
	
  

The Role of Dynamin Like Protein 1 in Parkinson’s Disease 

 

Jake G. Hoekstra 

 

A dissertation 

submitted in partial fulfillment of the 

requirements for the degree of  

 

Doctor of Philosophy 

 

University of Washington 

2013 

 

 

Reading Committee: 

Jing Zhang, Chair 

Thomas J. Montine 

Lawrence A. Loeb 

 

 

Program Authorized to Offer Degree: 

Pathology 

  



	
  

©Copyright 2013 

Jake G. Hoekstra 



	
  

University of Washington 
 

Abstract 

 

The Role of Dynamin Like Protein 1 

in Parkinson’s Disease 

Jake Gregor Hoekstra 

 

Chair of Supervisory Committee: 

Professor, Chief of Neuropathology Services Jing Zhang 

Department of Pathology 

 

 

Parkinson’s disease (PD) is a neurodegenerative disease diagnosed by the presence of various 

motor symptoms, which result from loss of dopaminergic neurons in the substantia nigra pars compacta 

(SNpc). In addition to these motor defects, numerous non-motor symptoms occur and appear prior to the 

onset of clinical symptoms. Significant information implicates mitochondrial dysfunction in the 

pathogenesis of PD, with recent evidence showing changes in mitochondrial dynamics may be involved. 

Although the role of astrocytes has become increasingly recognized as an important factor in promoting 

neuronal health, their contributions towards PD have yet to be fully realized. This thesis focuses on 

various aspects related to detection of PD in patients as well as mechanisms of PD that occur through 

mitochondrial defects, which could represent targets of therapy. Chapter 2 considers the current state of 

biomarkers in PD and how the development of preclinical markers could be achieved to potentially allow 

for therapies aimed at preventing neuronal loss. Chapter 3 focuses on mitochondrial involvement in PD 

and how therapies may act to alleviate mitochondrial deficits. Chapters 4 and 5 examine how astrocytes 

and excitotoxicity play a role in PD particularly, due to changes in mitochondrial dynamics related to the 

fission promoting protein dynamin like protein 1 (Dlp1), and how the downstream effects of this could be a 

target of therapy. 



	
  

Using human tissue and following previous mass spectrometry data, Dlp1 expression was 

demonstrated to be decreased in the SNpc of PD patients. This decrease occurred in both neurons and 

astrocytes within the SNpc, a finding that was extended to the same cell types in the frontal cortex of 

patients without observable cortical degeneration. 

In pursuing the effects of this decrease in astrocytes, it was observed that knockdown of Dlp1 

resulted in extensive interconnection and elongation of mitochondria, combined withan impairment in their 

movement and localization. Further, knockdown of Dlp1 in astrocytes hindered their ability to protect 

against the excitotoxic effects of glutamate, which was protected against by blocking NMDA receptors. No 

changes in expression or localization of the major astrocytic glutamate transporters were observed. 

Instead, these effects can be tied back to differences in intracellular Ca2+ that occur in response to 

glutamate, as the intracellular Ca2+ levels were elevated in astrocytes after Dlp1 was knocked down. This 

was due to impaired mitochondrial buffering of Ca2+ that originates from the extracellular space. 

 These results identify a novel mechanism of mitochondrial dysfunction due to alterations in 

dynamics, in astrocytes, as a means through which neurodegeneration in PD could develop. Further, the 

results that Dlp1 is decreased in the cortex prior to the appearance of degeneration indicates that 

depression of Dlp1 expression is an early event in PD. They also show that targeting excitoxicity could be 

an effective means of alleviating PD. Such therapies may prove to be effective in preventing neuron loss, 

if treatment is administered prior to the onset of clinical symptoms, which is dependent upon the 

development of preclinical biomarkers. 
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Chapter 1: 

INTRODUCTION TO PARKINSON’S DISEASE 
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 Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting 

between 1-4% of the population over the age of 60[1]. While the causes of PD have yet to be determined, 

the greatest risk factor for developing PD remains age, as the prevalence of PD increases starting 

between ages 55 and 60[1,2]. 

PD is clinically diagnosed by the presence of characteristic motor symptoms, including resting 

tremor, bradykinseia, rigidity, and postural instability[3]. The underlying cause of these symptoms is loss 

of dopamine (DA) signaling in the striatum due to death of DAergic neurons that project there from the 

substantia nigra pars compacta (SNpc)[4,5], which is confirmed by the finding that DA replacement with 

levodopa (L-DOPA) alleviates these symptoms[6]. Protein aggregates called Lewy bodies, comprised 

largely of α-synuclein, are a hallmark of the disease[4], and are  found throughout the brains of PD 

patients, first in the remaining DAergic neurons in the SNpc of PD patients and later in cortical regions as 

the disease progresses[7]. 

These inclusions correlate with disease progression, even prior to the onset of clinical 

symptoms[7], and may contribute to a variety of non-motor symptoms that have been associated with PD, 

including the earliest stages. Such symptoms include autonomic dysfunction, impaired olfaction, 

alterations in sleep patterns, and changes in cognitive function related to memory, speech, visual 

perception, and executive function[8-11]. This indicates that brain function in regions beyond the SNpc 

are affected in PD, which is not surprising as Lewy pathology is observed throughout the central nervous 

system[12]. Further, it also shows that PD is a systemic disorder that can affect the quality of life for those 

afflicted by it in many ways, beyond the classical motor dysfunction. 

Depression, constipation, anosmia, and rapid eye movement sleep behavior disorder are some 

symptoms that are particularly interesting, as they have been shown to preclude the onset of motor 

symptoms, in some instances by several years. These symptoms, however, are fairly non-specific and 

can stand on their own as conditions, or are similarly present as preclinical symptoms in other 

neurodegenerative disorders[13]. Understanding different patterns that develop in sub-populations of PD 

patients will allow for early therapeutic intervention in PD. This is critical as halting or preventing 

neurodegeneration prior to the onset of motor symptoms will likely be more effective at treating PD than 

treating after disease onset.  
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Although the pathway through which neurodegeneration occurs is still unclear, several 

mechanisms of neuron death have been proposed. As protein aggregates are a hallmark of PD, 

dysfunction of chaperone proteins or the ubiquitin-proteasome system has been has been hypothesized 

to occur, resulting in the accumulation of damaged proteins[14,15]. Protein aggregates may also be 

indicative of other processes going on, particularly excessive production of reactive oxygen species 

(ROS). Evidence of elevated oxidative stress has been observed in PD patients, and may result in 

damage to neurons directly, or could damage proteins resulting in their aggregation[16-18]. The finding of 

elevated oxidative damage also sheds light on mitochondrial dysfunction as a mechanism of PD, as 

mitochondria are a primary source of ROS and their dysfunction results in elevated production[19]. 

Indeed, mitochondrial activity is believed to be impaired in PD and inducing mitochondrial dysfunction 

results in PD[19,20]. As their dysfunction could not only result in the death of neurons but also in the 

aggregation of proteins involved in PD, mitochondrial dysfunction represents an important aspect of PD 

pathogenesis that could be targeted to prevent neuronal loss and PD.  

Chapter 2 will describe the current state of biomarker discovery in PD and discusses how these 

techniques may be employed in strategies to develop markers capable of detecting PD prior to the onset 

of clinical symptoms (i.e. in the prodromal stages of disease). Chapter 3 discusses how mitochondrial 

dysfunction has been implicated in PD and how current mechanisms of therapy could target these 

defects. It also considers how changes in mitochondria could be implicated in neurodegeneration and PD 

and represent a novel target of therapy. Chapters 4 and 5 consider how alterations in mitochondrial 

dynamics in astrocytes associated with PD could contribute to excitotoxic neuron death. 
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Chapter 2: 

BIOMARKERS OF PARKINSON DISEASE: CURRENT STATUS AND FUTURE PERSPECTIVES 

 

 

 

 

This chapter is slightly modified from the following co-authored publication that is available through the 

publisher listed on the National Center for Biotechnology Information’s PubMed Database 

(http://www.ncbi.nlm.nih.gov/pubmed/) 

 

Wang, J. Hoekstra, J.G, Zuo, C., Cook, T.J., Zhang, J. (2013) Biomarkers of Parkinson’s disease: current 

status and future perspectives. Drug Discover Today. 18 (3-4): 155-62. PMID: 22982303. 
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Introduction 

Although current methods for the diagnosis of PD are fairly effective, the misdiagnosis rate of PD can 

range from 10-50% by movement disorder specialists [1] due in part to the fact that there are no sensitive 

and specific biomarkers validated for clinicians to differentiate PD from other movement disorders with 

overlapping clinical symptoms. Apart from diagnostic utility, biomarkers for PD are also needed for 

monitoring disease progression and efficacy of interventions, which are currently assessed by severity of 

motor symptoms.  

 An ideal PD biomarker should meet the following qualifications: high sensitivity and specificity 

validated by neuropathological examination, satisfactory test–retest reproducibility, easy accessibility, 

inexpensive, and offer the ability to monitor disease progression without being biased by age, 

compensatory mechanisms, or treatments. While no such biomarker to date fulfills all of these criteria for 

PD, this review will discuss two areas of research, neuroimaging and biochemical markers, which have 

demonstrated obvious potential in diagnosing the disease and monitoring its progression. Future 

biomarker investigations relating to prodromal biomarkers and markers related to nonmotor symptoms 

are also discussed. 

Neuroimaging Biomarkers 

 To date, the most mature PD biomarkers for nigrostriatal neurodegeneration are those employing 

neuroimaging methodologies. Currently, controversy surrounds whether these techniques can be 

effective in differentiating clinically overlapping parkinsonisms and/or objectively assessing PD 

progression. The major methods used as well as their current clinical and research utility are discussed 

below and summarized in Table 1. 

Dopaminergic Imaging 

Aromatic Amino Acid Decarboxylase  

6-[18F]-fluoro-l-3,4-dihydroxyphenylalanine (18F-dopa) positron emission tomography (PET) was the 

first neuroimaging approach validated for measuring and assessing presynaptic DAergic neuronal 

integrity. To reach the striatum, 18F-dopa is transported across the blood-brain barrier, taken up by axonal 

terminals of DA neurons, decarboxylated by aromatic amino acid decarboxylase (AADC), converted into 

18F-DA, and stored in vesicles. The key determinants for 18F-dopa uptake are the density of the axonal 
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terminal plexus and AADC activity, which reflect the number of remaining nigral DAergic cells. Patients 

with early PD show 50% decreased 18F-dopa uptake in the putamen [2], with the greatest reduction 

occurring in a gradient pattern in the posterior dorsal putamen contralateral to the side of symptom onset 

[3,4]. Although such imaging appears to be effective in confirming symptomatic PD, its utility in assessing 

PD progression [5,6] and detecting prodromal PD are questionable because 18F-dopa PET may 

underestimate the degree of degeneration due to compensatory up-regulation of AADC in remaining 

terminals [7]. 

Dopamine Transporter  

The dopamine transporter (DAT), a protein expressed on the membrane of presynaptic DA terminals 

and involved in the reuptake of DA, can be assessed with PET using several tracers, including 11C-CFT, 

18F-FP-CIT, 11C-RTI-32, and 11C-methylphenidate. Single photon emission computed tomography 

(SPECT), a technology used routinely in clinical practice, can also be used to image DAT via 123I-b-CIT, 

123I-FP-CIT, 123I-IPT, 123I-altropane, or 99mTc- TRODAT-1 [8]. DAT imaging is used as an in vivo marker, 

reflecting integrity and number of DA neurons. A few studies have reported significantly reduced striatal 

DAT in more than 95% of parkinsonism cases [9], including those at early stages [10]. 

With respect to monitoring PD progression and efficacy of putative agents, the value of DAT imaging 

remains to be established. Although some investigations suggest that striatal uptake of 18F-FP-CIT 

correlates with Hoehn and Yahr (H&Y) score [11], other clinical trials show that DAT imaging density 

declined faster in PD patients treated with levodopa, despite improved clinical motor scores [12]. 

Symptomatic therapy may therefore influence imaging results in their relation to clinical diagnosis.  

Vesicular Monoamine Transporter 2  

Vesicular monoamine transporter 2 (VMAT2), a membrane protein that transports monoamines from 

the cytosol into secretory vesicles in monoaminergic neurons, is exclusively expressed in the brain and 

plays an essential role in DA reuptake. VMAT2 is imaged using 11C- or 18F-dihydrotetrabenazine (DTBZ) 

PET and is the newest approach for the assessment of nigrostriatal projections [13]. In patients with PD, 

striatal 11C-DTBZ is significantly reduced with the putamen exhibiting the greatest decrease [13]. VMAT2 

imaging appears to be less sensitive to compensation and pharmacologic regulation [14], giving it the 

potential to provide the most reliable measurement of the density of DAergic terminals in PD. 
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Nevertheless, the application of 11C-DTBZ is limited because its short half-life requires a cyclotron on-site 

[15]. A novel 18F-labeled tetrabenazine derivative, 18F-fluoropropyldihydrotetrabenazine, is currently under 

development and is showing promise as a longer-lived and lower-cost alternative [15]. 

Caveats and Potential Solutions 

Among the three techniques discussed above, DAT imaging is the most commonly used to date. 

However, several limitations associated with its use should be emphasized. DAT imaging likely 

overestimates the reduction in terminal density in early PD due to compensatory down-regulation in 

remaining neurons. Also, current DAT radioligands bind with other monoamine transporters, particularly 

serotonin (SERT), which is especially problematic as SERT is the dominant monoamine transporter in the 

midbrain [16]. Lastly, DAT imaging cannot reliably differentiate between PD and other forms of 

parkinsonism [17], making the production of additional methods in conjunction with DAT imaging 

necessary to define a PD biomarker. Recently, fluorine-18 labeled 2-βcarbomethoxy-3β-(4-chlorophenyl)-

8-(2-fluoroethyl)-nortropane (18F-FECNT) was developed as a novel PET tracer with high affinity for DAT 

and a much lower affinity for the norepinephrine transporter and SERT. Compared to current PET DAT 

tracers, 18F-FECNT has higher test–retest reproducibility and may be able to track striatal and nigral DA 

denervation [18], making it potentially useful for longitudinal evaluation of PD progression. 

As previously mentioned, another shortcoming of DAergic neuroimaging is that the techniques 

assess nigrostriatal DA function, rather than true pathology, rendering the obtained values subject to 

compensatory mechanisms, in which there is up-regulation of 18F-dopa uptake and down-regulation of 

DAT binding [14]. To partially circumvent this problem, postsynaptic DA receptors can be examined by 

the PET ligand 11C-raclopride for D2/3 receptor [19] or SPECT tracer 123I-iodobenzamide for D2 receptors. 

Increased levels of D2 receptor availability can be observed in early stages of de novo PD, which is useful 

in differentiating PD from atypical parkinsonisms [20]. Nonetheless, whether these new targets are truly 

unaffected by compensatory modulations or medications remains to be investigated. 

Non-Dopaminergic Imaging  

An active area of research in neuroimaging markers is assessment of brain functions and structures 

beyond nigrostriatal DAergic degeneration. These include Parkinson disease-related spatial covariance 

pattern (PDRP), cholinergic function imaging, and magnetic resonance imaging (MRI). Such strategies 
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incorporate the fact that PD affects non-nigrostriatal DAergic regions of the brain. Transcranial 

sonography (TCS), also a non-dopamine imaging method, will be discussed in the context of prodromal 

diagnosis, where utility of imaging methods will be integrated with biochemical markers. 

Metabolism Network Imaging in Brain 

Investigation with 18F-FDG PET revealed that PD is associated with a specific metabolic network 

characterized by increased pallido-thalamic and pontine metabolism associated with metabolic reductions 

in the lateral premotor and posterior parietal cortical regions [21,22], termed PDRP. In one study, PDRP 

network analysis classified idiopathic PD with 84% sensitivity and 97% specificity, helping differentiate PD 

from atypical parkinsonisms such as multiple system atrophy (MSA) and progressive supranuclear palsy 

(PSP) [23]. Furthermore, PDRP activity precedes the appearance of motor symptoms by approximately 2 

years [24], indicating its potential usefulness in diagnosing PD at its prodromal stage. These facts, 

coupled with its high level of reproducibility [25] and correlation with clinical severity [26], make PDRP a 

promising biomarker to track PD progression, monitor therapeutic intervention [27], and could potentially 

fill voids left by nigrostriatal imaging methods mentioned above. 

