an assumption that the objective function is convex, they solving the problem 

by using line search. A key contribution of their work is a recursive representation of expected 

patient waiting time of the ith patient
iw . For all i > j ≥ 0, wi is calculated as the following 
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When j > 0 
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, (3.3)  

where P(N(xi) = l) denotes the probability that l patients are served during scheduled inter-arrival 

time between ith and (i+1)th patients xi.  

A common observation from this set of problems is the well-known “dome shaped” optimal 

schedule in form of a vector of inter-arrival times X = (x1,…, xi,…, xN-1). Compared to arrival 

times, it is chosen to give a better illustration of the Poisson distribution that N(xi) follows. 

Refer to Figure 3.1 for an example of dome shaped schedule, where i of X axis denotes inter-

arrival number (i.e. i = 1 denotes inter-arrival between 1st patient and 2nd patient), x of Y axis 

denotes the corresponding scheduled inter-arrival time in unit of hour. A point (i, x) in the graph 

represents xi, the scheduled inter-arrival time between ith patient and (i + 1)st patient. In a dome 

shaped schedule, inter-arrival time increases among the first several patients, keeps relatively 

constant at a certain level thereafter, and then drops significantly between last two patients.  
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Figure 3.1 An example of the “dome shaped” optimal schedule 

 

Intuitive explanations for this behavior have been given by both [60] and [25]. The scheduling of 

first several patients to arrive closer is to avoid the server being idle after finishing the first 

patient. The relatively fixed inter-arrival times among patients in the middle is due to the fact 

that the person scheduling customers at time 0 will anticipate a probabilistic steady-state at a 

time distant in the future. Scheduling last several patients closer is to avoid server being idle 

while only a few customers remain to arrive. 

The dome shaped optimal schedule is first observed by Stein and Cote [60] in a numerical study 

on the cases of N = 50 and N = 10 without no-shows. [45] and [25] demonstrate that the adding 

of constant and identical patient no-show probabilities does not change the dome shape of 

optimal schedules. 
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Dependency of the dome shape for optimal schedules is summarized as patients being 

homogenous with non-deterministic service times. Specifically, it needs to satisfy the following 

two requirements: i) service times are non-deterministic, but independent and identically 

distributed, and ii) no-show probabilities and waiting cost ratios are constant and identical. 

3.2. Scheduling patients with no-shows 

The phenomenon of no-show has an inevitable impact on efficiency and accessibility of health 

care systems. Although no-show itself has been an active research area with productive results, 

throughout nearly 60 years research history of appointment scheduling, limited attention has 

been paid to scheduling problems with patient no-shows until the past decade. 

3.2.1. General appointment scheduling problems with patient no-shows 

[46] and [47] are considered as pioneering works in this research area. In these two studies, no-

show is modeled together with patient lateness, a no-show happens when the lateness probability 

is greater than a threshold value. Recent studies considering no-show include [23], [36], [25] and 

[22]. The first three assume constant no-show probability, which might be oversimplified.  Koole 

and Kaandorp [36] solve a problem of scheduling patients with constant and identical no-show 

probabilities to a server with independent and identically distributed exponential service times; a 

local search algorithm is developed to compute the schedule with lowest objective value. They 

report the well-known dome shape schedules, which is also observed by Hassin and Mendel [25] 

in a similar problem. The major difference between these two studies lies in decision variables, 

where the former study uses patients to slots while the latter uses inter-arrival times. I 

differentiae my dissertation from these two studies with quadratic patient waiting cost structure, 
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nonhomogeneous no-show probabilities and nonhomogeneous patient waiting cost ratios. In my 

model, if patients are not sequenced in ascending or descending order of their no-show 

probabilities, schedules are not dome shaped anymore. Green and Savin [22] model patient no-

show probability as a function of indirect waiting/appointment delay in a dynamic scheduling 

problem, which supports one of my primary assumptions that no-show probability a patient 

could be predetermined at the time of booking. Refer to [9] and [27] for schedule evaluation 

studies which consider no-shows.  

Most closely related to my work is a study by Zeng et al. [75], which considers nonhomogeneous 

patients with different no-show probabilities in an overbooking model. In this study, they report 

a solution where patients with lower no-show probabilities are scheduled in front of patients with 

higher no-show probability, which is contradictory to my finding that patients with higher no-

show probabilities are preferred to be scheduled in front of patients with lower no-show 

probabilities. I will discuss the discrepancies in further detail in Chapter 4. 

3.2.2. Overbooking applications to alleviate patient no-show 

In Chapter 5, in order to take the unknown arrivals of emergency patients into consideration 

within a static scheduling environment, where all decisions are made before a clinic session 

starts, I choose to use a hybrid overbooking strategy, which aims to determine optimal number of 

patients to schedule and inter-arrival times. Overbooking as an important strategy for 

overcoming customer no-shows, has been a common practice in airline and hotel industries for 

decades. It recently draws research attention to outpatient appointment scheduling. 
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Besides the fact of suffering from no-shows, clinic scheduling problems are quite different from 

the airline/hotel booking problems. Muthuraman and Lawley [50] summarize the major 

differences between these two types of problems from three perspectives: objective function, 

decision variable, and system dynamics. They formulate the objective function with patient 

waiting time, staff overtime and patient revenue. Patients to slot vector N = (n1, n2, …, nK) is 

chosen as decision variable, a different increasing pattern of expected patient waiting for various 

numbers of patients is observed. Zeng et al. [75] develop a sequential scheduling procedure to 

solve a similar problem, with essentially the same objective function, and same decision variable. 

In this study, patient waiting is modeled as number of patients who overflow from one slot to the 

next, patient deny penalty cost, as a major concern in overbooking problems, is not taken into 

consideration. Laganga and Lawrence [37], [38] evaluate performance of an overbooking 

strategy within a wide range no-show probabilities, schedule sizes, and overbooking ratios. 

Based on rich numerical studies results, they demonstrate the advantages of applying 

overbooking to clinic scheduling. In these studies, however, patients are assumed to be 

homogeneous with constant and identical no-show probabilities and waiting cost ratios, which 

limit their applications to practices. Another representative study in clinical overbooking is [32]. 

3.3. Scheduling multiple categories of patients 

Traditionally, appointment scheduling papers only take outpatient into consideration. In practice 

it is possible that inpatients are also scheduled to come, therefore, a recent research trend of 

appointment scheduling lies in scheduling multi-category patients. A typical radiology 

department in a general hospital faces demand from three patient groups: outpatients, who are 

not hospitalized, visit a hospital for diagnosis or treatment; inpatients, who are admitted to stay 



 

23 

overnight in a hospital for treatment or observation; and emergency patients, the unexpected 

walk-in patients who need urgent treatment. Demands from all three groups arrive randomly, but 

are treated in different ways. Outpatients are scheduled in advance. Emergency patients are 

usually served with next available slot, by postponing scheduled appointments. Rules of 

accepting and serving inpatients requests vary from hospital to hospital. Even within the same 

hospital, it varies from department to department. One common practice is to reserve a certain 

number of appointment slots or time periods within a clinic session for inpatients. In some 

hospitals, inpatients requests are held till an empty slot becomes available. Among the three 

groups, emergencies are usually served with highest priority, while the priorities of the rest two 

groups vary from case to case. In some cases, outpatients are assigned with different levels of 

priorities, based on which the appointment delay is determined. In British Columbia, Canada, 

there exist three outpatient priority classes with allowable wait times of 7, 14, and 28 days, 

respectively [54]. The three patient groups also have different associated costs. From the point of 

view of management, outpatients are often considered as revenue source while serving inpatients 

are regarded as cost. 

Limited research attention has been paid to the problem of scheduling multiple categories of 

patients for constrained medical resources. Gerchak et al. [19] explore this problem in a situation 

of allocating operating rooms between elective and emergency patients, with an emphasis on 

finding an optimal policy for scheduling elective patients. Refer to [61] and [33] for similar 

studies on booking operating time slots for different patient classes. A subset of this literature 

stream deals with this problem in radiology environment. 

3.3.1. Applications to radiology practices 
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Almost all studies on scheduling multiple categories of patients model the problem as dynamic 

scheduling. I distinguish my study by dealing booking multiple category patients within a static 

booking environment. Among these studies, Markov Decision Process (MDP) is the most 

frequently used modeling technique. Reviewed literature includes modalities of Computer 

Tomography (CT), Magnetic Resonance Imaging (MRI) and chest radiography. Patrick et al. [54] 

consider a case of CT department in a general hospital which serves inpatients with high priority 

and outpatients with lower priority. They use MDP to model it as a dynamic scheduling problem 

which aims to minimize overall patient waiting cost. Due to the extremely large state space, 

approximate dynamic programming is employed to solve an equivalent linear program of this 

problem. No-show is not considered in this study. Kolisch and Sickinger [35] also use MDP to 

model dynamic resource allocation between two CT scanners to the three categories of patients, 

with an objective function to maximize the total rewards consist of revenues, waiting costs and 

penalty costs. Walk-in is considered in this study which differentiates this paper from most 

existing outpatient appointment scheduling papers. The demand from walk-in emergency 

patients and inpatients are modeled as random arrivals with fixed show up probabilities. Green et 

al. [23] formulate the problem of managing demand from inpatients, outpatients and emergency 

patients for MRI services as a finite-horizon dynamic program. They develop a linear heuristic as 

an alternative to the optimal policy, and use numerical studies based on empirical data to show 

the robustness of this heuristic. Refer to [53] for more work on allocating diagnostic resources to 

multi-category patients. Table 3.1 summarizes radiology appointment scheduling studies with 

consideration of multi-category patients. 
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Table 3.1 Radiology appointment scheduling studies with consideration of multi-category 

patients 

Year Author Imaging Service Patient Type No-show 

1973 Walter [68] Chest Radiography OP, IP Without 

2006 Green et al. [23] MRI OP, IP and EMP Constant p 

2008 Kolisch and Sickinger [35] CT OP, IP and EMP Constant p 

2008 Patrick et al. [54] CT Multi-priority OP, IP and EMP Without 

2010 Gocgun [20] CT OP, IP, and multi-priority EMP Without 

As pointed out by Patrick et al. [54], the major challenge faced in this type of problems “is that 

the low-priority demand must be booked before knowing the high-priority demand. Therefore, a 

significant portion of the total capacity must be reserved for this unknown high-priority demand 

leading inevitably to unused capacity on those days when the high-priority demand is lower than 

expected.” To alleviate the waste caused by higher than needed reserved capacity, in Chapter 5, 

instead of reserving capacity for high priority emergency patients, I overbook one emergency to 

each appointment slot. 

3.4. Time based cost measurement 

In general, there are two broad categories of time based measures: patient time and server time. 

The most commonly used patient time is patient waiting time, which has been included in a 

majority of schedule evaluation type of studies. To name a few, [42], [31], [59], [16], [55], [27], 

[43], [66], [40], [57], [14], [36], [37], [25], [50], and [75]. Some studies also use patient flow 

time, which is defined as the total time from the moment when a patient enters the queue to the 

moment when the patient is released by server. A breakdown of total expected patient flow time 

is illustrated by the following formula: 



 

26 

     
1

N

F W si

i

E t E t E t


  , (3.4)  

where tF denotes total patient flow time, tW denotes total patient waiting time, tsi denotes service 

time of the ith patient. From optimization point of view, it's essentially equivalent to patient 
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 is fixed. Refer to [70] for a use case of 

server completion time as part of objective function. 

Server time includes but not limited to three types: server idle time, server completion time, 

server overtime. 

Server idleness happens when there is no patient in the system before a clinic session ends. It is 

regarded as waste of valuable medical resource. To summarize, it has been used by the following 

studies: [31], [16], [27], [41], [43], [40], [57], [14], [15], [36], and [25]. 

