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Let k be a field and B either a finitely generated free k-algebra, or a regular k-algebra of

global dimension two with at least three generators, generated in arbitrary positive degrees.

Let qgrB be the quotient category of finitely presented graded right B-modules modulo

those that are finite dimensional. We compute the Grothendieck group K0(qgrB). In

particular, if the inverse of the Hilbert series of B (which is a polynomial) is irreducible,

then K0(qgrB) ∼= Z[ξ] ⊂ R as ordered abelian groups where ξ is the smallest positive real

pole of the Hilbert series of B and where Z[ξ] inherits its order structure from R. We

also obtain general conditions on an algebra B under which our computation of K0(qgrB)

applies.
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Chapter 1

INTRODUCTION

1.1 The main question

Fix a field k. Let B be a non-noetherian regular k-algebra of global dimension two. Let

qgrB be the quotient category of finitely presented graded right B-modules modulo those

that are finite dimensional. What is the Grothendieck group of qgrB as an ordered abelian

group?

1.2 Background

The Grothendieck group K0(C) of an abelian category C is an important invariant in many

different contexts. For example, Elliott [4] uses Grothendieck groups to classify ultrama-

tricial algebras. In particular, Elliott shows that two ultramatricial algebras are Morita

equivalent if and only if the Grothendieck groups of the corresponding module categories

are isomorphic as ordered abelian groups. By a result of Smith [14], for B a path algebra

of a quiver, qgrB is equivalent to the category of finitely presented right modules over an

ultramatricial algebra. Thus K0(qgrB) will prove a useful tool in the classification of the

categories qgrB for B a path algebra.

Classical algebraic geometry provides another example. The Grothendieck group of the

category of coherent sheaves plays a central role in the intersection theory of a noetherian

scheme. The Artin, Tate and Van den Bergh [1] school of noncommutative projective alge-
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braic geometry substitutes for the category of coherent sheaves over a scheme the category

qgrA over a possibly noncommutative algebra A. Mori and Smith [9], [10] and Jørgensen

[13] use K0(qgrA) to construct a noncommutative intersection theory.

Although noetherian algebras generated in degree one have been the primary objects of

study in noncommutative projective algebraic geometry, the construction of the category

qgrB requires only that the algebra B be coherent. We concern ourselves primarily with

describing K0(qgrB) as an ordered abelian group for coherent non-noetherian algebras B,

namely finitely generated free algebras with at least two generators and regular algebras of

global dimension two with at least three generators, generated in arbitrary positive degrees.

We also provide a set of general conditions for B under which our description of K0(qgrB)

applies.

1.3 The main results

For V a graded k-vector space, let HV (t) denote the Hilbert series of V . The following

theorem is a special case of the main theorem of this dissertation, Theorem 1.3.3.

Theorem 1.3.1. If B is a regular k-algebra of global dimension two with at least three

generators such that the degrees of the generators are positive and relatively prime and

HB(t)−1 (which is a polynomial) is irreducible, then the map

K0(qgrB)→ Z[ξ], [π∗M ] 7→ qM (ξ)

is an isomorphism of ordered abelian groups where ξ is the smallest positive real pole of

HB(t), π∗ is the quotient functor of qgrB and qM (t) := HM (t)HB(t)−1.
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1.3.1 The general conditions

The general conditions are as follows.

Condition C1. We say an N-graded k-algebra B satisfies C1 if it

• is coherent,

• is finitely generated,

• is connected-graded, and

• has finite global dimension.

If B satisfies C1 then HB(t)−1 is a polynomial h(t) ∈ Z[t] and for each finitely presented

graded right B-module M , the Hilbert series of M is HM (t) = qM (t)HB(t) for some qM (t) ∈

Z[t, t−1].

Condition C2. We say an N-graded k-algebra B satisfies C2 if

• it satisfies C1,

• dimk Bn ≥ 1 for all n� 0, and

• h(t) = HB(t)−1 has a real root ξ such that

• ξ is the only root of h(t) in the interval [0, 1],

• ξ is a simple root, and

• ξ < |λ| for every other root λ of h(t).
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Proposition 1.3.2. If B is an N-graded k-algebra that satisfies C2 and M is a finitely

presented graded B-module, then qM (ξ) ≥ 0 with equality if and only if M is finite dimen-

sional.

Condition C3. We say an N-graded k-algebra B satisfies C3 if

• it satisfies C2 and

• for each p ∈ Z[t, t−1] such that p(ξ) > 0, there is a finitely presented graded right

B-module M such that qM (t)− p(t) ∈ (h).

1.3.2 The Grothendieck group

Let B be an N-graded k-algebra that satisfies C2. Make Z[t±1]/(h) an ordered abelian group

by defining (
Z[t±1]

(h)

)
≥0

:=
{
p(t) | p(ξ) > 0

}
∪ {0}

where p(t) is the image of p(t) ∈ Z[t±1] in Z[t±1]/(h).

Theorem 1.3.3. Suppose B is an N-graded k-algebra that satisfies C3. The Grothendieck

group K0(qgrB) is isomorphic as an ordered abelian group to

Z[t±1]

(h)

via the map [π∗M ] 7→ qM (t) where π∗ is the quotient functor of qgrB. If h(t) is irreducible,

K0(qgrB) is isomorphic as an ordered abelian group to Z[ξ] via the map [π∗M ] 7→ qM (ξ).

Furthermore, under the isomorphism(s), the shift functor M 7→ M(1) on qgrB corre-

sponds to multiplication by t−1 and multiplication by ξ−1.
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1.3.3 Algebras that satisfy C3

Theorem 1.3.4. If A is either

1. a finitely generated free k-algebra such that the degrees of the generators are positive

and relatively prime, or

2. a regular k-algebra of global dimension two with at least three generators such that the

degrees of the generators are positive and relatively prime,

then A satisfies C3. Consequently, Theorem 1.3.3 describes K0(qgrA).

The condition that the the degrees of the generators be relatively prime is mild. If B

is an N-graded k-algebra, there exists an N-graded k-algebra B′ with degrees of generators

relatively prime such that qgrB is equivalent to a finite direct sum of copies of qgrB′.

1.3.4 Algebras that do not satisfy C3

Suppose B and B′ are N-graded k-algebras such that qgrB and qgrB′ are equivalent and

B satisfies C3. It is not necessarily the case that B′ satisfies C3.

Theorem 1.3.5 ([7, Theorem 1.1]). If C and C′ are two of the five classes below and B

belongs to C, then there is an algebra B′ in C′ and an equivalence F : qgrB → qgrB′.

• Path algebras of finite quivers with grading induced by declaring that all arrows have

degree 1; this implies that the degree of a path is equal to its length.

• Weighted path algebras of finite quivers—this is a path algebra with grading given by

assigning each arrow a degree ≥ 1.
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• Monomial algebras: these are algebras of the form kQ/I where kQ is a weighted path

algebra of a finite quiver and I is an ideal generated by a finite set of paths.

• Connected monomial algebras: these are monomial algebras kQ/I in which Q has only

one vertex.

• Connected monomial algebras that are generated by elements of degree 1.

A wedge of cycles is a union of cycles that share a vertex. For example, the quiver

•

��

•

��

•

TT //

MM

•

TT

is a wedge of three cycles of lengths one, two and three.

Theorem 1.3.6. If Q is a wedge of n cycles of lengths c1, . . . , cn and gcd {c1, . . . , cn} = 1

then

K0(qgr kQ) ∼= Z[ξ]

as ordered abelian groups where ξ is the smallest positive real root of 1−
∑n

i=1 t
ci.

Theorem 1.3.6 follows from the proof of Theorem 1.3.5 (which shows

qgr kQ ≡ qgr k〈x1, . . . , xn〉

where deg xi = ci) and Theorem 1.3.3 applied to k〈x1, . . . , xn〉. Since dimk(kQ)0 ≥ 2 if

ci ≥ 2 for some i, kQ does not satisfy C3 in general.
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1.4 A different question

Let B be a graded k-algebra and let grB denote the category of finitely presented graded

right B-modules. What are the possible Hilbert series of objects in grB?

Theorem 1.4.1. Let B be an N-graded k-algebra that satisfies condition C3. Let h(t) =

(HB(t))−1 ∈ Z[t] and let ξ be the smallest positive real root of h(t). If M ∈ grB, then

HM (t) = q(t)/h(t) for some q(t) ∈ Z[t±1] such that q(ξ) ≥ 0, with equality if and only if M

is finite dimensional.

