
c©Copyright 2014

Anthony Fader

Open Question Answering

Anthony Fader

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2014

Reading Committee:

Oren Etzioni, Chair

Luke Zettlemoyer

Daniel S. Weld

Program Authorized to Offer Degree:
Computer Science and Engineering

University of Washington

Abstract

Open Question Answering

Anthony Fader

Chair of the Supervisory Committee:
Professor Oren Etzioni

Computer Science and Engineering

For the past fifteen years, search engines like Google have been the dominant way of finding

information online. However, search engines break down when presented with complex

information needs expressed as natural language questions. Further, as more people access

the web from mobile devices with limited input/output capabilities, the need for software

that can interpret and answer questions becomes more pressing. This dissertation studies

the design of Open Question Answering (Open QA) systems that answer questions by

reasoning over large, open-domain knowledge bases.

Open QA systems are faced with two challenges. The first challenge is knowledge ac-

quisition: How does the system acquire and represent the knowledge needed to answer

questions? I describe a simple and scalable information extraction technique that auto-

matically constructs an open-domain knowledge base from web text. The second challenge

that Open QA systems face is question interpretation: How does the system robustly map

questions to queries over its knowledge? I describe algorithms that learn to interpret ques-

tions by leveraging massive amounts of data from community QA sites like WikiAnswers.

This dissertation shows that combining information extraction with community-QA data

can enable Open QA at a much larger scale than what was previously possible.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 Challenges . 3

1.2 Overview of Approach . 5

1.3 Summary of Contributions . 8

1.4 Outline . 12

Chapter 2: Background and Related Work . 14

2.1 Problem Scope . 14

2.2 Knowledge Acquisition . 17

2.3 Question Interpretation . 21

2.4 Summary of Related Work . 23

Chapter 3: Identifying Relation Phrases in Text 24

3.1 Previous Work . 25

3.2 Constraints on Relation Phrases . 29

3.3 ReVerb . 33

3.4 Experiments . 37

3.5 Conclusion . 48

Chapter 4: Paraphrase-Driven Learning for Open Question Answering 49

4.1 Overview of the Approach . 51

4.2 Question Interpretation Model . 52

4.3 Learning . 55

4.4 Data . 60

4.5 Experimental Setup . 60

4.6 Results . 63

i

4.7 Error Analysis . 68

4.8 Conclusion . 69

Chapter 5: Open Question Answering Over Curated and Extracted Knowledge
Bases . 71

5.1 Related Work . 73

5.2 Task Definition and Overview . 74

5.3 Knowledge Base . 75

5.4 Deriving and Scoring Answers . 78

5.5 Inference . 81

5.6 Learning . 82

5.7 Operators and Features . 84

5.8 Experimental Setup . 90

5.9 Experimental Results . 93

5.10 Discussion . 98

5.11 Conclusion . 101

Chapter 6: Conclusion . 102

6.1 Machine Learning for Open QA . 103

6.2 Compositional Analysis of Questions . 103

6.3 Question-Guided Information Extraction . 104

ii

LIST OF FIGURES

Figure Number Page

1.1 Search engine results for the question “What is illegal in the US but legal in
Mexico?” using Google (top), Bing (middle), and Wolfram|Alpha. Retrieved
on May 1, 2014. 2

1.2 WikiAnswers page for the question “Are sugar gliders legal in the US?” Down-
loaded on May 2, 2014. 7

1.3 Alternate wordings of the WikiAnswers question “Are sugar gliders legal in
the US?” Downloaded on May 2, 2014. 7

1.4 An example of how the oqa system maps the question “How can you tell if
you have the flu?” to the answer “the chills.” 13

3.1 A simple part-of-speech-based regular expression reduces the number of inco-
herent extractions like “was central torpedo” and covers relations expressed
via light verb constructions like “gave a talk at.” 29

3.2 ReVerb outperforms state-of-the-art open extractors, with an AUC more
than twice that of TextRunner or woepos, and 38% higher than woeparse. 38

3.3 The statistical constraint gives ReVerb a boost in precision and recall over
ReVerb¬stat. TextRunner-R is unable to learn the model used by ReVerb,
which results in lower precision and recall. 39

3.4 ReVerb achieves higher precision than state-of-the-art Open IE systems,
and comparable recall to woeparse. 41

3.5 On the subtask of identifying relations phrases, ReVerb is able to achieve
even higher precision and recall than other systems. 42

4.1 The Paralex lexicon learning algorithm. 58

4.2 The Paralex weight learning algorithm. 59

4.3 Ablation of the learned lexical items. 64

4.4 Precision-recall curves for Paralex with and without 2-argument question
patterns. 65

5.1 OQA automatically mines millions of operators (left) from unlabeled data,
then learns to compose them to answer questions (right) using evidence from
multiple knowledge bases. 72

iii

5.2 Top: An example question and query used by OQA. Middle: The query
semantics expressed as SQL. Bottom: The results when executed against a
knowledge base (answers highlighted). 77

5.3 OQA computes operator-specific features to discriminate between correct
derivations (left path) and incorrect derivations (right path). 80

5.4 The weight-learning algorithm. 83

5.5 Training the scoring function on the union of all training data results in
higher precision and recall on TREC and WikiAnswers. 93

5.6 OQA has higher precision and recall than the Open QA system Paralex. . . 94

5.7 Sempre has higher precision and recall on WebQuestions, which are known
to be answerable in Freebase. However, OQA outperforms Sempre on TREC
and WikiAnswers, which were not developed for any particular KB. 95

5.8 Wolfram|Alpha achieves higher precision but lower recall than oqa. 96

5.9 The relative contributions of each system component depend on the distri-
bution of test questions. (Error bars represent one standard deviation from
the mean, computed over 10,000 bootstrap samples of test data.) 97

5.10 OQA performs best using multiple knowledge sources, in particular Open IE,
Freebase, and Probase. 97

iv

LIST OF TABLES

Table Number Page

1.1 A comparison of the two dominant approaches in question answering. An-
swer retrieval systems interpret questions as patterns that operate directly
over text. Semantic parsing systems map questions to a formal meaning
representation (e.g., lambda calculus) and operate over a knowledge base. . . 4

1.2 A sample of ReVerb extractions containing the strings “illegal,” “legal,” or
“banned” in the relation-phrase field. 10

1.3 An example cluster of questions that users on WikiAnswers have tagged as
being paraphrases. 11

2.1 Example factoid questions and answers. 15

3.1 Examples of incoherent extractions. Incoherent extractions make up approx-
imately 13% of TextRunner’s output, 15% of woepos’s output, and 30% of
woeparse’s output. 26

3.2 Examples of uninformative relation phrases (left) and their completions (right).
Uninformative relation phrases occur in approximately 4% of woeparse’s out-
put, 6% of woepos’s output, and 7% of TextRunner’s output. 26

3.3 Approximately 85% of the binary verbal relation phrases in a sample of web
sentences satisfy our constraints. 32

3.4 ReVerb uses these features to assign a confidence score to an extraction
(x, r, y) from a sentence s using a logistic regression classifier. 36

3.5 The majority of the incorrect extractions returned by ReVerb are due to
errors in argument extraction. 43

3.6 A subset of TextRunner’s features that emulate ReVerb’s VW∗P syntac-
tic constraint. Each row is a predicate over a pair of adjacent output labels
and their POS tags. 44

3.7 The majority of extractions that were missed by ReVerb were cases where
the correct relation phrase was found, but the arguments were not correctly
identified. 46

4.1 Examples of paraphrase clusters from the WikiAnswers corpus. Within each
cluster, there is a wide range of syntactic and lexical variations. 50

4.2 Example lexical entries. 53

v

4.3 The question patterns used in the initial lexicon L0. 62

4.4 Performance on WikiAnswers questions known to be answerable using ReVerb. 64

4.5 Examples of relation and entity synonyms learned from the WikiAnswers
paraphrase corpus. 66

4.6 Questions from the test set with 2-argument question patterns that Paralex
used to derive a correct query. 67

4.7 Error distribution of Paralex on an unrestricted sample of questions from
the WikiAnswers dataset. 70

5.1 Knowledge bases used by OQA. 75

5.2 High-precision parsing operators used to map questions to queries. Question
templates are expressed using noun phrases (NP), auxiliary verbs (Aux), and
ReVerb patterns (RV). Subscripts denote regex-style capture groups. 85

5.3 Example paraphrase operators that extracted from a corpus of unlabeled
questions. 87

5.4 Example query-rewrite operators mined from the knowledge bases described
in Section 5.3.1. 88

5.5 The three question sets used in our experiments. 91

5.6 Examples from the test data where OQA derives a correct answer. 99

5.7 Example derivations from the test data where OQA derives an incorrect answer.100

vi

ACKNOWLEDGMENTS

I’d first like to thank Oren Etzioni for advising me for the past six years. Oren taught

me many things, but the most important lesson I learned from him is to focus on finding

the right problem to work on. He always challenged me to seek out ambitious projects and

to avoid research ratholes and academic cul-de-sacs at all costs. In addition to teaching me

deep, fundamental research principles, Oren also made me laugh a lot. I consider him to be

the Jerry Seinfeld of computer science.

I’d also like to thank Luke Zettlemoyer for being my unofficial second advisor. I have

learned more about natural language processing and machine learning from Luke than from

anyone else. He was always there to help me and he has created an amazingly innovative

and stimulating research group at UW. Luke is also one of the nicest, most genuine human

beings that I know of—he ranks right up there with Mr. Rogers.

Dan Weld has always provided excellent feedback on my work and I’d like to thank him

for asking hard-hitting questions. Dan is like my academic godfather and I’ve been lucky

to have him on my quals, generals, and thesis committees (the Dan Weld hat-trick).

I was fortunate enough to work with Doug Downey, who is not only a brilliant researcher,

but also holds the record for driest sense of humor east of the Mississippi. I’d also like to

thank Stephen Soderland for advising me when I first arrived at UW. Stephen’s island

lifestyle is an inspiration to many city folk. Speaking of island-dwellers, I’d like to thank

Michael Schmitz for introducing me to Scala, wild blueberries, and Thanh Vi.

One of the best parts of grad school has been meeting so many great people. I’d like

to give copious shout-outs to my labmates Janara Christensen, Morgan Dixon, and Abe

Friesen. They’ve been my close friends for the last six years and have always been there for

me . . . to annoy. Thanks to Brandon Lucia for some of the funniest and deepest conversations

I have ever had. I also have many great memories of dinners, barbecues, and hikes with

vii

Nicki Dell, Nell O’Rourke, Franzi Roesner, Pete Hornyak, Todd Schiller, Cliff Johnson, and

Greg Akselrod. Thanks to Mike Toomim, Travis Kriplean, and Kevin Miniter for admitting

me to the Invisible College of Hawaii.

I’d like to thank Meera Nilekani and Curt Fischer for being hilarious friends and bed-

fellows. Also thanks to Allison Reibel for taking me on a life-changing trip around Capitol

Hill. Thanks to Jeremy Royal, Jordan Vogt-Roberts, Jon Wilcox, Erin Milbeck Wilcox,

and Matt West for being lifelong friends. I’d also like to give a sprout-out to Chances With

Wolves, who provided the soundtrack to my grad school experience.

Finally, I’d like to thank my family. Thanks to my sister Jane for being my best friend

in Seattle, to my sister Paula for being a spiritual role model, to my dad Hugh for raising

me to work hard, and to my mom Amy for raising me to be compassionate.

viii

DEDICATION

to my family and friends from Michigan

ix

1

Chapter 1

INTRODUCTION

The growth of the web has revolutionized the way people access information. For the past

fifteen years, search engines like Google have been the dominant way of finding information

online. Search engines allow people to quickly filter the entire web to just small collection

of pages that are most relevant to their needs. Research in the field of information retrieval

and billions of interactions with real users have resulted in search engines that are fast,

accurate, and can serve information about any imaginable topic.

However, the search engine model for information access breaks down for more complex

information needs. For example, consider the following question:

Q1: What is illegal in the US but legal in Mexico?

Figure 1.1 shows the output of the Google and Bing search engines for this question. Neither

search engine returns a page containing an answer, instead returning pages that are only

indirectly related to the question.

Why are Google and Bing unable to answer Q1? First, search engines perform keyword

search, and are not designed to handle full, natural language questions. Second, search en-

gines assume that the answer to a question will be explicitly stated on a single web page. For

common questions like “What is the capital of France?” this assumption generally holds—

the web is large enough that the most frequently asked questions are explicitly answered

in text. However, for rare or previously unseen questions, there will be no single page that

directly provides an answer. Systems like Wolfram|Alpha can handle some complex infor-

mation needs, but are often brittle and lack knowledge (as shown in the bottom of Figure

1.1). As it stands, the only way to answer a question like Q1 is to issue multiple queries to

the search engine (e.g., “legal in the US”, “illegal in Mexico”, or even “against the law in

Mexico”), skim the resulting pages, and manually combine evidence to obtain an answer.

Today’s search engines are fundamentally unable to answer these types of questions.

2

Figure 1.1: Search engine results for the question “What is illegal in the US but legal in
Mexico?” using Google (top), Bing (middle), and Wolfram|Alpha. Retrieved on May 1,
2014.

3

The focus of this dissertation is the design of Question Answering (QA) systems that

can directly answer questions like Q1. Instead of mapping keyword searches to a list of

documents, QA systems use knowledge to map natural language questions to a list of direct

answers. For example, a QA system might map Q1 to the answer “Cuban cigars” by

interpreting the question as

“Find a concept x such that: x is illegal in the US ∧ x is legal in Mexico,”

and then searching its knowledge to find that x = “Cuban cigars.”

Question Answering offers two main advantages over web search engines. First, QA

is declarative: a person states what their information need is without specifying how the

answer should be found. Second, QA is a natural user interface: a person states their

information need in their own words, which are then interpreted by the QA system. These

two properties allow QA systems to satisfy more complex information needs with less human

effort than today’s search engines. Providing natural, declarative access to information will

become even more important as people shift from desktop computers to mobile phones,

where entering complex information needs is cumbersome.

1.1 Challenges

Question Answering has been studied for at least fifty years, with the earliest research

beginning in the 1960s (Simmons, 1965, 1970). Researchers have demonstrated that with

enough manual effort, it is possible to engineer a QA system that can answer questions

like Q1 for a particular topic. However, there is no single system that can answer complex

questions across many domains. The difficulty in creating such a QA system can be traced

to two problems:

1. Knowledge Acquisition: How does a QA system acquire and represent the knowl-

edge needed to answer questions? Knowledge acquisition involves encoding assertions

like “Cuban cigars are legal in Mexico” or “Cuban cigars are illegal in the US” in a

format that can be queried during QA.

4

Answer Retrieval Semantic Parsing

Question Who is Tom Cruise married to? What borders the state with the highest

population?

Knowledge ...him. Tom Cruise is married to Katie

Holmes as of the 18th of November. They

have 1 child and ...

state(az), state(ca), state(or),

borders(az, ca), borders(or, ca),

population(ca, 38m), population(az, 7m),

...

Query Tom Cruise is married to ([A-Z].∗ [A-Z].∗) λx. borders(x, argmax(state, population))

Answer Katie Holmes az, or

Table 1.1: A comparison of the two dominant approaches in question answering. Answer
retrieval systems interpret questions as patterns that operate directly over text. Semantic
parsing systems map questions to a formal meaning representation (e.g., lambda calculus)
and operate over a knowledge base.

2. Question Interpretation: How does a QA system map questions to queries over

its knowledge? Question interpretation involves inferring the information need of a

question and then formulating a plan to obtain an answer.

There is a tension between knowledge acquisition and question interpretation. QA sys-

tems that can acquire large amounts of knowledge tend to have limited question-interpretation

capabilities. On the other hand, QA systems that can interpret complex questions only work

over a single domain, and are not general-purpose tools for information access.

For example, answer retrieval systems (Voorhees and Tice, 2000; Prager, 2006) use En-

glish text to represent knowledge. The left half of Table 1.1 shows an example of how an

answer retrieval system would answer a question. Representing knowledge as text enables

easy, domain-scalable knowledge acquisition: simply download as much text as possible

from the web. However, answer retrieval systems have limited question-interpretation capa-

bilities and can only handle questions whose answers are directly stated in a single sentence.

In other words, answer retrieval has the same limitation as search engines and cannot meet

complex information needs like Q1.

5

At the other end of the spectrum are semantic parsing systems (Grosz et al., 1987; Zelle

and Mooney, 1996). The right half of Table 1.1 shows an example of how a semantic parser

would answer a question about US geography. Semantic parsing systems use a formal mean-

ing representation language to represent their knowledge. During question answering, the

input question is mapped to a query expressed in the same formal meaning representation

as the knowledge. This formalism is expressive enough to answer questions that involve rea-

soning over multiple pieces of information. For example, the query in Table 1.1 computes

the largest state by population and then computes its neighboring states. However, a major

disadvantage of semantic parsing systems is that encoding knowledge into a formal meaning

representation is a non-trivial task that generally requires expert annotators. This limits

semantic parsing systems to single domains where the cost of manually encoding knowledge

is not too high. Thus, semantic parsing systems excel at question interpretation, but lack

the knowledge needed for a general-purpose QA system.

1.2 Overview of Approach

This dissertation discusses work towards Open QA: designing a system that is both domain-

scalable and able to handle complex information needs. I use the term Open QA to highlight

the differences with previous work on answer retrieval and semantic parsing systems. The

goal of Open QA is to combine the domain scalability of answer retrieval with the question-

interpretation abilities of semantic parsing. Constructing a system that has both of these

properties involves scaling knowledge acquisition and question interpretation beyond what

has been done in previous work.

My approach to Open QA is based on two ideas. The first idea comes from the ob-

servation that there is some information that does not exist in any knowledge base but is

expressed in text, e.g., rapidly growing scientific literature, online product reviews, or im-

precise assertions like “Bananas are high in potassium.” I will use large-scale information

extraction techniques to automatically construct an open-domain knowledge base contain-

ing this type of information and access it alongside existing knowledge bases. For example,

an IE system may transform a sentence like “Cuban cigars, which are illegal in the US. . . ”

into a tuple like (Cuban cigars, illegal in, US) that represents the assertion that the

6

illegal in relationship holds between the concepts Cuban cigars and US. The transfor-

mation from text to tuples provides a useful abstraction: the information in text can now

be queried in terms of concepts and relationships. The information need of a question can

then be represented in the same way. For example, the information need of Q1 could be

written as (?x, illegal in, US) ∧ (?x, legal in, Mexico), where ?x is an answer

variable and each triple encodes a constraint on ?x.1 To answer the question, the system

can then find all values of ?x that satisfy both constraints. Thus, information extraction is a

technique for rapidly acquiring assertions that may not be found in any existing knowledge

base.

The second idea I use for Open QA is based on the observation that community QA

(CQA) sites can provide a learning signal for open-domain question interpretation. Sites

like WikiAnswers2 allow users to ask and answer questions online. For example, Figure 1.2

shows the WikiAnswers page for the question “Are sugar gliders legal in the US?” Below

the question, another user has posted an answer and cites references. In addition to posting

questions and answers, users also organize questions by merging equivalent questions into

a single page. Figure 1.3 shows the alternate wordings of the question from Figure 1.2, e.g.

“Is it legal to own a sugar glider in the US?” CQA sites are maintained by millions of users

posting questions and answers about almost any topic. This data is a valuable resource

for constructing an Open QA system: it provides millions of examples of how people ask,

answer, and reword questions across many different domains.

My approach can be summarized in the following thesis statement:

Open QA can be enabled by (1) acquiring open-domain knowledge via large-

scale information extraction, and (2) learning to interpret questions from nat-

urally occurring data on community QA sites.

To support this statement, I will:

• Present a novel information extraction technique to automatically construct a massive

knowledge base from web text.

1This query language is discussed further in Chapter 5.

2http://wiki.answers.com

7

Figure 1.2: WikiAnswers page for the question “Are sugar gliders legal in the US?” Down-
loaded on May 2, 2014.

Figure 1.3: Alternate wordings of the WikiAnswers question “Are sugar gliders legal in the
US?” Downloaded on May 2, 2014.

8

• Use the data from CQA sites to learn a question-interpretation function that maps

questions to queries over the extracted knowledge base.

1.3 Summary of Contributions

I will present three main contributions in support of my thesis statement:

1. Identifying Relations for Open Information Extraction (Chapter 3), which

focuses on acquiring open-domain knowledge using a novel information extraction

technique. This work was first published in 2011 at EMNLP (Fader et al., 2011).

2. Paraphrase-Driven Learning for Open QA (Chapter 4), which focuses on

robust question interpretation using the paraphrase information available on WikiAn-

swers. This work was first published in 2013 at ACL (Fader et al., 2013).

3. Open QA Over Curated and Extracted Knowledge Bases (Chapter 5), which

focuses on combining knowledge from multiple sources and improving the accuracy of

question interpretation. This work was first published in 2014 at KDD (Fader et al.,

2014).

In the following three sections, I will provide a high-level summary of each contribution.

1.3.1 Identifying Relations for Open Information Extraction

Open Information Extraction (Open IE) is a technique for identifying relationships in text.

Open IE systems take sentences as input and output (argument1, relation phrase,

argument2) triples. For example, consider the following sentence:

“Windsor also does business in Cuban cigars, which are banned in the US.”

An Open IE system might extract two triples from this sentence: (Windsor, does business

in, Cuban cigars) and (Cuban cigars, banned in, US). A major challenge in Open IE

is identifying the relation phrases in the sentence. For example, an Open IE system must

identify that are banned in is a relation phrase, but which are is not.

9

I will describe a system called ReVerb that implements a fast, simple, and domain-

independent technique for identifying relation phrases in English text. Previous approaches

identify relation phrases using machine-learned models that are trained on heuristically

labeled examples. These approaches generate false-positive predictions, which flood their

output with incoherent relation phrases like which are and underspecified relation phrases

like does. Further, existing approaches systematically miss relation phrases expressed via

light verb constructions like made a deal with. Instead of learning a model of relation

phrases from heuristically labeled data, ReVerb uses a compact pattern expressed over

part-of-speech tags to identify relation phrases. I demonstrate that this pattern covers 85%

of relation phrases expressed with verbs, and show that it outperforms existing approaches

in terms of precision and recall.

ReVerb has been run on web-scale datasets to produce a large extracted knowledge

base, a sample of which is shown in Table 1.2. The output from ReVerb is used as

knowledge for the QA systems discussed in the next sections.

1.3.2 Paraphrase-Driven Learning for Open QA

One of the desired properties of a QA system is to be robust to the variations in natural

language questions in order to provide a natural, declarative interface. For example, a QA

system should be able to infer that all of the questions in Table 1.3 are different ways of

asking “Is online gambling legal in the US?” and route them to the same answer. I describe

a system called Paralex that learns a robust question-interpretation function from the

paraphrase data available on WikiAnswers.