Server overtime is defined as the timespan between scheduled finished time and actual 

completion time of one service session. Studies employed server overtime includes: [16], [55], 

[41], [69], [60], [70], [43], [71], [66], [14], [15], [36], [37], [75]. 

Server completion time is defined as the time that a doctor spends from the beginning of the 

schedule until the last patient scheduled for the period has been served. It has been used by [69] 

and [70]. 

3.5. Scheduling rules 

In this section, to illustrate scheduling rules, I adopt the graphical representation used in [16]. tb 

denotes beginning time; te denotes end time; n1 denotes the number of patients scheduled to 1st 
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slot, ni denotes the number of patients scheduled to ith slot (i ≥ 1); T denotes clinical session 

length; N is number of patients scheduled to one clinical session. 

Starting from [2], a number of studies attempted to find scheduling rules, under certain 

circumstances, that achieve a reasonable balance between server idle cost and patient waiting 

cost. 

In early times, doctor’s time was considered to be much more valuable than a patient’s time. 

Therefore, most hospitals/clinics used scheduling rule n1 = N / ni = 0 / no xi (see Figure 3.2), 

which minimizes server idle time while maximizing patient waiting. On the other hand, 

scheduling rule n1 = 1 / ni = 1 / constant xi (see Figure 3.3) pays more attention to patient waiting, 

by scheduling one patient to arrive at the beginning of each equal-length appointment slot, 

significantly reduces patient waiting, but degrades doctors' utilization. 

Figure 3.2 Rule n1 = N / ni = 0 / no xi 
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Figure 3.3 Rule n1 = 1 / ni = 1 / constant xi 
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Bailey [2] in his study suggests the rule of n1 = 2 / ni = 1 / constant xi, which attempts to schedule 

two patients to the first slot, and one patient to each slot thereafter. It significantly reduces the 

risk of server being idle at the beginning of a clinic session. Later known as "Bailey's rule" (See 

Figure 3.8), this rule has been evaluated by numerous studies in this field. "Bailey's rule" falls 

into the general category of n1 > 1 / ni = 1 / constant xi (see Figure 3.4), it’s a special case where 

n1 = 2. Recent research trend lies in the rules of n1 ≥ 1 / ni = 1 / variable xi (see Figure 3.5), 

which allows variable spaced inter-arrivals, it aims to determine the best combination of xi that 

achieves optimum or sub optimum objective function values. Rules of n1 = ni > 1 / constant xi 

(see Figure 3.6) and of n1 > ni > 1 / constant xi (see Figure 3.7) are generally used in clinic 

overbooking studies, in which each appointment is booked with more than one patients. 
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Figure 3.4 Rule n1 > 1 / ni = 1 / constant xi 
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 Figure 3.5 Rule n1 ≥ 1 / ni = 1 / variable xi 
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Figure 3.6 Rule n1 = ni > 1 / constant xi 
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Figure 3.7 Rule n1 > ni > 1 / constant xi 
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3.5.1. Rules in radiology practice 

There are three popular scheduling rules in radiology practice. They use simulation to evaluate 

these three rules for scheduling outpatients: 

 Bailey's rule: also known as front-loading, it schedules 2 to the first slot, and one 

patient to each of the remaining slots (see Figure 3.8);  
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 Block: a variation of the primitive rule n1 = N / ni = 0 / no xi. It can be described as

1 2 1/ = / =
2 2 2

N N T
n n x . Patients are scheduled to only two slots, one at the beginning 

of the day and one at the beginning of the afternoon. In this case, instead of an exact 

times, patients who make appointments are only scheduled to come during the morning 

or during the afternoon; 

 Threshold: all patients are scheduled to the slots before a specified threshold time, the 

remaining slots are left open. 

The first two rules are used by two university medical centers in Germany, as study objectives in 

[35]. The third one is discussed in detail by Green et al. [23], as a popular practice of scheduling 

patients to MRI services which are under the pressure of high equipment cost. 
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Figure 3.8 Bailey's rule 
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Figure 3.9 Block rule 
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Figure 3.10 Threshold rule 
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Table 3.2 summarizes the three rules mentioned above. 

Table 3.2 Summary of scheduling rules in radiology practice 

Rules First slot ( 1n ) Remaining slot ( in ) Inter-arrival time ( ix ) 

Bailey's rule 2 1 Constant 

Block N/2 N/2 constant (T/2) 

Threshold ≥1  ≥1 or 0 constant 

3.6. Studies on patient no-show 

In this section, I first summarize reviewed surveys on no-show rates of different practices, and 

then give a brief description of a prevailing method to model patient no-show probability with 

appointment delay. 

3.6.1. Empirical studies on no-show rates 

U.S. based surveys on patient no-shows indicate that a majority of clinic services experience no-

show rates within a range between 20% and 30%. One of the most comprehensive national 
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surveys on no-show rate is conducted by Hixon et al. [26]. In this study, 60% of 468 surveyed 

U.S. family practice residency programs responded, and that over a third of them report 

experiencing a no-show rates higher than 20%. Moore et al. [49] report a calculated no-show rate 

around 31% out of the 4,055 patient appointments scheduled to a period of 20 days. Xakellis and 

Bennett [74] report a 25% of no-show rate in a family practice clinic. Similar numbers are 

obtained by Ulmer and Troxler [64], whose study considers seasonal variations of no-show rates, 

which range from 22% to 26.5%. Table 3.3 gives a detailed summary to the above studies. 

Table 3.3 No-show rates of family and primary care clinics 

Study Sample 

size 

Type of clinic Length of 

study period 

Including 

cancellation? 

No-show 

rate 

Moore et al. [49] 4,055 family practice 

clinic 

20 days Yes 31% 

Xakellis and 

Bennett [74] 

555 Family 

medicine 

teaching clinic 

1 week No 25% 

Ulmer and 

Troxler [64] 

3618 and 

3101 

Primary care 

practice 

3 months in 

2001 and 3 

months in 2002 

No 22% and 

26.5% 

3.6.2. Modeling no-show probability with appointment delay 

No-show probability is used in many studies to quantify the arrival behavior of patient no-show. 

Most studies assume constant no-show probabilities, for the sake of simplicity. However, in 

practice, no-show probability is found to be a variable that depends on other factors such as 

patient's age, sex, marital status, income level, and so on. A few studies investigate this 

functional representation of no-show rate. Galucci et al. [18] conduct a study at a public mental 

health clinic at the Johns Hopkins Bayview Medical Center in Baltimore, on the dependence of 
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cancellation and no-show rate on appointment delay in number of days, they identified a strong 

relationship between no show and appointment delay described as the following: 

i. the no-show rate starts at a minimum value (about 12%) for same day appointments; 

ii. the no-show rate increases (by about 12% per extra day of waiting) monotonically with 

length of appointment delay; 

iii. the no-show rate stabilizes when it reaches a maximum value (about 42%). 

Green and Savin [22] extended this study by finding similar features based on data from the 

Columbia MRI facility and building a no-show function depending on backlog length. Their 

minimum and maximum no-show rates are 4% and 37%, respectively. By comparing the no-

show rates in these two studies, they claim that patients of a mental health care center are less 

reliable than the patients of an MRI diagnostic facility. They develop an exponential no-show 

function as the following:  

/

max max min( ) ( ) k Ck e       , (3.5)  

where k denotes the appointment delay in days; γmax and γmin denote the maximum and minimum 

observed no-show rates; C is a no-show appointment delay sensitivity parameter. Best fit values 

of the no-show function parameters  , γ max and γ min are obtained by minimizing the sum of the 

squared deviations between the predicted and actual no-show rates. The best fit no-show 

functions are applied to both cases and compared with original data, respectively. Table 3.4 

(adapted from [22]) compares the estimated parameters of no-show function for these two 

studies, it reinforces the claim that patients of mental health is more sensitive to appointment 

delay than patients of diagnostic imaging. 
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Table 3.4 Estimated parameters for no-show probability functions 

Data source Ĉ  min̂  max̂  

Galucci et al. [18] 9 0.15 0.51 

Green and Savin [22] 50 0.01 0.31 

3.7. New appointment policies 

The positive correlation between patient no-show rate and appointment delay provides us a hint 

on how to reduce no show: shortening the appointment delay. For this sake, a new appointment 

policy named Advanced Access (AA) or Open Access (OA) emerges and becomes popular in 

clinical practices. 

Developed by Murray and Tantau [51], the AA/OA system sticks to one core rule "Do today's 

work today", which enables patients to see their own personal physicians on same day they make 

their appointments, by eliminating the functional relationship between appointment delay and 

urgency/request service type (routine or preventive). Under AA/OA, patients are also allowed to 

schedule preferred future appointment. 

Many success stories of implementing AA/OA systems have been reported, with significant 

improvements on various measures. In their own practice, Murray and Tantau [51] report a 

reduction of patient wait for appointment from 55 days to 1 day, an increase of patients' chance 

to see their own physicians from 47 percent to 80 percent, and significantly improved patient 

satisfaction. As a result of reduced appointment delay, no-show rates decrease to minimum 

levels. 
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Successful implementations of AA/OA systems depend on a key factor, that is, to keep demand 

and supply in balance. In practice, it is difficult to determine how much is "in balance". As daily 

patient demand fluctuates, simply ensuring supply is more than average demand is not enough. 

Without sufficiently high capacity relative to demand, severe overloads may happen frequently 

[44]. Green and Savin [22] try to answer this question by developing a method with two queuing 

models and one simulation model to determine the largest panel sizes that work sustainably 

under AA/OA system. Their results show that the panel sizes are much smaller than theoretical 

values required for a queuing system to stabilize, which supports the common feeling that the 

long run supply rate is greater than the long run demand rate is not sufficient for AA/OA to work. 

For many clinics, however, it's not realistic to maintain a capacity that is much higher than the 

average daily demand. As a result, the effect of implementation of AA/OA system is 

controversial. 
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Chapter 4 STATIC SCHEDULING FOR PATIENTS WITH 

NONHOMOGENEOUS NO-SHOW PROBABILITIES AND 

NONHOMOGENEOUS WAITING COST RATIOS 

Appointment scheduling systems have been studied for nearly 60 years. However, within this 

research field, limited attention has been paid to patient no-show until the past decade. In this 

Chapter, I focus my study on a set of problems of scheduling patients with no-shows to the 

queuing systems with exponentially distributed service times. To represent the nonlinear nature 

of the relationship between waiting cost and patient waiting time, I formulate the objective 

function as a total of quadratic patient waiting cost and linear server idle cost. 

I first solve a problem of the baseline model with homogeneous patients, and compare it with 

Hassin and Mendel’s model, which assumes linear patient waiting cost. Then, I solve a problem 

with patient no-show probability varied among patients. By comparing it to a model with linear 

waiting cost, I find quadratic waiting cost may change my decision of sequencing patients when 

no-show probability is nonhomogeneous. Last, I solve another problem with both patient no-

show probability and patient waiting cost ratio varied among patients. I compare the performance 

of three no-show probability based patient sequencing heuristics: lower no-show first, higher no-

show first, and higher no-show in the middle, with the purpose of providing simplified heuristics 

to medical scheduling practices. 

4.1. The baseline model with quadratic waiting cost 
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The objective is to minimize a total cost of expected patient waiting cost and expected server idle 

cost by determining an optimal schedule X = (x1, …, xi, …, xN-1) of N homogeneous patients with 

constant no-show probability p. Denote the scheduled inter-arrival time between ith patient and (i 

+ 1)st patient with xi. Patients are served by a single server on a First Come First Served (FCFS) 

basis, with independent and identically distributed exponential service times. In later sections of 

this chapter, I study models with nonhomogeneous no-show probabilities and waiting cost ratios. 

