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Dynamics of inertial particles in two-dimensional planar flow have been investigated by

evaluating finite-time Lyapunov exponents (FTLE). The first part of our work deals with

inertial particle dynamics. The Maxey-Riley equations have been employed to track par-

ticles. Patterns formed by inertial particles are reported along with their dependance on

Strokes number and density of particles relative to the carrier-fluid density. Our results dis-

tinguish patterns formed by particles denser than the fluid (aerosols) from those formed

by particles lighter than the fluid (bubbles). Preferential concentration of these particles

at specific regions of the flow have been observed. The attenuating, low-pass filter effect

of Stokes drag on bubbles are reported for the first time. The results from this part of

the work motivated further investigations into the underlying organizing structures of the

flow, namely the Lagrangian coherent structures (LCS). LCS is traditionally evaluated us-

ing FTLE.

In the next part of the work, our objective was to interpret the dynamics of inertial par-

ticles by evaluating finite-time Lyapunov exponents on their trajectories. A main result is

that aerosols were found to be attracted and preferentially concentrated along ridges of

negative finite-time Lyapunov exponents (nFTLE) of the underlying flow. On the other

hand bubbles were found to be repelled from these structures and were therefore observed



preferentially concentrating away from these zones. These results, being reported for the

first time, supplement the existing literature on preferential concentration of inertial par-

ticles. Despite having an effect on particle trajectories, increasing the Stokes number had

very little effect on inertial finite-time Lyapunov exponents (iFTLE). Furthermore, increas-

ing Stokes number resulted in an increase in the ridges of iFTLE contours for aerosols,

whereas for bubbles the opposite was observed. These findings indicate that optimum

mixing occurs at different Stokes numbers for aerosols and bubbles.

The last part of the work focussed on comparing well-known dispersion measures with

inertial finite-time Lyapunov exponents. We qualitatively show that two-point dispersion

contours share dominant ridges with those from inertial finite-time Lyapunov exponents.

This result numerically shows that material surfaces identified by inertial finite-time Lya-

punov exponents are maximally dispersed in the flow. Applications and future directions

based on our work are suggested.
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Chapter 1

INTRODUCTION

1.1 Overview of Applications

Poisson [1831] was one of the earliest researchers to work on flow past a rigid sphere.

Interestingly he started working on the problem two-decades earlier than the time when

Navier-Stokes equations were proposed. In his work he examined the sinusoidal flow past

a rigid sphere. His contributions correctly pointed out the added mass effects and its co-

efficient. In the earlier days his original motivation to study this problem was to predict

the motion of a pendulum oscillating in air. Since then, various researchers have worked

on accurately predicting the equations of motion of a spherical particle under an uniform

flow. Specifically the seminal article Maxey and Riley [1983] and the equations of motion

discussed therein clarified the subject. Their article elucidated the work of past researchers

with detailed derivations and drew attention to the use of equation for zero Reynolds num-

bers. These equations of motion being named after the authors as the Maxey-Riley (MR)

equations made it easier to study the dynamics of inertial particles in flow. Although other

analytic studies extend the MR equations to more general form, the results often involve

complicated forms hindering their use in repetitive calculations.

Inertial particle flows are found in abundance both in nature and industrial applica-

tions. Consequently the motivation to throughly understand the dynamics of these parti-

cles become essential for both fundamental and applied research endeavors. For instance

fundamentally they have been studied to answer questions such as “How do inertial par-

ticles get dispersed by flow, especially by turbulence ?, How does the inertia of particles

affect the gravitational settling velocity and settling time of the particles ?, Why do inertial

particles concentrate on specific regions of the flow ?, etc.” Applied flows such as inertial

particle dispersion by clouds and hurricanes [Shaw et al., 1998, Sapsis and Haller, 2009], oil
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spills in the ocean [Beron-Vera et al., 2008, Olascoaga and Haller, 2012, Nencioli et al., 2011,

Mezić et al., 2010], urban pollution dispersion [Tang et al., 2012], tracing toxic elements

[Natusch et al., 1974], etc., are some of the motivations behind studying the dynamics of

inertial particles.

One of the fundamental questions researchers are trying to answer is associated with

relative dispersion of inertial particles by turbulence. The idea stems from the fact that

dispersion of fluid particles are relatively better known in comparison to those of inertial

particles. This is primarily because of the fact that relative dispersion of fluid particles pro-

vides us insights into the spatial structure of turbulent flows. Therefore relative dispersion

of fluid particles has become a well-studied measure in the last century. However in a sig-

nificant number of scenarios the particles encountered are inertial in nature. This is because

of the very fact that they these particles are different from those of the carrier-fluid. Disper-

sion of fluid particles by turbulence has been of great interest since the days of G. I. Taylor

[Taylor, 1954]. Since then, two-particle fluid dispersion has become a well-studied quan-

tity with great significance in characterizing turbulence. Some notable recent works along

these lines include Chen et al. [2006], Biferale et al. [2005], Boffetta and Sokolov [2002],

Malik and Vassilicos [1999], Fung and Vassilicos [1998]. Specifically turbulent-like models

are usually validated by comparing their two-particle fluid dispersion characteristics with

those from direct numerical simulation [Malik and Vassilicos, 1999]. Boffetta and Sokolov

[2002] investigated Lagrangian relative dispersion in direct numerical simulation of two-

dimensional inverse cascade turbulence. They have demonstrated results in good agree-

ment with Richardson’s original description of diffusion. Biferale et al. [2005] performed

a detailed investigation of the particle pair separation through homogeneous turbulence.

