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Today, our life is pervaded by computer systems embedded inside everyday products. These embedded 

systems are found in everything from cars to microwave ovens. These systems are becoming 

increasingly sophisticated and interconnected, both to each other and to the Internet. Unfortunately, 

it appears that the security implications of this complexity and connectivity have mostly been 

overlooked, even though ignoring security could have disastrous consequences; since embedded 

systems control much of our environment, compromised systems could be used to inflict physical 

harm. 

This work presents an analysis of security issues in embedded systems, including a comprehensive 

security analysis of modern automotive systems. We hypothesize that dynamic analysis tools would 

quickly discover many of the vulnerabilities we found. However, as we will discuss, there are several 

challenges in applying traditional dynamic analysis tools to embedded systems.  We propose and 

evaluate new tools to overcome these challenges.
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Chapter 1: Introduction and Background 

1.1. Introduction 

Today, our life is pervaded by computer systems embedded inside everyday products. These embedded 

systems are found in everything from cars to microwave ovens. Historically, these systems have had 

dedicated functionality, tightly coupled with the products they are embedded in. For example, an 

embedded system inside a microwave oven may be as simple as a program that turns on the 

magnetron (RF source) for a set amount of time and monitors the door for safety. 

However, these systems are becoming increasingly sophisticated and interconnected, both to each 

other and to public networks like the Internet. Unfortunately, it appears that the security 

implications of this complexity and connectivity have mostly been overlooked, even though ignoring 

security could have disastrous consequences. Since embedded systems control much of our 

environment, compromised systems could be used to inflict physical harm. We are already seeing 

state-sponsored malware developed to do so, such as with Stuxnet, which reprogrammed the 

firmware of Iran’s uranium enrichment centrifuge controllers, causing the centrifuges to self-destruct 

[1]. Even without physical harm, massively-exploited devices can irreparably damage a 

manufacturer’s reputation, as was almost the case just before Microsoft announced their 

Trustworthy Computing initiative [2] [3]. 

Therefore, in my research, I aim to understand 1) what kinds of vulnerabilities exist in modern 

embedded systems, 2) why such vulnerabilities exist, 3) what tools may be appropriate to discover 

and correct these vulnerabilities, and 4) the effectiveness of these tools. 



2 Introduction and Background 
 

To understand the nature of embedded systems vulnerabilities, my colleagues and I perform a 

thorough security analysis of a modern automobile and report our findings in Chapters 2 and 3. 

Aside from being interesting cyber-physical systems, modern automobiles have dozens of embedded 

computers, ranging in complexity from simple 8-bit microcontrollers with a few kilobytes of RAM 

to fully-featured, multicore, 32-bit systems, running POSIX-compliant real-time operating systems. 

A thorough security analysis of automobiles exposes us to a wide range of embedded systems, 

allowing us to identify common vulnerability themes. 

Based on our findings in Chapters 2 and 3, we believe that many vulnerabilities in modern 

embedded systems could be discovered and eliminated using dynamic analysis techniques if they 

could be used against these systems. However, we find that there are significant challenges in 

applying traditional dynamic analysis tools to embedded systems. Therefore, in Chapter 4 we build 

and evaluate a new hardware/software tool to overcome some of these challenges and enable near-

real-time dynamic analysis of embedded systems. 

1.2. Background 

Many of the contributions made in this dissertation rely on the low-level details of embedded 

systems. However, today most computer scientists do not have to concern themselves with the 

specifics of hardware implementation. Therefore, we provide a brief overview of some important 

concepts in embedded systems in Section 1.2.1. 

There are over 250 million registered passenger automobiles in the United States [4], and the vast 

majority of these are computer controlled to a significant degree. However, in spite of their 

prevalence, the structure of these systems, the functionality they provide and the networks they use 
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internally are largely unfamiliar to the computer science research community. In Section 1.2.2, we 

provide basic background context concerning automotive embedded systems architecture in general. 

1.2.1. Embedded Systems 

Embedded systems are now the dominant form of the computing, vastly outnumbering “traditional” 

computers such as PCs. However, there is a huge amount of diversity among embedded systems. 

Some use simple 8-bit microcontrollers with less than 1 kB of memory. Some use 64-bit multicore 

processors. However, there are some salient features that embedded systems share. First, they are 

generally special-purpose devices, as opposed to general-purpose PCs1. Second, they are tightly 

coupled with their environment—taking input from a variety of sensors, and affecting the 

environment through its outputs. 

Many embedded systems are implemented with microcontrollers, as opposed to microprocessors. 

Whereas microprocessors need external components to operate (such as RAM and I/O devices), 

microcontrollers integrate a CPU with these components onto a single chip. Pressure to make 

devices smaller and more capable has led to many microcontrollers implementing a huge variety of 

peripherals, such as audio, video, and USB interfaces. A single highly-capable microcontroller is 

sufficient to build an entire system; for this reason, such microcontrollers are often called Systems on 

Chip (or SoCs). Most SoCs today use some type of ARM processor. However, the peripheral 

interfaces can vary widely. 

                                                 
1 This distinction is blurring, though. For example, mobile phones used to be dedicated systems that only supported 
phone calls. Today, the phone functionality is only one small aspect of a complex system with installable apps and 
Internet access. 
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Peripherals are controlled by the firmware through Memory Mapped I/O (MMIO). With MMIO, 

peripheral registers are assigned memory addresses and are accessed as if they were memory. While 

MMIO can be technically sufficient to fully control a peripheral, usually some optimizations are 

made. For example, if a program is waiting for input from a serial port, it can repeatedly poll the 

serial controller’s status register until input is received. Polling has many downsides, but in the 

context of embedded systems, perhaps the biggest problem with polling is that it wastes energy by 

keeping the CPU running in a tight loop.2 As an alternative, peripherals can raise interrupts. As the 

name implies, this interrupts the normal path of execution and transfer control to an interrupt 

handler. The interrupt handler can then respond to the peripheral and transfer control back to the 

originally-executing code. 

Another optimization is called Direct Memory Access (DMA).With DMA, large chunks of memory can 

be transferred between peripherals and RAM using dedicated logic. This frees the processor to 

perform other tasks. In some cases, DMA is handled by a DMA controller, which can copy memory 

between arbitrary addresses (such as RAM and a peripheral’s MMIO registers). In other cases, the 

peripheral itself can initiate transactions on the system bus; this is called bus mastering. 

1.2.2. Automobiles 

Through 80 years of mass-production, the passenger automobile has remained superficially static: a 

single gasoline-powered internal combustion engine, four wheels, and the familiar user interface of 

steering wheel, throttle, gear-shift, and brake. However, in the past two decades the underlying 

control systems have changed dramatically. Today’s automobile is no mere mechanical device, but 

contains a myriad of computers. These computers coordinate and monitor sensors, components, the 

                                                 
2 Transistor switching is the main power draw in modern CMOS ICs. Temporarily halting CPUs while waiting for an 
event can dramatically cut the amount of power consumed. 
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driver, and the passengers. Indeed, one 2009 estimate suggests that the typical luxury sedan now 

contains over 100MB of binary code spread across 50-70 independent computers—Electronic Control 

Units (ECUs) in automotive vernacular—in turn communicating over one or more shared internal 

network buses [5] [6].  

While the automotive industry has always considered safety a critical engineering concern (indeed, 

much of this new software has been introduced specifically to increase safety, e.g., Anti-lock Brake 

Systems) it is not clear whether vehicle manufacturers have anticipated in their designs the possibility 

of an adversary. Indeed, it seems likely that this increasing degree of computerized control also 

brings with it a corresponding array of potential threats. 

Compounding this issue, the attack surface for modern automobiles is growing swiftly as more 

sophisticated services and communications features are incorporated into vehicles. In the United 

States, the federally-mandated On-Board Diagnostics (OBD-II) port, under the dash in virtually all 

modern vehicles, provides direct and standard access to internal automotive networks. Originally 

intended to verify emissions-related systems, the OBD-II port is now used by a myriad of 

aftermarket products. Many of these products, such as Automatic [7] and usage-based insurance 

dongles [8], act as a wireless gateway into cars’ networks. User-upgradable subsystems such as audio 

players are also routinely attached to these same internal networks, as are a variety of short-range 

wireless devices (Bluetooth, wireless tire pressure sensors, etc.). Telematics systems, exemplified by 

General Motors’ (GM’s) OnStar, provide value-added features such as automatic crash response, 

remote diagnostics, and stolen vehicle recovery over a long-range wireless link. To do so, these 

telematics systems integrate internal automotive subsystems with a remote command center via a 

wide-area cellular connection. Some have taken this concept even further—proposing a “car as a 
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platform” model for third-party development. Hughes Telematics has described plans for 

developing an “App Store” for automotive applications [9] while Ford announced that it will open 

its Sync telematics system as a platform for third-party applications [10]. Finally, proposed future 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2X) communications systems [11] [12] [13] 

[14] will only broaden the attack surface further. 

Overall, these trends suggest that a wide range of vectors will be available by which an attacker 

might compromise a component and gain access to internal vehicular networks—with unknown 

consequences. Unfortunately, while previous research efforts have largely considered vehicular 

security risks in the abstract, very little is publicly known about the practical security issues in 

automobiles on the road today. Our research aims to fill this gap. 

(1) Automotive Embedded Systems 

Digital control, in the form of self-contained embedded systems called Engine Control Units (ECUs), 

entered US production vehicles in the late 1970s, largely due to requirements of the California Clean 

Air Act (and subsequent federal legislation) and pressure from increasing gasoline prices [15]. By 

dynamically measuring the oxygen present in exhaust fumes, the ECU could then adjust the 

fuel/oxygen mixture before combustion, thereby improving efficiency and reducing pollutants. 

Since then, such systems have been integrated into virtually every aspect of a car’s functioning and 

diagnostics, including the throttle, transmission, brakes, passenger climate and lighting controls, 

external lights, entertainment, and so on, causing the term ECU to be generalized to Electronic Control 

Units. Thus, over the last few decades the amount of software in luxury sedans has grown from 

virtually nothing to tens of millions of lines of code, spread across 50-70 independent ECUs [5]. 
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(2) ECU Coupling 

Many features require complex interactions across ECUs. For example, modern Electronic Stability 

Control (ESC) systems monitor individual wheel speed, steering angle, throttle position, and various 

accelerometers. The ESC automatically modulates engine torque and wheel speed to increase 

traction when the car’s line stops following the steering angle (i.e., a skid). If brakes are applied they 

must also interact with the Anti-lock Braking System (ABS). More advanced versions also offer Roll 

Stability Control (RSC), which may also apply brakes, reduce the throttle, and modulate the steering 

angle to prevent the car from rolling over. Active Cruise Control (ACC) systems scan the road ahead 

and automatically increase or decrease the throttle (about some pre-programmed cruising speed) 

depending on the presence of slower vehicles in the path (e.g., the Audi Q7 will automatically apply 

brakes, completely stopping the vehicle if necessary, with no user input). Versions of this technology 

also provide “pre-crash” features in some cars including pre-charging brakes and pre-tensioning seat 

belts. Some newer vehicles even offer automated parallel parking features in which steering is 

completely subsumed. These trends are further accelerated by electric-driven vehicles that require 

precise software control over power management and regenerative braking to achieve high 

efficiency, by a slew of emerging safety features, such as VW’s Lane Assist system, and by a wide 

range of proposed entertainment and communications features (e.g., it was announced that GM’s 

OnStar will offer integration with Twitter [16]). Even full “steer-by-wire” functionality has been seen 

in a range of concept cars including GM’s widely publicized Hy-wire fuel cell vehicle [17]. 

While some early systems used one-off designs and bilateral physical wire connections for such 

interactions (e.g., between different sensors and an ECU), this approach does not scale. A 

combination of time-to-market pressures, wiring overhead, interaction complexity, and economy of 

scale pressures have driven manufacturers and suppliers to standardize on a few key digital buses, 
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such as Controller Area Network  (CAN) [18] and FlexRay [19], and software technology platforms (cf. 

Autosar [20]) shared across component manufacturers and vendors. Indeed, the distributed nature 

of the automotive manufacturing sector has effectively mandated such an approach—few 

manufacturers can afford the overhead of full soup-to-nuts designs anymore. 

Thus, the typical car contains multiple buses (generally based on the CAN standard) covering 

different component groups (e.g., a high-speed bus may interconnect power-train components that 

generate real-time telemetry while a separate low-speed bus might control binary actuators like lights 

and doors). While it seems that such buses could be physically isolated (e.g., safety critical systems 

on one, entertainment on the other), in practice they are “bridged” to support subtle interaction 

requirements. For example, consider a car’s Central Locking Systems (CLS), which controls the power 

door locking mechanism. Clearly this system must monitor the physical door lock switches, wireless 

input from any remote key fob (for keyless entry), and remote telematics commands to open the 

doors. However, unintuitively, the CLS must also be interconnected with safety critical systems such 

as crash detection to ensure that car locks are disengaged after airbags are deployed to facilitate exit 

or rescue. 

(3) Telematics 

Starting in the mid-1990’s automotive manufacturers started marrying more powerful ECUs— 

providing full UNIX-like environments—with peripherals such as Global Positioning Systems (GPS), 

and adding a “reach-back” component using cellular back-haul links. By far the best known and 

most innovative of such systems is GM’s OnStar, which provides a myriad of services. An OnStar-

equipped car can, for example, analyze the car’s On Board Diagnostics (OBD) as it is being driven, 

proactively detect likely vehicle problems, and notify the driver that a trip to the repair shop is 
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warranted. OnStar ECUs monitor crash sensors and will automatically place emergency calls, 

provide audio-links between passengers and emergency personnel, and relay GPS-based locations. 

These systems even enable properly authorized OnStar personnel to remotely unlock cars, track the 

cars’ locations and, starting with some 2009 model years, remotely stop them (for the purposes of 

recovery in case of theft) purportedly by stopping the flow of fuel to the engines. To perform these 

functions, OnStar units routinely bridge all important buses in the automobile, thereby maximizing 

flexibility, and implement an on-demand link to the Internet via Verizon’s digital cellular service. 

However, GM is by no means unique and virtually every manufacturer now has a significant 

telematics package in their lineup (e.g., Ford’s Sync, Chrysler’s UConnect, BMW’s Connected Drive, 

and Lexus’s Enform), frequently provided in collaboration with third-party specialist vendors such 

as Hughes Telematics and ATX Group.  

Taken together, ubiquitous computer control, distributed internal connectivity, and telematics 

interfaces increasingly combine to provide an application software platform with external network 

access. There are thus ample reasons to reconsider the state of vehicular computer security. 

1.3. Related work 

There are four principal areas of related work: security analyses of automotive systems, “classic” 

(non-automated) security analyses of other embedded systems, dynamic analyses of programs for 

security, and attempts to automatically analyze embedded systems. 

1.3.1. Automotive Systems 

We are not the first to observe the potential fragility of the automotive environment. In the 

academic context and prior to our work, several groups described potential vulnerabilities in 
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automotive systems, e.g., [21] [22] [23] [24] [25]. They provide valuable contributions toward framing 

the vehicle security and privacy problem space—notably in outlining the security limitations of the 

popular CAN bus protocol—as well as possible directions for securing vehicle components. With 

some exceptions, e.g., [26], most of these efforts considered threats abstractly; considering “what-if” 

questions about a hypothetical attacker. Part of our contribution is to make this framing concrete by 

providing comprehensive experimental results assessing the behavior of real automobiles and 

automotive components in response to specific attacks. 

Furthermore, prior to our work there was very little understanding of the external attack surface of 

modern vehicles. Among the exceptions is Rouf et al.’s analysis of the wireless Tire Pressure 

Monitoring System (TPMS) in a modern vehicle [27]. While their work was primarily focused on the 

privacy implications of TPMS broadcasts, they also described methods for manipulating drivers by 

spoofing erroneous tire pressure readings and, most relevant to our work, an experience in which 

they accidentally caused the ECU managing TPMS data to stop functioning through wireless signals 

alone. Still others have focused on the computer security issues around car theft, including 

Francillon et al.’s recent demonstration of relay attacks against keyless entry systems [28], and the 

many attacks on the RFID-based protocols used by engine immobilizers to identify the presence of 

a valid ignition key, e.g., [29], [30], [31]. Orthogonally, there has been work that considers the future 

security issues (and expanded attack surface) associated with proposed vehicle-to-vehicle (V2V) 

systems (sometimes also called vehicular ad-hoc networks, or VANETs) [13] [32] [33]. To the best 

of our knowledge, however, we are the first to consider the full external attack surface of the 

contemporary automobile, characterize the threat models under which this surface is exposed, and 

experimentally demonstrate the practicality of remote threats, remote control, and remote data 

exfiltration. Our experience further gives us the vantage point to reflect on some of the ecosystem 
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challenges that give rise to these problems and point the way forward to better secure the 

automotive platform in the future. 

Outside the academic realm, there is a small but vibrant “tuner” subculture of automobile 

enthusiasts who employ specialized software to improve performance (e.g., by removing electronic 

RPM limitations or changing spark timings, fuel ignition parameters, or valve timings) frequently at 

the expense of regulatory compliance [34], [35]. These groups are not malicious; their modifications 

are done to improve and personalize their own cars, not to cause harm. In our work, we consider 

how an adversary with malicious motives might disrupt or modify automotive systems.  

Following initial publication of our results in 2010 [36] and 2011 [37], there has been a growing 

interest in automotive systems in the broader security and “maker” communities. In 2013, Miller and 

Valasek obtained results similar to those in Chapter 2 on different vehicles [38] and released the 

tools they used for doing so. In 2014, Miller and Valasek analyzed the potential remote attack 

surfaces of twenty different vehicles [39]. Several web sites dedicated to vehicle network reverse 

engineering have emerged, such as CanBusHack [40] and the Vehicle Reverse Engineering Wiki [41]. 

The Hack a Day web site has a good four-part introduction on CAN bus hacking [42]. A number of 

hardware projects have been started as well, including the OpenXC platform [43] (sponsored by 

Ford), the GoodThopter [44], and the CANBus Triple [45]. 

Finally, we point out that while there is an emerging effort focused on designing fully autonomous 

vehicles (e.g., DARPA Grand Challenge [46] and Google’s self-driving car [47]), these are specifically 

designed to be robotically controlled. While such vehicles would undoubtedly introduce yet new 
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security concerns, in our work we concern ourselves solely with the vulnerabilities in today’s 

commercially-available automobiles. 

1.3.2. Security Analyses of Embedded Systems 

As embedded systems have become more complex and connected, the security issues facing them 

have evolved. First, we will discuss some of the classic embedded systems issues, mostly relating to 

keeping cryptographic secrets safe from physical attackers. Then, we will discuss some of the threats 

emerging as embedded systems become more capable. A discussion of automated analyses of 

embedded systems appears in Section 1.3.4 

(1) Classic Embedded Systems Security 

Early work focused on threats where the attacker was physically present, as this was the only way to 

interact with many embedded systems. Around this time, smart cards were becoming adopted for a 

wide range of applications, including GSM SIM cards, prepaid phone cards, and pay TV. In [48], 

Anderson and Kuhn describe some early attacks against smart cards, including non-invasive fault 

injection attacks and physical probing attacks. Later, in 2004, [49] provided an overview of the 

challenges in designing secure embedded systems. It includes a long discussion of earlier work on 

fault injection, timing side-channels, and power side-channels.  

(a) Fault Injection 

Fault injection attacks involve intentionally inducing errors into computations. Typically this is done 

by glitching the power supply or clock lines. This temporarily brings some components (such as 

CPU registers) outside their rated operating ranges (such as voltage or timing constraints), which can 

induce faults. This is normally done for one of two reasons. First, faults can cause security logic to 
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fail, allowing an attacker to trick a CPU into going down a code path that is not normally allowed. 

For example, if a smart card is verifying a PIN, an attacker could induce a fault to make the PIN 

check succeed regardless of whether the PIN is correct. Second, faults can produce mathematical 

errors that may be exploitable. For example, inducing faults in certain implementations of the RSA 

signing algorithm can produce erroneous signatures that can be used to trivially derive the private 

key [50]. 

(b) Side-Channel Attacks 

Side-channel attacks involve recovering information about private data used in a computation leaked 

through unintended side effects. For example, a side channel attack against an encryption system 

may leak the key, or at least information to narrow the set of possible keys. Side channels can leak 

information in many forms: acoustic [51], optical [52], electromagnetic, etc. Regardless of form, side 

channels of computations (as opposed to physical processes, like key presses and printing) reveal 

information about either timing or power. Both can be leveraged for practical attacks. 

Timing analysis relies on the fact that naïve cryptographic algorithms take a varying amount of time 

depending on their inputs. In [53], Kocher introduced the first theoretical timing attack on 

cryptographic algorithms. His attack focuses on algorithms using square-and-multiply modular 

exponentiation, including implementations of RSA, Diffe-Hellman, and DSS.  The attack works by 

observing the execution time of a number of modular exponentiations with known bases and 

modulus. If an attacker can model the execution time taken by the first n iterations of each modular 

exponentiation, then she can decrease the variance of the execution times collected by subtracting 

the timing model of the first n iterations from them. A correct timing model depends on knowing 

the secret exponent, but if the attacker is only modeling the first n iterations, then she only needs to 
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know the least-significant n bits. By guessing the next bit and checking to see if the variance 

decreases, an attacker can successively determine each bit of the exponent. Kocher’s work was 

subsequently improved several times, including by Brumley and Boneh, who in [54] demonstrated 

that timing attacks work remotely and against other RSA optimizations used in the popular 

OpenSSL [55] library. 

Power analysis relies on the fact that in modern CMOS ICs, the amount of power consumed during 

a clock cycle is in large part determined by the number of transistors changing state. Therefore, the 

amount of power consumed depends on the computations performed. In [56], Kocher describes 

two ways this can be exploited. The first, called Simple Power Analysis (SPA), relies on certain 

computations having distinct power signatures. For example, public-key algorithms that rely on 

square-and-multiply modular exponentiation may leak their private key if the squaring and 

multiplying operations can be differentiated. The second, called Differential Power Analysis (DPA), 

uses simple statistical techniques to obtain information leaked through noisy power traces. In DPA, 

the attacker collects power traces over many cryptographic operations. The attacker makes a 

hypothesis about a sub-computation (such as the value of one of the key bytes being fed into an S-

Box) and classifies the traces based on a measurable result of that sub-computation (such as the LSB 

of the S-Box’s output). If the hypothesis is incorrect, the average trace of each class will be 

indistinguishable from each other.  If the hypothesis is correct, the average trace of each class will 

differ significantly at points where power consumption is highly correlated with the hypothesis. [57] 

provides a thorough and accessible introduction to both SPA and DPA, and provides an example of 

breaking AES with DPA as well as breaking RSA with SPA. 
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(2) Emerging threats 

While these threats remain important for certain applications (such as smart cards and set-top 

boxes), new threats have emerged as the progression of Moore’s law has enabled embedded devices 

to become more complex. As Kocher points out [56] (and we find in our own work), vulnerabilities 

often appear at boundaries of abstraction. For example, cryptographers often assume error- and 

side-channel-free computation, but in reality, their algorithms run on imperfect, physical hardware. 