The converse is not true. In particular, suppose q(t) ∈ Z[t±1] such that q(ξ) > 0 and let

g(t) be the formal Laurent series g(t) = q(t)/h(t). It is not necessarily the case that there

exists M ∈ grB such that g(t) = HM (t). In fact, g(t) may have negative integer coefficients.

However, we prove the following partial converse.

If g(t) is a Laurent series and n ∈ Z, define g(t)≥n to be the sub-series of g(t) containing

the terms of degree at least n.

Theorem 1.4.2. Let B be as in Theorem 1.4.1. If q(t) ∈ Z[t±1] such that q(ξ) > 0, then

(
q(t)

h(t)

)
≥N

= HM (t)

for some M ∈ grB and some N ∈ Z.

The proofs of the converse in the case that B is free and the case that B is regular of

global dimension two are not strictly constructive (though they provide a loose algorithm).

Thus no formula for N or M is given.
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1.5 Summary of the dissertation

The dissertation is organized as follows. In Chapter 2, we give preliminary definitions and

results.

In Chapter 3, we define general conditions on an algebra B under which our method for

computing K0(qgrB) works. We then describe K0(qgrB) for B an algebra satisfying those

conditions.

In Chapter 4, we show that if F is a finitely generated free algebra such that the degrees

of the generators are positive and relatively prime, then F satisfies condition C3, and as

a corollary to the general result, we compute K0(qgrF ). A second method for computing

K0(qgrF ) involves presenting qgrF as the category of modules over an ultramatricial alge-

bra. We show that these two methods produce isomorphic ordered abelian groups. Finally,

we apply our computation to specific examples.

In Chapter 5, we show that if A is a regular algebra of global dimension two with at

least three generators such that the degrees of the generators are positive and relatively

prime, then A satisfies condition C3, and thus we compute K0(qgrA). We also apply our

computation to specific examples.
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Chapter 2

PRELIMINARIES

We fix a field k for the rest of the dissertation.

2.1 Graded algebras and modules

Definition 2.1.1. Let V = ⊕i∈ZVi be a Z-graded k-vector space.

The Hilbert series of V is the formal Laurent series HV (t) :=
∑

i∈Z(dimk Vi)t
i.

For n ∈ Z, define V (n) to be the Z-graded k-vector space that is equal to V as a k-vector

space but is graded by V (n)i = Vn+i. We call V (n) the shift of V by n.

Definition 2.1.2. If g(t) =
∑

i∈Z ait
i and n ∈ Z, define

g(t)≥n :=
∑
i≥n

ait
i.

Definition 2.1.3. Let B be a graded k-algebra. We denote by grB the category of finitely

presented graded right B-modules. We denote by fdimB the subcategory of grB consisting

of finite dimensional graded right B-modules.

2.2 Coherent algebras

Definition 2.2.1. A graded k-algebra B is graded right coherent if every homogeneous

finitely generated right-sided ideal of B is finitely presented.

Remark 2.2.2. From now on, by coherent we mean graded right coherent.
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Example 2.2.3. Every graded noetherian algebra is coherent. Free algebras and path

algebras are coherent. By [11, Theorem 4.1], every algebra defined by a single homogeneous

quadratic relation is coherent.

Theorem 2.2.4 ([11, Theorem 2.1]). Let B be a graded k-algebra. The following are

equivalent:

• B is coherent;

• every finitely generated graded submodule of a finitely presented graded right B-module

is finitely presented;

• grB is abelian.

2.3 Quotient categories

Let C be an abelian category.

Definition 2.3.1. A full abelian subcategory B ⊂ C is called a dense or Serre subcate-

gory if it is closed under subobjects, quotients and extensions: that is, if 0 → M → N →

P → 0 is exact in C then N ∈ B if and only if M,P ∈ B.

Example 2.3.2. If B is a graded coherent k-algebra, then fdimB ⊂ grB is a Serre subcat-

egory.

Definition 2.3.3. Let B ⊂ C be a Serre subcategory. The quotient category C/B is an

abelian category with an exact functor π∗ : C → C/B (called the quotient functor) such

that
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• π∗(M) ∼= 0 for all M ∈ B, and

• if F : C → A is an exact functor such that F (M) ∼= 0 for all M ∈ B, then there is a

unique exact functor F ′ : C/B → A such that F = F ′ ◦ π∗.

The quotient category exists. See for example [12, §4.3] for an explicit construction.

In this dissertation, we study the quotient category

qgrB :=
grB

fdimB

for B a graded coherent k-algebra.

2.4 The Grothendieck group of an abelian category

Let C be an abelian category.

Definition 2.4.1 ([16, Definition 6.1.1]). The Grothendieck group of C, denoted K0(C),

is the free abelian group on generators {[M ] | M ∈ C} modulo the relations [M ] = [N ]+ [P ]

for all short exact sequences 0→ N →M → P → 0 in C.

Definition 2.4.2. Let G be an abelian group. An additive function from C to G is a

function f : C → G such that f(M) = f(N) + f(P ) for all short exact sequences 0→ N →

M → P → 0 in C.

Example 2.4.3. The dimension function dimk(V ) from the category of finite dimensional

k-vector spaces to N is an additive function.

The map C → K0(C), M 7→ [M ], is additive by definition, and satisfies the following

univeral property.
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Theorem 2.4.4. [16, Universal Property 6.1.2] If f : C → K0(C) is an additive function,

then there is a unique group homomorphism g : K0(C) → G such that f(M) = g([M ]) for

every M ∈ C.

2.4.1 Order structure

Definition 2.4.5. An ordered abelian group (G,G≥0) is an abelian group G and a

semigroup G≥0 ⊂ G (called the positive cone of G) such that G≥0 − G≥0 = G and

G≥0 ∩ −G≥0 = {0}.

The Grothendieck group of C is an ordered abelian group with positive cone

K0(C)≥0 := {[M ] | M ∈ C} .

2.4.2 Dévissage

Theorem 2.4.6 ([16, Theorem 6.3]). Let B ⊂ A be (skeletally) small abelian categories.

Suppose that

• B is closed in A under subobjects and quotient objects, and

• every object M ∈ A has a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M with all

quotients Mi+1/Mi in B.

Then the inclusion functor B ⊂ A is exact and induces an isomorphism K0(B) ∼= K0(A).
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2.4.3 Localization

Theorem 2.4.7 ([16, Theorem 6.4]). Let A be a (skeletally) small abelian category, and B

a Serre subcategory of A. Then the sequence

K0(B)→ K0(A)→ K0(A/B)→ 0

is exact, where K0(B)→ K0(A) is the homomorphism induced by the exact inclusion functor

B ↪→ A and K0(A)→ K0(A/B) is the homomorphism induced by the exact quotient functor

π∗ : A → A/B.
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Chapter 3

THE ORDER STRUCTURE OF K0(qgrB)

In this chapter, we prescribe conditions on an algebra B under which our method for

computing K0(qgrB) works. We then describe K0(qgrB) for B an algebra satisfying those

conditions.

3.1 First conditions on B

Condition C1. We say an N-graded k-algebra B satisfies C1 if it

• is coherent (i.e. qgr(B) is an abelian category),

• is finitely generated,

• is connected-graded, and

• has finite global dimension.

3.1.1

Suppose B satisfies C1. Then each M ∈ gr(B) has a finite graded resolution by free B-

modules of finite rank, hence HB(t)−1 is a polynomial in t and for all M ∈ gr(B),

HM (t) = qM (t)HB(t)

for some qM (t) ∈ Z[t±1].
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3.2 Second conditions on B

Condition C2. We say an N-graded k-algebra B satisfies C2 if

• it satisfies C1,

• dimk Bn ≥ 1 for all n� 0, and

• h(t) = HB(t)−1 has a real root ξ such that

• ξ is the only root of h(t) in the interval [0, 1],

• ξ is a simple root, and

• ξ < |λ| for every other root λ of h(t).

Lemma 3.2.1. Let
∑∞

n=0 cnz
n be a power series in which cn > 0 for all n� 0. Suppose

1.
∑∞

n=0 cnz
n has radius of convergence R > 0 and on the disk |z| < R it converges to a

rational function s(z) that has a simple pole at z = R;

2. all other poles of
∑∞

n=0 cnz
n have modulus > R.

Then

lim
n→∞

cn
cn+1

= R.

Proof. There are polynomials p(z) and q(z), neither divisible by R− z, such that

s(z) =
p(z)

(R− z)q(z)
=

α

R− z
+
r(z)

q(z)

where α ∈ C×, r(z) is a polynomial, and r(z)/q(z) has a Taylor series expansion
∑∞

n=0 bnz
n

with radius of convergence > R by (2). Since
∑∞

n=0 bnR
n converges limn→∞ bnR

n = 0.
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Since

s(z) =
α

R

∞∑
n=0

zn

Rn
+
∞∑
n=0

bnz
n

for |z| < R,

cn =
α

Rn+1
+ bn.