Through their numerical simulation Biferale et al. [2005] presents the process of particle

pair separation as a pdf (probability density function) of separation distance and its sec-

ond order moment. Through the latter they have estimated Richardson’s constant, which

was found to be in good agreement with the classical theory. For a detailed review of the

two-particle dispersion the readers are referred to the excellent review, Salazar and Collins

[2009].
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Gravitational settling of particles has been an another motivation to study the dynamics

of inertial particles [Rubin et al., 1995, Maxey, 1987a,b, Maxey and Corrsin, 1986]. Maxey

and Corrsin [1986] computed statistics for the motion of small particles settling under grav-

ity in an ensemble of randomly oriented, cellular flow fields that are steady in time. They

have concluded that particles characterized by small free fall velocity and weak inertia

show a strong tendency to collect along isolated paths. In a sequel Maxey [1987b] analyzed

for first time the trajectories of particles with densities less than that of the carrier-fluid,

namely bubbles. Maxey [1987b] also characterized particle trajectories for aerosols, par-

ticles with density higher than that of the carrier-fluid. Particle accumulation was found

to be a recurring theme for both types of particles. Furthermore Maxey [1987a] showed

for the first time that inertial particles dropped in a Gaussian random velocity field get

accumulated and are biased in their trajectories towards regions of high strain rate or low

vorticity. This bias in the behavior of inertial particles was construed to be a reason for

the change in mean settling velocity. The aforesaid phenomenon was termed later as ‘pref-

erential concentration’ of inertial particles. Rubin et al. [1995] showed that when inertia is

taken as a small parameter the solution to particle motion admits a globally attracting slow

manifold. Structure of these set of attracting paths on these manifolds including stability

and bifurcation scenarios were reported.

Preferential concentration of particles has spurred interests among researchers, espe-

cially preferential concentration in turbulent flows [Chen et al., 2006, Wood et al., 2005,

Shaw et al., 1998, Fessler et al., 1994, Eaton and Fessler, 1994, Squires and Eaton, 1991].

Squires and Eaton [1991] performed a direct numerical simulation of isotropic turbulence

with 1000000 particles. Particles were assumed to be denser than the carrier-fluid. Their

results showed that particles were collected preferentially in regions of low vorticity, high

strain rate regions. They had concluded that turbulence may actually be inhibiting mix-

ing between inertial particles, because dense particles collect in regions of low vorticity

and high strain rate. For an excellent review on the subject, the readers are referred to

Eaton and Fessler [1994]. Eaton and Fessler [1994] summarizes preferential concentration
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effects over a wide range of turbulent flows. They point out that preferential concentration

is strongest for Stokes numbers near 1. Despite this fact most developed turbulent flows

have intense vortical structures spanning a wide range of length scales. Consequently par-

ticles may concentrate on different regions depending on their Stokes number. The review

closes with a comment on large eddy simulation holding the capacity to model preferential

concentration effects. However a caveat on the considerable work required in developing

an appropriate sub-grid scale model which would incorporate preferential concentration

effect at small scales was pointed out.

1.2 Scope of the present study

As pointed out in Eaton and Fessler [1994] up until now, there has been little recognition

on the effect of preferential concentration in practical applications. Also as suggested in

the above work, we are convinced that this phenomenon is important. Consequently it is

expected to gain more recognition in many applications as suggested by Eaton and Fessler

[1994].

The scope of the current study is to apply well established techniques from dynamical

systems on the dynamics of inertial particles. We are specifically interested in evaluating

the so called ‘Lagrangian coherent structures’ which will be introduced in the next chapter

of this work. In that identifying the zones of preferential concentration accurately has been

one of our motives.

1.3 Organization of the thesis

The first chapter deals with the introduction and gives an overview of literature regarding

inertial particles. It also provides basis and scope for the work. The second chapter de-

scribes and develops the theory behind the tools we borrow from dynamical systems. In

addition the second chapter also introduces the Maxey-Riley equations along with a brief

treatment about the significance of each term therein. Furthermore a brief treatment on the

computational methods employed in the present study is sketched by the end of the sec-
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ond chapter. Thus after setting up the necessary background we move on to the chapter

on results and discussions. Results dealing with the effect of various parameters on the

dynamics of inertial particles are discussed. Additionally the patterns formed by inertial

particles are construed with the help of Lagrangian coherent structures. The work culmi-

nates with a chapter on conclusion providing a bird-eye view of the significant results from

the previous chapter. Along with conclusions, pointers on future directions based on our

work are suggested.
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Chapter 2

BACKGROUND

2.1 Nature of Lagrangian coherent structures in fluid flows

As early as 1984, Aref demonstrated interest in studying the rich chaotic dynamics (termed

‘chaotic advection’) produced as a result of innocent-looking Lagrangian advection equa-

tions such as the following.

ẋ (x0, t0, t) = u (x, t) . (2.1)

More recent developments have led us to understand the dynamics better than the

simple description from eq. 2.1. We will outline some of the ideas that have motivated

researchers from fluid dynamics to borrow methods established in chaos theory, such as

Lyapunov exponents. Equation 2.1 is an ODE (ordinary differential equation) that could

be analyzed in detail at least for two dimensional steady flows (autonomous) using tools

from dynamical systems. It is known that hyperbolic fixed points and their corresponding

stable and unstable manifolds organize the entire flow for such an autonomous system. In

this context, flow refers to the solution to the continuous-time dynamical system eq. 2.1,

rather than the fluid flow. Therefore, at least in autonomous systems the set of hyperbolic

fixed points and their stable and unstable manifolds behave as separatrices, organizing the

entire flow. A separatrix is more general trajectory in the phase plane that delineates a

boundary between trajectories of dynamically distinct characteristics. However if the sys-

tem considered is 3 dimensional and/or the system is non-autonomous (unsteady) then,

even the notion of separatrices becomes difficult to comprehend. For instance, a hyperbolic

fixed point of an non-autonomous system can change its stability with time, therefore even

the notion of stable and unstable manifolds becomes vague in these systems.

In order to extend the classical techniques of dynamical systems, firstly consider the
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simplest extension one can make to the two dimensional autonomous (steady) system is

by making the system into a periodic, non-autonomous one. This can be easily achieved

by adding a periodic perturbation (dependent on time) to the original autonomous sys-

tem. This perturbation can give rise to rich dynamics, which may lead to chaos. In these

systems, as one might expect, instead of hyperbolic fixed points and their manifolds orga-

nizing the flow, a moving material surface takes up this role. Since the system is periodic,

Poincaré maps in time becomes an important tool in revealing the periodic orbits. A sys-

tematic investigation such as the one described above was performed in Rom-Kedar et al.

[1990] on periodic non-autonomous systems. In order to develop better intuition about

Lagrangian coherent structures, we will briefly look at the system from Rom-Kedar et al.