As another example, C programmers oblivious to how the stack works can end up writing trivial 

buffer overflow vulnerabilities. As embedded systems become more complex, it becomes necessary 

to create additional abstractions to manage this complexity, which creates more opportunities for 

vulnerabilities. To investigate what kinds of vulnerabilities might emerge from this added 

complexity, we and other researchers have performed security analyses on several new types of 

complex embedded devices. 

(a) Voting Machines 

An early but influential example of this is [58], which audited the (accidentally leaked) source code to 

the Diebold AccuVote-TS direct recording electronic (DRE) voting system. The authors found 

almost no regard for security in its design. While the system used smartcards to authorize ballot 

casting and administration, the protocol did not incorporate any cryptography, allowing an attacker 

to forge smartcards to cast additional ballots and perform administrative functions. Configuration 

data is not authenticated, allowing an attacker to change audit counters and ballot definitions. Votes 

are stored in-order and encrypted poorly, with a fixed key and IV, potentially allowing an attacker to 

modify votes and link voters with their votes. Results are transmitted back to the central tabulator 

with no encryption or authentication. 
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While the AccuVote-TS is a complex system, new techniques can uncover vulnerabilities in older, 

simpler systems as well. In [59], Checkoway et al. demonstrated that return-oriented programming 

could be used to exploit a Sequoia AVC Advantage voting machine, which was designed in the early 

1980s and was purposefully designed to execute code only in ROM. This work demonstrates one of 

the challenges of securing embedded systems: they must be able to withstand attacks for their entire 

service lifetime, which may be as long as several decades. 

(b) Consumer Devices 

In [60], Saponas et al. looked at three new consumer ubiquitous computing products (the Slingbox 

Pro, Nike+iPod Sport Kit, and Microsoft Zune) to gauge the state of privacy and security practices 

built into these types of products. All three products had privacy issues that could have been 

addressed with more careful development. 

The Slingbox Pro is a device that lets users view television remotely over the Internet. Content is 

encrypted, possibly to prevent eavesdroppers from learning anything about what is being streamed 

(although legal concerns are a more likely reason). However, by using a variable bit-rate compression 

codec, the Slingbox Pro leaks identifying information about the content being streamed. After 10 

minutes of streaming, the authors were able to identify which movie (of 26) was being viewed with 

62% accuracy. 

The Nike+iPod Sport Kit allows users to track data about their walks and runs, such as duration, 

step count, and intensity. It works by embedding sensors into specially-designed shoes, which 

broadcast sensor readings to compatible iPod receivers. The sensors broadcast unique IDs, which 

allows the receivers to filter out other users’ sensors. However, these IDs are not protected in any 
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way, and can be eavesdropped from up to 20 meters away. The authors developed a proof-of-

concept surveillance device which could be deployed in several locations to track Nike+iPod users 

throughout the deployment. 

The Microsoft Zune media player had an interesting feature: it would let you share content with 

anyone within WiFi range. To mitigate abuse, the Zune allows users to block senders. However, the 

authors discovered this was trivial to bypass. 

(c) Medical Devices 

In [61], Halperin et al. analyzed the wireless protocol used by a popular implantable cardioverter 

defibrillator (ICD). Several privacy and integrity issues were discovered. Private patient data, 

including name, therapy, and sometimes even their social security number, can be exfiltrated or 

intercepted from an ICD. Additionally, the authors were able to reverse-engineer enough of the 

protocol to change certain settings, including the clock and therapies. Perhaps most concerning was 

their ability to deliver command shocks that would induce fibrillation, even with therapies disabled. 

Noting that ICDs have extremely limited power budgets (ICDs have non-rechargeable batteries that 

can only be surgically replaced), the authors presented three zero-power defenses built on top of the 

WISP platform [62]. The first uses RF power from the reader to alert the patient that their ICD is 

being interrogated. The second offloads authentication to the WISP, which is able to perform a 

cryptographic handshake with the reader using only the reader’s RF power. The third communicates 

an ephemeral key through acoustic waves transmitted through the body by a reader. For each of 

these defenses, the authors experimentally verified that sufficient power can be harvested from the 

reader by testing them through a bag of bacon and ground beef, which serves as a good human 

analogue. 
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(d) Cross-Channel Scripting Attacks 

In [63], Bojinov, Bursztein, and Boneh demonstrate a new type of scripting attack against networked 

devices such as network-attached storage devices, lights-out management devices, digital picture 

frames, and cell phones. Whereas traditional cross-site scripting attacks are caused by a web 

application accepting JavaScript code and reflecting it back to the victim, cross-channel scripting 

attacks accept JavaScript code from non-web sources, such as CIFS file shares, and include this code 

in their web UI (e.g., a view of the file system). While our work focuses on lower-level attacks, using 

a taint-tracking dynamic analysis tool in conjunction with the system we introduce in Chapter 4 may 

be able to detect these vulnerabilities. 

(e) Large-Scale Analysis of Embedded Firmwares 

In [64], Costin, Zaddach, Francillon, and Balzarotti crawl the web and collect almost 760,000 

firmware updates for a variety of embedded systems. Approximately 32,000 of these were 

automatically unpacked and analyzed for easy-to-identify vulnerabilities, such as weak default 

passwords, SSH and other backdoors, fixed private RSA keys, vulnerable HTTP server 

configurations, and known vulnerable software signatures. Thirty-eight previously-unknown 

vulnerabilities were discovered affecting over 123 different products. One of the primary limitations 

of their system is its inability to analyze the code itself, either statically or dynamically. Thus, only 

simple and easy-to-identify vulnerabilities (such as hardcoded passwords) are identified. 

(f) Non-Academic Results 

Outside of academia, embedded systems security is receiving increasing amounts of attention as well. 

A few of the more notable examples are discussed in this section. 
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In 2005, Lynn presented a talk at Black Hat USA on developing Cisco IOS shellcode [65], which he 

claimed could severely cripple the Internet. He did so even after Cisco pressured his employer and 

Black Hat to forbid him from speaking about the vulnerabilities. Cisco subsequently filed suits 

against Lynn and Black Hat [66], but reached an agreement where all materials related to the talk 

were turned over to Cisco [67].   

At Black Hat USA 2010, Jack demonstrated vulnerabilities in two different ATMs which 

“jackpotted” (dumped all of the money inside) those ATMs [68]. One ATM provided an USB port, 

accessible with a key easily purchased online, that allowed unauthenticated firmware updates to be 

installed. The other ATM had vulnerabilities in its remote update mechanism. 

Video game consoles are attractive targets for hackers. These consoles are typically locked down so 

that only licensed and authentic games can be played. However, there are groups of enthusiasts who 

like to develop and run “homebrew” software—unlicensed games or other software that are 

developed by hobbyists. Doing so requires bypassing security mechanisms built in to these consoles. 

There are countless exploits for most systems, from simple buffer overflows to signature 

comparison exploits [69] and even cryptographic breaks resulting from insufficient randomness [70]. 

Finally, it is nearly impossible to avoid discussions of “cyber terrorism” attacks on critical 

infrastructure. While there is a lot of speculation about the potential threats, solid facts are hard to 

come by. At Blackhat Federal 2006, two security consultants presented several real-world 

vulnerabilities they’ve encountered during their pen-testing services [71], including several control 

networks connected to the Internet and embedded control (SCADA) systems full of vulnerabilities.  
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(3) Reflection 

With the increasing complexity and connectedness of embedded systems, we see attacks moving up 

the stack. For example, the firmware in early smart cards was simple enough that one could have a 

reasonable level of assurance that there were no bugs in its logic, and thus attackers focused on 

lower-level (e.g., physical and side-channel) exploits. With increased complexity, it is more difficult 

to retain that level of assurance, and indeed there is a lot of prior work which have demonstrated 

exploits of firmware-level bugs. However, due to the heterogeneity of embedded devices, this work 

has largely been domain-specific, focusing on individual types of devices. While parts of this 

dissertation focuses on another domain—automobiles—we do so in part to gain insight into issues 

affecting a large variety of embedded systems, as automobiles incorporate a large number of diverse 

embedded systems. We use this insight to guide our development of a generic tool, introduced in 

Chapter 4, which enables dynamic analysis across many different types of embedded systems. 

1.3.3. Dynamic Analysis 

There has been a great deal of prior work proposing various dynamic analyses techniques to 

discover and fix security vulnerabilities. Dynamic analysis is useful in cases where the system is too 

complex to model or analyze statically, which is rapidly becoming the case with most embedded 

systems. Additionally, since dynamic analyses work against real systems (rather than models), 

additional unexpected behavior may be uncovered. Dynamic analysis methods also have the nice 

property of minimizing false positives. Whereas static analysis can tell you that a problem may exist, 

dynamic analyses will point to concrete problems.  



Karl Koscher 
Securing Embedded Systems 

21 

 

(1) Fuzz Testing 

An early example of dynamic analysis is fuzz testing, invented after Miller noticed that line noise on 

his dial-up connection would sometimes cause remote programs to crash [72]. Miller et al. 

automated generation of “line noise” and applied it to several UNIX utilities, finding that they were 

able to crash between 25% and 33% of standard utilities included in various UNIX OSes. From 

these experiments, they were able to find common errors and classified each crash according to its 

cause. 

While seemingly powerful, naïve fuzz testing is unable to catch many errors. The approach in [72] 

simply generated random characters. If we want to fuzz file parsers, this approach is unlikely to 

work since there will usually be at least some sanity checks on the file format. Fortunately, there 

have been several advances in fuzzing techniques, which can be broadly classified as either black-box 

or white-box. 

(a) Black-Box Fuzz Testing 

Black-box fuzz testing involves intelligently crafting inputs without knowledge of the target 

program’s internals. This is usually done with one of two approaches: mutational and generational. 

Mutational fuzzing takes a valid input and randomly perturbs it. While this approach is able to find 

vulnerabilities that completely random inputs would not trigger [73], it is unlikely to find 

vulnerabilities which depend on a deep knowledge of the input format. Generational fuzzers, such as 

SPIKE [74] and the Peach Fuzzing Platform [75], use input grammars and constraints specified by 

users to intelligently create inputs. Since these inputs are mostly valid, they will often pass most 

sanity checks, allowing them to discover subtle flaws. 
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(b) White-Box Fuzz Testing 

White-box fuzz testing relies on observing program execution to make intelligent choices about 

what to fuzz. As a simplified example, consider an if statement that checks whether input[0] == 42. 

Traditional black-box fuzzers do not have the ability to observe this behavior, so they are unlikely to 

generate inputs that exercise both code paths from that branch unless explicitly encouraged to via a 

user-specified grammar (such as defining input[0] to be 42 or not). There are a few closely related 

papers in this area, all using symbolic execution in one form or another. 

EXE [76] treats all user input initially as unconstrained symbolic variables. Instructions that only use 

concrete operands are executed normally. However, for instructions that use one or more symbolic 

operands, EXE produces a symbolic, constrained result. For example, if x is an unconstrained input, 

and the statement y := x + 10 is executed, then y becomes symbolic and constrained to be x + 10. 

When a branch based on a symbolic value is executed (such as checking whether y == 42), the 

execution is forked and constraints for each side of the branch are added (e.g., y == 42 and y != 42). 

If an execution crashes, the constraints are solved to generate the corresponding input. 

DART [77], which was independently developed, uses a similar approach. However, the target 

program is run both concretely and symbolically. Instead of forking execution on symbolic 

branching conditions, DART simply constrains the value so that symbolic execution follows the 

concrete execution. The set of constraints built up over an execution is called the path constraint. By 

negating a branching constraint in the path constraint (and dropping subsequent constraints), DART 

solves for new inputs to explore additional code paths. 
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SAGE [78] builds on the work of DART to apply this technique to large programs, such as media 

parsers, compression codecs, and even parts of Microsoft Office 2007. The primary difference 

between DART and SAGE is the search algorithm—DART uses a depth-first approach, while 

SAGE uses a generational approach. Child executions are ranked by block coverage heuristics, and 

the highest-ranked execution becomes the parent for the next generation. 

(2) Other types of dynamic analysis 

Of course, fuzz testing is not the only type of dynamic analysis, and we believe the work presented 

in Chapter 4 applies to much more than fuzz testing. For example, taint tracking (an overview of 

which is provided by [79]) is useful for checking for unintentional information flow (such as from 

untrusted user input to sensitive state). Run-time memory verification systems like Valgrind’s 

Memcheck [80] are powerful tools that can detect memory leaks, access to unallocated or freed 

memory, or buffer overflows. They do so by tracking the state of each memory chunk. In particular, 

Memcheck works by tracking whether a memory chunk has been allocated and whether it contains 

valid data. 

1.3.4. Automated Analyses of Embedded Systems 

The poor state of embedded security and the seriousness of its consequences have led researchers to 

propose new ways to automatically analyze embedded systems, building on the success of traditional 

dynamic analysis tools. However, there are a number of challenges in applying traditional dynamic 

analysis tools to embedded systems. 

Whereas traditional software is written against OS-provided APIs, the “API” that firmware is 

written against is usually a hardware specification. Peripherals typically expose their behavior 
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through several memory-mapped registers. These registers appear as normal memory, but reads and 

writes to these addresses directly control the hardware. With the large heterogeneity of embedded 

devices, faithfully reproducing hardware behavior to dynamic analysis tools is a time-consuming and 

error-prone proposition. 

FIE [81] symbolically executes the firmware of small, MSP430-based embedded devices. FIE 

overcomes the challenges in the diversity of devices and the need to understand peripheral semantics 

by treating all peripheral I/O as an unconstrained symbolic input. Unfortunately, this can easily lead 

to a state space explosion, making this technique impractical for all but the smallest embedded 

systems. 

Avatar [82] attempts to constrain the number of states explored by using the actual hardware as a 

guide for peripheral semantics. It does so by redirecting peripheral I/O to the real device, either by 

using a JTAG debugger or through serial communication with an in-memory stub loaded onto the 

target. Unfortunately, with the ability to do only about five memory operations per second, 

redirecting all I/O is prohibitively slow. Avatar overcomes this limitation by migrating executing 

code between the emulator and the device, and emulating only small portions of interest of the 

firmware. However, this optimization is unsuitable for timing-sensitive systems, such as medical 

devices with watchdogs in coprocessors. In our work, which we started independently and in parallel 

with Avatar, we seek to overcome this limitation by enabling real-time peripheral interaction.
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Chapter 2: Security Analysis of Internal Automotive Interfaces3 

2.1. Introduction and Threat Model 

In this chapter we focus on what an attacker could do to a car if she was able to maliciously 

communicate on the car’s internal network. We intentionally and explicitly skirt the question of a 

“threat model”. That said, this does raise the question of how she might be able to gain such access. 

While we leave a full analysis of the modern automobile’s attack surface to Chapter 3, we briefly 

describe here the two “kinds” of vectors by which one might gain access to a car’s internal networks. 

The first is physical access. Someone—such as a mechanic, a valet, a person who rents a car, an ex-

friend, a disgruntled family member, or the car owner—can, with even momentary access to the 

vehicle, insert a malicious component into a car’s internal network via the ubiquitous OBD-II port 

(typically under the dash). The attacker may leave the malicious component permanently attached to 

the car’s internal network or, as we show in Section 2.5.3, they may use a brief period of connectivity 

to embed the malware within the car’s existing components and then disconnect. A similar entry 

point is presented by counterfeit or malicious components entering the vehicle parts supply chain—

either before the vehicle is sent to the dealer, or with a car owner’s purchase of an aftermarket third-

party component (such as a counterfeit FM radio).  

The other vector is via the numerous wireless interfaces implemented in the modern automobile. In 

our car we identified no fewer than five kinds of digital radio interfaces accepting outside input, 

some over only a short range and others over indefinite distance. We wish to be clear that 

vulnerabilities in such services are not purely theoretical. In Chapter 3, we demonstrate the ability to 

                                                 
3 This chapter is based on “Experimental Security Analysis of a Modern Automobile,” published and presented at the 
IEEE Symposium on Security and Privacy (Oakland) 2010. DOI: 10.1109/SP.2010.34 
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remotely compromise key ECUs in our car via externally-facing vulnerabilities, amplify the impact of 

these remote compromises using the results in this chapter, and ultimately monitor and control our 

car remotely over the Internet. 

2.2. Experimental Setup 

Our experimental analyses focus on two 2009 automobiles of the same make and model.4 We 

selected our particular vehicle because it contained both a large number of electronically-controlled 

components (necessitated by complex safety features such as anti-lock brakes and stability control) 

and a sophisticated telematics system. We purchased two vehicles to allow differential testing and to 

validate that our results were not tied to one individual vehicle. At times we also purchased 

individual replacement ECUs via third-party dealers to allow additional testing. Table 1 lists some of 

the most important ECUs in our car. 

2.2.1. Experimental Environments 

We experimented with these cars—and their internal components—in three principal settings: 

Bench. We physically extracted hardware from the car for analysis in our lab. As with most 

automobile manufacturers, our vehicles use a variant of the Controller Area Network (CAN) 

protocol for communicating among vehicle components (in our case both a high-speed and low-

speed variant as well as a variety of proprietary higher-layer network management services). Through 

this protocol, any component can be accessed and interrogated in isolation in the lab. Figure 1 

                                                 
4 We believe the risks identified in this chapter arise from the architecture of modern automobiles and not simply from 
design decisions made by any single manufacturer. For this reason, we have chosen not to identify the particular make 
and model used in our tests. We believe that other automobile manufacturers and models with similar features may have 
similar security properties. 
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shows an example setup, with the Electronic Brake Control Module (EBCM) hooked up to a power 

supply, a CAN-to-USB converter, and an oscilloscope. 

Component Functionality Low-Speed 
Comm. Bus 

High-Speed 
Comm. Bus 

ECM Engine Control Module 
Controls the engine using information from sensors to 
determine the amount of fuel, ignition timing, and other 
engine parameters. 

 ✔ 

EBCM Electronic Brake Control Module 
Controls the engine using information from sensors to 
determine the amount of fuel, ignition timing, and other 
engine parameters. 

 ✔ 

TCM Transmission Control Module 
Controls electronic transmission using data from 
sensors and from the ECM to determine when and how 
to change gears 

 ✔ 

BCM Body Control Module 
Controls various vehicle functions, provides information 
to occupants, and acts as a firewall between the two 
subnets. 

✔ ✔ 

Telematics Telematics Module 
Enables remote data communication with the vehicle via 
cellular link. 

✔ ✔ 

RCDLR Remote Control Door Lock Receiver 
Receives the signal from the car’s key fob to 
lock/unlock the doors and the trunk. It also receives 
data wirelessly from the Tire Pressure Monitoring 
System sensors. 

✔  

HVAC Heating, Ventilation, Air Conditioning 
Controls cabin environment 

✔  

SDM Inflatable Restraint Sensing and Diagnostic Module 
Controls airbags and seat belt pre-tensioners. 

✔  

IPC/DIC Instrument Panel Cluster/Driver Information Center 
Displays information to the driver about speed, fuel 
level, and various alerts about the car’s status. 

✔  

Radio Radio 
In addition to regular radio functions, funnels and 
generates most of the in cabin sounds (beeps, buzzes, 
chimes). 

✔  

TDM Theft Deterrent Module 
Prevents vehicle from starting without a legitimate key. 

✔  

Table 1:  Key Electronic Control Units (ECUs) within our cars, their roles, and which CAN buses they are on. 
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 Stationary Car. We conducted most of our in-car experiments with the car 

stationary. For both safety and convenience, we elevated the car on jack stands for 

experiments that required the car to be “at speed”; see Figure 3. 

 

Figure 2 shows the experimental setup inside the car. For these experiments, we 

connected a laptop to the car’s standard On-Board Diagnostics II (OBD-II) port. 

We used an off-the-shelf CAN-to-USB interface (the CANCapture ECOM cable) to 

interact with the car’s high-speed CAN network, and an Atmel AT90CAN128 

development board (the Olimex AVR-CAN) with custom firmware to interact with 

the car’s low-speed CAN network. The laptop ran our custom CARSHARK program 

(see below). 

Figure 1: Example bench setup within our lab. The 
Electronic Brake Control Module (EBCM) is hooked up 
to a power supply, a CAN-to-USB converter, and an 
oscilloscope. 

 

Figure  

Figure 2: Example experimental setup. The laptop is 
running our custom CARSHARK CAN network analyzer 
and attack tool. The laptop is connected to the car’s 
OBD-II port. 



Karl Koscher 
Securing Embedded Systems 

29 

 

 On the road. To obtain full experimental fidelity, for some of our results we 

experimented at speed while on a closed course. We exercised numerous 

precautions to protect the safety of both our car’s driver and any third parties. For 

example, we used the runway of a de-commissioned airport because the runway is 

long and straight, giving us additional time to respond should an emergency 

situation arise (see Figure 4).  

 

For these experiments, one of us drove the car while three others drove a chase car 

on a parallel service road; one person drove the chase car, one documented much of 

the process on video, and one wirelessly controlled the test car via an 802.11 ad hoc 

connection to a laptop in the test car that in turn accessed its CAN bus. 

2.2.2. The CARSHARK Tool 

To facilitate our experimental analysis, we wrote CARSHARK—a custom CAN bus analyzer and 

packet injection tool (see Figure 5). While commercially available CAN sniffers exist, none were 

appropriate for our use. First, we needed the ability to process and manipulate our vendor’s 

Figure 3: To test ECU behavior in a controlled 
environment, we immobilized the car on jack 
stands while mounting attacks. 

 

Figure 4: Road testing on a closed course (a de-commissioned 
airport runway). The experimented-on car, with our driver 
wearing a helmet, is in the background; the chase car is in the 
foreground. Photo courtesy of Mike Haslip. 
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proprietary extensions to the CAN protocol. Second, while we could have performed limited testing 

using a commercial CAN sniffer coupled with a manufacturer-specific diagnostic service tool, this 

combination still does not offer the flexibility to support our full range of attack explorations, 

including reading out ECU memory, loading custom code into ECUs, or generating fuzz-testing 

packets over the CAN interface. 