Therefore

lim
n→∞

(
cn
cn+1

)
= lim

n→∞

(
αR+ bnR

n+2

α+ bn+1Rn+2

)
=

αR

α
= R,

as claimed.

For B an N-graded k-algebra, we write bn := dimk(Bn) for all n ∈ N.

Lemma 3.2.2. Suppose B is an N-graded k-algebra that satisfies C2. For all m ≥ 1,

lim
n→∞

bn
bn+m

= ξm.

Proof. Since B is connected-graded and finitely generated, bn < ∞ for all n ∈ N. Since B

satisfies C2, bn ≥ 1 for all n� 0. Since

bn
bn+m

=
bn
bn+1

bn+1

bn+2
· · · bn+m−1

bn+m

for n � 0, it suffices to prove the result for m = 1. By C2, HB(t) =
∑∞

i=0 bit
i satisfies the

conditions of Lemma 3.2.1 for R = ξ so the result follows from the conclusion of Lemma

3.2.1.

Proposition 3.2.3. Suppose B is an N-graded k-algebra that satisfies C2. If M ∈ gr(B),

then qM (ξ) ≥ 0.
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Proof. Write qM (t) =
∑s

i=−s pit
i and define ei :=

∑s
j=−s pjbi−j . Then

HM (t) = qM (t)HB(t) =

(
s∑

i=−s
pit

i

)( ∞∑
i=0

bit
i

)
=

∞∑
i=−s

eit
i.

By C2, bm 6= 0 for all m� 0. Thus, as m→∞,

em
bm

=

s∑
j=−s

(
bm−j
bm

)
pj −→

s∑
j=−s

pjξ
j = qM (ξ).

Since ei = dim(Mi), {em/bm}m�0 is a sequence of non-negative numbers its limit, qM (ξ),

is ≥ 0.

Lemma 3.2.4. Suppose B is an N-graded k-algebra that satisfies C2. Let M ∈ gr(B). The

following are equivalent:

1. M ∈ fdim(B);

2. h(t) divides qM (t);

3. qM (ξ) = 0.

Proof. (1)⇒ (2) If dimk(M) <∞, then HM (t) ∈ N[t, t−1] so qM (t) is a multiple of h(t).

(2)⇒ (3) If h(t) divides qM (t) then qM (ξ) = 0 since ξ is a root of h(t).

(3) ⇒ (1) Suppose qM (ξ) = 0 but dimk(M) = ∞. The Laurent series HM (t) has non-

negative coefficients and a finite radius of convergence R ≤ 1. Since HM (t) = qM (t)HB(t),

qM (ξ) = 0 and ξ is a simple pole of HB(t) and the only pole of HB(t) in the interval

[0, 1], HM (t) has no poles in the interval [0, 1]. This contradicts Pringsheim’s Theorem [5,

Theorem IV.6] which says that HM (t) has a pole at t = R. We therefore conclude that

dimk(M) <∞.
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3.3 Third conditions on B and the main theorem

Condition C3. We say an N-graded k-algebra B satisfies C3 if

• B satisfies C2 and

• for each p ∈ Z[t, t−1] such that p(ξ) > 0, there is an M ∈ gr(B) such that qM (t)−p(t) ∈

(h).

Let B be an N-graded k-algebra that satisfies C2. We make Z[t±1]/(h) an ordered

abelian group by defining

(
Z[t, t−1]

(h)

)
≥0

:= {p | p(ξ) > 0} ∪ {0} .

Let π∗ : gr(B)→ qgr(B) be the quotient functor.

Theorem 3.3.1. Suppose B is an N-graded k-algebra that satisfies C3. The Grothendieck

group K0(qgr(B)) is isomorphic as an ordered abelian group to

Z[t, t−1]

(h)

via the map [π∗M ] 7→ qM (t). If h is irreducible, K0(qgr(B)) is isomorphic as an ordered

abelian group to Z[ξ] via the map [π∗M ] 7→ qM (ξ).

Furthermore, under the isomorphism(s), the functorM 7→M(1) on qgr(B) corresponds

to multiplication by t−1 and multiplication by ξ−1.

Proof. By localization and dévissage, the map

K0(qgr(B))→ Z[t, t−1]

(h)
, [π∗M ] 7→ qM (t), (3.3-1)
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is an isomorphism of abelian groups and [M(1)] = t−1[M] under this isomorphism.

Under the isomorphism (3.3-1), the positive cone inK0(qgr(B)) is mapped to {qM (t) |M ∈

gr(B)}. To show that (3.3-1) is an isomorphism of ordered abelian groups we must show

that

{p | p(ξ) > 0} ∪ {0} = {qM (t) |M ∈ gr(B)}. (3.3-2)

Let M ∈ gr(B). By Proposition 3.2.3, qM (ξ) ≥ 0. If qM (ξ) > 0, then qM (t) is in the

left-hand side of (3.3-2). If qM (ξ) = 0, then h(t) divides qM (t) by Lemma 3.2.4, whence

qM (t) = 0. Thus, the right-hand side of (3.3-2) is contained in the left-hand side of (3.3-2).

If p ∈ Z[t±1] and p(ξ) > 0, then p = qM for some M ∈ gr(B) by C3 so p is in the

right-hand side of (3.3-2). It is clear that 0 is in the right-hand side of (3.3-2). Thus, the

left-hand side of (3.3-2) is contained in the right-hand side of (3.3-2). Hence (3.3-1) is an

isomorphism of ordered abelian groups.

Suppose h is irreducible. The composition

K0(qgr(B))→ Z[t, t−1]

(h)
→ Z[ξ], [π∗M ] 7→ qM (ξ), (3.3-3)

is certainly an isomorphism of abelian groups. By (3.3-2), the image of the positive cone in

K0(qgr(B)) under this compsition is R≥0∩Z[ξ], the positive cone in Z[ξ]. Hence (3.3-2) is an

isomorphism of ordered abelian groups and [M(1)] = ξ−1[M] under the isomorphism.

3.4 The Hilbert series of finitely presented modules

Our work to compute K0(qgrB) for an N-graded k-algebra B that satisfies C3 suggests an

answer to the following, simpler question: what are the possible Hilbert series of finitely

presented graded B-modules?
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The Hilbert series of a finite dimensional module is a Laurent polynomial with non-

negative integer coefficients. Conversely, a Laurent polynomial with nonnegative integer

coefficients is the Hilbert series of a sum of shifts of copies of the trivial module B/B≥1.

The next result completes the answer.

Theorem 3.4.1. Let B be an N-graded k-algebra that satisfies C3. Let h(t) = (HB(t))−1 ∈

Z[t] and let ξ be the smallest positive real root of h(t). If M ∈ grB, then HM (t) = p(t)/h(t)

for some p(t) ∈ Z[t±1] such that p(ξ) ≥ 0, with equality if and only if M is finite dimensional.

Conversely, if p(t) ∈ Z[t±1] and p(ξ) > 0, then

(
p(t)

h(t)

)
≥N

= HM (t)

for some M ∈ grB and some N ∈ Z.

Proof. Suppose M ∈ grB. By the discussion in §3.1.1, HM (t) = p(t)/h(t) for some p(t) ∈

Z[t±1]. By Proposition 3.2.3, p(ξ) ≥ 0, and p(ξ) = 0 if and only if M is finite dimensional

by Lemma 3.2.4.

Suppose p(t) ∈ Z[t±1] such that p(ξ) > 0. By condition C3, there exists a module

M ∈ grB such that p(t)− qM (t) ∈ (h). In other words, the formal Laurent series p(t)/h(t)

and HM (t) differ only in a finite number of terms. Hence

(
p(t)

h(t)

)
≥N

= HM (t)≥N = HM≥N
(t)

for some N ∈ Z.
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Chapter 4

THE CASE B IS A FINITELY GENERATED FREE ALGEBRA

4.1 Summary

In this chapter, we will show that an N-graded finitely generated free algebra F over k with

generators in positive degrees satisfies condition C3 of chapter 3. Consequently we compute

K0(qgr(F )) as an ordered abelian group. We then discuss another method for computing

K0(qgr(F )) and compare it to our method. Finally, we discuss examples.