The Paralex system makes two technical contributions. First, Paralex uses ReVerb

as a source of knowledge and is the first system to perform Open QA over an extracted

knowledge base. Second, Paralex uses a novel learning algorithm that generalizes from

millions of paraphrase clusters like the example in Table 1.3. For example, Paralex aligns

these questions and infers paraphrase information like:

• “america” can be paraphrased to “the US”

• “betting online” can be paraphrased to “online casinos”

10

Argument 1 Relation Phrase Argument 2

Gambling is banned in Islam

Foie gras is not banned in California

cocaine use was legal in the United States

Large breeds were banned in Beijing

Prostitution is legal in Amsterdam

Independent unions are illegal in China

Mah Jong was completely banned in China

Pyramid selling is illegal in Australia

GTA4 is banned in the UAE.

humor is illegal in Poland

Hitch hiking is illegal in Oz

Dog and cat fur should be banned in Europe

same-sex marriages were legalized in California

common law marriages are declared illegal in England

Homosexuality is illegal in Mauritius

Cock fighting was banned in 1849

the WOW has been banned in Manchester

Sabots are illegal in Colorado

gay marriage became legal in Massachusetts

poker was recently legalized in Catalonia

Slavery is declared illegal in the Oregon Country

Pornography is legal in Australia

Corporal punishment is legal in Wilkinson County

Table 1.2: A sample of ReVerb extractions containing the strings “illegal,” “legal,” or
“banned” in the relation-phrase field.

11

Can us citizens gamble online?

Can you gamble online in america?

Internet gambling is legal in the US?

Is betting online legal in US?

Is it illegal to do online gamble?

Is it legal to gamble online in the US?

Is it legal to gamble online in america?

Is online casinos legal in the us?

Is online gambling forbidden in the US?

Online gambling in US is legal?

Table 1.3: An example cluster of questions that users on WikiAnswers have tagged as being
paraphrases.

• “Can you X in Y ?” can be paraphrased to “Is X legal in Y ?”

Paralex uses this generalized paraphrase information to interpret new questions that are

unseen in the training corpus. I provide experimental results demonstrating that Paralex

achieves higher precision and recall than a hand-constructed QA system that does not learn

from paraphrases. I also release the WikiAnswers paraphrase corpus for public use, which

contains over 20 million question clusters and includes inferred word alignments between

questions.

1.3.3 Open QA Over Curated and Extracted Knowledge Bases

Paralex is the first system to perform Open QA over an extracted knowledge base, but

has limitations. First, while Paralex was able to achieve high accuracy on questions that

are known to be answerable using the ReVerb knowledge base, Paralex’s accuracy drops

sharply when presented with unfiltered questions. Second, Paralex is unable to leverage

knowledge from other sources, including other extracted knowledge bases as well as curated

knowledge bases like Freebase (Bollacker et al., 2008). Finally, Paralex is limited to

12

simple questions and is unable to answer questions that involve joining multiple pieces of

information together.

My final contribution is an Open QA system called oqa that overcomes the problems of

Paralex. oqa decomposes the full question-answering problem into smaller problems that

are easier to solve. Figure 1.4 shows an example of how oqa maps an input question to an

answer by chaining together a sequence of operators. These operators include paraphrasing

the input question, parsing the question into a query, and rewriting the query to match the

knowledge base. oqa uses a lightweight query language that allows it to access multiple

knowledge bases through a single interface. Finally, oqa learns a robust scoring model that

allows it to measure the confidence of its answers. I demonstrate that oqa achieves higher

precision and recall than Paralex on three external question sets. I also demonstrate that

oqa benefits from being able to access multiple sources of knowledge, and quantify the

benefits of each knowledge source.

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 provides information about

question answering and scopes the problems addressed in this dissertation. Chapters 3,

4, and 5 will describe the ReVerb, Paralex, and oqa systems in detail. Finally, 6 will

conclude with a summary and discussion of future work.

13

Question

How can you tell if you have the flu?

Question

What are signs of the flu?

Query

?x: (?x, sign of, the flu)

Query

?x: (the flu, symptoms, ?x)

Answer

chills:

(the flu, symptoms include, chills)

Paraphrase

5 million mined operators

Parse

10 high-precision templates

Rewrite

74 million mined operators

Execute

1 billion assertions from

Freebase, Open IE,

Probase, and NELL

Figure 1.4: An example of how the oqa system maps the question “How can you tell if you
have the flu?” to the answer “the chills.”

14

Chapter 2

BACKGROUND AND RELATED WORK

Question answering has been studied extensively and there is a large body of literature.

I will not attempt to give a comprehensive survey of the entire field. Instead, I will focus on

the different approaches to knowledge acquisition and question interpretation and examine

how they relate to Open QA. For a more complete history of QA, I recommend the following

survey papers:

• Simmons’ survey papers give an account of the first generation of QA systems from

the 1960s (Simmons, 1965, 1970).

• Hirschman and Gaizauskas provide an history of QA up to 2001 (Hirschman and

Gaizauskas, 2001).

• Prager also provides a history of QA until 2007 and provides a comprehensive summary

of open-domain answer retrieval (Prager, 2006).

In Section 2.1, I will define the scope of the rest of the dissertation and highlight other

formulations of the question answering problem. Then, I will describe previous work on

knowledge acquisition (Section 2.2) and question interpretation (Section 2.3).

2.1 Problem Scope

The name “question answering” is ambiguous and depends on how “question” and “answer”

are defined. The broadest definition of question answering could define a question as any

information need expressed in natural language and an answer as anything that meets the

information need. Instead of attempting to solve this very general problem, I will focus on

the sub-problem of handling factoid questions, which can be answered with a set of short,

string answers.

15

Question Answer

1 What is the capital of France? Paris

2 Name some primates that live in the jungle. Gorillas, spider monkeys, howler monkeys

3 How does a fish breathe? Gills

4 What is potassium? chemical element, nutrient, alkali metal

5 Restaurants in Seattle Hot Mama’s Pizza, Fogon, Rancho Bravo

Table 2.1: Example factoid questions and answers.

The input to a factoid QA system is a single question and the output is a list of string

answers. Table 2.1 lists some example factoid questions and answers. The answer to a

factoid question may have a single answer (as in rows 1 and 3) or many answers (as in

rows 2, 4, and 5). I do not require that factoid questions meet any syntactic criteria. For

example, factoid questions do not necessarily start with a Wh-word (as in row 3). Further,

factoid questions are not even necessarily linguistically valid questions, and can be expressed

as a command (like row 2) or even as an incomplete sentence (like row 5).

My definition of factoid question is intentionally vague and includes questions that are

not considered factoid questions by other researchers.1 Defining a taxonomy of questions

or information needs is itself a challenging research problem (Graesser and Person, 1994;

Broder, 2002; Nielsen et al., 2008). For example, Voorhees and Tice carefully and pre-

cisely document their criteria for constructing a set of factoid questions to evaluate the

1The answer retrieval community has its own definition of factoid questions (Voorhees and Tice, 2000;
Prager, 2006) that does not include definition questions (like row 4) or questions with more than one
answer (like rows 2, 4 and 5).

16

performance of answer retrieval systems (Voorhees and Tice, 2000). In this dissertation, I

deliberately avoid going through this process and instead use either existing evaluation sets

or naturally occurring questions from community QA sites for evaluation.

There are different formulations of QA that fall outside the scope of factoid questions. I

include brief summaries of these alternative problem formulations to convey related technical

problems that I do not attempt to solve. Other problem formulations include:

• Context-Dependent QA: The input/output interface of factoid QA treats each

input question independent of the others. An alternative problem formulation is to

answer questions in the context of a particular conversation or world state. Tracking

a dynamic context is often essential for handling information needs that go beyond

simple factoid questions. A common case where this extra functionality is needed

includes spoken dialogue systems. For example. modeling a conversation with an

automated airline-booking system (Dahl et al., 1994; Miller et al., 1996; Zettlemoyer

and Collins, 2009; Artzi and Zettlemoyer, 2013) is a common testbed for this type

of question answering. Another common scenario is instructing a computer to carry

out a sequence of actions interactive environments (Winograd, 1971; Roy et al., 2000;

Matuszek et al., 2012; Branavan, 2012). Understanding context-dependent language is

a more general problem than the factoid QA problem and scaling context-dependent

QA systems to an open-domain setting is an area of ongoing research (Hixon and

Passonneau, 2013).

• Reading Comprehension: Another alternative formulation for QA involves an-

swering a question using a short passage of background text (Charniak, 1972; Lehn-

ert, 1977; Hirschman et al., 1999; Jansen et al., 2014). A common example of this

is reading comprehension, where a system processes a short story and then answers

multiple-choice questions about the text. This problem formulation is different from

factoid QA in two ways. First, the questions in reading comprehension are focused on

the given background text, whereas in factoid questions are answerable using general

world knowledge. Second, the questions that appear in reading comprehension tend

17

to be more challenging and require understanding the discourse structure of the text.

For example, consider this text from the MCTest corpus (Richardson et al., 2013):

Then [James] walked to the fast food restaurant and ordered 15 bags of

fries. He didn’t pay, and instead headed home.

A reading comprehension system would be responsible for answering the question

“What did James do after he ordered the fries?” Answering this question requires

solving problems like coreference resolution (Ng, 2010), identifying temporal relations

(Verhagen et al., 2007), and recognizing textual entailment (Dagan et al., 2006). This

level of text understanding goes beyond the techniques used in this dissertation.

• Automatic Summarization: All of the QA formalisms described above involve re-

turning a set of answers or actions as output. However, for open-ended questions like

“What is the Edward Snowden scandal all about?” a single answer is not sufficient.

For questions like these, the answer needs to be a high-level description summarizing

the target concept. Multi-document summarization (MDS) systems take a collection

of sentences (Gupta and Lehal, 2010; Das and Martins, 2007) with an optional query

(Carbonell and Goldstein, 1998) as input and return a subset of sentences that sum-

marize the collection. Recent work has started to move MDS beyond just selecting

sentences and towards providing more structure (Christensen et al., 2013). These

summarization systems can be thought of as QA with a much more complex output

space than an answer set.

In the future, a single QA system may be able to handle all of the QA challenges described

above. For now, the approaches to these problems are all different enough that they are

largely disjoint areas of research.

2.2 Knowledge Acquisition

In this section, I give an overview of the different approaches to constructing large, open-

domain knowledge bases (KBs) that go beyond the textual representation used by answer

18

retrieval systems. I will focus on open-domain knowledge acquisition techniques (as opposed

to single-domain techniques) and their applications to QA.

There are two main approaches to constructing open-domain knowledge bases: cura-

tion and extraction. Curated KBs are constructed by people who manually enter rules

and assertions into a formal representation language. Extracted KBs are constructed by

information extraction systems that convert text into structured assertions. The principal

trade-off between these approaches is domain-scalability versus accuracy. Curated KBs have

precise, comprehensive coverage of some domains, but may lack information about others.

In contrast, extracted KBs generally have broad coverage across all domains, but are often

incomplete within any particular domain and may contain extraction errors.

Beyond these qualitative characterizations, there has been little work on understanding

how different KBs affect QA system performance. Most research compares different ap-

proaches to question interpretation and evaluates them on questions that are filtered to be

answerable using a particular KB. There have been no controlled experiments that test the

effect of different KBs on system performance.2 Because of the lack of direct comparisons,

in the next two sections I will list what KBs are available and to what extend they have

been used in QA.

2.2.1 Curated Knowledge Bases

One of the most famous curated KBs is Cyc (Lenat et al., 1990), an ongoing project

where experts encode open-domain, commonsense knowledge using a formal knowledge-

representation language. Cyc has been used in QA system in various ways. For example,

Cyc has been used as a sanity-checker for answer retrieval (Chu-Carroll et al., 2004) and

for selecting answers in multiple-choice tests (Friedland et al., 2004). The only QA system

that uses Cyc to generate candidate answers is MySentient (Curtis et al., 2005). However,

MySentient was not evaluated on a question set, so its utility for Open QA is unclear.

In the START system (Katz, 1997), experts annotate text and other media with machine-

interpretable annotations, which can then be used for question answering. START was

2I address this experiment with the oqa system in Chapter 5.

19

shown to answer 67% of the questions presented by its users (Katz et al., 2004), but there has

been no quantitative understanding of the coverage of START relative to other knowledge

sources.

While Cyc and START are primarily curated by experts, other projects have taken a

crowdsourcing approach, where knowledge is curated by an online community. For exam-

ple, DBpedia (Auer et al., 2007) is the center of the Linked Open Data initiative (Bizer

et al., 2008) and compiles the information from Wikipedia infoboxes into a single source.

YAGO (Suchanek et al., 2007) combines Wikipedia infoboxes with WordNet (Fellbaum,

1999). WikiNet (Nastase et al., 2010) generates a knowledge base from the information on

Wikipedia category and infobox annotations. Freebase (Bollacker et al., 2008) provides an

interactive authoring tool that allows users on the web to collaboratively edit an ontology

and add assertions to an open-domain KB. Like Cyc, these KBs have been used to augment

answer retrieval in various ways. For example, YAGO has been used for answer typing

(Kalyanpur et al., 2011) and Freebase was used for “answer lookup” in the IBM Watson

system (Chu-Carroll et al., 2012).

Recently, researchers have started building QA systems that use these curated KBs as

their primary source of knowledge. Questions have been interpreted as formal queries over

curated KBs like DBpedia (Unger et al., 2012; Walter et al., 2012), YAGO (Moussa and

Abdel-Kader, 2011), and Freebase (Cai and Yates, 2013; Berant et al., 2013; Kwiatkowski

et al., 2013). This new thread of research has led to the construction of benchmark question

sets. The Question Answering Over Linked Data (QALD) competitions3 aim to compare

QA systems on a set of test questions answerable over DBpedia. Several benchmark question

sets have been created for Freebase, including the Free917 question set (Cai and Yates, 2013)

and the WebQuestions question set (Berant et al., 2013). However, there has yet to be a

comparison of these different KBs on the same question set.

3http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/

20

2.2.2 Extracted Knowledge Bases

The incompleteness of curated KBs (Pratt, 1994) led researchers to consider extracting

open-domain knowledge from text. The first major project to attempt this was the Open

Mind project at MIT (Stork, 1999), where non-expert users enter commonsense knowledge

expressed in English sentences. These sentences are then converted to formal KB assertions

using hand-written extractor patterns. Open Mind was the first system to demonstrate the

utility of extracting open-domain knowledge from text. However, the Open Mind KB was

never used in an end-to-end Open QA system.

After Open Mind, researchers began using information extraction to construct knowledge

bases from large text corpora. There have been two main approaches to constructing a KB

using information extraction. The first approach is automatic KB completion (AKBC),

where the system assumes access to a set of target relationships (e.g., a schema or ontology)

and a set of example instances of the target relationships. AKBC can be thought of as

a hybrid of curation and extraction approaches: people curate the KB schema, and IE

systems extract instances from text to populate the KB. AKBC techniques have been used

to extend Freebase (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011) and YAGO

(Suchanek et al., 2009; Kasneci et al., 2009). The NELL system (Carlson et al., 2010) uses

its own schema and example instances, but does not contain the broad coverage of the

previous three KBs. There has been no research studying the benefits of AKBC on the end-

to-end performance of a QA system, for example comparing a QA system’s performance

using an initial KB to the performance after performing AKBC.

The second way to construct an extracted KB is to have the IE system itself identify

and extract relations from text. Under this paradigm, the system makes no commitment

to a particular ontology a priori and instead lets the text itself define the relations and

concepts. This approach has been referred to in multiple ways, including Preemptive IE

(Shinyama and Sekine, 2006), On-Demand IE (Sekine, 2006), Open Knowledge Extraction

(Van Durme and Schubert, 2008), and Open IE (Banko et al., 2007). Open IE was the first of

these systems to be designed for web-scale IE, where speed and robustness to unconstrained

text are necessary. Chapter 3 provides a more in-depth, technical description of the different

21

approaches to Open IE.

There has been little work applying the output of large-scale, open-domain IE to question

answering. Open IE has been used as a way to align the natural language in questions with

concepts in Freebase (Cai and Yates, 2013; Berant et al., 2013), but outside of the work

described in this dissertation, there has been no Open QA system built on top of an extracted

knowledge base.

2.2.3 Summary of Knowledge Acquisition

Research over the past twenty years has resulted in an explosion of open-domain knowledge

bases, both curated and extracted. At this time, there is not a good understanding of how

the various KBs perform when used for Open QA. Chapter 5 describes the first work to

explore the trade-offs between these different KBs in a quantitative manner.

2.3 Question Interpretation

Once a source of knowledge has been acquired, a QA system needs to solve the problem of

question interpretation: mapping a person’s input question to an executable query over the

knowledge. In this section I describe how previous systems have solved this problem and to

what extent these approaches can be used for Open QA.

A key challenge to question interpretation is the vocabulary mismatch problem. For

example, consider the question “How can I tell if I have the flu?” The answer to this

question may be expressed in text as “Fever is a symptom of the flu” or in a knowledge base

as (flu, symptoms, fever). A question interpreter needs to bridge the gap between the

way the information need is expressed in the question and the way the answer is expressed in

the knowledge. In this example, the system must infer that the question is asking about the

symptoms of the flu, despite the string never being used in the question itself. Solving this

problem is necessary for building a QA system that is natural and declarative, as described

in Chapter 1.

The way a QA system performs question interpretation depends largely on the format

and scale of its knowledge. Answer retrieval systems generally break the question inter-

pretation problem into two steps: a keyword search over the corpus, and then an answer-

22

extraction step (see Prager’s survey for a full description). The answer extraction step can

be done using keyword proximity, applying learned question-answer templates (Ravichan-

dran and Hovy, 2002), or aligning dependency parse patterns between the question and

text (Punyakanok et al., 2004). These approaches are not directly applicable to Open QA,

where queries are expressed over a structured knowledge base, not text.

Question interpretation has been the main focus of research in semantic parsing. Early

research demonstrated that with enough hand-engineering, it is possible to construct a

QA system that works well on a single domain (Woods, 1973). Research then shifted

towards portable QA systems that minimize the amount of human effort that goes into

porting the system to a new domain. The authors of the TEAM system (Grosz et al., 1987)

achieved portability by carefully factoring the system architecture into reusable, domain-

independent components and domain-specific components. In the 1990s, researchers began

building QA systems that learn the domain-specific components from data, which further

improved portability (Miller et al., 1994). A major research direction became reducing the

amount of supervision and expertise needed to train the domain-specific components (Zelle

and Mooney, 1996; Zettlemoyer and Collins, 2005; Clarke et al., 2010; Liang et al., 2011).

Machine-learning techniques have greatly reduced the burden needed to port semantic

parsers to new domains. However, the amount of training data required by these techniques

is directly tied to the number of concepts and relations in the knowledge base. This is

because these systems use the training data to extract a mapping from natural language to

KB concepts. The learners are unable to generalize to KB concepts that are unseen in the

training data. Thus, to scale these approaches to large, open-domain KBs, the systems either

need access to a much larger training set, greater generalization from a smaller training set,

or both.

Recently there has been some work attempting to scale semantic parsers to large, open-

domain KBs. Several systems bootstrap a mapping from natural language to Freebase

concepts by aligning Open IE tuples with Freebase (Cai and Yates, 2013; Berant et al.,

2013). Kwiatkowski et al. factor the question interpretation process into a two-step process,

where first a KB-independent parse of the input question is identified and then performs

on-the-fly ontology matching, guided by a smaller amount of training data (Kwiatkowski

23

et al., 2013). It has yet to be shown whether these techniques can be applied to the larger,

noisier extracted knowledge bases.

The Open QA systems described in this dissertation build upon previous work in porta-

bility by leveraging from more data and aiming for greater generalization from training data.

The Paralex system demonstrates how community QA sites can be leveraged to train a

question-interpretation function at a much larger scale than what has been done in previous

work. The oqa system shows how using a low-dimensional, unlexicalized feature represen-

tation for question interpretation can lead to better results than existing systems. oqa is

also the first system to demonstrate that combining curated and extracted KBs can result

in better performance, while the work in semantic parsing has only been demonstrated to

work with curated knowledge bases.

2.4 Summary of Related Work

Most previous work in open-domain QA has been limited to answer-retrieval systems,

which have limited question-interpretation abilities, or semantic-parsing systems, which

have limited knowledge. The rise of large-scale, open-domain knowledge bases, both cu-

rated and extracted, provide a new opportunity to combine the domain-scalability of answer

retrieval with the question interpretation of semantic parsing. However, previous question-

interpretation techniques cannot be directly applied to these large KBs. The work described

in this dissertation learns to interpret questions using data from community-authored QA

sites and enables Open QA at a much larger scale than what was previously possible.

The next chapters present the technical contributions. In Chapter 3, I will describe the

ReVerb Open IE system, which I use to extract a large, open-domain KB from web text.

Then in Chapter 4, I will describe the Paralex Open QA system, which is the first system

to learn a question interpretation function from the WikiAnswers paraphrase data, and also

the first system to answer questions over an extracted KB. Finally, Chapter 5 describes

the oqa Open QA system, which achieves higher accuracy than Paralex and is able to

leverage both extracted and curated knowledge to answer questions.

24

Chapter 3

IDENTIFYING RELATION PHRASES IN TEXT

Typically, information extraction systems learn an extractor for each target relation

from labeled training examples (Kim and Moldovan, 1993; Riloff, 1996; Soderland, 1999).

This approach to extraction does not scale to the needs of Open QA, where the target

relationships are unknown in advance. Open IE solves this problem by identifying relation

phrases—phrases that denote relations in English sentences (Banko et al., 2007). The au-

tomatic identification of relation phrases enables the extraction of arbitrary relations from

sentences, obviating the restriction to a pre-specified vocabulary.

Open IE systems have achieved a notable measure of success on massive, open-domain

corpora drawn from the web, Wikipedia, and elsewhere. (Banko et al., 2007; Wu and Weld,

2010; Zhu et al., 2009). The output of Open IE systems has been used to support tasks like

learning selectional preferences (Ritter et al., 2010), acquiring common sense knowledge (Lin

et al., 2010), and recognizing entailment (Schoenmackers et al., 2010; Berant et al., 2011).

In addition, Open IE extractions have been mapped onto existing ontologies (Soderland

et al., 2010).

We have observed that two types of errors are frequent in the output of Open IE systems

such as TextRunner and woe: incoherent extractions and uninformative extractions.

Incoherent extractions are cases where the extracted relation phrase has no meaningful

interpretation (see Table 3.1 for examples). Incoherent extractions arise because the learned

extractor makes a sequence of decisions about whether to include each word in the relation

phrase, often resulting in incomprehensible predictions. To solve this problem, we introduce

a syntactic constraint: every multi-word relation phrase must begin with a verb, end with a

preposition, and be a contiguous sequence of words in the sentence. Thus, the identification

of a relation phrase is made in one fell swoop instead of on the basis of multiple, word-by-

word decisions.

25

Uninformative extractions are extractions that omit critical information. For example,

consider the sentence “Faust made a deal with the devil.” Previous Open IE systems return

the uninformative (Faust, made, a deal) instead of (Faust, made a deal with, the

devil). This type of error is caused by improper handling of relation phrases that are

expressed by a combination of a verb with a noun, such as light verb constructions (LVCs).

An LVC is a multi-word expression composed of a verb and a noun, with the noun carrying

the semantic content of the predicate (Grefenstette and Teufel, 1995; Stevenson et al., 2004;

Allerton, 2002). Table 3.2 illustrates the wide range of relations expressed this way, which

are not captured by existing open extractors. Our syntactic constraint leads the extractor

to include nouns in the relation phrase, solving this problem.