Cholinergic Dysfunction Imaging 

In addition to PDRP, imaging brain regions that are not part of the nigrostriatal tract shows some 

promise in diagnosing and distinguishing PD from other neurological diseases. New imaging techniques 

for assaying cortical acetylcholinesterase activity with 11C-MP4A PET reveal a deficit of cholinergic 

function throughout the cortex in parallel with the loss of striatal DAergic function in PD [28]. This 

observation is significant, especially with the realization of non-motor components in PD (e.g. cognitive 

impairment) which is intimately associated with the cholinergic system.  

MRI 

MRI is a form of neuroimaging that is particularly useful in ruling out secondary causes of 

parkinsonism due to the fact that it is capable of detecting abnormalities in the structure of various brain 

regions. Recent advances in high-field MRI technology have been increasingly employed in diagnosing 

PD and are more sensitive towards demonstrating iron deposits in the midbrain of early PD patients [29]. 

Additionally, diffusion tensor imaging (DTI) for evaluating regional fractional anisotropy has shown 

changes in the olfactory tract [30], which could be related to anosmia or hyposmia (a symptom that 
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appears in the prodromal stage – see discussion below), and reduction in the nigra of PD patients [31] 

which inversely correlates with H&Y score [32]. 

Biochemical Biomarkers 

Biochemical markers, especially those reflecting PD pathogenesis, are sorely needed in samples 

that are readily accessible clinically [e.g. cerebrospinal fluid (CSF), blood, and saliva]. To date, the most 

extensively tested candidate biochemical markers are those present in CSF and typically stem from 

genetic investigations which link the candidate to PD development. A few major biochemical markers and 

their current clinical and research utility are listed in Table 2. However, none of these markers completely 

fulfill the criteria defined earlier as an ideal biomarker for PD. Most new candidate markers are discovered 

by ‘-omics’ technology, and are generally in a preliminary stage with the results obtained in small cohorts 

using cross-sectional study designs. Validation is therefore needed using large cohorts, particularly those 

with samples collected longitudinally. Finally, similar to the neuroimaging field, major challenges to the 

biochemical marker field also include defining prodromal biomarkers and those related to nonmotor 

dysfunctions.  

α-Synuclein, DJ-1, and tau 

α-Synuclein has been intensely researched as a PD biomarker due to the fact that it is a key protein 

in Lewy bodies, the pathological hallmark of PD, and mutations or multiplication of its gene are known to 

cause familial PD [33,34]. α-Synuclein has been reported to be decreased in CSF from patients with PD 

compared to controls in most well-controlled investigations [35-38], although it does not appear to be able 

to distinguish between various synucleinopathies independently [38]. One study has reported an inverse 

relationship between α-synuclein levels and H&Y score [35], indicating measuring α-synuclein levels may 

not only be useful as a biomarker of PD but also of disease progression. However, the latter observation 

has not been replicated in most recent studies [37]. Additionally, oligomeric forms of α-synuclein have 

been found to be elevated in the CSF of PD patients as compared to controls.  When only oligomers were 

measured, the sensitivity and specificity were calculated to be 75% and 87.5%, respectively, which 

increase to 89.3% and 90.6% when the ratio of oligomers/total α-synuclein is calculated [39]. Similar 

elevations have also been observed in plasma [40]. A more recent study reports that the CSF level of 

phosphorylated α-synuclein (PS-129) appears to be more effective than native α-synuclein in 
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differentiating PD from MSA and PSP and correlates with disease severity as assessed using the Unified 

Parkinson's Disease Rating Scale (UPDRS) [41], making it a potential candidate to complement the 

neuroimaging methods discussed above.  

DJ-1 is an extensively studied antioxidative protein which, like α-synuclein, is implicated in PD 

pathogenesis as mutation of its PARK7 gene results in familial autosomal recessive forms of the disease. 

Some reports indicate that DJ-1 is increased in CSF from PD patients compared to controls [42], a finding 

which was replicated in plasma and extended to show that DJ-1 levels correlate with disease stage as 

approximated by H&Y scores [43]. Other studies, however, contradict this conclusion by showing DJ-1 to 

be decreased in CSF from PD patients compared to controls, and show an apparent age-dependent 

increase in DJ-1 levels [37]. The discrepancy might be related to methodological variations or 

contamination of CSF by blood, which contains a comparatively high level of DJ-1 [44].  

In addition to α-synuclein [45,46], genome-wide association studies have found associations 

between the gene encoding tau (MAPT) and PD. However, this observation has largely arisen in cohorts 

of European descent [45] and was not found in a Japanese cohort, indicating there may be geographical 

differences in genes associated with PD [46]. Studies with larger cohorts have reported that CSF levels of 

tau and phospho-181 tau (p-tau) are decreased in symptomatic PD compared with controls [47,48].  

In addition to the cardinal motor indicators of PD, patients also experience significant non-motor 

symptoms. As such, biomarker investigations have been launched in an attempt to characterize these 

effects. One such symptom is cognitive impairment, for which a decrease in CSF amyloid-β (Aβ) levels 

has been well established in patients with Alzheimer disease (AD). In CSF samples obtained from PD 

patients, the Aβ isoforms Aβ40 and Aβ42 have been found to be decreased as compared to controls. 

However, in contrast to AD, there is no consistent increase in tau in conjunction with decreased Aβ in 

patients with PD with cognitive impairment or dementia [47,49,50]. 

It should be pointed out that due to the heterogeneity of patients with PD, a combination of several 

markers may be necessary to achieve high sensitivity and specificity. This is evidenced by the fact that 

the ratio of α-synuclein to the percentage of p-tau (p-tau/tau) is able to distinguish PD from MSA [48]. 

Furthermore, the ratio of fractalkine, an inflammatory mediator of microglia, to Aβ42 positively correlates 

with PD severity and progression in cross-sectional and longitudinal CSF samples, respectively [48]. 
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Using combinations of protein markers and/or imaging techniques could therefore produce a biomarker 

that not only diagnoses PD, but also monitors disease progression. Alternatively, markers may also be 

stratified based on the predominant features of PD, such as tremor or rigidity, or at-risk traits and/or 

clinical features (discussed below). 

Use of ‘omics’ in Biomarker Development 

A variety of profiling techniques have been employed to find novel markers that could facilitate 

diagnosis and monitoring of PD progression. Indeed, the use of ‘-omics’ technologies have enabled for 

high throughput studies of metabolites, genes, and proteins in the context of comparing PD patients to 

controls. This section will discuss the major findings of metabolomic, genomic, gene expression profiling, 

and proteomic studies aimed at developing PD biomarkers. 

Metabolomics 

Metabolomics is used to study the profile of small molecules and has been used in a limited capacity 

to observe differences in metabolites that may aide in PD diagnosis. Previous studies report decreased 

uric acid and increased glutathione in plasma from PD patients compared to controls [51]. However, the 

reduced form of glutathione has been reported to be decreased in CSF of patients with Lewy body 

disease, with PD patients showing a non-statistically significant decrease of this metabolite [52]. By 

contrast, decreased plasma levels of uric acid have been found in both idiopathic PD and PD caused by 

mutations in leucine rich repeat kinase 2 (LRRK2), indicating decreased uric acid levels may be a 

universal feature of PD patients [53]. Given both higher serum and CSF urate concentrations at baseline 

are associated with slower rates of clinical deterioration [54] and serum urate is reported to decrease with 

disease progression as measured by H&Y score [55], urate may be important in predicting and monitoring 

PD. Notably, the LRRK2 study discussed above also calculated projection to latent structures-

discriminant analysis (PLS-DA) for related and unrelated controls in addition to patients with idiopathic 

and LRRK2 PD. It was found that each form was distinguishable from the control in addition to each 

other, although common signatures are also noted. Another study using PLS-DA analysis has identified 

pyruvate as a key metabolite that can distinguish patients with PD from controls [56]. While metabolomic 

studies may provide a biomarker that can accurately diagnose PD, the limited number of published 
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studies highlights the need for validation as well as comparisons of PD to other neurodegenerative 

diseases. 

Genomic and Expression Profiles 

A majority of the genomic work done relating to PD biomarker research has found the genes SNCA 

and MAPT, encoding for α-synuclein and tau, respectively, are associated with PD as described above 

[45,46]. A variety of studies have also examined differences in mRNA expression between PD and control 

subjects. Unfortunately, most of these have been performed in brain tissue, making them impractical 

towards the development of a clinically useful biomarker. There have been a select number of studies 

that measured transcript differences in blood. One such study looked at the blood mRNA signature and 

reported a molecular marker of 8 genes that are indicative of a greater risk of PD, in particular decreased 

expression of ST13 [57]. Results for the expression of ST13, however, were not replicated in a separate 

study [58] and no differences were observed in a similar study of GSK3B in blood [59]. By contrast, 

several other genes discovered initially, including HIP2 and HSPA9 [57], appear to be reproducible in 

other investigations [60,61]. 

Proteomic Profiling 

Many studies have profiled various proteomes of PD and other neurodegenerative patients with the 

goal of detecting differences in proteins between these groups. A commonly used biofluid is CSF, as it is 

in close contact with the location of PD pathogenesis and can be reasonably obtained. One such study 

utilized proteomic profiling of CSF from patients with PD, AD, and dementia with Lewy bodies and found 

unique changes for each group compared to healthy controls amongst the roughly 1500 (approximately) 

proteins identified [62]. Additionally, each group was distinguishable from one another with 95% 

sensitivity achieved [62]. Later studies validated that levels of brain-derived neurotrophic factor, 

interleukin 8, vitamin D binding protein, β2-microglobulin, haptoglobin, apolipoprotein AII, apoE, tau, and 

Aβ42 could accurately classify 90 of 95 healthy controls, 36 of 48 AD patients, and 38 of 40 PD patients 

when compared to expert diagnosis [63]. This further supports the concept that utilizing multiple proteins 

may be a key factor in developing a biomarker for PD. Other profiling studies have been performed and 

have found different candidate markers [64,65], illustrating that reproducibility is low when employing 

general profiling methods across diverse cohorts. 
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Future Directions of Biomarkers in PD 

A biomarker that is able to diagnose PD prior to the onset of motor symptoms would provide a better 

chance to develop interventions capable of arresting or slowing disease progression. To this end, two 

types of high risk populations, subjects with genetic mutations leading to familial PD and those with 

clinical symptoms associated with a high conversion rate to PD, are candidates wherein prodromal 

biomarkers can be potentially identified. Additionally, discovery of biochemical markers is shifting from 

CSF to other peripheral biofluids that are more easily accessible. Imaging, when used in combination with 

biochemical biomarkers, may allow for the discovery of a specific profile that can predict PD onset. 

Prodromal diagnosis  

Tools used for prodromal diagnosis.  

The use of neuroimaging has shown the greatest promise in developing prodromal markers for PD. 

Nigrostriatal DA imaging, the best established marker of motor dysfunction thus far, should be considered 

the ‘gold-standard’ in defining subjects at a higher risk for PD prior to the onset of motor symptoms 

(discussed below). Additionally, TCS, which is readily available in most clinics, may be useful towards 

prodromal diagnosis of PD. To this end, TCS has been used to observe the lateral midbrain and studies 

report increased echogenicity (‘hyperechogenicity’) in the lateral midbrain in about 90% of cases [66]. 

Compared to the clinical standard, diagnosing PD at baseline by TCS was assessed with a sensitivity of 

91% and specificity of 82% [67]. TCS may be useful in developing a prodromal biomarker as one study 

reports 14 of 39 patients with rapid eye movement behavior disorder (RBD), a group of people at risk of 

PD (discussed below), showed hyperechogenecity in the nigra [68]. Additionally, for individuals 50 years 

or older without evidence of PD, the relative risk for incident PD in those with enlarged substantia nigra 

hyperechogenicity was 17 times higher compared with normoechogenic controls after 37 months of 

prospective follow-up [69]. It should be noted, however, the size of the TCS signal did not show changes 

with disease progression when assessed using H&Y or UPDRS scores [70], suggesting it is not an 

appropriate biomarker for follow-up evaluation of disease severity. 

Population at High Risk 

To develop a prodromal biomarker for PD, individuals who are at risk of developing PD can be 

studied prior to disease onset. Two such populations include individuals that have a genetic risk for PD 
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and people who show symptoms that appear prior to disease onset. Among individuals with a genetic risk 

for PD, those with mutations in LRRK2 or glucocerebrosidase (GBA) are worth discussing, as their 

prevalence is relatively high. Studies on asymptomatic LRRK2 carriers are likely to be especially 

informative due to the high penetrance rate of LRRK2 mutations [71]. DAT imaging of two asymptomatic 

LRRK2 mutation carriers showed reduced 11C-MP binding but normal 18F-dopa uptake in putamen [72], 

which is consistent with decreased binding of DAT and increased activity of dopa decarboxylase in 

prodromal stages of PD. Additionally, LRRK2 patients were similar to patients with sporadic PD [72]. A 

separate study reported a greater than expected decline in PET markers (most commonly 11C-DTBZ and 

11C-methylphenidate but also 18F-dopa uptake) for some non-symptomatic LRRK2 carriers [73], indicating 

PET imaging prior to clinical PD onset may be useful in diagnosing PD. Others have shown that GBA 

mutation carriers have decreased cerebral rates of glucose metabolism in the supplemental motor area 

[74], further validating the concept that imaging prior to the appearance of motor symptoms may be an 

important aspect of a prodromal PD biomarker. 

Imaging subjects displaying non-motor symptoms that commonly occur prior to the onset of motor 

symptoms in PD may also be useful in defining a prodromal biomarker. Impaired olfactory function is a 

common finding in PD patients, occurring early in the course of the disease [75] and may be able to 

distinguish PD from other movement disorders [76]. Similarly, studies have shown that RBD may precede 

the onset of parkinsonism [77] in addition to other prodromal symptoms of PD [78], which include 

depression, constipation, and cardiac dysfunction (the foundation of cardiac scan, see Table 1). DAT 

imaging has been especially useful towards developing such a biomarker. In a cohort of 361 

asymptomatic relatives of PD patients, idiopathic olfactory dysfunction was assessed and nigrostriatal DA 

neuron function was evaluated via SPECT DAT imaging. A total of 12.5% of the hyposmic first-degree 

relatives of patients with PD eventually developed PD and all had an abnormal baseline SPECT scan 

[79]. RBD patients similarly have shown reduced striatal DAT binding using 123I-IPT SPECT [68,80], and 

to a lesser extent FP-CIT SPECT [81], indicating that neuroimaging, particularly DAT imaging, is capable 

of detecting prodromal DA dysfunction in subjects who are at risk for PD but have not yet developed 

motor symptoms, as mentioned above. This was indeed confirmed in our recent investigation (Figure 1). 

Longitudinally monitoring patients that have these conditions and observing the differences between 
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those that develop PD and control patients may provide valuable insight into prodromal markers of PD as 

well as markers capable of monitoring disease progression. 

Patients with LRRK2 or GBA mutations or with prodromal PD symptoms can also be utilized to 

develop biochemical biomarkers. Most of the work in this area has focused on LRRK2 carriers. Plotting 

PLS-DA scores calculated from asymptomatic LRRK2 carriers and family members without a mutant copy 

of LRRK2 showed that metabolomic profiles of these groups were distinguishable from each other [53]. 