Let k be a field, g a positive integer, D = {d1, . . . , dg} ⊂ N≥1 with gcdD = 1 and

F = k〈x1, . . . , xg〉 the N-graded free algebra on generators x1, . . . , xg with deg xi = di. The

graded F -module k = F/F≥1 has a graded resolution

0→
g∑

i=1

F (−di)

x1 · · · xg

·
−−−−−−−−−−−−→ F → k → 0, (4.1-1)

so the Hilbert series of F is HF (t) = f(t)−1 where

f(t) := 1−
g∑

i=1

tdi .

Let d be the maximum of the degrees of x1, . . . , xg. We write f(t) = 1 −
∑d

i=1 nit
i where

ni is the number of generators of degree i.
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4.2 F satisfies C3

4.2.1 F satisfies C1

By definition, F is finitely generated and connected-graded. Since the right ideals of F are

free F -modules, F is coherent. By the resolution (4.1-1), F has global dimension equal to

one. Hence F satisfies C1.

4.2.2 F satisfies C2

Let ai := dimk Fi. Since the degrees of x1, . . . , xg are relatively prime, ai ≥ 1 for all i� 0.

Since f(0) = 1, f(1) = 1− g ≤ 0 and f(t) is decreasing for t ≥ 0, f has one positive real

root, say

θ := the positive real root of f,

and 0 < θ ≤ 1.

By the following result which will be proved in §4.4, F satisfies C2.

Proposition 4.2.1. The root θ of f is simple and θ < |λ| for every other root λ of f .

4.2.3 F satisfies C3

Lemma 4.2.2. Let p ∈ Z[t, t−1]. If p(θ) > 0 then there exists an M ∈ grF such that

qM (t)− p(t) ∈ (f).

Proof. Write p(t) =
∑s

i=−s pit
i. If {pi} ⊂ N then p(t) = qM (t) for M =

∑s
i=−s F (−i)pi .

Suppose {pi} 6⊂ N. Define integers bj for j ≥ −s by the requirement that

∞∑
j=−s

bjt
j := p(t)HF (t).
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Therefore

p(t) = f(t)
∞∑

j=−s
bjt

j =

(
1−

d∑
i=1

nit
i

) ∞∑
j=−s

bjt
j .

Equating coefficients gives

pi = bi −
d∑

j=1

njbi−j (4.2-1)

for all i ≥ −s with the convention that pi = 0 for i > s and bj = 0 for j < −s.

Since aj 6= 0 for j � 0,

lim
j→∞

(
bj
aj

)
= lim

j→∞

(
s∑

i=−s

(
aj−i
aj

)
pi

)
=

s∑
i=−s

piθ
i = p(θ) > 0.

There is therefore an integer m ≥ s such that bj is a nonnegative integer for all j ≥ m+1−d.

We fix such an m.

We will complete the proof by showing that the Laurent polynomial

q(t) := p(t)−

(
m∑

i=−s
bit

i

)
f(t)

is qM (t) for a suitable M ∈ gr(F ). Define

ri :=
d∑

j=i−m
njbi−j

for m+ 1 ≤ i ≤ m+ d. By the choice of m, ri is a nonnegative integer for all i. By (4.2-1),

q(t) = p(t)−

(
m∑

i=−s
bit

i

)1−
d∑

j=1

njt
j


= p(t)−

m∑
i=−s

bi − d∑
j=1

njbi−j

 ti +

m+d∑
i=m+1

 d∑
j=i−m

njbi−j

 ti
= p(t)− p(t) +

m+d∑
i=m+1

rit
i

=

m+d∑
i=m+1

rit
i.

Thus q(t) = qM (t) for M =
∑m+d

i=m+1 F (−i)ri .
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Thus F satisfies C3.

4.3 The Grothendieck group of qgr(F )

We make Z[t±1]/(f) an ordered abelian group by defining

(
Z[t, t−1]

(f)

)
≥0

:= {p | p(θ) > 0} ∪ {0} (4.3-1)

where p denotes the image of the Laurent polynomial p in Z[t, t−1]/(f). The order structure

on Z[θ] is inherited from its embedding in R.

Theorem 4.3.1. Let F be the algebra discussed in §4.1. The Grothendieck group K0(qgrF )

is isomorphic as an ordered abelian group to

Z[t, t−1]

(f)

via the map [π∗M ] 7→ qM (t). If f is irreducible, K0(qgrF ) is isomorphic as an ordered

abelian group to Z[θ] via the map [π∗M ] 7→ qM (θ).

Furthermore, under the isomorphism(s), the functor M 7→ M(1) corresponds to multi-

plication by t−1 and θ−1.

Proof. By §4.2.1, 4.2.2 and 4.2.3, F satisfies C3. The result now follows from Theorem

3.3.1.

4.4 The proof of Proposition 4.2.1

4.4.1 The idea of the proof

We will associate to F a particular finite directed graph G. An incidence matrix for G is a

square matrix whose rows and columns are labelled by the vertices of G and whose uv-entry



25

is the number of arrows from v to u. The characteristic polynomial of G is

pG(t) := det(tI −M)

where M is an incidence matrix for G. We will show that pG(t) = t`f(1/t) where ` =

d1 + · · · + dg. We also show that M is primitive, i.e., all entries of Mn are positive for

n � 0. We then apply the Perron-Frobenius theorem which says that a primitive matrix

has a positive real eigenvalue of multiplicity 1, ρ say, with the property that |λ| < ρ for all

other eigenvalues λ. But the non-zero eigenvalues of M are the reciprocals of the roots of

f(t). Since we already know that f(t) has only one positive real root, namely θ, ρ = θ−1.

Hence θ is a simple root of f(t) and |λ| > θ for every other root λ of f(t).

4.4.2 The associated graph and its characteristic polynomial

We will use Theorem 4.4.1 to compute the characteristic polynomial of the directed graph

G. First we need some notation.

A simple cycle in G is a directed path that begins and ends at the same vertex and does

not pass through any vertex more than once. We introduce the notation for an arbitrary

directed graph G:

1. v(G) :=the number of vertices in G;

2. c(G) :=the number of connected components in G;

3. Z(G) := {simple cycles in G};

4. Z(G) := {subgraphs of G that are a disjoint union of simple cycles}.
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Theorem 4.4.1. [3, Theorem 1.2] Let G be a directed graph with ` vertices. Then

pG(t) = t` + c1t
`−1 + · · ·+ c`−1t+ c`

where

ci :=
∑

Q∈Z(G)
v(Q)=i

(−1)c(Q).

The xis are labelled so that deg(x1) ≤ · · · ≤ deg(xg).

The free algebra F is the path algebra (as an ungraded algebra) of the quiver with

one vertex ? and g loops from ? to ? labelled x1, . . . , xg. We replace each loop xi by

d′i := deg(xi)− 1 = di − 1 vertices labelled xi1, . . . , xid′i and arrows

?
αi0 // xi1

αi1 // · · · · · · // xid′i
αid′i // ?

The graph G obtained by this procedure is the graph associated to F in [7].

Example 4.4.2. If g = 3 and di = i then G is

x21 α21

��

x31

α31

��

?α20

WW α30 11

α10

MM

x32α32

WW

Proposition 4.4.3. Let ` = v(G). The characteristic polynomial of G is t`f(1/t).

Proof. Any two simple cycles in G share the vertex ?, so Z(G) = Z(G). The number of

simple cycles of length i in G is equal to ni, the number of generators of degree i in F . By
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Theorem 4.4.1,

pG(t) = t` + c1t
`−1 + · · ·+ c`−1t+ c`

= t` − n1t`−1 + · · · − ndt`−d

= t`(1− n1t−1 − · · · − ndt−d)

= t`f(1/t),

as claimed.

Proposition 4.4.4. Let M be an incidence matrix for G. Then every entry in Mn is

non-zero for n� 0.

Proof. If u and v are vertices in G, then there is a directed path in G from u to v: in the

language of [8, Defn. 4.2.2], M is irreducible.

The period of a vertex v in G is the greatest common divisor of the non-trivial directed

paths that begin and end at v. The period of G is the greatest common divisor of the periods

of its vertices. Since there is a directed path of length di = deg(xi) from xi0 to itself, the

period of G divides gcd{d1, . . . , dg} which is 1. The period of G is therefore 1. Thus, in the

language of [8, Defn. 4.5.2], M is aperiodic and therefore primitive [8, Defn. 4.5.7]. Hence

[8, Thm. 4.5.8] applies to M , and gives the result claimed.

The Perron-Frobenius theorem [6, Thm. 1, p.64] therefore applies to M giving the

following result.

Corollary 4.4.5. The characteristic polynomial for G has a unique eigenvalue of maximal

modulus and that eigenvalue is simple and real.
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As explained at the start of §4.4.1, Proposition 4.2.1 follows from Proposition 4.4.3 and

Corollary 4.4.5. Hence F satisfies C2.