Although the syntactic constraint reduces incoherent and uninformative extractions,

it allows overly-specific relation phrases such as is offering only modest greenhouse

gas reduction targets at. To avoid overly-specific relation phrases, we introduce an

intuitive statistical constraint: a binary relation phrase ought to appear with at least a

minimal number of distinct argument pairs in a large corpus.

In summary, this chapter articulates two simple and powerful constraints on how binary

relationships are expressed via verbs in English sentences, and implements them in the

ReVerb Open IE system. We release ReVerb and the data used in our experiments to

the research community.

The rest of the paper is organized as follows. Section 3.1 analyzes previous work. Section

3.2 defines our constraints precisely. Section 3.3 describes ReVerb, our implementation of

the constraints. Section 3.4 reports on our experimental results. Section 3.4.5 concludes

with a summary and discussion subsequent work that builds on top of ReVerb.

3.1 Previous Work

Open IE systems like TextRunner (Banko et al., 2007), woepos, and woeparse (Wu and

Weld, 2010) focus on extracting binary relations of the form (arg1, relation phrase, arg2)

from text. These systems all use the following three-step method:

26

Sentence Incoherent Relation

The guide contains dead links and omits sites. contains omits

The Mark 14 was central to the torpedo scandal of the fleet. was central torpedo

They recalled that Nungesser began his career as a precinct

leader.

recalled began

Table 3.1: Examples of incoherent extractions. Incoherent extractions make up approx-
imately 13% of TextRunner’s output, 15% of woepos’s output, and 30% of woeparse’s
output.

is is an album by, is the author of, is a city in

has has a population of, has a Ph.D. in, has a cameo in

made made a deal with, made a promise to

took took place in, took control over, took advantage of

gave gave birth to, gave a talk at, gave new meaning to

got got tickets to, got a deal on, got funding from

Table 3.2: Examples of uninformative relation phrases (left) and their completions (right).
Uninformative relation phrases occur in approximately 4% of woeparse’s output, 6% of
woepos’s output, and 7% of TextRunner’s output.

27

1. Label: Sentences are automatically labeled with extractions using heuristics or distant

supervision.

2. Learn: A relation phrase extractor is learned using a sequence-labeling graphical

model (e.g., CRF).

3. Extract: the system takes a sentence as input, identifies a candidate pair of NP

arguments (arg1, arg2) from the sentence, and then uses the learned extractor to

label each word between the two arguments as part of the relation phrase or not.

The extractor is applied to the successive sentences in the corpus, and the resulting extrac-

tions are collected.

This method faces several challenges. First, the training phase requires a large number

of labeled training examples (e.g., 200, 000 heuristically-labeled sentences for TextRunner

and 300, 000 for woe). Heuristic labeling of examples obviates hand labeling but results

in noisy labels and distorts the distribution of examples. Second, the extraction step is

posed as a sequence-labeling problem, where each word is assigned its own label. Because

each assignment is uncertain, the likelihood that the extracted relation phrase is flawed

increases with the length of the relation phrase. Finally, the extractor chooses an extraction’s

arguments heuristically, and cannot backtrack over this choice. This is problematic when

a word that belongs in the relation phrase is chosen as an argument (for example, “deal”

from the “made a deal with” sentence).

Because of the feature sets utilized in previous work, the learned extractors ignore both

“holistic” aspects of the relation phrase (e.g., is it contiguous?) as well as statistical aspects

(e.g., how many instances of this relation are there?). Thus, as we show in Section 3.4,

systems such as TextRunner are unable to learn the constraints embedded in ReVerb.

Of course, a learning system, utilizing a different hypothesis space, and an appropriate set

of training examples, could potentially learn and refine the constraints in ReVerb. This is

a topic for future work.

The first Open IE system was TextRunner (Banko et al., 2007), which used a Naive

Bayes model with unlexicalized POS and NP-chunk features, trained using examples heuris-

28

tically generated from the Penn Treebank. Subsequent work showed that utilizing a linear-

chain CRF (Banko and Etzioni, 2008) or Markov Logic Network (Zhu et al., 2009) can

lead to improved extraction. The woe systems introduced by Wu and Weld make use of

Wikipedia as a source of training data for their extractors, which leads to further improve-

ments over TextRunner (Wu and Weld, 2010). Wu and Weld also show that dependency

parse features result in a dramatic increase in precision and recall over shallow linguistic

features, but at the cost of extraction speed.

Other approaches to large-scale IE have included Preemptive IE (Shinyama and Sekine,

2006), On-Demand IE (Sekine, 2006), and weak supervision for IE (Mintz et al., 2009;

Hoffmann et al., 2010). Preemptive IE and On-Demand IE avoid relation-specific extractors,

but rely on document and entity clustering, which is too costly for web-scale IE. Weakly

supervised methods use an existing ontology to generate training data for learning relation-

specific extractors. While this allows for learning relation-specific extractors at a larger scale

than what was previously possible, the extractions are still restricted to a specific ontology.

Many systems have used syntactic patterns based on verbs to extract relation phrases,

usually relying on a full dependency parse of the input sentence (Lin and Pantel, 2001;

Stevenson, 2004; Specia and Motta, 2006; Kathrin Eichler and Neumann, 2008). Our work

differs from these approaches by focusing on relation phrase patterns expressed in terms of

POS tags and NP chunks, instead of full parse trees. Banko and Etzioni (Banko and Etzioni,

2008) showed that a small set of POS-tag patterns cover a large fraction of relationships in

English, but never incorporated the patterns into an extractor. This paper reports on an

improved model of binary relation phrases, which increases the recall of the Banko-Etzioni

model (see Section 3.2.3). Further, while previous work in Open IE has mainly focused on

syntactic patterns for relation extraction, we introduce a statistical constraint that boosts

precision and recall.

Finally, Open IE is closely related to semantic role labeling (SRL) (Punyakanok et al.,

2008; Toutanova et al., 2008) in that both tasks extract relations and arguments from

sentences. However, SRL systems traditionally rely on syntactic parsers, which makes them

susceptible to parser errors and slower than Open IE systems such as ReVerb. This

difference is particularly important when operating on the web corpus due to its size and

29

V | V P | VW ∗P

V = verb particle? adv?

W = (noun | adj | adv | pron | det)

P = (prep | particle | inf. marker)

Figure 3.1: A simple part-of-speech-based regular expression reduces the number of inco-
herent extractions like “was central torpedo” and covers relations expressed via light verb
constructions like “gave a talk at.”

heterogeneity. Finally, SRL requires hand-constructed semantic resources like Propbank

and Framenet (Martha and Palmer, 2002; Baker et al., 1998) as input. In contrast, Open

IE systems require no relation-specific training data. ReVerb, in particular, relies on its

explicit statistical and syntactic constraints, which have no correlate in SRL systems. For

a more detailed comparison of SRL and Open IE, see (Christensen et al., 2010).

3.2 Constraints on Relation Phrases

In this section we introduce two constraints on relation phrases: a syntactic constraint and

a statistical constraint.

3.2.1 Syntactic Constraint

The syntactic constraint serves two purposes. First, it eliminates incoherent extractions,

and second, it reduces uninformative extractions by capturing relation phrases expressed

by a verb-noun combination, including light verb constructions.

The syntactic constraint requires the relation phrase to match the POS tag pattern

shown in Figure 3.1. The pattern limits relation phrases to be either a verb (e.g., “in-

vented”), a verb followed immediately by a preposition (e.g., “located in”), or a verb fol-

lowed by nouns, adjectives, or adverbs ending in a preposition (e.g., “has atomic weight

of”). If there are multiple possible matches in a sentence for a single verb, the longest

possible match is chosen. Finally, if the pattern matches multiple adjacent sequences, we

merge them into a single relation phrase (e.g., “wants to extend”). This refinement enables

30

the model to readily handle relation phrases containing multiple verbs. A consequence of

this pattern is that the relation phrase must be a contiguous span of words in the sentence.

The syntactic constraint eliminates the incoherent relation phrases returned by existing

systems. For example, given the sentence

Extendicare agreed to buy Arbor Health Care for about US $432 million in cash

and assumed debt.

TextRunner returns the extraction (Arbor Health Care, for assumed, debt). The

phrase for assumed is not a valid relation phrase: it begins with a preposition and splices

together two distant words in the sentence. The syntactic constraint prevents this type of

error by simply restricting relation phrases to match the pattern in Figure 3.1.

The syntactic constraint reduces uninformative extractions by capturing relation phrases

expressed via LVCs. For example, the POS pattern matched against the sentence “Faust

made a deal with the Devil,” would result in the relation phrase “made a deal with,” instead

of the uninformative “made.”

Finally, we require the relation phrase to appear between its two arguments in the

sentence. This is a common constraint that has been implicitly enforced in other open

extractors.

3.2.2 Statistical Constraint

While the syntactic constraint greatly reduces uninformative extractions, it can sometimes

match relation phrases that are so specific that they have only a few possible instances,

even in a web-scale corpus. Consider the sentence:

The Obama administration is offering only modest greenhouse gas reduction

targets at the conference.

The POS pattern will match the phrase:

is offering only modest greenhouse gas reduction targets at (3.1)

Thus, there are phrases that satisfy the syntactic constraint, but are not relational.

31

To overcome this limitation, we introduce a statistical constraint that is used to separate

valid relation phrases from overspecified relation phrases, like the example in (3.1). The

constraint is based on the intuition that a valid relation phrase should take many distinct

arguments in a large corpus. The phrase in (3.1) is specific to the argument pair (Obama

administration, conference), so it is unlikely to represent a bona fide relation. We

describe the implementation details of the statistical constraint in Section 3.3.

3.2.3 Limitations

Our constraints represent an idealized model of relation phrases in English. This raises the

question: How much recall is lost due to the constraints?

To address this question, we analyzed Wu and Weld’s set of 300 sentences from a set of

random web pages, manually identifying all verb-based relationships between noun phrase

pairs. This resulted in a set of 327 relation phrases. For each relation phrase, we checked

whether it satisfies our constraints. We found that 85% of the relation phrases do satisfy

the constraints. Of the remaining 15%, we identified some of the common cases where the

constraints were violated, summarized in Table 3.3.

Many of the example relation phrases shown in Table 3.3 involve long-range dependencies

between words in the sentence. These types of dependencies are not easily representable

using a pattern over POS tags. A deeper syntactic analysis of the input sentence would

provide a much more general language for modeling relation phrases. For example, one

could create a model of relations expressed in terms of dependency parse features that

would capture the non-contiguous relation phrases in Table 3.3. Previous work has shown

that dependency paths do indeed boost the recall of relation extraction systems (Wu and

Weld, 2010; Mintz et al., 2009). While using dependency path features allows for a more

flexible model of relations, it increases processing time, which is problematic for web-scale

extraction. Further, we have found that this increased recall comes at the cost of lower

precision on web text (see Section 3.4).

The results in Table 3.3 are similar to Banko and Etzioni’s findings that a set of eight

POS patterns cover a large fraction of binary verbal relation phrases. However, their analysis

32

Binary Verbal Relation Phrases

85% Satisfy Constraints

8% Non-Contiguous Phrase Structure

Coordination: X is produced and maintained by Y

Multiple Args: X was founded in 1995 by Y

Phrasal Verbs: X turned Y off

4% Relation Phrase Not Between Arguments

Intro. Phrases: Discovered by Y, X . . .

Relative Clauses: . . . the Y that X discovered

3% Do Not Match POS Pattern

Interrupting Modifiers: X has a lot of faith in Y

Infinitives: X to attack Y

Table 3.3: Approximately 85% of the binary verbal relation phrases in a sample of web
sentences satisfy our constraints.

33

was based on a set of sentences known to contain either a company acquisition or birthplace

relationship, while our results are on a random sample of web sentences. We applied Banko

and Etzioni’s verbal patterns to our random sample of 300 web sentences, and found that

they cover approximately 69% of the relation phrases in the corpus. The gap in recall

between this and the 85% shown in Table 3.3 is due to LVC relation phrases (“made a deal

with”) and phrases containing multiple verbs (“refuses to return to”), which their patterns

do not cover.

In sum, our model is by no means complete. However, we have empirically shown that

the majority of binary verbal relation phrases in a sample of web sentences are captured by

our model. By focusing on this subset of language, our model can be used to perform Open

IE at higher precision than before.

3.3 ReVerb

This section introduces ReVerb, a novel open extractor based on the constraints defined in

the previous section. ReVerb first identifies relation phrases that satisfy the syntactic and

statistical constraints, and then finds a pair of NP arguments for each identified relation

phrase. The resulting extractions are then assigned a confidence score using a logistic

regression classifier.

This algorithm differs in three important ways from previous methods (Section 3.1).

First, the relation phrase is identified “holistically” rather than word-by-word. Second,

potential phrases are filtered based on statistics over a large corpus (the implementation

of our statistical constraint). Finally, ReVerb is “relation first” rather than “arguments

first”, which enables it to avoid a common error made by previous methods—confusing a

noun in the relation phrase for an argument, e.g. the noun “deal” in “made a deal with.”

3.3.1 Extraction Algorithm

ReVerb takes as input a POS-tagged and NP-chunked sentence and returns a set of (x, r, y)

extraction triples.1 Given an input sentence s, ReVerb uses the following extraction algo-

1ReVerb uses OpenNLP for POS tagging and NP chunking: http://opennlp.sourceforge.net/

34

rithm:

1. Relation Extraction: For each verb v in s, find the longest sequence of words rv

such that (1) rv starts at v, (2) rv satisfies the syntactic constraint, and (3) rv satisfies

the statistical constraint. If any pair of matches are adjacent or overlap in s, merge

them into a single match.

2. Argument Extraction: For each relation phrase r identified in Step 1, find the

nearest noun phrase x to the left of r in s such that x is not a relative pronoun,

Wh-adverb, or existential “there”. Find the nearest noun phrase y to the right of r

in s. If such an (x, y) pair could be found, return (x, r, y) as an extraction.

We check whether a candidate relation phrase rv satisfies the syntactic constraint by

matching it against the regular expression in Figure 3.1.

To determine whether rv satisfies the statistical constraint, we use a large dictionary

D of relation phrases that are known to take many distinct arguments. In an offline step,

we construct D by finding all matches of the POS pattern in a corpus of 500 million web

sentences. For each matching relation phrase, we heuristically identify its arguments (as

in Step 2 above). We set D to be the set of all relation phrases that take at least k

distinct argument pairs in the set of extractions. In order to allow for minor variations in

relation phrases, we normalize each relation phrase by removing inflection, auxiliary verbs,

adjectives, and adverbs. Based on experiments on a held-out set of sentences, we found that

a value of k = 20 works well for filtering out overspecified relations. This results in a set of

approximately 1.7 million distinct normalized relation phrases, which are stored in memory

at extraction time.

As an example of the extraction algorithm in action, consider the following input sen-

tence:

Hudson was born in Hampstead, which is a suburb of London.

Step 1 of the algorithm identifies three relation phrases that satisfy the syntactic and statis-

tical constraints: “was,” “born in,” and “is a suburb of.” The first two phrases are adjacent

35

in the sentence, so they are merged into the single relation phrase “was born in.” Step 2

then finds an argument pair for each relation phrase. For “was born in,” the nearest NPs are

(Hudson, Hampstead). For “is a suburb of,” the extractor skips over the NP “which” and

chooses the argument pair (Hampstead, London). The final output contains two extractions:

(Hudson, was born in, Hampstead) and (Hampstead, is a suburb of, London).

3.3.2 Confidence Function

The extraction algorithm in the previous section has high recall, but low precision. Like

with previous open extractors, we want way to trade recall for precision by tuning a confi-

dence threshold. We use a logistic regression classifier to assign a confidence score to each

extraction, which uses the features shown in Table 3.4. All of these features are efficiently

computable and depend only on POS tags and closed-class words. We trained the confi-

dence function by manually labeling the extractions from a set of 1, 000 sentences from the

web and Wikipedia as correct or incorrect.

Previous Open IE systems require labeled training data to learn a model of relations,

which is then used to extract relation phrases from text. In contrast, ReVerb uses a

specified model of relations for extraction, and requires labeled data only for assigning

confidence scores to its extractions. Learning a confidence function is a much simpler task

than learning a full model of relations, using two orders of magnitude fewer training examples

than TextRunner or woe.

3.3.3 TextRunner-R

The model of relation phrases used by ReVerb is specified, but could a TextRunner-like

system learn this model from training data? While it is difficult to answer such a question for

all possible permutations of features sets, training examples, and learning biases, we demon-

strate that TextRunner itself cannot learn ReVerb’s model even when re-trained using

the output of ReVerb as labeled training data. The resulting system, TextRunner-R,

uses the same feature representation as TextRunner, but different parameters, and a

different set of training examples.

36

Weight Feature

1.16 (x, r, y) covers all words in s

0.50 The last preposition in r is “for”

0.49 The last preposition in r is “on”

0.46 The last preposition in r is “of”

0.43 len(s) ≤ 10 words

0.43 There is a WH-word to the left of r

0.42 r matches VW*P from Figure 3.1

0.39 The last preposition in r is “to”

0.25 The last preposition in r is “in”

0.23 10 words < len(s) ≤ 20 words

0.21 s begins with x

0.16 y is a proper noun

0.01 x is a proper noun

-0.30 There is an NP to the left of x in s

-0.43 20 words < len(s)

-0.61 r matches V from Figure 3.1

-0.65 There is a preposition to the left of x in s

-0.81 There is an NP to the right of y in s

-0.93 Coord. conjunction to the left of r in s

Table 3.4: ReVerb uses these features to assign a confidence score to an extraction (x, r, y)
from a sentence s using a logistic regression classifier.

37

To generate positive instances, we ran ReVerb on the Penn Treebank, which is the same

dataset that TextRunner is trained on. To generate negative instances from a sentence, we

took each noun phrase pair in the sentence that does not appear as arguments in a ReVerb

extraction. This process resulted in a set of 67, 562 positive instances, and 356, 834 negative

instances. We then passed these labeled examples to TextRunner’s training procedure,

which learns a linear-chain CRF using closed-class features like POS tags, capitalization,

punctuation, etc.TextRunner-R uses the argument-first extraction algorithm described

in Section 3.1.

3.4 Experiments

We compare ReVerb to the following systems:

• ReVerb¬stat - The ReVerb system described in the previous section, but without

the statistical constraint. ReVerb¬stat uses the same confidence function as ReVerb.

• TextRunner - Banko and Etzioni’s 2008 extractor, which uses a second order linear-

chain CRF trained on extractions heuristically generated from the Penn Treebank.

TextRunner uses shallow linguistic features in its CRF, which come from the same

POS tagger and NP-chunker that ReVerb uses.

• TextRunner-R - Our modification to TextRunner, which uses the same extraction

code, but with a model of relations trained on ReVerb extractions.

• woepos - Wu and Weld’s modification to TextRunner, which uses a model of rela-

tions learned from extractions heuristically generated from Wikipedia.

• woeparse - Wu and Weld’s parser-based extractor, which uses a large dictionary of de-

pendency path patterns learned from heuristic extractions generated from Wikipedia.

Each system is given a set of sentences as input, and returns a set of binary extractions

as output. We created a test set of 500 sentences sampled from the web, using Yahoo’s

38

0.0 0.1 0.2 0.3 0.4 0.5

ReVerb

ReVerb¬stat

Woeparse

TextRunner-R

Woepos

TextRunner

Area Under Precision-Recall Curve

Figure 3.2: ReVerb outperforms state-of-the-art open extractors, with an AUC more than
twice that of TextRunner or woepos, and 38% higher than woeparse.

random link service.2 After running each extractor over the input sentences, two human

judges independently evaluated each extraction as correct or incorrect. The judges reached

agreement on 86% of the extractions, with an agreement score of κ = 0.68. We report

results on the subset of the data where the two judges concur.

The judges labeled uninformative extractions conservatively. That is, if critical infor-

mation was dropped from the relation phrase but included in the second argument, it

is labeled correct. For example, both the extractions (Ackerman, is a professor of,

biology) and (Ackerman, is, a professor of biology) are considered correct.

Each system returns confidence scores for its extractions. For a given threshold, we

can measure the precision and recall of the output. Precision is the fraction of returned

2http://random.yahoo.com/bin/ryl

39

10% 20% 30% 40% 50% 60% 70%
Recall

25%

50%

75%

100%

P
re

ci
si

on

0%

ReVerb

ReVerb¬statTextRunner-R

Comparison with ReVerb-Based Systems

Figure 3.3: The statistical constraint gives ReVerb a boost in precision and recall over
ReVerb¬stat. TextRunner-R is unable to learn the model used by ReVerb, which
results in lower precision and recall.

40

extractions that are correct. Recall is the fraction of correct extractions in the corpus that

are returned. We use the total number of extractions labeled as correct by the judges as

our measure of recall for the corpus. In order to avoid double-counting, we treat extractions

that differ superficially (e.g., different punctuation or dropping inessential modifiers) as a

single extraction. We compute a precision-recall curve by varying the confidence threshold,

and then compute the area under the curve (AUC).

3.4.1 Results

Figure 3.2 shows the AUC of each system. ReVerb achieves an AUC that is 30% higher

than woeparse and is more than double the AUC of woepos or TextRunner. The sta-

tistical constraint provides a boost in performance, with ReVerb achieving an AUC 23%

higher than ReVerb¬stat. ReVerb proves to be a useful source of training data, with

TextRunner-R having an AUC 71% higher than TextRunner and performing on par

with woepos. From the training data, TextRunner-R was able to learn a model that

predicts contiguous relation phrases, but still returned incoherent relation phrases (e.g.,

starting with a preposition) and overspecified relation phrases. These errors are due to

TextRunner-R overfitting the training data and not having access to the statistical con-

straint.

Figure 3.3 shows the precision-recall curves of the systems introduced in this paper.

TextRunner-R has much lower precision than ReVerb and ReVerb¬stat at all levels

of recall. The statistical constraint gives ReVerb a boost in precision over ReVerb¬stat,

reducing overspecified extractions from 20% of ReVerb¬stat’s output to 1% of ReVerb’s.

The statistical constraint also boosts recall over ReVerb¬stat, since ReVerb is able to find

a correct relation phrase where ReVerb¬stat finds an overspecified one.

Figure 3.4 shows the precision-recall curves of ReVerb and the external systems. ReVerb

has much higher precision than the other systems at nearly all levels of recall. In particular,

more than 30% of ReVerb’s extractions are at precision 0.8 or higher, compared to virtu-

ally none for the other systems. woeparse achieves a slightly higher recall than ReVerb

(0.62 versus 0.64), but at the cost of lower precision.

41

10% 20% 30% 40% 50% 60% 70%
Recall

25%

50%

75%

100%

P
re

ci
si

on

0%

ReVerb

Woeparse

WoeposTextRunner

Comparison with External Systems

Figure 3.4: ReVerb achieves higher precision than state-of-the-art Open IE systems, and
comparable recall to woeparse.

42

10% 20% 30% 40% 50% 60% 70% 80%
Recall

25%

50%

75%

100%

P
re

ci
si

o
n

0%

ReVerb

Woeparse

Woepos
TextRunner

Comparison with External Systems (Relations Only)

Figure 3.5: On the subtask of identifying relations phrases, ReVerb is able to achieve even
higher precision and recall than other systems.