Late arrival is not considered in this model. Given that a patient shows up, he/she must be 

punctual. 

4.1.1. Notation 

p no-show probability 

cW patient waiting cost ratio 

cI server idle cost ratio 

α relative patient waiting cost ratio = cW/(cW + cI) 

θ expected service time 

wi expected waiting time of ith patient given showing up 

Ni number of patients in the system right before ith scheduled arrival 

N(xi) number of patients served during the inter-arrival time xi 

β patient waiting cost coefficient 

 

4.1.2. Model description 

The general objective function with linear costs assumption is formulated as the following: 
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     
1

1 1

min    1 1 1
N N

W i I i N

i i

c p w c x w p p N 
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 

 
       

 
  , (4.1)  

where  
1

1
N

W i

i

c p w


  represents total expected patient waiting cost, 

   
1

1

1 1
N

I i N

i

c x w p p N 




 
     

 
 represents total expected server idle cost. The term

1

1

N

i

i

x




  

denotes the scheduled arrival time of the last patient, combined with wN, 
1

1

N

i N

i

x w




  defines the 

expected time when the server can start to serve last patient, given he/she shows up. By adding

 1 Np  , I obtain  
1

1

1
N

i N N

i

x w p 




    as expected service completion time. 

The objective function assumes that all the costs are linearly related with time, which holds well 

for server idle cost, as the unit time costs of equipment and personnel are relatively stable within 

a short time frame. However, it might not be fair to assume that patient waiting cost is linearly 

related with patient waiting time. Besides the fact that waiting cost of 40 minutes waiting time 

for one patient doesn’t equal the case where 20 patients each waits for 2 minutes [34], for a long 

time, it has been suspected that there might be a threshold value of patient waiting time, above 

which the tolerance of patients decreases steeply. Furthermore, it also involves issues of 

goodwill, service, and “costs to the society”, which place a value on patients’ waiting time [8]. 

As a patient continues to wait, unit time waiting cost increases. 

With the purpose to better address the issues mentioned above, I employ the concept of quadratic 

loss function, developed by Taguchi, where I regard patient waiting cost as quality loss of health 
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care services provided to patients. The target value of expected waiting time is set at 0, hence, 

it’s a “smaller the better” characteristic. 

I define the quadratic waiting cost representation as the following: 

   2

1

1
N

W i

i

c p w


  . (4.2)  

There are two ways to determine the waiting cost ratio cW: relative cost ratio value and absolute 

monetary value. For the former, the value of relative cost ratio   = W W Ic c c  is usually 

determined by healthcare decision makers, from their perception or standard cost accounting. For 

the latter, I will discuss in detail in the numerical study of Section 4.3. In this section, since 

patient waiting cost ratio cW is constant, I decide to use relative cost ratio α. 

With quadratic patient waiting cost, my objective function becomes a nonlinear combination of 

expected patient waiting time, total expected server idle time (see the equation below), which 

differentiates the baseline model from the model developed by Hassin and Mendel [25]. 

       
1

2

1 1

min    Z 1 1 1
N N

W i I i N

i i

c p w c x w p p N 


 

 
        

 
  . (4.3)  

The constant terms (1 – p)θ and (1 – p)Nθ do not impact the optimal solution. By removing them, 

the objective function can be simplified as the following 

   
1

2

1 1

min     Z 1
N N

W i I i N

i i

c p w c x w


 

 
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 
  . (4.4)  
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Apply relative patient waiting cost ratio to the equation above, by dividing it with (cW + cI), I 

obtain 

     
1

2

1 1

min     Z 1 1
N N

i i N

i i

p w x w 


 

 
     

 
  . (4.5)  

Besides the nonnegative requirement for xi, the constraint to this problem is the representation of 

wi. For all i > j ≥ 0, wi is calculated as the following 

 
1

0

P
i

i i

j

w j N j




  . (4.6)  

Refer to Hassin and Mendel [25] for development of the recursive representation of P(Ni = j). 

To solve this problem, I use the fmincon function in Matlab optimization toolbox, which is 

designed to solve problem of minimizing constrained nonlinear multivariate objective function. 

By choosing “Active Set” optimization strategy, the function performs line search using 

Sequential Quadratic Programming (SQP), it generate ad solves a Quadratic Programming (QP) 

sub-problem at each iteration. 

4.1.3. Impact of no-show probability and relative waiting cost ratio on schedule 

In this section, I solve a problem of scheduling N = 10 homogeneous patients with expected 

service time θ = 0.5 hours to a clinic session of 10 half-hour length appointment slots, at five 

levels of patient no-show probability p (0.1, 0.2, 0.3, 0.4, and 0.5) and five levels of relative 

waiting cost ratio α (0.1, 0.2, 0.3, 0.4, and 0.5).  
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Figure 4.1 illustrates the optimal solutions under five levels of relative waiting cost ratios, with 

constant patient no-show probability p = 0.1; Figure 4.2 illustrates optimal solutions under five 

levels of no-show probabilities, with constant relative waiting cost ratio α = 0.1. Refer to Section 

3.1 for detailed description of optimal solution figure. 

Figure 4.1 Schedules of the baseline model at N = 10, p = 0.1, θ = 0.5 

 

 

Table 4.1 Schedules of the baseline model at N = 10, p = 0.1, θ = 0.5 

α 
  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 

0.1 
 

0.03 0.33 0.44 0.47 0.48 0.48 0.47 0.43 0.33 

0.2 
 

0.10 0.43 0.51 0.54 0.55 0.55 0.53 0.49 0.38 

0.3 
 

0.16 0.50 0.57 0.59 0.60 0.59 0.58 0.54 0.42 

0.4 
 

0.22 0.55 0.61 0.63 0.64 0.63 0.62 0.58 0.47 

0.5   0.27 0.60 0.65 0.67 0.68 0.67 0.66 0.63 0.51 
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Figure 4.2 Schedules of the baseline model at N = 10, α = 0.1, θ = 0.5 

 

 

Table 4.2 Schedules of the baseline model at N = 10, α = 0.1, θ = 0.5

 
p 

  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 

0.1 
 

0.03 0.33 0.44 0.47 0.48 0.48 0.47 0.43 0.33 

0.2 
 

0.00 0.24 0.37 0.41 0.42 0.42 0.41 0.37 0.26 

0.3 
 

0.00 0.12 0.30 0.34 0.36 0.36 0.35 0.31 0.20 

0.4 
 

0.00 0.01 0.23 0.28 0.29 0.29 0.28 0.25 0.13 

0.5   0.00 0.00 0.08 0.20 0.22 0.22 0.22 0.19 0.06 

As we can see from Figure 4.1, scheduled inter-arrival time increases among the first several 

patients, it keeps relative constant at a certain level thereafter, and then drops significantly 

between last two patients. In general, the schedule forms a dome shape, which has been observed 

by many previous studies. The dome shape “expands” when α increases. The explanation for this 

phenomenon is straightforward: higher patient waiting cost will cause the system to schedule 

them with longer inter-arrival times. 
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As p increases, the first several patients are scheduled closer. When it reaches 0.2, (see Figure 

4.2), it starts to schedule the first two patients to arrive together. This is first suggested by Bailey 

[2], known as Bailey’s rule, to reduce the chance of the server being idle at the beginning of a 

clinic session. As p reaches 0.5, the first three patients are scheduled to the first slot. However, 

no matter how p changes, only the last two patients are scheduled significantly closer than prior 

patients, which indicates that the ending part of a schedule is relatively insensitive to no-show 

probability p. In a case where all patients must show up (without no-show), the solutions of Stein 

and Cote [60] demonstrate a similar feature of the last two patients scheduled close or together, 

which supports my observation that inter-arrival time among the last several patients is 

insensitive to no-show probability. 

Comparing Figure 4.1 with Figure 4.2, I observe that the increase of relative waiting cost ratio 

doesn’t change the shape of the schedules, but simply “magnifies” the schedules, whereas the 

increase of no-show probability “squeezes” the shape of the schedule, by scheduling the first 

several patients closer to each other. 

4.1.4. A comparison with the general model of linear waiting cost 

To illustrate how quadratic waiting cost impacts the outcome the optimal schedule, I compare 

my baseline model with the model developed by Hassin and Mendel [25], which assumes a 

linear relation between patient waiting cost and waiting time. Their objective function is 

   
1

1 1

min     Z 1 1
N N

i i N

i i

p w x w 


 

 
     

 
  . (4.7)  
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The solution schedules share similar features with the baseline model, that the first several 

patients and the last two patients are scheduled closer than the rest of the patients in the middle 

of the schedule. 

Figure 4.3 Schedules of Hassin and Mendel’s model at N = 10, p = 0.1, θ = 0.5 

 

 

Table 4.3 Schedules of Hassin and Mendel’s model at N = 10, p = 0.1, θ = 0.5 

α 
  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 

0.1 
 

0.03 0.27 0.36 0.40 0.41 0.40 0.38 0.34 0.25 

0.2 
 

0.13 0.41 0.48 0.50 0.51 0.49 0.47 0.42 0.30 

0.3 
 

0.23 0.51 0.57 0.58 0.59 0.57 0.55 0.49 0.35 

0.4 
 

0.32 0.60 0.65 0.66 0.66 0.65 0.62 0.57 0.42 

0.5   0.42 0.68 0.72 0.73 0.73 0.72 0.70 0.65 0.49 



 

47 

Figure 4.4 Schedules of the Hassin and Mendel’s model at N = 10, α = 0.1, θ = 0.5 

 

 

Table 4.4 Schedules of the Hassin and Mendel’s model at N = 10, α = 0.1, θ = 0.5 

p 
  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 

0.1 
 

0.03 0.27 0.36 0.40 0.41 0.40 0.38 0.34 0.25 

0.2 
 

0.00 0.18 0.30 0.33 0.34 0.34 0.32 0.29 0.19 

0.3 
 

0.00 0.08 0.23 0.27 0.28 0.28 0.26 0.23 0.13 

0.4 
 

0.00 0.00 0.14 0.20 0.22 0.22 0.21 0.18 0.07 

0.5   0.00 0.00 0.01 0.13 0.15 0.16 0.15 0.13 0.01 

 

Comparing Figure 4.3 with Figure 4.1, I observe that when relative waiting cost ratio is low, 

Hassin and Mendel’s model has generally shorter scheduled inter-arrival times than the 

corresponding times in the baseline model; conversely, when relative waiting cost ratio is high, it 

has generally longer scheduled inter-arrival times than the corresponding values in the baseline 
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model. Comparing Figure 4.4 with Figure 4.2, I observe that the scheduled inter-arrival times of 

Hassin and Mendel’s model are generally higher than corresponding values in the baseline model, 

for all levels of no-show probability p. 