[1990]. They examined the flow governed by a pair of vortices under the influence of an

external strain-rate field.

ψ = − Γ

4π
log

[
(x− xv)2 + (y − yv)2

(x− xv)2 + (y + yv)
2

]
− Vvy + εxy sin (ωt) , (2.2)

Where ψ is stream function of the flow in a frame moving with the average velocity of the

vortices. ±Γ represents the circulations of the vortices. ε denotes the strain rate while Vv is

the average velocity of the vortex pair. The vortices are separated by a distance 2d in the

y-direction with (xv(t), ± yv(t)) representing their positions.

The above system 2.2 resembling a vortex pair and a periodic perturbation was con-

Transport, mixing and chaos in an unsteady vortical flow 35 1 

FIGURE 1. Streamlines of the unperturbed flow. 

The resulting motion of the vortices is relatively simple. Equations (2.4) with the 
initial conditions s,(O) = 0, y,(O) = 1, are easily integrated to give 

x,(t) = e-s(cos(t/Y)-l) [1 - 2~ ee(COS(8)-1) 3 ds, y,(t) = ee(cos(t/y)-l). (2.5a, b )  

The requirement that the mean velocity of the vortex pair be zero in the moving 
frame yields v, = e"/21,(~), where lo is the modified Bessel function of order zero. 
From (2.5) it is clear that the vortices oscillate in orbits near the points (0, f 1). Thus 
we term the resulting flow given by (2.3) the oscillating vortex pair (OVP) flow. 

Equations (2.3) together with (2.5) give the equations of particle motion as a 
function of two dimensionless parameters y and E ,  proportional to vortex strength 
and strain rate, respectively. For most of the analysis that follows E can take on 
arbitrary values. However, for the perturbation calculations we shall assume that E 

is small and will require an expansion of the right-hand side of (2.3) in powers of E .  

This expansion yields equations of motion for fluid particles which are of the form of 
a periodically perturbed integrable Hamiltonian system : 

r v  

( 2 . 6 ~ )  

( 2 . 6 b )  

The functions f i ,  gi are given in Appendix B. 
For e = 0 the phase portrait of the integrable Hamiltonian system, or equivalently 

the streamlines of the flow induced by a vortex pair in the frame moving with the 
vortices, appears in figure 1.  Note that for this case, there are two hyperbolic 
stagnation points p - ,  p ,  connected by three limiting streamlines Yu, Yo and Yt 
defined by Y ( ~ , y ) l ~ - ~  = 0, 1x1 < 4 3 ,  with y > 0, y = 0, and y < 0 respectively. Thus 
a fixed, closed volume of fluid or 'bubble ' is bounded by the limiting streamlines and 
moves with the vortex pair for all times. As we shall see below, this picture changes 
dramatically when E $: 0. Note also that, for any E ,  the flow is symmetric about the 
x-axis and thus we need only study the flow in the upper half-plane. Such symmetry 
would be present in axisymmetric flows. If the strain-rate field is not aligned with the 
(x, 9)-axes the straight line connecting the two vortices also rotates periodically, but 
the qualitative behaviour of the particle motion is the same as that discussed in the 
following but with the added complication of transport between the upper and lower 
half-planes. 

Figure 2.1: Streamlines of unperturbed flow obtained by setting ε = 0 from eq. 2.2 from
Rom-Kedar et al. [1990].
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356 V. Rom-Kedar, A .  Leonard and S.  Wiggins 

/-; 

FIQURE 3. The homoclinic tangle in the mixing region. -, Unstable manifold ; 
___ , stable manifold. 

mechanism for chaotic particle motion. For this reason, we refer to the region 
bounded roughly by the envelopes of P-,, and W+,, as the mixing region. A precise 
definition of the mixing region is given in $6. The mixing region, of course, does not 
exist for the unperturbed case. One characterization that distinguishes the free flow 
region, the mixing region, and the core is that they consist of particle trajectories 
that encircle a vortex zero, a finite, and an infinite number of times, respectively. 

The Melnikov technique 
An analytical technique which allows us to predict the behaviour of W+,, and P-,, 
for small E was developed by Melnikov (1963) and consist of a measurement of the 
distance between W+,, and P-,,. Up to a known normalization factor, the first-order 
term of the Taylor series expansion about E = 0 of the distance between W+,, and 
P-,, can be computed without solving (2.3) explicitly. This first-order term is known 
as the Melnikov function. In  Appendix C,  we discuss the geometry of the Melnikov 
function as well as some of the relevant technical points behind its derivation. In this 
section, we state the results of the calculations for our problem. 

The distance between W+,, and P-,, is given by 

where qU(t) is a heteroclinic fluid particle trajectory of the unperturbed velocity field 
lying in Y,, to parametrizes distance along Yu, and 

llflqu(-to))ll = [ ( f i (4 , ( - to)))2+ ( f2 (4u( - to ) ) )21 t .  

Figure 2.2: Homoclinic tangle of system 2.2. ———, unstable manifold; —.—.—- , sta-
ble manifold, from Rom-Kedar et al. [1990].

Transport, mixing and chaos in an unsteady aortical flow 379 

FIGIJRE 21. The geometry of the horseshoe map. 

integrable; therefore typical fluid particles may separate a t  a linear rate a t  best. 
However, in the perturbed velocity field, nearby fluid particles may separate at an 
exponential rate and moreover the presence of horseshoes may cause fluid particle 
motions in the mixing region to  become rapidly uncorrelated. Intuitively, one would 
believe that horseshoes are desirable in order to enhance mixing. We discuss these 
issues in the next section. 

Se'condly, in order to quantify the mixing of fluid between the core and the free 
flow region one must understand the dynamics of the interface, i.e. the stable 
manifold of p+,€  and the unstable manifold of p - , € .  This is a topic which we are 
currently investigating in more detail. However, from our previous description a 
significant observation can be made. That is, in the unperturbed velocity field the 
interface separating the core and the free flow region has finite length but in the 
perturbed velocity field this interface has infinite length. 