 

 

2.3. Intra-Vehicle Network Security 

Before experimentally evaluating the security of individual car components, we assess the security 

properties of the CAN bus in general, which we describe below. We do so by first considering 

Figure 5: Screenshot of the CARSHARK Interface. CARSHARK is being used to sniff the CAN bus. Values that have recently 
changed are highlighted in yellow. The left panel lists all recognized nodes on the high and low speed subnets of the 
CAN bus and has some action buttons. The demo panel on the right provides some proof-of-concept demos. 
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weaknesses inherent to the protocol stack and then evaluating the degree to which our car’s 

components comply with the manufacturer’s standards. 

2.3.1. CAN Bus 

There are a variety of protocols that can be implemented on the vehicle bus, but starting in 2008 all 

cars sold in the U.S. are required to implement the Controller Area Network (CAN) bus (ISO 11898 

[18]) for diagnostics. As a result, CAN—roughly speaking, a link-layer data protocol—has become 

the dominant communication network for in-car networks (e.g., used by BMW, Ford, GM, Honda, 

Volkswagen, Toyota, and others). 

A CAN packet (shown in Figure 6) does not include addresses in the traditional sense and instead 

supports a publish-and-subscribe communications model. The CAN ID header is used to indicate 

the packet type, and each packet is both physically and logically broadcast to all nodes, which then 

decide for themselves whether to process the packets. 

 

Figure 6: CAN packet structure. Extended frame format is shown; base frame format is similar. 
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The CAN variant for our car includes slight extensions to framing (e.g., on the interpretation of 

certain CAN ID’s) and two separate physical layers—a high-speed bus which is differentially-signaled 

and primarily used by powertrain systems and a low-speed bus (SAE J2411) using a single wire and 

supporting less-demanding components. When necessary, a gateway bridge can route selected data 

between the two buses. Finally, the manufacturer’s protocol standards define a range of services to 

be implemented by ECUs. 

2.3.2. CAN Security Challenges 

The underlying CAN protocol has a number of inherent weaknesses that are common to any 

implementation. Key among these: 

(1) Broadcast Nature 

Since CAN packets are both physically and logically broadcast to all nodes, a malicious component 

on the network can easily snoop on all communications or send packets to any other node on the 

network. CARSHARK leverages this property, allowing us to observe and reverse-engineer packets, as 

well as to inject new packets to induce various actions.  

(2) Fragility to Denial of Service 

The CAN protocol is extremely vulnerable to denial-of-service attacks. In addition to simple packet 

flooding attacks, CAN’s priority-based arbitration scheme allows a node to assert a “dominant” state 

on the bus indefinitely and cause all other CAN nodes to back off. While most controllers have logic 

to avoid accidentally breaking the network this way, adversarially-controlled hardware would not 

need to exercise such precautions.  
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(3) No Authenticator Fields 

CAN packets contain no authenticator fields—or even any source identifier fields—meaning that 

any component can indistinguishably send a packet to any other component. This means that any 

single compromised component can be used to control all of the other components on that bus, 

provided those components themselves do not implement defenses; we consider the security of 

individual components in Section 2.4. 

(4) Weak Access Control 

The protocol standards for our car specify a challenge-response sequence to protect ECUs against 

certain actions without authorization. A given ECU may participate in zero, one, or two challenge-

response pairs: 

 Reflashing and memory protection. One challenge-response pair restricts access to 

reflashing the ECU and reading out sensitive memory. By design, a service shop might 

authenticate with this challenge-response pair in order to upgrade the firmware on an ECU. 

 Tester capabilities. Modern automobiles are complex and thus diagnosing their problems 

requires significant support. Thus, a major use of the CAN bus is in providing diagnostic 

access to service technicians. In particular, external test equipment (the “tester”) must be 

able to interrogate the internal state of the car’s components and, at times, manipulate this 

state as well. Our car implements this capability via the DeviceControl service which is accessed 

in an RPC-like fashion directly via CAN messages. In our car, the second challenge-response 

pair described above is designed to restrict access to the DeviceControl services. 
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Under the hood, ECUs are supposed to use a fixed challenge (seed) for each of these challenge-

response pairs; the corresponding responses (keys) are also fixed and stored in these ECUs. The 

motivation for using fixed seeds and keys is to avoid storing the challenge-response algorithm in the 

ECU firmware itself (since that firmware could be read out if an external flash chip is used). Indeed, 

the associated manufacturer standard states “under no circumstances shall the encryption algorithm 

ever reside in the node.” (The tester, however, does have the ability to compute the key, either 

through knowledge of the algorithm or a connection to an Internet service.) Different ECUs should 

have different seeds and keys. Despite these apparent security precautions, to the best of our 

knowledge many of the seed-to-key algorithms in use today are known by the car tuning community.  

Furthermore, as described in the manufacturer’s protocol standards, the challenges (seeds) and 

responses (keys) are both just 16 bits. Because the ECUs are required to allow a key attempt every 

10 seconds, an attacker could crack one ECU key in a little over seven and a half days. If an attacker 

has access to the car’s network for this amount of time (such as through another compromised 

component), any reflashable ECU can be compromised. Multiple ECUs can be cracked in parallel, 

so this is an upper bound on the amount of time it could take to crack a key in every ECU in the 

vehicle. Furthermore, if an attacker can physically remove a component from the car, she can 

further reduce the time needed to crack a component’s key to roughly three and a half days by 

power-cycling the component every two key attempts (we used this approach to perform an 

exhaustive search for the Electronic Brake Control Module (EBCM) key on one of our cars, 

recovering the key in about a day and a half; see Figure 1 for our experimental setup).  

In effect, there are numerous realistic scenarios in which the challenge-response sequences defined 

in the protocol specification can be circumvented by a determined attacker. 
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(5) ECU Firmware Updates and Open Diagnostic Control 

Given the generic weaknesses with the aforementioned access control mechanisms, it is worth 

stepping back and reconsidering the benefits and risks associated with exposing ECUs to reflashing 

and diagnostic testing. 

First, the ability to do software-only upgrades to ECUs can be extremely valuable to vehicle 

manufacturers, who might otherwise have to bear the cost of physically replacing ECUs for trivial 

defects in the software. For example, one member of our research team received a letter from a car 

dealer, inviting us to visit an auto shop in order to upgrade the firmware on our personal car’s ECM 

to correctly meet certain emission requirements. However, it is also well known that attackers can 

use software updates to inject malicious code into systems [83]. The challenge-response sequences 

alone are not sufficient to protect against malicious firmware updates; in subsequent sections we 

investigate whether additional protection mechanisms are deployed at a higher level (such as the 

cryptographically signed firmware updates).  

Similarly, the DeviceControl service is a tremendously powerful tool for assisting in the diagnosis of 

a car’s components. But, given the generic weaknesses of the CAN access control mechanisms, the 

DeviceControl capabilities present enumerable opportunities to an attacker (indeed, a great number 

of our attacks are built on DeviceControl). In many ways this challenge parallels the security vs. 

functionality tension presented by debuggers in conventional operating systems; to be effective 

debuggers need to be able to examine and manipulate all state, but if they can do that they can do 

anything. However, while traditional operating systems generally finesse this problem via access-

control rights on a per-user basis, there is no equivalent concept in CAN. Given the weaknesses 
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with the CAN access control sequence, the role of “tester” is effectively open to any node on the 

bus and thus to any attacker. 

Worse, in Section 2.3.3 below we find that many ECUs in our car deviate from their own protocol 

standards, making it even easier for an attacker to initiate firmware updates or DeviceControl 

sequences—without even needing to bypass the challenge-response protocols. 

2.3.3. Deviations from Standards 

In several cases, our car’s protocol standards do prescribe risk-mitigation strategies with which 

components should comply. However, our experimental findings revealed that not all components 

in the car always follow these specifications. 

(1) Disabling Communications 

For example, the standard states that ECUs should reject the “disable CAN communications” 

command when it is unsafe to accept and act on it, such as when a car is moving. However, we 

experimentally verified that this is not actually the case in our car: we were able to disable 

communications to and from all the ECUs in Table 1 even with the car’s wheels moving at speed on 

jack stands and while driving on the closed road course. 

(2) Reflashing ECUs While Driving 

 The standard also states that ECUs should reject reflashing events if they deem them unsafe. In 

fact, it states: “The engine control module should reject a request to initiate a programming event if 

the engine were running.” However, we experimentally verified that we could place the Engine 

Control Module (ECM) and Transmission Control Module (TCM) into reflashing mode when our 
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car was at speed on jack stands. When the ECM enters this mode, the engine stops running. We also 

verified that we could place the ECM into reflashing mode while driving on the closed course.  

(3) Noncompliant Access Control: Firmware and Memory 

The standard states that ECUs with emissions, anti-theft, or safety functionality must be protected by 

a challenge-response access control protocol (as per Section 2.3.2(4)). Even disregarding the 

weakness of this protocol, we found it was implemented less broadly than we would have expected. 

For example, the telematics unit in our car, which are connected to the car’s CAN buses, use a 

hardcoded challenge and a hardcoded response common to all similar units, seemingly in violation 

of the standard (specifically, the standard states that “all nodes with the same part number shall 

NOT have the same security seed”). Even worse, the result of the challenge-response protocol is 

never used anywhere; one can reflash the unit at any time without completing the challenge-

response protocol. We verified experimentally that we can load our own code onto our car’s 

telematics unit without authenticating. 

Some access-controlled operations, such as reading sensitive memory areas (such as the ECU’s 

program or keys) may be outright denied if deemed too risky. For example, the standard states that 

an ECU can define memory addresses that “[it] will not allow a tester to read under any 

circumstances (e.g., the addresses that contain the security seed and key values).” However, in 

another instance of noncompliance, we experimentally verified that we could read the reflashing 

keys out of the BCM without authenticating, and the DeviceControl keys for the ECM and TCM 

just by authenticating with the reflashing key. We were also able to extract the telematics units’ entire 

memory, including their keys, without authentication. 
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(4) Noncompliant Access Control: Device Overrides  

Recall that the DeviceControl service is used to override the state of components. However, ECUs 

are expected to reject unsafe DeviceControl override requests, such as releasing the brakes when the 

car is in motion (an example mentioned in the standard). Some of these unsafe overrides are needed 

for testing during the manufacturing process, so those can be enabled by authenticating with the 

DeviceControl key. However, we found during our experiments that certain unsafe device control 

operations succeeded without authenticating; we summarize these in Tables 2, 3, and 4. 

Packet Result Manual 
Override 

At 
Speed 

Need to 
Unlock 

Tested on 
Runway 

07 AE ... 1F 87 Continuously Activates Lock 
Relay 

Yes Yes  No ✔ 

07 AE ... C1 A8 Windshield Wipers On 
Continuously 

No Yes No ✔ 

07 AE ... 77 09 Pops Trunk No Yes No ✔ 

07 AE ... 80 1B Releases Shift Lock Solenoid No Yes No  

07 AE ... D8 7D Unlocks All Doors Yes Yes No  

07 AE ... 9A F2 Permanently Activates Horn No Yes No ✔ 

07 AE ... CE 26 Disables Headlights in Auto 
Light Control 

Yes Yes No ✔ 

07 AE ... 34 5F All Auxiliary Lights Off No Yes No  

07 AE ... F9 46 Disables Window and Key Lock 
Relays 

No Yes No  

07 AE ... F8 2C Windshield Fluid Shoots 
Continuously 

No Yes No ✔ 

07 AE ... 15 A2 Controls Horn Frequency No Yes No  

07 AE ... 15 A2 Controls Dome Light 
Brightness 

No Yes No  

07 AE ... 22 7A Controls Instrument Brightness No Yes No  

07 AE ... 00 00 All Brake/Auxiliary Lights Off No Yes No ✔ 

07 AE ... 1D 1D Forces Wipers Off and Shoots 
Windshield Fluid Continuously 

Yes† Yes No ✔ 

Table 2: Body Control Module (BCM) DeviceControl Packet Analysis. This table shows BCM DeviceControl packets and 
their effects that we discoveredduring fuzz testing with one of our cars on jack stands. A X in the last column indicates that 
we also tested the corresponding packet with the driving on a runway. A “Yes” or “No” in the columns “Manual 
Override,” “At Speed,” and “Need to Unlock” indicate whether or not (1) the results could be manually overridden by a car 
occupant, (2) the same effect was observed with the car at speed (the wheels spinning at about 40 MPH and/or on the 
runway), and (3) the BCM needed to be unlocked with its DeviceControl key. 
†The highest setting for the windshield wipers cannot be disabled and serves as a manual override. 
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Packet Result Manual 
Override 

At 
Speed 

Need to 
Unlock 

Tested on 
Runway 

07 AE ... E5 EA Initiate Crankshaft Re-learn; 
Disturb Timing 

Yes Yes Yes  

07 AE ... CE 32 Temporary RPM Increase No Yes Yes ✔ 

07 AE ... 5E BD Disable Cylinders, Power 
Steering/Brakes 

Yes Yes Yes  

07 AE ... 95 DC Kill Engine, Cause Knocking on 
Restart 

Yes Yes Yes ✔ 

07 AE ... 8D C8 Grind Starter No Yes Yes  

07 AE ... 00 00 Increase Idle RPM No Yes Yes ✔ 

Table 3: Engine Control Module (ECM) DeviceControl Packet Analysis. This table is similar to Table 2. 

Packet Result Manual 
Override 

At 
Speed 

Need to 
Unlock* 

Tested on 
Runway 

07 AE ... 25 2B Engages Front Left Brake No Yes Yes ✔ 

07 AE ... 20 88 Engages Front Right 
Brake/Unlocks Front Left 

No Yes Yes ✔ 

07 AE ... 86 07 Unevenly Engages Right Brakes No Yes Yes ✔ 

07 AE ... FF FF Releases Brakes, Prevents 
Braking 

No Yes Yes ✔ 

Table 4: Electronic Brake Control Module (EBCM) DeviceControl Packet Analysis. This table is similar to Table 2. 
†The EBCM did not need to be unlocked with its DeviceControl key when the car was on jack stands. Later, when we 
tested these packets on the runway, we discovered that the EBCM rejected these commands when the speed of the car 
exceeded 5 MPH without being unlocked. 
 

Dest. 
ECU 

Packet Result Manual 
Override 

At Speed Tested on 
Runway 

IPC 00 00 ... 00 00 Falsify Speedometer Reading No Yes ✔ 

Radio 04 00 ... 00 00 Increase Radio Volume No Yes  

Radio 63 01 ... 39 00 Change Radio Display No Yes  

IPC 00 02 ... 00 00 
27 01 ... 65 00 

Change DIC Display No Yes  

BCM 04 03 Unlock Car† Yes Yes  

BCM 04 01 Lock Car† Yes Yes  

BCM 04 0B Remote Start Car† No No  

BCM 04 0E Car Alarm Honk† No No  

Radio 83 32 ... 00 00 Ticking Sound No Yes  

ECM AE 0E ... 00 7E Kill Engine No Yes  
Table 5: Other Example Packets. This table shows packets, their recipients, and their effects that we discovered via 
observation and reverse-engineering. In contrast to the DeviceControl packets in Tables 2, 3 and 4, these packets may be 
sent during normal operation of the car; we simply exploited the broadcast nature of the CAN bus to send them from 
CARSHARK instead. 
† As ordinarily done by the key fob. 
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(5) Imperfect Network Segregation 

The standard implicitly defines the high-speed network as more trusted than the low-speed network. 

This difference is likely due to the fact that the high-speed network includes the real-time safety-

critical components (e.g., engine, brakes), while the low-speed network commonly includes 

components less critical to safety, like the radio and the HVAC system. 

The standard states that gateways between the two networks must only be re-programmable from 

the high-speed network, presumably to prevent a low-speed device from compromising a gateway to 

attack the high-speed network. In our car, there are two ECUs which are on both buses and can 

potentially bridge signals: the Body Controller Module (BCM) and the telematics unit. While the 

telematics unit is not technically a gateway, it connects to both networks and can only be 

reprogrammed (against the spirit of the standard) from the low-speed network, allowing a low-speed 

device to attack the high-speed network through the telematics unit. We verified that we could 

bridge these networks by uploading code to the telematics unit from the low-speed network that, in 

turn, sent packets on the high-speed network. 

2.4. Component Security 

We now examine individual components on our car’s CAN network, and what an attacker could do 

by communicating with each one individually. We discuss compound attacks involving multiple 

components in Section 2.5. We omit certain details (such as complete packet payloads) to prevent 

would-be attackers from using our results directly. 
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2.4.1. Attack Methodology 

Recall that Table 1 gives an overview of our car’s critical components, their functionality, and 

whether they are on the car’s high-speed or low-speed CAN subnet. For each of these components, 

our methodology for formulating attacks consisted of some or all of the following three major 

approaches, summarized below. 

(1) Packet Sniffing and Targeted Probing 

To begin, we used CARSHARK to observe traffic on the CAN buses in order to determine how 

ECUs communicate with each other. This also revealed to us which packets were sent as we 

activated various components (such as turning on the headlights). Through a combination of replay 

and informed probing, we were able to discover how to control the radio, the Instrument Panel 

Cluster (IPC), and a number of the Body Control Module (BCM) functions, as we discuss below. 

This approach worked well for packets that come up during normal operation, but was less useful in 

mapping the interface to safety-critical powertrain components. 

(2) Fuzzing 

Much to our surprise, significant attacks do not require a complete understanding or reverse-

engineering of even a single component of the car. In fact, because the range of valid CAN packets 

is rather small, significant damage can be done by simple fuzzing of packets (i.e., iterative testing of 

random or partially random packets). Indeed, for attackers seeking indiscriminate disruption, fuzzing 

is an effective attack by itself. (Unlike traditional uses of fuzzing, we use fuzzing to aid in the reverse 

engineering of functionality.) 
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As mentioned previously, the protocol standards for our car define a CAN-based service called 

DeviceControl, which allows testing devices (used during manufacturing quality control or by 

mechanics) to override the normal output functionality of an ECU or reset some learned internal 

state. The DeviceControl service takes an argument called a Control Packet Identifier (CPID), which 

specifies a group of controls to override. Each CPID can take up to five bytes as parameters, 

specifying which controls in the group are being overridden, and how to override them. For 

example, the Body Control Module (BCM) exports controls for the various external lights 

(headlights, brake lights, etc.) and their associated brightness can be set via the parameter data.  

We discovered many of the DeviceControl functions for select ECUs (specifically, those controlling 

the engine (ECM), body components (BCM), brakes (EBCM), and heating and air conditioning 

(HVAC) systems) largely by fuzz testing. After enumerating all supported CPIDs for each ECU, we 

sent random data as an argument to valid CPIDs and correlated input bits with behaviors.  

(3) Reverse-Engineering 

For a small subset of ECUs (notably the telematics unit, for which we obtained multiple instances 

via Internet-based used parts resellers) we dumped their code via the CAN ReadMemory service and 

used a third-party debugger (IDA Pro) to explicitly understand how certain hardware features were 

controlled. This approach is essential for attacks that require new functionality to be added (e.g., 

bridging low and high-speed buses) rather than simply manipulating existing software capabilities. 

2.4.2. Stationary Testing 

We now describe the results of our experiments with controlling critical components of the car. All 

initial experiments were done with the car stationary, and in many cases immobilized on jack stands 
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for safety, as shown in Figure 3. Some of our results are summarized in Tables 2, 3, and 4 for 

fuzzing, and in Table 5 for other results. Tables 2, 3, and 4 indicate the packet that was sent to the 

corresponding module, the resulting action, and four additional pieces of information: (1) Can the 

result of this packet be overridden manually, such as by pulling the physical door unlock knob, 

pushing on the brakes, or some other action? A No in this column means that we have found no 

way to manually override the result. (2) Does this packet have the same effect when the car is at 

speed? For this column, “at speed” means when the car was up on jack stands but the throttle was 

applied to bring the wheel speed to 40 MPH. (3) Does the module in question need to be unlocked 

with its DeviceControl key before these packets can elicit results? The fourth (4) additional column 

reflects our experiments during a live road test, which we will turn to in subsection 2.4.3. Table 5 is 

similar, except that only the Kill Engine result is caused by a DeviceControl packet; we did not need 

to unlock the ECU before initiating this DeviceControl packet. 

All of the controlled experiments were initially conducted on one car, and then all were repeated on 

our second car (although road tests were only performed with the first car due to logistical 

constraints, e.g., finding a suitable closed course). 

(1) Radio  

One of the first attacks we discovered was how to control the radio and its display. We were able to 

completely control—and disable user control of—the radio, and to display arbitrary messages. For 

example, we were able to consistently increase the volume and prevent the user from resetting it. As 

the radio is also the component which controls various car sounds (e.g., turn signal clicks and seat 

belt warning chimes), we were also able to produce clicks and chimes at arbitrary frequencies, for 

various durations, and at different intervals. Table 5 presents some of these results. 
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(2) Instrument Panel Cluster  

We were able to fully control the Instrument Panel Cluster (IPC). We were able to display arbitrary 

messages, falsify the fuel level and the speedometer reading, adjust the illumination of instruments, 

and so on (also shown in Table 5). For example, Figure 7 shows the instrument panel display with a 

message that we set by sending the appropriate packets over the CAN network. We discuss a more 

sophisticated attack using our control over the speedometer in Section 2.5.1(1). 

 

Figure 7: Displaying an arbitrary message and a false speedometer reading on the Driver Information Center. Note that the 
car is in Park. 
 

(3) Body Controller 

Control of the BCM’s function is split across the low-speed and high-speed buses. By reverse-

engineering packets sent on the low-speed bus (Table 5) and by fuzzing packets on the high-speed 
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bus (as summarized in Table 2), we were able to control essentially all of the BCM’s functions. This 

means that we were able to discover packets to: lock and unlock the doors; jam the door locks by 

continually activating the lock relay; pop the trunk; adjust interior and exterior lighting levels; honk 

the horn (indefinitely and at varying frequencies); disable and enable the window relays; disable and 

enable the windshield wipers; continuously shoot windshield fluid; and disable the key lock relay to 

lock the key in the ignition. 

(4) Engine 

Most of the attacks against the engine were found by fuzzing DeviceControl requests to the ECM. 