In order to highlight the role of the relational model of each system, we also evaluate

their performance on the subtask of extracting just the relation phrases from the input

text. Figure 3.5 shows the precision-recall curves for each system on the relation phrase-

only evaluation. In this case, ReVerb has both higher precision and recall than the other

systems.

ReVerb’s biggest improvement came from the elimination of incoherent extractions.

Incoherent extractions were a large fraction of the errors made by previous systems, ac-

counting for approximately 13% of TextRunner’s extractions, 15% of woepos’s, and 30%

of woeparse’s. Uninformative extractions had a smaller effect on other systems’ precision,

accounting for 4% of woeparse’s extractions, 5% of woepos’s, and 7% of TextRunner’s,

while only appearing in 1% of ReVerb’s extractions. ReVerb’s reduction in uninformative

43

ReVerb - Incorrect Extractions

65% Correct relation phrase, incorrect arguments

16% N-ary relation

8% Non-contiguous relation phrase

2% Imperative verb

2% Overspecified relation phrase

7% Other, including POS/chunking errors

Table 3.5: The majority of the incorrect extractions returned by ReVerb are due to errors
in argument extraction.

extractions resulted in a boost in recall, capturing many LVC relation phrases missed by

other systems (like those shown in Table 3.2).

To test the systems’ speed, we ran each extractor on a set of 100, 000 sentences using a

Pentium 4 machine with 4GB of RAM. The processing times were 16 minutes for ReVerb,

21 minutes for TextRunner, 21 minutes for woepos, and 11 hours for woeparse. The times

for ReVerb, TextRunner, and woepos are all approximately the same, since they all use

the same POS-tagging and NP-chunking software. woeparse processes each sentence with a

dependency parser, resulting in much longer processing time. For a more in-depth analysis

of ReVerb and other Open IE systems, see the work by Mesquita et al. (2013).

3.4.2 ReVerb vs. TextRunner-R

The experimental results show that TextRunner-R did not learn the ReVerb constraints

from the training data. This raises two questions. First, can TextRunner even represent

the ReVerb constraints? Second, if TextRunner can indeed represent the ReVerb

constraints, why was it unable to learn them from a sample of data?

TextRunner does not use statistical features, so it cannot possibly learn the ReVerb

statistical constraint from the training data. However, TextRunner can represent the

syntactic constraint. To see why, recall that TextRunner uses a linear-chain CRF to label

44

Left Label Left POS Right Label Right POS

1 o-rel Any o-rel Any

2 o-rel Any b-rel V

3 b-rel V i-rel W

4 b-rel V i-rel P

5 i-rel W i-rel W

6 i-rel W i-rel P

7 i-rel P b-rel V

8 i-rel P o-rel Any

Table 3.6: A subset of TextRunner’s features that emulate ReVerb’s VW∗P syntactic
constraint. Each row is a predicate over a pair of adjacent output labels and their POS
tags.

a sequence of words as b-rel (the beginning word of a relation phrase), i-rel (a word

inside of a relation phrase), or o-rel (a word outside of a relation phrase). To discriminate

between possible output labels, TextRunner uses boolean indicator features that test

whether a pair of adjacent output labels and POS tags match a particular pattern. Using

the same POS notation as in Figure 3.1, an example TextRunner feature is:

Left Label = b-rel ∧ Left POS = V ∧ Right Label = i-rel ∧ Right POS = P

This feature evaluates to true when there is a pair of adjacent output labels (b-rel, i-

rel) with POS tags (V, P). These features can encode the regular expression that defines

ReVerb’s syntactic constraint. Any regular expression can be translated into a nondeter-

ministic finite automaton (NFA), which defines a set of transitions that are allowed when

matching the regular expression against an input string. For example, the regular expres-

sion VW∗P can be encoded as the disjunction of the features shown in Table 3.6. Each

row of Table 3.6 corresponds to a legal transition in the NFA for VW∗P. For example, the

input string (W, V, W, P, W) with predicted labels (o-rel, b-rel, i-rel, i-rel, o-rel)

will cause features 2, 3, 6, and 8 to fire. If we assign large, positive weights to the features

45

in Table 3.6, then TextRunner’s highest-probability prediction will agree with the regular

expression VW∗P.

Thus, TextRunner is capable of representing ReVerb’s syntactic constraint, but failed

to learn it from data. The TextRunner feature representation uses on the order of ten

thousand indicator functions, only a small subset of which are necessary to encode the

syntactic constraint. The CRF learner searches for a parameterization of these features

that maximizes the regularized likelihood of the training data. The parameterization that

maximizes this objective function does not necessarily correspond to a compact regular

expression like those in Figure 3.1. One potential solution to this problem would be to bias

the learner to prefer parameterizations that correspond to simple regular expressions over

POS tags, which could lead to better generalization and fewer incoherent extractions.

3.4.3 ReVerb Error Analysis

To better understand the limitations of ReVerb, we performed a detailed analysis of its

errors in precision (incorrect extractions returned by ReVerb) and its errors in recall

(correct extractions that ReVerb missed).

Table 3.5 summarizes the types of incorrect extractions that ReVerb returns. We found

that 65% of the incorrect extractions returned by ReVerb were cases where a relation

phrase was correctly identified, but the argument-finding heuristics failed. The remaining

errors were cases where ReVerb extracted an incorrect relation phrase. One common mis-

take that ReVerb made was extracting a relation phrase that expresses an n-ary relation-

ship via a ditransitive verb. For example, given the sentence “I gave him 15 photographs,”

ReVerb extracts (I, gave, him). These errors are due to the fact that ReVerb only

captures binary relations.

Table 3.7 summarizes the correct extractions that were extracted by other systems and

were not extracted by ReVerb. As with the false-positive extractions, the majority of false

negatives (52%) were due to the argument-finding heuristics choosing the wrong arguments,

or failing to extract all possible arguments (in the case of coordinating conjunctions). Other

sources of failure were due to the statistical constraint either failing to filter out an over-

46

ReVerb - Missed Extractions

52% Could not identify correct arguments

23% Relation filtered out by lexical constraint

17% Identified a more specific relation

8% POS/chunking error

Table 3.7: The majority of extractions that were missed by ReVerb were cases where the
correct relation phrase was found, but the arguments were not correctly identified.

specified relation phrase or filtering out a valid relation phrase. These errors hurt both

precision and recall, since each case results in the extractor overlooking a correct relation

phrase and choosing another.

3.4.4 Evaluation At Scale

Section 3.4.1 shows that ReVerb outperforms existing Open IE systems when evaluated

on a sample of sentences. Previous work has shown that the frequency of an extraction in

a large corpus is useful for assessing the correctness of extractions (Downey et al., 2005).

Thus, it is possible a priori that ReVerb’s gains over previous systems will diminish when

extraction frequency is taken into account.

In fact, we found that ReVerb’s advantage over TextRunner when run at scale

is qualitatively similar to its advantage on single sentences. We ran both ReVerb and

TextRunner on Banko and Etzioni’s corpus of 500 million web sentences and examined

the effect of redundancy on precision.

As Downey’s work predicts (Downey et al., 2005), precision increased in both systems

for extractions found multiple times, compared with extractions found only once. However,

ReVerb had higher precision than TextRunner at all frequency thresholds. In fact,

ReVerb’s frequency 1 extractions had a precision of 0.75, which TextRunner could not

approach even with frequency-10 extractions, which had a precision of 0.34. Thus, ReVerb

is able to return more correct extractions at a higher precision than TextRunner, even

47

when redundancy is taken into account.

3.4.5 Improvements and Applications

Since ReVerb was released in 2011, there have been many new Open IE systems that make

improvements over ReVerb and ReVerb extractions have been used in many applications.

In this section, I highlight some of these improvements and applications.

Improvements and Extensions to ReVerb

• While the work on ReVerb focused on identifying relation phrases, it did not di-

rectly address the problem of argument identification. ReVerb uses simple heuristic

rules to identify the arguments of a relation, leading to many systematic errors in its

extractions. Etzioni et al. introduce the ArgLearner system that provides more

reliable argument identification than ReVerb’s heuristics (Etzioni et al., 2011).

• As noted earlier, ReVerb only extracts binary relationships between a pair of entities.

This hurts ReVerb’s recall, and Table 3.5 shows that it also lowers precision. The

KrakeN system (Akbik and Löser, 2012) is an Open IE system that outperforms

ReVerb by specifically targeting n-ary relationships in text.

• There has been work on increasing the recall of ReVerb by using its syntactic pat-

tern as a way to heuristically label data, and then use machine-learning techniques

to generalize from it. While this approach had limited efficacy for TextRunner, re-

searchers were able to design new systems that could leverage this heuristically labeled

data (Schmitz et al., 2012; Xu et al., 2013).

• ReVerb uses a flat, POS-tag representation for its syntactic pattern. While Table

3.3 shows that many relation phrases can be captured this way, it is unable to capture

relation phrases expressed as non-contiguous phrases. The Ollie (Schmitz et al.,

2012) and Dep-OE systems explore using dependency-tree representations to increase

recall.

48

• While ReVerb is limited to English text, other researchers have ported it to other

languages including Korean (Kim and Lee, 2012) and Chinese (Tseng et al., 2014)

using similar approaches.

• Researchers have acquired human-annotated training data for ReVerb via a mobile

crowdsourcing application (Vaish et al., 2014).

Applications of ReVerb

ReVerb has also been used for other natural language processing tasks:

• The ReVerb syntactic pattern has been used as a feature for entity extraction (Ling

and Weld, 2012).

• ReVerb extractions have been used extensively for the purpose of inferring entailment

relationships between relation phrases (Berant et al., 2011, 2012; Zeichner, 2012) and

inferring unseen relationships (Angeli and Manning, 2013; Chen and Wang, 2014).

• ReVerb extractions have also been linked to Freebase (Lin et al., 2012) and then

used to bootstrap semantic lexicons for large-scale QA systems (Cai and Yates, 2013;

Berant et al., 2013).

3.5 Conclusion

This Chapter presented ReVerb, a new technique for Open Information Extraction that

proved to be faster, simpler, and more accurate than existing systems. The output of

ReVerb is used in the rest of this disseration as a source of knowledge for the Open QA

systems Paralex (Chapter 4) and oqa (Chapter 5).

49

Chapter 4

PARAPHRASE-DRIVEN LEARNING FOR OPEN QUESTION
ANSWERING

In this chapter, we present work on the question interpretation problem for Open QA.

The Paralex system described in this chapter is the first system to perform Open QA

over an extracted knowledge base. Paralex uses paraphrases from WikiAnswers to learn

a function from questions to knowledge-base queries.

Table 4.1 shows example WikiAnswers paraphrase clusters for a set of factual questions.

Such data provides strong signal for learning about lexical variation, but there are a number

of challenges. Given that the data is community-authored, it will inevitably be incomplete,

contain incorrectly tagged paraphrases, non-factual questions, and other sources of noise.

Our core contribution is a new learning approach that scalably sifts through this para-

phrase noise, learning to answer a broad class of factual questions. We focus on answering

open-domain questions that can be answered with single-relation queries, e.g. all of the para-

phrases of “Who wrote Winnie the Pooh?” and “What cures a hangover?” in Table 4.1.

The algorithm answers such questions by mapping them to executable queries over a tuple

store containing relations such as (milne, authored, winnie the pooh) and (bloody mary,

treats, hangover symptoms).

The approach automatically induces lexical structures, which are combined to build

queries for unseen questions. It learns lexical equivalences for relations (e.g., “wrote,”

“authored,” and “creator”), entities (e.g., “Winnie the Pooh” or “Pooh Bear”), and question

templates (e.g., “Who r the e books?” or “Who is the r of e?”). Crucially, the approach

does not require any explicit labeling of the questions in our paraphrase corpus. Instead,

we use 16 seed question templates and string-matching to find high-quality queries for a

small subset of the questions. The algorithm uses learned word alignments to aggressively

generalize the seeds, producing a large set of possible lexical equivalences. We then learn a

50

Who wrote the Winnie the Pooh books?

Who is the author of winnie the pooh?

What was the name of the authur of winnie the pooh?

Who wrote the series of books for Winnie the poo?

Who wrote the children’s storybook ‘Winnie the Pooh’?

Who is poohs creator?

What relieves a hangover?

What is the best cure for a hangover?

The best way to recover from a hangover?

Best remedy for a hangover?

What takes away a hangover?

How do you lose a hangover?

What helps hangover symptoms?

What are social networking sites used for?

Why do people use social networking sites worldwide?

Advantages of using social network sites?

Why do people use social networks a lot?

Why do people communicate on social networking sites?

What are the pros and cons of social networking sites?

How do you say Santa Claus in Sweden?

Say santa clause in sweden?

How do you say santa clause in swedish?

How do they say santa in Sweden?

In Sweden what is santa called?

Who is sweden santa?

Table 4.1: Examples of paraphrase clusters from the WikiAnswers corpus. Within each
cluster, there is a wide range of syntactic and lexical variations.

51

linear ranking model to filter the learned lexical equivalences, keeping only those that are

likely to answer questions well in practice.

Experimental results on 18 million paraphrase pairs gathered from WikiAnswers. demon-

strate the effectiveness of the overall approach. We performed an end-to-end evaluation

against a knowledge base of 15 million facts automatically extracted from web text using

ReVerb. On known-answerable questions, the approach achieved 42% recall, with 77%

precision, more than quadrupling the recall over a baseline system.

We make the following contributions in this chapter:

• We introduce Paralex, an end-to-end Open QA system.

• We describe scalable learning algorithms that induce general question templates and

lexical variants of entities and relations. These algorithms require no manual annota-

tion and can be applied to large, noisy knowledge bases of relational triples.

• We evaluate Paralex on the end-task of answering questions from WikiAnswers using

a knowledge base of ReVerb extractions, and show that it outperforms baseline

systems.

• We release our learned lexicon and question-paraphrase dataset to the research com-

munity, available at http://openie.cs.washington.edu.

4.1 Overview of the Approach

In this section, we give a high-level overview of the rest of the chapter.

Problem Our goal is to learn a function that will map a natural language question x to a

query z over a knowledge base K. The knowledge base K is a collection of assertions in the

form (e1, r, e2) where r is a binary relation from a vocabulary R, and e1 and e2 are entities

from a vocabulary E. We assume that the elements of R and E are human-interpretable

strings like population or new york. In our experiments, R and E contain millions of

entries representing ambiguous and overlapping concepts. The knowledge base is equipped

with a simple interface that accepts queries in the form (?, r, e2) or (e1, r, ?). When executed,

52

these queries return all entities e that satisfy the given relationship. Thus, our task is to

find the query z that best captures the semantics of the question x.

Model The question answering model includes a lexicon and a linear ranking function.

The lexicon L associates natural language patterns to knowledge base concepts, thereby

defining the space of queries that can be derived from the input question (see Table 4.2).

Lexical entries can pair strings with knowledge base entities (“nyc” and new york), strings

with knowledge base relations (“big” and population), or question patterns with templated

knowledge base queries (“How r is e?” and (?, r, e)). We describe this model in more

detail in Section 4.2.

Learning The learning algorithm induces a lexicon L and estimates the weights w of the

linear ranking function. We learn L by bootstrapping from an initial seed lexicon L0 over

a corpus of question paraphrases C = {(x, x′) : x′ is a paraphrase of x}, like the examples

in Table 4.1. We estimate w by using the initial lexicon to automatically label queries in

the paraphrase corpus, as described in Section 4.3.2. The final result is a scalable learning

algorithm that requires no manual annotation of questions.

Evaluation In Section 4.6, we evaluate our system against baseline systems on the end-

task of question answering against a large knowledge base of facts extracted from the web

using ReVerb. We use held-out, known-answerable questions from WikiAnswers as a test

set.

4.2 Question Interpretation Model

To answer questions, we must find the best query for a given natural language question.

4.2.1 Lexicon and Derivations

To define the space of possible queries, Paralex uses a lexicon L that encodes mappings

from natural language to knowledge base concepts (entities, relations, and queries). Each

entry in L is a pair (p, c) where p is a pattern and c is an associated knowledge base concept.

Table 4.2 gives examples of the entry types in L: entity, relation, and question patterns.

53

Entry Type Natural Language Pattern Knowledge Base Concept

Entity “nyc” new york

Relation “big” population

Question (1-Arg.) “How big is e?” (?, population, e)

Question (2-Arg.) “How r is e?” (?, r, e)

Table 4.2: Example lexical entries.

Entity patterns match a contiguous string of words and are associated with some knowl-

edge base entity e ∈ E.

Relation patterns match a contiguous string of words and are associated with a relation

r ∈ R and an argument ordering (e.g. the string “child” could be modeled as either parent

of or child of with opposite argument ordering).

Question patterns match an entire question string, with gaps that recursively match an

entity or relation patterns. Question patterns are associated with a templated knowledge

base query, where the values of the variables are determined by the matched entity and

relation patterns. A question pattern may be 1-Argument, with a variable for an entity

pattern, or 2-Argument, with variables for an entity pattern and a relation pattern. A

2-argument question pattern may also invert the argument order of the matched relation

pattern, e.g. “Who r e?” may have the opposite argument order of “Who did e r?”

The lexicon is used to generate a derivation y from an input question x to a knowledge

base query z. For example, the entries in Table 4.2 can be used to make the following

derivation from the question “How big is nyc?” to the query (?, population, new york):

54

How big is nyc? = (?, population, new york)

How r is e? = (?, r, e)

nyc = new yorkbig = population

r e

This derivation proceeds in two steps: first matching a question form like “How r is e?” and

then mapping “big” to population and “nyc” to new york. Factoring the derivation this

way allows the lexical entries for “big” and “nyc” to be reused in semantically equivalent

variants like “nyc how big is it?” or “Approximately how big is nyc?” This factorization

helps the system generalize to novel questions that do not appear in the training set.

We model a derivation as a set of (pi, ci) pairs, where each pi matches a substring of x,

the substrings cover all words in x, and the knowledge base concepts ci compose to form z.

Derivations are rooted at either a 1-argument or 2-argument question entry and have entity

or relation entries as leaves.

4.2.2 Linear Ranking Function

In general, multiple queries may be derived from a single input question x using a lexicon

L. Many of these derivations may be incorrect due to noise in L. Given a question x, we

consider all derivations y and score them with w · f(x, y), where f(x, y) is a n-dimensional

feature representation and w is a n-dimensional weight vector. Let Derivs(x, L) be the set of

all derivations y that can be generated from x using L. The best derivation y∗(x) according

to the model (w, L) is given by:

y∗(x) = arg max
y∈Derivs(x,L)

w · f(x, y)

The best query z∗(x) can be computed directly from the derivation y∗(x).

Computing the set Derivs(x, L) involves finding all 1-Argument and 2-Argument question

patterns that match x, and then enumerating all possible knowledge base concepts that

55

match entity and relation strings. When the knowledge base and lexicon are large, this

becomes intractable. We prune Derivs(x, L) using the model weights w by only considering

the N -best question patterns that match x, before additionally enumerating any relations

or entities.

For the end-to-end QA task, we return a ranked list of answers from the k highest scoring

queries. We score an answer a with the highest score of all derivations that generate a query

with answer a.

4.3 Learning

Paralex uses a two-part learning algorithm; it first induces an overly general lexicon

(Section 4.3.1) and then learns to score derivations to increase accuracy (Section 4.3.2).

Both algorithms rely on an initial seed lexicon, which we describe in Section 4.5.4.

4.3.1 Lexical Learning

The lexical learning algorithm constructs a lexicon L from a corpus of question paraphrases

C = {(x, x′) : x′ is a paraphrase of x}, where we assume that all paraphrased questions

(x, x′) can be answered with a single, initially unknown, query (Table 4.1 shows example

paraphrases). This assumption allows the algorithm to generalize from the initial seed

lexicon L0, greatly increasing the lexical coverage.

As an example, consider the paraphrase pair x = “What is the population of New

York?” and x′ = “How big is NYC?” Suppose x can be mapped to a query under L0 using

the following derivation y:

What is the r of e? = (?, r, e)

population = population

new york = new york

We can induce new lexical items by aligning the patterns used in y to substrings in x′. For

example, suppose we know that the words in (x, x′) align in the following way:

56

What is the population of New York

How big is NYC

Using this information, we can hypothesize that “How r is e,” “big,” and “NYC” should

have the same interpretations as “What is the r of e,” “population,” and “New York,”

respectively, and create the new entries:

How r is e? = (?, r, e)

big = population

nyc = new york

We call this procedure InduceLex(x, x′, y, A), which takes a paraphrase pair (x, x′), a

derivation y of x, and a word alignment A, and returns a new set of lexical entries. Before

formally describing InduceLex we need to introduce some definitions.

Let n and n′ be the number of words in x and x′. Let [k] denote the set of integers

{1, . . . , k}. A word alignment A between x and x′ is a subset of [n] × [n′]. A phrase

alignment is a pair of index sets (I, I ′) where I ⊆ [n] and I ′ ⊆ [n′]. A phrase alignment

(I, I ′) is consistent with a word alignment A if for all (i, i′) ∈ A, i ∈ I if and only if i′ ∈ I ′.

In other words, a phrase alignment is consistent with a word alignment if the words in the

phrases are aligned only with each other, and not with any outside words.

We will now define InduceLex(x, x′, y, A) for the case where the derivation y consists of a

2-argument question entry (pq, cq), a relation entry (pr, cr), and an entity entry (pe, ce), as

shown in the example above.1 InduceLex returns the set of all triples (p′q, cq), (p
′
r, cr), (p

′
e, ce)

such that for all p′q, p
′
r, p
′
e such that

1. p′q, p
′
r, p
′
e are a partition of the words in x′.

2. The phrase pairs (pq, p
′
q), (pr, p

′
r), (pe, p

′
e) are consistent with the word alignment A.

1InduceLex has similar behavior for the other type of derivation, which consists of a 1-argument question
entry (pq, cq) and an entity (pe, ce).

57

3. The p′r and p′e are contiguous spans of words in x′.

Figure 4.1 shows the complete lexical learning algorithm. In practice, for a given para-

phrase pair (x, x′) and alignment A, InduceLex will generate multiple sets of new lexical

entries, resulting in a lexicon with millions of entries. We use an existing statistical word

alignment algorithm for WordAlign (see Section 4.4). In the next section, we will introduce a

scalable approach for learning to score derivations to filter out lexical items that generalize

poorly.

4.3.2 Weight Learning

Weight learning is necessary for filtering out derivations that use incorrect lexical entries

like “new mexico” = mexico, which arise from noise in the paraphrases and noise in the

word alignment. We use the hidden variable structured perceptron algorithm to learn w

from a list of (question x, query z) training examples. We adopt the iterative parameter

mixing variation of the perceptron (McDonald et al., 2010) to scale to a large number of

training examples.

Figure 4.2 shows the weight learning algorithm. The weight learning algorithm operates

in two stages. First, we use the initial lexicon L0 to automatically generate (question

x, query z) training examples from the paraphrase corpus C. Then we feed the training

examples into the learning algorithm, which estimates weights for the learned lexicon L.

Because the number of training examples is large, we adopt a parallel perceptron ap-

proach. We first randomly partition the training data T into K equally-sized subsets

T1, . . . , TK . We then perform perceptron learning on each partition in parallel. Finally,

the learned weights from each parallel run are aggregated by taking a uniformly weighted

average of each partition’s weight vector. This procedure is repeated for T iterations.