Additionally, decreased levels of Aβ and tau species in CSF correlate with decreased DA neuron function 

in LRRK2 mutation carriers as detected by imaging via 18F-dopa, 11C-DTBZ and 11C-methylphenidate [82], 

adding strength to their usefulness as PD biomarkers. Because asymptomatic carriers represent a 

prodromal state of PD, such findings indicate metabolomics and protein levels may be useful in the 

development of prodromal biomarkers for PD. Unfortunately, attempts at using α-synuclein or DJ-1 in 

LRRK2 patients for the same purpose has not proved successful [83], warranting further investigation into 

candidate markers in at risk populations. Longitudinal studies on such populations will likely allow for the 

development of a prodromal biomarker for PD. 

Transition from CSF to Peripheral Fluids 

Although CSF biomarkers have shown great potential for PD diagnosis, CSF is obtained through 

lumbar puncture, which is relatively invasive compared to obtaining other biofluids such as blood or 

saliva. While some studies in plasma have yielded promising results (discussed above) [39,40], further 

validation is still necessary. One recent study identified α-synuclein and DJ-1 in saliva [84], opening the 

door for using saliva as a biofluid in which to develop a biomarker for PD. Future studies should aim to 

integrate neuroimaging techniques as well as markers in biofluids to develop a marker that is not only 

specific for PD but also allows for preclinical diagnosis and monitoring of disease progression. 

Concluding remarks 

The current field of PD biomarkers focuses on using neuroimaging in addition to biochemical 

markers that can be measured in biofluids. Although a perfect biomarker has not been developed, 

significant progress has been made towards discovering molecular and imaging patterns that can 

accurately distinguish PD and monitor its progression. Among imaging methods that are currently 

available, DAT appears to be most widely used towards diagnosing PD, including defining PD at 
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prodromal stages. However, newer imaging methods are needed to improve differential diagnosis of 

overlapping parkinsonian disorders and assessing PD progression objectively. Biochemical markers are 

important not only towards filling the gaps associated with imaging fields, but also in revealing novel 

molecular targets involved in PD development and progression. Additionally, biochemical markers are 

typically determined in human fluids, making them advantageous in the aspect that they are easily 

accessible for application in a routine clinical setting. Future efforts should look to integrate these two 

fields and extend studies to the prodromal stages of PD in addition to non-motor symptoms. Correlating 

imaging data with biochemical markers will probably improve the diagnostic accuracy of PD. This is 

particularly important towards the development of markers capable of detecting PD in the prodromal 

stages of the disease. Such markers will be critical towards the development of therapies capable of 

inhibiting neuronal loss, which will likely be the most effective therapy in treating PD. 
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Figure 1: Imaging of dopamine transporter in different types of RBD patients. A) Idiopathic 

RBD with normal DAT imaging and no signs for PD (male, 66 yrs); B) Idiopathic RBD with 

reduction of DAT in imaging but no signs for PD; however, PD was confirmed clinically after 

follow-up with left limbs affected at onset (male, 70 yrs); C) Idiopathic RBD with reduction of 

DAT in imaging and PD (male, 71 yrs). 
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Table 1: Neuroimaging Biomarker candidates and their potential utilities in PD 
Imaging 
target 

Prodromal 
diagnosis 

Confirming 
PD at its 
onset 

Differentiatio
n from 
atypical 
Parkinsonism 

Monitoring 
progression 

Sensitivity 
and 
specificity for 
PD diagnosis 

AADC(18F-
dopa) 

Probably 
useful 

Useful Unlikely 
useful 

Possibly 
useful 

 

DAT Useful 
 

Useful 
 

Unlikely 
useful 

Possibly useful 98% and 
83%[85], 
92% and 100% 
[17] 

VMAT2 Probably 
useful  

Useful 
 

Investigational Investigational  

FDG network Probably 
useful 

Probably 
useful 
 

Probably 
useful 

Possibly useful 95% and 94% 
[86] 

Dopamine 
receptors 

Non-useful Non-useful 
alone 

Non-useful 
alone 
 

Non-useful  

Cholinergic 
function 

Investigational Investigational Probably 
useful ( for 
DLB) 

Investigational   

Cardiac 
autonomic 
dysfunction 

Investigational Non-useful Useful (for 
MSA) 

Investigational  

TCS Probably 
useful 

Useful Investigational 
 

Unlikely 
useful 

91% and 82% 
[67] 

MRI (DWI, 
iron deposit) 

Investigational Probably 
useful 

Investigational Investigational  
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Table 2: Biochemical Biomarker candidates and their potential utilities in PD 
Biochemical 
marker(s) 

Prodromal 
diagnosis 

Confirming 
PD at its 
onset 

Differentiation 
from atypical 
Parkinsonism 

Monitoring 
progression 

Sensitivity and 
specificity for PD 
diagnosis 

α-Synuclein Unlikely 
[82] 

Possibly 
Useful [35-
38] 

Possibly useful-
potentially more 
useful if PS-129 is 
measured or it is 
used with the ratio 
of p-tau/tau [41], 

Possibly 
Useful [41] 

Measuring 
oligomers 75% 
and 87.5%; 
improves to 89.3% 
and 90.6% when 
measuring the 
ratio of 
oligomers:total 
[39] 

DJ-1 Unlikely 
[82] 

Possibly 
Useful [42] 

Unknown Possibly 
Useful [42] 

 

Aβ Possibly 
Useful [82] 

Possibly 
Useful [47-
49] 

Unknown Possibly 
Useful if 
used in 
conjunction 
with other 
protein(s), 
e.g. tau, 
fractalkine 
[47-49]. 

 

Tau Possibly 
Useful [82] 

Possibly 
Useful 
[47,48] 

Possibly useful if 
used in a p-tau/tau 
ratio with α-
synuclein [41] 

Possibly 
useful if 
used in 
conjunction 
with Aβ 
[47,49,50] 

 

Uric Acid Unknown Possibly 
Useful [51] 

Unknown Possibly 
Useful [54] 

 

Glutathione Unknown Possibly 
Useful [51]  

Unknown Unknown  
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Chapter 3: 

MITOCHONDRIAL THERAPEUTICS IN PARKINSON’S DISEASE 

 

 

 

This chapter is slightly modified from the following co-authored publication which is available through the 

publisher listed on the National Center for Biotechnology Information’s PubMed Database 

(http://www.ncbi.nlm.nih.gov/pubmed/) 

 

Hoekstra, J.G., Montine, K.S., Zhang. J., Montine, T.J. (2011). Mitochondrial therapeutics in Alzheimer’s 

disease and Parkinson’s disease. Alzheimers Res Ther. 3(3):21. PMID: 21722346. 
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Overview of mitochondrial function 

Mitochondria are organelles serving a wide variety of actions critical to cellular function, several of 

which are of particular importance to neuronal survival. The primary function of mitochondria is to produce 

energy in the form of ATP via oxidative phosphorylation, where electrons are transported down the 

electron transport chain (ETC) while generating a proton gradient. This drives ATP synthase [1]. 

Mitochondrial function is particularly important to the central nervous system (CNS) since the CNS uses 

20% of the body’s resting metabolic energy, with 95% of that energy coming in the form of ATP [1]. 

Neuronal ATP is essential to the function of the Na+/K+ and Ca2+ ATPases that maintain ion gradients 

[1,2]. Similarly, mitochondria play a prominent role in Ca2+ buffering by sequestering Ca2+ using ion 

transporters [1-3]. These actions of mitochondria are especially important to neurotransmission as well as 

synapse formation and remodeling [3-5]. However, critical roles for mitochondria go beyond ATP 

production since mitochondria also control cell signaling pathways and cell survival via apoptosis 

regulation [6]. Mitochondria are now also understood to be dynamic structures that undergo fission and 

fusion, and the relationships between mitochondrial dynamics and other ‘classical’ functions are a matter 

of intense investigation. For these reasons, mitochondria are commonly implicated in neurodegenerative 

diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).  

Mitochondrial Involvement in Parkinson’s Disease 

Mitochondrial dysfunction has been repeatedly associated with PD. Complex I of the ETC is 

decreased in the SNpc, as well as other tissues[7-9], of PD patients when compared to controls, leading 

to excessive ROS formation [7]. Oxidative damage to lipids, proteins, and nucleic acids is also elevated in 

PD brain tissue [10-12]. Toxicants recapitulating most aspects of human PD also implicate mitochondrial 

dysfunction in PD pathogenesis, particularly through complex I inhibition. These toxicants include 1-

Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone [13]. MPTP was discovered when a 

drug abuser who synthesized and injected himself with MPTP-contaminated meperidine analog 

presented with parkinsonism; this patient later showed damage to the DA system in the SNpc at autopsy 

[14]. Other drug abusers subsequently presented with clinical symptoms of PD due to MPTP exposure 

[13]. MPTP is metabolized to 1-methy-4-penylpyridium (MPP+), which enters DA neurons via the DA 

transporter. MPP+ binds to and inhibits complex I of the ETC, leading to DA neuron death and PD 



	
  

	
  

29	
  

symptoms [13]. Rotenone also acts by inhibiting complex I. Although rotenone is highly lipophilic and can 

cross the plasma membrane, it causes selective DA neuron degeneration with elevated oxidative stress, 

indicating that DA neurons may be particularly susceptible to mitochondrial dysfunction [15]. 

Studies on two genes that are mutated in inherited forms of PD, PINK1 and parkin further 

implicate mitochondria in PD. In Drosophila, ablation of either gene causes flight muscle degeneration, 

and mitochondria appear enlarged and swollen with fragmented christae [16-18]. Whereas parkin 

expression in a PINK1 knockout reverses this phenotype, PINK1 expression in a parkin knockout does 

not, indicating that parkin acts downstream of PINK1 to affect mitochondria [16-18]. DA neuron 

degeneration in PINK1 and parkin deficient Drosophila also has been observed [18,19] along with 

sensitivity to compounds that model PD and generate ROS [16]. One hypothesis is that loss of these PD 

related genes that help regulate mitochondrial function leads to increased sensitivity to neurotoxic insults 

and DA neuron death. 

Mitochondria as Targets of Therapy and Treatment in PD 

A majority of current PD treatments (Table 3) do not target the mitochondria directly, although 

mitochondrial protection is more common in PD than AD. The current gold standard to restore DA 

signaling is the DA precursor levodopa (L-DOPA), which crosses the blood brain barrier, combined with a 

peripheral decarboxylase inhibitor such as carbidopa, which minimizes the gastrointestinal and 

cardiovascular side effects of DA [20,21]. Treatment may also include a selective inhibitor of monoamine 

oxidase B (MAO-B) or catechol-O-methyltransferase (COMT) to decrease DA metabolism [20,21]. DA 

agonists also have been used but appear less effective than L-DOPA [20,21]. Unfortunately, the 

effectiveness of L-DOPA therapy often is limited and can be associated with debilitating side effects [21]. 

L-DOPA has been hypothesized to enhance neurodegeneration [21], since DA metabolism by MAO-B 

generates ROS [22]. In theory, this oxidative stress would cause mitochondrial dysfunction and further 

ROS production. MAO-B inhibitors may decrease the amount of oxidative damage potentially caused by 

DA metabolism [20,21]; however, data from some clinical investigations do not support this hypothesis 

[23]. Regulation of Ca2+ influx shows a slight effect in alleviating dyskinesia in PD patients [20,21]. While 

regulation of intracellular Ca2+ to prevent ROS production is a potential therapeutic target in PD, NMDA 

receptor antagonists that block Ca2+ entry have shown minimal benefits in treating PD [20,21]. A more 
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promising strategy may be to supplement mitochondria with molecules that improve their function. In this 

case, not only would ATP production improve, but ROS production by mitochondria might be decreased 

[20,21,24-26]. Coenzyme Q10 and creatine both may act through such a mechanism, with Coenzyme Q10 

improving electron flow and creatine improving high-energy phosphate reservoirs [20,21,24-26]. Any 

approach that suppresses ROS production might also impact Lewy body formation since ROS can modify 

α-synuclein, increasing its tendency to aggregate and possibly form Lewy bodies [27,28]. 

Mitochondrial Dynamics: New direction of mitochondrial research and potential therapeutics 

Although mitochondrial dysfunction is extensively associated with PD, direct effective 

mitochondrial therapy is very limited. A new area of mitochondrial research known as mitochondrial 

dynamics may provide new opportunities for mitochondrial therapies in PD. Accumulating evidence 

suggests that mitochondrial morphology and transport can be regulated by fission and fusion, with fusion 

regulated primarily by mitofusins (Mfn) 1 and 2 and optic atrophy 1 (OPA1), and fission regulated 

primarily by Fis1 and dynamin-like protein 1 (Dlp1, also known as Drp1) [29]. Several observations 

support the involvement of mitochondrial dynamics in neurodegeneration. Mutations in Mfn2 lead to 

Charcot-Marie-Tooth disease and peripheral neuropathy, and mutations in OPA1 to autosomal dominant 

optic atrophy and loss of optic nerve fibers [3,29,30]. More recently, Dlp1, Mfn1, Mfn2, and OPA1 levels 

were shown to be decreased in brain tissue from AD patients while Fis1 levels were increased [5]. When 

these changes were mimicked in primary neurons using RNAi (RNA interference) or gene 

overexpression, mitochondria were decreased in neurites and dendritic spines, indicating such changes 

may play a role in AD [5]. This study also showed that Dlp1 overexpression in primary cultures protected 

neurons against neurotoxic insult, suggesting that increased fusion may be neuroprotective strategy [5]. 

In a separate study, Dlp1 was genetically ablated in Drosophila with a resulting loss of synaptic 

mitochondria, perhaps due to defects in axonal transport [31], an aspect of neuronal function affected in 

neurodegenerative diseases [32]. Using the neuromuscular junction (NMJ) to study synaptic actions of 

Dlp1, the same group observed defects in Ca2+ buffering and neurotransmission during prolonged 

stimulation of the NMJ [31]. 

Several studies have made strong connections between altered mitochondrial dynamics and PD. 

LRRK2 has been shown to interact with Dlp1 and can regulate mitochondrial morphology by recruiting it 
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to the mitochondria[33]. Knockout of Mfn2 in DAergic neurons results in their degeneration as a result of 

impaired mitochondrial transport[34]. Defects in transport have also been associated with PD, as DJ-1 

and PINK1 have been shown to regulate the transport of mitochondria as well as rates of mitochondrial 

fusion and fission, which is associated with neuronal death[35-37]. Mitochondrial defects associated with 

PINK1 and Parkin knockout have been described above. Overexpression of Dlp1 or decreased 

expression of Mfn2 or OPA1 reversed the observed effects on mitochondrial size and shape and on 

muscle degeneration, showing that increased fission or decreased fusion may be protective [17]. Such 

effects have been extended to the mammalian system as knockdown of PINK1 in hippocampal neurons 

results in elongation of the mitochondria, which is rescued by Dlp1[38]. Although a relatively recent area 

of research, these results suggest that loss of fission or increased fusion could possibly play a role in AD 

or PD. A proposed connection of mitochondrial fission and fusion to AD and PD is diagrammed in Figure 

2. Mitochondrial dynamics also plays a role in mitophagy (elimination of dysfunctional mitochondria), 

making dysfunction of this process critical towards maintaining neuronal health [39]. Of the above-

discussed proteins that regulate mitochondrial fission and fusion, Dlp1 is of particular interest in PD 

pathogenesis as over expression of Dlp1 rescues observed mitochondrial phenotypes and more 

importantly, has been reported to be decreased in the mitochondrial fraction from the SNpc of PD 

patients[40]. This indicates that regulating mitochondrial dynamics, particularly through Dlp1, potentially 

plays a role in PD pathogenesis and represents new target for therapy. 
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Table 3. Current treatments for Parkinson’s disease	
  

Therapy Results Mitochondrial 
Involvement? 