Figure 4.5 Expected server completion time of the two models at N = 10, p = 0.1, θ = 0.5 

 

 

Table 4.5 Expected server completion time of the two models at N = 10, p = 0.1, θ = 0.5 

α 

  Expected Server completion time 

 

Baseline 

model 

Hassin and 

Mendel's model 

0.1 
 

5.00 4.78 

0.2 
 

5.35 5.18 

0.3 
 

5.65 5.64 

0.4 
 

5.95 6.14 

0.5   6.25 6.72 
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Figure 4.6 Expected server completion time of the two models at N = 10, α = 0.1, θ = 0.5 

 

 

Table 4.6 Expected server completion time of the two models at N = 10, α = 0.1, θ = 0.5 

p 

  Expected Server completion time 

 

Baseline 

model 

Hassin and 

Mendel's model 

0.1 
 

5.00 4.78 

0.2 
 

4.43 4.23 

0.3 
 

3.86 3.67 

0.4 
 

3.27 3.12 

0.5   2.68 2.57 

 

Figure 4.5 and Figure 4.6 present server completion times of the two models under five levels of 

relative cost ratio and no-show probability, respectively. They validate my observations above 

from a perspective of total server’s time. 
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As an important indicator of patient satisfaction, patient waiting time is paid more attention in 

my study. Figure 4.7 and Figure 4.8 compare total expected patient waiting times of the two 

models under different values of relative cost ratio and no-show probability, respectively. When 

the relative cost ratio is lower than 0.3, the baseline model achieves better performance in terms 

of patient waiting. If the relative cost ratio is fixed at 0.1 and no-show probability changes, the 

baseline model always outperforms the linear waiting cost model. Intuitively, with quadratic 

patient waiting cost, the baseline model will try harder to avoid excessive waiting. 

Figure 4.7 Total expected patient waiting time of the two models at N = 10, p = 0.1, θ = 0.5 

 

 

Table 4.7 Total expected patient waiting time of the two models at N = 10, p = 0.1, θ = 0.5 

α 

  Total expected patient waiting time 

 

Baseline 

model 

Hassin and 

Mendel's model 

0.1 
 

6.84 8.49 

0.2 
 

5.22 5.84 
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0.3 
 

4.29 4.30 

0.4 
 

3.63 3.25 

0.5   3.10 2.46 

Figure 4.8 Total expected patient waiting time of the two models at N = 10, α = 0.1, θ = 0.5 

 

 

Table 4.8 Total expected patient waiting time of the two models at N = 10, α = 0.1, θ = 0.5 

p 

  Total expected patient waiting time 

 

Baseline 

model 

Hassin and 

Mendel's model 

0.1 
 

6.84 8.49 

0.2 
 

7.01 8.73 

0.3 
 

7.13 8.85 

0.4 
 

7.22 8.84 

0.5   7.15 8.58 
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4.2. The queuing model for patients with nonhomogeneous no-show probabilities 

In this section, I relax the assumption of constant and identical patient no-show probability by 

replacing p with a no-show probability vector P = (p1,…, pi,…, pN), where pi is the no-show 

probability of the ith patient. The resulting objective function becomes to be: 

   
1

2

1 1

min     Z 1 1
N N

i i i N

i i

p w x w 


 

 
     

 
  . (4.8)  

Accordingly, the recursive representation of P(Ni = j) is modified to be as the following: 

When j = 0 
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When j > 0 
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4.2.1. Numerical results 

Given a patient’s no-show probability can be predetermined based on his or her profile at the 

time of booking [18] and [22], I compare the following three booking heuristics: 

 Lower no-show first: patients are scheduled in ascending order of estimated no-show 

probability; 
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 Higher no-show first: patients are scheduled in descending order of estimated no-show 

probability; 

 Higher no-show in the middle: patients with higher estimated no-show probability are 

scheduled closer to the middle slots. 

To determine right no-show probability values to use, I take the reviewed empirical data on no-

show rates of MRI patients. Each schedule includes 10 patients with no-show probability ranges 

from 0.04 to 0.4, with 0.04 unit increment patient by patient from the lowest to the highest. Table 

4.9 summarizes the no-show probability vectors of the three booking heuristics. 

Table 4.9 No-show probability vectors of the three booking heuristics 

Patient 

number i 

  Patient no-show probability p  

  
lower no-show 

first heuristic 

higher no-show 

first heuristic 

higher no-show 

in the middle 

heuristic 

1 
 

0.04 0.40 0.04 

2 
 

0.08 0.36 0.12 

3 
 

0.12 0.32 0.20 

4 
 

0.16 0.28 0.28 

5 
 

0.20 0.24 0.36 

6 
 

0.24 0.20 0.40 

7 
 

0.28 0.16 0.32 

8 
 

0.32 0.12 0.24 

9 
 

0.36 0.08 0.16 

10   0.40 0.04 0.08 

 

Optimal schedules at five levels of α (0.1, 0.2, 0.3, 0.4, and 0.5) under the three booking 

heuristics are illustrated by Figure 4.9, Figure 4.10, and Figure 4.11, respectively. A common 
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feature shared by all three figures is that the increase of relative waiting cost ratio doesn’t change 

the general shape of optimal schedule, it simply “magnifies” the schedule. The well-known dome 

shaped structure of schedules has been observed again in Figure 4.9 and Figure 4.10. However, 

Figure 4.11 exhibits a significant drop of scheduled inter-arrival time in the middle among the 

patients with highest no-show probabilities, at all levels of α. It implies that higher no-show 

tends to create shorter scheduled inter-arrival time, which can prevent server from excessive 

idleness when no-show happens. With two domes exhibited in Figure 4.11, the probabilistic 

steady-state in the middle of a clinic session is broken, due to the non-ascending and non-

descending order of no-show probabilities of the patients scheduled.    

Figure 4.9 Schedules of the lower no-show first heuristic 

 

 

Table 4.10 Schedules of the lower no-show first heuristic 

α 
  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 



 

55 

0.1 
 

0.06 0.33 0.41 0.42 0.41 0.38 0.34 0.28 0.15 

0.2 
 

0.13 0.43 0.49 0.49 0.47 0.44 0.40 0.34 0.19 

0.3 
 

0.19 0.50 0.54 0.54 0.52 0.49 0.44 0.38 0.23 

0.4 
 

0.25 0.55 0.58 0.58 0.56 0.52 0.48 0.42 0.26 

0.5   0.31 0.60 0.63 0.62 0.59 0.56 0.52 0.46 0.30 

 

Figure 4.10 Schedules of the higher no-show first heuristic 

 

 

Table 4.11 Schedules of the higher no-show first heuristic 

α 
  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 

0.1 
 

0.00 0.05 0.29 0.37 0.41 0.43 0.44 0.43 0.34 

0.2 
 

0.00 0.18 0.37 0.44 0.47 0.50 0.51 0.49 0.40 

0.3 
 

0.00 0.28 0.43 0.48 0.52 0.54 0.55 0.54 0.45 

0.4 
 

0.00 0.36 0.47 0.52 0.56 0.58 0.60 0.58 0.49 

0.5   0.03 0.43 0.51 0.56 0.60 0.62 0.64 0.63 0.53 
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Figure 4.11 Schedules of the higher no-show in the middle heuristic 

 

 

Table 4.12 Schedules of the higher no-show in the middle heuristic 

α 
  X 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 

0.1 
 

0.06 0.30 0.36 0.34 0.32 0.33 0.36 0.37 0.31 

0.2 
 

0.13 0.40 0.43 0.41 0.38 0.38 0.42 0.43 0.36 

0.3 
 

0.19 0.46 0.48 0.45 0.42 0.42 0.46 0.48 0.41 

0.4 
 

0.24 0.51 0.53 0.49 0.45 0.46 0.50 0.52 0.45 

0.5   0.30 0.56 0.57 0.53 0.49 0.49 0.54 0.56 0.49 

  

Figure 4.12, Figure 4.13 and Figure 4.14 exhibit expected waiting times of all 10 scheduled 

patients. i of X axis denotes patient number (i.e. i = 1 denotes 1st patient), wi of Y axis denotes 

the corresponding expected waiting time in unit of hour. Comparing among the three figures, I 

observe some common features: starting at w1 = 0, wi increases monotonically, with a significant 
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boost from w1 to w2, and then a significant boost from w9 to w10; higher waiting cost ratio α 

causes longer expected waiting time wi. At all levels of α, the higher no-show first heuristic has 

overall shortest wi, and least variance of expected patient waiting times among the patient.

 

 

Figure 4.12 Expected patient waiting times of the lower no-show the first heuristic 

 

 

Table 4.13 Expected patient waiting times of the lower no-show the first heuristic 

α 
  Expected patient waiting time 

 
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 

0.1 
 

0.00 0.43 0.59 0.68 0.74 0.80 0.86 0.93 1.03 1.22 

0.2 
 

0.00 0.37 0.47 0.53 0.57 0.61 0.65 0.70 0.77 0.93 

0.3 
 

0.00 0.33 0.40 0.44 0.47 0.50 0.53 0.57 0.62 0.76 

0.4 
 

0.00 0.29 0.35 0.38 0.40 0.42 0.44 0.47 0.52 0.64 

0.5   0.00 0.26 0.30 0.33 0.34 0.36 0.38 0.40 0.44 0.55 
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Figure 4.13 Expected patient waiting times of the higher no-show first heuristic

  

 

 

Table 4.14 Expected patient waiting times of the higher no-show first heuristic 

α 
  Expected patient waiting time 

 
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 

0.1 
 

0.00 0.30 0.58 0.67 0.73 0.77 0.81 0.86 0.93 1.08 

0.2 
 

0.00 0.30 0.48 0.53 0.56 0.59 0.61 0.64 0.69 0.81 

0.3 
 

0.00 0.30 0.42 0.45 0.47 0.48 0.50 0.52 0.55 0.65 

0.4 
 

0.00 0.30 0.37 0.39 0.40 0.41 0.42 0.43 0.46 0.55 

0.5   0.00 0.28 0.32 0.34 0.34 0.35 0.35 0.36 0.38 0.46 
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Figure 4.14 Expected waiting times of the higher no-show in the middle heuristic 

 

 

Table 4.15 Expected waiting times of the higher no-show in the middle heuristic 

α 
  Expected patient waiting time 

 
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 

0.1 
 

0.00 0.43 0.60 0.69 0.76 0.81 0.85 0.89 0.96 1.10 

0.2 
 

0.00 0.37 0.48 0.54 0.59 0.62 0.64 0.67 0.71 0.83 

0.3 
 

0.00 0.33 0.41 0.46 0.49 0.52 0.53 0.54 0.57 0.67 

0.4 
 

0.00 0.30 0.36 0.39 0.42 0.44 0.44 0.45 0.47 0.56 

0.5   0.00 0.26 0.31 0.34 0.36 0.38 0.38 0.38 0.40 0.47 
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Figure 4.15 compares the objective function values of the three booking heuristics. It shows the 

lower no-show first heuristic results in significantly higher system costs than the other two 

heuristics, among which the higher no-show in the middle heuristic is slightly better, at all levels 

of α (see Table 4.16). In general, total system cost decreases as α increases, with an expectation 

observed, that is the lower no-show first heuristic has a boost of its total cost at α = 0.3. 

Figure 4.15 Total system costs of the three heuristics at different levels of α 

 

 

Table 4.16 Total costs of the three heuristics at different levels of α 

α 

  Total cost 

 

Lower no-

show first 

Higher no-show 

first 

Higher no-show 

in the middle 

0.1 
 

4.05 3.92 3.92 

0.2 
 

3.97 3.87 3.86 

0.3 
 

4.22 3.65 3.65 

0.4 
 

3.42 3.35 3.34 

0.5   3.03 2.98 2.97 
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Interestingly, Zeng et al. [75] reports a contradictory finding, in which a solution very similar to 

my lower no-show first heuristic achieves best system performance. I suspect it’s because of the 

linear patient waiting cost and high patient waiting cost ratio (unit overflow cost) used in their 

study. To prove my suspicion, I compare my model with linear patient waiting cost model, 

whose objective function is described as the following: 

   
1

1 1

min     Z 1 1
N N

i i i N

i i

p w x w 


 

 
     

 
  . (4.11)  

All constraints and parameter values are kept the same as my model. 