The training data consists of (question x, query z) pairs, but our scoring model is over

(question x, derivation y) pairs, which are unobserved in the training data. We use a hidden

variable version of the perceptron algorithm (Collins, 2002), where the model weights are

updated using the highest scoring derivation y∗ that will generate the correct query z using

the learned lexicon L.

58

function LearnLexicon

Inputs:

- A corpus C of paraphrases (x, x′). (Table 4.1)

- An initial lexicon L0 of (pattern, concept) pairs.

- A word alignment function WordAlign(x, x′). (Section 4.4)

- Initial weights w0.

- A function Derivs(x, L) that derives queries from a question x using lexicon L.

(Section 4.2)

- A function InduceLex(x, x′, y, A) that induces new lexical items from the para-

phrases (x, x′) using their word alignment A and a derivation y of x. (Section

4.3.1)

Output: A learned lexicon L.

L = {}

for all x, x′ ∈ C do

if Derivs(x, L0) is not empty then

A←WordAlign(x, x′)

y∗ ← arg maxy∈Derivs(x,L0)w0 · f(x, y)

L← L ∪ InduceLex(x, x′, y∗, A)

return L

Figure 4.1: The Paralex lexicon learning algorithm.

59

function LearnWeights

Inputs:

- A corpus C of paraphrases (x, x′). (Table 4.1)

- An initial lexicon L0 of (pattern, KB concept) pairs.

- A learned lexicon L of (pattern, KB concept) pairs.

- Initial weights w0.

- Number of perceptron epochs T .

- Number of training-data shards K.

- A function Derivs(x, L) that derives queries from a question x using lexicon L.

(Section 4.2)

- A function PerceptronEpoch(T ,w, L) that runs a single epoch of the hidden-

variable structured perceptron algorithm on training set T with initial weights w,

returning a new weight vector w′. (Section 4.3.2)

Output: A learned weight vector w.

// Step 1: Generate Training Examples T

T = {}

for all x, x′ ∈ C do

if Derivs(x, L0) is not empty then

y∗ ← arg maxy∈Derivs(x,L0)w0 · f(x, y)

z∗ ← query of y∗

Add (x′, z∗) to T

// Step 2: Learn Weights from T

Randomly partition T into shards T1, . . . , TK

for t = 1 . . . T do

// Executed on k processors

wk,t = PerceptronEpoch(Tk,wt−1, L)

// Average the weights

wt = 1
K

∑
kwk,t

return wT

Figure 4.2: The Paralex weight learning algorithm.

60

4.4 Data

For our knowledge base K, we use the publicly available set of 15 million ReVerb extrac-

tions.2 The knowledge base consists of a set of triples over a vocabulary of approximately

600K relations and 2M entities, extracted from the ClueWeb09 corpus.3 The ReVerb

knowledge base contains a large cross-section of general world-knowledge, and thus is a

good testbed for Open QA. However, the extractions are noisy, unnormalized (e.g., the

entities obama, barack obama, and president obama all appear as distinct entities), and

ambiguous (e.g., the relation phrase born in contains facts about both dates and locations).

Our paraphrase corpus C was constructed from the collaboratively edited QA site WikiAn-

swers. WikiAnswers users can tag pairs of questions as alternate wordings of each other.

We harvested a set of 18M of these question-paraphrase pairs, with 2.4M distinct questions

in the corpus.

To estimate the precision of the paraphrase corpus, we randomly sampled a set of 100

pairs and manually tagged them as “paraphrase” or “not-paraphrase.” We found that

55% of the sampled pairs are valid paraphrased. Most of the incorrect paraphrases were

questions that were related, but not paraphrased e.g. “How big is the biggest mall?” and

“Most expensive mall in the world?”

We word-aligned each paraphrase pair using the MGIZA++ implementation of IBM

Model 4 (Och and Ney, 2000; Gao and Vogel, 2008). The word-alignment algorithm was

run in each direction (x, x′) and (x′, x) and then combined using the grow-diag-final-and

heuristic (Koehn et al., 2003).

4.5 Experimental Setup

We compare the following systems:

• Paralex: the full system, using the lexical learning and weight learning algorithms

from Section 4.3.

2We used version 1.1, downloaded from http://reverb.cs.washington.edu/.

3The full set of ReVerb extractions from ClueWeb09 contains billions of triples. We used the smaller
subset of triples to simplify the Paralex experiments. Chapter 5 explores Open QA over a larger set of
extractions.

61

• NoWeight: Paralex without the learned weights.

• InitOnly: Paralex using only the initial seed lexicon.

We evaluate the systems’ performance on the end-task of QA on WikiAnswers questions.

4.5.1 Test Set

Our goal is to measure Paralex’s performance on question interpretation. A major chal-

lenge for evaluation is that the ReVerb knowledge base is incomplete. A system may cor-

rectly map a test question to a valid query, only to return no results when executed against

the incomplete knowledge base. We factor out this source of error by semi-automatically

constructing a sample of questions that are known to be answerable using the ReVerb

knowledge base. This allows us to measure the performance of the systems on question

interpretation.

To create the evaluation set, we identified questions x in a held out portion of the

WikiAnswers corpus such that (1) x can be mapped to some query z using an initial lexicon

(described in Section 4.5.4), and (2) when z is executed against the knowledge base, it

returns at least one answer. We then add x and all of its paraphrases as our evaluation

set. For example, the question “What is the language of Hong-Kong?” satisfies these

requirements, so we added these questions to the evaluation set:

What is the language of Hong-Kong?

What language do people in hong kong use?

How many languages are spoken in hong kong?

How many languages hong kong people use?

In Hong Kong what language is spoken?

Language of Hong-kong?

This methodology allows us to evaluate the systems’ ability to handle syntactic and lexical

variations of questions that should have the same answers. We created 37 question clusters,

resulting in a total of 698 questions. We removed all of these questions and their paraphrases

from the training set. We also manually filtered out any incorrect paraphrases that appeared

in the test clusters.

62

Question Pattern Knowledge Base Query

Who r e? (?, r, e)

What r e? (?, r, e)

Who does e r? (e, r, ?)

What does e r? (e, r, ?)

What is the r of e? (?, r, e)

Who is the r of e? (?, r, e)

What is r by e? (e, r, ?)

Who is e’s r? (?, r, e)

What is e’s r? (?, r, e)

Who is r by e? (e, r, ?)

When did e r? (e, r in, ?)

When did e r? (e, r on, ?)

When was e r? (e, r in, ?)

When was e r? (e, r on, ?)

Where was e r? (e, r in, ?)

Where did e r? (e, r in, ?)

Table 4.3: The question patterns used in the initial lexicon L0.

We then created a gold-standard set of (x, a, l) triples, where x is a question, a is an

answer, and l is a label (correct or incorrect). To create the gold-standard, we first ran each

system on the evaluation questions to generate (x, a) pairs. Then we manually tagged each

pair with a label l. This resulted in a set of approximately 2, 000 human judgments. If (x, a)

was tagged with label l and x′ is a paraphrase of x, we automatically added the labeling

(x′, a, l), since questions in the same cluster should have the same answer sets. This process

resulted in a gold standard set of approximately 48, 000 (x, a, l) triples.

63

4.5.2 Metrics

We compute precision and recall of each system’s top answer. Precision is the fraction of

predicted answers that are correct. Recall is the fraction of questions where a correct answer

was predicted.

4.5.3 Features and Settings

The feature representation f(x, y) consists of indicator functions for each lexical entry

(p, c) ∈ L used in the derivation y. For weight learning, we use an initial weight vector

w0 = 0, use T = 20 iterations and shard the training data into K = 10 pieces. We limit

each system to return the top 100 knowledge base queries for each test sentence. All input

words are lowercased and lemmatized.

4.5.4 Initial Lexicon

Both the lexical learning and weight learning algorithms rely on an initial seed lexicon L0.

The initial lexicon allows the learning algorithms to bootstrap from the paraphrase corpus.

We construct L0 from a set of 16 hand-written, 2-argument question patterns and the

output of the identity transformation on the entity and relation strings in the knowledge

base. Table 4.3 shows the question patterns that were used in L0.

4.6 Results

Figure 4.4 shows the performance of Paralex on the test questions. Paralex outperforms

the baseline systems in terms of F1. The lexicon-learning algorithm boosts the recall by

a factor of four over the initial lexicon, showing the utility of the Paralex algorithm.

The weight-learning algorithm also results in a large gain in both precision and recall:

Paralex generates a noisy set of patterns, so selecting the best query for a question is

more challenging.

Figure 4.3 shows an ablation of the different types of lexical items learned by Paralex.

For each row, we removed the learned lexical items from each of the types described in

Section 4.2, keeping only the initial seed lexical items. The learned 2-argument question

64

0.0 0.3 0.6

Paralex

NoWeight

InitOnly

F1

0.0 0.5 1.0

Precision

0.00 0.25 0.50

Recall

Table 4.4: Performance on WikiAnswers questions known to be answerable using ReVerb.

0.0 0.3 0.6

Paralex

No 2-Arg.

No 1-Arg.

No Relations

No Entities

F1

0.0 0.5 1.0

Precision

0.00 0.25 0.50

Recall

Figure 4.3: Ablation of the learned lexical items.

65

10% 20% 30% 40% 50%
Recall

25%

50%

75%

100%

P
re

ci
si

on

0%

Paralex

No 2-Arg.

NoWeight

Figure 4.4: Precision-recall curves for Paralex with and without 2-argument question
patterns.

66

String Learned Knowledge Base Relations for String

get rid of treatment for, cause, get rid of, cure for, easiest way to get rid of

word word for, slang term for, definition of, meaning of, synonym of

speak speak language in, language speak in, principal language of, dialect of

useful main use of, purpose of, importance of, property of, usefulness of

String Learned Knowledge Base Entities for String

smoking smoking, tobacco smoking, cigarette, smoking cigar, smoke, quit smoking

radiation radiation, electromagnetic radiation, nuclear radiation

vancouver vancouver, vancouver city, vancouver island, vancouver british columbia

protein protein, protein synthesis, plasma protein, monomer, dna

Table 4.5: Examples of relation and entity synonyms learned from the WikiAnswers para-
phrase corpus.

templates increase the recall of the system. This increased recall came at a cost, lowering

precision from 0.86 to 0.77. Thresholding the query score allows us to trade precision for

recall, as shown in Figure 4.4. Table 4.5 shows some examples of the learned entity and

relation synonyms.

The 2-argument question templates help Paralex generalize over different variations

of the same question, like the test questions shown in Table 4.6. For each question, Par-

alex combines a 2-argument question template (shown below the questions) with the rules

“celebrate” = holiday of and “christians” = christians to derive a full query. Factoring

the problem this way allows Paralex to reuse the same rules in different syntactic config-

urations. Note that the imperfect training data can lead to overly-specific templates like

“What are the religious r of e,” which can lower accuracy.

67

Celebrations for Christians?

r for e?

Celebrations of Christians?

r of e?

What are some celebrations for Christians?

What are some r for e?

What are some celebrations of the Christians?

What are some r of e?

What are some of Christians celebrations?

What are some of e r?

What celebrations do Christians do?

What r do e do?

What did Christians celebrate?

What did e r?

What are the religious celebrations of Christians?

What are the religious r of e?

What celebration do Christians celebrate?

What r do e celebrate?

Table 4.6: Questions from the test set with 2-argument question patterns that Paralex
used to derive a correct query.

68

4.7 Error Analysis

To understand how close we are to the goal of Open QA, including both knowledge acqui-

sition and question interpretation, we ran Paralex on an unrestricted sample of questions

from WikiAnswers. We used the same methodology as described in the previous section,

where Paralex returns the top answer for each question using ReVerb.

We found that Paralex performs worse on this dataset, with recall maxing out at

approximately 6% of the questions answered at precision 0.4. This is not surprising, since

the test questions are not restricted to topics covered by the ReVerb knowledge base, and

may be too complex to be answered by any knowledge base of relational triples.

We performed an error analysis on a sample of 100 questions that were either incorrectly

answered or unanswered. We examined the candidate queries that Paralex generated for

each question and tagged each query as correct (would return a valid answer given a correct

and complete knowledge base) or incorrect. Because the input questions are unrestricted,

we also judged whether the questions could be faithfully represented as a (?, r, e) or (e, r, ?)

query over the knowledge base vocabulary. Table 4.7 shows the distribution of errors.

The largest source of error (36%) were on questions that could not be represented as a

single-relation query. We categorized these questions into groups. The largest group (14%)

were questions that need n-ary or higher-order knowledge base relations, for example “How

long does it take to drive from Sacramento to Cancun?” or “What do cats and dogs have

in common?” Approximately 13% of the questions were how-to questions like “How do you

make axes in minecraft?” whose answers are a sequence of steps, instead of a knowledge

base entity. Lastly, 9% of the questions require knowledge base operators like joins, for

example “When were Bobby Orr’s children born?”

The second largest source of error (32%) were questions that could be represented as

a query, but where Paralex was unable to derive any correct queries. For example, the

question “Things grown on Nigerian farms?” was not mapped to any queries, even though

the ReVerb knowledge base contains the relation grown in and the entity nigeria. We

found that 13% of the incorrect questions were cases where the entity was not recognized,

12% were cases where the relation was not recognized, and 6% were cases where both the

69

entity and relation were not recognized.

We found that 28% of the errors were cases where Paralex derived a query that we

judged to be correct, but returned no answers when executed against the knowledge base.

For example, given the question “How much can a dietician earn?” Paralex derived the

query (?, salary of, dietician) but this returned no answers in the ReVerb knowl-

edge base.

Finally, approximately 4% of the questions included typos or were judged to be in-

scrutable, for example “Barovier hiriacy of evidence based for pressure sore?”

Discussion Our experiments show that the learning algorithms described in Section 4.3

allow Paralex to generalize beyond an initial lexicon and answer questions with higher

accuracy. Our error analysis on an unrestricted set of WikiAnswers questions shows that

Paralex is still far from the goal of high-recall Open QA. We found that many questions

asked on WikiAnswers are either too complex to be mapped to a simple relational query, or

are not covered by the ReVerb knowledge base. Further, approximately one third of the

missing recall is due to question interpretation errors.

4.8 Conclusion

We introduced a new learning approach that induces a complete Open QA system from a

large corpus of noisy question paraphrases. Using only a seed lexicon, the approach auto-

matically learns a lexicon and linear ranking function that demonstrated high accuracy on a

held-out evaluation set. In the next Chapter, we introduce the oqa system, which leverages

both curated and extracted knowledge bases for Open QA and outperforms Paralex in

terms of precision and recall.

70

Incorrectly Answered/Unanswered Questions

36% Complex Questions

Need n-ary or higher-order relations (14%)

Answer is a set of instructions (13%)

Need operators e.g. joins (9%)

32% Entity or Relation Recognition Errors

Entity recognition errors (13%)

Relation recognition errors (12%)

Entity & relation recognition errors (7%)

28% Incomplete Knowledge Base

Derived a correct query, but no answers

4% Typos/Inscrutable Questions

Table 4.7: Error distribution of Paralex on an unrestricted sample of questions from the
WikiAnswers dataset.

71

Chapter 5

OPEN QUESTION ANSWERING OVER CURATED AND
EXTRACTED KNOWLEDGE BASES

In the previous chapter, I introduced the Paralex system, which was the first to perform

Open QA over an extracted knowledge base. Recently, there has been work on scaling

semantic parsing systems to work over curated knowledge bases like Freebase (Cai and

Yates, 2013; Kwiatkowski et al., 2013; Berant et al., 2013). In this chapter, I introduce

oqa, the first Open QA system to use both curated and extracted knowledge bases to

derive answers.

A key challenge in Open QA is to be robust to the high variability found in natural

language and the many ways of expressing knowledge in large-scale KBs. oqa achieves this

robustness by decomposing the full QA problem into smaller sub-problems that are easier

to solve. Figure 5.1 shows an example of how oqa maps the question “How can you tell if

you have the flu?” to the answer “chills” over four steps. The first step rewrites the input

question to “What are signs of the flu?” using a paraphrase operator mined from a large

corpus of questions. The second step uses a hand-written template to parse the paraphrased

question to the KB query (?x, signs of, the flu). These two steps are synergistic;

paraphrase operators effectively reduce the variance of the input questions, allowing oqa to

use a small set of high-precision parsing rules while maintaining recall. The third step uses

a query-rewrite operator to reformulate the query as (the flu, symptoms, ?x). Query-

rewrite operators are automatically mined from the KB, and allow the vocabulary mismatch

between question words and KB symbols to be solved independent of parsing. Finally, the

fourth step executes the rewritten query against the KB, returning the final answer.

The operators and KB are noisy, so it is possible to construct many different sequences

of operations (called derivations), very few of which will produce a correct answer. oqa

learns from a small amount of question-answer data to find the best derivations. Because

72

Question

How can you tell if you have the flu?

Question

What are signs of the flu?

Query

?x: (?x, sign of, the flu)

Query

?x: (the flu, symptoms, ?x)

Answer

chills:

(the flu, symptoms include, chills)

Paraphrase (Section 5.7.2)

5 million mined operators

Parse (Section 5.7.1)

10 high-precision templates

Rewrite (Section 5.7.3)

74 million mined operators

Execute (Section 5.7.4)

1 billion assertions from

Freebase, Open IE,

Probase, and NELL

Figure 5.1: OQA automatically mines millions of operators (left) from unlabeled data, then
learns to compose them to answer questions (right) using evidence from multiple knowledge
bases.

73

the derivations are unobserved in the training data, we use a latent-variable structured

perceptron algorithm (Zettlemoyer and Collins, 2005; Liang et al., 2006; Sun et al., 2009).

oqa uses a small set of general features that allow it to generalize from a limited num-

ber of training examples. Experiments on three benchmark question sets show that oqa

outperforms Paralex, achieving twice the precision and recall.

In summary, we make the following contributions:

• We introduce oqa, the first Open QA system to leverage multiple, large-scale curated

and extracted KBs.

• We describe an inference algorithm for deriving high-confidence answers (Section 5.5)

and a hidden-variable structured perceptron algorithm for learning a scoring function

from data (Section 5.6).

• We present algorithms for automatically mining paraphrase operators from a question

corpus (Section 5.7.2) and KB-query rewrite operators (Section 5.7.3) from multiple

KBs.

• We provide an empirical evaluation (Section 5.8), showing the relative contributions

of different KBs and different system components across three question sets. We also

compare oqa to the state-of-the-art QA systems Paralex (Fader et al., 2013) and

Sempre (Berant et al., 2013).

In Section 5.1, we describe related work in more detail before moving on to the description

of oqa (Sections 5.2–5.7) and experiments (Section 5.8).

5.1 Related Work

Paralex was the first Open QA system to operate over a noisy, extracted KB. The biggest

difference between Paralex and oqa is how they decompose the QA problem. Paralex

uses self-labeled data to learn templates that directly map questions to queries—essentially

performing paraphrasing, parsing, and query-rewriting in one step. oqa treats these as

74

separate problems, which allows it to combine high-recall data mining techniques (for para-

phrasing and query rewriting) with high-precision, hand-written rules (for parsing).

oqa’s feature representation also differs from previous work. Previous systems use a

large number of lexicalized features—those involving specific lexemes or KB symbols. oqa

uses unlexicalized features that operate on the level of function words, part-of-speech tags,

and corpus statistics. We found that the an unlexicalized feature representation generalizes

better to questions involving relationships that were never seen during training.

5.2 Task Definition and Overview

In this section, we define the QA task and give a high-level outline of oqa and our experi-

ments.

Task and Metrics: We focus on the task of factoid QA, where the system takes a natural

language question like “How can you tell if you have the flu?” as input and returns a short

string answer like chills from a KB, or “no answer.” We use precision (fraction of answered

questions that are correct) and recall (fraction of questions that are correctly answered) as

our primary evaluation metrics.

Knowledge Base: oqa uses a simple KB abstraction where ground facts are represented as

string triples (argument1, relation, argument2). We use triples from curated and extracted

knowledge sources (Section 5.3.1) and provide a lightweight query language to access the

KB (Section 5.3.2).

Operators and Scoring Function: oqa models QA as a process where answers are

derived from questions using operators Ops (Section 5.4.1). A sequence of operators linking

a question to an answer is called a derivation. oqa computes the confidence of an answer

derivation d using a linear scoring function score(d|f ,w), which is parameterized by a feature

function f and feature weights w (Section 5.4.2).

Inference: In practice, the space of derivations defined by Ops is too large to enumerate.

oqa uses heuristic search over partial derivations, guided by score(d|f ,w), to generate high-

scoring candidate answers for an input question (Section 5.5).

75

Source Type # Triples # Relation Phrases

Freebase Curated 300M 18K

Open IE (Fader et al., 2011) Extracted 500M 6M

Probase (Wu et al., 2012) Extracted 200M 1

NELL (Carlson et al., 2010) Extracted 2M 300

Table 5.1: Knowledge bases used by OQA.

Learning: oqa learns the weights w from a small set of question-answer pairs. Because

annotated answer derivations are difficult to obtain, we use a latent-variable structured

perceptron algorithm that treats answer derivations as unobserved variables in the training

data (Section 5.6).

Operators and Features: oqa uses four types of operators: a small set of parsing op-

erators (Section 5.7.1), a large set of paraphrase operators mined from a question corpus

(Section 5.7.2), a large set of query-rewrite rules mined from the KB (Section 5.7.3), and

an execution operator that interfaces with the KB (Section 5.7.4). Each operator is paired

with a small set of features used to compute f . Using a small feature set results in better

generalization from limited training data.

System Evaluation: We evaluate oqa using three question sets. We compare oqa to the

Open QA system Paralex and the Freebase QA system Sempre (Berant et al., 2013). We

then test the contributions of each knowledge source and system component via ablation.

5.3 Knowledge Base

This section describes where oqa’s knowledge comes from and the query language it uses

to access the knowledge.

76

5.3.1 Knowledge Base Sources

Table 5.1 summarizes the knowledge sources in oqa. oqa uses one curated KB (Freebase)

and three extracted KBs (Open IE, Probase, and NELL).

Freebase is an open-domain, collaboratively edited KB. Freebase has comprehensive cov-

erage of certain domains like film or geography, but does not contain imprecise assertions

like “chicken is high in protein.” Freebase maintains canonical string representations of its

entities and relations, which we use to coerce facts into string triples.1

Open IE (Banko et al., 2007; Fader et al., 2011) is a family of techniques used to extract

binary relationships from billions of web pages containing unstructured text. Open IE has

the unique property that its relations are unnormalized natural language, which results in

over two orders of magnitude more relation phrases than Freebase. The Open IE assertions

are noisy and lack the comprehensive domain coverage found in Freebase. However, Open

IE contains many of the informal assertions that are not found in curated KBs. For example,

Open IE produces assertions like (pepper, provides a source of, vitamins a and c).

Open IE triples are annotated with metadata including extractor confidence and corpus

frequency, and some triple arguments are linked to Freebase entities (Lin et al., 2012).

Probase (Wu et al., 2012) is an extracted KB containing “is-a” relations, e.g., (paris,

is-a, beautiful city) or (physicist, is-a, scientist). Probase triples are anno-

tated with statistical metadata that measure the confidence of each extraction.

NELL (Carlson et al., 2010) is an extracted KB that contains approximately 300 relation

phrases. NELL generally has high precision, but low recall.