Levadopa and DA-agonists Improves PD symptoms May improve mitochondrial 
function in neurons by 
restoring nigrostriatal 
signaling  

MAO-B Inhibitors Blocks oxidative 
deamination 

May improve mitochondrial 
function in neurons targeted 
by DA; May decrease ROS 
produced by mitochondria 

COMT Inhibitors Blocks catechol metabolism May improve mitochondrial 
function in neurons by 
restoring nigrostriatal 
signaling 

Anticholinergic drugs Most effective in alleviating 
tremor and rigidity 

May improve mitochondrial 
function in striatal neurons 
by balancing the DA and 
acetylcholine 

NMDA receptor antagonists Can suppress dyskinesia May decrease amount of 
ROS produced due to 
excessive intracellular Ca2+	
  

Coenzyme Q10 Less disability develops in 
patients given Coenzyme 
Q10 compared to placebo in 
one study [26] 

May increase electron flow 
in ETC and decrease ROS 
production 

Creatine Not rejected as futile in a 
Phase II futility clinical trial 
[25] 

May increase high energy 
phosphate pool and 
decrease ROS production 
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Figure	
  2.	
  Synaptic	
  function	
  is	
  dependent	
  on	
  proper	
  trafficking	
  of	
  mitochondria	
  to	
  
synapses.	
  Mitochondrial	
  trafficking	
  down	
  a	
  neurite	
  to	
  a	
  synapse	
  can	
  be	
  promoted	
  by	
  
increased	
  fission	
  (Drp1	
  or	
  Fis1)	
  or	
  decreased	
  fusion	
  (Mfn1/2	
  or	
  OPA1).	
  	
  Alterations	
  
in	
  the	
  levels	
  of	
  these	
  proteins	
  can	
  lead	
  to	
  synaptic	
  and	
  mitochondrial	
  dysfunction,	
  
neurodegeneration,	
  and	
  AD/PD	
  pathogenesis.	
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Chapter 4:  

A ROLE FOR ASTROCYTES IN MITOCHONDRIAL-MEDIATED PD MECHANISMS 
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Astrocyte Implications in PD 

As the primary features of PD are typically attributed to neuronal death, a significant portion of 

research into mechanisms of PD pathogenesis have focused neurons, largely ignoring the potential 

contributions of other cell types, such as astrocytes. However, a number of lines of evidence implicate an 

astrocytic contribution to PD pathology. Immunohistochemical studies on human postmortem samples 

show that the number of astrocytes, as marked by glial fibrillary acidic protein (GFAP), is increased in the 

SNpc of PD patients when compared to healthy controls[1,2]. Similarly, aggregates of α-synuclein have 

been observed in astrocytes in the SNpc of PD patients and the number of astrocytes with these 

aggregates correlates with disease stage and may parallel the appearance of neuronal inclusions[3,4]. 

Other studies show that DJ-1, a gene that causes a familial form of PD, is highly expressed in astrocytes, 

and is increased in astrocytes in PD[5-7]. 

The above mentioned changes in astrocytes indicate they may be involved in the process of 

DAergic neuron death in PD. Experimental studies utilizing toxicants, particularly MPTP and 6-

hydroxydopamine (6-OHDA), have provided evidence that this may in fact be the case. Astrocytes 

convert MPTP into MPP+[8,9], which leads to specific death of DAergic neurons in the SNpc, and clinical 

PD through the mechanisms described in detail in Chapter 3. Autopsies performed on patients exposed 

to MPTP showed an increase in GFAP positive cells in SNpc[10], similar to what is observed in PD. Loss 

of DAergic neurons and increased astrocytes also occur in MPTP and 6-OHDA PD models, with 

sustained astrocyte response even after a majority of DAergic neurons have been lost[11-13]. Chemical 

ablation of astrocytes at the time of MPTP administration reduces the loss of DAerginc neurons[14], while 

blocking MPP+ uptake by DAergic neurons prevents the observed astrocyte response[13]. This indicates 

astrocytes respond to damage to DAergic neurons and supports the concept that astrocytes play a 

contributing role in the loss of DAergic neurons during the pathogenesis of PD. 

Additional studies on genes implicated in PD pathogenesis show that astrocytes can be adversely 

affected and result in neuron death. α-synuclein can be transferred from neurons to astrocytes, which 

results in the production of cytokines and chemokines[15]. Further, increased expression of α-synuclein in 

astrocytes impairs their function[16], which may be due to impaired astrocyte mitochondrial Ca2+ 

storage[17]. The observed deficits in astrocyte function commonly result in loss of neurons or impaired 
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ability of astrocytes to support neuronal growth[16,17]. Astrocytes, therefore, may contribute to DAergic 

neuron death in PD through production of compounds that are neurotoxic or through impaired neuron 

protection and support (discussed below). 

The Role of Astrocytes in Supporting Neurons 

Astrocytes play a critically important role in supporting neuronal function and survival, which 

occurs through several mechanisms. One such mechanism is through protection of neurons from 

oxidative damage. Astrocytes express a greater number of antioxidant genes compared to neurons, 

several of which are up-regulated in the SNpc in PD[18,19]. Indeed, the presence of astrocytes is 

sufficient to diminish the loss of neurons when stressed with ROS generating compounds[20,21]. 

Glutathione (GSH), an anti-oxidant molecule, is particularly important. The level of GSH is higher in 

astrocytes than it is in neurons[22,23] and is decreased in the SNpc in PD[24]. GSH is released by 

astrocytes to the extracellular space where it can remain or be utilized by neurons to increase their GSH 

content[25-27]. The importance of this is underscored by the fact that depletion of GSH abolishes the 

ability of astrocytes to protect neurons from toxic insults[28,29]. Dysfunction of astrocytes could therefore 

lead to impaired protection against oxidative stress. 

Aside from simple protection against oxidative stress, astrocytes can also actively promote the 

health and survival of neurons through production of trophic factors. Specifically, glial cell line derived 

neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and mesencephallic astrocyte-

derived neurotrophic factor (MANF), are produced by astrocytes and promote survival and differentiation 

of DAergic neurons in vitro[30-32]. Additionally, administration of each protects against loss of DAergic 

neurons and reverses behavioral deficits in various models of PD[33-35], some of which used astrocytes 

as a means to deliver these factors to the brain[36,37]. Given the importance of astrocyte release of 

trophic factors in the survival of DAergic neurons, dysfunction of astrocytes could lead to impaired 

regulation, and result in loss of DAergic neurons. 

Perhaps the most important role astrocytes serve is their ability to regulate neurotransmitters. In 

particular, astrocytes play a prominent role in taking up excessive amounts of glutamate, an excitatory 

amino acid, from the extracellular space. When glutamate binds to N-methyl-D-aspartate (NMDA) 

receptors on the postsynaptic terminal of a synapse, it induces an influx of Ca2+. While this normally 
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occurs during neurotransmission, excessive stimulation of NMDA receptors results in elevated 

intracellular Ca2+ that can lead to neuronal death and damage in a process termed excitotoxicity (the 

importance of this is discussed below)[38]. Astrocytes have the ability to take up glutamate from the 

extracellular space using the glutamate transporter (GLT-1) and glutamate aspartate transporter 

(GLAST)[39-41]. Glutamate uptake through GLT-1 and GLAST occurs in a Na+-dependent manner, which 

is regulated by the Na+/K+ ATPase[39,41]. Dysfunction of astrocyte mediated glutamate management 

may therefore be a mechanism through which DAergic neurons die in PD. Such dysfunction may be 

related to changes in mitochondrial dynamics as Dlp1 has previously been identified as a protein that 

potentially interacts with GLT-1[42]. As astrocytes represent the largest portion of cells in the brain, 

particularly the SNpc of PD patients, the above-mentioned decrease in Dlp1 in PD (Chapter 2) may be 

driven by changes in expression in astrocytes and could affect astrocyte glutamate regulation. This could 

alter astrocyte glutamate regulation and result in excitotoxic neuronal death. 

Ca2+ Signaling in Astrocytes 

 The above-mentioned functions help to highlight the primary role of astrocytes, which is to 

maintain homeostasis and support proper neurotransmission within the brain.  Astrocytes rely on Ca2+ 

signaling as a means to regulate their response towards maintaining their environment. These signals 

proceed primarily through the activation of a variety of metabotropic receptors that have been identified in 

astrocytes. Such activation results in the generation of IP3, which induces the release of Ca2+ from the 

endoplasmic reticulum (ER). This release causes the entry of Ca2+ from the extracellular space in a 

process termed store operated Ca2+ entry (SOCE)[43]. These signals can be regulated through refilling 

the ER, removal of Ca2+ to the extracellular space, or buffering by the mitochondria[43].  

 Astrocytic Ca2+ signals are critically important towards neuronal functioning, as they play a large 

role in the regulation of synaptic transmission. Astrocytes have been shown to release a variety of 

neurotransmitters, particularly glutamate[44,45], through a process termed gliotransmission. Ca2+ 

regulates this process through promoting vesicle fusion with the plasma membrane[46-48]. Additionally, 

activation of metabotropic receptors regulates the expression of astrocytic glutamate transporters and 

promotes the clearance of glutamate [49,50]. Astrocyte metabortopic receptor activation can occur in 

response to neuronal release of neurotransmitters[44,51], indicating astrocytes act as a hub for regulating 
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neurotransmission. Utilizing Ca2+, astrocytes sense and interpret neuronal activity, and can then shape 

the signals sent during neurotransmission by taking up or releasing different molecules that act at the 

postsynaptic terminal. Such processes may have a wide reaching affect, as astrocytic Ca2+ waves have 

been shown to propagate through gap junctions, over long distances[52]. Mitochondria play an important 

role in this process as exocytosis of glutamate is dependent upon mitochondrial handling of Ca2+[53]. 

Disturbances in astrocytic mitochondria, potentially due to decreased Dlp1, could negatively impact the 

regulation of glutamate, and result in excitotoxicity (discussed below). 

Excitotoxicity in PD 

Excitotoxicity has been implicated in PD pathogenesis. The depletion of DA in the striatum leads 

to elevated activity of glutamatergic neurons in the subthalamic nucleus, which innervate the SNpc. This 

results in excessive transmission of glutamate onto DAergic neurons[54], which could result in 

excitotoxicity. Several studies utilizing MPTP or 6-OHDA have implicated excitotoxicity in PD 

pathogenesis by showing that extracellular glutamate is increased in the setting of DAergic neuron 

death[55] and the administration of glutamate receptor antagonists prevent the loss of neurons[55-57]. 

These models further implicate astrocyte dysfunction in PD pathogenesis as expression of the astrocytic 

glutamate transporters are decreased[58,59]. Therefore, death of DAergic neurons could result in part 

from excitotoxicity due to impaired astrocyte regulation of glutamate. 

Summary 

The effects of astrocyte dysfunction could be particularly relevant to PD, as the primary 

mechanism through which glutamate is taken up by astrocytes is heavily dependent upon mitochondrial 

function[60]. Beyond this, impaired rates of fission and fusion as well as decreased mitochondrial 

transport in astrocytes impairs the ability of astrocytes to protect neurons[20,61]. If the aforementioned 

decrease in Dlp1 in PD patients indeed occurs as part of the disease process in PD, mitochondrial 

dynamics could be adversely affected and impair astrocyte function in protecting against excitotoxicity. 

This would give tremendous insight into a mechanism of PD pathogenesis that could have impacts into 

the development of strategies for treatments of PD. 
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Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder clinically characterized by both motor 

and non-motor symptoms[1-3]. The loss of dopaminergic (DA) neurons in the substantia nigra pars 

compacta (SNpc) is the primary cause of the motor deficits[4], whereas non-motor symptoms are the 

result of dysfunction in multiple brain regions[2,3]. Until recently, most investigations have focused on the 

neuronal pathogenesis. However, accumulating evidence shows that astrocytes, which have multiple 

neuroprotective roles[5-9], clearly contribute to neuronal loss in PD[10,11]. 

Decreased respiratory chain activity[12] and increased oxidative damage in the SNpc[13-15] are 

felt to be complicit in neuronal demise in PD. While several proteins regulate these and other 

mitochondrial functions[16], the mitochondrial fission promoting protein dynamin like protein 1 (Dlp1, also 

known as Drp1) is of particular interest because the over-expression of Dlp1 rescues mitochondria from 

abnormalities associated with PINK1 and Parkin, two proteins implicated in PD[17,18]. In fact, we have 

shown by mass spectrometry that Dlp1 expression is decreased in mitochondria harvested from PD brain 

tissue, further suggesting Dlp1’s role in PD[19]. However, the cellular origin and consequences of 

decreased Dlp1 expression remains to be fully elucidated. 

The current study focuses on astrocytes because a recent investigation found that Dlp1 

potentially interacts with the glutamate transporter GLT-1[20], which is specifically expressed by 

astrocytes[6]. In theory, disrupting astrocyte regulation of extracellular glutamate (also a function of the 

glutamate aspartate transporter [GLAST][9]) could result in excessive extracellular glutamate. This 

excess glutamate could prolong the opening of neuronal N-methyl D-aspartate (NMDA) receptors[21], 

resulting in excessive Ca2+ entry, and, ultimately, neuronal death. Indeed, this phenomenon of 

excitotoxicity has been implicated in PD and animal models of PD[22-26] as well as in other 

neurodegenerative diseases.  

To test the hypothesis that decreased astrocytic Dlp1 expression contributes to 

neurodegeneration in PD, we measured astrocytic and neuronal Dlp1 expression (SNpc and cortex) in 

both PD and healthy control patients and explored the molecular mechanisms related to astrocytic 

dysfunction resulting from decreased Dlp1 expression.  
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RESULTS  

Dlp1 Expression is Decreased in Astrocytes and Neurons from PD Patients 

In our prior study using mass spectrometry and pooled SNpc samples, we found that PD patients 

had lower Dlp1 expression compared to healthy controls[19]. The initial goal of our current study was to 

demonstrate our previous findings in individual PD cases with a different technology. Therefore, the SNpc 

mitochondrial fraction from 4 PD and 4 control patients was examined via western blot with an anti-Dlp1 

antibody. In agreement with our previous work[19], Dlp1 protein expression was significantly lower in PD 

patients (Fig. 3A, B). 

 The astrocytic Dlp1 expression levels were measured in the SNpc of PD and control patients by 

immunofluorescence. We found an obvious decrease of Dlp1 expression in PD patients (Fig. 3C, D). 

Additionally, neuronal Dlp1 expression was measured in DAergic (Fig. 4A, B; Information for human 

tissue are in Supplemental Table 4) and non-DAergic neurons (Fig.4C, D) in the SNpc of PD patients and 

controls. Again, Dlp1 immunofluorescence was significantly decreased in both DAergic and non-DAergic 

neurons (Fig. 4A-D). Next, we asked whether the observed decrease in Dlp1 expression also occurred in 

histologically normal cortex from PD patients (i.e. PD patients at a relatively early stage, without apparent 

cortical neurodegeneration). Remarkably, Dlp1 expression was decreased in both cell types (Fig. 5A-D).  

 

Dlp1 Affects Astrocytic Mitochondrial Morphology and Localization 

To understand the biological effects of decreased Dlp1 expression in astrocytes, we performed 

Dlp1 knockdown by siRNA in primary cortical rat astrocytes (Fig. 6B inset). The astrocytes co-transfected 

with 488-tagged siRNA and a Mito-DsRed2 plasmid were stained for GFAP. The gross morphological 

changes were readily observed and primarily characterized by an elongated, fused mitochondrial network 

(Fig. 6A). The mitochondria located in the astrocyte processes have a clear morphology. Therefore, 

astrocyte processes were utilized to quantitatively compare morphological and localization differences 

after Dlp1 knockdown. The mitochondria in astrocytes transfected with Dlp1 siRNA were significantly 
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longer than the mitochondria in astrocytes transfected with non-specific (control) siRNA (Fig. 6A, B). 

Additionally, the area and perimeter of mitochondria were significantly larger in astrocytes after Dlp1 

knockdown (Fig. 6A, C, D). Furthermore, there were fewer mitochondria within astrocyte processes after 

Dlp1 knockdown (Fig. 6E), indicating that knockdown of Dlp1 resulted in extensive fusion of mitochondria. 