These findings are summarized in Table 3. We were able to boost the engine RPM temporarily, 

disturb engine timing by resetting the learned crankshaft angle sensor error, disable all cylinders 

simultaneously (even with the car’s wheels spinning at 40 MPH when on jack stands), and disable 

the engine such that it knocks excessively when restarted, or cannot be restarted at all. Additionally, 

we can forge a packet with the “airbag deployed” bit set to disable the engine. Finally, we also 

discovered a packet that will adjust the engine’s idle RPM. 

(5) Brakes  

Our fuzzing of the Electronic Brake Control Module (see Table 4) allowed us to discover how to 

lock individual brakes and sets of brakes, notably without needing to unlock the EBCM with its 

DeviceControl key. In one case, we sent a random packet which not only engaged the front left 

brake, but locked it resistant to manual override even through a power cycle and battery removal. To 

remedy this, we had to resort to continued fuzzing to find a packet that would reverse this effect. 

Surprisingly, also without needing to unlock the EBCM, we were also able to release the brakes and 

prevent them from being enabled, even with car’s wheels spinning at 40 MPH while on jack stands. 
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(6) HVAC 

We were able to control the cabin environment via the HVAC system: we discovered packets to 

turn on and off the fans, the A/C, and the heat, in some cases with no manual override possible. 

(7) Generic Denial of Service 

In another set of experiments, we disabled the communication of individual components on the 

CAN bus. This was possible at arbitrary times, even with the car’s wheels spinning at speeds of 40 

MPH when up on jack stands. Disabling communication to/from the ECM when the wheels are 

spinning at 40 MPH reduces the car’s reported speed immediately to 0 MPH. Disabling 

communication to/from the BCM freezes the instrument panel cluster in its current state (e.g., if 

communication is disabled when the car is going 40 MPH, the speedometer will continue to report 

40 MPH). The car can be turned off in this state, but without re-enabling communication to/from 

the BCM, the engine cannot be turned on again. Thus, we were able to easily prevent a car from 

turning on. We were also able to prevent the car from being turned off: while the car was on, we 

caused the BCM to activate its ignition output. This output is connected in a wired-OR 

configuration with the ignition switch, so even if the switch is turned to off and the key removed, 

the car will still run. We can override the key lock solenoid, allowing the key to be removed while 

the car is in drive, or preventing the key from being removed at all.  

2.4.3. Road Testing 

Comprehensive and safe testing of these and other attacks requires an open area where individuals 

and property are at minimal risk. Fortunately, we were able to obtain access to the runway of a de-

commissioned airport to re-evaluate many of the attacks we had identified with the car up on jack 

stands. To maximize safety, we used a second, chase car in addition to the experimental vehicle; see 
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Figure 4. This allowed us to have all but one person outside of the experimented-on car. The 

experimented-on car was controlled via a laptop running CARSHARK and connected to the CAN bus 

via the OBD-II port. We in turn controlled this laptop remotely via a wireless link to another laptop 

in the chase car. To maintain the wireless connection between the laptops, we drove the chase car 

parallel to the experimented-on car, which also allowed us to capture these experiments on video. 

Our experimental protocol was as follows: we started the cars down the runway at the same time, 

transmitted one or more packets on the experimented-on car’s CAN network (indirectly through a 

command sent from the laptop in the chase car), waited for our driver’s verbal 

confirmation/description (using walkie-talkies to communicate between the cars), and then sent one 

or more cancellation packets. Had something gone wrong, our driver would have yanked on a cord 

attached to the CAN cable and disconnected the laptop from the OBD-II port. As we verified in 

preparatory safety tests, this disconnect would have caused the car to revert back to normal within a 

few seconds; fortunately, our driver never needed to make use of this precaution. 

Our allotted time at the airport prevented us from re-verifying all of our attacks while driving, and 

hence we experimentally re-tested a selected subset of those attacks; the final column of Tables 2, 3, 

4, and 5 contain a check mark for the experiments that we re-evaluated while driving. Most our 

results while driving were identical to our results on jack stands, except that the EBCM needed to be 

unlocked to issue DeviceControl packets when the car was traveling over 5 MPH. This a minor 

caveat from an actual attack perspective; as noted earlier, attack hardware attached to the car’s CAN 

bus can recover the credentials necessary to unlock the EBCM. Even at speeds of up to 40 MPH on 

the runway, the attack packets had their intended effect, whether it was honking the horn, killing the 

engine, preventing the car from restarting, or blasting the heat. Most dramatic were the effects of 
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DeviceControl packets to the Electronic Brake Control Module (EBCM)—the full effect of which 

we had previously not been able to observe. In particular, we were able to release the brakes and 

actually prevent our driver from braking; no amount of pressure on the brake pedal was able to 

activate the brakes. Even though we expected this effect, reversed it quickly, and had a safety 

mechanism in place, it was still a frightening experience for our driver. With another packet, we were 

able to instantaneously lock the brakes unevenly; this could have been dangerous at higher speeds. 

We sent the same packet when the car was stationary (but still on the closed road course), which 

prevented us from moving it at all even by flooring the accelerator while in first gear. 

These live road tests are effectively the “gold standard” for our attacks as they represent realistic 

conditions (unlike our controlled stationary environment). For example, we were never able to 

completely characterize the brake behavior until the car was on the road; the fact that the back 

wheels were stationary when the car was on jack stands provided additional input to the EBCM 

which resulted in illogical behavior. The fact that many of these safety-critical attacks are still 

effective in the road setting suggests that few DeviceControl functions are actually disabled when 

the car is at speed while driving, despite the clear capability and intention in the standards to do so. 

2.5. Multi-Component Interactions 

The previous section focused on assessing what an attacker might be able to do by controlling 

individual devices. We now take a step back to discuss possible scenarios in which multiple 

components are exploited in a composite attack. The results in this section emphasize that the issue 

of vehicle security is not simply a matter of securing individual components; the car’s network is a 

heterogeneous environment of interacting components, and must be viewed and secured as such.  
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2.5.1. Composite Attacks 

Numerous composite attacks exist. Below we describe a few that we implemented and 

experimentally verified.  

(1) Speedometer 

In one attack, we manipulate the speedometer to display an arbitrary speed or an arbitrary offset of 

the current speed—such as 10 MPH less than the actual speed (halving the displayed speed up to a 

real speed of 20 MPH in order to minimize obvious anomalies to the driver). This is a composite 

attack because it requires both intercepting actual speed update packets on the low speed CAN bus 

(sent by the BCM) and transmitting maliciously-crafted speed update packets with the falsified 

speed. Such an attack could, for example, trick a driver into driving too fast. We implemented this 

attack both as a CARSHARK module and as custom firmware for the AVR-CAN board. The custom 

firmware consisted of 105 lines of C code. We tested this attack by comparing the displayed speed 

of one of our cars with the car’s actual speed while driving on a closed course and measuring the 

speed with a radar gun. 

(2) Lights Out 

Our analysis in Section 2.4 uncovered packets that can disable certain interior and exterior lights on 

the car. We combined these packets to disable all of the car’s lights when the car is traveling at 

speeds of 40 MPH or more, which is particularly dangerous when driving in the dark. This includes 

the headlights, the brake lights, the auxiliary lights, the interior dome light, and the illumination of 

the instrument panel cluster and other display lights inside the car. This attack requires the lighting 

control system to be in the “automatic” setting, which is the default setting for most drivers. One 

can imagine this attack to be extremely dangerous in a situation where a victim is driving at high 
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speeds at night in a dark environment; the driver would not be able to see the road ahead, nor the 

speedometer, and people in other cars would not be able to see the victim car’s brake lights. We 

conducted this experiment on both cars while they were on jack stands and while driving on a closed 

course. 

(3) Self-Destruct  

Combining our control over various BCM components, we created a “Self-Destruct” demo in which 

a 60-second count-down is displayed on the Driver Information Center (the dash), accompanied by 

clicks at an increasing rate and horn honks in the last few seconds. In our demo, this sequence 

culminated with killing the engine and activating the door lock relay (preventing the occupant from 

using the electronic door unlock button). This demo, which we tested on both cars, required fewer 

than 200 lines of code added to CARSHARK, most of them for timing the clicking and the count-

down. One could also extend this sequence to include any of the other actions we learned how to 

control: releasing or slamming the brakes, extinguishing the lights, locking the doors, and so on. 

2.5.2. Bridging Internal CAN Networks 

Multiple components—including a wealth of aftermarket devices like radios—are attached to or 

could be attached to a car’s low-speed CAN bus. Critical components, like the EBCM brake 

controller, are connected to the separate high-speed bus, with the Body Control Module (BCM) 

regulating access between the two buses. One might therefore assume that the devices attached to 

the low-speed bus, including aftermarket devices, will not be able to adversely impact critical 

components on the high-speed bus.  
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Our experiments and analyses found this assumption to be false. Our car’s telematics unit is also 

connected to both buses. We were able to successfully reprogram our car’s telematics unit from a 

device connected to the car’s low-speed bus (in our experiments, a laptop running CARSHARK). 

Once reprogrammed, our telematics unit acts as a bridge, relaying packets from the low-speed bus 

onto the high-speed bus. This demonstrates that any device attached to the low-speed bus can 

bypass the BCM gateway and influence the operation of the safety-critical components. Such a 

situation is particularly concerning given the abundance of potential aftermarket add-ons available 

for the low-speed bus. Our complete attack consisted of only the following two steps: initiate a 

reprogramming request to the telematics unit via the low-speed bus; and then upload 1184 bytes of 

binary code (291 instructions) to the telematics unit’s RAM via the low-speed bus.  

2.5.3. Hosting and Wiping Code 

This method for injecting code into our car’s telematics unit, while sufficient for demonstrating that 

a low-speed CAN device could compromise a high-speed CAN device via the telematics unit, is also 

limiting. Specifically, while that attack code is running, the telematics service is not. A more 

sophisticated attack could implant malicious code within the telematics environment itself (either in 

RAM or by re-flashing the unit). Doing so would allow the malicious code to co-exist with the 

existing telematics software (we have built such code in the lab). The result provides the attack 

software with a rich UNIX-like environment (our car’s telematics unit uses the QNX Neutrino Real-

Time Operating System) and provides standard interfaces to additional hardware capabilities (e.g., 

GPS, audio capture, cellular link) and software libraries (e.g., OpenSSL). 

Hosting our own code within a car’s ECU enables yet another extension to our attacks: complicating 

detection and forensic evaluations following any malicious action. For example, the attack code on 
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the telematics unit could perform some action (such as locking the brakes after detecting a speed of 

over 80 MPH). The attack code could then erase any evidence of its existence on the device. If the 

attack code was installed per the method described in Section 2.5.2, then it would be sufficient to 

simply reboot the telematics unit, with the only evidence of something potentially amiss being the 

lack of telematics records during the time of the attack. If the attack code was implanted within the 

telematics environment itself, then more sophisticated techniques may be necessary to erase 

evidence of the attack code’s existence. In either case, such an attack could complicate (or even 

prevent) a forensic investigation of a crash scene. We have experimentally verified the efficacy of a 

safe version of this attack while driving on a runway: after the car reaches 20 MPH, the attack code 

on the telematics unit forces the car’s windshield fluid pump and wipers on. After the car stops, the 

attack code forces the telematics unit to reboot, erasing any evidence of its existence.  

2.6. Discussion and Conclusions 

Although we are not the first to observe that computerized automotive systems may present new 

risks, our empirical approach has given us a unique perspective to reflect on the actual vulnerabilities 

of modern cars as they are built and deployed today. We summarize these findings here and then 

discuss the complex challenges in addressing them within the existing automotive ecosystem.  

 Extent of Damage. Past work, e.g., [21], [22], [23], [24], [25], discuss potential risks to 

cyber-physical vehicles and thus we knew that adversaries might be able to do damage by 

attacking the components within cars. We did not, however, anticipate that we would be able 

to directly manipulate safety critical ECUs (indeed, all ECUs that we tested) or that we 

would be allowed to create unsafe conditions of such magnitude.  
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 Ease of Attack. In starting this project we expected to spend significant effort reverse-

engineering, with non-trivial effort to identify and exploit each subtle vulnerability. However, 

we found existing automotive systems—at least those we tested—to be tremendously fragile. 

Indeed, our simple fuzzing infrastructure was very effective and to our surprise, a large 

fraction of the random packets we sent resulted in changes to the state of our car. Based on 

this experience, we believe that a fuzzer itself is likely be a universal attack for disrupting 

arbitrary automobiles (similar to how the “crashme” program that fuzzed system calls was 

effective in crashing operating systems before the syscall interface was hardened). 

 Unenforced Access Controls. While we believe that standard access controls are weak, we 

were surprised at the extent to which the controls that did exist were frequently unused. For 

example, the firmware on an ECU controls all of its critical functionality and thus the 

standard for our car’s CAN protocol variant describes methods for ECUs to protect against 

unauthorized firmware updates. We were therefore surprised that we could load firmware 

onto some key ECUs, like our telematics unit (a critical ECU) and our Remote Control 

Door Lock Receiver (RCDLR), without any such authentication. Similarly, the protocol 

standard also makes an earnest attempt to restrict access to DeviceControl diagnostic 

capabilities. We were therefore also surprised to find that critical ECUs in our car would 

respond to DeviceControl packets without authentication first.  

 Attack Amplification. We found multiple opportunities for attackers to amplify their 

capabilities—either in reach or in stealth. For example, while the designated gateway node 

between the car’s low-speed and high-speed networks (the BCM) should not expose any 

interface that would let a low-speed node compromise the high-speed network, we found 

that we could maliciously bridge these networks through a compromised telematics unit. 

Thus, the compromise of any ECU becomes sufficient to manipulate safety-critical 
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components such as the EBCM. As more and more components integrate into vehicles, it 

may become increasingly difficult to properly secure all bridging points.  

 

Finally, we also found that, in addition to being able to load custom code onto an ECU via 

the CAN network, it is straightforward to design this code to completely erase any evidence 

of itself after executing its attack. Thus, absent any such forensic trail, it may be infeasible to 

determine if a particular crash is caused by an attack or not. While a seemingly minor point, 

we believe that this is in fact a very dangerous capability as it minimizes the possibility of any 

law enforcement action that might deter individuals from using such attacks.5  

In reflecting on our overall experiences, we observe that while automotive components are clearly 

and explicitly designed to safely tolerate failures—responding appropriately when components are 

prevented from communicating—it seems clear that tolerating attacks has not been part of the same 

design criteria. Given our results and the observations thus far, we consider below several potential 

defensive directions and the tensions inherent in them.  

To frame the following discussion, we once again stress that the focus of this chapter has been on 

analyzing the security implications if an attacker is able to maliciously compromise a car’s internal 

communications network, not on how an attacker might be able to do so. While we can 

demonstrably access our car’s internal networks via several means (e.g., via devices physically 

attached to the car’s internal network, such as a tiny “attack iPod” that we implemented, or via 

remote wireless vulnerabilities that we uncovered), we defer a complete consideration of entry 

points to Chapter 3. Although we consider some specific entry points below (such as malicious 

                                                 
5 As an aside, the lack of a strong forensic trail also creates the possibility for a driver to, after an accident, blame the 
car’s computers for driver error.  
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aftermarket components), our discussion below is framed broadly and seeks to be as agnostic as 

possible to the potential entry vector. 

2.6.1. Diagnostic and Reflashing Services 

Many of the vulnerabilities we discovered were made possible by weak or unenforced protections of 

the diagnostic and reflashing services. Because these services are never intended for use during 

normal operation of the vehicle, it is tempting to address these issues by completely locking down 

such capabilities after the car leaves manufacturing. While it is clearly unsafe for arbitrary ECUs to 

issue diagnostic and reflashing commands, locking down these capabilities ignores the needs of 

various stakeholders. For instance, individuals desire and should be able to do certain things to tune 

their own car (but not others). Similarly, how could mechanics service and replace components in a 

“locked-down” automotive environment? Would they receive special capabilities? If so, which 

mechanics and why should they be trusted? Consider the proposed “Motor Vehicle Owners’ Right 

to Repair Act” (H.R. 2057, 2009), which would require manufacturers to provide diagnostic 

information and tools to vehicle owners and service providers, and to provide information to 

aftermarket tool vendors that enables them to make functionally-equivalent tools. The motivation 

for this legislation is clear: encouraging healthy competition within the broader automotive industry. 

Even simple security mechanisms (including some we support, such as signed firmware updates) can 

be at odds with the vision of the proposed legislation. Indeed, providing smaller and independent 

auto shops with the ability to service and diagnose vehicles without letting adversaries co-opt those 

same abilities appears to be a fundamental challenge. 

The core problem is lack of access control for the use of these services. Thus, we see desirable 

properties of a solution to be threefold: arbitrary ECUs should not be able to issue diagnostic and 
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reflashing commands, such commands can only be issued with some validation, and physical access 

to the car should be required before issuing dangerous commands. 

2.6.2. Aftermarket Components 

Even with diagnostic and reflashing services secured, packets that appear on the vehicle bus during 

normal operation can still be spoofed by third-party ECUs connected to the bus. Today a modern 

automobile leaves the factory containing multiple third-party ECUs, and owners often add 

aftermarket components (like radios or alarms) to their car’s buses. This creates a tension that, in the 

extreme, manifests itself as the need to either trust all third-party components, or to lock down a 

car’s network so that no third-party components—whether adversarial or benign—can influence the 

state of the car.  

One potential intermediate (and backwards compatible) solution we envision is to allow owners to 

connect an external filtering device between an untrusted component (such as a radio) and the 

vehicle bus to function as a trusted mediator, ensuring that the component sends and receives only 

approved packets.  

2.6.3. Detection Versus Prevention  

More broadly, certain considerations unique to cyber-physical vehicles raise the possibility of 

security via detection and correction of anomalies, rather than prevention and locking down of 

capabilities. 

For example, the operational and economic realities of automotive design and manufacturing are 

stringent. Manufacturers must swiftly integrate parts from different suppliers (changing as needed to 
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second and third source suppliers) in order to quickly reach market and at low cost. Competitive 

pressures drive vendors to reuse designs and thus engenders significant heterogeneity. It is common 

that each ECU may use a different processor and/or software architecture and some cars may even 

use different communications architectures—one grafted onto the other to integrate a vendor 

assembly and bring the car to market in time. Today the challenges of integration have become 

enormous and manufacturers seek to reduce these overheads at all costs—a natural obstacle for 

instituting strict security policies. 

In addition, many of an automobile’s functions are safety critical, and introducing additional delay 

into the processing of, say, brake commands, may be unsafe. 

These considerations raise the possibility of exploring the tradeoff between preventing and 

correcting malicious actions: if rigorous prevention is too expensive, perhaps a quick reversal is 

sufficient for certain classes of vulnerabilities. Several questions come with this approach: Can 

anomalous behavior be detected early enough, before any dangerous packets are sent? Can a fail-safe 

mode or last safe state be identified and safely reverted to? It is also unclear what constitutes 

abnormal behavior on the bus in the first place, as attacks can be staged entirely with packets that 

also appear during normal vehicle operation. 

2.6.4. Toward Security 

These are just a few of many potential defensive directions and associated tensions. There are deep-

rooted tussles surrounding the security of cyber-physical vehicles, and it is not yet clear what the 

“right” solution for security is or even if a single “right” solution exists. More likely, there is a 

spectrum of solutions that each trade off critical values (like security vs. support for independent 



58 Security Analysis of Internal Automotive Interfaces 
 

auto shops). Thus, we argue that the future research agenda for securing cyber-physical vehicles is 

not merely to consider the necessary technical mechanisms, but to also inform these designs by what 

is feasible practically and compatible with the interests of a broader set of stakeholders. This work 

serves as a critical piece in the puzzle, providing the first experimentally guided study into the real 

security risks with a modern automobile. 
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Chapter 3: Security Analysis of External Automotive Interfaces6 

3.1. Introduction 

The threat model underlying Chapter 2 was met with significant, and justifiable, criticism (e.g., [84], 

[85], [86]). In particular, it was widely felt that presupposing an attacker’s ability to physically connect 

to a car’s internal computer network may be unrealistic. Moreover, it is often pointed out that 

attackers with physical access can easily mount non-computerized attacks as well (e.g., cutting the 

brake lines).7 

This situation suggests a significant gap in knowledge, and one with considerable practical import. 

To what extent are external attacks possible, to what extent are they practical, and what vectors 

represent the greatest risks? Is the etiology of such vulnerabilities the same as for desktop software 

and can we think of defense in the same manner? This chapter seeks to fill this knowledge gap 

through a systematic and empirical analysis of the remote attack surface of late model mass-

production sedan. 

In this chapter, we make four principal contributions:  

1. Threat model characterization. We systematically synthesize a set of possible external attack 

vectors as a function of the attacker’s ability to deliver malicious input via particular 

modalities: indirect physical access, short-range wireless access, and long-range wireless 

                                                 
6 This chapter is based on “Comprehensive Security Analysis of Automotive Attack Surfaces,” published and presented 
at the USENIX Security Symposium 2011.  
7 Perhaps the most pithy version of this critique comes from security expert Ken Tindell’s comments to The Register [86]: 
“I was utterly shocked to discover that apparently if you prise open an embedded system, reflash its program code, you can pretty much do 
anything to the I/O connected to the system,” he said. “Well knock me down with a feather.” … “The only risk they encountered was a 
theoretical one (viz. that a telematics system connected to the in-vehicle networking could hack the car). It’s highly theoretical because the 
challenges of hacking a car are vastly more than hacking a banking system.” 
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access. Within each of these categories, we characterize the attack surface exposed in current 

automobiles and their surprisingly large set of I/O channels.  

2. Vulnerability analysis. For each access vector category, we investigate one or more 

concrete examples in depth and assess the level of actual exposure. In each case we find the 

existence of practically exploitable vulnerabilities that permit arbitrary automotive control without 

requiring direct physical access. Among these, we demonstrate the ability to compromise a car via 

vulnerable diagnostics equipment widely used by mechanics, through the media player via 

inadvertent playing of a specially modified song in WMA format, via vulnerabilities in hands-

free Bluetooth functionality and, finally, by calling the car’s cellular modem and playing a 

carefully crafted audio signal encoding both an exploit and a bootstrap loader for additional 

remote-control functionality. 