4.5 A second way to compute K0(qgrF )

We denote by S the ordered abelian group Z[t±1]/(f(t)) with order structure defined by

(4.3-1). Since t−1 =
∑d

i=1 nit
i−1 in S, we may disregard negative powers of t in S. That is,

S = Z[t]/(f(t)).

We have two ways to compute K0(qgrF ) as an ordered abelian group. By Theorem

4.3.1, K0(qgrF ) ∼= S.

A second way is as follows. By [7], qgrF ≡ qgr kG. By [14], there exists an ultramatricial

algebra U such that qgr kG ≡ ModU . Thus we can present K0(qgrF ) as a direct limit of

ordered abelian groups.

Can we describe an isomophism between the ordered abelian groups obtained by each

method? The fact that G does not have a nonsingular incidence matrix in general compli-

cates the search for such an isomorphism. Thus we define a quiver Q with all arrows in

degree one and a nonsingular incidence matrix and prove that

1. qgrF ≡ qgr kQ and

2. K0(qgrF ) ∼= K0(qgr kQ) as ordered abelian groups.

By Elliott’s classification of ultramatricial algebras [4], (1) and (2) are equivalent statements,

but we will prove each directly.
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4.5.1 The second quiver

Let Q be the quiver with vertices 1, 2, . . . , d and arrows

• i→ i+ 1 for all 1 ≤ i ≤ d− 1 and

• di → 1 for all 1 ≤ i ≤ g.

Let kQ be the path algebra of Q. We grade kQ by placing all arrows in degree one.

Example 4.5.1. If g = 4 and d1 = 1, d2 = d3 = 2 and d4 = 3, then Q is the quiver

2

��ss ss1LL

33

3gg

The quiver Q has an incidence matrix

M =



n1 1 0 · · · 0

n2 0 1 · · · 0

...
. . .

nd−1 0 0 · · · 1

nd 0 0 · · · 0


.

The characteristic polynomial of M is

det(tI −M) = td − n1td−1 − · · · − nd−1t− nd

= tdf(1/t).
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4.5.2 An equivalence of categories

By an equivalence similar to the one presented in [7], qgrF ≡ qgr kQ. We illustrate this

equivalence through an example.

Example 4.5.2. If g = 3 and d1 = 1, d2 = d3 = 2 then Q is

1LL
!!
2aaaa
.

View F as the path algebra of the quiver

?

a2

��

a3

QQ

a1

11

with deg(a1) = 1, deg(a2) = deg(a3) = 2. The functor grF → gr kQ given by

V

g

��

h

RR

f

22 7→ V

f

LL

id
%%
V (−1)

h
dd

g

dd

and the functor gr kQ→ grF given by

V

f

LL

m
""
W

hbb

g

bb
7→ V

g ◦m
��

h ◦m
RR

f

22

descend to a equivalence qgrF ≡ qgr kQ.

4.5.3 The Grothendieck group

Hence

K0(qgrF ) ∼= lim
−→

(
Zd M ·−−→ Zd M ·−−→ · · ·

)
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where each Zd is an ordered abelian group in the standard way, i.e. (Zd)≥0 = Nd. The limit

is

Zd M · //

1
""EE

EE
EE

EE
EE

EE
EE

Zd M · //

t
��

Zd M · //

t2||yy
yy

yy
yy

yy
yy

yy
· · ·

Zd[t]

(ei − tMei)

Where ei ∈ Zd is the column vector with one in the i-th entry and zeros in all other entries.

We write T = Zd[t]/(ei − tMei). The positive cone of T is

T≥0 =
{
p(t) | p(t) ∈ Nd[t]

}
. (4.5-1)

The relations ei = tMei in T tell us that in T ,

ei = e1t
i−1 for all 1 ≤ i ≤ d

and

e1 = t
d∑

i=1

niei.

4.5.4 An isomorphism of Grothendieck groups

By the equivalence of categories qgrF ≡ qgr kQ, S and T are isomorphic ordered abelian

groups. In this subsection we find an explicit isomorphism.

For ease of reading, we suppress the overline notation for quotient groups. For example,

p(t) ∈ S denotes both a polynomial p(t) ∈ Z[t] and the image of that polynomial in S.

Both S and T are Z[t]-modules.

Proposition 4.5.3. The Z[t]-module homomorphisms

ϕ : T → S, ei 7→ ti−1
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and

ψ : S → T, 1 7→ e1

are well-defined and mutually inverse.

Proof. To show ϕ is well-defined, we must show that ϕ(ei− tMei) ∈ (f(t)) for all 1 ≤ i ≤ d.

For i = 1,

ϕ(e1 − tMe1) = 1− t

(
d∑

i=1

nit
i−1

)

= 1−
d∑

i=1

nit
i = f(t).

For 2 ≤ i ≤ d,

ϕ(ei − tMei) = ti−1 − t(ti−2) = 0.

Hence ϕ is well-defined.

To show that ψ is well defined, we must show that ψ(f(t)) ∈ (ei − tMei). Since

ψ(f(t)) = e1 −
d∑

i=1

nie1t
i

= e1 − t
d∑

i=1

niei

= e1 − tMe1,

ψ is well-defined.

The composition ϕ◦ψ : S → S sends 1 to 1 and therefore is the identity. Since ei = e1t
i−1

in T for all 1 ≤ i ≤ d, the composition

ψ ◦ ϕ : T → T, ei 7→ e1t
i−1

is also the identity.
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The following result is proved in the proof of Lemma 4.2.2.

Proposition 4.5.4. If p(t) ∈ Z[t±1] such that p(θ) > 0, then there exists an n ∈ N such

that (
p(t)

f(t)

)
≥n

=
q(t)

f(t)

with q(t) ∈ N[t].

It remains to show that ϕ and ψ respect the orderings of S and T , for which the next

result is key.

Proposition 4.5.5. If p(t) ∈ Z[t] then

(
p(t)

f(t)

)
≥1

=
tϕMψ(p(t))

f(t)
+ tg(t)

for some g(t) ∈ Z[t].

Proof. Write p(t) =
∑m

i=0 pit
i. We may assume, by taking high coefficients to be zero, that

m ≥ d.

Let q(t) =
∑d

i=1 pi−1ei+
∑m

i=d pie2t
i−1 ∈ Zd[t]. Since ϕ(q(t)) = p(t), q(t)−ψ(p(t)) ∈ (ei−

tMei). By the relations in T , tMq(t)−tMψ(p(t)) ∈ (ei−tMei), so ϕtMq(t)−ϕtMψ(p(t)) ∈

(f(t)). Since ϕ is a Z[t]-module homomorphism, tϕMq(t)− tϕMψ(p(t)) ∈ (f(t)).

Now

Mq(t) = p0

d∑
i=1

niei +

d∑
i=2

pi−1ei−1 +

m∑
i=d

pie1t
i−1
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so

tϕMq(t) = p0

d∑
i=1

nit
i +

d∑
i=2

pi−1t
i−1 +

m∑
i=d

pit
i

=

d∑
i=1

(p0ni + pi)t
i +

m∑
i=d+1

pit
i

= p(t)− p(0)f(t).

Hence

(
p(t)

f(t)

)
≥1

=
p(t)− p(0)f(t)

f(t)

=
tϕMq(t)

f(t)

=
tϕMψ(p(t)) + tg(t)f(t)

f(t)

=
tϕMψ(p(t))

f(t)
+ tg(t)

for some g(t) ∈ Z[t].

Corollary 4.5.6. If p(t) ∈ Z[t] and n ∈ N then

(
p(t)

f(t)

)
≥n

=
tnϕMnψ(p(t))

f(t)
+ tng(t)

for some g(t) ∈ Z[t].

Proof. We induct on n. The result holds for n = 1 by Proposition 4.5.5.
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If the result holds for N ∈ N, then

(
p(t)

f(t)

)
≥N+1

=

((
p(t)

f(t)

)
≥N

)
≥N+1

=

(
tNϕMNψ(p(t))

f(t)
+ tNg(t)

)
≥N+1

= tN
(
ϕMNψ(p(t))

f(t)
+ g(t)

)
≥1

= tN
(
tϕMψϕMNψ(p(t))

f(t)
+ tϕMψ(g(t)) + th(t)

)
=
tN+1ϕMN+1ψ(p(t))

f(t)
+ tN+1(ϕMψ(g(t)) + h(t)).

The result follows.