Live cell imaging was used to measure net anterograde and retrograde mitochondrial movement to 

determine if Dlp1 knockdown altered mitochondrial motility (Fig. 7A). In both directions, the net distance 

traveled by mitochondria was greater in astrocytes transfected with control siRNA compared to astrocytes 

transfected with Dlp1 siRNA (Fig. 7B, C; Supplemental Movies 1 and 2). This evidence suggests that 

Dlp1 plays a significant role in astrocytic regulation of the morphology, localization, and motility of their 

mitochondria. 

 

 

Astrocytic Dlp1 Protects Neurons from Excessive Glutamate 

A co-culture system of rat astrocytes (with or without Dlp1 siRNA) and neurons from the ventral 

mesencephalon (VM) was utilized to determine if decreased astrocytic Dlp1 impairs the astrocytic 

protection of neurons from excitotoxic excess glutamate. When DAergic neurons were co-cultured with 

astrocytes transfected with control siRNA, 10µM glutamate did not affect DAergic neurite length or the 

number of branch points (highlighted by tyrosine hydroxylase [TH+]) (Fig. 8A, C, D). Conversely, when 

DAergic neurons were co-cultured with astrocytes transfected with Dlp1 siRNA (decreased Dlp1 

expression), the addition of 10 µM glutamate decreased DAergic neurite length and the number of branch 

points. The administration of the NMDA receptor antagonist MK-801 at the time of glutamate treatment 

prevented these morphologic changes (Fig. 8A, C, D). This evidence indicates that astrocytic Dlp1 

promotes the protection of DAergic neurons from glutamate excitotoxicity.  

Similar measurements were performed on non-DAergic MAP2-positive neurons to assess if this 

effect was specific to TH+ neurons. As was the case with TH+ neurons, treatment with 10 µM glutamate 

did not affect neurite length or branch point number of non-DAergic neurons in co-culture with astrocytes 

transfected with control siRNA (Fig. 8B-D). However, in non-DAergic neurons co-cultured with astrocytes 
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transfected with Dlp1 siRNA, the addition of 10 µM of glutamate resulted in decreased neurite length and 

branch point number. Again, this effect could be prevented by the addition of MK-801 (Fig. 8B-D). These 

observations suggest that decreased astrocytic Dlp1 expression impairs their ability to protect 

neighboring neurons from the harmful effects of excess glutamate. Astrocytic neuronal protection should 

be dependent upon proper function of the glutamate transport system. Therefore, we assessed the 

uptake of H3-D-aspartate to investigate whether the loss of astrocytic Dlp1 impaired the glutamate 

transport system. The cultures with astrocytes transfected with Dlp1 siRNA took up less H3-D-aspartate 

than cultures with astrocytes treated with control siRNA (Fig. 8E). This result supports the hypothesis that 

astrocytic glutamate transport is impaired by decreased Dlp1 expression. 

Because Dlp1 is reported to interact with GLT-1[20], we investigated whether decreased Dlp1 

expression alters the expression and/or localization of GLT-1. A western blot analysis of astrocytic GLT-1 

showed no change in protein expression when transfected with Dlp1 siRNA (Fig. 9A). We 

immunofluorescently stained GLT-1 in astrocytes transfected with Dlp1 siRNA to observe astrocytic GLT-

1 localization. Again, the localization of GLT-1 did not appear to be affected by Dlp1 expression (Fig. 9B). 

In similar experiments, we examined the other major astrocytic glutamate transporter, GLAST. Similarly, 

Dlp1 siRNA did not interfere with GLAST expression or localization (Fig. 9C, D). Therefore, astrocytic 

Dlp1 knockdown altered the glutamate transport system, but this effect did not occur through changes in 

the expression or localization of the major astrocytic glutamate transporters. 

 

Dlp1 Affects Astrocytic Regulation of Calcium Entry  

Cultured astrocytes were imaged in the presence of the Ca2+ sensitive dye Oregon Green BAPTA 

to determine if decreased Dlp1 alters an astrocyte's intracellular Ca2+ response to extracellular glutamate. 

Astrocyte responses to glutamate could be categorized into four general responses. Under control 

conditions, a minority of cells responded with a single, large increase in intracellular Ca2+, which could be 

either prolonged (taking longer than 60 seconds to return to baseline) or attenuated (taking 60 seconds or 

less to return to baseline). We categorized these cell responses as type 1 and 2, respectively (Fig. 10A). 

The remaining cells responded with intracellular Ca2+ oscillations, and we categorized these cell 
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responses by oscillation frequency. Type 3 responses were characterized by less frequent oscillations (< 

0.19 Hz), and type 4 responses were characterized by more frequent oscillations (≥ 0.19 Hz) (Fig. 5A). 

Control astrocytes demonstrated mostly type 3 and 4 responses, while astrocytes with decreased Dlp1 

had fewer type 3 and 4 responses and a significantly greater percentage of type 1 responses (Fig. 10B). 

These results indicate that astrocytic Dlp1 knockdown results in elevated intracellular Ca2+ in response to 

glutamate. 

Astrocyte responses to glutamate are initiated by an intracellular release of Ca2+ from the 

endoplasmic reticulum, which precedes Ca2+-induced Ca2+ entry from the extracellular space in a process 

referred to as store-operated calcium entry (SOCE)[27]. Additionally, the binding of glutamate to 

ionotropic receptors allows Ca2+ influx from the extracellular space[27]. Therefore, the Ca2+ response 

could be driven by intracellular and/or extracellular Ca2+ in astrocytes with decreased Dlp1 expression. To 

determine how extracellular Ca2+ contributes to the four aforementioned calcium responses, glutamate-

induced Ca2+ responses were observed in the presence of the calcium chelator EGTA. When astrocytes 

were bathed with 2mM EGTA, no type 1 responses were observed (Fig. 10b). This result suggests that 

extracellular Ca2+ is necessary for the extended Ca2+ entry observed in type 1 responses. However, the 

pattern of Ca2+ waves was not different between astrocytes transfected with control or Dlp1 siRNA. 

 

Decreased Dlp1 Impairs Mitochondrial Buffering of Extracellular Ca2+  

It is well-known that mitochondria buffer intracellular Ca2+ [28]. Given that the morphology and 

distribution of mitochondria are altered in astrocytes after Dlp1 knockdown, the Ca2+ buffering capacity of 

mitochondria could be limited when challenged with increased extracellular glutamate. Rhod-2 AM, a 

fluorometric dye sensitive to mitochondrial Ca2+, was used to assess the mitochondrial buffering capacity 

of astrocytes transfected with control or Dlp1 siRNA in response to glutamate. Dlp1 siRNA transfected 

astrocytes had lower mitochondrial peak Ca2+ amplitudes than those of control siRNA transfected 

astrocytes (Fig. 11A, B). Therefore, knockdown of astrocytic Dlp1 impairs mitochondrial Ca2+ buffering in 

response to glutamate. Additionally, the differences observed in cellular Ca2+ responses to glutamate 

were mediated by the regulation of extracellular Ca2+. Therefore, mitochondrial buffering of glutamate 



	
  

	
  

51	
  

induced extracellular Ca2+ entry probably plays a fundamental role in regulating overall cellular Ca2+ 

responses. 
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Figure 3. Dlp1 expression is decreased in the SNpc of PD patients. (A) Western blot and (B) 
densitometry of the mitochondrial enriched fraction of the SNpc from control patients (N=4) 
and PD patients (N=4), showing decreased Dlp1 in mitochondria-enriched tissue (The units 
for molecular weight markers on the right of the western blot are kDa; *p<0.05 by two sided 
unpaired t-test). (C) Fluorescent staining of Dlp1 (Green) and GFAP (Red) in the SNpc of 
control patients and PD patients. (D) Quantification of Dlp1 intensity in astrocytes from the 
SNpc of control (N=6 cases, 109 cells) and PD patients (N=6 cases, 118 cells). Scale bar 
represents 20 µm (***p<0.001 by two sided unpaired t-test). Data are presented as mean +/- 
s.e.m.	
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Patient Details 
Case Diagnosis Region Age Sex PMI 

(Hours:Minutes) 
Braak 
Score 

1 Ctrl SNpc 55 M 9:30 NR 
2 Ctrl SNpc 70 F 6:00 0 
3 Ctrl SNpc 79 M 7:50 0 
4 Ctrl SNpc 78 M 4:00 0 
5 Ctrl SNpc 79 F 2:30 II 
6 Ctrl SNpc 81 M 7:30 I 
7 PD SNpc 57 M 17:45 Mild 
8 PD SNpc 82 F 11:00 I 
9 PD SNpc 81 M 6:30 NR 
10 PD SNpc 80 M 6:30 I 
11 PD SNpc 58 F >24 0 
12 PD SNpc 73 M 3:50 0 
13 Ctrl FC 78 M 4:00 0 
14 Ctrl FC 78 M 6:00 II 
15 Ctrl FC 81 M 5:30 I 
16 Ctrl FC 81 M 6:00 II 
17 Ctrl FC 82 F 3:30 III 
18 Ctrl FC 91 F 11:00 III 
19 PD FC 73 M 3:50 0 
20 PD FC 78 M 5:00 I 
21 PD FC 81 M 6:30 NR 
22 PD FC 82 F 11:00 I 
23 PD FC 91 F 4:10 V 
24 PD FC 89 F <12 V 

Table 4. Table of clinical data for patients and controls from study in SNpc and cortex. 
(Ctrl=control patient, PD=Parkinson’s disease patient, SNpc=substantia nigra pars compacta, 
FC=Frontal cortex, PMI=Post mortem interval 
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Figure 4. Dlp1 expression is decreased in neurons in the SNpc of PD patients. (A) 
Fluorescent staining of Dlp1 (Green) and TH (Red) in the SNpc of control and PD patients. (B) 
Quantification of Dlp1 intensity in DAergic neurons from SNpc of control (N=6 cases, 253 
cells) and PD patients (N=6 cases, 143 cells). (C) Fluorescent staining of Dlp1 and MAP2 
(Red) without neuromelanin in SNpc of control and PD patients. (D) Quantification of Dlp1 
intensity in non-DAergic neurons from control (N=6 cases, 185 cells) and PD patients (N=6 
cases, 175 cells). Scale bar represents 20 µm (***p<0.001 by two sided unpaired t-test). Data 
are presented as mean +/- s.e.m. 
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Figure 5. Dlp1 expression is decreased in neurons and astrocytes in the frontal cortex of 
PD patients. (A) Fluorescent staining of Dlp1 (Green) and MAP2 (Red) in frontal cortex of 
control and PD patients. (B) Quantification of Dlp1 intensity in neurons from control (N=6 
cases, 357 cells) and PD patients (N=6 cases, 385 cells). (C) Fluorescent staining of Dlp1 
and GFAP (Red) in frontal cortex from control and PD patients. (D) Quantification of Dlp1 
intensity in astrocytes from control (N=6 cases, 230 cells) and PD patients (N=6 cases, 229 
cells). Scale bar represents 20 µm (***p<0.001 by two sided unpaired t-test, Ctx=Cortex). 
Data are presented as mean +/- s.e.m. 
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Figure 6. Knockdown of Dlp1 in astrocytes results in elongation and interconnection of 
mitochondria. (A) Representative images of rat astrocytes transfected with non-specific (Ctrl) 
siRNA or siRNA targeting Dlp1, each labeled with a 488 tag, and a Mito-DsRed2 plasmid to 
observe mitochondria. Cells that were positively transfected with both siRNA and Mito-DsRed2 
were identified by the presence of green and red fluorescence. Western blot (b inset) confirming 
siRNA decreased Dlp1 expression. Length (B), area (C), perimeter (D), and density (E) of 
mitochondria from processes of transfected astrocytes (N=5 replicate;50-56 cells per group, 
***p<0.001 by two sided unpaired t-test). Data are presented as mean +/- s.e.m.	
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Figure 7. Knockdown of Dlp1 in astrocytes decreases mitochondrial movement. (A) 
Representative image for measurements of distance for astrocytes transfected with ctrl or 
Dlp1 siRNA. Arrows on the top panels mark beginning position and those on the bottom 
panels mark the ending position. (B) Net movement for mitochondria away from the cell 
body (*p<0.05 by two sided unpaired t-test). (C) Net movement for mitochondria towards 
the cell body (N=6 replicates; 28 cells per group **p<0.01 by two sided unpaired t-test). 
Scale bar represents 1 µm. Data are presented as mean +/- s.e.m.	
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Figure 8. Astrocytic Dlp1 decreases the ability of astrocytes to protect neurons against the 
effects of excess glutamate. (A) Representative images of DAergic neurons, indicated by TH 
staining, co-cultured with astrocytes transfected with ctrl (top row) or Dlp1 (bottom row) siRNA 
and treated as indicated. Neurons cultured with Dlp1 transfected astrocytes show shorter 
processes and fewer branch points after glutamate treatment. (B) Representative images of 
non-DAergic neurons, indicated by MAP2 staining cultured with astrocytes transfected and 
treated similar to (A). (C) Average neurite length for images in (A) (black and white bars) and 
(B) (striped bars; 3 replicates, 72-101 cells/group for TH+, ~650-800cells/group for MAP2. 
***p<0.001 by two way ANOVA with Bonferroni correction). (D) Average number of branch 
points for images in (A) (black and white bars) and (B) (striped bars; 3 replicates, **p<0.01, 
***p<0.001 by two way ANOVA with Bonferroni correction). Neurite lengths and number of 
branch points were normalized to the average value for the No Treatment Ctrl siRNA group for 
each replicate and each value was used for analysis. (E) Aspartate uptake was decreased in 
cultures similar to (A) and (B) when astocyte Dlp1 was decreased  (***p<0.001 by two sided 
unpaired t-test). Data are presented as mean +/- s.e.m. 
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Figure 9. Astrocytic Dlp1 does not affect GLT-1 or GLAST expression or localization. (A) Expression 
(arrow) and (B) localization of GLT-1 in astrocytes transfected with ctrl or Dlp1 siRNA (identified with 
488 tagged siRNA for localization). (C) Expression (arrow) and (D) localization of GLAST transfected 
with ctrl or Dlp1 siRNA (identified with 488 tagged siRNA for localization). 
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Figure 10. Intracellular Ca2+ is increased in response to glutamate when astrocytic Dlp1 is 
knocked down. (A) Representative images of the 4 primary astrocyte Ca2+ responses to 
glutamate. Traces represent intracellular Ca2+ signals from astrocytes treated with glutamate 
(black bar). For types 1 and 2 the Y scale bar represents 500 fluorescent units (FU) and the X 
scale bar represents 25 seconds. For type 3 the Y scale bar represents 50 FU and the X scale 
bar represents 25 seconds. For type 4 for the Y scale bar represents 30 FU and the X scale 
bar represents 20 seconds. (B) Quantification of percentages of cells showing each type of 
response to glutamate (N=5, *p<0.05 by two way ANOVA with Bonferroni correction) in normal 
conditions (black and white bars) or in the presence of extracellular EGTA (striped bars). The 
percentage of responses in each replicate was calculated and these values were used for 
analysis. Astrocytes transfected with ctrl siRNA tend to show response types 3 and 4 while 
those transfected with Dlp1 siRNA show a greater percentage of type 1 responses. No 
differences are observed between astrocytes with ctrl siRNA and Dlp1 siRNA when EGTA is 
present and type 1 responses are not observed. Data are presented as mean +/- s.e.m. 
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Figure 11. Mitochondrial Ca2+ buffering is impaired during glutamate stimulation when astrocyte 
Dlp1 is knocked down. (A) Representative images of the mitochondrial Ca2+ responses to 
glutamate in astrocytes transfected with ctrl (black line) or Dlp1 (grey line) siRNA. Traces 
represent mitochondrial Ca2+ signals relative to baseline from astrocytes treated with glutamate 
(black bar). Y scale bar represents 0.01 ∆F/F and the X scale bar represents 4 seconds. (B) 
Cumulative probability plot of the peak amplitude (∆F/F) of mitochondrial Ca2+ responses for 
astrocytes transfected with ctrl (N=7 replicates/473 cells) and Dlp1 siRNA (N=7 replicates/469 
cells; p<0.001 by Kolmogorov-Smirnov test). 
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Methods	
  
Isolation of Mitochondrial Fraction from Human Tissue 

Tissue from the SNpc of healthy control and PD patients was suspended in sucrose buffer (20 mM 

HEPES (pH 7.5), 320 mM sucrose, 1 mM PMSF, protease inhibitor cocktail (Sigma), 0.2 mM Na3VO3, 1 

mM NaF), homogenized with 10 strokes with a glass homogenizer, and centrifuged at 800 X g for 10 

minutes at 4°C. The resulting supernatant was further centrifuges at 10,000 X g for 15 minutes at 4°C to 

obtain a mitochondrial-enriched fraction. This was resuspended in a buffer composed of 6 M urea, 0.05% 

SDS, 5 mM EDTA, and 50 mM Tris-HCl (pH. 8.5). Protein concentrations were determined by BCA assay 

(Pierce). 