I compare the performances of the lower no-show first heuristic and the higher no-show first 

heuristic in the linear cost model. In Figure 4.16, as α increases the performance of the two 

heuristics becomes very close, with the lower no-show first heuristic slightly better when α ≥ 0.7 

(objective function 0.08% lower than the higher no-show first heuristic at α = 0.7; 0.11% lower 

at α = 0.8; 0.09% lower at α = 0.9, see Table 4.17 for detailed values). Under the assumption of 

linear waiting cost, the lower no-show first heuristic could outperform the higher no-show first 

heuristic at the high end of α. 

Compare Figure 4.15 with Figure 4.16, I find that under the assumption of nonhomogeneous no-

show probabilities, quadratic a patient waiting cost tends to make the higher no-show first 

heuristic more favorable. 
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Figure 4.16 Total system costs of the two heuristics under linear patient waiting cost assumption 

 

 

Table 4.17 Total system costs of the two heuristics under linear patient waiting cost assumption 

α 

  Total cost 

 

Lower no-

show first 

Higher no-show 

first 

0.1 
 

4.082 3.967 

0.2 
 

4.240 4.168 

0.3 
 

4.215 4.172 

0.4 
 

4.051 4.030 

0.5 
 

3.769 3.761 

0.6 

 

3.374 3.373 

0.7 

 

2.861 2.864 

0.8 

 

2.212 2.214 

0.9 

 

1.368 1.369 

 

Among the three booking heuristics, at all levels of α, the higher no-show first heuristic results in 

lowest total expected patient waiting time, while the lower no-show first heuristic results in 
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longest total expected patient waiting time (see Figure 4.17). It implies that if most no-shows 

happen close to the beginning of a clinical session, the rest patients may wait less. 

As shown by Figure 4.18, the expected server completion times of the three booking heuristics 

are close, with the greatest difference equal to 0.05 hour (see Table 4.19 for details), which 

indicates that expected server completion time is relatively insensitive to the arrangement of 

patients based on estimated no-show probability. 

Figure 4.17 Total expected patient waiting time of the three heuristics 

 

 

Table 4.18 Total expected patient waiting time of the three heuristics 

α 

  Total expected patient waiting time 

 

Lower no-

show first 

Higher no-show 

first 

Higher no-show 

in the middle 

0.1 
 

7.28 6.73 7.09 

0.2 
 

5.60 5.21 5.46 

0.3 
 

4.62 4.34 4.51 
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0.4 
 

3.92 3.71 3.83 

0.5   3.35 3.19 3.28 

 

Figure 4.18 Expected server completion times of the three heuristics 

 

 

Table 4.19 Expected server completion times of the three heuristics 

α 

  Expected server completion time 

 

Lower no-

show first 

Higher no-show 

first 

Higher no-show 

in the middle 

0.1 
 

4.30 4.32 4.31 

0.2 
 

4.61 4.65 4.63 

0.3 
 

4.88 4.93 4.91 

0.4 
 

5.15 5.20 5.18 

0.5   5.43 5.48 5.46 
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4.3. The queuing model for patients with nonhomogeneous no-show probabilities 

and waiting cost ratios 

Primarily motivated by different waiting costs between inpatients and outpatients, I decide to 

extend my study to a model which includes generalized nonhomogeneous patient waiting cost 

ratios. 

4.3.1. Assumptions and model description 

In this model, I relax the assumption of constant and identical waiting cost ratio among patients. 

In addition to no-show probability, waiting cost ratio varies from one patient to another. To 

represent varied waiting cost ratios, I replace cW with a waiting cost ratio vector CW = [cW1,…, 

cWi,…, cWN], where cWi denotes the hourly waiting cost of the thi scheduled patient.  

With the changes, the objective function becomes to be 

 
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min     Z 1
N N

i wi i I i N

i i

p c w c x w

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 
    

 
  . (4.12)  

Since cW is not a constant anymore, I am not able to use α to represent cost ratios (of patient 

waiting time, server idle time and server overtime). Instead, I choose to use the absolute 

monetary value representation. Constraints stay the same as in Section 4.2. 

I assume patient waiting cost is positively correlated with no-show probability. This is 

reasonable, given the fact that a patient type with higher no-show probability usually has higher 

waiting cost. Specifically, in appointment scheduling practices, inpatients, outpatients and 

emergency patients are featured with ascending no-show probability and waiting cost ratio. A 
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walk-in emergency patient could be considered as being scheduled to a certain slot, but with very 

high no-show probability and waiting cost ratio. Based on this assumption, I decide to pair 

waiting cost ratio with no-show probability, by creating a coefficient β, which is defined as cwi = 

βpi. 

After applying β to equation 4.12, the objective function can also be expressed as 

 
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
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 
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 
  . (4.13)  

4.3.2. Numerical results 

I evaluate performances of the three no-show probability based booking heuristics defined by 

Table 4.9, at five levels of β (50, 100, 150, 200, and 250). β = 50 translates into an average 

waiting cost ratio of $11/hr, while β = 250 translates into an average waiting cost ratio of $55/hr. 

The range of β ($2/hr to $100/hr) enables cwi to cover average hourly wages of most occupations. 

For the server, I estimate its idle cost as the average hourly operating cost by taking the ratio of 

total annual operating cost and dividing by the number of weeks in a year (52) times the number 

of working days per week (5) and times the number of hours per day (5). The average purchase 

cost for a new MRI machine is approximately $2 million; it costs about $870,000 to install and 

approximately $1 million per year to run. The life span of a state of the art MRI machine is about 

10 to 15 years. I assume it to be 10 years in this study. Therefore, the total annual operating cost 

is $1,287,000, which translates into hourly idle cost cI = $990/hr. 

It reinforces my observation in Section 4.2 that the higher no-show first heuristic performs better 

than lower no-show first heuristic in terms of overall system cost. It appears to be a very robust 
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heuristic against a wide range of parameters. Note that the higher no-show first heuristic 

becomes significantly better than higher no-show in the middle heuristic, which differs from 

what I observed in Figure 4.15. The monotonic increase of expected patient waiting time 

determines that later patients always have longer expected waiting times. Since patients with 

higher no-show probabilities are assigned higher waiting cost ratios, if I schedule patients with 

high waiting cost ratios at the beginning, the total patient waiting cost would be minimized. For 

the same sake, patient waiting times tend to be longer, and therefore, total expect patient waiting 

time would be maximized. Figure 4.20 compares the patient waiting performance of the three 

heuristics at all five levels of β. It presents a result contradictory to Figure 4.17, with the higher 

no-show first heuristic resulting in highest patient waiting times. 

The server completion time performance is illustrated by Figure 4.21, in which the higher no-

show first dominates the other two heuristics. Compared with Section 4.2, by assuming patients 

with higher no-show probabilities have higher waiting cost ratios, the higher no-show first 

heuristic changes from the one with lowest patient waiting but highest server time to one with 

highest patient waiting but lowest server time, that is, from a more patient friendly heuristic to a 

more server friendly heuristic.  
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Figure 4.19 Total system cost of the three heuristics at different levels of β 

 

 

Table 4.20 Total system cost of the three heuristics at different levels of β 

β 

  Total cost 

 

Lower no-

show first 

Higher no-show 

first 

Higher no-show 

in the middle 

50 
 

3798 3510 3595 

100 
 

3945 3604 3721 

150 
 

4060 3683 3823 

200 
 

4157 3752 3910 

250   4241 3815 3986 
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Figure 4.20 Total expected patient waiting time of the three heuristics at different levels of β 

 

 

Table 4.21 Total expected patient waiting time of the three heuristics at different levels of β 

β 

  Total cost 

 

Lower no-

show first 

Higher no-show 

first 

Higher no-show 

in the middle 

50 
 

11.85 12.34 12.10 

100 
 

10.38 11.19 10.70 

150 
 

9.48 10.43 9.82 

200 
 

8.85 9.86 9.19 

250   8.35 9.41 8.70 
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Figure 4.21 Expected server completion time of the three heuristics at different levels of β 

 

 

Table 4.22 Expected server completion time of the three heuristics at different levels of β 

β 

  Total cost 

  

Lower no-

show first 

Higher no-show 

first 

Higher no-show 

in the middle 

50 
 

3.96 3.92 3.94 

100 
 

4.03 3.95 3.99 

150 
 

4.08 3.98 4.04 

200 
 

4.14 4.01 4.08 

250   4.18 4.03 4.12 

 

  



 

71 

 

Chapter 5 A HYBRID OVERBOOKING MODEL FOR MULTI-

CATEGORY PATIENTS WITH NO-SHOW 

In this chapter, I address a daily scheduling problem of allocating available diagnostic capacity, 

in the form of equal-length appointment slots, among multiple categories of patients, to 

maximize system net revenue consisting of service revenue, equipment idle cost, patient waiting 

cost, and patient deny penalty cost. I analyze the decision variable (the number of patients to be 

scheduled, and a combination of schedule patient inter-arrival times) while three environmental 

factors (outpatient no-show probability, server hourly idle cost, and inpatient service fee) are 

varied. Three types of patients are considered in this study: inpatients, who have low level of no-

show probability and waiting cost; outpatients, who have medium level of no-show probability 

and waiting cost; and emergency patients, who usually show up as walk-in, with extremely high 

waiting cost. A hybrid overbooking strategy is employed to take walk-in emergency patients into 

consideration of this model. 

5.1. Assumptions 

I consider an unknown emergency patient as a called-in outpatient, with much higher no-show 

probability. When an emergency patient arrives, he or she needs to be served with the next 

available slot, which is equivalent to a case that the patient is scheduled to next slot. Thus, I 

assume each appointment slot is booked to 1 virtual emergency patient with higher priority than 

the outpatients or inpatients. Arrival of emergency patients is random during one clinic session. 

Compared to scheduled outpatients and inpatients, the demand from emergency patients is 
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relatively low. It is unlikely for more than one emergency patient to arrive within service 

duration of one slot. Therefore, I assume there can be at most one emergency patient arrival 

during each slot, with fixed arrival probability. If the emergency patient cannot be served with 

the next available slot, that is, there is one emergency patient waiting in front of the queue, 

he/she will leave the system. 

Outpatients and inpatients are scheduled, if a scheduled patient is not served by the end of a 

clinic session, a scheduled but denied penalty cost will be incurred. Penalty cost for inpatients is 

much higher than for outpatient, as denying an inpatient can result into significant cost the 

hospital due to another day of stay at the hospital. 

Compared with the airline/hotel overbooking problems, which have fixed capacity (number of 

seats/rooms), the capacity of a diagnostic facility is relatively flexible, which can accommodate a 

certain level of overtime. In this problem, when it passes ending time of a clinic session, the 

system will finish the patient in service, and stopping any more patients. 

Unlike previously clinic overbooking studies which associate one or more scheduled patients 

directly with each appointment slot, I don’t assign any scheduled patient to a particular slot. 

Scheduled patients are served on as FCFS (First Come First Served) basis, regardless emergency 

patient. 

For each outpatient or inpatient served, the MRI facility receives a certain amount of service 

revenue, in form of an insurance fee charge. In most general hospitals, scanning fee charged on 

outpatients is much higher than inpatients. 

5.2. Model description 
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In this model, I am interested in determining how many patients I should schedule, and how long 

the scheduled inter-arrival times should be, in order to achieve the best system net revenue in one 

clinic session of Q equal-length appointment slots with each last θ hours. Thus, the decision 

variable is a combination of scheduled inter-arrival times for a variable number of patients N to 

be scheduled. During each slot, there is a probability of 1 – pe that an emergency patient arrives. 