3. Threat assessment. From these uncovered vulnerabilities, we consider the question of 

“utility” to an attacker: what capabilities does the vulnerability enable? Unique to this work, 

we study how an attacker might leverage a car’s external interfaces for post-compromise 

control. We demonstrate multiple post-compromise control channels (including TPMS 

wireless signals and FM radio), interactive remote control via the Internet and real-time data 

exfiltration of position, speed and surreptitious streaming of cabin audio (i.e., anything being 

said in the vehicle) to an outside recipient. Finally, we also explore potential attack scenarios 

and gauge whether these threats are purely conceptual or whether there are plausible motives 

that transform them into actual risks. In particular, we demonstrate complete capabilities for 

both theft and surveillance. 

4. Synthesis. On reflection, we noted that the vulnerabilities we uncovered have surprising 

similarities. We believe that these are not mere coincidences, but that many of these security 

problems arise, in part, from systemic structural issues in the automotive ecosystem. Given 
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these lessons, we make a set of concrete, pragmatic recommendations which significantly 

raise the bar for automotive system security. These recommendations are intended to 

“bridge the gap” until deeper architectural redesign can be carried out. 

3.2. Automotive Threat Models 

While past work has illuminated specific classes of threats to automotive systems—such as the 

technical security properties of their internal networks [21] [22] [23] [24] [25] [87]—we believe that it 

is critical for future work to place specific threats and defenses in the context of the entire 

automotive platform. In this section, we aim to bootstrap such a comprehensive treatment by 

characterizing the threat model for a modern automobile. Though we present it first, our threat 

model is informed significantly by the experimental investigations we carried out, which are 

described in subsequent sections. 

In defining our threat model, we distinguish between technical capabilities and operational capabilities. 

Technical capabilities describe our assumptions concerning what the adversary knows about its 

target vehicles as well as her ability to analyze these systems to develop malicious inputs for various 

I/O channels. For example, we assume that the adversary has access to an instance of the 

automobile model being targeted and has the technical skill to reverse engineer the appropriate 

subsystems and protocols (or is able to purchase such information from a third-party). Moreover, 

we assume she is able to obtain the appropriate hardware or medium to transmit messages whose 

encoding is appropriate for any given channel.8 When encountering cryptographic controls, we also 

                                                 
8 For the concrete vulnerabilities we will explore, the hardware cost for such capabilities is modest, requiring only 
commodity laptop computers, an audio card, a USB-to-CAN interface, and, in a few instances, an inexpensive, off-the-
shelf USRP software radio platform. 
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assume that the adversary is computationally bounded and cannot efficiently brute force large shared 

secrets, such as large symmetric encryption keys. In general, we assume that the attacker only has 

access to information that can be directly gleaned from examining the systems of a vehicle similar to 

the one being targeted.9 We believe these assumptions are quite minimal and mimic the access 

afforded to us when conducting this work. 

By contrast, operational capabilities characterize the adversary’s requirements in delivering a 

malicious input to a particular access vector in the field. In considering the full range of I/O 

capabilities present in a modern vehicle, we identify the qualitative differences in the challenges 

required to access each channel. These in turn can be roughly classified into three categories: indirect 

physical access, short-range wireless access, and long-range wireless access. In the remainder of this 

section we explore the threat model for each of these categories and within each we synthesize the 

“attack surface” presented by the full range of I/O channels present in today’s automobiles. Figure 8 

highlights where I/O channels exist on a modern automobile today. 

3.2.1. Indirect Physical Access 

Modern automobiles provide several physical interfaces that either directly or indirectly access the 

car’s internal networks. We consider the full physical attack surface here, under the constraint that 

the adversary may not directly access these physical interfaces herself but must instead work through 

some intermediary. 

 

                                                 
9 A question which we do not consider in this work is the extent to which the attack surface is “portable” between 
vehicle models from a given manufacturer. There is significant evidence that some such attacks are portable as 
manufacturers prefer to build a small number of underlying platforms that are specialized to deliver model-specific 
features, but we are not in a position to evaluate this question comprehensively. 
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Figure 8: Digital I/O channels appearing on a modern car. Colors indicate rough grouping of ECUs by function. 

(1) OBD-II 

The most significant automotive interface is the OBD-II port, federally mandated in the U.S., which 

typically provides direct access to the automobile’s key CAN buses and can provide sufficient access 

to compromise the full range of automotive systems [87]. While our threat model forbids the 

adversary from direct access herself, we note that the OBD-II port is commonly accessed by service 

personnel during routine maintenance for both diagnostics and ECU programming. 

Historically this access is achieved using dedicated handheld “scan” tools such as Ford’s NGS, 

Nissan’s Consult II and Toyota’s Diagnostic Tester which are themselves programmed via 
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Windows-based personal computers. For modern vehicles, most manufacturers have adopted an 

approach that is PC-centric. Under this model, a laptop computer interfaces with a “PassThru” 

device (typically directly via USB or WiFi) that in turn is plugged into the car’s OBD-II port. 

Software on the laptop computer can then interrogate or program the car’s ECUs via this device 

(typically using the standard SAE J2534 API). Examples of such tools include Toyota’s TIS, Ford’s 

VCM, Nissan’s Consult 3, and Honda’s HDS, among others. 

In both situations Windows-based computers directly or indirectly control the data to be sent to the 

automobile. Thus, if an adversary were able to compromise such systems at the dealership she could 

amplify this access to attack any cars under service. Such laptop computers are typically Internet-

connected (indeed, this is a requirement for some manufacturers’ systems), so traditional means of 

personal computer compromise could be employed. 

Further afield, electric vehicles may also communicate with external chargers via the charging cable. 

An adversary able to compromise the external charging infrastructure may thus be able to leverage 

that access to subsequently attack any connected automobile. 

(2) Entertainment: Disc, USB, and iPod 

The other important class of physical interfaces are focused on entertainment systems. Virtually all 

automobiles shipped today provide a CD player able to interpret a wide variety of audio formats 

(raw “Red Book” audio, MP3, WMA, and so on). Similarly, vehicle manufacturers also provide some 

kind of external digital multimedia port (typically either a USB port or an iPod/iPhone docking port) 

for allowing users to control their car’s media system using their personal audio player or phone. 

Some manufacturers have widened this interface further; BMW and Mini recently announced their 
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support for “iPod Out,” a scheme whereby Apple media devices will be able to control the display 

on the car’s console. 

Consequently, an adversary might deliver malicious input by encoding it onto a CD or as a song file 

and using social engineering to convince the user to play it. Alternatively, she might compromise the 

user’s phone or iPod out of band and install software onto it that attacks the car’s media system 

when connected. 

Taking over a CD player alone is a limited threat; but, for a variety of reasons, automotive media 

systems are not standalone devices. Indeed, many such systems are now CAN bus interconnected, 

either to directly interface with other automotive systems (e.g., to support chimes, certain hands-free 

features, or to display messages on the console) or simply to support a common maintenance path 

for updating all ECU firmware. Thus, counterintuitively, a compromised CD player can offer an 

effective vector for attacking other automotive components. 

3.2.2. Short-Range Wireless Access 

Indirect physical access has a range of drawbacks including its operational complexity, challenges in 

precise targeting, and the inability to control the time of compromise. Here we weaken the 

operational requirements on the attacker and consider the attack surface for automotive wireless 

interfaces that operate over short ranges. These include Bluetooth, Remote Keyless Entry, RFIDs, 

Tire Pressure Monitoring Systems, WiFi, and Dedicated Short-Range Communications. For this 

portion of the attack surface we assume that the adversary is able to place a wireless transmitter in 

proximity to the car’s receiver (between 5 and 300 meters depending on the channel). 
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(1) Bluetooth 

Bluetooth has become the de facto standard for supporting hands-free calling in automobiles and is 

standard in mainstream vehicles sold by all major automobile manufacturers. While the lowest level 

of the Bluetooth protocol is typically implemented in hardware, the management and services 

component of the Bluetooth stack is often implemented in software. In normal usage, the Class 2 

devices used in automotive implementations have a range of 10 meters, but others have 

demonstrated that this range can be extended through amplifiers and directional antennas [88]. 

(2) Remote Keyless Entry 

Today, all but entry-level automobiles shipped in the U.S. use RF-based remote keyless entry (RKE) 

systems to remotely open doors, activate alarms, flash lights and, in some cases, start the ignition (all 

typically using digital signals encoded over 315 MHz in the U.S. and 433 MHz in Europe). 

(3) Tire Pressure 

In the U.S., all 2007 model year and newer cars are required to support a Tire Pressure Monitoring 

System (TPMS) to alert drivers about under or over inflated tires. The most common form of such 

systems, so-called “Direct TPMS,” uses rotating sensors that transmit digital telemetry (frequently in 

similar bands as RKEs). 

(4) RFID car keys 

RFID-based vehicle immobilizers are now nearly ubiquitous in modern automobiles and are 

mandatory in many countries throughout the world. These systems embed an RFID tag in a key or 

key fob and a reader in or near the car’s steering column. These systems can prevent the car from 

operating unless the correct key (as verified by the presence of the correct RFID tag) is present. 



Karl Koscher 
Securing Embedded Systems 

67 

 

(5) Emerging Short-Range Channels 

A number of manufacturers have started to discuss providing 802.11 WiFi access in their 

automobiles, typically to provide “hotspot” Internet access via bridging to a cellular 3G/4G data 

link. In particular, Ford offers this capability in the 2012 Ford Focus. (Several 2011 models also 

provided WiFi receivers, but we understand they were used primarily for assembly line 

programming.) 

Finally, while not currently deployed, an emerging wireless channel is defined in the Dedicated 

Short-Range Communications (DSRC) standard, which is being incorporated into proposed 

standards for Cooperative Collision Warning/Avoidance and Cooperative Cruise Control. 

Representative programs in the U.S. include the Department of Transportation’s Cooperative 

Intersection Collision Avoidance Systems (CICAS-V) and the Vehicle Safety Communications 

Consortium’s VSC-A project. In such systems, forward vehicles communicate digitally to trailing 

cars to inform them of sudden changes in acceleration to support improved collision avoidance and 

harm reduction. 

(6) Summary 

For all of these channels, if a vulnerability exists in the ECU software responsible for parsing 

channel messages, then an adversary may compromise the ECU (and by extension the entire vehicle) 

simply by transmitting a malicious input within the automobile’s vicinity. 

3.2.3. Long-Range Wireless 

Finally, automobiles increasingly include long distance (greater than 1 km) digital access channels as 

well. These tend to fall into two categories: broadcast channels and addressable channels. 



68 Security Analysis of External Automotive Interfaces 
 

(1) Broadcast Channels 

Broadcast channels are channels that are not specifically directed towards a given automobile but 

can be “tuned into” by receivers on-demand. In addition to being part of the external attack surface, 

long-range broadcast mediums can be appealing as control channels (i.e., for triggering attacks) 

because they are difficult to attribute, can command multiple receivers at once, and do not require 

attackers to obtain precise addressing for their victims.  

The modern automobile includes a plethora of broadcast receivers for long-range signals: Global 

Positioning System (GPS),10  Satellite Radio (e.g., SiriusXM receivers common to late-model vehicles 

from Honda/Acura, GM, Toyota, Saab, Ford, Kia, BMW and Audi), Digital Radio (including the 

U.S. HD Radio system, standard on 2011 Ford and Volvo models, and Europe’s DAB offered in 

Ford, Audi, Mercedes, Volvo and Toyota among others), and the Radio Data System (RDS) and 

Traffic Message Channel (TMC) signals transmitted as digital subcarriers on existing FM-bands. 

The range of such signals depends on transmitter power, modulation, terrain, and interference. As 

an example, a 5 W RDS transmitter can be expected to deliver its 1.2 kbps signal reliably over 

distances up to 10 km. In general, these channels are implemented in an automobile’s media system 

(radio, CD player, satellite receiver) which, as mentioned previously, frequently provides access via 

internal automotive networks to other key automotive ECUs. 

                                                 
10 We do not currently consider GPS to be a practical access vector for an attacker because in all automotive 
implementations we are aware of, GPS signals are processed predominantly in custom hardware. By contrast, we have 
identified significant software-based input processing in other long-range wireless receivers. 
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(2) Addressable Channels 

Perhaps the most important part of the long-range wireless attack surface is that exposed by the 

remote telematics systems (e.g., Ford’s Sync, GM’s OnStar, Toyota’s SafetyConnect, Lexus’ Enform, 

BMW’s BMW Assist, and Mercedes-Benz’ mbrace) that provide continuous connectivity via cellular 

voice and data networks. These systems provide a broad range of features supporting safety (crash 

reporting), diagnostics (early alert of mechanical issues), anti-theft (remote track and disable), and 

convenience (hands-free data access such as driving directions or weather). 

These cellular channels offer many advantages for attackers. They can be accessed over arbitrary 

distance (due to the wide coverage of cellular data infrastructure) in a largely anonymous fashion, 

typically have relatively high bandwidth, are two-way channels (supporting interactive control and 

data exfiltration), and are individually addressable. 

3.2.4. Stepping Back 

There is a significant knowledge gap between these possible threats and what is known to date about 

automotive security. Given this knowledge gap, much of this threat model may seem far-fetched. 

However, in the next section we find quite the opposite. For each category of access vector we will 

explore one or two aspects of the attack surface deeply, identify concrete vulnerabilities, and explore 

and demonstrate practical attacks that are able to completely compromise our target automobile’s 

systems without requiring direct physical access. 

3.3. Vulnerability Analysis 

We now turn to our experimental exploration of the attack surface. We first describe the automobile 

and key components under evaluation and provide some context for the tools and methods we 
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employed. We then explore in-depth examples of vulnerabilities via indirect physical channels (CDs 

and service visits), short-range wireless channels (Bluetooth), and long-range wireless (cellular). 

Table 6 summarizes these results as well as our qualitative assessment of the cost (in effort) to 

discover and exploit these vulnerabilities. 

3.3.1. Experimental Context 

All of our experimental work focuses on a moderately priced late model sedan with the standard 

options and components. Between 100,000 and 200,000 of this model were produced in the year of 

manufacture. The car includes less than 30 ECUs comprising both critical drivetrain components as 

well as less critical components such as windshield wipers, door locks and entertainment functions. 

These ECUs are interconnected via multiple CAN buses, bridged where necessary. The car exposes 

a number of external vectors including the OBD-II port, media player, Bluetooth, wireless TPMS 

sensors, keyless entry, satellite radio, RDS, and a telematics unit. The last provides voice and data 

access via cellular networks, connects to all CAN buses, and has access to Bluetooth, GPS and 

independent hands-free audio functionality (via an embedded microphone in the passenger cabin). 

We also obtained the manufacturer’s standard “PassThru” device used by dealerships and service 

stations for ECU diagnosis and reprogramming, as well as the associated programming software. 

For several ECUs, notably the media and telematics units, we purchased a number of identical 

replacement units via on-line markets to accommodate the inevitable “bricking” caused by imperfect 

attempts at code injection. 
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Vulnerability 
Class 

Channel Implemented 
Capability 

User- 
Visible 

Scale Full 
Control 

Cost Section 

Direct 
Physical 

OBD-II 
port 

Plug attack 
hardware 
directly into car 
OBD-II port 

Yes Small Yes Low Chapter 2 

Indirect 
physical 

CD CD-based 
firmware 
update 

Yes Small Yes Medium 3.3.2(1) 

 CD Special song file 
(WMA) 

Yes* Medium Yes Medium-
High 

3.3.2(1) 

 PassThru WiFi or wired 
control 
connection to 
advertised 
PassThu 
devices 

No Small Yes Low 3.3.2(2) 

 PassThru WiFi or wired 
shell injection 

No Viral Yes Low 3.3.2(2) 

Short-range 
wireless 

Bluetooth Buffer overflow 
with paired 
Android phone 
or Trojan app 

No Large Yes Low-
Medium 

3.3.3 

 Bluetooth Sniff MAC 
address, brute 
force PIN, 
buffer overflow 

No Small Yes Low-
Medium 

3.3.3 

Long-range 
wireless 

Cellular Call car, 
authentication 
exploit, buffer 
overflow (using 
laptop) 

No Large Yes Medium-
High 

3.3.4 
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 Cellular Call car, 
authentication 
exploit, buffer 
overflow (using 
iPod with 
exploit audio 
file, earphones, 
and a 
telephone) 

No Large Yes Medium-
High 

3.3.4 

Table 6: Attack surface capabilities. The Visible to User column indicates whether the compromise process is visible to the 

user (the driver or the technician); we discuss social engineering attacks for navigating user detection in the body. For (∗), 
users will perceive a malfunctioning CD. The Scale column captures the approximate scale of the attack, e.g., the CD 
firmware update attack is small-scale because it requires distributing a CD to each target car. The Full Control column 
indicates whether this exploit yields full control over the component’s connected CAN bus (and, by transitivity, all the 
ECUs in the car). Finally, the Cost column captures the approximate effort to develop these attack capabilities. 

Building on our previous work, we first established a set of messages and signals that could be sent 

on our car’s CAN bus (via OBD-II) to control key components (e.g., lights, locks, brakes, and 

engine) as well as injecting code into key ECUs to insert persistent capabilities and to bridge across 

multiple CAN buses [87]. Note, such inter-bus bridging is critical to many of the attacks we explore 

since it exposes the attack surface of one set of components to components on a separate bus; we 

explain briefly here. Most vehicles implement multiple buses, each of which host a subset of the 

ECUs.11 However, for functionality reasons these buses must be interconnected to support the 

complex coupling between pairs of ECUs and thus a small number of ECUs are physically 

connected to multiple buses and act as logical bridges. Consequently, by modifying the “bridge” 

ECUs (either via a vulnerability or simply by reflashing them over the CAN bus as they are designed 

to be) an attacker can amplify an attack on one bus to gain access to components on another. 

Consequently, the result is that compromising any ECU with access to some CAN bus on our 

vehicle (e.g., the media player) is sufficient to compromise the entire vehicle. 

                                                 
11 In prior work we hypothesized that CAN buses were purposely separated for security reasons—one for safety-critical 
components like the radio and engine and the other for less important components such as a radio. Based on discussions 
with industry experts we have learned that this separation has until now often been driven by bandwidth and integration 
concerns and not necessarily security. 



Karl Koscher 
Securing Embedded Systems 

73 

 
Combining these ECU control and bridging components, we constructed a general “payload” that 

we attempted to deliver in our subsequent experiments with the external attack surface.12 To be 

clear, for every vulnerability we demonstrate, we are able to obtain complete control over the 

vehicle’s systems. We did not explore weaker attacks. 

For each ECU we consider, our experimental approach was to extract its firmware and then 

explicitly reverse engineering its I/O code and data flow using disassembly, interactive logging and 

debugging tools where appropriate. In most cases, extracting the firmware was possible directly via 

the CAN bus (this was especially convenient because in most ECUs we encountered, the flash chips 

are not socketed and while we were able to desolder and read such chips directly, the process was 

quite painful). 

Having the firmware in hand, we performed three basic types of analysis: raw code analysis, in situ 

observations, and interactive debugging with controlled inputs on the bench. In the first case, we 

identified the microprocessor (e.g., different components described in this chapter use System on 

Chip (SoC) variants of the PowerPC, ARM, Super-H and other architectures) and used the industry-

standard IDA Pro disassembler to map control flow and identify potential vulnerabilities, as well as 

debugging and logging options that could be enabled to aid in reverse engineering.13 In-situ 

observation with logging enabled allowed us to understand normal operation of the ECU and let us 

concentrate on potential vulnerabilities near commonly used code paths. Finally, ECUs were 

removed from the car and placed into a test harness on the bench from which we could carefully 

                                                 
12 In this work we experimented with two equivalent vehicles to ensure that our results were not tied to artifacts of a 
particular vehicle instance. 
13 IDA Pro does not support embedded architectures as well as x86 and consequently we needed to modify IDA Pro to 
correctly parse the full instruction set and object format of the target system. In one particular case (for the TPMS 
processor) IDA Pro did not provide any native support and we were forced to write a complete architecture module in 
order to use the tool. 
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control all inputs and monitor outputs. In this environment, interactive debuggers were used to 

examine memory and single step through vulnerable code under repeatable conditions. For one such 

device, the Super-H-based media player, we resorted to writing our own native debugger and 

exported a control and output interface through an unused serial UART interface we “broke out” 

off the circuit board. 

In general, we made use of any native debugging I/O we could identify. For example, like the media 

player, the telematics unit exposed an unused UART that we tapped to monitor internal debugging 

messages as we interactively probed its I/O channels. In other cases, we selectively rewrote ECU 

memory (via the CAN bus or by exploiting software vulnerabilities) or rewrote portions of the flash 

chips using the manufacturer-standard ECU programming tools. For the telematics unit, we wrote a 

new character driver that exported a command shell to its UNIX-like operating system directly over 

the OBD-II port to enable interactive debugging in a live vehicle. In the end, our experience was 

that although the ECU environment was somewhat more challenging than that of desktop operating 

systems, it was surmountable with dedicated effort.  

3.3.2. Indirect Physical Channels 

We consider two distinct indirect physical vectors in detail: the media player (via the CD player) and 

service access to the OBD-II port. We describe each in turn along with examples of when an 

adversary might be able to deliver malicious input. 

(1) Media Player  

The media player in our car is fairly typical, receiving a variety of wireless broadcast signals, 

including analog AM and FM as well as digital signals via FM sub-carriers (RDS, called RBDS in the 
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U.S.) and satellite radio. The media player also accepts standard compact discs (via physical 

insertion) and decodes audio encoded in a number of formats including raw Red Book audio as well 

as MP3 and WMA files encoded on an ISO 9660 filesystem. 

The media player unit itself is manufactured by a major supplier of entertainment systems, both 

stock units directly targeted for automobile manufacturers as well as branded systems sold via the 

aftermarket. Software running on the CPU handles audio parsing and playback requests, UI 

functions, and directly handles connections to the CAN bus. 

We found two vulnerabilities. First, we identified a latent update capability in the media player that 

will automatically recognize an ISO 9660-formatted CD with a particularly named file, present the 

user with a cryptic message and, if the user does not press the appropriate button, will then reflash 

the unit with the data contained therein.14 Second, knowing that the media player can parse complex 

files, we examined the firmware for input vulnerabilities that would allow us to construct a file that, 

if played, gives us the ability to execute arbitrary code.  

For the latter, we reverse-engineered large parts of the media player firmware, identifying the file 

system code as well as the MP3 and WMA parsers. In doing so, we documented that one of the file 

read functions makes strong assumptions about input length and moreover that there is a path 

through the WMA parser (for handling an undocumented aspect of the file format) that allows 

arbitrary length reads to be specified; together these allow a buffer overflow. 