 

Western Blot Human Tissue 

For Western blot of Dlp1, after quantification of protein using BCA, 10µg of protein from the mitochondrial 

enriched fractions from human tissue were run on 10-20% SDS-PAGE at 100 volts for 10 minutes 

followed by 160 volts for 80 minutes. Proteins were transferred onto polyvinylidene difluoride membrane 

at 0.36 amps overnight at 4°C. After transfer, membrane was blocked in 5% milk for 1 hour at room 

temperature. The membrane was rocked overnight at 4°C with mouse anti Dlp1 (BD Biosciences) diluted 

1:2000 in blocking buffer. The membrane was washed twice for 5 minutes and twice for 10 minutes in 

TBS-T and then incubated in rabbit anti mouse HRP secondary antibody in 3% bovine serum albumin for 

1 hour at room temperature. The membranes were washed twice for 5 minutes and twice for 10 minutes 

in TBS-T and enhanced chemiluminescence (GE Lifesciences) was used to visualize protein bands. 

Intensity was measured using Quantity One (Biorad). The values for each sample were normalized to the 

average intensity of Dlp1 from control patients. 

 

Tissue Staining 

Fixed and paraffin embedded tissue sections from the midbrain of 6 healthy control patients and 6 PD 

patients, as well as sections from the frontal cortex of 6 healthy control and 6 PD patients were used to 

stain for Dlp1 in astrocytes and neurons. For each region, cases were matched for age, gender, and post 

mortem interval. Sections were deparaffinized by washing 4 times in xylene for 10 minutes each wash, 

followed by 2 washes in 50% xylene, 50% ethanol for 5 minutes each wash. Tissue was then rehydrated 
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by washing twice for 5 minutes in 100% ethanol, and once each for 3 minutes in 95%, 70%, and 50% 

ethanol. Tissue was then quickly rinsed in di-water, and washed twice for 5 minutes in PBS. Antigen 

retrieval was done in 10mM citric acid pH 6.0 by heating the tissue to boil and then maintaining it at high 

temperature for 15 minutes. Tissue was allowed to cool for 30 minutes at room temperature and was then 

washed with 50mM Tris Buffered Saline with 0.05% Tween-20 (TBS-T) 3 times for 10 minutes. Tissue 

was blocked in 5% normal goat serum, 2% bovine serum albumin, 0.1% Triton 100-X made in TBS-T 

overnight. The next day, the tissue was incubated with primary antibodies in blocking solution overnight 

(rabbit anti-Tyrosine Hydroxylase Pel-Freez Biologicals 1:500, mouse anti-Dlp1 BD Biosciences 1:100, 

rabbit anti-MAP2 Millipore 1:200, rabbit anti-GFAP DAKO 1:500). After incubation with primary antibodies, 

tissue was washed with 5% normal goat serum, 2% bovine serum albumin in TBS-T 3 times for 10 

minutes and were then incubated with secondary antibodies conjugated with alexa fluor 488 or 568 (Life 

Technologies), each diluted 1:500 in 5% normal goat serum, 2% bovine serum albumin in TBS-T 

overnight. After incubation with secondary antibodies, tissue was washed 3 times for 10 minutes in TBS-T 

followed by rocking for 30 minutes in 0.3% Sudan Black dissolved in 70% ethanol. Tissue was rinsed 

twice in 70% ethanol and washed 3 times for ten minutes in TBS-T. After the third wash, tissue was 

mounted with Vecatshield with DAPI dye (Vector Laboratories). 

 

Quantification of Dlp1 in Tissue 

Images of GFAP positive cells in the SNpc were taken at 100X using a Bio-Rad LS2000 laser scanning 

confocal microscope. Z-series images were captured for 15 randomly selected fields. For quantification, 

the middle sections, which had the largest area for the cell marker, were used to quantify Dlp1 intensity. 

ImageJ was used to quantify the intensity of Dlp1 intensity in each cell. For all other cells types and 

regions, images were taken at 60X using a Nikon Eclipse Ti microscope.  Z-series images were captured 

for 15 randomly selected fields for GFAP cells in the frontal cortex and 20 fields for neurons in each 

region. Images were deconvolved and Dlp1 intensity in each cell was measured using NIS-Elements 

Software (Nikon). Settings on the microscopes being used were kept the same for each cell type from 

each region. For quantification, each value was normalized to the average intensity of the control patients 

for the cell type and region being analyzed.  
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Astrocyte Cultures 

Cortical astrocytes from Sprague Dawley rats (postnatal days 0-1) were utilized and cultured into 75cm2 

vented flasks coated with Poly-D-lysine (5mg/200ml). Flasks were washed with PBS prior to plating 

astrocytes. Rats were decapitated, brains were remove, and placed into cold dissecting media (DMEM 

F12, Life Technologies). Cortices were isolated and meninges and blood vessels were removed. Tissue 

was digested in DMEM F12 with 0.5mM EDTA, 0.2 mg/ml L-cysteine, 15 units/mL papain (Worthington 

Biochemical), and 10µg/mL DNase (Worthington Biochemical) (10mLs digestion media/3 brains) for 30 

minutes at 37°C. Papain was dissolved by incubating solution at 37°C for 20 minutes followed by the 

addition of DNase and filtration through 0.22µm filter. After digestion, cortical tissue was washed 3 times 

with culture media (DMEM F12 supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin). After washing, cortices were triturated with a fire polished Pasteur pipette in 

10mLs of culture media by passing the tissue through the pipette 10 times. Tissue was allowed to settle 

and the supernatant was passed through a strainer. The remaining tissue was triturated again in 5mLs of 

culture media, passed through a cell strainer, and combined with the previous 10mLs of triturated cells. 

The resulting cells were seeded 2 brains/flask in culture media. The culture media was changed 24 hours 

later and astrocytes were maintained in culture media until they reach confluency (9-10 days), at which 

point they were plated for use. Cells were maintained at 37°C 5% CO2. 

 

Plating Astrocytes for Co-culture with Neurons 

Astrocytes to be used for co-culture with neurons were plated onto glass cover slips in a 24-well plated, 

coated with Poly-D-lysine and washed with PBS as described above. Flasks with astrocytes were shaken 

to removed microglia, washed once with PBS pH 7.4, and incubated with 0.25% trypsin EDTA at 37°C 

until cells fell off the flask, at which point and equal volume of culture media was added to each flask to 

halt the activity of the trypsin. Flasks were washed with the resulting mix of culture media and trypsin and 

collected into a 50mL conical tube. Cells were centrifuged at 3500 RPM for 10 minutes at room 

temperature. The resulting pellet was re-suspended 40 times in 2mL of penicillin/streptomycin free media. 

8mLs of the same media was added (final volume ~10mLs per flask used) and cells were counted using a 
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hemocytometer. 25X104 cells were plated onto the cover slips at a final volume of 500µl in 

penicillin/streptomycin free culture media (antibiotic free media was used as the plating media for the 

purposes of transfection as the reagents used are toxic in their presence, according to the manufacturer). 

Cultures were at least 95% positive for the astrocyte marker glial fibrilary acidic protein, meaning they 

were highly enriched for astrocytes. 

 

Plating Astrocytes for Western Blot Analysis 

Astrocytes to be used for any western blot analysis were plated into 6 well plates coated with Poly-D-

Lysine as described above. Astrocytes were harvested from flasks as described above. 10X105 cells were 

plated into each well at a final volume of 2mL in penicillin/streptomycin free culture media. 

 

Plating Astrocytes for Ca2+ and Mitochondrial Imaging 

Astrocytes to be used for intracellular or mitochondrial imaging were plated onto 35mm dished with a 

14mm glass cover slip in the center (MatTek), coated with Poly-D-lysine and washed with PBS as 

described above. Astrocytes were harvested from flasks and counted as described above. 25X104 cells 

were plated onto the cover slips in the plates at a final volume of 500µl in penicillin/streptomycin free 

culture media, returned to 37°C 5% CO2 for at least 2 hours to allow cells to adhere to the glass. After 2 

hours, 1.5 mLs of antibiotic free media was added so plates had a final volume of 2mLs (see plating 

astrocytes for co-cultures for why antibiotic free media was used).  

 

Transfections 

Transfections were performed with Lipofectamine 2000 according to manufacturer’s instructions with 

slight modifications. Non-specific (control) or Dlp1 siRNA were purchased from Qiagen. For astrocytes to 

be used for co-cultures, astrocytes were transfected with 2pmol siRNA per well. Specifically, for each 

well, 50µl of Opti-MEM was pipetted into 2 separate epindorf tubes. 1µl lipofectamine was pipetted into 

one tube while the siRNA was pipetted into the other. Tubes were incubated at room temperature for 5 

minutes, at which point the contents of the tube with the siRNA were transferred to the other tube and 

gently mixed. The mixture was allowed to sit at room temperature for 20 minutes, at which point it was 
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added to the cultures in antibiotic free media and returned to the incubator. Media was chaned to normal 

culture media after 6 hours. For transfection of siRNA in astrocytes for western blot as well as cytoplasmic 

or mitochondrial Ca2+ imaging, instructions for a 6 well format were followed and 200pmol per plate were 

used. Similar steps were followed as described for the 24-well plate format except 250µl Opti-MEM and 

5µl Lipofectamine was used. For transfections of Mito-DsRed2 plasmid (ClonTech) and 488-tagged 

siRNA into astrocytes, for the purposes of mitochondrial movement, localization, and morphological 

measurements, instructions for 6 well plasmid transfection were followed and 4µg plasmid and 100pmol 

siRNA per plate were used. The procedure is that same as for transfection for western blot or Ca2+ 

imaging. For all transfections, the volumes can be scaled up based on the number of wells or plates being 

used, and an excess of 2 or 0.5 reactions was made for transfecting 24-well plates or the 6-well 

plates/imaging dishes, respectively, so there is enough reagent for each plate. 

 

Dissecting and Plating Ventral Mesencephalon Neurons for Co-Culture 

Neurons from the ventral mesencephalon of embryonic rats days 16-18 were plated on astrocytes plated 

and transfected on glass cover slips. Sprague Dawley rats (Harlan Animal Research Labs) were 

anesthetized with CO2 and pups were removed and placed into neuronal dissection media (Neurobasal A 

supplemented with B27 and 0.5mM L-glutamine (Life Technologies)) on ice. Meninges were removes and 

the ventral mesencephalon was dissected out and placed into a 50mL conical with neuronal dissection 

media on ice. After all brains were dissected, cold neuronal dissection media was replaced with room 

temperature media and incubated at 30°C for 8 minutes. Tissue was then incubated in digestion media 

(12 mLs Hibernate A without CaCl2 (BrainBits), 0.5mM L-glutamine, 15 units/mL papain, 17µg/ml DNase; 

incubated and filtered as described above) at 30°C for 15 minutes. Tissue was washed 3 times with 

neuronal dissection media and then triturated in 2 mLs of neuronal dissection media with a fire polished 

Pasteur pipette. Tissue was allowed to settle and the supernatant was passed through a strainer. 

Trituration and cell straining was repeated in 2mL of neuronal dissections media 2 more times. The 

supernatants were combined and spun at 1100 RPM for 5 minutes at room temperature. The resulting 

pellet was resuspended in 2 mLs of neuronal media (Neurobasal A supplemented with B27, 2mM L-

glutamine, and 1% penicillin/streptomycin) and counted using a hemocytomoter. Media on astrocytes was 
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changed from culture media to neuronal media and 12.5X104 cells were plated onto astrocytes 

transfected with control or Dlp1 siRNA. Neurons were allowed to grow for 8 days before treatment. 

 

Glutamate Treatment of Astrocyte-Neuron Co-Cultures 

After neurons from the ventral mesencephalon were allowed to grow in Co-Cultures (8 days), neurons 

were treated with glutamate to assess astrocyte protection against excitotoxic environments. Astrocytes 

were gently shaken to remove residual microglia. Co-Cultures with astrocytes transfected with either 

siRNA were treated with normal neuronal media (No Treatment), neuronal media supplemented with 

10µM Glutamate (10µM Glu), a concentration that does not affect neurons in Co-Culture unless potential 

pathological conditions are simulated, or neuronal media supplemented with 10µM each of Glutamate 

and MK-801 (Sigma; 10µM+MK-801), which inhibits NMDA receptors, for 10 minutes at 37°C. Treatments 

were then replaced with normal neuronal media and allowed to recover for 1 hour, at which point Co-

Cultures were then fixed with 4% paraformaldehyde for 30 minutes at room temperature and stained as 

described below. 

 

Staining of Co-cultures and Astrocytes 

This is the cell staining protocol for glutamate treated co-cultures as well as astrocytes transfected with 

488 tagged siRNA to observe neurons or glutamate transporters, respectively. Co-cultured cells were 

plated as described above. Astrocytes used for transporter imaging were plated into Poly-D-lysine coated 

glass coverslips and were transfected and treated similar to astrocytes used for co-culturing. After 

fixation, cells were washed twice for 5 minutes in PBS, blocked in 4% normal goat serum, 1% bovine 

serum albumin, and 0.4% triton 100-X to permeabilize cells, for 1 hour at room temperature. Co-cultured 

cells were then incubated with rabbit anti-tyrosine hydroxylase (Millipore, 1:200) and mouse anti-MAP2 

(Abcam, 1:200) while astrocytes without neurons were incubated with either monoclonal mouse anti-GLT-

1 (a kind gift from Dr. J. Rothstein, 1:200) or rabbit anti-excitatory amino acid transporter 1 (GLAST, 

Abcam, 1:200) each with chicken-anti GFAP (Millipore, 1:500) in blocking buffer overnight. Cells were 

then washed 3 times for 5 minutes each with 0.1% Tween in PBS and were then incubated with 

secondary antibodies conjugated with alexa fluor 488, 568, or 633 (Life Technologies), diluted 1:500 (488 
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and 568) or 1:100 (633) in 0.3% triton 100-X. Cells were wash 3 time for 5 minutes again with 0.1% 

Tween in PBS. Cover slips with stained cells were then mounted on glass slides with Vectashield 

mounting media with DAPI dye (Vector Laboratories). 

 

Measurement of Neurons After Treatment 

To assess the viability of DAergic neurons in response to treatments, images from 10 random fields of TH 

positive neurons and their processes were captured with a Nikon Eclipse 80i microscope. Processes 

were traced using Neurolucida to assess average process (neurite) length and number of branch points 

on processes. To assess the viability of non-DAergic neurons in response to treatments, images from 5 

random fields of MAP2 positive, TH negative nerurons were captured with Nikon Elipse 80i microscope 

and similarly traced. 