The union of these KBs forms a single resource containing a billion noisy, redundant, and

inconsistent assertions. While there is a vast body of literature exploring the problem

of data integration (Doan et al., 2012), these techniques require a target schema, which

does not exist for our knowledge sources. Instead of making an offline commitment to a

single schema, at runtime oqa hypothesizes many interpretations for each question. These

hypotheses are encoded using the query language described in the next section.

1We discard Freebase facts that are not binary relations.

77

What fruits are a source of vitamin C?

?x : (?x, is-a, fruit) (?x, source of, vitamin c)

SELECT t0.arg1 FROM triples AS t0, triples AS t1

WHERE

keyword-match(t0.rel, "is-a") AND

keyword-match(t0.arg2, "fruit") AND

keyword-match(t1.rel, "source of") AND

keyword-match(t1.arg2, "vitamin c") AND

string-similarity(t0.arg1, t1.arg1) > 0.9

t0.arg1 t0.rel t0.arg2 t1.arg1 t1.rel t1.arg2

Lychee is a fruit Lychees good source of vitamin c

star-fruit is a tropical

fruit

starfruit source of vitamin c

pepper is a fresh

fruit

pepper provides a

source of

vitamins c

and a

Figure 5.2: Top: An example question and query used by OQA. Middle: The query se-
mantics expressed as SQL. Bottom: The results when executed against a knowledge base
(answers highlighted).

5.3.2 Query Language

The query language used in oqa provides a lightweight interface between natural lan-

guage and KB assertions. In contrast to the semantic parsing literature (Zelle and Mooney,

1996), a oqa query is not intended to represent the complete, formal semantic interpre-

tation of a question. Instead, the query language is used to separate the parsing problem

(identifying predicate-argument structure) from the vocabulary-matching problem (match-

ing natural language symbols to KB symbols) (Grosz et al., 1987; Kwiatkowski et al., 2013).

This factorization is at the core of the oqa approach, which uses different operators to solve

78

each problem.

oqa’s query language is capable of representing conjunctive queries (Chandra and Mer-

lin, 1977). Because our KB is unnormalized and contains only strings, oqa uses keyword

matching and string similarity as primitive operations. Figure 5.2 shows how the question

“What fruits are a source of vitamin C?” can be represented as the query ?x : (?x, is-a,

fruit) (?x, source of, vitamin c). This particular query represents one possible map-

ping of the question to a predicate-argument structure. The middle box of Figure 5.2 shows

how the semantics of the query can be interpreted as a SQL expression over a single table

triples with string columns arg1, rel, and arg2. A oqa query consists of a projection

variable (e.g., ?x) and a list of conjuncts. Each conjunct contains a mix of string literals

(e.g., fruit) and variables. String literals correspond to keyword-matching constraints on

the table columns, while variables correspond to string-similarity join constraints.

Having keyword matching and string similarity incorporated into the query semantics

leads to another useful factorization. The query language provides a general, high-recall

solution to the problem of minor surface-form variations (e.g., joining star-fruit with

starfruit or matching source of with provides a source of in Figure 5.2). oqa can

then increase precision by computing question- or KB-specific features as soft constraints on

the output. For example, it uses a feature that checks whether two join keys are linked to the

same Freebase entity, if this information is available. This lets oqa maintain a simple data

model (entity-linking is not required) while allowing for domain knowledge to be modeled

via features.

5.4 Deriving and Scoring Answers

oqa factors question answering into a set of smaller, related problems including paraphras-

ing, parsing, and query reformulation. The solutions to each of these sub-problems can

then be applied in sequence to give a complete mapping from question to answer. Figure

5.3 shows example derivations for the question “How can you tell if you have the flu?” Our

approach consists of two parts: (1) derivation operators, which define the space of possi-

ble answers for a given question, and (2) a scoring function, which returns a real-valued

confidence for a derivation.

79

5.4.1 Derivation Operators

More formally, we model question answering as the process of mapping a question q to an

answer a by applying operators from some set Ops. Each operator o ∈ Ops takes a state

object s ∈ States as input and returns a set o(s) ⊆ States of successor states as output. State

objects encode intermediate values that are used during the question-answering procedure.

In Figure 5.3, the intermediate question “What are signs of the flu?” is a state object that

is related to the query ?x : (?x, sign of, flu) via a parsing operator. We use three

types of states: question states, query states, and answer states.

Operations can be chained together into a derivation. A single derivation step encodes

the process of applying an operator o to some state s and picking a successor state s′ ∈ o(s)

from the output. A derivation d = (o, s, k) consists of a sequence of k operators o =

(o1, . . . , ok) and a sequence of k + 1 states s = (s0, s1, . . . , sk) satisfying si ∈ oi(si−1) for all

1 ≤ i ≤ k.2

An answer a is derivable from a question q under the operator set Ops if there exists

some derivation (o, s, k) such that s0 = q and sk = a. We use the notation Derivs(q,Ops)

to represent the space of all possible derivations from the question q under the operations

Ops ending at answer a.

In our implementation of oqa, the operator set Ops contains millions of operators,

combining both hand-written operators and operators learned from data. These operators

are noisy: incorrect answers can be derived from most questions. Thus, estimating the

confidence of a derivation is necessary for returning answers with high precision.

5.4.2 Scoring Function

To compute the confidence of a derivation, oqa uses a scoring function. The scoring function

computes a real value for a given derivation, where large, positive scores are assigned to

high-confidence derivations.

We make two assumptions about the form of the scoring function. First, we assume that

2In oqa, 2 ≤ k ≤ 4: parsing and execution steps are required to derive an answer, and we limit derivations
to have at most one paraphrase step and one query-rewrite step.

80

Question

How can you tell if you have the flu?

Question

What are signs of the flu?

Query

?x : (?x, signs of, flu)

Query

?x : (?x, causes, flu)

Answer

virus:

(virus, cause, flu symptoms)

f = {tuple conf: 0.3, . . .}

Query

?x : (flu, symptoms, ?x)

Answer

chills:

(flu, symptoms include, chills)

f = {tuple conf: 0.8, . . .}

f = {rewrite conf: 0.6, . . .} f = {rewrite conf: 0.2, . . .}

f = { template What RV NP: 1.0

relation VB NNS IN: 1.0

. . . }

f = { paraphrase conf: 0.6

argument DT NN: 1.0

. . . }

score = w ·

0.6

0.8
...

 = 1.2 score = w ·

0.2

0.3
...

 = −0.1

Figure 5.3: OQA computes operator-specific features to discriminate between correct deriva-
tions (left path) and incorrect derivations (right path).

81

the score is a linear function over features computed from a derivation. This will allow us to

use familiar algorithms to learn the function from data. Second, we assume that the feature

function decomposes over derivation steps. This allows us to use the scoring function to

score partial derivations, which is useful for searching over Derivs(q,Ops) (discussed further

in Section 5.5).

Under these assumptions, the score of a derivation d = (o, s, k) can be written as

score(d|f ,w) =

k∑
i=1

w · f(s0, si−1, oi, si), (5.1)

where f is an n-dimensional feature function that maps a derivation step into Rn and w

is an n-dimensional weight vector. Because s0 (the input question) is a constant in all

derivations, we pass it as an argument to the feature function. This allows features to

compute properties relating derivation steps to the input question.

Figure 5.3 shows an example of how the scoring function can discriminate between a

correct answer (left) and an incorrect answer (right). The derivation on the left rewrites the

original query using a high-confidence rule and uses high-confidence evidence returned from

the KB. The derivation on the right uses a low-confidence rewrite rule and low-confidence

evidence—and is thus assigned a lower score.

In our implementation of oqa, we learn w from a small set of question-answer pairs

(Section 5.6) and define f to compute operator-specific features (Section 5.7).

5.5 Inference

We focus on the task of finding a single answer with the highest confidence under the scoring

function, which amounts to solving the following equation for an input question q:

d∗ = arg max
d∈Derivs(q,Ops)

score(d|f ,w). (5.2)

The underlying knowledge base and set of operators are both large enough that exhaustively

enumerating Derivs(q,Ops) is not feasible. Instead, oqa uses beam search informed by

the scoring function to explore Derivs(q,Ops). We refer to the beam search routine as

DeriveAnswers.

82

The algorithm takes a question q as input and returns a set of derivationsD ⊆ Derivs(q,Ops).

The output set D is constructed by iteratively growing partial derivations starting at the

initial question state s0 = q. The algorithm maintains a beam of partial derivations, each

scored by the function score(d|f ,w). At every iteration, a partial derivation is selected to

be extended. Extending a derivation d = (o, s, k) amounts to computing successors to the

state sk and appending the successors to construct new derivations. This process is repeated

until there are no partial derivations left to extend or until a time limit is reached.

In practice, the scoring function score(d|f ,w) generally assigns higher scores to short

derivations, e.g. derivations that do not use a query-rewrite operator. We found that this

bias will flood the beam with high-scoring partial derivations occurring early in the search,

and later options will not be considered. To avoid this problem, we maintain separate beams

for each state-type in the search, similar to the decoding algorithms used in statistical

machine translation (Koehn, 2004). oqa uses beam search both at runtime and during

learning, which we describe in the next section.

5.6 Learning

A key challenge in learning score(d|f ,w) is that obtaining labeled answer derivations requires

expert annotators and is time consuming. Following recent work in semantic parsing (Clarke

et al., 2010; Berant et al., 2013; Kwiatkowski et al., 2013), we use question-answer pairs

as indirect supervision and treat answer derivations as unobserved variables in the training

data. Question-answer pairs like q = “How can you tell if you have the flu?”, A = {chills,

fever, aches} are easier to obtain and do not require expert annotators.

We use the latent-variable structured perceptron algorithm (Zettlemoyer and Collins,

2005; Liang et al., 2006; Sun et al., 2009) to learn w from example question-answer pairs.

Figure 5.4 shows the pseudocode for the LearnWeights algorithm.

The algorithm takes as input a set of N pairs (qi, Ai) for i = 1, . . . , N , where Ai is a set

containing string answers to qi. For each training example, the algorithm calls DeriveAn-

swers to generate a candidate set of answer derivations D. The algorithm then chooses

a derivation d̂ that has the highest score according to the current weights and makes the

prediction â = answer(d̂). If â is correct (i.e., it is in Ai), the algorithm proceeds to the next

83

function LearnWeights

Inputs:

Number of iterations T

N example questions with answers (q1, A1), . . . , (qN , AN)

Initial model (Ops, f ,w) (Defined in Section 5.4)

Function DeriveAnswers (Defined in Section 5.5)

Output:

Learned weights w

for t = 1, . . . , T do

for i = 1, . . . , N do

D = DeriveAnswers(qi,Ops, f ,w)

d̂ = arg maxd∈D score(d|f ,w)

if answer(d̂) 6∈ Ai then

D∗ = {d ∈ D : answer(d) ∈ Ai}

d∗ = arg maxd∈D∗ score(d|f ,w)

w = w + f(d∗)− f(d̂)

return average of w over all iterations

Figure 5.4: The weight-learning algorithm.

example. If â is incorrect, then the learner picks the highest scoring derivation d∗ such that

answer(d∗) is in Ai. The algorithm then performs an additive update w = w+ f(d∗)− f(d̂).

If there are no derivations with a correct answer in D, then the learner immediately pro-

ceeds to the next example without performing an update. Finally, the algorithm returns the

average value of w over all iterations, which improves generalization (Freund and Schapire,

1999).

84

5.7 Operators and Features

In this section, we describe the operators that oqa uses to derive answers. The operators

factor the end-to-end QA problem into smaller subproblems:

Parsing operators (Section 5.7.1) are responsible for interfacing between natural language

questions and the KB query language described in Section 5.3.2. oqa uses a small number

of high-precision templates to map questions to queries.

Paraphrase operators (Section 5.7.2) are responsible for rewording the input question

into the domain of a parsing operator. In an offline process, oqa mines 5 million lexicalized

paraphrase-templates from an unlabeled corpus of open-domain questions.

Query-rewrite operators (Section 5.7.3) are responsible for interfacing between the vo-

cabulary used in the input question and the internal vocabulary used by the KBs. oqa

implements its query-rewrite operators by mining a set of 75 million relation-entailment

pairs from the knowledge bases described in Section 5.3.1.

The execution operator (Section 5.7.4) is responsible for fetching and combining evidence

from the KB, given a query.

For each operator, oqa computes general, domain independent features that are used in

the scoring function. These features are unlexicalized in the sense that they do not compute

any values associated with content words in either the question or the KB.

In the following subsections, we describe each type of operator in detail and describe the

operator-specific features used by the scoring function.

85

Q
u
e
st
io
n

P
a
tt
e
rn

Q
u
e
ry

P
a
tt
e
rn

E
x
a
m
p
le

Q
u
e
st
io
n

E
x
a
m
p
le

Q
u
e
ry

W
h

o/
W

h
at

R
V

re
l

N
P
a
rg

(
?
x
,
r
e
l
,
a
r
g
)

W
h

o
in

v
en

te
d

p
a
p
y
ru

s?
(
?
x
,
i
n
v
e
n
t
e
d
,
p
a
p
y
r
u
s
)

W
h

o/
W

h
at

A
u

x
N

P
a
rg

R
V

re
l

(
a
r
g
,
r
e
l
,
?
x
)

W
h

a
t

d
id

N
ew

to
n

d
is

co
ve

r?
(
N
e
w
t
o
n
,
d
i
s
c
o
v
e
r
,
?
x
)

W
h

er
e/

W
h

en
A

u
x

N
P
a
rg

R
V

re
l

(
a
r
g
,
r
e
l
i
n
,
?
x
)

W
h

er
e

w
a
s

E
d

is
o
n

b
o
rn

?
(
E
d
i
s
o
n
,
b
o
r
n
i
n
,
?
x
)

W
h

er
e/

W
h

en
is

N
P
a
rg

(
a
r
g
,
i
s
i
n
,
?
x
)

W
h

er
e

is
D

et
ro

it
?

(
D
e
t
r
o
i
t
,
i
s
i
n
,
?
x
)

W
h

o/
W

h
at

is
N

P
a
rg

(
a
r
g
,
i
s
-
a
,
?
x
)

W
h

a
t

is
p

o
ta

ss
iu

m
?

(
p
o
t
a
s
s
i
u
m
,
i
s
-
a
,
?
x
)

W
h

at
/W

h
ic

h
N

P
re
l2

A
u

x
N

P
a
rg

R
V

re
l1

(
a
r
g
,
r
e
l
1
r
e
l
2
,
?
x
)

W
h

a
t

sp
o
rt

d
o
es

S
o
sa

p
la

y
?

(
S
o
s
a
,
p
l
a
y
s
p
o
r
t
,
?
x
)

W
h

at
/W

h
ic

h
N

P
re
l

is
N

P
a
rg

(
a
r
g
,
r
e
l
,
?
x
)

W
h

a
t

et
h

n
ic

it
y

is
D

ra
cu

la
?

(
D
r
a
c
u
l
a
,
e
t
h
n
i
c
i
t
y
,
?
x
)

W
h

at
/W

h
o

is
N

P
a
rg

’s
N

P
re
l

(
a
r
g
,
r
e
l
,
?
x
)

W
h

a
t

is
R

u
ss

ia
’s

ca
p

it
a
l?

(
R
u
s
s
i
a
,
c
a
p
i
t
a
l
,
?
x
)

W
h

at
/W

h
ic

h
N

P
ty

p
e

A
u

x
N

P
a
rg

R
V

re
l

(
?
x
,

i
s
-
a
,

t
y
p
e
)

(
a
r
g
,

r
e
l
,

?
x
)

W
h

a
t

fi
sh

d
o

sh
a
rk

s
ea

t?
(
?
x
,

i
s
-
a
,

f
i
s
h
)

(
s
h
a
r
k
s
,

e
a
t
,

?
x
)

W
h

at
/W

h
ic

h
N

P
ty

p
e

R
V

re
l

N
P
a
rg

(
?
x
,

i
s
-
a
,

t
y
p
e
)

(
?
x
,

r
e
l
,

a
r
g
)

W
h

a
t

st
a
te

s
m

a
ke

o
il

?
(
?
x
,

i
s
-
a
,

s
t
a
t
e
s
)

(
?
x
,

m
a
k
e
,

o
i
l
)

T
ab

le
5.

2:
H

ig
h

-p
re

ci
si

on
p

ar
si

n
g

op
er

at
or

s
u

se
d

to
m

ap
q
u

es
ti

on
s

to
q
u

er
ie

s.
Q

u
es

ti
on

te
m

p
la

te
s

a
re

ex
p

re
ss

ed
u

si
n

g
n

o
u

n
p

h
ra

se
s

(N
P

),
au

x
il
ia

ry
ve

rb
s

(A
u

x
),

an
d
R
e
V
e
r
b

p
at

te
rn

s
(R

V
).

S
u

b
sc

ri
p

ts
d

en
ot

e
re

ge
x
-s

ty
le

ca
p

tu
re

g
ro

u
p

s.

86

5.7.1 Parsing Operators

To map questions to queries, we use the set of 10 hand-written operators shown in Table

5.2. Each operator consists of a question pattern and a query pattern.

A question pattern is expressed as a regular expression over part-of-speech (POS) tags

and function words. To detect noun phrases (NPs), we use a POS pattern that matches a

sequence of nouns, determiners, and adjectives. We use the ReVerb pattern (Fader et al.,

2011) to detect relation phrases. Each question pattern uses named capture-groups to select

substrings from the input question.

A query pattern consists of a query (defined in Section 5.3.2) containing pointers to

capture groups from the question pattern. When a question pattern matches a question,

the captured strings are substituted into the query pattern to generate a complete query.

For example, the question pattern in the first row of Table 5.2 matches “Who invented

papyrus?” and captures the substrings {rel → “invented”, arg → “papyrus”}. These are

substituted into the query pattern (?x, rel, arg) to produce the output (?x, invented,

papyrus).

Features: Because some question patterns may be more reliable than others, we include

an indicator feature for each question pattern. We also include indicator features for the

POS sequence of the capture groups and the POS tags to the left and right of each capture

group.

5.7.2 Paraphrasing Operators

The parsing operators in Table 5.2 have high precision but low recall. To increase recall, we

use paraphrase operators to map questions onto the domain of the parsing operators. Each

paraphrase operator is implemented as a pair of paraphrase templates like the examples in

Table 5.3.

Each paraphrase template consists of a natural language string with a slot that captures

some argument.3 For example, the first source template in Table 5.3 matches the question

3While Paralex allows for both 1-argument and 2-argument templates, oqa only uses 1-argument tem-
plates. Extending oqa to use 2-argument templates is future work.

87

Source Template Target Template

How does affect your body? What body system does affect?

What is the latin name for ? What is ’s scientific name?

Why do we use ? What did replace?

What to use instead of ? What is a substitute for ?

Was ever married? Who has been married to?

Table 5.3: Example paraphrase operators that extracted from a corpus of unlabeled ques-
tions.

“How does nicotine affect your body?” This question can then be paraphrased by substi-

tuting the argument “nicotine” into the target template, yielding the new question “What

body system does nicotine affect?”

We follow the work of Paralex and automatically mine these source/target template

pairs from the WikiAnswers4 paraphrase corpus. We use an updated crawl of WikiAnswers

that consists of 23 million question-clusters that users have grouped as synonymous. Each

question cluster contains an average of 25 questions. In general, the clusters have low

precision due to mistakes or users grouping related, but non-synonymous questions (e.g.,

“How to say shut up in french?” is grouped with “Is it nice to say shut up?”).

We extracted 200,000 templates that occurred in at least 10 question clusters. For each

pair of templates (t, t′), we define the co-occurrence count c(t, t′) to be the number of clusters

where t and t′ both occur with the same argument. For example, if a cluster contains the

questions “Why do we use computers?” and “What did computers replace?” we would

increment the count c(Why do we use ?, What did replace?) by 1. For each template

pair (t, t′) such that c(t, t′) ≥ 5, we define paraphrase operators t → t′ and t′ → t. This

generates a set of 5 million paraphrase operators. During inference, all possible paraphrases

of a question q are computed by considering all substrings of q (up to 5 tokens) as the

argument.

4http://wiki.answers.com

88

Source Query Target Query

(?x, children, ?y) (?y, was born to, ?x)

(?x, birthdate, ?y) (?x, date of birth, ?y)

(?x, is headquartered in, ?y) (?x, is based in, ?y)

(?x, invented, ?y) (?y, was invented by, ?x)

(?x, is the language of, ?y) (?y, languages spoken, ?x)

Table 5.4: Example query-rewrite operators mined from the knowledge bases described in
Section 5.3.1.

Features: The paraphrase operators are automatically extracted from a noisy corpus,

and are not always reliable. We compute statistical and syntactic features to estimate the

confidence of using the operator t → t′ to paraphrase a question q to a new question q′

using argument a. The statistical features include the pointwise mutual information (PMI)

between t and t′ in the WikiAnswers corpus and a language model score of q′. The syntactic

features include the POS sequence of the matched argument a, and the POS tags to the

left and right of a in q.

5.7.3 Query-Rewrite Operators

To handle the mismatch between natural language vocabulary and the KB vocabulary, we

mine query rewrite rules. We focus on handling the mismatch between relation words in the

question and relation words in the KB.5 Table 5.4 lists example query rewrite rules. Each

rule encodes a translation from one relation phrase to another, with a possible re-ordering

of the arguments. For example, the first row in Table 5.4 is an operator that allows the

relation phrase children to be rewritten as was born to−1, where the superscript denotes

inverted argument ordering.

We follow previous work on mining equivalent relations (Lin and Pantel, 2001; Yates and

Etzioni, 2009) and count the number of shared argument-pairs between two relation phrases.

5Rewriting arguments is future work.

89

For example, the tuples (hermann einstein, children, albert einstein) and (albert

einstein, was born to, hermann einstein) both appear in the KB, so children and

was born to−1 share the argument pair (hermman einstein, albert einstein). We

construct a query rewrite operator for each pair of relation phrases (r, r′) that share at

least 10 argument pairs. This results in a set of 74 million (r, r′) pairs that we include as

operators.

Features: As with the paraphrase templates (Section 5.7.2), we compute the PMI for

each pair of relation phrases as a feature.

5.7.4 Execution Operator

The execution operator takes a query as input and returns a set of tuples, as shown in

Figure 5.2. We store the KB (arg1, relation, arg2) triples in an inverted index6 that

allows for efficient keyword search over the three triple fields. We implemented a simple

query optimizer that performs joins over triples by making multiple queries to the KB. Due

to the size of the KB, we limit each keyword search over the triples to return the top 100

hits. The output of the execution operator is an answer state, containing a string answer

and a joined tuple of evidence.

Features: We use features to estimate the reliability of the KB output. The features

examine properties of the query, the returned tuple evidence, and the answer.

We measure the keyword similarity between two strings by lemmatizing them, removing

stopwords, and computing the cosine similarity. We then include the keyword similarity

between the query and the input question, the keyword similarity between the query and

the returned evidence, and an indicator feature for whether the query involves a join.

The evidence features compute KB-specific properties. Extracted triples have confidence

scores, which are included as features. We compute the join-key string similarity measured

using the Levenshtein distance. We also include indicator features for the source of each

triple (e.g., whether the triple is from Open IE or Freebase).