Lemma 4.5.7. The Z[t]-module map

ϕ :
Zd[t]

(ei − tMei)
→ Z[t]

(f(t))
, ei 7→ ti−1

is an isomorphism of ordered abelian groups.

Proof. By Proposition 4.5.3, ϕ : T → S is an isomorphism of abelian groups (in fact, of

Z[t]-modules). It remains to show that ϕ(T≥0) ⊆ S≥0 and ψ(S≥0) ⊆ T≥0.

If q(t) ∈ T≥0, i.e. q(t) ∈ Nd[t], then p(t) = ϕ(q(t)) ∈ N[t]. If p(θ) = 0 then q(t) = 0,

otherwise p(θ) > 0. Hence p(t) ∈ S≥0.

Suppose p(t) ∈ S≥0. If p(t) = 0 then ψ(p(t)) = 0 ∈ T≥0. If p(θ) > 0 then for some n,

(
p(t)

f(t)

)
≥n

=
q(t)

f(t)

for some q(t) ∈ N[t] by Proposition 4.5.4. By Corollary 4.5.6,

q(t) = tnϕMnψ(p(t)) + tng(t)f(t)
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for some g(t) ∈ Z[t]. Since ψ(q(t)) ∈ Nd[t] and

ψ(q(t)) = tnMnψ(p(t)) = ψ(p(t))

in T , ψ(p(t)) ∈ T≥0.

4.6 Examples

4.6.1

If F = k〈x1, . . . , xg〉 with deg(xi) = 1 for all i, then f(t) = 1− gt is irreducible, so

K0(qgrF ) ∼= Z[1/g] ⊆ R

as ordered abelian groups by Theorem 3.3.1.

4.6.2

Let F = k〈x1, x2, x3〉 with deg(x1) = 1 and deg(x2) = deg(x3) = 2. In this case, f(t) =

1− t− 2t2 = (1 + t)(1− 2t) and θ = 1/2. The map

Z[t, t−1]

(f)
→ Z⊕ Z[1/2], g 7→ (g(−1), g(1/2))

is an isomorphism of abelian groups. By Theorem 3.3.1, K0(qgrF ) ∼= Z⊕Z[1/2] as ordered

abelian groups where (Z⊕ Z[1/2])≥0 = (Z⊕ Z[1/2]>0) ∪ {0}.

4.6.3

Let F = k〈x1, x2〉 with deg(xi) = i. Then K0(qgr(F )) ∼= Z[12(1 +
√

5)] ⊆ R since

f(t) = 1 − t − t2 is irreducible and θ = 1
2(−1 +

√
5). This ordered group shows up as

the Grothendieck group of categories associated to Penrose tilings in [2, Sect II.3] and [15]
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and as the Grothendieck group of qgr(A) where A = k〈x1, x2, x3〉/(x1x3 + x22 + x3x1) with

deg(x1) = deg(x2) = deg(x3) = 1 in chapter 5.
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Chapter 5

THE CASE B IS A REGULAR ALGEBRA OF DIMENSION 2

In this chapter, we use the methods of Chapter 3 to compute K0(qgrA) as an ordered

abelian group where A is a regular algebra of global dimension 2.

5.1 Regular algebras of global dimension 2

Let k be a field and A =
⊕

n≥0An an N-graded k-algebra such that A0 = k. The left

and right global dimensions of A are the same and equal the projective dimension of the

A-module k := A/A≥1. We say A is regular if it has finite global dimension, n say, and

ExtjA(k,A) ∼=


k if j = n

0 if j 6= n.

Zhang [17, Theorem 0.1] proved that A is regular of global dimension 2 if and only if it is

isomorphic to some

A :=
k〈x1, . . . , xg〉

(b)
(5.1-1)

where g ≥ 2, the xi’s can be labelled so that deg(xi) + deg(xg+1−i) =: d is the same

for all i, and σ is a graded k-algebra automorphism of the free algebra k〈x1, . . . , xg〉, and

b =
∑g

i=1 xiσ(xg+1−i).

Because A is regular of global dimension two, the minimal projective resolution of Ak is

0 // A(−d)
α //

⊕g
i=1A(−deg(xi))

β // A // k // 0 (5.1-2)
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where d = deg(xi) + deg(xg+1−i), α is right multiplication by (xg, . . . , x1), and β is right

multiplication by (σ(x1), σ(x2), . . . , σ(xg))T. The Hilbert series for A is therefore

HA(t) :=

∞∑
n=0

dimk(An)tn =
1

f(t)

where

f(t) := td −
g∑

i=1

tdeg(xi) + 1. (5.1-3)

For the rest of the chapter, A denotes the algebra in (5.1-1) where the degrees of the

generators and the relation b have the properties stated after (5.1-1). We will also assume

that g ≥ 3 (the case g = 2 is well-understood) and without loss of generality, that the

greatest common divisor of the degrees of the generators xi is one.

5.2 A satisfies C3

5.2.1 A satisfies C1

By definition, A is finitely generated and connected-graded. Because A is defined by a single

homogeneous quadratic relation, A is coherent by [11, Theorem 1.2]. By [17, Theorem 0.1],

A has global dimension equal to two. Hence A satisfies C1.

5.2.2 A satisfies C2

Let ai := dimk Ai. Because A is a domain [17, Thm. 0.2] and 1 is the greatest common

divisor of the degrees of its generators, ai ≥ 1 for all i� 0.

Descartes’ rule of signs implies that f(t) has either 0 or 2 positive real roots. The

hypothesis that g ≥ 3 implies f(1) < 0. Since f(0) > 0, we conclude that f(t) has two

positive roots, θ−1 > 1 and θ ∈ (0, 1), say.
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By the following result proved in §5.4, F satisfies C2.

Proposition 5.2.1. The root θ of f is simple and θ < |λ| for λ any other root of f .

5.2.3 A satisfies C3

Lemma 5.2.2. Let p ∈ Z[t, t−1]. If p(θ) > 0, then there is an M in gr(A) such that

qM (t)− p(t) ∈ (f).

Proof. It suffices to show that tsqM (t)− tsp(t) ∈ (f) for some integer s. Since qM(−s)(t) =

tsqM (t), we can, and will, assume p(t) ∈ Z[t].

Write p(t) =
∑s

i=0 pit
i. Define integers bj , j ≥ 0, by the requirement that

∞∑
j=0

bjt
j := p(t)HA(t). (5.2-1)

Therefore

p(t) = f(t)
∞∑
j=0

bjt
j =

(
1−

d−1∑
`=1

n`t
` + td

) ∞∑
j=0

bjt
j .

Equating coefficients gives

pi = bi + bi−d −
d−1∑
`=1

n`bi−` (5.2-2)

for all i ≥ 0 with the convention that pi = 0 for i > s and bj = 0 for j < 0.

Since aj 6= 0 for j � 0,

lim
j→∞

(
bj
aj

)
= lim

j→∞

(
s∑

i=0

(
aj−i
aj

)
pi

)
=

s∑
i=0

piθ
i = p(θ) > 0.

Therefore

lim
j→∞

(
bj
bj+1

)
= lim

j→∞

(
bj
aj

aj+1

bj+1

aj
aj+1

)
= p(θ)p(θ)−1θ = θ.
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There is therefore an integer m ≥ s such that {bj}j≥m+1−d is a strictly increasing sequence

of positive integers. We fix such an m.

We will complete the proof by showing that the Laurent polynomial

q(t) := p(t)−

(
m∑
i=0

bit
i

)
f(t)

is qM (t) for a suitable M ∈ gr(A). Before beginning the proof we define

ri :=

d−1∑
`=i−m

n`bi−` − bi−d (5.2-3)

for m+ 1 ≤ i ≤ m+ d. To start the proof, we note that q(t) is equal to

p(t)−

(
m∑
i=0

bit
i

)(
1−

d−1∑
i=1

nit
i + td

)

which equals

p(t)−
m∑
i=0

[
bi −

d−1∑
`=1

n`bi−` + bi−d

]
ti +

m+d∑
i=m+1

[
d−1∑

`=i−m
n`bi−` − bi−d

]
ti.

By (5.2-2), the left-hand sum is p(t) so

q(t) =
m+d∑

i=m+1

rit
i.

Suppose deg(xi) = 1 for all i = 1, . . . , g. Then

q(t) = rm+1t
m+1 + rm+2t

m+2 = atm+1 + bm(1− t)tm+1

where a = (g − 1)bm − bm−2 ≥ 0. Thus, q(t) = qM (t) where M = M ′(−m− 1) and

M ′ = Aa ⊕

(
A

x1A

)bm
.