 

Western Blot Astrocytes 

Astrocytes were cultured and maintained in a manner similar to as described for co-cultures. After plating 

and transfection in 6 well plates, cells were maintained in DMEM F12, 10% FBS, 1% P/S for 4-5 days, at 

which point media was changed to neuronal media (Neurobasal A supplemented with B27 (Life 

Technologies), 2mM L-glutamine, and 1% penicillin/streptomycin). Astrocytes were maintained for 8 days 

at which point cells were harvested by washing once with ice-cold PBS pH 7.4 and scraped into RIPA 

buffer, were sonicated on ice, and centrifuged at 15,000 x g for 10 minutes. BCA was performed on the 

resulting supernatant. For Dlp1 western blot, 25 µg protein was added to Laemmli Sample buffer (Bio-

Rad) in the presence of 2-Mercapto ethanol and boiled for 5 minutes. For GLT-1 or GLAST western blot, 

25 µg protein was added to Laemmli Sample buffer without 2-Mercapto ethanol and not boiled. Samples 

were run on 10-20% SDS-PAGE and transferred to PVDF membrane overnight. Membranes were 

blocked in 5% milk for 1 hour at room temperature followed by incubation with primary antibodies (mouse 

anti-Dlp1, BD Biosciences 1:2000, mouse anti-excitatory amino acid transporter 2 (GLT-1) Millipore 

1:1000, rabbit anti-excitatory amino acid transporter 1 (GLAST) Cell Signaling Technology 1:1000). 

Membranes were washed twice for 5 minutes and twice for 10 minutes with TBS-T followed by incubation 

with either rabbit anti-mouse HRP or goat anti-rabbit HRP (Sigma) secondary antibodies at room 
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temperature for 1 hour in 3% BSA. Membranes were washed twice for 5 minutes and twice for 10 minutes 

with TBS-T and enhanced chemiluminescence was used to visualize protein bands. Blots were stripped 

and reblotted with ß-actin (mouse anti-ß-actin, abcam 1:4000) as a loading control. 

 

Mitochondrial Movement 

For mitochondrial movement, astrocytes transfeced with 488-tagged siRNA and Mito-DsRed2 plasmid 

were maintained in a similar manner to how co-cultures were treated. That is, media was changed from 

culture media to neuronal media at a time similar to when neurons would have been plated and were 

imaged at a time comparable to when co-cultures would have been treated with glutamate. 3 random 

fields of astrocytes were selected for each replicate and imaged at 37°C using a Nikon Eclipse Ti 

microscope and NIS-Elements software. Images were captured every 5 seconds for 5 minutes and 

analyzed with NIS-Elements software. Movement was assessed by measuring the net distance of 

mitochondria within the processes towards (retrograde) or away (anterograde) from the astrocyte cell 

body. Select cells that are positive for green and red indicating transfection of both siRNA and plasmid. In 

the Nikon software, select Red as the channel to measure with the program as described above for time. 

After selecting the field, push the FOCUS button on the microscope and bring into focus with the offset 

controller. To measure the movement, select the endpoint of a mitochondria within the process of an 

astrocyte and trace a path from that point, through the process, towards the cell body. Run the movie and 

at the end measure the distance along the same path for the same mitochondria. Repeat this for all 

mitochondria within the process of the astrocyte. Subtract the final distance from the start distance for 

each mitochondria. Those with a positive number represent anterograde movement while those with a 

negative distance represent retrograde movement. Separate them into each group and then make sure 

all numbers are positive for the purposes of analysis. Average the measurements in separate groups and 

this is the average distance traveled for each direction for that cell. 

 

Mitochondrial Length and Morphology 

After imaging was complete, astrocytes were fixed, washed, blocked, and stained with rabbit-anti GFAP 

(DAKO, 1:500) as described in above in treating co-cultures. After incubation with primary antibody, cells 
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were washed and stained with secondary antibodies conjugated with alexa fluor 688 (Life Technologies). 

Vectashield mounting media with DAPI dye was added to cells and they were covered with a glass 

coverslip for imaging. 10 randomly selected fields were selected and Z-series images were captured 

using a Nikon Eclipse Ti microscope. Image processing and mitochondrial measurements were 

performed using NIS-Elements Software. Files were deconvolved and max intensity projections were 

generated. Mitochondria within the processed were analyzed due to the fact that individual mitochondra 

were more easily resolved than those in the cell body were. For astrocytes with Dlp1 knocked down, it 

was not uncommon for mitochondria to continue into the cell body. In this event, mitochondria were cutoff 

where they reach the cell body. That is, the process was cropped and mitochondria were analyzed after 

that. The perimeters of mitochondria were selected using the software and from this length and area were 

automatically calculated. To assess density, the number of mitochondria in the process were counted and 

divided by the area of the process, which was measured by tracing the process in the program yielding 

the area. For each measurement of morphology or density, the values for each cell were averaged. 

 

Intracellular Ca2+ Imaging 

Oregon Green 488 BAPTA AM (Life Technologies) was used to measure astrocyte intracellular Ca2+ 

responses to glutamate. Astrocytes transfected with control or Dlp1 siRNA were maintained in a similar 

manner to how co-cultures were treated (described in mitochondrial movement section). Any steps 

involving the use of this dye was protected from light. 50µg of the dye was shaken in 10µl of 15% Pluronic 

F-127 in DMSO (Life Technologies) at 4° C for 30 minutes. The dye was diluted to a final concentration of 

4µM in neuronal media and incubated at 37°C for 30 minutes. To accomplish this, add 90µl or warmed 

media to dye after shaking, vortex for 30 seconds, and dilute 10µl into the plates of the cells with 1mL of 

media. Cells were then washed 3 times for 10 minutes each wash. For the first wash, add 2 mLs of 

warmed media to the plate, swirl several times, remove and discard 1 mL of media, and return to the 

incubator. For the remaining 2 washes, add 1 mL of media, swirl, remove and discard 1 mL, and return to 

the incubator. Cells were imaged after the third wash. Imaging was performed using 60X magnification at 

37°C using a Nikon Eclipse Ti microscope and NIS-Elements Software. Fields of cells were randomly 

selected and intracellular Ca2+ data, indicated by fluorescence intensity, was collected every 200ms. Cells 
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were imaged for approximately 2 minutes, at which point glutamate was added to a final concentration of 

100µM. Responses were recorded and categorized into 4 response types. Type 1 was a large increase in 

Ca2+ that persisted for longer than 60 seconds. Type 2 responses were a single large increase in Ca2+ 

that was 60 seconds or shorter. Type 3 responses showed large Ca2+ oscillations with a lower frequency 

(defined in this study as less than 0.19 peaks/second). Type 4 responses showed small Ca2+ oscillations 

that had a relatively higher frequency than type 3 responses (defined in this study as 0.19 peaks/second 

or greater; see figure 5 for examples). 3-4 plates were used per replicate and the percentage of each 

response type for each group (siRNA used) was calculated. To run the program, select GFP as the 

channel to use and make the intensity 33%. The program should collect every 200ms. Set the exposure 

time to 200ms. Use the ND6 (0.6) neutral density filter to minimize quenching the dye. After selecting the 

field, focus as done for mitochondrial movement. Select a small area with the lowest intensity with a 

rectangle/box region of interest, right click on the box, and set as background. Select the cells in the field 

using polygon regions of interest. 

 

Contribution of Extracellular Ca2+to Observed Intracellular Ca2+ Wave Pattern 

To assess the contribution of extracellular Ca2+ to the observed intracellular wave patterns, astrocytes 

transfected with control or Dlp1 siRNA were cultured and loaded with Oregon green 488 BAPTA as 

described above. After completion of the wash steps, the media was exchanged with neuronal media 

supplemented with 2mM EGTA to chelate Ca2+. Cells were treated with glutamate, imaged, and 

categorized as described above. 

 

Mitochondrial Ca2+ Imaging 

Rhod-2 AM (Life technologies) was used to measure mitochondrial Ca2+ responses in astrocytes 

transfected with control or Dlp1 siRNA. Astrocytes transfected with control or Dlp1 siRNA were 

maintained in a similar manner to how co-cultures were treated (described in mitochondrial movement). 

This dye was used protected from light as was done for intracellular Ca2+ responses. 50µg was shaken in 

10µl of 15% Pluronic F-127 in DMSO at 4°C for 30 minutes. The dye was diluted to a final concentration 

of 4µM in neuronal media and incubated at room temperature for 30 minutes. The same technique for 
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loading cells for intracellular Ca2+ can be used here. Cells were washed 3 times with neuronal media and 

incubated at 37°C for 1 hour, at which point cells were imaged. Imaging was performed using 60X 

magnification at 37°C using a Nikon Eclipse Ti microscope and NIS-Elements Software. Fields of cells 

were randomly selected and mitochondrial Ca2+ levels, indicated by the fluorescence of the dye, was 

collected every 1 second. Cells were imaged for approximately 2 minutes, at which point glutamate was 

added to a final concentration of 100µM. Mitochondrial Ca2+ responses were observed to be a peak and 

were therefore measured by dividing the change in fluorescence from the baseline (ΔF) by the baseline 

fluorescence (F). 3-4 plates were used per replicate and the ΔF/F values for each cell per group (control 

or Dlp1 siRNA) were plotted as a cumulative probability and differences were assessed using the 

Kolmogorov-Smirnov test. To run the program, select Red as the channel to use and make the intensity 

50%. The program should collect every 1s. Set the exposure time to 200ms. Use the ND4 (0.3) neutral 

density filter to minimize quenching the dye. After selecting the field focus as was done in mitochondrial 

movement. Select a small area with the lowest intensity with a rectangle/box region of interest, right click 

on the box, and set as background. Select the cells in the field using polygon regions of interest. 

 

H3-D-Aspartate Uptake 

Uptake assays were performed on co-cultures using a Krebs-Ringer solution (16 mM sodium phosphate, 

119 mM NaCl, 4.7 mM KCl, 1.8 mM CaCl2, 1.2 mM MgSO4, 1.3 mM EDTA, and 5.6 mM glucose; pH 7.4) 

in duplicate, similarly to as described elsewhere[29]. Briefly, cells were washed twice with warm Krebs-

Ringer solution. After the second wash, cells were incubated with Krebs-Ringer with H3-D-Aspartate 

((40Ci/mmol, SA 1mCi/mL) 1ul/30mls) at 37°C for 10 minutes. Co-cultures were washed 3 times with ice 

cold Krebs-Ringer. After the third wash, cells were rocked in 1N NaOH for 30 minutes at room 

temperature. The resulting solutions were collected in scintillation fluid and measured using a scintillation 

counter. For each replicate, H3 measurements averaged for each group and normalized to the value for 

co-cultures where control siRNA was transfected into astrocytes. 
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Statistical Analysis 

Statistical analysis was performed using Graphpad Prism. Dlp1 expression in human tissue in figures 3B 

and D, 4B and D, and 5B and D both for western blot in the mitochondrial fraction from human SNpc as 

well as fluorescent staining for Dlp1 in human tissue for each region and cell type, was normalized to the 

average for the control group for each respective group, are presented as mean +/- s.e.m. and was 

analyzed with a two sided t-test. Mitochondrial morphology, localization, and movement data in figures 

6B-D, and 7A and B are presented as mean +/- s.e.m. and were analyzed using a two sided t-test. 

Neurite length and branch point measurements seen in figures 8C and D are expressed as mean +/- 

s.e.m. and were analyzed using two way analysis of variance with the Bonferroni correction. H3-D-

aspartate uptake assays were run in duplicate. Each group (control and Dlp1 siRNA) were averaged and 

normalized to the control value for that replicate. Data in figure 8E are presented as mean +/- s.e.m. and 

were analyzed using column statistics to test if the average is different from the value 1, due to the fact 

that the control value is 1 for each measurement. Percentages of Ca2+ responses after glutamate 

stimulation for several replicates in figure 10B are presented as average +/- s.e.m. and were analyzed 

using two-way analysis of variance with Bonferroni correction. The ∆F/F for mitochondrial Ca2+ responses 

after glutamate stimulation for all replicates are represented as a continuous probability plot for the two 

groups (control and Dlp1 siRNA) of cells in figure 11B and were analyzed using a two sample 

Kolmogorov-Smirnov test to assess if the two groups of responses were equal. 
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 It is understood that the cause of the motor symptoms observed in PD is loss of DAergic neurons 

from the SNpc and that the appearance of these motor symptoms occurs at a stage in disease where 

irreversible neuronal loss has already occurred. While current therapies are effective at alleviating motor 

symptoms in the short term, the most effective treatment will likely come from preventing neuronal loss 

prior clinical onset. This makes early detection and understanding the mechanism of neuronal death 

important towards effective therapeutic intervention. As discussed in Chapter 2, development of imaging 

and biochemical markers in groups at a high risk of PD will allow for early detection. 

The current mechanism(s) through which neurodegeneration in PD occurs is poorly understood. 

Mitochondrial dysfunction, in the form of impaired ETC function and elevated ROS production, is strongly 

implied in neuronal death (see Chapter 3). Recent data has shown that changes in mitochondrial 

dynamics represent another aspect of mitochondrial dysfunction in the development of PD. A large 

portion of this research has focused on neuronal biology and mechanisms of dysfunction. This largely 

ignores the potential contributions of other cell types. Astrocytes represent one such cell type as they are 

the most abundant cell found in the brain, particularly the SNpc, and play a significant role in protecting 

neurons. If deficiencies in mitochondrial dynamics occur in astrocytes, their ability to maintain adequate 

neuronal health and function could be compromised. My thesis considers alterations in mitochondrial 

dynamics due to a decrease in the fission promoting protein Dlp1, which is observed in human tissue, as 

a mechanism of neurodegeneration. This work focuses on astrocytic contribution to neurodegeneration 

through impaired glutamate regulation, which results in excitotoxicity. Further, it implies impaired 

mitochondrial dynamics as a pathogenic event that occurs early in the course of PD, representing a target 

of therapy to prevent neuronal death. 

Dlp1 is Decreased in Human Tissue in PD 

 Several studies have implicated alterations in mitochondrial dynamics as a mechanism of 

DAergic neuron loss in PD[1-3]. Western blot was used to show that Dlp1 is decreased in the 

mitochondrial fraction of the SNpc in PD (Chapter 5), which is in accordance with previous mass 

spectrometry findings[4]. Immunofluorescent studies showed that this occurs in astrocytes as well as 

neurons in the SNpc. Decreased neuronal Dlp1 is not a finding unique to PD, as it has also been 

observed in hippocampal neurons in AD patients[5], indicating a common mechanism of 
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neurodegeneration. That Dlp1 expression is also depressed in astrocytes shows that PD associated 

changes in proteins occur in cell types not directly responsible for the clinical presentation. It is therefore 

likely that astrocytes play an important role in the mechanism of neurodegeneration in PD. 

This decrease was also observed in neurons and astrocytes in the frontal cortex of PD patients. 

Such changes are significant due to the fact that dysfunction in regions of the brain beyond the SNpc is 

tied to non-motor symptoms observed in PD (discussed below). Additionally, no apparent cortical 

degeneration or Lewy body formation was observed in the selected cases, suggesting decreased Dlp1 

represents an early event in PD pathogenesis, at least in cortex, that precedes, and may therefore 

contribute to, neuronal death. This makes Dlp1, as well as consequences related to decreased 

expression, a potential target of therapy to prevent neurodegeneration, particularly if pre-motor detection 

of PD is achieved (discussed below). 

Dlp1 Affects Mitochondrial Morphology in Astrocytes 

 The cellular studies that followed the findings in tissue were performed in astrocytes to observe 

the effects that Dlp1 had in astrocyte contribution to PD. Astrocytes are increased in the SNpc of PD 

patients[6,7], and their dysfunction could result in neuronal death (discussed in Chapter 4). Recapitulation 

of the observed Dlp1 decrease in primary astrocytes results in an increase in length, area, and perimeter 

of astrocytic mitochondria. This is not surprising given Dlp1 promotes fission and that knockdown or 

inhibition of Dlp1 has generated similar effects in different cell types[5,8,9]. Aside from morphological 

changes, knockdown of Dlp1 also dramatically affected the localization of mitochondria. The density as 

well as the net anterograde and retrograde movement of mitochondria within the processes of astrocytes 

were all decreased after Dlp1 was knocked down. These results are in keeping with the involvement of 

mitochondrial dynamics in PD (discussed in Chapter 3) [2,3,10,11], which also indicate that the 

mechanism through which PD develops occurs through decreased Dlp1-mediated fission. Such changes 

are detrimental towards astrocyte function as altered mitochondrial dynamics impairs astrocyte 

neuroprotection (discussed below) [1]. 