8. Stretching and elongation of material elements 
In  this section we investigate the rate of stretching of material elements in the 

oscillating vortex pair (OVP) flow and its relation to the time spent in the mixing 
region. The classical measure for quantifying the local stretching of material lines on 

13 FLY 214 

Figure 2.3: Horseshoe, from Rom-Kedar et al. [1990].
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sidered by Rom-Kedar et al. [1990]. The corresponding unperturbed system (obtained by

setting ε = 0) is shown in fig. 2.1. In fig. 2.1 the stagnation points p− and p+ denote the

fixed points of the autonomous system given in 2.2. From the figure, it can be seen that

particles initiated on Ψu or Ψl asymptotically reach p+ when integrated forward in time.

On the other hand, integrating backwards in time, they reach p−, therefore Ψu and Ψl are

subsets of the stable and unstable manifolds of p+ and p− respectively. Similarly, Ψ0 is

part of the stable and unstable manifold of p− and p+ respectively. Notice that, in the

unperturbed system, the stable and unstable manifolds coincide with the streamlines of

the flow. However such a simple representation does not hold as soon as the system is

periodically perturbed. The stable and unstable manifolds in the perturbed scenario for

sufficiently small perturbations are smooth invariant curves from the unperturbed system.

In fact, perturbing the system according to 2.2 results in a homoclinic tangle as shown in

fig. 2.2, supporting chaos in particle trajectories. Moreover Rom-Kedar et al. [1990] also an-

alytically proves the existence of a horseshoe map, as shown in fig. 2.3, thus unequivocally

establishing chaos in particle trajectories. The emphasis in presenting these results is to

show that neat1 heteroclinic connections in the autonomous (steady) system has changed

into a complicated homoclinic tangle with the addition of periodic perturbations.

However flows encountered in industrial applications or natural phenomena are more

complicated, especially since they are not necessarily representable as periodic perturba-

tions to an autonomous system2. One might like to extend these type of analyses to such

general systems. However even some of the definitions3 are not clear for such systems.

Consequently, we would want to adopt a less restrictive and more general approach to

comprehend transport in such general systems.

One such notion is the usage of LCS (Lagrangian Coherent Structures) Haller and Yuan

[2000]. They are Lagrangian in the sense that the structures we compute are those moving

along with the fluid and they are coherent because of their distinguished stability prop-

1Implying lesser mixing between fluid particles.
2Consider for example flow past bluff bodies, fluid instabilities of various kinds, mixing problems from

atmosphic and oceanic flows.
3For instance stable and unstable manifolds.
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erties (strongest locally attracting/repelling material surfaces). For instance some visual-

ization studies such as the one shown in fig. 2.6 were successful in identifying structures

resembling LCS. With the stability based notion aforesaid, one can think of LCS as an anal-

ogous quantity to unstable manifolds of an autonomous (steady) system.

However, the computational methodology to estimate them based on the notion of

of such distinctions in practical flows. This could perhaps lead to deeper under-
standings on the nature of fluid, and help refine how we approach studying it.

We note that any notion of hyperbolicity must be associated to a specific time
interval, exemplifying one of the main idiosyncrasies of finite-time analysis. Thus,
our view on the stability of a surface in general depends on our horizon of knowledge.
For example, perturbations to a surface could be marked by mostly tangential
stretching during one time interval and switch to primarily normal expansion using
a slightly longer horizon, or a surface could be marked by expansion using one
integration time and then attraction using another. Likewise, a ridge in the FTLEfield
may only appear as a ridge using a set range of integration times.

Finally, we point out that attracting LCS will generally be distinguishable from
advection of material points since fluid is attracted to and along these surfaces.
This point connects to arguably the most intuitive method of understanding flow –
the visualization of some visual marker that follows the fluid, �tracers.� The utility
of flow visualization is not to track individual particles but to use tracers to reveal
coherent features that reveal how the flow is organized. We now know that such
coherent patterns commonly observed are manifestations of attracting LCS (cf.
Figure 3.4). However, we point out that repelling LCS are essentially hidden from
flow visualization, even though these structures play a fundamental role in
transport. Therefore, the computation of attracting and repelling LCS both
broadens (by revealing a new class of hidden coherent structures) and deepens
(by making the organizing surfaces precise) our understanding of coherent
structures in fluid flow.

3.3.4
Objectivity

A desirable property of the global approach is that it is independent of coordinate
frame, that is, objective. This cannot be said of most common flow diagnostics.

Figure 3.4 Comparison of backward time
FTLE and attracting LCS (panel a) with a
florescence visualization (panel b) by Paul S.
Krueger and John O. Dabiri. The PIV data used
to compute FTLE and the florescence
visualization come from similar experimental

setups, but different experiments and different
times during each experiment. Nonetheless,
structures revealed in both fields are similar, as
florescence aligns with attracting LCS. The role
of repelling LCS is less obvious from the flow
visualization.
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Figure 2.4: Comparison of LCS (panel a) with experimental florescence visualization (panel
b) by Paul S. Krueger and John O. Dabiri (as cited in Shadden [2005]), illustrating distin-
guished stability properties of LCS.

stability is not clear. First of all, it is surprising to note that trajectories hyperbolic at an

instant may change stability at another instant. Furthermore, defining stable and unstable

manifolds require precise asymptotic limit sets. However the data available about the flow

fields are only finite (be it experimental or numerical). Therefore notions such as the stable

manifolds/unstable manifolds are less clearly defined and less amenable to analysis. But

as we said earlier we want to implement a less restrictive, and a more general approach.

The central idea is the fact that any trajectory may lose or gain hyperbolicity over time

Haller and Poje [1998], and one wishes to compute these surfaces by evaluating surfaces

for this property. However evaluating such a criteria on every possible material surface in

the domain is impossible since there are infinitely many such possible surfaces.

On the other hand, a global approach that measures Lagrangian expansion rate would

be a better method to employ. LCS are traditionally evaluated via the Lagrangian measure

named finite time Lyapunov exponents (FTLE). We start by discretizing the fluid domain
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with a dense grid observe the Lagrangian expansion rate and extract FTLE to obtain re-

pelling LCS. In order to get attracting LCS, we would simply reverse time since expansion

in forward time would mean contractions in reverse time and vise-versa.

We are now ready to define FTLE.