The answer features compute conjunctions of properties of the input question and the

6https://lucene.apache.org/solr/

90

answer. We compute whether the question begins with some common prefixes (e.g., Who,

What, When, How many, etc.). For the answer, we compute word-shape features (e.g.,

“Kansas” has the word shape “Aaaa” and “December 1941” has the word shape “Aaaa

1111”). This allows the system to learn that features like question starts with When ∧

answer has shape 1111 are indicative of a correct answer.

5.8 Experimental Setup

We are interested in answering three questions: (1) How does oqa compare to the state-of-

the-art systems Paralex, Sempre, and Wolfram|Alpha? (2) How do the different knowl-

edge sources affect performance? (3) How do the different system components affect per-

formance?

We investigate these questions by comparing performance on three question sets. Given

a question q, each system returns an answer a with confidence c ∈ R or “no answer.”

We then measure the precision (correct answers/answers returned), recall (correct an-

swers/questions), and F1 score (harmonic mean of precision and recall). We also compute

precision-recall curves that show how precision is traded for recall as the minimum confi-

dence to return an answer is varied. We describe the three question sets in Section 5.8.1

and the system settings in Section 5.8.2.

5.8.1 Question Sets

In our experiments, we use three question sets: WebQuestions, TREC, and WikiAnswers.

Figure 5.5 shows statistics and example questions from each set.

WebQuestions was introduced by the authors of the Sempre system (Berant et al., 2013).

The questions were generated from Google Autocomplete using a seed set of Freebase enti-

ties. Amazon Mechanical Turk users then provided answers in the form of Freebase concepts.

Questions that could not be answered using Freebase were filtered out. Out of the three

test sets, WebQuestions has the unique property that the questions are known a priori to

be answerable using Freebase.

91

WebQuestions who influenced wolfgang amadeus mozart?

3,778 train who won the super bowl xliv 2010?

2,032 test where was nicki minaj born?

what is in liverpool england?

who is the leader of france 2012?

TREC What other countries do Kurds live in?

962 train What year was Barry Manilow born?

517 test What format was VHS’s main competition?

Who is the chairman of WWE?

What is Muscular Dystrophy?

WikiAnswers What is Matthew henson’s mothers name?

1,334 train Who is a retired gay nfl football player?

731 test Do beluga whales eat penguins?

Why were the conquistadors important?

How does psychiatry benefit society?

Table 5.5: The three question sets used in our experiments.

92

TREC was introduced for the purpose of evaluating information retrieval QA systems

(Voorhees and Tice, 2000). We re-purpose the TREC questions to test our KB-based Open

QA systems. While the TREC questions were designed to be answerable using a small

collection of test documents, they are not guaranteed to be answerable using any of the

KBs described in Section 5.3.1.

WikiAnswers is a set of questions that were randomly sampled from a crawl of WikiAn-

swers. The WikiAnswers question set is disjoint from the corpus used to extract the para-

phrasing operators described in Section 5.7.2. WikiAnswers questions are very challenging

and ambiguous, and are not necessarily answerable by any KB.

WebQuestions and TREC both have gold-standard answer sets for each question, and

WikiAnswers questions often have no answers available. However, due to the open-domain

nature of our experiments, the gold-standard answer sets are incomplete. If a system’s top

answer was not already included in the provided gold-standard sets, we manually tagged

the answers as correct or incorrect.

5.8.2 System Settings

OQA: We examine two different training conditions. In the first condition, we trained oqa

on each training set independently. In the second condition, we trained oqa on the union

of the WebQuestions, TREC, and WikiAnswers training sets.

For inference, we used a beam capacity of 1,000 and a search time limit of 20 seconds.

For learning, we initialized 10 of the feature weights to be +1/-1 based on whether the

features are indicative of good derivations (e.g., PMI scores) or bad derivations (e.g., verbs

as paraphrase-template arguments). We set the number of perceptron iterations (between

1 and 5) using a fraction of held-out training data. For the first perceptron iteration, we

interactively trained the system by providing the set D∗ in Figure 5.4.

Paralex: We used Paralex to parse questions to queries, and then execute them against

the same KB as oqa. Paralex provides a score for each query. For each answer that the

query returns, we use the score from the query as a measure of confidence.

93

20% 40%

Recall

0%

50%

100%

P
re

ci
si

on

All Training Data

Domain Training Data

WebQuestions

0% 15% 30%

Recall

All Training Data

Domain Training Data

TREC

0% 4% 8%

Recall

All Training Data

Domain Training Data

WikiAnswers

Figure 5.5: Training the scoring function on the union of all training data results in higher
precision and recall on TREC and WikiAnswers.

Sempre: The authors of Sempre also make it available for download.7 Sempre comes

with a model trained on the WebQuestions question set. We attempted to train Sempre

with questions from TREC and WikiAnswers, but found that the WebQuestions model had

higher performance on held-out development questions, so we use the WebQuestions model

in our experiments. The Sempre system is only able to access Freebase, and is thus used

as a baseline to test the oqa’s ability to access both curated and extracted KBs.

Wolfram|Alpha: We queried Wolfram|Alpha8 via its public API. We took the top answer

returned by the system.

5.9 Experimental Results

Figure 5.5 shows the precision-recall curves comparing oqa under the two different training

conditions. Training the scoring function on the union of all training data results in higher

precision and recall on TREC and WikiAnswers, but does not have a large effect on the

WebQuestions performance. TREC and WikiAnswers contain many questions that cannot

7https://github.com/percyliang/sempre

8http://www.wolframalpha.com

94

20% 40%
Recall

0%

50%

100%

P
re

ci
si

o
n

oqa

Paralex

WebQuestions

0% 15% 30%
Recall

oqa

Paralex

TREC

0% 4% 8%
Recall

oqa
Paralex

WikiAnswers

Figure 5.6: OQA has higher precision and recall than the Open QA system Paralex.

be answered using the oqa knowledge base, so the effective size of the training sets is

smaller than WebQuestions. The questions in WebQuestions are known to be answerable

using Freebase, so oqa is able to learn from a greater fraction of the WebQuestions training

set than on TREC and WikiAnswers.

Figure 5.6 shows the precision-recall curves of oqa and Paralex on the test questions.

oqa achieves both higher precision and recall than Paralex across all three question sets.

oqa’s scoring function was able to avoid many of the errors made by Paralex. For example,

Paralex made a systematic error confusing “Where” and “When” questions, e.g., it was

unable to tell that 1985 is an unlikely answer to a question that begins with “Where.” In

contrast, oqa was able to compute features of the full derivation (including the answer),

which allowed it to learn not to make this type of error.

Figure 5.7 shows the precision-recall curves of oqa and Sempre on the test questions.

In this case, Sempre is has higher precision and recall than oqa on WebQuestions. Sempre

performs better on WebQuestions through its use of lexicalized features, e.g., there is a single

feature indicating that the string “see in” corresponds to the Freebase relation tourist

attraction. These features allow Sempre to better fit the distribution of relations and

entities in WebQuestions. In contrast, oqa uses only unlexicalized features like POS tags

and corpus statistics like PMI, which limit oqa’s ability to fit the WebQuestions training

95

20% 40%
Recall

0%

50%

100%

P
re

ci
si

o
n

oqa

Sempre

WebQuestions

0% 15% 30%
Recall

oqa

Sempre

TREC

0% 4% 8%
Recall

oqa
Sempre

WikiAnswers

Figure 5.7: Sempre has higher precision and recall on WebQuestions, which are known to be
answerable in Freebase. However, OQA outperforms Sempre on TREC and WikiAnswers,
which were not developed for any particular KB.

data.

However, oqa performs better on TREC and WikiAnswers for two reasons. First, oqa

is uses both extracted and curated knowledge sources, so it is more likely to have an answer

in its KB. Second, Sempre requires lexical overlap in its training and testing set, which is

not satisfied in the TREC and WikiAnswers questions.

Figure 5.8 shows the precision-recall curves of oqa compared to Wolfram|Alpha (WA).

Because WA does not return a confidence value for its answers, we plot a single precision-

recall point. WA has higher precision than oqa, but lower recall. WA uses “extensive

human curation” to perform question interpretation at very high precision.9 However, it

fails to answer simple questions like “What do the Maori Eat?” that are not covered by its

curated knowledge base.

Figure 5.9 shows the effects of removing different components from oqa. The weight-

learning algorithm improves performance over the default weights defined in the experi-

mental setup, with the exception of WikiAnswers. The learned weights have lower F1 on

WikiAnswers because most questions in the WikiAnswers training set could not be parsed

9http://www.wolfram.com/natural-language-understanding

96

20% 40%

Recall

0%

50%

100%

P
re

ci
si

on

oqa

wa

WebQuestions

0% 15% 30%

Recall

oqa

wa

TREC

0% 4% 8%

Recall

oqa

wa

WikiAnswers

Figure 5.8: Wolfram|Alpha achieves higher precision but lower recall than oqa.

to any answer, which reduced the effective size of the training set.

The paraphrase operators improve performance on WebQuestions and WikiAnswers, but

not on TREC. We found that many TREC questions were covered by the parser operators in

Table 5.2, so the paraphrase operators did not add much. In contrast, the WebQuestions and

WikiAnswers questions exhibit much more lexical and syntactic variation, so the paraphrase

operators helped.

The query-rewrite operators led to only a slight improvement on the TREC question

set, and had at best no effect on WebQuestions and WikiAnswers. We examined the output

and found some high-confidence examples where the query-rewrite operators helped, e.g.,

the question “When did the Big Dig begin?” was answered by rewriting (big dig, begin

in, ?x) to (big dig, broke ground in, ?x). However, most derivations that used a

query-rewrite operator were assigned low confidence, and had limited effect on recall.

Figure 5.10 shows the effects of removing a knowledge source from oqa on system per-

formance. Removing Open IE from the KB lowers the F1 score across all test sets. Freebase

helps the most on the WebQuestions set (which was designed specifically for Freebase), but

is less useful for TREC and WikiAnswers. Probase is most useful for WikiAnswers, which

contains many “What is. . . ” questions that can be answered using Probase’s is-a relations.

NELL is largely a subset of the other KBs, so it had no effect on oqa’s performance.

97

0.0 0.2 0.4
F1

Full Model

No Weight Learning

No Paraphrases

No Query Rewrites

WebQuestions

0.00 0.15 0.30
F1

TREC

0.00 0.05 0.10
F1

WikiAnswers

Figure 5.9: The relative contributions of each system component depend on the distribution
of test questions. (Error bars represent one standard deviation from the mean, computed
over 10,000 bootstrap samples of test data.)

0.0 0.2 0.4
F1

All KBs

No Open IE

No Freebase

No Probase

No NELL

WebQuestions

0.00 0.15 0.30
F1

TREC

0.00 0.04 0.08
F1

WikiAnswers

Figure 5.10: OQA performs best using multiple knowledge sources, in particular Open IE,
Freebase, and Probase.

98

5.10 Discussion

The experimental results in the previous section exemplify the power-generality tradeoff

discussed in the introduction: oqa uses a small number of general, unlexicalized features,

which provided better generalization. However, this limits oqa’s ability to take full advan-

tage of the training data. For example, oqa was unable to answer questions like “What

time zone is in South Africa have?” despite seeing several nearly-identical questions in the

WebQuestions training data. A challenge for the future is to engineer oqa to take advantage

of lexical cues when they are available. Extending oqa to induce higher-precision operators

during discriminative training may be one way.

One problem that has gone unaddressed by all of the discussed QA systems is modeling

whether a given question is answerable with the given KB and operators. For example,

oqa currently has no way to answer truth-false questions like “Are dogs mammals?” Yet

oqa systematically chains low-confidence operators together to derive incorrect answers for

them, which hurts precision. A measure of answerability would be useful in scenarios where

high-precision is required.

Table 5.6 shows examples from the test data where oqa derives correct answers. The

first example shows a query rewrite operator that modifies the relation marry to has wife.

The second example shows a paraphrase operator that maps “What are made of?” to

“What material are made of?” In this case, the paraphrase operator introduces a type

constraint that does not appear in the input question, which is beneficial for selecting

the correct answer. The third example highlights the benefit of extracted knowledge,

which contains obscure assertions like “(changing light bulb, is-a, small building

maintenance job).

Table 5.7 shows examples where oqa derives incorrect answers. The first example

shows that the paraphrase operators can be too general, in this case overgeneralizing “an-

imal” to “symbol.” This combines with California Water Service incorrectly matching

California, resulting in the incorrect answer CWT. The second example shows two types of

errors. First, the parser incorrectly treats “actor first” as an argument to a type constraint.

Then, the execution operator (which ignores word order in keyword matching) matches

99

Operator State

Input Who did Michael J Fox marry?

Parse ?x: (Michael J Fox, marry, ?x)

Rewrite ?x: (Michael J Fox, has wife, ?x)

Execute Tracy Pollan:

(Michael J. Fox, has wife, Tracy Pollan)

Input What are brake pads made of?

Paraphrase What material are brake pads made of?

Parse ?x: (?x, is-a, material) (brake pads, made of, ?x)

Execute copper:

(copper, is-a, material)

(The brake pads, were made of, copper)

Input What are some examples of building

maintenance jobs?

Parse ?x: (?x, example of, building maintenance jobs)

Rewrite ?x: (?x, is-a, building maintenance jobs)

Execute changing light bulb:

(changing light bulb, is-a,

small building maintenance job)

Table 5.6: Examples from the test data where OQA derives a correct answer.

100

Operator State

Input What animal represents California?

Paraphrase What are California’s symbols?

Parse ?x: (california, symbols, ?x)

Execute CWT:

(California Water Service, Trading symbol, CWT)

Input What actor first portrayed James Bond?

Parse ?x: (?x, is-a, actor first)

(?x, portrayed, James Bond)

Execute Daniel Craig:

(Daniel Craig, is-a, first class actor)

(Danny Craig, portrays, James Bond)

Input Who did George Washington admire?

Parse ?x: (George Washington, admire, ?x)

Execute presidents and generals:

(George Washington, was admired by,

presidents and generals)

Table 5.7: Example derivations from the test data where OQA derives an incorrect answer.

101

actor first with first class actor, resulting in the incorrect answer Daniel Craig.

The third example shows that better features are needed to prevent errors like matching an

active voice (“admire”) with the passive voice (“was admired by”).

5.11 Conclusion

We introduced oqa, a novel Open QA system that is the first to leverage both curated

and extracted knowledge. We described inference and learning algorithms that oqa uses to

derive high-confidence answers. Our experiments demonstrate that oqa generalizes well to

unseen questions and makes improvements over a state-of-the-art Open QA baseline.

102

Chapter 6

CONCLUSION

This dissertation focused on solving the problem of Open QA, which aims to satisfy

complex information needs that are currently underserved by today’s search engines. I

described two major challenges for Open QA: knowledge acquisition and question interpre-

tation. Chapter 2 discussed how the dominant approaches to question answering, answer

retrieval and semantic parsing, are insufficient for Open QA. Answer retrieval systems are

unable to answer complex questions that combine multiple pieces of evidence to derive an

answer, while semantic parsing systems only work with small, single-domain knowledge

bases.

My approach to Open QA is driven by my thesis statement that large-scale, open-domain

information extraction can provide the necessary knowledge for Open QA, while community

QA sites like WikiAnswers can be used to inform question interpretation. I presented three

technical contributions, which attacked the problems of knowledge acquisition and question

interpretation. The first contribution is the ReVerb Open IE system, which can be used

to automatically extract a large, open-domain knowledge base from web text. ReVerb

achieves higher precision and recall than previous approaches, while using a simpler model.

The second contribution is the Paralex QA system, which uses the ReVerb knowledge

base to answer questions. Paralex was the first Open QA system to use an extracted

knowledge base, and leveraged the data from WikiAnswers using novel learning algorithms.

The third and final contribution was the oqa system, which leveraged both extracted and

curated knowledge bases for Open QA. oqa uses an accurate and robust scoring model,

leading to higher performance than Paralex across multiple question sets.

This dissertation has presented first steps towards Open QA, but there is much work to

be done. The rest of this chapter presents some open problems and ideas for future work

on Open QA.

103

6.1 Machine Learning for Open QA

One future direction would be to enhance the learning algorithms used in the oqa system

to achieve higher precision and recall. Some specific avenues that could be investigated

include:

• Modeling Answerability: The oqa system has no way to judge whether a question

is answerable given its knowledge. For example, oqa tries to answer the question

“Should I remove my own wisdom teeth?” despite the fact that it is unlikely to be

answerable under any knowledge base. This behavior can lower precision, since the

system can often find a chain of operators leading to some answer. Explicitly modeling

answerability could help increase precision by returning “no answer” for questions that

are unlikely to be answerable.

• Weak Supervision: During learning, oqa updates its weights when its predicted

answer is not in the ground-truth answer set, using exact string equality to evaluate set

membership. This strict equality prevents oqa from using the free-text answers from

WikiAnswers as a source of feedback. If oqa’s learning algorithm could be modified

to use indirect sources of feedback, then this would allow the system to learn from

the millions of example question-answer pairs from WikiAnswers and elsewhere. One

possible direction would be to adapt the loss-driven learning that has been explored

in single-domain semantic parsing (Artzi and Zettlemoyer, 2013).

6.2 Compositional Analysis of Questions

One major limitation of the oqa system is its reliance on templates for paraphrasing and

question parsing. For simple questions, the template approach seems to have adequate

coverage. However, as questions get longer and more complex, the chance of having the

right combination of paraphrase and parsing templates decreases. For example, none of

oqa’s templates match the “What is illegal in the US but legal in Mexico?” question

from Chapter 1. A complete solution to this problem requires performing a compositional

104

semantic analysis of input questions, as is done in semantic parsing. However, combining

this with the paraphrasing approach of Paralex and oqa is not straightforward.

Another challenge for handling more complex questions is that they are underrepresented

in naturally occurring question sources like WikiAnswers, where the most frequent questions

are the single-relation questions that can be answered using templates. Thus, a major

research contribution would be the creation of an evaluation set of questions that are both

open-domain and require a compositional analysis in order to derive a correct answer.

6.3 Question-Guided Information Extraction

In Chapter 2, I discussed two approaches to constructing a knowledge base: manual curation

or automatic extraction. Both of these approaches suffer from the drawback that they are

uninformed by the actual information needs of people. Curated knowledge bases reflect the

biases of its curators; extracted knowledge bases reflect the biases of the corpus they were

extracted from (Gordon and Van Durme, 2013). Both of these approaches may be out of

touch with what questions people actually have.

A complete Open QA system should be able to identify when its knowledge base is

incomplete and automatically attempt to extend it. While previous approaches to automatic

knowledge base completion were limited to extracting new instances of a known relation,

the input distribution to a QA system could be used to target new relationships that do

not exist within the knowledge base. For example, if enough people ask questions like “Is

(athlete) left-handed or right-handed?” the system could infer that it should extend its

knowledge base to have a relationship whose domain is athletes and whose range is either

“left-handed” or “right-handed.” A similar approach has been used for extracting attribute-

value pairs using a search engine query log (Pasca and Van Durme, 2007), there has been

no end-to-end QA system that modifies its knowledge in this way. The input questions to

an Open QA system could serve as a strong and useful bias that is currently missing from

Open Information Extraction techniques.

105

BIBLIOGRAPHY

Alan Akbik and Alexander Löser. Kraken: N-ary facts in open information extraction. In

Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and

Web-scale Knowledge Extraction, pages 52–56. Association for Computational Linguis-

tics, 2012.

David J. Allerton. Stretched Verb Constructions in English. Routledge Studies in Germanic

Linguistics. Routledge (Taylor and Francis), New York, 2002.

Gabor Angeli and Christopher D Manning. Philosophers are mortal: Inferring the truth of

unseen facts. CoNLL-2013, 133, 2013.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for

mapping instructions to actions. Transactions of the Association for Computational

Linguistics, 1(1):49–62, 2013.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages

722–735. Springer, 2007.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley framenet project.

In Proceedings of the 17th international conference on Computational linguistics, pages

86–90, 1998.

Niranjan Balasubramanian, Stephen Soderland, Oren Etzioni, et al. Rel-grams: a proba-

bilistic model of relations in text. In Proceedings of the Joint Workshop on Automatic

Knowledge Base Construction and Web-scale Knowledge Extraction, pages 101–105.

Association for Computational Linguistics, 2012.

106

M. Banko and O. Etzioni. The tradeoffs between traditional and open relation extraction.

In Proceedings of ACL, 2008.

Michele Banko, Eric Brill, Susan Dumais, and Jimmy Lin. AskMSR: Question answering

using the worldwide web. In 2002 AAAI Spring Symposium on Mining Answers from

Texts and Knowledge Bases, 2002.

Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broadhead, and Oren

Etzioni. Open Information Extraction from the Web. In IJCAI, 2007.

Colin Bannard and Chris Callison-Burch. Paraphrasing with Bilingual Parallel Corpora. In

Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,

2005.

Regina Barzilay and Lillian Lee. Learning to Paraphrase: An Unsupervised Approach

Using Multiple-Sequence Alignment. In Proceedings of the 2003 Conference of the

North American Chapter of the Association for Computational Linguistics, 2003.

Regina Barzilay and Kathleen R. McKeown. Extracting Paraphrases from a Parallel Cor-

pus. In Proceedings of the 39th Annual Meeting on Association for Computational

Linguistics, 2001.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on Freebase from question-

answer pairs. In EMNLP, 2013.

Jonathan Berant, Ido Dagan, and Jacob Goldberger. Global learning of typed entailment

rules. In Proceedings of ACL, Portland, OR, 2011.

Jonathan Berant, Ido Dagan, Meni Adler, and Jacob Goldberger. Efficient tree-based ap-

proximation for entailment graph learning. In Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics: Long Papers-Volume 1, pages 117–

125. Association for Computational Linguistics, 2012.

107

Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data on the

web. In Proceedings of the 17th international conference on World Wide Web, pages

1265–1266. ACM, 2008.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a

collaboratively created graph database for structuring human knowledge. In Proceedings

of the 2008 ACM SIGMOD international conference on Management of data, pages

1247–1250. ACM, 2008.

Satchuthananthavale Rasiah Kuhan Branavan. Grounding linguistic analysis in control

applications. PhD thesis, Massachusetts Institute of Technology, 2012.

Andrei Broder. A taxonomy of web search. In ACM Sigir forum. ACM, 2002.

John Burger, Claire Cardie, Vinay Chaudhri, Robert Gaizauskas, Sanda Harabagiu, David

Israel, Christian Jacquemin, Chin-Yew Lin, Steve Maiorano, George Miller, et al. Issues,

tasks and program structures to roadmap research in question & answering (q&a). In

Document Understanding Conferences Roadmapping Documents, pages 1–35, 2001.

Michael John Cafarella. Extracting and managing structured web data. PhD thesis, Univer-

sity of Washington, 2009.

Qingqing Cai and Alexander Yates. Large-scale Semantic Parsing via Schema Matching and

Lexicon Extension. In ACL, 2013.

Chris Callison-Burch. Syntactic Constraints on Paraphrases Extracted from Parallel Cor-

pora. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language

Processing, 2008.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reorder-

ing documents and producing summaries. In Proceedings of the 21st annual interna-

tional ACM SIGIR conference on Research and development in information retrieval,

pages 335–336. ACM, 1998.

108

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M. Mitchell.