I assume non-homogeneous scheduled patients, with hourly waiting costs represented by a cost 

vector CW = [cW1,…, cWi,…, cWN], where cWi denotes hourly waiting cost of the ith patient; no-

show represented by a probability vector P = [p1,…, pi,…, pN], where pi denotes the probability 

of  ith patient being a no-show; service revenue represented by a revenue vector R = [r1,…, ri,…, 

rN], where ri denotes service fee for the ith patient; and penalty cost represented by a cost vector 

Cp = [cp1,…, cpi,…, cpN], where cpi is the penalty incurred to the system if ith patient is denied for 

service. Emergency patients are homogeneous with cWe and re as hourly waiting cost and service 

revenue respectively. 

5.2.1. Notations 

N number of patients scheduled 

n total number of patients served 

Q number of appointment slots per clinical session 

xi scheduled inter-arrival time between ith patient and (i + 1)st patient 

ri service revenue of the ith patient 

re service revenue of an emergency patient 

pi no-show probability of the ith patient 

pe no-show probability of  emergency patient 
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cWi waiting cost ratio of the ith patient 

cWe waiting cost ratio of emergency patient 

cI server idle cost ratio 

cPi penalty cost of denying the ith patient 

θ expected service time 

5.2.2. Objective function and constraints 

The system net revenue is defined as total service revenue subtracts patient waiting cost, 

equipment idle cost and patient deny penalty cost: 
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Out of the N scheduled patients, the first n patients consume all the time of the clinic session. By 

intuition, in the solution, N equals to the threshold value n, greater or smaller than which would 

result in sub optimum. wi denotes expected waiting time given the ith scheduled patient shows up. 

 
1

1
n

i i

i

r p


  and  1e er p Q  represent total expected service revenue collected from scheduled 

patients and emergency patients, respectively; 

  2

1

1
n

i wi i

i

p c w


 and  1we ec p Q represent expected total waiting cost of scheduled patients 

and emergency patients, respectively. Note we assume quadratic waiting cost for scheduled 

patients, which is consistent with Chapter 4. 
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     
1

1 1

1 1 1
n n

I i n n e i

i i

c x w p p Q p  


 

 
       

 
   represents expected total server idle cost;

 
1

1
N

i Pi

i n

p c
 

 represents expected total penalty cost. 

Removing constant parts, I obtain 

       
1

2

1 1 1 1 1

max    Z 1 1 1 1
n n n n N

i i i wi i I i n i i Pi

i i i i i n

r p p c w c x w p p c


     

 
          

 
     , (3.2) , 

Where n is defined by the following inequality constraints 

   
1

1

n

i

w n x i Q




  , (3.3)  

and 

   
1

1
n

i

w n x i Q


   . (3.4)  

wi is defined as the following: 

 
1

0

0 1

P 2
i

i

i

j

i

w
j N j i








 
 




, (3.5)  

where P(Ni = j) denotes the probability of j patients in the system (including the one being served) 

right before the ith scheduled arrival. The recursive representation of P(Ni = j) is originally 

developed by Hassin and Mendel [25], for a case of scheduling homogenous patients with 

constant and identical no-show probabilities. In this problem, I relax the assumption of fixed no-
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show probability by adding variable no-show probabilities for scheduled patients and fixed no-

show probability for emergency patients. The modified representation is illustrated the following 

two equations: 

When j = 0 

        
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(3.6)  

When j > 0 
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5.2.3. Numerical results 

Figure 5.1, Figure 5.2 and Figure 5.3 illustrate number of patients served n, system net revenue 

and overbook ratio, respectively, when capacity Q ranges from 2 to 10. In general, as Q increases, 

the growth of n and system net revenue is near linear, however, overbook rate fluctuate 

significantly. Due to computational constraints, I only explore a system with maximum capacity 

of Q = 10, as Q becomes greater, the fluctuation is expected to be smoother. 
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Figure 5.1 the threshold value for N under various capacities

  0.2,  =$1,500 ,  $800i i IQ p r i c    

 

Figure 5.2 System net revenues under various capacities   0.2,  =$1,500 ,  $800i i IQ p r i c    
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Figure 5.3 Overbook rate vs. capacity   0.2,  =$1,500 ,  $800i i IQ p r i c    

 

Refer to Table 5.1 for detailed data on system net revenues, solutions, and threshold values for N 

at different levels of capacity Q. 

Table 5.1 Threshold values, total net revenues, and schedules under various capacities

  0.2,  =$1,500 ,  $800i i IQ p r i c    

Q 
  

N 
  

Z 
  X 

      x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

2 
 

3 
 

$4,051 
 

0.00 0.01 
          

3 
 

4 
 

$5,207 
 

0.00 0.06 0.21 
         

4 
 

5 
 

$6,346 
 

0.00 0.81 0.30 0.27 
        

5 
 

7 
 

$8,587 
 

0.00 0.10 0.36 0.42 0.42 0.31 
      

6 
 

9 
 

$9,532 
 

0.00 0.11 0.38 0.45 0.46 0.44 0.31 0.00 

    7 
 

9 
 

$10,791 
 

0.00 0.12 0.39 0.47 0.49 0.49 0.45 0.32 

    8 
 

10 
 

$11,883 
 

0.00 0.12 0.40 0.48 0.51 0.52 0.51 0.46 0.32 

   9 
 

12 
 

$13,727 
 

0.01 0.11 0.61 0.18 0.36 0.33 0.02 0.35 0.33 0.04 1.15 

 



 

80 

10   13   $14,832   0.00 0.53 0.21 0.27 0.28 0.24 0.74 0.15 0.09 0.00 1.41 0.88 

 

5.3. A base case of the all outpatient policy 

In radiology practice, there are only two types of patients (outpatients and inpatients) can be 

scheduled, it’s fairly reasonable to assume same attributes for same patient type. Patients of the 

same type are usually served with adjacent slots. A tactical solution of different waiting cost 

ratios to the model described in Section 5.2 may not be easily implemented in practice due to its 

complexity. Instead, I decide to test the model under several scheduling heuristics. In this section, 

I consider a scheduling policy which attempts to allocate all capacity to outpatient, with ri = rO, 

pi = pO, cWi = cWO, and cPi = cPO i , where rO, pO, cWO, and cPO denote service revenue, no-show 

probability, hourly waiting cost, and deny penalty cost for all outpatients, respectively. 

Operations data used in this study was collected from the radiology department at University of 

Washington Medical Center (UWMC) [12], over a period of one month. The probability of 

outpatient no-show was originally estimated based on a sample of 1,130 MRI appointments, 

among which 96 appointments were not made due to one of the following reasons: “Patient did 

not show up”, “Patient Discharged”, “Rescheduled”, and “Patient Cancelled”. It seems to be fair 

to assume 0.1 ip i  , however, after comparing with no-show rates reported by various MRI 

related studies, I identified my estimate was on the low end, therefore, I decided to range it from 

0.1 to 0.2 and use 0.2 as default value, in order to amplify the effects of overbooking. The 

approximation of emergency patient arrival probability 1 – pe = 0.05 was calculated from the 

monthly total number of emergency MRI scans relative to total MRI scans. Number of 

appointment slots per clinic session Q = 9 reflected a recently reduced-hour full operating 
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schedule for the day shift. Primarily determined by area of patient body part to be scanned and 

scan type (contrast or non-contrast), the length of a MRI scan can vary from 30 minutes to 90 

minutes. Fixed appointment length θ = 0.75 approximates an average of 46 minutes per scan 

over the same sample of 678 MRI appointments. 

Revenue and costs were estimated based on my literature survey on related public statistics. 

According to the Bureau of Statistics within US Department of Labor [65], the median and mean 

hourly wages of all occupations in Washington State in the year 2011 are $19.3 and $24.17, 

respectively. Hence, I used $20 W ic i  as hourly patient waiting cost. “An average MRI 

machine costs approximately $2 million to buy and install and $800,000 per year to run” [52], 

thus I used cI = $800 as default value for hourly server idle cost and make it range from $600 to 

$1,000. The penalty cost of not denying a scheduled non-emergency patient involves cost of 

scheduling, potential staff overtime cost, and loss of goodwill, which is very hard to quantify. To 

overcome it, in my study, I use $200 Pic i  . 

Table 5.2 Baseline model parameter values 

Parameter Value 

Number of appointment slots per clinic session Q 9 

Appointment slot length θ (in hour) 0.75 

Outpatient revenue rO $1,500 

Outpatient hourly waiting cost cWO $20 

Hourly MRI server idle cost cI $800 

Penalty cost for rejecting a scheduled patient cPO $200 

Outpatient no-show probability pO 0.2 

I use Sequential Quadratic Programming (SQP) to conduct numerical search for optimal or near 

optimal combination of scheduled inter-arrivals for fixed N patients. Since it’s obvious the 

objective function is uni-modal to N, the same numerical search is performed multiple times to 
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search for optimal number of patients to be scheduled. An example of this numerical search is 

presented in Figure 5.4, where there are 9 slots within a single clinic session. I start with a non-

overbooking schedule where N = 9, and increase the value of N one by one, the system reaches 

highest objective function value at N = 12. Compared with the non-overbooking solution where 

N = Q = 9, the system performance was able to improve by 27.2%. Refer to [38] for a detailed 

evaluation of improvements brought by overbooking, under various parameter values. If I further 

look into optimal scheduled inter-arrival times for each fixed value of N (Figure 5.5), I observe 

that for 9 ≤ N ≤ 11, the schedules follow the dome shape, with inter-arrival time increases among 

the first several patients, keeps relatively constant at a certain level thereafter, and then drops 

significantly between last two patients. The dome shaped schedule has been observed in many 

previous studies. When N > 11, the inter-arrival time appears to be very unpredictable, with 

multiple peaks, a surge among last several patients is observed. This observation implies the 

overbooking model tends to enter a probabilistically unstable state as N is greater than a 

threshold value (11 in this case). 

Table 5.3 summarizes the numbers of patients served (n), optimal system costs (Z), and 

corresponding scheduled inter-arrival times (X), under different numbers of patients scheduled 

(N). When N = 13, only n = 12 patients are served, patient 13 is scheduled but denied, x12 = 0.5 

reflects the initial value of starting point of the numerical search.  
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Figure 5.4 The numerical search for a problem with  9 0.2 ,  $800i IQ p i c     

 

Figure 5.5 Schedules for N = 9, 10, 11, 12, 13 respectively  9,  0.2 ,  $800i IQ p i c     
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Table 5.3 Objective function values and schedules for N = 9, 10, 11, 12, 13 respectively

 9,  0.2 ,  $800i IQ p i c      

N 
  

n 
  

Z 
  X (hrs) 

      x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

9 
 

9 
 

$10,791 
 

0.00 0.12 0.39 0.47 0.49 0.49 0.45 0.32 
    

10 
 

10 
 

$11,883 
 

0.00 0.12 0.40 0.48 0.51 0.52 0.51 0.46 0.32 
   

11 
 

11 
 

$12,970 
 

0.00 0.13 0.40 0.49 0.53 0.54 0.54 0.52 0.47 0.33 
  

12 
 

12 
 

$13,727 
 

0.01 0.11 0.61 0.18 0.36 0.33 0.02 0.35 0.33 0.04 1.15 
 

13   12   $13,312   0.00 0.34 0.18 0.01 0.07 0.45 0.07 0.00 0.00 1.73 1.09 0.50 
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From customer experience perspective (Figure 5.6), average of expected patient waiting times 

remains at a relatively low level when 9 ≤ N ≤ 11, it increases dramatically at N = 12, where the 

system achieves highest objection function value. By adding one more patient to the schedule, 

each patient waits on average 38.6% longer, which indicates that it might not be an intelligent 

decision to gain 6% (growth from 12,970 to 13,727) overall revenue at the cost of a huge 

sacrifice on total patient waiting time. As we can see from Figure 5.7, for each single patient, 

when 9 ≤ N ≤ 11, expected patient waiting time exhibits monotonically increasing trend 

following patient order; while N > 11, it decreases after reaching peaks at one of the last several 

patients. This observation is contradictory with the results by Fu and Storch [17], which studies a 

case without overbooking and demonstrates that expected patient waiting time is monotonic 

increasing with patient number. 