Consider a set of fluid particles in a flow advected by the Lagrange equation as given

by eq. 2.1. Assuming a pair of arbitrary material points ( located at x0 and x0 + ξ0 at t = 0)

and modeling Lagrangian expansion rate for a pair of particles with initial separation of

ξ0,

|ξt| ≈ eΛ(t−t0) |ξ0|

(or)
|ξt|
|ξ0|

≈ eΛ(t−t0), (2.3)

Where Λ is defined to be the FTLE. Now, an alternate expression for ξt can be derived

by considering the flow map, F tt0 which maps points from x0 at t0 to their corresponding

positions at t, namely, x, as given below.

F tt0 : x0 7→ x (x0, t0, t) .

Therefore ξt can be written in terms of F tt0 as follows,

ξt = F tt0 (x0 + ξ0) − F tt0 (x0) . (2.4)

This motivates us to expand F tt0 (x0 + ξ0) in terms of ξ0, the initial separation between the

pair of material points, as below,

|ξt| =
∣∣∇F tt0 (x0) · ξ0

∣∣ + O
(
|ξ0|2

)
.

Using the Euclidean norm to represent the above quantity,

|ξt| =

√
eT · ∇F tt0 (x0)T · ∇F tt0 (x0) · e |ξ0| +O

(
|ξ0|2

)
, (2.5)
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With (•)T representing the transpose of (•) and e = ξ0/|ξo|, therefore in the limit as |ξ0| → 0,

lim
|ξ0| → 0

|ξt|
|ξ0|

=

√
eT · ∇F tt0 (x0)T · ∇F tt0 (x0) · e . (2.6)

Now consider the definition,

C(x0, t0, t) = ∇F tt0 (x0)T · ∇F tt0 (x0) , (2.7)

where C in eq. 2.7 is the right Cauchy – Green strain tensor. Let, λi(x0, t0, t) denote the ith

eigenvalue of C numbered in decreasing order, and ei be the associated eigenvector. Then

expanding in this direction gives,

lim
|ξ0| → 0

|ξt|
|ξ0|

=
√
λi(x0, t0, t).

Also it is noteworthy that
√
λi = σi is the singular value of deformation gradient,∇F tt0 (x0).

Now consider the definition of FTLE as averaged over the integration time and after ap-

plying natural logarithms as below,

Λi (x0, t0, t) =
1

|t− t0|
ln

(√
λi (x0, t0, t)

)
=

1

|t− t0|
ln
(
σi (x0, t0, t)

)
. (2.8)

From the above definition of Λ, the FTLE is clearly a function of space, time and integration

length. Note that geometrical features of Λ, λ, σ are roughly equivalent. However, Λ, the

FTLE as defined above is also maximal along trajectories of high shear. Remembering the

definition of hyperbolicity4, we want to eliminate these shear structures from our ridges

of FTLE. For instance consider the system define by eq. 2.5. An illustration of such a shear

type flow is given in fig. 2.5 (b).

ẋ = 2 + tanh(y), (2.9a)

ẏ = 0, (2.9b)

4We want to capture saddle type separations and isolate simple shear ones, which do not constitute LCS.
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�
�

(a) Saddle flow

�
�

(b) Shear flow

Figure 3: Stretching about a material line can be due to normal expansion (a) or tangential
expansion (b). Certain stretching diagnostics used for LCS detection (e.g. FTLE) can obscure this
distinction.

this condition is likely easier to verify in practice. In any sense, the example shown in Fig. 3(b) is
certainly not normally hyperbolic since there is never expansion of the line element in the direction
normal to the material surface (x-axis).

Inevitably in most practical applications, stretching along a hyperbolic material surface will
have tangential and normal components, placing its behavior somewhere between the ends of the
spectrum presented in Fig. 3, with the additional complication that the stretching characteristics
can change along the surface in both space and time. Refinements to our views of hyperbolicity
o↵er alternatives for us to refine how we ultimately define a maximally stretching surface as an
LCS. At this point, only a few works have distinguished di↵erent categories of maximal stretching
surfaces in practical applications. Preliminary results indicate that most structures are normally
hyperbolic [61], however other types of structures are possible [6]. More experience is needed at
this time to understand the implications of such distinctions in practical flows. This could perhaps
lead to deeper understandings on the nature of fluid, and help refine how we approach studying it.

We note that any notion of hyperbolicity must be associated to a specific time interval, exem-
plifying one of the main idiosyncrasies of finite-time analysis. Thus our view on the stability of a
surface in general depends on our horizon of knowledge. For example, perturbations to a surface
could be marked by mostly tangential stretching during one time interval, and switch to primarily
normal expansion using a slightly longer horizon. Or a surface could be marked by expansion using
one integration time, and then attraction using another. Likewise, a ridge in the FTLE field may
only appear as a ridge using a set range of integration times.

Lastly, we point out that attracting LCS will generally be distinguishable from advection of
material points since fluid is attracted to and along these surfaces. This point connects to arguably
the most intuitive method of understanding flow–the visualization of some visual marker that follows
the fluid, “tracers.” The utility of flow visualization is not to track individual particles, but to use
tracers to reveal coherent features that reveal how the flow is organized. We now know that such
coherent patterns commonly observed are manifestations of attracting LCS (cf. Fig. 4). However,
we point out that repelling LCS are essentially hidden from flow visualization, even though these
structures play a fundamental role in transport. Therefore, the computation of attracting and
repelling LCS both broadens (by revealing a new class of hidden coherent structures) and deepens
(by making the organizing surfaces precise) our understanding of coherent structures in fluid flow.

10

Figure 2.5: Saddle like flow (a) vs shear dominated flow (b) illustration adapted from Shad-
den [2005].

In fig. 2.5 FTLE, in addition to being maximized along saddle type separations, are also

maximal along the shear flow as found in fig. 2.5 (b). Consequently our current definition

of FTLE would produce an ridge along fig. 2.5 (b). There are a number of ways to deal

with this problem. A very brief discussion on some of them are below. We could apply

the definition of hyperbolically as below. Integrating a set of close enough set of particles

on the surface should exhibit saddle type behavior at least locally. Based on this Haller

[2011] derives a necessary and sufficient criteria to filter out the shear dominated ridges.