                                                 
14 This is not the standard method that the manufacturer uses to update the media player software and thus we believe 
this is likely a vestigial capability in the supplier’s code base. 
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This particular vulnerability is not trivial to exploit. The buffer that is overflowed is not on the stack 

but in a BSS segment, without clear control data variables to hijack. Moreover, immediately after the 

buffer are several dynamic state variables whose values are continually checked and crash the system 

when overwritten arbitrarily. 

To overcome these and other obstacles, we developed a native in-system debugger that 

communicates over an unused serial port we identified on the media player. This debugger lets us 

dump and alter memory, set breakpoints, and catch exceptions. Using this debugger we were able to 

find several nearby dynamic function pointers to overwrite as well as appropriate contents for the 

intervening state variables. 

We modified a WMA audio file such that, when burned onto a CD, plays perfectly on a PC but 

sends arbitrary CAN packets of our choosing when played by our car’s media player. This 

functionality adds only a small space overhead to the WMA file. One can easily imagine many 

scenarios where such an audio file might find its way into a user’s media collection, such as being 

spread through peer-to-peer networks. 

(2) OBD-II 

The OBD-II port can access all CAN buses in the vehicle.  This is standard functionality because 

the OBD-II port is the principal means by which service technicians diagnose and update individual 

ECUs in a vehicle.  This process is intermediated by hardware tools (sold both by automobile 

manufacturers and third parties) that plug into the OBD-II port and can then be used to upgrade 

ECUs’ firmware or to perform a myriad of diagnostic tasks such as checking the diagnostic trouble 

codes (DTCs). 
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Since 2004, the Environmental Protection Agency has mandated that all new cars in the U.S. 

support the SAE J2534 “PassThru” standard—a Windows API that provides a standard, 

programmatic interface to communicate with a car’s internal buses. This is typically implemented as 

a Windows DLL that communicates over a wired or wireless network with the 

reprogramming/diagnostic tool (hereafter we refer to the latter simply as “the PassThru device”). 

The PassThru device itself plugs into the OBD-II port in the car and from that vantage point can 

communicate on the vehicle’s internal networks under the direction of software commands sent via 

the J2534 API.  In this way, applications developed independently of the particular PassThru device 

can be used for reprogramming or diagnostics. 

We studied the most commonly used PassThru device for our car, manufactured by a well-known 

automotive electronics supplier on an OEM basis (the same device can be used for all current makes 

and models from the same automobile manufacturer).  The device itself is roughly the size of a 

paperback book and consists of a popular SoC microprocessor running a variant of Linux as well as 

multiple network interfaces, including USB and WiFi—and a connector for plugging into the car’s 

OBD-II port.15 We discovered two classes of vulnerabilities with this device.  First, we find that an 

attacker on the same WiFi network as the PassThru device can easily connect to it and, if the 

PassThru device is also connected to a car, obtain control over the car’s reprogramming. Second, we 

find it possible to compromise the PassThru device itself, implant malicious code, and thereby affect 

a far greater number of vehicles. To be clear, these are vulnerabilities in the PassThru device itself, 

not the Windows software which normally communicates with it. We experimentally evaluated both 

vulnerability classes and elaborate on our analyses below. 

                                                 
15 The manufacturer’s dealership guidelines recommend the use of the WiFi interface, thereby supporting an easier 
tetherless mode of use, and suggest the use of link-layer protection such as WEP (or, in the latest release of the device, 
WPA2) to prevent outside access.   
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After booting up, the device periodically advertises its presence by sending a UDP multicast packet 

on each network to which it is connected, communicating both its IP address and a TCP port for 

receiving client requests.  Client applications using the PassThru DLL connect to the advertised port 

and can then configure the PassThru device or command it to begin communicating with the 

vehicle. Communication between the client application and the PassThru device is unauthenticated 

and thus depends exclusively on external network security for any access control.  Indeed, in its 

recommended mode of deployment, any PassThru device should be directly accessible by any 

dealership computer.  A limitation is that only a single application can communicate with a given 

PassThru device at a time, and thus the attacker must wait for the device to be connected but not in 

use. 

The PassThru device exports a proprietary, unauthenticated API for configuring its network state 

(e.g., for setting with which WiFi SSID it should associate).  We identified input validation bugs in 

the implementation of this protocol that allow an attacker to run arbitrary Bourne Shell commands 

via shell-injection, thus compromising the unit. The underlying Linux distribution includes programs 

such as telnetd, ftp, and nc, so having gained entry to the device via shell injection, it is trivial 

for the attacker to open access for inbound telnet connections (exacerbated by a poor choice of root 

password) and then transfer additional data or code as necessary. 

To evaluate the utility of this vulnerability and make it concrete, we built a program that combines 

all of these steps.  It contacts any PassThru devices being advertised (e.g., via their WiFi connectivity 

or if connected directly via Ethernet), exploits them via shell injection, and installs a malicious binary 

(modifying startup scripts so it is always enabled).  The malicious binary will send pre-programmed 

messages over the CAN bus whenever a technician connects the PassThru device to a car.  These 
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CAN packets install malware onto the car’s telematics unit. This malware waits for an environmental 

trigger (e.g., specific date and time) before performing some action.  Figure 9 gives a pictorial 

overview of this attack. 

 

Figure 9: PassThru-based shell-injection exploit scenario. The adversary gains access to the service center network (e.g., 
by compromising an employee laptop), then (1) compromises any PassThru devices on the network, each of which 
compromise any cars they are used to service (2 and 3), installing Trojan horses to be activated based on some 
environmental trigger.  The PassThru device also (4) spreads virally to other PassThru devices (e.g., if a device is loaned to 
other shops) which can repeat the same process (5). 

To summarize, an attacker who can connect to a dealership’s wireless network (e.g., via social 

engineering or a worm/virus a la Stuxnet [89]) is able to subvert any active PassThru devices that 

will in turn compromise any vehicles to which they connect. Moreover, the PassThru device is 

sufficiently general to mount the attack itself.  To demonstrate this, we have modified our program, 

turning it into a worm that actively seeks out and spreads to other PassThru devices in range. This 

attack does not require interactivity with the attacker and can be fully automated. 

3.3.3. Short-Range Wireless Channels: Bluetooth 

We now turn to short-range wireless channels and focus on one in particular: Bluetooth. Like many 

modern cars, ours has built-in Bluetooth capabilities which allow the occupants’ cell phones to 

connect to the car (e.g., to enable hands-free calling). These Bluetooth capabilities are built into our 

car’s telematics unit. 
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Through reverse engineering, we gained access to the telematics ECU’s UNIX-like operating system 

and identified the particular program responsible for handling Bluetooth functionality. By analyzing 

the program’s symbols we established that it contains a copy of a popular embedded implementation 

of the Bluetooth protocol stack and a sample hands-free application. However, the interface to this 

program and the rest of the telematics system appear to be custom-built. It is in this custom 

interface code that we found evidence of likely vulnerabilities. Specifically, we observed over 20 calls 

to strcpy, none of which were clearly safe. We investigated the first such instance in depth and 

discovered an easily exploitable unchecked strcpy to the stack when handling a Bluetooth 

configuration command.16 Thus, any paired Bluetooth device can exploit this vulnerability to execute 

arbitrary code on the telematics unit. 

As with our indirect physical channel investigations, we establish the utility of this vulnerability by 

making it concrete. We explore two practical methods for exploiting this attack and in doing so 

unearth two sub-classes of the short-range wireless attack vector: indirect short-range wireless attacks 

and direct short-range wireless attacks.  

(1) Indirect Short-Range Wireless Attacks 

The vulnerability we identified requires the attacker to have a paired Bluetooth device. It may be 

challenging for an attacker to pair her own device with the car’s Bluetooth system—a challenge we 

consider in the direct short-range wireless attacks discussion below. However, the car’s Bluetooth 

subsystem was explicitly designed to support hands-free calling and thus may naturally be paired 

with one or more smartphones. We conjecture that if an attacker can independently compromise 

                                                 
16 Because the size of the available buffer is small, our exploit simply creates a new shell on the telematics unit from 
which it downloads and executes more complex code from the Internet via the unit’s built-in 3G data capabilities. 
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one of those smartphones, then the attacker can leverage the smartphone as a stepping-stone for 

compromising the car’s telematics unit, and thus all the critical ECUs on the car. 

To assess this attack vector we implemented a simple Trojan Horse application on the HTC Dream 

(G1) phone running Android 2.1. The application appears to be innocuous but under the hood 

monitors for new Bluetooth connections, checks to see if the other party is a telematics unit (our 

unit identifies itself by the car manufacturer name), and if so sends our attack payload. While we 

have not attempted to upload our code to the Android Market, there is evidence that other Trojan 

applications have been successfully uploaded [90]. Additionally, there are known exploits that can 

compromise Android and iPhone devices that visit malicious Web sites. Thus our assessment 

suggests that smartphones can be a viable path for exploiting a car’s short-range wireless Bluetooth 

vulnerabilities.  

(2) Direct Short-Range Wireless Attacks 

We next assess whether an attacker can remotely exploit the Bluetooth vulnerability without access 

to a paired device. Our experimental analyses found that a determined attacker can do so, albeit in 

exchange for a significant effort in development time and an extended period of proximity to the 

vehicle.  

There are two steps precipitating a successful attack. First, the attacker must learn the car’s 

Bluetooth MAC address. Second, the attacker must surreptitiously pair his or her own device with 

the car. Experimentally, we find that we can use the open source Bluesniff [91] package and a USRP-

based software radio to sniff our car’s Bluetooth MAC address when the car is started in the 

presence of a previously paired device (e.g., when the driver turns on the car while carrying her cell 
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phone). We were also able to discover the car’s Bluetooth MAC address by sniffing the Bluetooth 

traffic generated when one of the devices, which has previously been paired to a car, has its 

Bluetooth unit enabled, regardless of the presence of the car—all of the devices we experimented 

with scanned for paired devices upon Bluetooth initialization. 

Given the MAC address, the other requirement for pairing is possessing a shared secret (the PIN). 

Under normal use, if the driver wishes to pair a new device, she puts the car into pairing mode via a 

well-documented user interface, and, in turn, the car provides a random PIN (regenerated each time 

the car starts or when the driver initiates the normal pairing mode) which is then shown on the 

dashboard and must then be manually entered into the phone. However, we have discovered that 

our car’s Bluetooth unit will respond to pairing requests even without any user interaction. Using a 

simple laptop to issue pairing requests, we are thus able to brute force this PIN at a rate of eight to 

nine PINs per minute, for an average of approximately 10 hours per car; this rate is limited entirely 

by the response time of the vehicle’s Bluetooth stack. We conducted three empirical trials against 

our car (resetting the car each time to ensure that a new PIN was generated) and found that we 

could pair with the car after approximately 13.5, 12.5, and 0.25 hours, respectively. The pairing 

process does not require any driver intervention and will happen completely obliviously to any 

person in the car.17 While this attack is time consuming and requires the car(s) under attack to be 

running, it is also parallelizable, e.g., an attacker could sniff the MAC addresses of all cars started in a 

parking garage at the end of a day (assuming the cars are pre-paired with at least one Bluetooth 

device). If a thousand such cars leave the parking garage in a day, then we expect to be able to brute 

force the PIN for at least one car within a minute. 

                                                 
17 As an artifact of how this “blind” pairing works, the paired device does not appear on the driver’s list of paired devices 
and cannot be unpaired manually. 
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After completing this pairing, the attacker can inject on the paired channel an exploit like the one we 

developed and thus compromise the vehicle. 

3.3.4. Long-Range Wireless Channels: Cellular 

Finally, we consider long-range wireless channels and, in particular, focus on the cellular capabilities 

built into our car’s telematics unit. Like many modern cars, our car’s cellular capabilities facilitate a 

variety of safety and convenience features (e.g., the car can automatically call for help if it detects a 

crash). However, long-range communications channels also offer an obvious target for potential 

attackers, which we explore here. In this section, we describe how these channels operate, how they 

were reverse engineered and demonstrate that a combination of software flaws conspire to allow a 

completely remote compromise via the cellular voice channel. We focus on adversarial actions that 

leverage the existing cellular infrastructure, not ones that involve the use of adversarially-controlled 

infrastructure; e.g., we do not consider man-in-the-middle attacks. 

(1) Telematics Connectivity 

For wide-area connectivity, our telematics unit is equipped with a cell phone interface (supporting 

voice, SMS and 3G data). While the unit uses its 3G data channel for a variety of Internet-based 

functions (e.g., navigation and location-based services), it relies on the voice channel for critical 

telematics functions (e.g., crash notification) because this medium can provide connectivity over the 

widest possible service area (i.e., including areas where 3G service is not yet available). To synthesize 

a digital channel in this environment, the manufacturer uses Airbiquity’s aqLink software modem to 

covert between analog waveforms and digital bits. This use of the voice channel in general, and the 

aqLink software in particular, is common to virtually all popular North American telematics 

offerings today. 
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In our vehicle, Airbiquity’s software is used to create a reliable data connection between the car’s 

telematics unit and a remote Telematics Call Center (TCC) operated by the manufacturer. In particular, 

the telematics unit incorporates the aqLink code in its Gateway program which controls both voice 

and data cellular communication. Since a single cellular channel is used for both voice and data, a 

simple, in-band, tone-based signaling protocol is used to switch the call into data mode. The in-cabin 

audio is muted when data is transmitted, although a tell-tale light and audio announcement is used to 

indicate that a call is in progress. For pure data calls (e.g., telemetry and remote diagnostics), the unit 

employs a so-called “stealth” mode which does not provide any indication that a call is in progress. 

(2) Reverse Engineering the aqLink Protocol 

Reverse engineering the aqLink protocol was among the most demanding parts of our effort, in 

particular because it demanded signal processing skills not part of the typical reverse engineering 

repertoire. For pedagogical reasons, we briefly highlight the process of our investigation. 

We first identified an in-band tone used to initiate “data mode.” Having switched to data mode, 

aqLink provides a proprietary modulation scheme for encoding bits. By calling our car’s telematics 

unit (the phone number is available via caller ID), initiating data mode with a tone generator and 

recording the audio signal that resulted, we established that the center frequency was roughly 700 Hz 

and that the signal was consistent with a 400 bps frequency-shift keying (FSK) signal. 

We then used LD_PRELOAD on the telematics unit to interpose on the raw audio samples as they 

left the software modem. Using this improved signal source, we hunted for known values contained 

in the signal (e.g., unique identifiers stamped on the unit). We did so by encoding these values as 

binary waveforms at hypothesized bitrates and cross-correlating them to the demodulated signal 
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until we were able to establish the correct parameters for demodulating digital bits from the raw 

analog signal. 

From individual bits, we then focused on packet structure. We were lucky to discover a debugging 

flag in the telematics software that would produce a binary log of all packet payloads transmitted or 

received, providing ground truth. Comparing this with the bitstream data, we discovered the details 

of the framing protocol (e.g., the use of half-width bits in the synchronization header) and were able 

to infer that data is sent in packets of up to 1024-bytes, divided into 22-byte frames which are 

divided into two 11-byte segments. We inferred that a CRC and ECC were both used to tolerate 

noise. Searching the disassembled code for known CRC constants quickly led us to determine the 

correct CRC to use, and the ECC code was identified in a similar fashion. For reverse-engineering 

the header contents, we interposed on the aqSend call (used to transmit messages), which allowed 

us to send arbitrary multi-frame packets and consequently infer the sequence number, multi-frame 

identifier, start of packet bit, ACK frame structure, etc.  

Given our derived protocol specification, we then implemented an aqLink-compatible software 

modem in C using a laptop with an Intel ICH3-based modem exposed as an ALSA sound device 

under Linux. We verified the modulation and formatting of our packet stream using the debugging 

log described earlier. 

Finally, layered on top of the aqLink modem is the telematics unit’s own proprietary command 

protocol that allows the TCC to retrieve information about the state of the car as well as to remotely 

actuate car functions. Once the Gateway program decodes a frame and identifies it as a command 

message, the data is then passed (via an RPC-like protocol) to another telematics unit program 



86 Security Analysis of External Automotive Interfaces 
 

which is responsible for supervising overall telematics activities and implementing the command 

protocol (henceforth, the Command program). We reverse-engineered enough of the Gateway and 

Command programs to identify a candidate vulnerability, which we describe below. 

The custom code that glues aqLink to the Command program assumes that packets will never 

exceed 100 bytes or so (presumably since well-formatted command messages are always smaller). 

This leads to another stack-based buffer overflow vulnerability that we verified is exploitable. 

Interestingly, because this attack takes place at the lowest level of the protocol stack, it completely 

bypasses the higher-level authentication checks implemented by the Command program (since these 

checks themselves depend on being able to send packets). 

There is one key gap preventing this exploit from working in practice. Namely, the buffer overflow 

we chose to focus on requires sending over 300 bytes to the Gateway program. Since the aqLink 

protocol has a maximum effective throughput of about 21 bytes a second, in the best case, the 

attack requires about 14 seconds to transmit. However, upon receiving a call, the Command 

program sends the caller an authentication request and, serendipitously, it requires a response within 

12 seconds or the connection is effectively terminated. Thus, we simply cannot send data fast 

enough over an unauthenticated link to overflow the vulnerable buffer. 

While we identified other candidate buffer overflows of slightly shorter length, we decided instead to 

focus on the authentication problem directly. 
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(3) Vulnerabilities in Authentication 

When a call is placed to the car and data mode is initiated, the first command message sent by the 

vehicle is a random, three byte authentication challenge packet and the Command program 

authentication timer is started. In normal operation, the TCC hashes the challenge along with a 64-

bit pre-shared key to generate a response to the challenge. When waiting for an authentication 

response, the Command program will not “accept” any other packet (this does not prevent our 

buffer overflow, but does prevent sending other command messages). If an incorrect authentication 

response is received, or a response is not received within the prescribed time limit, the Command 

program will send an error packet. When this packet is acknowledged, the unit hangs up (and it is 

not possible to send any additional data until the error packet is acknowledged). 

After several failed attempts to derive the shared key, we examined code that generates 

authentication challenges and evaluates responses. Both contained errors that together were 

sufficient to construct a vulnerability. 

First, we noted that the “random” challenge implementation is flawed.  In most situations, this 

nonce is static and identical on the two cars we tested. The key flaw is that the random number 

generator is re-initialized whenever the telematics unit starts—such as when a call comes in after the 

car has been off—and it is seeded each time with the same constant. Therefore, multiple calls to a 

car while it is off result in the same expected response. Consequently, an attacker able to observe a 

response packet (e.g., via sniffing the cellular link during a TCC-initiated call) will be able to replay 

that response in the future.  
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The code parsing authentication responses has an even more egregious bug that permits 

circumvention without observing a correct response. In particular, there is a flaw such that for 

certain challenges (roughly one out of every 256), carefully formatted but incorrect responses will be 

interpreted as valid. If the random number generation is not re-initialized (e.g., if the car is on when 

repeatedly called) then the challenge will change each time and 1 out of 256 trials will have the 

desired structure. Thus, after an average of 128 calls the authentication test can be bypassed, and we 

are able to transmit the exploit (again, without any indication to the driver). This attack is more 

challenging to accomplish when the car is turned off because the telematics unit can shut down 

when a call ends (hence re-initializing the random number generator) before a second call can reach 

it. 

To summarize, we identified several vulnerabilities in how our telematics unit uses the aqLink code 

that, together, allow a remote exploit. Specifically, there is a discrepancy between the set of packet 

sizes supported by the aqLink software and the buffer allocated by the telematics client code. 

However, to exploit this vulnerability requires first authenticating in order to set the call timeout 

value long enough to deliver a sufficiently long payload. This is possible due to a logic flaw in the 

unit’s authentication system that allows an attacker to blindly satisfy the authentication challenge 

after approximately 128 calls. 

(4) Concrete Realization 

We demonstrate and evaluate our attack in two concrete forms. First, we implemented an end-to-

end attack in which a laptop running our custom aqLink-compatible software modem calls our car 

repeatedly until it authenticates, changes the timeout from 12 seconds to 60 seconds, and then re-

calls our car and exploits the buffer overflow vulnerability we uncovered. The exploit then forces 
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the telematics unit to download and execute additional payload code from the Internet using the IP-

addressable 3G data capability. 

We also found that the entire attack can be implemented in a completely blind fashion—without any 

capacity to listen to the car’s responses. Demonstrating this, we encoded an audio file with the 

modulated post-authentication exploit payload and loaded that file onto an iPod. By manually dialing 

our car on an office phone and then playing this “song” into the phone’s microphone, we are able to 

achieve the same results and compromise the car. 

3.4. Remote Exploit Control 

Thus far we have described the external attack surface of an automobile and demonstrated the 

presence of vulnerabilities in a range of different external channels. An adversary could use such 

means to compromise a vehicle’s systems and install code that takes action immediately (e.g., 

unlocking doors) or in response to some environmental trigger (e.g., the time of day, speed, or 

location as exported via the onboard GPS). 

However, the presence of wireless channels in the modern vehicle qualitatively changes the range of 

options available to the adversary, allowing actions to be remotely triggered on demand, 

synchronized across multiple vehicles, or interactively controlled. Further, two-way channels permit 

both remote monitoring and data exfiltration. In this section, we broadly evaluate the potential for 

such post-compromise control, characterize these capabilities, and evaluate the capabilities via 

prototype implementations for TPMS, Bluetooth, FM RDS and Cellular channels. Our prototype 

attack code is delivered by exploiting one of the previously described vulnerabilities (indeed, any 
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exploit would work). Table 7 summarizes these results, again with our assessment of the effort 

required to discover and implement the capability. 

Channel Range Implemented 
Control / Trigger 

Exfiltration Cost 

TPMS (tire 
pressure) 

Short Predefined tire 
pressure 
sequences causes 
telematics unit to 
send CAN 
packets 

No Low-Medium 

TPM (tire 
pressure) 

Short TPMS trigger 
causes TPMS 
receiver to send 
CAN packets 

No Medium 

Bluetooth Short Presence of 
trigger MAC 
addresses allow 
remote control 

Yes* Low 

FM radio (RDS) Long FM RDS trigger 
causes radio to 
send CAN 
packets 

No Medium 

Cellular Global IRC command-
and-control 
(botnet) channel 
allows broadcast 
and single-vehicle 
command 

Yes Low 

Table 7: Implemented control and trigger channels. The Cost column captures the approximate effort to develop this post-
compromise control capability. The Exfiltration column indicates whether this channel can also be used to exfiltrate data. 