Table 5.4 Expected patient waiting times for N = 9, 10, 11, 12, 13 respectively

 9,  0.2 ,  $800i IQ p i c      

N 
  

n 
  

 w   
  X 

      w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 

9 
 

9 
 

1.52  
 

0.00 0.60 1.09 1.32 1.49 1.64 1.79 1.97 2.27 
   

 10 
 

10 
 

1.56  
 

0.00 0.60 1.09 1.32 1.47 1.61 1.74 1.87 2.04 2.34 
  

 11 
 

11 
 

1.59  
 

0.00 0.60 1.08 1.31 1.46 1.58 1.69 1.80 1.93 2.09 2.38 
 

 12 
 

12 
 

2.21  
 

0.00 0.59 1.09 1.14 1.57 1.83 2.12 2.70 2.95 3.23 3.79 3.26 

 13   12   2.46    0.00 0.60 0.90 1.33 1.92 2.45 2.61 3.14 3.74 4.34 3.24 2.81 2.94 
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Figure 5.6 Average Expected patient waiting time under different values of N 

 

Figure 5.7 Expected patient waiting times under different values of N 

5.4. Heuristic appointment policies 
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The numerical study on the based case of all outpatients helps us explore behaviors of my model, 

however, it restricts the potential of its application to practices due to the fact that all parameter 

values are fixed and inpatients are not considered. In this section, I focus on evaluating 

performance of several simple but commonly used booking policies, by enumerating three key 

parameters that I think may heavily affect system performance: outpatient no-show probability 

(pO = 0.1, 0.15, 0.2), inpatient service revenue (rI = 300, 500, 1000), and server hourly idle cost 

(cI = 600, 800, 1000). Refer to Table 5.5 for a complete list of parameter values. 

Table 5.5 Notation and parameter values of three heuristic booking policies 

Parameter Value 

Number of appointment slots per clinic session Q 9 

Appointment slot length θ (in hour) 0.75 

Outpatient revenue rO $1,500 

Inpatient revenue rI $300, $500, $1000 

Outpatient hourly waiting cost cWO $20 

Inpatient hourly waiting cost cWI $0 

Hourly MRI server idle cost cI $600, $800, $1000 

Penalty cost for rejecting a scheduled patient cPO $200 

Penalty cost for rejecting a scheduled patient cPI $1000 

Outpatient no-show probability pO 0.1, 0.15, 0.2 

Inpatient no-show probability pI 0 

Three heuristic booking policies are considered in this section. The first one, which I name as 

“all outpatient”, schedules only outpatients. It has been studied in Section 5.3 with fixed values 

of outpatient no-show probability and server hourly idle cost. It is a popular policy used by many 

clinics to maximize their revenues. The second heuristic booking policy is called “inpatient first”, 

which attempts to serve inpatients in front of outpatients. Under this policy, first three patients 

scheduled are inpatients, and the rest scheduled patients are outpatients. The third policy is 
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named as “outpatient first”, which attempts to serve outpatients in front of inpatients. Under this 

policy, last three patients scheduled are inpatients. This policy mimics the clinic practice which 

serves outpatients during day shift and inpatient during night shift. Table 5.6 illustrates patient 

type assignment for the three policies. 

Table 5.6 Patient type assignment of the three heuristic booking policies 

Scheduled patient 1 2 3 4 … N-3 N-2 N-1 N 

All outpatient OP OP OP OP OP OP OP OP OP 

Inpatient first IP IP IP OP OP OP OP OP OP 

Outpatient first OP OP OP OP OP OP IP IP IP 

Note: EMP denotes emergency patient, OP denotes outpatient, and IP denotes inpatient 
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Table 5.7, Table 5.8, and Table 5.9 summarize system performances under various combinations 

of parameter values for all outpatient policy, inpatient first policy, and outpatient first policy, 

respectively. Since outpatient service fee is at a level significantly higher than inpatient service 

fee, the all outpatient policy always outperforms the other two policies in terms of system net 

revenue, under any combination of parameter values. Comparison between the rest two policies 

shows that the outpatient first policy wins when outpatient no-show probability is higher, the 

inpatient first policy wins when outpatient no-show probability is lower. This observation 

provides a general guidance on where to place inpatients based on outpatient no-show 

probability that is to schedule inpatients at the beginning if outpatient no-show rates are 

relatively low, and schedule inpatients at the end if the no-show rates are relatively high. 
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Table 5.7 System net revenue (in $1,000) of all outpatient policy 

Outpatient   Server 

no-show 

probability pO 

 

hourly idle 

cost 

hourly idle 

cost 

Hourly idle 

cost 

cI = 600 cI = 800 cI = 1000 

0.1 
 

14.7 14.91 15.05 

0.15 
 

13.71 13.78 13.84 

0.2   13.79 13.73 13.88 

 

 

Table 5.8 System net revenue (in $1,000) of outpatient first policy 

Outpatient   Inpatient   Server 

no-show 

probability 

pO 

 

service fee rI 

 

hourly idle 

cost 

hourly idle 

cost 

Hourly idle 

cost 

cI = 600 cI = 800 cI = 1000 

0.1 

 
300 

 
10.49 10.5 10.62 

 
500 

 
10.99 11.1 11.22 

  1000   12.49 12.6 12.72 

0.15 

 
300 

 
11.14 11.28 11.4 

 
500 

 
11.74 11.88 12 

  1000   13.21 13.38 13.5 

0.2 

 
300 

 
10.6 10.71 10.84 

 
500 

 
11.2 11.31 11.44 

  1000   12.7 12.81 12.94 

 

Table 5.9 System net revenue (in $1,000) of inpatient first policy 

Outpatient   Inpatient   Server 

no-show 

probability 

pO 

 

service fee rI 

 

hourly idle 

cost 

hourly idle 

cost 

Hourly idle 

cost 

cI = 600 cI = 800 cI = 1000 

0.1 

 
300 

 
11.85 12.04 12.25 

 
500 

 
12.45 12.64 12.85 

  1000   13.95 14.15 14.35 
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0.15 

 
300 

 
9.66 9.72 9.8 

 
500 

 
10.26 10.32 10.4 

  1000   11.76 11.82 11.9 

0.2 

 
300 

 
10.16 10.26 10.34 

 
500 

 
10.76 11.01 11.1 

  1000   12.44 12.51 12.6 

One common phenomenon shared by the three policies is that system net revenue is greater in 

case server hourly idle cost is higher. Looking into corresponding schedules (Table 5.10, Table 

5.11, and Table 5.12), I observe that higher server hourly idle cost causes overall shorter 

scheduled patient inter-arrival times, which shortens server idle time while elongates total patient 

waiting time. Considering higher patient waiting cost to server hourly idle cost, it clearly results 

into lower total cost. This phenomenon is more significant when outpatients have lower no-show 

probabilities. 

For the two policies that take inpatients into consideration, system net revenue increases as 

inpatient service fee increases. From Table 5.11 and Table 5.12, I find that varying inpatient 

service fee doesn’t impact outcome schedules, thus, higher inpatient fee linearly increases system 

net profit. 

The all outpatient policy and inpatient first policy achieve best system performances when 

outpatient no-show probability is at the lowest level (0.1), while the outpatient first schedule 

reaches highest profit when pO = 0.5. Even with the use of overbooking, increase of no-show 

probability cam reduces overall system net revenue. 
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Table 5.10 Schedules for all outpatient policy 

Outpatient no-

show 

probability 

Server hourly 

idle cost ($) 
x 

0.1 600 0.00 0.34 0.54 0.61 0.63 0.64 0.62 0.57 0.43 

  0.1 800 0.00 0.21 0.46 0.53 0.58 0.60 0.57 0.56 0.51 0.39 

 0.1 1,000 0.00 0.17 0.43 0.52 0.55 0.57 0.57 0.55 0.50 0.36 

 0.15 600 0.00 0.30 0.44 0.55 0.57 0.14 1.00 0.48 0.50 0.44 

 0.15 800 0.00 0.20 0.45 0.54 0.57 0.58 0.58 0.56 0.51 0.37 

 0.15 1,000 0.00 0.16 0.42 0.51 0.55 0.56 0.56 0.54 0.49 0.36 

 0.2 600 0.01 0.12 0.28 0.19 0.50 0.37 0.73 0.37 0.00 0.54 0.25 

0.2 800 0.01 0.11 0.61 0.18 0.36 0.33 0.02 0.35 0.33 0.04 1.15 

0.2 1,000 0.00 0.09 0.13 0.07 0.06 0.31 1.35 0.43 0.00 0.90 0.56 
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Table 5.11 Schedules for outpatient first policy 

Outpatient 

no-show 

probability 

Inpatient 

service 

fee ($) 

Server 

hourly idle 

cost ($) 

x 

0.1 300 600 0.00 0.31 0.50 0.55 0.53 0.41 0.00 0.00 0.00 

 0.1 300 800 0.00 0.26 0.48 0.54 0.56 0.53 0.43 0.00 0.00 

 0.1 300 1,000 0.00 0.22 0.45 0.52 0.53 0.51 0.41 0.00 0.00 

 0.1 500 600 0.00 0.32 0.52 0.58 0.59 0.56 0.45 0.00 0.00 

 0.1 500 800 0.00 0.26 0.48 0.54 0.56 0.53 0.43 0.00 0.00 

 0.1 500 1,000 0.00 0.22 0.45 0.52 0.53 0.51 0.41 0.00 0.00 

 0.1 1,000 600 0.00 0.32 0.52 0.58 0.59 0.56 0.45 0.00 0.00 

 0.1 1,000 800 0.00 0.26 0.48 0.54 0.56 0.53 0.43 0.00 0.00 

 0.1 1,000 1,000 0.00 0.22 0.45 0.52 0.53 0.51 0.41 0.00 0.00 

 0.15 300 600 0.00 0.18 0.15 0.03 1.42 0.10 0.58 0.00 0.00 0.06 

0.15 300 800 0.00 0.12 0.38 0.46 0.47 0.44 0.32 0.00 0.00 0.00 

0.15 300 1,000 0.00 0.15 0.40 0.47 0.49 0.46 0.34 0.00 0.00 0.01 

0.15 500 600 0.00 0.18 0.15 0.03 1.42 0.10 0.58 0.00 0.00 0.06 

0.15 500 800 0.00 0.12 0.38 0.46 0.47 0.44 0.32 0.00 0.00 0.00 

0.15 500 1,000 0.00 0.15 0.40 0.47 0.49 0.46 0.34 0.00 0.00 0.00 

0.15 1,000 600 0.00 0.18 0.15 0.03 1.42 0.10 0.58 0.00 0.00 0.06 

0.15 1,000 800 0.00 0.12 0.38 0.46 0.47 0.44 0.32 0.00 0.00 0.00 

0.15 1,000 1,000 0.00 0.15 0.40 0.47 0.49 0.46 0.34 0.00 0.00 0.01 

0.2 300 600 0.00 0.16 0.42 0.48 0.49 0.46 0.33 0.00 0.00 0.00 

0.2 300 800 0.00 0.11 0.38 0.45 0.46 0.44 0.31 0.00 0.00 0.00 

0.2 300 1,000 0.00 0.08 0.34 0.42 0.44 0.42 0.30 0.00 0.00 0.00 

0.2 500 600 0.00 0.16 0.42 0.48 0.49 0.46 0.33 0.00 0.00 0.00 

0.2 500 800 0.00 0.11 0.38 0.45 0.46 0.44 0.31 0.00 0.00 0.00 

0.2 500 1,000 0.00 0.08 0.34 0.42 0.44 0.42 0.30 0.00 0.00 0.00 

0.2 1,000 600 0.00 0.16 0.42 0.48 0.49 0.46 0.33 0.00 0.00 0.00 

0.2 1,000 800 0.00 0.11 0.38 0.45 0.46 0.44 0.31 0.00 0.00 0.00 

0.2 1,000 1,000 0.00 0.08 0.34 0.42 0.44 0.42 0.30 0.00 0.00 0.00 
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Table 5.12 Schedules for inpatient first policy 