There are also other intuitive methods such as requiring the FTLE fields to be objective.

A quantity in this context is called objective if it remains invariant under translations and

rotations. Since Λ is a relative measure, they remain objective under suitable transforma-

tions.

Before we begin to compute these structures, let us look at an application to get an

idea about the results they can give us. The following fig. 2.6 represents the FTLE com-

putation on a experimentally generated vortex ring. Notice that the traditional Eulerian

measures such as vector fields don’t reveal much information on fluid entrainment and

vortex boundaries as shown. Of late this information is believed to be an essential part for

understanding transport and to devise effective control strategies.
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to the computation of the FTLE field, which had been used in 1991 by Pierrehum-
bert [25] and in 1993 by Pierrehumbert and Yang [26] to reveal �structure� in
atmospheric flows. Doerner et al. [27] published a paper that argued that local
maxima of the FTLE field coincide with stable manifolds of hyperbolic fixed points
(focussing on steady systems). Winkler [28] noted that such measures are closely
related to measures of relative dispersion (RD), especially in practice, which, for
example, vonHardenberg et al. [29] also utilized, alongwithFTLEfields, as ameans to
locate invariant manifold-type structures in geophysical flows. More precise quan-
tification of the FTLE approachwas described byHaller [30, 31], followed by Shadden
et al. [32] and Lekien et al. [33]. Haller and Yuan [13] also proposed the hyperbolicity
time (HT) measure that was more specific in its measure of hyperbolicity than
existing �finite-stretching�measures, andHaller�s papers [13, 30, 34, 35] developed a
more rigorous foundation to LCS compuation than previously available; indeed,
terminology and basic ideas we discuss here were significantly influenced by these
fundamental works. The similar, but distinct, finite-size Lyapunov exponent (FSLE),
developed by Aurell et al. [36], whichmeasures time to separate a set distance instead
of the FTLEsmeasure of distance separated in a set time,was also proposed [37–39] as
a suitable measure in practice.

3.3.1
FTLE

So far, the spatial distribution of the FTLE appears to be an effective way to detect LCS
computationally; in fact, it is often considered the �de facto�method. For illustration
purposes, the application of this approach to a more practical version of the vortical
flow considered above is shown in Figure 3.2. Briefly, planar velocity data was
measured surrounding a mechanically generated vortex ring using particle image
velocimetry (PIV). The velocity data was used to compute trajectory data, and sub-
sequently FTLE fields in both forward and backward time (FTLE computation is
described inmore detail in Section 3.4). Snapshots of the forward and backward FTLE
fields, and the instantaneous PIV velocity field, are plotted at one time instant in
Figure 3.2. Visually, the FTLE fields reveal distinct curves of high FTLE; these curves

Figure 3.2 Backward and forward time FTLE fields, panels (a) and (b) respectively, for empirical
vortex ring reveal attracting/repelling LCS that define vortex boundary and control transport
and mixing. For further details see [42, 43].

3.3 Global Approach j65

Figure 2.6: Empirical vortex ring reveal attracting/repelling LCS that define the vortex
boundary, transport and mixing. [Shadden, 2005, Shadden et al., 2007]

2.2 Basics of inertial particles in flows

Up to this point we have assumed the particles behave much like those of the underlying

fluid, i.e., advected particles always follow the flow to which they are subjected. However

we could repeat the same analysis on various derived quantities of ẋ, the velocity fields.

In particular it is interesting to see the conclusions if the particles we integrate are particles

of finite size and with densities different from that of the fluid. We can do this if we could

track inertial particles with good accuracy. In order to track such particles, we employ the

results from the seminal article, Maxey and Riley [1983], named Maxey-Riley equations.

Assuming r(t) to represent the position of a particle at time t and v(t) = ˙r(t) to represent

the corresponding velocity of the particle then, the dimensional form of the equations are

as given by eq 2.10.

mp v̇ = mf
d

dt
u (r (t) , t) − 1

2
mf

d

dt

(
v − u (r (t) , t) − 1

10
a2∇2u (r (t) , t)

)
− 6πaµX (t) + (mp −mf ) g − 6πa2µ

∫ t

0
dτ

dX(τ)
dτ√

πν (t− τ)
,

(2.10)
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with

X (t) = v (t) − u (r (t) , t) − 1

6
a2∇2u

Here mp is mass of the inertial particle, mf is mass of the fluid displaced by the particle,

u (r (t) , t) represents the velocity of fluid particle at the location r(t) and time t, µ repre-

sents the viscosity of the underlying fluid, a represents the radius of the particle and g

represents the acceleration due to gravity. Here, the derivative du/dt = ∂u/∂t + (u.∇)u is

the total derivative defined in the usual notations.

The first term in eq. 2.10 amounts for the force exerted by undisturbed fluid on the particle,

while the second the term accounts for the added mass effects due the underlying fluid.

Third and fourth terms constitute Stokes drag and buoyancy effects respectively. The inte-

gral term is called as the Basset history term accounting for the effect of particle modifying

the flow gradients locally. The a2∇2u term is named as the Faxen correction, performed to

justify nonuniform flow effects encountered by the inertial particle.

Equation 2.10 is valid for small spherical, rigid particles with low particle Reynolds num-

bers, i.e., Reynolds number computed using the particle radius, a as the length scale.

Assuming sufficiently small particle radius, a, Faxen correction terms can be neglected.

The Basset history term can also be neglected assuming that particle’s time interval to re-

visit a region it has visited earlier is large in comparison to the time scale of the problem.