Toward an architecture for never-ending language learning. In AAAI, 2010.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In STOC, 1977.

Eugene Charniak. Toward a model of children’s story comprehension. Technical report,

DTIC Document, 1972.

Yang Chen and Daisy Zhe Wang. Knowledge expansion over probabilistic knowledge bases.

In SIGMOD, 2014.

Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. Semantic role labeling

for open information extraction. In Proceedings of the NAACL HLT 2010 First Interna-

tional Workshop on Formalisms and Methodology for Learning by Reading, FAM-LbR

’10, pages 52–60, Stroudsburg, PA, USA, 2010. Association for Computational Linguis-

tics. URL http://portal.acm.org/citation.cfm?id=1866775.1866782.

Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. Towards coherent

multi-document summarization. In Proceedings of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL

2013), 2013.

Jennifer Chu-Carroll, Krzysztof Czuba, John M Prager, Abraham Ittycheriah, and Sasha

Blair-Goldensohn. Ibm’s piquant ii in trec 2004. In TREC, 2004.

Jennifer Chu-Carroll, James Fan, BK Boguraev, David Carmel, Dafna Sheinwald, and Chris

Welty. Finding needles in the haystack: Search and candidate generation. IBM Journal

of Research and Development, 56(3.4):6–1, 2012.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving Semantic Parsing

from the World’s Response. In CoNLL, 2010.

109

Michael Collins. Discriminative Training Methods for Hidden Markov Models: Theory

and Experiments with Perceptron Algorithms. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, 2002.

Mark Craven, Andrew McCallum, Dan PiPasquo, Tom Mitchell, and Dayne Freitag. Learn-

ing to extract symbolic knowledge from the world wide web. Technical report, DTIC

Document, 1998.

Jon Curtis, Gavin Matthews, and David Baxter. On the effective use of cyc in a question

answering system. In Proc Workshop on Knowledge and Reasoning for Answering

Questions, pages 61–70, 2005.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual en-

tailment challenge. In Machine Learning Challenges. Evaluating Predictive Uncer-

tainty, Visual Object Classification, and Recognising Tectual Entailment, pages 177–

190. Springer, 2006.

Deborah A Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith,

David Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg. Expanding

the scope of the atis task: The atis-3 corpus. In Proceedings of the workshop on Human

Language Technology, pages 43–48. Association for Computational Linguistics, 1994.

Dipanjan Das and André FT Martins. A survey on automatic text summarization. Literature

Survey for the Language and Statistics II course at CMU, 4:192–195, 2007.

AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles of Data Integration. Morgan

Kaufmann, 2012.

Doug Downey, Oren Etzioni, and Stephen Soderland. A probabilistic model of redundancy

in information extraction. In IJCAI, pages 1034–1041, 2005.

110

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. Web-scale informa-

tion extraction in knowitall:(preliminary results). In Proceedings of the 13th interna-

tional conference on World Wide Web, pages 100–110. ACM, 2004.

Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and Mausam

Mausam. Open information extraction: The second generation. In Proceedings of the

Twenty-Second international joint conference on Artificial Intelligence-Volume Volume

One, pages 3–10. AAAI Press, 2011.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open infor-

mation extraction. In EMNLP, 2011.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Paraphrase-Driven Learning for Open

Question Answering. In ACL, 2013.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering over curated

and extracted knowledge bases. In Submitted to KDD, 2014.

James Fan, Aditya Kalyanpur, DC Gondek, and David A Ferrucci. Automatic knowledge

extraction from documents. IBM Journal of Research and Development, 56(3.4):5–1,

2012.

Christiane Fellbaum. WordNet. Wiley Online Library, 1999.

D. A. Ferrucci. Introduction to ”this is watson”. IBM J. Res. Dev., 56(3):235–249, May

2012. ISSN 0018-8646. doi: 10.1147/JRD.2012.2184356. URL http://dx.doi.org/

10.1147/JRD.2012.2184356.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron

algorithm. Mach. Learn., 37(3):277–296, 1999.

111

Noah S Friedland, Paul G Allen, Gavin Matthews, Michael Witbrock, David Baxter, Jon

Curtis, Blake Shepard, Pierluigi Miraglia, Jurgen Angele, Steffen Staab, et al. Project

halo: Towards a digital aristotle. AI magazine, 25(4):29, 2004.

Pablo Gamallo, Marcos Garcia, and Santiago Fernández-Lanza. Dependency-based open

information extraction. In Proceedings of the Joint Workshop on Unsupervised and

Semi-Supervised Learning in NLP, pages 10–18. Association for Computational Lin-

guistics, 2012.

Qin Gao and Stephan Vogel. Parallel Implementations of Word Alignment Tool. In Proc. of

the ACL 2008 Software Engineering, Testing, and Quality Assurance Workshop, 2008.

Jonathan Gordon and Benjamin Van Durme. Reporting bias and knowledge extraction. In

AKBC, 2013.

Arthur C Graesser and Natalie K Person. Question asking during tutoring. American

educational research journal, 31(1):104–137, 1994.

Gregory Grefenstette and Simone Teufel. Corpus-based method for automatic identifi-

cation of support verbs for nominalizations. In Proceedings of the seventh confer-

ence on European chapter of the Association for Computational Linguistics, pages

98–103, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. doi:

http://dx.doi.org/10.3115/976973.976988.

Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin, and Fernando C. N. Pereira. TEAM:

An Experiment in the Design of Transportable Natural-Language Interfaces. Artificial

Intelligence, 32(2):173–243, 1987.

Vishal Gupta and Gurpreet Singh Lehal. A survey of text summarization extractive tech-

niques. Journal of Emerging Technologies in Web Intelligence, 2(3), 2010.

Lynette Hirschman and Robert Gaizauskas. Natural language question answering: The view

from here. Natural Language Engineering, 7(4):275–300, 2001.

112

Lynette Hirschman, Marc Light, Eric Breck, and John D Burger. Deep read: A reading

comprehension system. In Proceedings of the 37th annual meeting of the Association for

Computational Linguistics on Computational Linguistics, pages 325–332. Association

for Computational Linguistics, 1999.

Ben Hixon and Rebecca J Passonneau. Open dialogue management for relational databases.

In Proceedings of NAACL-HLT, pages 1082–1091, 2013.

Raphael Hoffmann, Congle Zhang, and Daniel S. Weld. Learning 5000 relational extrac-

tors. In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, ACL ’10, pages 286–295, 2010.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld.

Knowledge-Based Weak Supervision for Information Extraction of Overlapping Rela-

tions. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics, 2011.

Peter Jansen, Mihai Surdeanu, and Peter Clark. Discourse complements lexical semantics

for non-factoid answer reranking. In ACL, 2014.

Aditya Kalyanpur, J William Murdock, James Fan, and Christopher Welty. Leveraging

community-built knowledge for type coercion in question answering. In The Semantic

Web–ISWC 2011, pages 144–156. Springer, 2011.

Gjergji Kasneci, Maya Ramanath, Fabian Suchanek, and Gerhard Weikum. The yago-naga

approach to knowledge discovery. ACM SIGMOD Record, 37(4):41–47, 2009.

Holmer Hemsen Kathrin Eichler and Gnter Neumann. Unsupervised relation extrac-

tion from web documents. In LREC, 2008. ISBN 2-9517408-4-0. http://www.lrec-

conf.org/proceedings/lrec2008/.

Boris Katz. Annotating the World Wide Web using Natural Language. In RIAO, pages

136–159, 1997.

113

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy J. Lin, Gregory Marton, Al-

ton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to heteroge-

neous data for question answering. In Proceedings of the 6th International Conference

on Applications of Natural Language to Information Systems-Revised Papers, NLDB

’02, pages 230–234, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-00307-X.

URL http://dl.acm.org/citation.cfm?id=645757.666145.

Boris Katz, Sue Felshin, Jimmy J Lin, and Gregory Marton. Viewing the web as a virtual

database for question answering. In New Directions in Question Answering, pages

215–226, 2004.

J. Kim and D. Moldovan. Acquisition of semantic patterns for information extraction from

corpora. In Procs. of Ninth IEEE Conference on Artificial Intelligence for Applications,

pages 171–176, 1993.

Seokhwan Kim and Gary Geunbae Lee. A graph-based cross-lingual projection approach

for weakly supervised relation extraction. In Proceedings of the 50th Annual Meeting of

the Association for Computational Linguistics: Short Papers-Volume 2, pages 48–53.

Association for Computational Linguistics, 2012.

Philipp Koehn. Pharaoh: A beam search decoder for phrase-based statistical machine

translation models. In AMTA, Lecture Notes in Computer Science, pages 115–124.

Springer, 2004.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-Based Translation. In

Proceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics, 2003.

Julian Kupiec. Murax: A robust linguistic approach for question answering using an on-line

encyclopedia. In Proceedings of the 16th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 181–190. ACM, 1993.

114

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Inducing

probabilistic ccg grammars from logical form with higher-order unification. In Proceed-

ings of the 2010 conference on empirical methods in natural language processing, pages

1223–1233. Association for Computational Linguistics, 2010.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling semantic parsers

with on-the-fly ontology matching. In EMNLP, 2013.

Cody Kwok, Oren Etzioni, and Daniel S. Weld. Scaling question answering to the web.

ACM Trans. Inf. Syst., 19(3):242–262, 2001.

Wendy G. Lehnert. A conceptual theory of question answering. In Proceedings of the 5th

International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’77, pages

158–164, San Francisco, CA, USA, 1977. Morgan Kaufmann Publishers Inc. URL

http://dl.acm.org/citation.cfm?id=1624435.1624467.

Douglas B Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt, and Mary Shepherd.

Cyc: toward programs with common sense. Communications of the ACM, 33(8):30–49,

1990.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Benjamin Taskar. An end-to-end

discriminative approach to machine translation. In ACL, 2006.

Percy Liang, Michael Jordan, and Dan Klein. Learning Dependency-Based Compositional

Semantics. In ACL, 2011.

Dekang Lin and Patrick Pantel. DIRT – Discovery of inference rules from text. In KDD,

2001.

Thomas Lin, Mausam, and Oren Etzioni. Identifying Functional Relations in Web Text. In

Proceedings of the 2010 Conference on Empirical Methods in Natural Language Process-

ing, pages 1266–1276, Cambridge, MA, October 2010. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/D10-1123.

115

Thomas Lin, Mausam, and Oren Etzioni. Entity linking at web scale. In AKBC-WEKEX,

2012.

Xiao Ling and Daniel S Weld. Fine-grained entity recognition. In AAAI, 2012.

Vanessa Lopez, Victoria S. Uren, Enrico Motta, and Michele Pasin. Aqualog: An ontology-

driven question answering system for organizational semantic intranets. J. Web Sem.,

5(2):72–105, 2007.

Paul Kingsbury Martha and Martha Palmer. From treebank to propbank. In In Proceedings

of LREC-2002, 2002.

Yuval Marton, Chris Callison-Burch, and Philip Resnik. Improved Statistical Machine

Translation Using Monolingually-Derived Paraphrases. In Proceedings of the 2009 Con-

ference on Empirical Methods in Natural Language Processing, 2009.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to parse

natural language commands to a robot control system. In Proc. of the 13th International

Symposium on Experimental Robotics (ISER), June 2012.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the

structured perceptron. In Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics, 2010.

Filipe Mesquita, Jordan Schmidek, and Denilson Barbosa. Effectiveness and efficiency of

open relation extraction. In EMNLP, pages 447–457. ACL, 2013.

Scott Miller, Robert Bobrow, Robert Ingria, and Richard Schwartz. Hidden understanding

models of natural language. In Proceedings of the 32nd annual meeting on Association

for Computational Linguistics, pages 25–32. Association for Computational Linguistics,

1994.

116

Scott Miller, David Stallard, Robert Bobrow, and Richard Schwartz. A fully statistical

approach to natural language interfaces. In Proceedings of the 34th annual meeting on

Association for Computational Linguistics, pages 55–61. Association for Computational

Linguistics, 1996.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant Supervision for Relation

Extraction Without Labeled Data. In ACL, 2009.

Abdullah M Moussa and Rehab F Abdel-Kader. Qasyo: A question answering system for

yago ontology. International Journal of Database Theory & Application, 4(2), 2011.

Vivi Nastase, Michael Strube, Benjamin Brschinger, Ccilia Zirn, and Anas Elghafari.

Wikinet: A very large scale multi-lingual concept network. In In Proceedings of the

Seventh International Conference on Language Resources and Evaluation (LREC 2010,

pages 1015–1022, 2010.

Vincent Ng. Supervised noun phrase coreference research: The first fifteen years. In Pro-

ceedings of the 48th Annual Meeting of the Association for Computational Linguistics,

pages 1396–1411, 2010.

Rodney D Nielsen, Jason Buckingham, Gary Knoll, Ben Marsh, and Leysia Palen. A

taxonomy of questions for question generation. In Proceedings of the Workshop on the

Question Generation Shared Task and Evaluation Challenge, 2008.

Franz Josef Och and Hermann Ney. Improved Statistical Alignment Models. In Proceedings

of the 38th Annual Meeting of the Association for Computational Linguistics, 2000.

Marius Pasca and Benjamin Van Durme. What you seek is what you get: Extraction of

class attributes from query logs. In IJCAI, volume 7, pages 2832–2837, 2007.

Roberto Pieraccini, Evelyne Tzoukermann, Zakhar Gorelov, J Gauvain, Esther Levin, Chin-

Hui Lee, and Jay G Wilpon. A speech understanding system based on statistical repre-

117

sentation of semantics. In Acoustics, Speech, and Signal Processing, 1992. ICASSP-92.,

1992 IEEE International Conference on, volume 1, pages 193–196. IEEE, 1992.

A. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates. PRECISE on ATIS: Semantic

tractability and experimental results. In Procs. of the 19th National Conference on

Artificial Intelligence (AAAI-04), pages 1026–1027, 2004.

John Prager. Open-domain question answering. Found. Trends Inf. Retr., 1(2):91–231,

January 2006. ISSN 1554-0669. doi: 10.1561/1500000001. URL http://dx.doi.org/

10.1561/1500000001.

Vaughan Pratt. Cyc report. http://boole.stanford.edu/cyc.html, 1994.

V. Punyakanok, D. Roth, and W. Yih. The importance of syntactic parsing and inference

in semantic role labeling. Computational Linguistics, 34(2), 2008.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. Natural language inference via dependency

tree mapping: An application to question answering. Computational Linguistics, 2004.

Chris Quirk, Chris Brockett, and William Dolan. Monolingual Machine Translation for

Paraphrase Generation. In Proceedings of the 2004 Conference on Empirical Methods

in Natural Language Processing, 2004.

Bertram Raphael. A computer program which understands. In Proceedings of the October

27-29, 1964, fall joint computer conference, part I, pages 577–589. ACM, 1964.

Deepak Ravichandran and Eduard Hovy. Learning surface text patterns for a question

answering system. In Proceedings of the 40th Annual Meeting on Association for Com-

putational Linguistics, pages 41–47. Association for Computational Linguistics, 2002.

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge

dataset for the open-domain machine comprehension of text. In Conference on Empir-

ical Methods in Natural Language Processing (EMNLP), 2013.

118

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling Relations and Their Men-

tions without Labeled Text. In Proceedings of the 2010 European conference on Machine

learning and Knowledge Discovery in Databases, 2010.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation ex-

traction with matrix factorization and universal schemas. In HLT-NAACL, 2013.

E. Riloff. Automatically constructing extraction patterns from untagged text. In Procs. of

the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pages 1044–

1049, 1996.

Alan Ritter, Mausam, and Oren Etzioni. A Latent Dirichlet Allocation method for selec-

tional preferences. In ACL, 2010.

Nicholas Roy, Joelle Pineau, and Sebastian Thrun. Spoken dialogue management using

probabilistic reasoning. In Proceedings of the 38th Annual Meeting on Association for

Computational Linguistics, pages 93–100. Association for Computational Linguistics,

2000.

Roger C Schank and Robert P Abelson. Scripts, plans, goals, and understanding: An

inquiry into human knowledge structures. Psychology Press, 2013.

Michael Schmitz, Robert Bart, Stephen Soderland, Oren Etzioni, et al. Open language

learning for information extraction. In Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural Lan-

guage Learning, pages 523–534. Association for Computational Linguistics, 2012.

Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld, and Jesse Davis. Learning first-

order horn clauses from web text. In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, EMNLP ’10, pages 1088–1098, Stroudsburg,

PA, USA, 2010. Association for Computational Linguistics. URL http://portal.acm.

org/citation.cfm?id=1870658.1870764.

119

Lenhart Schubert. Can we derive general world knowledge from texts? In Proceedings of

the second international conference on Human Language Technology Research, pages

94–97. Morgan Kaufmann Publishers Inc., 2002.

Satoshi Sekine. On-demand information extraction. In Proceedings of the COLING/ACL

on Main conference poster sessions, pages 731–738, Morristown, NJ, USA, 2006. Asso-

ciation for Computational Linguistics.

Yusuke Shinyama and Satoshi Sekine. Preemptive Information Extraction using Unre-

stricted Relation Discovery. In Proceedings of the Human Language Technology Con-

ference of the NAACL, Main Conference, pages 304–311, New York City, USA, June

2006. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/N/N06/N06-1039.

R. F. Simmons. Answering english questions by computer: A survey. Commun. ACM, 8

(1):53–70, January 1965. ISSN 0001-0782. doi: 10.1145/363707.363732. URL http:

//doi.acm.org/10.1145/363707.363732.

Robert F Simmons. Natural language question-answering systems: 1969. Communications

of the ACM, 13(1):15–30, 1970.

S. Soderland. Learning Information Extraction Rules for Semi-Structured and Free

Text. Machine Learning, 34(1-3):233–272, 1999. URL citeseer.ist.psu.edu/

soderland99learning.html.

Stephen Soderland, Brendan Roof, Bo Qin, Shi Xu, Mausam, and Oren Etzioni. Adapting

open information extraction to domain-specific relations. AI Magazine, 31(3):93–102,

2010.

Lucia Specia and Enrico Motta. M.: A hybrid approach for extracting semantic relations

from texts. In In. Proceedings of the 2 nd Workshop on Ontology Learning and Popu-

lation, pages 57–64, 2006.

120

Robert Speer and Catherine Havasi. Representing general relational knowledge in concept-

net 5. In LREC, pages 3679–3686, 2012.

M. Stevenson. An unsupervised WordNet-based algorithm for relation extraction. In Pro-

ceedings of the “Beyond Named Entity” workshop at the Fourth International Confer-

ence on Language Resources and Evalutaion (LREC’04), 2004.

Suzanne Stevenson, Afsaneh Fazly, and Ryan North. Statistical measures of the semi-

productivity of light verb constructions. In In 2nd ACL Workshop on Multiword Ex-

pressions: Integrating Processing, pages 1–8, 2004.

David G Stork. The open mind initiative. IEEE Expert Systems and Their Applications,

1999.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic

knowledge. In Proceedings of the 16th international conference on World Wide Web,

pages 697–706. ACM, 2007.

Fabian M Suchanek, Mauro Sozio, and Gerhard Weikum. Sofie: a self-organizing framework

for information extraction. In Proceedings of the 18th international conference on World

wide web, pages 631–640. ACM, 2009.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara, and Jun’ichi Tsujii. Latent variable per-

ceptron algorithm for structured classification. In IJCAI, 2009.

Kristina Toutanova, Aria Haghighi, and Christopher D. Manning. A global joint model for

semantic role labeling. Computational Linguistics, 34(2):161–191, 2008.

Yuen-Hsien Tseng, Lung-Hao Lee, Shu-Yen Lin, Bo-Shun Liao, Mei-Jun Liu, Hsin-Hsi Chen,

Oren Etzioni, and Anthony Fader. Chinese open relation extraction for knowledge

acquisition. EACL 2014, page 12, 2014.

121

Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel

Gerber, and Philipp Cimiano. Template-Based Question Answering over RDF Data.

In WWW, 2012.

Rajan Vaish, Keith Wyngarden, Jingshu Chen, Brandon Cheung, and Michael S Bernstein.

Twitch crowdsourcing: Crowd contributions in short bursts of time. In CHI, 2014.

Benjamin Van Durme and Lenhart Schubert. Open knowledge extraction through compo-

sitional language processing. In Proceedings of the 2008 Conference on Semantics in

Text Processing, pages 239–254. Association for Computational Linguistics, 2008.

Marc Verhagen, Robert Gaizauskas, Frank Schilder, Mark Hepple, Graham Katz, and James

Pustejovsky. Semeval-2007 task 15: Tempeval temporal relation identification. In

Proceedings of the 4th International Workshop on Semantic Evaluations, pages 75–80.

Association for Computational Linguistics, 2007.

Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collection. In

SIGIR, 2000.

Sebastian Walter, Christina Unger, Philipp Cimiano, and Daniel Br. Evaluation of a Layered

Approach to Question Answering over Linked Data. In ISWC, 2012.

Terry Winograd. Procedures as a representation for data in a computer program for under-

standing natural language, 1971.

Yuk Wah Wong and Raymond J. Mooney. Learning synchronous grammars for semantic

parsing with lambda calculus. In ACL, 2007.

W. A. Woods. Progress in natural language understanding: An application to lunar geology.

In Proceedings of the June 4-8, 1973, National Computer Conference and Exposition,

AFIPS ’73, pages 441–450, New York, NY, USA, 1973. ACM. doi: 10.1145/1499586.

1499695. URL http://doi.acm.org/10.1145/1499586.1499695.

122

Fei Wu and Daniel S. Weld. Open information extraction using Wikipedia. In Proceedings of

the 48th Annual Meeting of the Association for Computational Linguistics (ACL ’10),

2010.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase: a probabilistic

taxonomy for text understanding. In SIGMOD, 2012.

Ying Xu, Mi-Young Kim, Kevin Quinn, Randy Goebel, and Denilson Barbosa. Open infor-

mation extraction with tree kernels. In Proceedings of NAACL-HLT, pages 868–877,

2013.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, Maya Ramanath, Volker Tresp, and

Gerhard Weikum. Natural Language Questions for the Web of Data. In EMNLP, 2012.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Unsupervised Relation Discovery with

Sense Disambiguation. In Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics, 2012.

Alexander Yates and Oren Etzioni. Unsupervised methods for determining object and

relation synonyms on the web. JAIR, 34:255–296, March 2009.

Naomi Zeichner. Evaluating and Improving Inference-rules via Crowdsourcing. PhD thesis,

Bar-Ilan University, 2012.

John M. Zelle and Raymond J. Mooney. Learning to Parse Database Queries Using Inductive

Logic Programming. In AAAI, 1996.

Luke S. Zettlemoyer and Michael Collins. Learning to Map Sentences to Logical Form:

Structured Classification with Probabilistic Categorial Grammars. In UAI, 2005.

Luke S Zettlemoyer and Michael Collins. Learning context-dependent mappings from sen-

tences to logical form. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language

123

Processing of the AFNLP: Volume 2-Volume 2, pages 976–984. Association for Com-

putational Linguistics, 2009.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and Ji-Rong Wen. StatSnowball: a sta-

tistical approach to extracting entity relationships. In WWW ’09: Proceedings of the

18th international conference on World Wide Web, pages 101–110, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-487-4. doi: http://doi.acm.org/10.1145/1526709.

1526724.