Outpatient 

no-show 

probability 

Inpatient 

service 

fee ($) 

Server 

hourly idle 

cost ($) 

x 

0.1 300 600 0.03 0.03 0.56 0.58 0.48 0.68 0.49 0.52 0.71 0.47 

0.1 300 800 0.00 0.00 0.55 0.51 0.54 0.55 0.55 0.52 0.62 0.49 

0.1 300 1,000 0.00 0.00 0.49 0.48 0.52 0.53 0.53 0.50 0.61 0.47 

0.1 500 600 0.03 0.03 0.56 0.58 0.48 0.68 0.49 0.52 0.71 0.47 

0.1 500 800 0.00 0.00 0.55 0.51 0.54 0.55 0.55 0.52 0.62 0.49 

0.1 500 1,000 0.00 0.00 0.49 0.48 0.52 0.53 0.53 0.50 0.61 0.47 

0.1 1,000 600 0.03 0.03 0.56 0.58 0.48 0.68 0.49 0.52 0.71 0.47 

0.1 1,000 800 0.00 0.00 0.55 0.51 0.54 0.55 0.55 0.52 0.62 0.49 

0.1 1,000 1,000 0.00 0.00 0.49 0.48 0.52 0.53 0.53 0.50 0.61 0.47 

0.15 300 600 0.00 0.00 0.62 0.53 0.55 0.55 0.54 0.48 0.50 
 

0.15 300 800 0.00 0.00 0.53 0.49 0.52 0.53 0.51 0.46 0.48 
 

0.15 300 1,000 0.00 0.00 0.46 0.46 0.50 0.50 0.49 0.44 0.47 
 

0.15 500 600 0.00 0.00 0.62 0.53 0.55 0.55 0.54 0.48 0.50 
 

0.15 500 800 0.00 0.00 0.53 0.49 0.52 0.53 0.51 0.46 0.48 
 

0.15 500 1,000 0.00 0.00 0.46 0.46 0.50 0.50 0.49 0.44 0.47 
 

0.15 1,000 600 0.00 0.00 0.62 0.53 0.55 0.55 0.54 0.48 0.50 
 

0.15 1,000 800 0.00 0.00 0.53 0.49 0.52 0.53 0.51 0.46 0.48 
 

0.15 1,000 1,000 0.00 0.00 0.46 0.46 0.50 0.50 0.49 0.44 0.47 
 

0.2 300 600 0.00 0.00 0.61 0.53 0.56 0.57 0.56 0.53 0.64 0.50 

0.2 300 800 0.00 0.00 0.52 0.49 0.53 0.54 0.54 0.51 0.62 0.48 

0.2 300 1,000 0.00 0.00 0.45 0.46 0.50 0.52 0.52 0.49 0.60 0.47 

0.2 500 600 0.00 0.00 0.61 0.53 0.56 0.57 0.56 0.53 0.64 0.50 

0.2 500 800 0.00 0.00 0.52 0.49 0.53 0.54 0.54 0.51 0.62 0.48 

0.2 500 1,000 0.00 0.00 0.45 0.46 0.50 0.52 0.52 0.49 0.60 0.47 

0.2 1,000 600 0.00 0.00 0.61 0.53 0.56 0.57 0.56 0.53 0.64 0.50 

0.2 1,000 800 0.00 0.00 0.52 0.49 0.53 0.54 0.54 0.51 0.62 0.48 

0.2 1,000 1,000 0.00 0.00 0.45 0.46 0.50 0.52 0.52 0.49 0.60 0.47 
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Chapter 6 CONCLUSIONS 

This dissertation has presented a new perspective on the problems of scheduling arrivals of 

patients with no-show to queuing systems with exponential service times. As such, it is the first 

to take quadratic waiting cost, nonhomogeneous patients, and overbooking together into 

consideration in a static scheduling environment. This was intended to investigate the impact of 

no-show and to explore methods to alleviate the disruptive effects brought by no-shows, from a 

scheduling perspective. 

My research was mainly motivated by three correlated streams of literature: i) a set of problems 

of scheduling arrivals to queuing systems, ii) general appointment scheduling problems with 

patient no-shows including overbooking studies, and iii) scheduling multiple categories of 

patients. As extensions of the first literature stream, I relaxed a series of key assumptions 

stepwise.  

In Chapter 4, I first demonstrated that there is a need for nonlinear representation of patient 

waiting cost by waiting time, for the sake of which, I employed the concept of Taguchi’s loss 

function to model it as a quadratic function of patient waiting time. I then relaxed the assumption 

of constant and identical patient no-show probabilities, and evaluated the model performance 

under three no-show probability based patient sequencing heuristics. I finally relaxed the 

assumption of constant and identical patient waiting cost ratios, and reevaluate the same set of 

heuristics. Major findings from this chapter are summarized as the following: 
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(1) The higher no-show first is the best among the three patient sequencing heuristics. In a 

case with nonhomogeneous no-show probabilities, it achieves the lowest total system cost, 

as well as lowest total expected patient waiting time. For the case with nonhomogeneous 

patient no-show probabilities and waiting cost ratios, it still outperforms the other two 

heuristics in terms of total system cost. Even though resulting in highest waiting time, it 

achieves the shortest server completion time. Therefore, I conclude that it is very robust 

against a wide range of parameter settings. 

With its simplicity and effectiveness, the higher no-show first heuristic can be easily 

applied to practice. Several key assumptions need to be validated before its application: 

 Patient waiting cost is evaluated with quadratic or quadratic like function of patient 

waiting time; 

 Patient no-show probability is determined at the time of booking (based on certain 

attributes such as appointment delay, age, sex, marital status, and income); 

 Patients receive same type of service, meaning the same expected service time for 

all scheduled patients. 

It takes the following steps to implement this heuristic: 

 Breakdown patient no-show probability into three to five adjacent intervals; 

 Summarize operations data on no-show rates into a probability mass  of the 

intervals; 

 Apply total number of appointment slots per clinical session to the probability 

mass function to obtain the number of slots reserved for each interval; 

 In case some interval is full of booked patients, the scheduler can have the 

flexibility overflow the next patient belonging to this interval to adjacent intervals.  
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(2) When patients are homogeneous with quadratic waiting costs, the inter-arrival times 

among the first several patients are more sensitive to no-show probability value than the 

inter-arrival times among the last several patients. Compared to a model with linear 

waiting costs, it tends to schedule patients closer when relative waiting cost ratio is above 

a threshold value, and vice versa, regardless the no-show probability value. 

(3) The well-known dome shape for optimal schedules hold if patients are homogenous from 

three perspectives: non-deterministic independent and identical service times, constant 

and identical no-show probabilities, and constant and identical waiting cost ratios. 

Chapter 5 further relaxed the assumption of scheduling a fixed number of patients, by applying a 

nonconventional overbooking strategy, which allows a certain level of server overtime, to a daily 

scheduling problem of allocating relatively flexible scanning capacities to inpatients, outpatients, 

and emergency patients. Instead of overbooking by specific appointment slot, I overbooked the 

entire clinic session. My conclusions are drawn based the following key assumptions: i) low 

patient hourly waiting cost ($20/hr for outpatients and $0/hr for inpatients) and high equipment 

idle cost (between $600/hr and $1,000/hr), ii) high outpatient service fee ($1,500/patient) and 

low inpatient service fee (between $300 and $1,000), and iii) low level of no-show probability 

(between 0.1 and 0.2 for outpatients, and 0 for inpatients). The following insights were obtained 

from this chapter: 

(4) Schedule outpatients in front when outpatient no-show probabilities are relatively high 

(0.15 to 0.2); schedule inpatients first in case outpatient no-show probabilities are 

relatively low (0.1).  
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Implementation of this policy is straightforward. It requires that the estimated no-show 

rate of the target clinical session falls in a range between 0.1 and 0.2. Additionally, the 

number of slots reserved for inpatients needs to be determined with consideration of 

various factors such as demand, service revenue, and goodwill. 

(5) The application of overbooking changes the behaviors of my static model from two 

perspectives:  

 Arrival pattern. The solution schedules do not follow the well-known dome shape, 

instead, they tend to be very unpredictable; 

 Patient waiting time. Expected patient waiting time wi becomes non-monotonically 

increasing with patient order, which is contradictory to the results obtained from 

my generalize queuing model without overbooking. 

(6) The optimal solution may not be the best choice in practice. It results in a huge sacrifice 

of patient waiting for very limited gain on net revenue improvement. The suboptimal 

solution in dome shape results in overall good and more balanced performance, thus, 

could be considered in radiology scheduling practices. 

(7) System performance of the hybrid overbooking model is positively correlated with server 

hourly idle cost, and this relationship is more significant when outpatient no-show 

probabilities are relatively low. 
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Chapter 7 FUTURE RESEARCH 

It would be very meaningful for future studies to extend my hybrid overbooking model to a 

generalized multi-objective analytical model which aims to find optimal number, sequence and 

inter-arrival times of scheduled patients with distinct no-show probabilities. One of my major 

contributions lies in the interesting findings of sequencing patients based on their no-show 

probabilities, the numerical studies were conducted based on several pre-defined heuristic 

booking policies, since it is not practical to compute optimal inter-arrival times for all possible 

permutations. Therefore, the biggest challenge for future research will be to take computational 

complexity into the consideration of developing the analytical model. 

Another area for future study is to explore the hybrid overbooking model in a broader range of 

parameter settings. For example, a greater span of clinical session capacities might lead to 

different behaviors on net revenues and more stable overbooking ratios among different 

capacities. Throughout this dissertation, all the problems are coded in Matlab and solved by 

Sequential Quadratic Programming (SQP), the computation time grows exponentially as clinic 

session capacity increases, which limits my ability to explore the model with larger sizes of 

clinic capacities. A breakdown of the penalty cost for not being able to serve a scheduled patient 

may be important, since it is very difficult to estimate absolute monetary value for the penalty 

cost. Another potential way to address this issue is to use a penalty to service revenue ratio, 

which could be determined by healthcare decision administrators based on their sense or 

experience. 
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It may also be helpful to take a more in-depth look into the relationship between overbooking 

ratio and scheduled inter-arrival times. My findings in this dissertation suggest that the schedule 

may not follow the classic dome shape when overbooking ratio exceeds a threshold value. It 

would be very interesting for future research to explore variations of schedules at higher levels of 

overbooking ratios.  

Finally, there is still a lack of emphasis on more realistic representation of appointment 

scheduling systems. Most analytical studies treat radiology imaging services as single phase 

processes, multi-phase models are desired in terms of depicting the work flows and the 

interactions of radiology facility with other functional department in the same hospital. From a 

patient arrival perspective, besides no-shows and walk-ins, it would be important for future 

studies to incorporate unpunctuality into arrival pattern. Even though the single server 

assumption holds well for many cases, as MRI equipment is generally very expensive to 

purchase, install and operate, there is a need for multi-server models if the future studies would 

like to focus the relatively inexpensive modalities (X-ray, CT, etc.). 
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