Non-dimensionalizing eq. 2.10 using the time scale and the length scale of the flow yields

eq. 2.11.

r̈ (t) =
1

St
(u (r (t) , t)− ṙ (t)) − W · n +

3

2
R

d

dt
u (r (t) , t) , (2.11)

Where

St−1 =
6πaµL(

mp + 1
2mF

)
U
, R =

mf

mp + 1
2mf

, W =
mp − mf

6π aµU St
g,

n is unit vector pointing in the direction of gravity. Furthermore gravity is not considered

throughout this work for the sake of simplicity. As a result, eq 2.11 reduces to eq. 2.12 with
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two non-dimensional quantities characterizing the physical properties of the particle.

r̈ (t) =
1

St
(u (r (t) , t) − ṙ (t)) +

3

2
R

d

dt
u (r (t) , t) , (2.12)

Where St is the Stokes number defined as the ratio of the characteristic time of a particle (or

droplet) to a characteristic time of the flow. St→ 0 implies particles behaving closer to that

of the flow. On the other hand higher St particles tend to deviate from fluid trajectories. R

is the density ratio parameter. Notice that with R = 2
3 the particles have the same density

as that of the carrier-fluid. IfR > 2
3 then the particles are lighter than the carrier-fluid. Sim-

ilarly particles with R < 2
3 are denser than the carrier-fluid and are appropriately called as

the aerosols.

It is noteworthy that particles with same density as that of the carrier-fluid (R = 2
3 )

and initiated with ṙ(0) = u(r(0), 0), track the fluid particles, ie., ṙ(r(t), t) = u(r(t), t) and

r(t) =
∫ t

0 u(τ)dτ + r(0).

2.3 Computational methodology

In order to compute inertial FTLE (iFTLE) we integrate a set of particles starting out on a

uniform grid using eq 2.10 from an initial time, t0 (say) to a final time, tf . For instance con-

sider an array of particles initiated at rij(to). Since the particles are inertial, we integrate

the system of differential equations as below.

r̈ (t) =
1

St
(u (r (t) , t) − ṙ (t)) +

3

2
R

d

dt
u (r (t) , t) , (2.12 revisited)

r(t) =

∫ tf

to

ṙ(τ)dτ + r(t0). (2.13)

Sufficient accuracy and smoothness are essential to solve the above system numerically

since we ultimately want to measure exponential growth in trajectories. Therefore care

has been taken to employ sufficiently small time stepping with a 4th order Runge-Kutta

integrator to integrate the system 3.3. Once the position of particles are known, the defor-
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mation gradient,∇F tt0(x0), can be computed. FTLE can be then calculated at each location

by evaluating the largest singular value of the corresponding deformation gradient ma-

trix. Since FTLE from the above strategy are computed from ∇F tt0(x0) and plotted at x0,

new release and tracking of an uniform grid of particles are required for each time instance

considered.
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Chapter 3

RESULTS AND DISCUSSIONS

Numerical integration of uniformly spaced particles according to the MR equations

[Maxey and Riley, 1983, Tél et al., 2005] and computation of Finite time Lyapunov ex-

ponents (FTLE) on their trajectories following the approach detailed in section 2.3 are now

carried out for particles varying in St andR. In particular, particles ranging from fluid par-

ticles (St = 0.01) to those with relatively large inertia (St = 2), were considered by varying

St. Furthermore, the mass of the particles was altered by changing the non-dimensional

numberR, withR < 2
3 denoting aerosol-like particles with densities higher than that of the

carrier-fluid and R > 2
3 denoting bubble-like particles with densities lower than that of the

carrier-fluid. Additionally, the effect of base flow frequency, ω on these particle trajectories

are also considered.

3.1 Dynamics of inertial particles

3.1.1 Effect of Stokes number

It is well-known that inertial particles possess more degrees of freedom, than fluid particles

i.e., assuming planar incompressible flow, the inertial particles system is four dimensional,

(x, y, vx, vy)
1 whereas that of the non-inertial particles consists of only two dimensions,

(x, y). This is due to the fact that inertial particles are non-constrained by incompressibil-

ity, hence vx, vy can be different from the local fluid velocities.

In light of this argument it appears as if inertial particles will continue to possess ex-

tra degrees of freedom. However, the inertial dynamics are monotonically dissipative as

opposed to non-inertial flows where the phase space (x, y) is preserved. Consequently in

1Here (x, y, vx, vy) = (−→r ,
−→̇
r ).
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due course, the dimensionality of an inertial dynamical system is guaranteed to fall short

of that of a non-inertial one. Given the fact that the dimensionality of inertial systems de-

creases monotonically over time, it is natural to expect fractional dimensionality in these

systems. It follows that these structures show up as fractal structures on the projected

two dimensional (x, y) phase space. In fact it is not uncommon to encounter strange and

chaotic attractor dynamics. Readers are refereed to Tél et al. [2005] for an excellent review

on related phenomena.

In order to first visualize the dissipative nature of phase space, we will make use of

the flow defined by the double gyre stream-function given below.

ψ (x, y, t) = A sin (π f (x, t)) sin (πy) , (3.1)

where

f (x, t) = a (t) x2 + b (t) x, (3.2a)

a (t) = ε sin (ωt) , (3.2b)

b (t) = 1− 2ε sin (ωt) . (3.2c)

We consider the double-gyre system defined above over the suitable rectangular domain,

[0, 2] x [0, 1]. As seen from the equations, the stream function is a combination of sinu-

soidal composite functions. Specifically the quadratic function f(x, t) leads to periodic

oscillations across the domain. Consequently the double gyre system consists of a pair of

vortices oscillating back and forth within the cell, [0, 2] x [0, 1]. In fact setting ω = 0 re-

sults in a steady flow field with a pair of vortices centered at (0.5, 0.5) and (1.5, 0.5). Also,

it is noteworthy that any two dimensional planar system defined by a stream function is

a Hamiltonian system with its Hamiltonian being the scalar stream function, ψ. There-

fore the conjugate and momentum coordinate pair relation with the Hamiltonian holds. In

other words, the phase space (x, y) is conserved in accordance with incompressibility of

flows:
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ẋ =
∂ψ

∂y
, (3.3a)

ẏ = −∂ψ
∂x

. (3.3b)

In the following analysis, we increase the Stokes number of the particles and advect

them on the double gyre flow. Stokes number, St =
(mp+ 1

2
mF )U

6πaµL , represents the non-

dimensional particle response time relative to the hydrodynamic time scale of the flow.