For (∗), we did not experimentally verify data exfiltration over Bluetooth. 
 

3.4.1. TPMS  

We constructed two versions of a TPMS-based triggering channel. One installs code on another 

ECU (the telematics ECU in our case, although any ECU would do) that monitors tire pressure 

signals as the TPMS ECU broadcasts them over the CAN bus. The presence of a particular tire 

pressure reading then triggers the payload; the trigger tire pressure value is not expected to be found 

in the wild but must instead be adversarially transmitted over the air. For our second example, the 
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attack reflashes the TPMS ECU via CAN and installs code onto it that will detect specific wireless 

trigger packets and, if detected, will send pre-programmed CAN packets directly over the car’s 

internal network. Both attacks required a custom TPMS packet generator (described below). The 

latter attack also required significant reverse engineering efforts (e.g., we had to write a custom IDA 

Pro module for disassembling the firmware, and we were highly memory constrained, so that the 

resulting attack firmware—hand-written object code—needed to re-use code space originally 

allocated for CRC verification, the removal of which did not impair the normal TPMS functionality). 

To experimentally verify these triggers, we reverse-engineered the 315 MHz TPMS modulation and 

framing protocol (far simpler than the aqLink modem) and then implemented a USRP software 

radio module that generates the appropriate wireless signals to activate the triggers. 

3.4.2. Bluetooth  

We modified the Bluetooth exploit code on the telematics ECU to pair, post compromise, with a 

special MAC address used by the adversary and accept her commands (either triggering existing 

functionality or receiving new functionality). We did not explore exfiltrating data via the two-way 

Bluetooth channel, but we see no reason why it would not be possible. 

3.4.3. FM RDS 

Using the CD-based firmware update attack we developed earlier, we reflashed the media player 

ECU to send a pre-determined set of CAN packets (our payload) when a particular “Program 

Service Name” message arrives over the FM RDS channel. We experimentally verified this with a 

low-power FM transmitter driven by a Pira32 RDS encoder; an attacker could communicate over 

much longer ranges using higher power. Table 7 lists the cost for this attack as medium given the 
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complexity of programming/debugging in the media player execution environment (we bricked 

numerous CD players before finalizing our implementation and testing on our car).  

3.4.4. Cellular 

We modified our telematics exploit payload to download and run a small (400 lines of C code) IRC 

client post-compromise. The IRC client uses the vehicle’s high bandwidth 3G data channel to 

connect to an IRC server of our choosing, self-identifies, and then listens for commands. 

Subsequently, any commands sent to this IRC server (from any Internet connected host) are in turn 

transmitted to the vehicle, parsed by the IRC client, and then transmitted as CAN packets over the 

appropriate bus. We further provided functionality to use this channel in both a broadcast mode 

(where all vehicles subscribed to the channel respond to the commands) or selectively (where 

commands are only accepted by the particular vehicle specified in the command). For the former, 

we experimentally verified this by compromising two cars (located over 1,000 miles apart), having 

them both join the IRC channel, and then both simultaneously respond to a single command (for 

safety, the command we sent simply made the audio systems on both cars chime). Finally, the high-

bandwidth nature (up to 1 Mbps at times) of this channel makes it easy to exfiltrate data. (No special 

software is needed since ftp is provided on the host platform.) To make this concrete we modified 

our attack code for two demonstrations: one that periodically “tweets” the GPS location of our 

vehicle and another that records cabin audio conversations and sends the recorded data to our 

servers over the Internet. 

3.5. Threat Assessment 

Thus far we have considered threats primarily at a technical level. In Chapter 2, we demonstrated 

that gaining access to a car’s internal network provides sufficient means for compromising all of its 
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systems (including lights, brakes, and engine). In this chapter, we have further demonstrated that an 

adversary has a practical opportunity to affect this compromise (i.e., via a range of external 

communications channels) without having physical access to the vehicle. However, real threats 

ultimately have some motive as well: a more concrete goal that is achieved by exploiting the capability 

to attack. 

This leaves unanswered the crucial question: Just how serious are the threats? Obviously, there are 

no clear ways to predict such things, especially in the absence of any known attacks in the wild. 

However, we can reason about how the capabilities we have identified can be combined in service to 

known goals. While one can easily envision hypothetical “cyber war” or terrorist scenarios (e.g., 

infect large numbers of cars en masse via war dialing or a popular audio file and then, later, trigger 

them to simultaneously disengage the brakes when driving at high speed), our lack of experience 

with such concerns means such threats are highly speculative. 

Instead, to gauge whether these threats create practical risks, we consider (briefly) how the raw 

capabilities we have identified might affect two scenarios closer to our experience: financially 

motivated theft and third-party surveillance. 

3.5.1. Theft 

Using any of our implemented exploit capabilities (CD, PassThru, Bluetooth, and cellular), it is 

simple to command a car to unlock its doors on demand, thus enabling theft. However, a more 

visionary car thief might realize that blind, remote compromise can be used to change both scale 

and, ultimately, business model. For example, instead of attacking a particular target car, the thief 

might instead try to compromise as many cars as possible (e.g., by war dialing). As part of this 



94 Security Analysis of External Automotive Interfaces 
 

compromise, he might command each car to contact a central server and report back its GPS 

coordinates and Vehicle Identification Number (VIN). The IRC network described in Section 3.4.4 

provides just this capability. The VIN in turn encodes the year, make and model of each car and 

hence its value. Putting these capabilities together, a car thief could “sift” through the set of cars, 

identify the valuable ones, find their location (and perhaps how long they have been parked) and, 

upon visiting a target of interest then issue commands to unlock the doors and so on. An enterprising 

thief might stop stealing cars himself, and instead sell his capabilities as a “service” to other thieves 

(“I’m looking for late model BMWs or Audis within a half mile of 4th and Broadway. Do you have 

anything for me?”) Careful readers may notice that this progression mirrors the evolution of desktop 

computer compromises: from individual attacks, to mass exploitation via worms and viruses, to 

third-party markets selling compromised hosts as a service.  

While the scenario itself is today hypothetical, we have evaluated a complete attack whereby a thief 

remotely disables a car’s security measures, allowing an unskilled accomplice to enter the car and 

drive it away. Our attack directs the car’s compromised telematics unit to unlock the doors, start the 

engine, disengage the shift lock solenoid (which normally prevents the car from shifting out of park 

without the key present), and spoof packets used in the car’s startup protocol (thereby bypassing the 

existing immobilizer anti-theft measures18). We have implemented this attack on our car. In our 

experiments the accomplice only drove the “stolen” car forward and backward because we did not 

want to break the steering column lock, though numerous online videos demonstrate how to do so 

using a screwdriver. (Other vehicles have the steering column lock under computer control.) 

                                                 
18 Past work on bypassing immobilizers required prior direct or indirect access to the car’s keys, e.g., Bono et al. [29] and 
Francillon et al. [28] 
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3.5.2. Surveillance 

We have found that an attacker who has compromised our car’s telematics unit can record data from 

the in-cabin microphone (normally reserved for hands-free calling) and exfiltrate that data over the 

connected IRC channel. Moreover, as said before, it is easy to capture the location of the car at all 

times and hence track where the driver goes. These capabilities, which we have experimentally 

evaluated, could prove useful to private investigators, corporate spies, paparazzi, and others seeking 

to eavesdrop on the private conversations within particular vehicles. Moreover, if the target vehicle 

is not known, the mass compromise techniques described in the theft scenario can also be brought 

to bear on this problem. For example, someone wishing to eavesdrop on Google executives might 

filter a set of compromised cars down to those that are both expensive and located in the Google 

parking lot at 10 a.m. The location of those same cars at 7 p.m. is likely to be the driver’s residence, 

allowing the attacker to identify the driver (e.g., via commercial credit records). We suspect that one 

could identify promising targets for eavesdropping quite quickly in this manner. 

3.6. Discussions and Synthesis 

Our research provides us with new insights into the risks with modern automotive computing 

systems. We begin here with a discussion of concrete directions for increasing security. We then turn 

to our now broadly informed reflections on why vulnerabilities exist today and the challenges in 

mitigating them. 

3.6.1. Implementation Fixes 

Our concrete, near-term recommendations fall into two familiar categories: restrict access and 

improve code robustness. Given the high interconnectedness of car ECUs necessary for desired 
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functionality, the solution is not to simply remove or harden individual components (e.g., the 

telematics unit) or create physically isolated sub-networks. 

We were surprised at the extent to which the car’s externally facing interfaces were open to 

unsolicited communications—thereby broadening the attack surface significantly. Indeed, very 

simple actions, such as not allowing Bluetooth pairing attempts without the driver’s first manually 

placing the vehicle in pairing mode, would have undermined our ability to exploit the vulnerability in 

the underlying Bluetooth code. Similarly, we believe the cellular interface could be significantly 

hardened by using inbound calls only to “wake up” the car (i.e., never for data transfer) and having 

the car itself periodically dial out for requests while it is active. Finally, use of application-level 

authentication and encryption (e.g., via OpenSSL) in the PassThru device’s proprietary configuration 

protocol would have prevented its code from being exploited as well. 

However, rather than assume the attack surface will not be breached, the underlying code platform 

should be hardened as well. These include standard security engineering best-practices, such as not 

using unsafe functions like strcpy, diligent input validation, and checking function “contracts” at 

module boundaries. As an additional measure of protection against less-motivated adversaries, we 

recommend removing all debugging symbols and error strings from deployed ECU code. 

We also encourage the use of simple anti-exploitation mitigations such as stack cookies and ASLR 

that can be easily implemented even for simple processors and can significantly increase the exploit 

burden for potential attackers. In the same vein, critical communications channels (e.g., Bluetooth 

and telematics) should have some amount of behavioral monitoring. The car should not allow 

arbitrary numbers of connection failures to go unanswered nor should outbound Internet 
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connections to arbitrary destinations be allowed. In cases where ECUs communicate on multiple 

buses, they should only be allowed to be reflashed from the bus with the smallest external attack 

surface. This does not stop all attacks where one compromised ECU affects an ECU on a bus with a 

smaller attack surface, but it does make such attacks more difficult. Finally, a number of the exploits 

we developed were also facilitated by the services included in several units. For example, we made 

extensive use of telnetd, ftp, and vi, which were installed on the PassThru and telematics 

devices. There is no reason for these extraneous binaries to exist in shipping ECUs, and they should 

be removed before deployment, as they make it easier to exploit additional connectivity to the 

platform.  

Finally, secure (authenticated and reliable) software updates must also be considered as part of 

automotive component design. 

3.6.2. Vulnerability Drivers 

While the recommendations in Section 3.6.1 can significantly increase the security of modern cars 

against external attacks and post-compromise control, none of these ideas are new or innovative. 

Thus, perhaps the more interesting question is why they have not been applied in the automotive 

environment already. Our findings and subsequent interactions with the automotive industry have 

given us a unique vantage point for answering this question. 

One clear reason is that automobiles have not yet been subjected to significant adversarial pressures. 

Traditionally automobiles have not been network-connected and thus manufacturers have not had 

to anticipate the actions of an external adversary; anyone who could get close enough to a car to 

modify its systems was also close enough to do significant damage through physical means. Our 
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automotive systems now have broad connectivity; millions of cars on the road today can be directly 

addressed via cellular phones and via the Internet. 

This is similar to the evolution of desktop personal computer security during the early 1990s. In the 

same way that connecting PCs to the Internet exposed extant vulnerabilities that previously could 

not conveniently be exploited, so too does increasing the connectivity of automotive systems. This 

analogy suggests that, even though automotive attacks do not take place today, there is cause to take 

their potential seriously. Indeed, much of our work is motivated by a desire that the automotive 

manufacturers should not repeat the mistakes of the PC industry—waiting for high profile attacks 

before making security a top priority [2] [3]. We believe many of the lessons learned in hardening 

desktop systems (such as those suggested earlier) can be quickly re-purposed for the embedded 

context. 

However, our experimental vulnerability analyses also uncover an ecosystem for which high levels of 

assurance may be fundamentally challenging. Reflecting upon our discovered vulnerabilities, we 

noticed interesting similarities in where they occur. In particular, virtually all vulnerabilities emerged 

at the interface boundaries between code written by distinct organizations. 

Consider for example the Airbiquity software modem, which appears to have been delivered as a 

completed component. We found vulnerabilities not in the software modem itself but rather in the 

“glue” code calling it and binding it to other telematics functions. It was here that the caller did not 

appear to fully understand the assumptions made by the component being called. 



Karl Koscher 
Securing Embedded Systems 

99 

 
We find this pattern repeatedly. The Bluetooth vulnerability arose from a similar misunderstanding 

between the callers of the Bluetooth protocol stack library and its implementers (again in glue code). 

The PassThru vulnerability arose in script-based glue code that tried to interface a proprietary 

configuration protocol with standard Linux configuration scripts. Even the media player firmware 

update vulnerability appears to have arisen because the manufacturer was unaware of the vestigial 

CD-based reflashing capability implemented in the code base. 

While interface boundary problems are common in all kinds of software, we believe there are 

structural reasons that make them particularly likely in the automotive industry. In particular, the 

automotive industry has adopted an outsourcing approach to software that is quite similar to that 

used for mechanical components: supply a specification and contract for completed parts. Thus, for 

many components the manufacturer does not do the software development and is only responsible 

for integration. We have found, for example, that different model years of ECUs with effectively the 

same functionality used completely different source code bases because they were provided by 

different suppliers. Indeed, we have come to understand that frequently manufacturers do not have 

access to the source code for the ECUs they contract for (and suppliers are hesitant to provide such 

code since this represents their key intellectual property advantage over the manufacturer). Thus, 

while each supplier does unit testing (according to the specification) it is difficult for the 

manufacturer to evaluate security vulnerabilities that emerge at the integration stage. Traditional 

kinds of automated analysis and code reviews cannot be applied and assumptions not embodied in 

the specifications are difficult to unravel. Therefore, while this outsourcing process might have been 

appropriate for purely mechanical systems, it is no longer appropriate for digital systems that have 

the potential for remote compromise.  
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Developing security solutions compatible with the automotive ecosystem is challenging and we 

believe it will require more engagement between the computer security community and automotive 

manufacturers (in the same way that our community engages directly with the makers of PC 

software today). 

3.7. Conclusions 

A modern automobile is controlled by tens of distinct computers physically interconnected with 

each other via internal (wired) buses and thus exposed to one another. A non-trivial number of these 

components are also externally accessible via a variety of I/O interfaces. Previous research showed 

that an adversary can seriously impact the safety of a vehicle if he or she is capable of sending 

packets on the car’s internal wired network [87], and numerous other papers have discussed 

potential security risks with future (wired and wireless) automobiles in the abstract or on the bench 

[26] [21] [22] [23] [24] [25]. To the best of our knowledge, however, we are the first to experimentally 

and systematically study the externally-facing attack surface of a car. 

Our experimental analyses focus on a representative, moderately priced sedan. We iteratively refined 

an automotive threat model framework and implemented complete, end-to-end attacks along key 

points of this framework. For example, we can compromise the car’s radio and upload custom 

firmware via a doctored CD, we can compromise the technicians’ PassThru devices and thereby 

compromise any car subsequently connected to the PassThru device, and we can call our car’s 

cellular phone number to obtain full control over the car’s telematics unit over an arbitrary distance. 

Being able to compromise a car’s ECU is, however, only half the story: The remaining concern is 

what an attacker is able to do with those capabilities. In fact, we show that a car’s externally-facing 

I/O interfaces can be used post-compromise to remotely trigger or control arbitrary vehicular 
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functions at a distance and to exfiltrate data such as vehicle location and cabin audio. Finally, we 

consider concrete, financially-motivated scenarios under which an attacker might leverage the 

capabilities we develop in this chapter.  

Our experimental results give us the unique opportunity to reflect on the security and privacy risks 

with modern automobiles. We synthesize concrete, pragmatic recommendations for future 

automotive security, as well as identify fundamental challenges. We disclosed our results to relevant 

industry and government stakeholders. While defending against known vulnerabilities does not 

imply the non-existence of other vulnerabilities, many of the specific vulnerabilities identified in this 

work have or will soon be addressed.
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Chapter 4: SURROGATES: Enabling Near-Real-Time Dynamic Analysis of 

Embedded Systems 

4.1. Introduction 

Embedded systems are becoming increasingly sophisticated, inter-connected, and pervasive, making the 

“Internet of Things” the hot new buzzword. Unfortunately, as demonstrated in the past few chapters, these 

systems have been repeatedly shown to be insecure. Even if manufacturers want to build secure products, 

the security tools available to embedded systems developers pale in comparison to those for traditional 

software. 

In particular, dynamic analysis techniques are challenging to apply due to the difficulty of instrumenting 

embedded systems. There may not be sufficient storage space for an instrumented binary or its 

measurements. There may not be sufficient processing power for instrumentation. There may not be a way 

to provide arbitrary data to the system—a necessity for fuzzing. Even if a system is technically capable of 

added instrumentation, firmware heterogeneity requires substantial work to customize instrumentation for 

each device. Whereas traditional software runs on top of a few standard OSes (with standard facilities that 

support instrumentation, such as a file system and dynamic linker), embedded systems may not even have an 

OS! The analyst must identify instrumentation points and storage available for measurements, and surgically 

insert code into the firmware. 

An alternative to placing instrumentation on the device itself is to run the system under emulation. 

However, this introduces its own set of challenges. Embedded systems are highly intertwined with their 

environment, through sensors, actuators, and other interfaces. Furthermore, the peripherals that control 

these interfaces can vary a great deal from one device to another. Faithfully emulating these peripherals 

again requires a great deal of work building customized solutions. 
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One approach to this problem, as described in Section 1.3.4, is to treat peripherals as unconstrained 

symbolic inputs. However, this relies on the analysis using symbolic execution. Unconstrained inputs can 

lead to state explosion, rendering this technique unsuitable for all but the smallest embedded systems. 

We take a different approach. Like Avatar [82] (also described in Section 1.3.4), we run the device’s 

firmware under emulation, directing peripheral I/O to the actual device, giving the emulated firmware a 

realistic view of its environment. This leverages the fact that many devices rely on a relatively small set of 

embedded processors; System-on-Chip (SoC) manufacturers typically license a well-known CPU core and 

add their own custom peripherals. Symbolic analysis techniques can further leverage concrete knowledge of 

system behavior to constrain the explored state space using a technique called concolic (a portmanteau of 

“concrete” and “symbolic”) execution. 

However, there are a number of challenges in making this approach work without being prohibitively slow. 

Avatar attempts to overcome these challenges by limiting the amount firmware executed under emulation. 

However, this raises a number of additional problems. The analyst must have sufficient insight into 

operation of the firmware to decide which parts are interesting enough to run under emulation. Emulated 

code still executes slowly, so this technique may not work with timing-sensitive devices (such as a medical 

device with a watchdog coprocessor.) Even when it does work, it does not provide a feasible way to do 

whole-system analysis. 

Instead of limiting the scope of emulated execution, we introduce a system called SURROGATES, which can 

emulate entire systems in near real-time. We accomplish this by using custom, low-latency hardware to bridge 

the PCI Express bus of the host to the device under test, as well as making a number of optimizations. In 



104 Surrogates: Enabling Near-Real-Time Dynamic Analysis of Embedded Systems 
 
doing so, we uncover and surmount new challenges in emulating entire systems, such as handling interrupts, 

DMA, and clocking changes. 

In this chapter, we make the following contributions: 1) We describe new hardware which enables near-real 

time emulation of arbitrary ARM-based embedded systems; 2) We discuss the engineering tradeoffs in 

building SURROGATES and provide comprehensive performance evaluations of the different techniques; 3) 

We describe and solve several issues that arise when emulating entire systems; and 4) We demonstrate the 

practicality of using our system on a diverse set of devices. 

The rest of this chapter is organized as follows. Section 4.2 discusses a number of options to improve the 

performance of Avatar, guiding the design of SURROGATES, which is introduced in Section 4.3. Finally, 

Section 4.4 evaluates the performance of SURROGATES, compares it to other solutions, and describes our 

experience applying our system to a variety of embedded systems.  

4.2. Towards Real-Time I/O 

Our system targets ARM processors, which are ubiquitous in medium-to-high complexity embedded 

devices, and communicates over the JTAG interface exposed on most microcontrollers. JTAG has several 

nice properties: 1) it is usually present in embedded devices for programming and testing during 

manufacturing; 2) JTAG pins are usually dedicated for programming and debugging, so it provides a 

communications channel that is not already being used for some other purpose during normal operation; 3) 

JTAG interfaces tend to support high transfer rates (e.g., ARM processors can support JTAG clock rates up 

to 1/6th of the core processor speed), limited primarily by off-chip factors such as connection length; and 4) 

existing JTAG tools can be used to read and write arbitrary memory addresses on a device, making it easy to 

rapidly develop an Avatar-like prototype. 



Karl Koscher 
Securing Embedded Systems 

105 

 
JTAG interfaces expose a simple, standard state machine that can be driven by a JTAG adapter. This state 

machine lets the JTAG adapter select, capture, and update either a JTAG instruction register or a data 

register. These registers act like shift registers; data is shifted in and out simultaneously. While there is only 

one instruction register, several different data registers (called scan chains) can be selected using the 

different JTAG instructions.  

As with Avatar, we first redirected emulated I/O to the target over JTAG using OpenOCD [92] (an open-

source JTAG program). We initially used OpenOCD’s built-in GDB protocol interface to initiate reads and 

writes and control the processor’s state. However, memory operations are extremely slow over regular 

JTAG interfaces. This is because these memory operations are injected into the CPU’s state. The JTAG 

interface must halt the CPU, transfer the CPU’s state, update the CPU’s state to perform a memory 

operation (including general purpose registers and the instruction register), single-step the CPU, read out the 

CPU’s state again if the memory operation was a read, restore the CPU’s original state, and resume the CPU. 

While exposing the CPU’s state over JTAG gives debuggers extremely powerful control over the system, its 

performance is poor for common tasks, such as transferring large segments of memory. To improve 

performance of these operations, CPU vendors have introduced additional scan chains that expose small 

communications channels between the JTAG interface and a program running on the CPU. For example, 

most ARM processors support the Debug Communications Channel (DCC), which is a 32-bit register 

accessible over a separate JTAG scan chain. JTAG interfaces can upload a small stub to the target and use 

the DCC to transfer large portions of memory efficiently. 