Dlp1 Affects Astrocyte Mediated Neuroprotection 

 Astrocytes play an important role in promoting neuronal survival as well as proper neuronal 

function. This occurs through several mechanisms. While protection against ROS and promotion of 
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neuronal function through trophic factor production are important aspects of astrocyte biology (discussed 

in Chapter 4), the work in this thesis focused on the role that excitotoxicty plays in neurodegeneration, 

due to altered mitochondrial dynamics in astrocytes. Astrocytes play an important role in protecting 

neurons against excitotoxicity[12] through the function of GLT-1[13,14] and GLAST[15], which is heavily 

dependent upon proper mitochondrial function and localization[16]. The identification of Dlp1 as a 

potential interacting protein of GLT-1[17] implies that Dlp1 plays an important role in the ability of 

astrocytes to properly regulate glutamate. Results from Chapter 5 show that loss of Dlp1 in astrocytes 

decreases glutamate transport in a manner that results in excitotoxic neuron death. This occurs through 

signaling changes in astrocytes (discussed below) as expression or localization of the astrocyte 

glutamate transporters was not affected by Dlp1 knockdown. The neuronal effects can be rescued by 

blocking ionotropic receptors using the NMDA receptor antagonist MK-801. Not only does this provide 

supporting evidence for the involvement of astrocyte dysfunction as a means of neurodegeneration, but it 

also indicates that excitotoxicity is a potential mechanism of neuronal death in PD. 

The involvement of excitotoxicity in PD (discussed in Chapter 4), however, has not been 

definitively established. While the findings presented in Chapter 5 support excitotoxicity as a mechanism 

of neurodegeneration, preferential loss of DAergic neurons, as is observed in PD, did not occur. This can 

be explained by the fact that glutamate may act as a contributing toxic factor in the presence of a 

separate DAergic neurotoxic insult, which is supported by various studies. Several agents that kill 

DAergic neurons require excitotoxic input to function[18]. Additionally, in vivo toxicant based PD models 

cause DAergic neuron loss through generation of ROS and/or inhibition of mitochondrial functions, not 

through elevation of glutamate[19-24]. The finding that glutamate receptor antagonists rescue DAergic 

neuron loss[21,23-25] and that loss of Dlp1 in astrocytes results in death of neurons generally, rather than 

DAergic neurons specifically, implies that excitotoxicity plays a contributing role in PD instead of a 

causative role. If this is the case, elevated extracellular glutamate due to impaired astrocyte function acts 

to enhance a neurotoxic insult that is specific to DAergic neurons. The regions from which the astrocytes 

being studied originate could also explain the lack of specific loss of DAergic neurons. The studies 

performed in this thesis considered Dlp1 expression in primary cortical astrocytes due to the fact that they 

are the easiest and largest in quantity to obtain, while the decrease in human tissue being related to is the 
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SNpc. Astrocytes from this region might have different properties that affect protection of different neuron 

populations, and decreased Dlp1 from midbrain astrocytes may have specific effects on DAergic neurons. 

Unpublished data obtained during the course of this thesis shows that cortical astrocytes are less 

responsive to MnCl2 treatment than midbrain astrocytes, when using ROS production as a metric, which 

supports this concept. Further, midbrain astrocytes more effectively promote the growth of DAergic 

neurons than astrocytes from other regions of the brain[26], meaning dysfunction of astrocytes from this 

region could have a greater effect on DAergic neurons compared to those from the cortex. Nevertheless, 

the results presented in Chapter 5 support astrocyte dysfunction and excitotoxicity as contributing factors 

to PD pathogenesis. 

Dlp1 Affects Astrocyte Ca2+ Response to Glutamate due to Impaired Mitochondrial Buffering 

As discussed in Chapter 3, mitochondrial dysfunction is tightly associated with PD pathogenesis. 

These defects have been described in several cell types, including those of the SNpc. As the SNpc in PD 

patients is largely comprised of astrocytes, it is likely that mitochondrial defects in astrocytes contribute to 

PD pathogenesis. Our results support this through Ca2+ imaging experiments. Astrocytes function and 

communicate via Ca2+ signaling in response to various stimuli, including glutamate[27-29]. Alterations in 

Ca2+ signals are therefore a good indication that astrocyte function is similarly altered. When Dlp1 is 

knocked down, astrocytes tend to have large increases in intracellular Ca2+ that last for extended periods 

of time in response to glutamate. This is dramatically different compared to astrocytes with control siRNA, 

which tend to have oscillating waves. The overall intracellular Ca2+ levels are therefore higher in 

astrocytes during glutamate stimulation, when Dlp1 is knocked down. Chelation of extracellular Ca2+ 

ablated any wave patterns that showed extended elevations, and produced Ca2+ responses that were not 

dependent on Dlp1 expression. This indicates that Dlp1 is important in regulation of intracellular Ca2+ that 

enters from the extracellular space during glutamate stimulation. This provides mechanistic insight into 

how elevated astrocytic Ca2+, which has been associated with excitotoxic neuron death elsewhere[30,31], 

occurs and ties this process to PD pathogenesis. It also implies impaired mitochondrial function, as they 

regulate intracellular Ca2+ (see below). 

Mitochondria are localized to regions within cells where Ca2+ enters the cytoplasm (i.e. the ER 

and plasma membrane)[32,33], and maintaining this distribution is dependent upon proper transport. 
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Glutamate induced Ca2+ entry traps mitochondria at the plasma membrane[32]. Further, mitochondrial 

motility can be regulated by Ca2+ signals[34]. These aspects of Ca2+ regulation of mitochondrial dynamics 

localize mitochondria to sites of Ca2+ influx to allow for proper buffering of Ca2+, which is critical in 

regulating Ca2+ transients[33,35,36]. As previously discussed, knockdown of Dlp1 in astrocytes results in 

highly elongated mitochondria that cannot be adequately transported to their destination. It is not 

surprising, then that mitochondrial buffering is dampened, given how important mitochondrial localization 

is in Ca2+ responses. The diminished mitochondrial buffering results in the elevated cytoplasmic Ca2+, 

(discussed above, Chapter 5), which yields the deficits in glutamate uptake and neuronal death (Fig. 12A, 

B). Beyond the effects of glutamate uptake, Ca2+ promotes exocytosis of glutamate from astrocytes[37], 

which is regulated by mitochondria[38]. Impaired mitochondrial buffering could further contribute to 

excitotoxicity through excessive release of glutamate (Fig. 12A, B).  

Therapeutic Implications 

 The studies discussed above provide insight into a mechanism of neurodegeneration. As Dlp1 

was also decreased in the cortex, a region not associated with clinical symptoms of PD, decreased Dlp1 

potentially represents an early event in neurodegeneration and may be involved in non-clinical symptoms 

that occur in PD. Treatment methods that target decreased astrocytic Dlp1 and the effects related to it 

may, therefore, be effective in treating motor and non-motor symptoms. Chapter 3 discusses how a 

variety of therapies have been utilized to alleviate the clinical symptoms of PD, and how their 

mechanisms of action potentially reverse the detrimental effects associated with mitochondrial 

dysfunction. A majority of these treatments do not directly target mitochondrial dysfunction. Results 

presented here show that regulation of mitochondrial dynamics represents another potential target of 

therapy in PD. Specifically, promoting fission by increasing the expression or action of Dlp1, or 

decreasing fusion, are the most obvious mechanisms to ameliorate dysfunction of mitochondrial 

dynamics, and have been shown to rescue effects in models of PD[2,3]. This work also shows that 

mitochondrial deficits in PD occur in a capacity beyond impaired ETC function that results in ATP 

depletion and ROS generation, as mitochondrial Ca2+ buffering is impaired and could similarly be targeted 

(discussed below). 
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 Ca2+ is an important ion in cell signaling and plays an even larger role in neuron and astrocyte 

function[27-29,39]. The results presented here show that alterations in Ca2+ signaling are also involved in 

PD in several aspects that result in excitotoxicity. Correcting deficits in astrocytes and astrocytic Ca2+ 

during glutamate stimulation represent one such target. This may be achieved by inhibiting astrocyte 

metabotropic receptors, as they mediate Ca2+ signaling [40,41] and astrocyte glutamate transporters[42-

44]. Dampening metabotropic receptor action in astrocytes could restore intracellular astrocyte Ca2+ 

signaling thereby promoting glutamate uptake and decreasing excitotoxic neuronal death. Enhancing 

astrocytic mitochondrial Ca2+ buffering via the mitochondrial Ca2+ uniporter could similarly alleviate deficits 

associated with Ca2+, as promoting this function of mitochondria reduces intracellular levels of Ca2+. 

Aside from astrocytic Ca2+, neuronal Ca2+ and excitotoxicity represent potential targets of therapy. 

The results from Chapter 5 implicate excitotoxicity in PD pathogenesis. Excitotoxicity occurs when 

glutamate stimulation through NMDA receptors results in elevated neuronal Ca2+[45]. Administration of 

NMDA receptor antagonists counters this effect by diminishing Ca2+ entry to slow or prevent the loss of 

neurons. Indeed, results from Chapter 5 support blocking NMDA receptors as a means to protect neurons 

from astrocyte dysfunction. It should be noted that NMDA receptor antagonists have been included in L-

DOPA treatments and have shown promise in treating dyskinesia but still fail to halt disease 

progression[46,47]. Utilization of NMDA receptor antagonists, therefore, shows great potential at 

preventing neurodegeneration in PD, provided that treatment is commenced prior to the appearance of 

clinical symptoms (discussed below). 

Necessity for Preclinical Biomarkers in PD 

 Treatment of PD generally does not occur until a patient presents with the characteristic motor 

symptoms observed in PD. At this stage of the disease, a majority of DAergic neurons from the SNpc 

have been irreversibly lost[48] and treatment can only alleviate the symptoms in the short term[49]. The 

ideal treatment for PD is one that prevents neuronal loss prior to clinical onset of the disease. As 

discussed above, this could be achieved by rectifying problems associated with mitochondrial dynamics 

in astrocytes. Metabotropic receptors and the uniporter are widely expressed by both astrocytes and 

neurons[50,51], making specifically targeting astrocyte Ca2+ difficult. Inhibition of excitotoxicity by blocking 

NMDA receptors represent a more efficient means of preventing excitotoxic neuron death in PD due to 
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the fact that astrocytic NMDA receptors are less permeable to Ca2+ than those found in neurons[52]. This 

may confer increased specificity of NMDA receptor antagonists to neurons and could prove effective in 

preventing neuronal death. Animal studies utilizing NMDA receptor antagonists in experimental preclinical 

stages of PD have been successful in protecting against loss of DAergic neurons as well as behavioral 

effects[53,54]. This underscores the potential that targeting excitotoxicity has in protecting against the 

development of PD, and shows that the most effective therapy will result from treatment prior to neuron 

loss. Treatment of PD therefore hinges on the development of a preclinical biomarker, as discussed in 

Chapter 2. 

Potential Treatment of Non-motor Symptoms in PD 

 Identification and treatment of patients in the pre-motor stages of PD may not only prevent the 

onset of clinical symptoms of PD, but could also have the added benefit of alleviating non-motor 

symptoms. Some symptoms are associated with neurological dysfunction and include depression, 

impaired olfaction, RBD, as well as changes in cognition related to memory, speech, visual perception, 

and executive function[48,55-61]. This is not surprising, as α-synuclein lesions have been observed in 

numerous regions throughout the brain and CNS of PD patients[48,62]. The finding in Chapter 5 that Dlp1 

expression is decreased in astrocytes and neurons in the frontal cortex of PD patients indicates that 

decreased Dlp1, and possibly excitotoxicity, is associated with these symptoms. In addition, the PD cases 

selected for cortical assessment had no apparent signs of neurodegeneration, while overt signs of cortical 

degeneration are not apparent until late stages of PD, when Lewy pathology has progressed into this 

region[48]. Therapeutic intervention to block excitotoxicity prior to the onset of clinical symptoms could 

similarly alleviate non-motor symptoms. These symptoms are not confined to the CNS as other 

physiological problems, including constipation and cardiac dysfunction, occur in PD[63,64]. Reports of 

impaired mitochondrial function in peripheral cells and tissues[65-67] not only supports PD as a systemic 

disease, but also implicates mitochondrial dysfunction as a potential mechanism responsible for these 

deficits. Treatment aimed at alleviating mitochondrial affects in the pre-motor phase of PD may also 

beneficially affect the systemic symptoms associated with PD. 

Conclusions and Future Directions 
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 Alterations in mitochondrial dynamics are implicated in PD. This is evidenced by the findings in 

this thesis that show the Dlp1, a fission promoting protein, is decreased in several cell types and regions 

in PD patients. In focusing on the effects of this decrease, astrocytes were selected as cells to study as 

they are implicated in the pathogenesis of PD but their potential contribution towards disease 

development is poorly understood. Knockdown in astrocytes dramatically affects the morphology, 

localization, and movement of mitochondria within astrocytes. This impaired astrocyte-mediated 

protection against glutamate-induced excitotoxicity, which was rescued by the administration of an NMDA 

receptor antagonist. The mechanism through which this occurs is due to impaired mitochondrial buffering 

of extracellular Ca2+ that enters after glutamate stimulation, resulting in elevated intracellular Ca2+. 

Mitochondrial dynamics, as well as excitotoxicity, therefore represent targets of therapy to treat PD by 

mitigating mitochondrial dysfunction. Unfortunately, most treatments that aim to prevent neuronal loss are 

likely administered at stages in the disease when substantial neuron loss has occurred and interventions 

may not be effective. The development of biomarkers capable of predicting PD prior to the onset of 

clinical symptoms will allow for effective intervention to prevent neurodegeneration and halt disease 

progression. This may also be capable of alleviating non-motor symptoms in PD as they may be caused 

by similar mechanisms due to altered mitochondrial dynamics or function. 

 Future studies should aim to elucidate the contribution of excitotoxicity to PD, particularly if it is 

causative of neurodegeneration or simply contributes to ongoing damage to DAergic neurons. 

Additionally, other aspects of astrocyte biology could be studied in the setting of decreased Dlp1. 

Specifically, if changes in Dlp1 in astrocytes affect ROS production, regulation of growth factors, or 

gliotransmission that could contribute to DAergic neuron loss. Studies looking at how astrocytes from 

different regions could contribute to DAergic neuron loss would be particularly helpful in this aspect. More 

importantly, research into mechanisms that target Dlp1 and/or mitochondrial dynamics may represent a 

means to treat PD. Such strategies include trying to prevent reduction in Dlp1 expression, promoting the 

action of Dlp1, or identifying the cause of Dlp1 decrease so as to remove humans form exposure to 

potentially toxic agents. Accomplishing this prior to the onset of clinical symptoms may allow for the 

prevention of neurodegeneration observed in PD pathogenesis. 
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Figure 12. Model of proposed mechanism. (a) During neuronal glutamate release under 
normal conditions, glutamate binds to its receptor on astrocytes to induce release of Ca2+ 

from the ER, which causes entry of extracellular Ca2+. Mitochondria buffer cytoplasmic 
Ca2+ from each source, astrocytic glutamate uptake occurs, and normal 
neurotransmission proceeds. (b) When Dlp1 is decreased in astrocytes, mitochondria are 
elongated and mislocalized within astrocytic processes. The binding of glutamate to its 
receptor on astrocytes during neuronal glutamate release results in Ca2+ release from the 
ER followed by induced entry of extracellular Ca2+. However, mitochondria are not 
adequately positioned to buffer the influx of extracellular Ca2+, resulting in elevated levels 
of intracellular Ca2+ that impairs astrocyte-mediated glutamate uptake. Synaptic levels of 
glutamate are increased as a result, which causes neuronal damage and retraction of the 
postsynaptic terminal due to excitotoxicity. Astrocytes also release glutamate in a Ca2+ 
dependent manner in a process called gliotransmission. Elevated intracellular Ca2+ that 
results from decreased Dlp1 could promote excessive glutamate release and contribute to 
increased synaptic glutamate and excitotoxicity. 
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