Suppose deg(xi) 6= 1 for some i. Then d1 6= dg and Lemmas 5.2.4 and 5.2.5 below show

that q(t) = qM (t) for some M ∈ gr(A).
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5.2.4 Technical lemmas

The next three lemmas complete the proof of Lemma 5.2.2 when d1 6= dg so are proved

under that hypothesis.

Lemma 5.2.3. For each integer i between m+ d1 + 1 and m+ dg,

d−1∑
`=i−m

n`bi−` ≥ bi−d.

Proof. Since n` is the number of the generators x1, . . . , xg having degree `, n` ≥ 0 for all `

between i−m and d− 1. Since i−m is between d1 + 1 and dg, the only `’s between i−m

and d − 1 for which n` is non-zero are d2, . . . , dg. If ` = dj , then n`bi−` = ndjbi−dj ; but

i− dj ≥ i− d ≥ m+ 1− d so bi−dj ≥ bi−d. The result follows.

Lemma 5.2.4. There is N ∈ gr(A) such that

qN (t) =

m+dg∑
i=m+d1+1

rit
i.

Proof. By definition,

ri = −bi−d +

d−1∑
`=i−m

n`bi−`.

By Lemma 5.2.3, ri ≥ 0 for all i between m+ d1 + 1 and m+ dg. The module

N :=

m+dg⊕
i=m+d1+1

Ari(−i).

satisfies the conclusion of the lemma.

Lemma 5.2.5. There is L ∈ gr(A) such that

qL(t) =

m+d1∑
i=m+1

rit
i +

m+d∑
i=m+dg+1

rit
i.
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Proof. Because d1 + dg = d,

m+d1∑
i=m+1

rit
i +

m+d∑
i=m+dg+1

rit
i =

m+d1∑
i=m+1

(ri + ri+dg t
dg)ti.

However, n` = 0 for all ` ≥ dg + 1 so, when m+ 1 ≤ i ≤ m+ d1,

ri + ri+dg t
dg = ri − bi+dg−dt

dg = ri − bi−d1 + bi−d1(1− tdg),

We must therefore show there is L ∈ gr(A) such that

qL(t) =

m+d1∑
i=m+1

(ri − bi−d1)ti +

m+d1∑
i=m+1

bi−d1(1− tdg)ti

Since ti = qA(−i)(t) and (1− tdg)ti = q(A/xgA)(−i)(t), q(t) equals qL(t) where

L =

(
m+d1⊕
i=m+1

Ari−bi−d1 (−i)

)
⊕

(
m+d1⊕
i=m+1

(
A

xgA

)bi−d1

(−i)

)

provided the coefficients ri − bi−d1 and bi−d1 are non-negative. Since i − d1 ≥ m + 1 − d,

bi−d1 > 0.

If m+ 1 ≤ i ≤ m+ d1, then

ri ≥ nd1bi−d1 + ndgbi−dg − bi−d ≥ bi−d1

so ri − bi−d1 ≥ 0.

5.3 The Grothendieck group of qgr(A)

We make Z[t±1]/(f) an ordered abelian group by defining

(
Z[t, t−1]

(f)

)
≥0

:= {p | p(θ) > 0} ∪ {0}

where p denotes the image of the Laurent polynomial p in Z[t, t−1]/(f). The order structure

on Z[θ] is inherited from its embedding in R.
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Theorem 5.3.1. Let A be the algebra discussed in §5.1. The Grothendieck group K0(qgrA)

is isomorphic as an ordered abelian group to

Z[t, t−1]

(f)

via the map [π∗M ] 7→ qM (t). If f is irreducible, K0(qgrA) is isomorphic as an ordered

abelian group to Z[θ] via the map [π∗M ] 7→ qM (θ).

Furthermore, under the isomorphism(s), the functor M 7→ M(1) corresponds to multi-

plication by t−1 and θ−1.

Proof. By §5.2.1, 5.2.2 and 5.2.3, F satisfies C3. The result now follows from Theorem

3.3.1.

5.4 The proof of Proposition 5.2.1

5.4.1 The idea of the proof

The idea of the proof of Proposition 5.2.1 is similar to the idea of the proof of Proposition

4.2.1 described in §4.4.1. Namely, we will associate to A a particular finite directed graph

G and show that the characteristic polynomial of G is t`−df(t) where ` is the sum of the

degrees of the generators xi. We also show that M is primitive, i.e., all entries of Mn

are positive for n � 0. We then apply the Perron-Frobenius theorem which says that a

primitive matrix has a positive real eigenvalue of multiplicity 1, ρ say, with the property

that |λ| < ρ for all other eigenvalues λ. But the non-zero eigenvalues of M are the roots of

f(t). Since we already know that f(t) has only two positive real roots, θ < 1 and θ−1 > 1,

ρ = θ−1. Since the coefficient of ti in f(t) is the same as that of td−i, f(t) = tdf(t−1). Thus
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f(λ) = 0 if and only if f(λ−1) = 0. Hence θ−1 is the unique root of f(t) having largest

modulus, so θ is the unique root of f(t) having smallest modulus.

The xis are labelled so that deg(x1) ≤ · · · ≤ deg(xg).

The free algebra on k〈x1, . . . , xg〉 is the path algebra of the quiver with one vertex ? and

g loops from ? to ? labelled x1, . . . , xg. We replace each loop xi by d′i := deg(xi)−1 = di−1

vertices labelled xi1, . . . , xid′i and arrows

?
αi0 // xi1

αi1 // · · · · · · // xid′i
αid′i // ?

The graph obtained by this procedure is the graph associated to k〈x1, . . . , xg〉 in 4.4.2.

5.4.2 Example

If A is generated by x1, x2, x3 and deg(xi) = i, the associated graph is

x21 α21

��

x31

α31

��

?α20

WW α30 11

α10

MM

x32α32

WW

5.4.3 The second graph associated to A

We now form a second directed graph, the vertices of which are the arrows in the previous

graph. In the second graph there is an arrow from vertex u to vertex v if in the first graph

the arrow u can be followed by the arrow v, except we do not include an arrow α1d′1
→ αg0.

We write G, or G(A), for the second graph associated to A.
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The second graph associated to Example 5.4.2 is

α20
''
α21oo

""EE
EE

EE
EE

EE

vvllllllllllllllllll

α1077

<<yyyyyyyyyy
α30

||yy
yy

yy
yy

yy

α32

bbEEEEEEEEEE

OO

66llllllllllllllllll
α31oo

Note the absence of an arrow from α10 to α30.

Proposition 5.4.1. If u and v are vertices in G, there is a directed path starting at u and

ending at v.

Proof. There is a directed path αi0 → αi1 → · · · → αid′i
→ αi0 so the result is true if u = αij

and v = αik. There are also arrows

α1d′1
→ α20, α2d′2

→ α30, . . . αg−1,d′g−1
→ αg0, αgd′g → α10

so the result is true if u = αi1j1 and v = αi2j2 .

Proposition 5.4.2. Let M be an incidence matrix for G. Then every entry in Mn is

non-zero for n� 0.

Proof. In the language of [8, Defn. 4.2.2], Proposition 5.4.1 says that M is irreducible.

The period of a vertex v in G is the greatest common divisor of the non-trivial directed

paths that begin and end at v. The period of G is the greatest common divisor of the periods

of its vertices. Since there is a directed path of length di = deg(xi) from αi0 to itself, the

period of G divides gcd{d1, . . . , dg} which is 1. The period of G is therefore 1. Thus, in the

language of [8, Defn. 4.5.2], M is aperiodic and therefore primitive [8, Defn. 4.5.7]. Hence

[8, Thm. 4.5.8] applies to M , and gives the result claimed.
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The Perron-Frobenius theorem [6, Thm. 1, p.64] therefore applies to M giving the

following result.

Corollary 5.4.3. The characteristic polynomial for G has a unique eigenvalue of maximal

modulus and that eigenvalue is simple and real.

Our next goal, achieved in Proposition 5.4.8, is to show that pG(t) = t`−df(t) for a

suitable `.

5.4.4 Other graphs associated to A

We now write X := {x1, . . . , xg} and define the directed graph X̂ by declaring that its

vertex set is X and there is an arrow xi → xj for all (xi, xj) ∈ X 2 − {(x1, xg)}. For each

non-empty subset X ⊂ X let X̂ be the full subgraph of X̂ with vertex set X.

If g = 4, then

{x1, x2, x3} ̂ = x2
��

��xx
x1

88

,,
77 x3

ZZ

ll gg

and

{x1, x2, x4} ̂ = x2
��

��xx
x1

88

77 x4

ZZ

ll gg
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Lemma 5.4.4. Let X ⊂ {x1, . . . , xg}. The constant term in the characteristic polynomial

for X̂ is

p
X̂

(0) =



1 if X = {x1, xg}

−1 if |X| = 1

0 otherwise.