We leveraged the relatively fast DCC by developing a custom stub that runs on the target, accepting 

memory read and write commands from the host. A full discussion of our stub and DCC protocol is in 
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Section 4.3.2. We modified QEMU [93] to directly pass selected reads and writes as DCC commands to a 

Segger J-Link, a commercial, off-the-shelf USB JTAG interface.  

Unfortunately, we then encountered an unexpected bottleneck: USB transaction latency. USB requires all 

communications to be initiated by the host. This requires the host to periodically poll all devices for their 

status. The maximum polling rate is 1 kHz, which imposes a minimum latency of 1 ms on each USB 

transaction. While this may sound insignificant, it is several orders of magnitude slower than the latency of 

native I/O operations. Furthermore, because code execution may depend on the result of a memory read, 

this effectively places an upper-limit on the number of memory operations we can perform per second. This 

latency is a fundamental limitation of USB, which means that we must look at other interfaces to overcome 

it. 

4.3. Our Approach: SURROGATES 

4.3.1. The Hardware 

We decided to avoid all unknown latencies that might be lurking in other interfaces (such as Ethernet and 

Firewire) by developing a custom JTAG adapter that connects directly to the host’s PCI Express bus. Our 

goal was to transparently map the target’s entire 32-bit physical address space into the 64-bit address space 

of the emulator, such that peripheral I/O is simply a memory read or write by the emulator. While we could 

not quite achieve this for reasons explained later, our JTAG interface is directly memory-mapped into the 

emulator process, giving us extremely low-latency access to the target. We still use our DCC stub to 

communicate with the target processor. 
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Figure 10: Hardware components of our system. Left-to-right: An off-the-shelf FPGA ExpressCard, our JTAG adapter board, a JTAG 
breakout/debug board, and the device under test (a FriendlyARM Mini2440). FPGA development and debugging is done through 
another JTAG connection via the JTAG interface board, as well as a small logic analyzer connected to the JTAG breakout/debug 
board 

The PCI Express bus is not really a bus at all, but a packet-switched network. The root complex translates 

CPU reads and writes into PCI Express packets, which get routed by address. (Alternate routing schemes 

can be used, e.g., for device discovery and configuration.) Writes are posted transactions which complete 

immediately, while reads are unposted, which require a completion packet (usually with data) to be sent back 

to the root complex. Since PCI Express is a packet-switched network, devices can send packets to other 

devices, as well as perform DMA by sending packets to the root complex.  

Our hardware consists of an off-the-shelf PCI Express FPGA card (a Pico Computing E17FX70T), a 

custom FPGA-to-JTAG interface board, and a custom JTAG debugging board, as shown in Figure 10. The 
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FPGA-to-JTAG board shifts signal voltage levels between the FPGA and the target’s JTAG interface, and 

provides a standard ARM JTAG connector. It also provides a SATA-like, high-speed serial interface that 

can transport JTAG signals over a longer distance. The JTAG debugging board can convert this serial 

stream back to a standard JTAG interface, and provides an easy interface for a logic analyzer to examine the 

JTAG signals. 

Our implementation uses a Xilinx Virtex5 FX70T FPGA. While this FPGA is overkill for our purposes, it 

was available off-the-shelf as a PCI Express card, with the bulk of the PCI Express glue logic already 

developed by Xilinx and Pico Computing. Our application logic is implemented in approximately 1,100 lines 

of Verilog, excluding tests (which are approximately another 1,000 lines of Verilog). Device utilization is 

summarized in Table 8. 

 Used Available Utilization 

Slice Registers 6,503 44,800 14% 
Slice LUTs 6,615 44,800 14% 
Occupied Slices 3,397 11,200 30% 
BlockRAMs/FIFOs 11 148 7% 
Total Memory (KB) 306 5,328 5% 
Table 8: FPGA Resource Utilization 

We implement two PCIe-to-JTAG bridges in the FPGA. The first is a simple set of FIFOs for the TDI, 

TMS, and TDO signals, and supports generic JTAG operations, such as manipulating the processor’s state, 

dumping firmware, and uploading code. We extend OpenOCD to support this new interface and use it for 

some complicated-but-infrequent operations, such as resetting the target to a known state and uploading the 

stub. 

The second interface is designed specifically to work with our stub. The original intention was to provide a 

transparent mapping of the target’s 32-bit physical address space somewhere in the host’s 64-bit address 



Karl Koscher 
Securing Embedded Systems 

109 

 
space. Unfortunately, the PCI Express specification requires that all 64-bit address ranges be prefetchable—

meaning that reads are side-effect free. This is not the case for several embedded devices. For example, a 

UART controller may have a single, memory-mapped character register. A read from this register frees the 

UART to receive another byte. While some chipsets do allow 64-bit PCI Express regions to not be 

prefetchable, others do not. 

Of course, only a portion of the target’s 32-bit address space is mapped to peripherals. We considered 

transparently mapping a small view of the target’s address space, allowing the host to pick the address range 

that is mapped in. However, on a typical PC, there is a great deal of contention for I/O addresses below the 

4 GB boundary. This makes it difficult to map reasonably large 32-bit regions. Furthermore, devices 

typically use large peripheral address spaces (e.g., 320 MB on the Samsung S3C2440) even though they are 

sparsely populated. Since the host may have to keep remapping different views of the target’s address space, 

we decided to simply expose a few memory-mapped registers that initiate reads and writes to the target. 

These registers are described below and shown in Table 9. 

There are two address registers—one for reads, and one for writes, as well as a data register. When a write 

address and value are written, the FPGA initiates a write operation on the target through its DCC interface. 

When an address is written to the read address register, a read operation on the target is initiated. We also 

provide two FIFOs and control registers to allow the host to initiate optimized multiple-word transactions. 

The packet-based nature of PCI Express lets us stall reads of the data register if the target has not returned 

data yet. However, while the root complex is supposed to abort transactions that have timed out, our 

particular root complex does not. This means that if the target device does not respond (due to a bug, being 
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powered off, etc.), the host will freeze. Not even the NMI watchdog can recover the system. For this 

reason, we polled the FPGA for completion during development. 

The FPGA can be configured to continuously poll the target’s DCC register when there are no other 

pending read or write requests to check if an interrupt has occurred. Interrupts received from the stub are 

dispatched as interrupts to the host’s processor. This required a small modification to the PCI Express 

interface code. The preferred way of sending interrupts over PCI Express is to use Message Signaled Interrupts 

(MSIs), which are simply memory writes of a specific value to a specific address. Peripherals no longer have 

to share a total of four interrupt signals (as they did with PCI), and can in fact request multiple interrupts. 

This would appear to allow the hardware to send different interrupts to the host based on the target’s 

interrupt type. Unfortunately, Linux has limited support for multiple interrupts per peripheral, so the driver 

must poll the hardware to determine the interrupt type, as described in Section 4.3.3. 

4.3.2. The Stub 

Our stub targets most microcontrollers based on ARMv4T or newer cores. (Some newer ARM Cortex cores 

have different debugging options and capabilities.) This covers a wide range of interesting embedded 

devices, including hard drives, cellular baseband processors, medical devices, and automotive systems. The 

stub is implemented in approximately 400 lines of assembly and takes up only 768 bytes—which can be 

easily locked into the L1 instruction cache. The stub does not use any RAM for data or a stack, allowing the 

emulator to use all available RAM on the target if desired. 

Our stub uses a custom word-based protocol to efficiently perform memory operations as well as 

transferring status information, such as interrupts and interrupt masks. A summary of our protocol is listed 

in Table 10. 
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The stub provides handlers for standard (IRQ) and fast (FIQ) interrupts. Unlike Avatar, no de-multiplexing 

is attempted. When an interrupt is received, ARM processors update their Current Program Status Register 

(CPSR) to set the IRQ or FIQ Disable bit, preventing the handler from being interrupted itself. The old 

CPSR value is stored in the Saved Program Status Register (SPSR). Normally when the handler returns, the 

SPSR is copied back to the CPSR, re-enabling interrupts. However, we adjust the SPSR to keep interrupts 

disabled and deliver the interrupt type to the host. 

The host delivers the interrupt to the emulated processor when its CPSR is set to allow interrupts. The 

emulated firmware can then query the interrupt controller like any other peripheral to determine the 

source(s) of the interrupt. Note that multiple interrupt sources may be set in the interrupt controller—

setting the IRQ or FIQ Disable flag does not mask interrupts from being handled by the interrupt controller, 

but merely prevents them from being delivered to the CPU. The firmware acknowledges any interrupts it 

handles. When the emulated firmware finally re-enables interrupts, a CPSR update command is sent to the 

target to re-enable its interrupts. If the interrupt controller still has an unacknowledged interrupt active, it 

will once again interrupt the target CPU. This process repeats until no interrupts are active. The 

acknowledgement protocol prevents any race conditions where the emulated processor may miss an 

interrupt. However, since these race conditions can appear natively, all ARM firmware must implement this 

type of protocol. Some ARM SoCs provide vectored interrupts, where the firmware can specify different 

handlers for each interrupt source. However, since the ARM processor itself only supports two interrupt 

types, these vectors are normally implemented with a small handler in ROM, which queries the interrupt 

controller and jumps to the correct vector. This ROM can be emulated by our system like any other 

firmware, allowing us to support fully-vectored interrupts with no additional work. Extracting this ROM 

and other per-device setup is discussed in Section 4.4.2.
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Addr Description Value Specification 

000 Output 
Control 
Register 

Bits: 
31-11 10 9 8 7 6 5 4 3 2 1 0 

Reserved FORCEOUT OUTEN DBGACK DBGRQ nSRST TDO RTCK TCK TMS TDI nTRST 

FORCEOUT – Forces JTAG output pins to the values set in this register 
OUTEN – Enables JTAG output pins 

004 JTAG 
Stream 
Control 
Register 

Bits: 
31-27 26 25 24 23-0 

Reserved Stub Interface Reset Stub Interface Scan Enable Stream Enable Stream Length 

Stub Interface Reset – Reinitializes the stub interface logic 
Stub Interface Scan Enable – Causes the stub interface logic to poll the target for 
interrupts 
Stream Enable – Streams arbitrary JTAG data (used for non-stub communication) 
Stream Length – The number of bits to stream 

008 JTAG 
Clock 
Divisor 

Bits: 
31 30-0 

JTAG Clock Reset Divisor 

Divisor – The JTAG clock divisor. The JTAG clock speed is 125 MHz / (divisor – 
1). 

00C Read Stall 
Control 

Bits: 
31 30-0 

Read Stall Enable Read Timeout 

Read Stall Enable – Stalls reads from the Data Register until data is ready 
Read Timeout – Read stall timeout, in multiples of 8 ns 

x10 Read 
Address 

Target address to read. X is the transfer size: 1 = Byte, 2 = 16 bit word, 4 = 32 bit 
word. Writes to this register initiate a read from the target. 

x14 Write 
Address 

Target address to write. X is the transfer size: 1 = Byte, 2 = 16 bit word, 4 = 32 bit 
word. 

018 Data 
Register 

Data returned from a read, or data to be written. Ignored in bulk transfer mode. 
Writes to this register always initiate a write to the target.  

01C IRQ 
Register 

Bits: 
31-8 7 6 5 4 3-0 

Reserved FIQ IRQ Reserved Data Abort Reserved 

Reads from this register are unacknowledged exceptions received from the stub. 
Write a 1 back to the corresponding bit to acknowledge the exception. 

024 Target 
CPSR  

Writes to this register update the target’s CPSR to the given value. 

028 Bulk Data 
Length 

Bits: 
31-25 24 23-0 

Reserved BULKEN Number of elements (bytes, half-words, words) to send 

BULKEN – If set, the stub interface logic uses the bulk-optimized stub protocol, 
using the stub data FIFOs instead of the Data Register 

Table 9: FPGA Register Map 
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►1SXXXXXX 
►YYYYYYYY 
◄ZZZZZZZZ …  

Read XX words of size S (1, 2, or 4 bytes) from address YY. XX data elements 
ZZ are returned. 

►2S00XXXX 
►YYYYYYYY 

Write a single word XX of size S (1 or 2 bytes) to address YY.  

►3SXXXXXX 
►YYYYYYYY 
►ZZZZZZZZ … 

Write XX words of size S (1, 2, or 4 bytes) to address YY. XX data 
elements ZZ are sent. 

►50XXXXXX Set the CPSR register to XX. Primarily used to set and clear interrupt 
flags. 

… 
◄C347A5XX 
… 

An interrupt of type XX has occurred. This word can be sent at any 
time, including before a read response. In the unlikely case that a word 
C347A5XX is the result of a read operation, C347A500 is sent as an 
escape sequence. 

Table 10: Stub Protocol, as 32-bit hex words 

4.3.3. The Software 

We modified QEMU [93] to pass all MMIO to our hardware. We accomplished this by creating a 

new “surrogate” peripheral in QEMU, which owns the entire MMIO address space of the target and 

forwards MMIO operations to the hardware. We also created a new QEMU “system,” which selects 

the proper CPU, creates the necessary address spaces, initializes the surrogate peripheral, and loads 

the firmware to emulate. 

Initially we ran our system under Windows to take advantage of the existing drivers for the PCIe 

card. However, the drivers were optimized for streams of data, where latency is less of a concern 

that throughput. For example, transfers to the card would always use DMA, regardless of the 

transfer size. 

We ultimately re-implemented a simplified version of the driver on Linux (which was based on an 

open-source driver for Pico Computing’s other FPGA products). To avoid syscall overhead on 

every MMIO operation, we allowed applications to mmap the hardware’s register space, although in 

practice this did not significantly improve performance.  
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Finally, we extended the driver’s interrupt handler to deliver a signal any process that requests it 

whenever a non-DMA interrupt is received. A signal handler in QEMU delivers this interrupt to the 

virtual CPU. This provides a low-latency path for interrupts. 

4.4. Evaluation 

We evaluate our system against two metrics: its performance and the ease of configuring it to work 

with a new target device. 

4.4.1. Performance 

One of the key motivations for SURROGATES was to overcome the performance limitations of 

Avatar. While we had independently built a system very similar to Avatar, we were unable to use it 

against several devices of interest, such as medical devices, because proper operation of many 

devices relies on timing constraints that it could not meet (e.g., watchdogs on co-processors of a 

medical device). Therefore, we evaluate the several performance aspects of our system and compare 

it with prior approaches. 

To test raw MMIO performance, we measure the time needed to make 1,000,000 read or write 

requests to the SRAM of our S3C2440, connected to our hardware with via JTAG with a 4 MHz 

clock. We find that our raw MMIO performance is four orders of magnitude faster than what the 

Avatar authors reported, as shown in Table 11. We also measured the time taken to write to an 

FPGA register 1,000,000 times. Although accessing the FPGA through an mmap interface is about 

60% faster (1.4 µs vs. 2.2 µs), the overall performance gains of this additional optimization are 

negligible.  
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To evaluate whether this performance was reasonable to support near-real time emulation, we set 

out to boot Linux on the emulated S3C2440. To accurately measure the amount of time to boot, we 

replaced the init binary with one that simply contains a special illegal instruction. This instruction 

shuts down QEMU and reports performance statistics. We found that the kernel boots in about 27 

seconds. 25 seconds were spent performing I/O. However, during boot the kernel initializes all of 

the peripherals, so its I/O characteristics are different from typical usage of a booted system. During 

this time, approximately 126,000 reads and 87,000 writes were performed. To measure interactivity, 

we replaced the init binary with the busybox [94] version of /bin/sh. While file system accesses were 

noticeably slower than on the real hardware, the shell maintained subjectively good responsiveness. 

4.4.2. Portability 

This work was also motivated by our desire to build a dynamic analysis tool that does not require a 

great deal of work to apply to a new target. Therefore, we evaluate the ease of supporting new 

devices and discuss some of the new challenges encountered when supporting entire systems. We 

look at two devices as case studies: a FriendlyARM Mini2440 development board with a Samsung 

S3C2440 SoC, and a wireless medical device with an iMX21 SoC. 

When applying our system to a new target, the first task is to identify the target’s JTAG port. These 

are often connected to test pads on the target’s PCB, but sometimes they are brought out to 

dedicated connectors. As a development board, the FriendlyARM had a well-identified JTAG port. 

The wireless medical device, however, just had dozens of unmarked test points. We had previously 

identified the JTAG test points through manual analysis; however, today there are tools like the 

JTAGulator [95] that perform a brute-force search over all test points to find the JTAG signals. 
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Once JTAG connectivity is established, firmware of the device is downloaded. In some cases, the 

SoC itself has a small amount of firmware in ROM that is essential to proper operation of the SoC. 

For example, the ROM in the iMX21 performs interrupt vectoring, so if the firmware chooses to 

use vectored interrupts, the ROM must be emulated as well. 

A location for the stub must be identified. Different SoCs have varying requirements for locating 

interrupt and exception handlers. For example, on the S3C2440, exception handlers must be located 

at 0x00000000, while on the iMX21, we can place exception handlers anywhere in memory because 

the ROM at 0x00000000 uses an exception vector table stored in dedicated RAM as a level of 

indirection. On the S3C2440, we place our stub in the “NAND SteppingStone” SRAM at 

0x00000000. On the iMX21, we place our stub in the dedicated exception handler SRAM. 

Depending on the SoC, it may also be possible to lock the stub into the L1 cache, allowing one to 

virtually overlay address spaces that are normally not usable (such as ROMs at 0). MMUs, if 

available, may also be used to place the stub at arbitrary locations, but this is left for future work. 

Next, the layout of the target’s address space must be specified in QEMU. Usually this is as simple 

as defining the address regions of RAM, Flash, and peripherals. For the iMX21, an additional 

address space entry is created for the ROM. 

There are usually a few exceptions that must be carved out of the peripheral address space. These 

are for registers that, when updated, cause the target to lose sync with the host. For example, on the 

S3C2440, there are registers that control the core clock speed. When the clock speed is adjusted, the 

CPU is halted until the PLLs re-lock. JTAG communication fails until the CPU resumes execution. 

We can use dynamic analyses techniques to easily determine these exceptions. If we log all MMIO as 
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the system boots, the last MMIO operation before the system halts is usually responsible for the 

failure. The SoC datasheet can be consulted for the effect of the corresponding register so that an 

intelligent exception can be made. 

 MMIO Operations Per Second 

Avatar 5 (over serial debug port at 38400 bps) 
Our system w/ syscalls 17172 writes / 15761 reads (over 4 MHz JTAG) 
Our system w/ mmap 17174 writes / 15772 reads (over 4 MHz JTAG) 
Table 11: Raw MMIO Performance 

Finally, different SoCs have drastically varying DMA controllers, some of which must be emulated 

for proper emulation of the device. For example, the S3C2440 has a general-purpose DMA 

controller as well as a dedicate LCD DMA controller. Neither are required to be emulated to boot 

Linux. For the iMX21, we emulated the LCD DMA controller registers in QEMU with only eight 

additional lines of C. This emulated DMA controller simply copies the specified video memory from 

the emulator to the same location on the target, and then passes the DMA request on to the real 

DMA controller to transfer the data to the LCD. 

As an alternative to emulating different DMA controllers, we can treat the emulator’s memory as 

another level of cache. DMA controllers typically cannot access the L1 or L2 caches, so any data 

involved in a transfer must reside in main memory. We can treat intentional cache invalidations as an 

indication that the memory was or will be used in a DMA transfer and flush the affected memory to 

or from the target. (Note that the stub always runs with the target’s data caches off, so flushes from 

the emulator to the target will go directly to main memory). Unfortunately, this approach only works 

with firmware that turns the data caches on, which was not the case with our wireless medical 

device. 
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Overall, we find it straightforward to apply our system to different devices, requiring far less work 

than building an emulator for all of the target’s hardware. There is some manual configuration 

involved, but this is true of most dynamic analysis tools. 
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Chapter 5: Conclusions 

Mark Weiser’s vision of ubiquitous computing [96] has not only arrived, it has been surpassed, with 

computers now being far more embedded and ubiquitous than originally envisioned. Unfortunately, 

this rapid computerization of everyday things has relegated security mostly to an afterthought. 

To understand the current state and challenges of embedded systems security, we thoroughly 

analyzed a modern automobile, a complex cyber-physical system incorporating dozens of embedded 

systems of varying complexity. We find that automotive systems, while tolerant of accidental 

failures, do not withstand malicious, intentional failures. In particular, we find that with access to a 

car’s internal networks, it is relatively straight-forward for an attacker to take complete control of 

critical vehicle systems, including lights, locks, the engine, and brakes.  

Compounding these problems is the multitude of vulnerable entry points into automotive networks. 

We systematically evaluate the attack surface of modern vehicles by first analyzing potential entry 

points across different classes of access (indirect physical, short-range wireless, and long-range 

wireless), and then demonstrating real vulnerabilities for each of these classes. In particular, we show 

complete vehicle compromises through a malicious media file, an infected dealer maintenance tool, 

Bluetooth, and cellular connections. 

We find that these embedded systems are plagued with “old” vulnerabilities, such as buffer 

overflows. While there are tools to help discover and mitigate these types of vulnerabilities, there are 

a number of challenges in applying these tools to embedded systems. In particular, dynamic analysis 

tools rely on instrumenting program execution, which is difficult on embedded systems. 
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We have built and evaluated a system, called SURROGATES, that enables dynamic analysis of 

embedded systems at an unprecedented scale. Our approach is similar to Avatar; we run the system 

under emulation in QEMU and redirect I/O to the target hardware to guide execution and provide 

the firmware with a faithful reproduction of its environment. However, by using a custom FPGA 

bridge between the host and target, we enable near-real time emulation of the target system, allowing 

us to analyze systems of far greater complexity. 

While our system enables dynamic analysis of embedded systems at an unprecedented scale, it does 

not necessarily scale any further. Systems like SAGE depend on the ability to massively parallelize 

state space searches. This is easy with well-defined OS APIs, but our approach depends on an 

individual physical system to guide execution. However, it may be possible to learn models of the 

hardware based on execution traces collected with our system. This would enable dynamic analysis 

systems to run largely independent of physical hardware, allowing it to scale up massively. The 

models do not necessarily need to be 100% accurate; as long as they reasonably constrain the state 

space search, it is feasible to explore several potentially vulnerable code paths. When a potentially 

vulnerable code path is found, it can be verified against the actual hardware using our system. 

Given the vulnerabilities uncovered in Chapter 3, we believe a system like SAGE would be quite 

effective at identifying many low-hanging vulnerabilities in embedded systems. By enabling near-

real-time instrumentation of embedded systems, our work provides a critical piece in enabling 

sophisticated dynamic analysis tools to work against embedded systems. 
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