Proof. Let M be an incidence matrix of X̂. Then the constant term in the characteristic

polynomial for X̂ is p
X̂

(0) = (−1)|X| det(M).

If |X| = 1, then X̂ consists of one vertex with a single loop so M = (1) whence p
X̂

(0) =

−1.

If X = {x1, xg}, then X̂ has vertices x1 and xg, an arrow from xg to x1, and a loop at

each vertex. Hence
(
1 1
0 1

)
is an incidence matrix for X̂ and the constant term is 1.

If |X| = 2 and X 6= {x1, xg}, then the incidence matrix for X̂ is
(
1 1
1 1

)
so the constant

term is 0.

Suppose |X| ≥ 3. If {x1, xg} ⊆ X, then M has a single off-diagonal 0 and all its other

entries are 1; in particular, M is singular so the constant term is 0. If {x1, xg} 6⊆ X, then

every entry in M is 1 so M is singular and the constant term is 0.

5.4.5 The paths β1, . . . , βg in G

For each 1 ≤ i ≤ g, let βi be the path

αi0 → αi1 → · · · → αid′i
.

In example 5.4.2, β1 is the trivial path at vertex α10, β2 is the arrow α20 −→ α21, and β3 is

the path α30 −→ α31 −→ α32.
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Proposition 5.4.5. Let i1, . . . , im be pairwise distinct elements of {1, . . . , g} such that

(1, g) 6∈ {(im, i1), (i1, i2), . . . , (im−1, im)}. Then there is a simple cycle in G of the form

βi1 → βi2 → · · · → βim → αi10 (5.4-1)

and every simple cycle in G is of this form, up to choice of starting point.

Proof. Let r, s ∈ {1, . . . , g} and assume r 6= s. If (r, s) 6= (1, g), then there is an arrow from

αrd′r , the vertex at which βr ends, to αs0, the vertex at which βs starts; hence there is a

path “traverse βr then traverse βs”; we denote this path by βr → βs. It follows that there

is a path of the form (5.4-1).

Let p be a simple cycle in G. A simple cycle passes through a vertex αij if and only if

it passes through αi0. Every simple cycle that passes through αi0 contains βi as a subpath

because there is a unique arrow starting at αij for all j = 0, . . . , d′i − 1. Hence p is of the

form (5.4-1).

Lemma 5.4.6. There is a bijection Φ : Z(X̂ )→ Z(G) defined by

Φ(xi1 → · · · → xim → xi1) := βi1 → · · · → βim → αi10 (5.4-2)

whose inverse is

Φ−1(βi1 → · · · → βim → αi10) := xi1 → · · · → xim → xi1 . (5.4-3)

Proof. We need only check that Φ and Ψ are well-defined. Because X̂ does not contain an

arrow x1 → xg and G does not contain an arrow α1d′1
→ αg0, the right-hand sides of (5.4-2)

and (5.4-3) are simple cycles.

The next result is obvious.
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Proposition 5.4.7. The function Φ extends to a bijection Φ : Z(X̂ )→ Z(G) defined by

Φ(E1 t · · · t Em) := Φ(E1) t · · · t Φ(Em)

for disjoint simple cycles E1, . . . , Em in X̂ . Furthermore, c(E) = c(Φ(E)) for all E ∈ Z(X̂ ).

The support of a subgraph Q of G is

Supp(Q) := {xi | βi is a path in Q}.

For each non-empty subset X ⊂ {x1, · · · , xg} let

Z(G,X) := {Q ∈ Z(G) | Supp(Q) = X}

and let d(X) =
∑

x∈X deg(x).

Proposition 5.4.8. Let ` =
∑g

i=1 deg(xi). The characteristic polynomial of G is t`−df(t).

Proof. The characteristic polynomial of G is

pG(t) = t` + c1t
`−1 + · · ·+ c`−1t+ c`

where ` = v(G) =
∑g

i=1 di and

ci =
∑

Q∈Z(G)
v(Q)=i

(−1)c(Q) =
∑

X⊂X
d(X)=i

 ∑
Q∈Z(G,X)

(−1)c(Q)

 . (5.4-4)

Since Z(G,X) = {Φ(E) | E ∈ Z(X̂) & v(E) = d(X)} we have

∑
Q∈Z(G,X)

(−1)c(Q) =
∑

E∈Z(X̂)
v(E)=|X|

(−1)c(E). (5.4-5)
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Since v(X̂) = |X|, the right-hand side of (5.4-5) is p
X̂

(0). Hence by Lemma 5.4.4,

ci =



1 if i = d1 + dg = d,

−ni if 1 ≤ i ≤ dg,

0 otherwise.

Thus pG(t) = t` − n1t`−1 − · · · − nd−1t`−d+1 + t`−d = t`−df(t), as claimed.

As explained at the end of §5.4.1, Proposition 5.2.1 follows from Proposition 5.4.8 and

Corollary 5.4.3.

Example

In order to clarify some of the technicalities in this section, we will compute the coefficient

c5 in pG(t) = t9 + c1t
8 + · · ·+ c8t+ c9 where G is the second graph associated to the algebra

A = k〈x1, x2, x3〉/(b) where deg(xi) = i+ 1. First, G is

α10
,, α11ll

��
α33 //

::

))
α30

��

α20

��
α32

OO

α31oo α22

<<xxxxxxxx
oo

VV--------------------
α21oo
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There are two subgraphs of G that have exactly five vertices and are disjoint unions of

simple cycles, namely

Q1 =



α10
,, α11ll

α20

��
α22

<<xxxxxxxx
α21oo

and Q2 =



α10
,, α11

��
α20

��
α22

VV--------------------
α21oo

The only subset X of X = {x1, x2, x3} such that d(X) = 5 is X = {x1, x2}. The graph X̂ is

x1
��

��
x3

88

,,
77 x2

ZZ

ll gg

Since Q1 = Φ(E1) and Q2 = Φ(E2) where

E1 =


x1 gg

x2 gg

and E2 =


x1

��
x2

ZZ

equations (5.4-4) and (5.4-5) give

c5 = (−1)c(Q1) + (−1)c(Q2)

= (−1)c(E1) + (−1)c(E2)

= 1− 1

= 0.
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5.5 Examples

5.5.1

When A is generated by g ≥ 3 elements of degree one, f(t) is the irreducible polynomial

1− gt+ t2 so

K0(qgr(A)) ∼= Z

[
g −

√
g2 − 4

2

]
⊂ R

as ordered abelian groups.

5.5.2 Non-irreducible f

Suppose g = 4, d1 = d2 = 1 and d3 = d4 = 2. Then f(t) = 1−2t−2t2+t3 = (1+t)(1−3t+t2)

and θ = 1
2(3−

√
5). The map

Z[t, t−1]

(f)
→ Z⊕ Z[θ], p 7→ (p(−1), p(θ))

is an isomorphism of abelian groups. The image of the positive cone under that isomorphism

K0(qgr(A)) −→ Z⊕ Z[θ] is (Z⊕ Z[θ]≥0) ∪ {0}.
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[9] I. Mori and S.P. Smith. Bézout’s theorem for non-commutative projective spaces. J.
Pure Appl. Algebra, 157(2-3):279–299, 2001.

[10] I. Mori and S.P. Smith. The Grothendieck group of a quantum projective space bundle.
K-Theory, 37(3):263–289, 2006.

[11] D. Piontkovski. Coherent algebras and noncommutative projective lines. Journal of
Algebra, 319:3280–3290, 2008.

[12] N. Popescu. Abelian categories, with applications to rings and modules. Academic
Press, Inc., New York-London, 1973.



55

[13] P. Jørgensen. Intersection theory on non-commutative surfaces. Trans. Amer. Math.
Soc., 352(12):5817–5854, 2000.

[14] S.P. Smith. Category equivalences involving graded modules over path algebras of
quivers. Adv. Math., 230:1780–1810, 2012. arXiv:1107.3511.

[15] S.P. Smith. The space of Penrose tilings and the non-commutative curve with ho-
mogeneous coordinate ring k〈x, y〉/(y2). Journal of Noncommutative Geometry, 2013.
arXiv:1104.3811.

[16] C. Weibel. The K-book: an introduction to algebraic K-theory. Number 145 in Graduate
Studies in Math. AMS, 2013.

[17] J.J. Zhang. Non-noetherian regular rings of dimension 2. Proc. Amer. Math. Soc.,
126:1645–1653, 1998.