For instance, one would expect that for low St, ideally St → 0 inertial particles to behave

similar to the fluid particles. As St is increased, we would expect inertial particles to re-

spond poorly to flow changes. A consequence of the aforesaid statement is illustrated in

Fig. 3.1. We see aerosol (R = 0) particles with St = 0.1 to be more phase space filling

and therefore relatively more closely following non-inertial particles than their counter-

part with higher Stokes number. Similar patterns are also observed with increase in St

for bubble-like particles (R = 1). Moreover as mentioned earlier inertial particles, being

not constrained by incompressibility, start with more degrees of freedom and dimension-

ality. However because of dissipative nature of the Stokes drag term, the phase space of

inertial particles decrease monotonically in time. As a result we see that with increase in

St, the projection of the phase space onto phase space, (x, y) contracts faster, resulting in

increasingly thin structures each with dimensionality less than two.

3.1.2 Effect of inertia of particles

Fig. 3.2 compares particle trajectories for various St andR. In general particles with St� 1

would respond faster to the underlying flow, thereby exhibiting near incompressibility. For

instance Fig. 3.2 (a) & (c) show no noticeable change in comparison to Fig. 3.2 (b) (neutrally

buoyant) while Fig. 3.2 (g) & (i) significantly differ from their counterpart Fig. 3.2 (h). As

St is increased, the particle response time to flow time is increased. Therefore we would

expect the particles to respond more poorly to the flow. In addition as St is increased par-
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(St = 0.1) (St = 0.2) (St = 0.5)(a)

R = 0

(b) (c)

(d)

R = 1

(e) (f)

Figure 3.1: Patterns formed by particles of various St advected from a set of uniformly
distributed particles at t = 15, ω = 6π

10 .

Heavy particles Neutrally buoyant particles Light particles
(R = 0) (R = 2/3) (R = 1)(a)

St = 0.01

(b) (c)

(d)

St = 0.1

(e) (f)

(g)

St = 0.2

(h) (i)

Figure 3.2: Inertial particles integrated on ω = 2π
10 Doublegyre flow until t = 15.

ticles tend to dissipate (x, y) phase space at a faster rate. This effect is clearly seen in fig. 3.2

(d), (f), (g) & (i). However as pointed earlier, it can be shown that neutrally buoyant par-

ticles (R = 2
3 ) initiated with local flow velocity, follow the corresponding fluid particles,
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i.e., v(t) = u(t). As a consequence there is no significant change after increasing St for

neutrally buoyant particles.

Moreover increasing the inertial term R in equation 2.12 results in particles preferen-

tially concentrating on certain regions of the flow. Specifically R = 0, aerosol particles

are centrifuged out of the vortex cores and are found preferentially concentrating in the

low vorticity, high rate of strain regions, while R = 1, bubbles are concentrated closer to

the vorticity cores of the flow. This is primarily because of the variations in the added

mass, centrifugal and pressure gradient forces acting on different particles. Specifically

an aerosol particle experiences more centrifugal force acting radially outwards from the

center of vortices, compared to the pressure gradient force acting radially inwards. There-

fore these particles are pushed away from the vorticity cores. On the other hand, a bubble

particle with density lesser than the fluid, experiences a stronger pressure gradient force

acting radially inwards towards the low pressure, high vorticity regions. Figure 3.2 illus-

trates this phenomenon of preferential concentration of inertial particles. For instance in

Figure 3.2 (d), aerosol particles are concentrated away from the center of vortices while in

Figure 3.2 (f) bubble particles are attracted onto the instantaneous centers of vorticity. This

effect is more pronounced between Figure 3.2 (g) and (i).

3.1.3 Effect of flow frequency

The double gyre base flow in Eqn. 3.1 has a characteristic frequency ω associated with it.

Increasing ω in Eqn. 3.1 results in a corresponding increase in the frequency of oscillation

the gyre undergoes. As pointed out earlier, ω = 0 corresponds to steady flow with a pair

of steady vortices in [0, 2] x [0, 1].

Consequently we see structures along these vortices in fig. 3.3 (a) & (b). The effect of

inertia, as explained in the previous section, can also be observed in fig. 3.3; i.e., for R = 0,

aerosol particles are attracted onto and hence conglomerating away from the center of vor-

tices in fig. 3.3 (a), while at R = 1, the bubble-like particles are drawn into the cores of
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vortices as shown in fig. 3.3 (b). In addition to inertial effects, low-pass filter relation of

St to position of particles as reported in Bec et al. [2006] is demonstrated in fig. 3.3. For

instance, conglomeration of particles along the steady pair of vortices with ω = 0 seen in

fig. 3.3 (a) gets distorted into fig. 3.3 (c) when ω is increased to 6π
10 . However when ω is

further increased by an order of magnitude to 10 as shown in fig. 3.3 (e), inertial particles

respond slowly to the relatively high frequency of the flow and as a result reacquire the

original structure similar to fig. 3.3 (a). Bec et al. [2006] shows a similar phenomenon in

homogenous, isotropic, fully developed turbulent flow. However their work only consid-

ered aerosol like particles, R = 0. Our results numerically extend these observations to

bubble like particles with R = 1.

3.2 Finite time Lyapunov exponents

Flow visualization is perhaps the most intuitive and widely employed method to under-

stand fluid mechanics. One of the objectives of flow visualization is to reveal coherent

features of the flow by initiating passive neutrally buoyant tracer particles at suitable lo-

cations. It is now known that attractive LCS are highlighted in flow visualization studies

because of their very definition (see Figure 2.6 and subsequent discussions). Therefore

these structures are easier to interpret than repelling LCS and aid us in understanding

the flow. However their counterpart, namely, repelling LCS, which can be computed using

FTLE, are not visible in flow visualization. The fact that our data driven method to evaluate

FTLE can identify such complimentary coherent features of a flow is one of the significant

contributions of LCS. In this section we numerically demonstrate the relationship between

nFTLE and the preferential concentration of inertial particles, thereby supplementing the

existing literature on preferential concentration of inertial particles. Specific distinctions

between aerosol-like particles, R = 0 and bubble-like particles, R = 1 are emphasized.

Inertial FTLEs (iFTLEs) were evaluated on the trajectories of particles as described in

Section 2.3. In this section iFTLEs are used as a supplement to interpret particle trajectories.
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R = 0 R = 1
(a)

ω = 0

(b)

(c)

ω = 6π
10

(d)

(e)

ω = 10

(f)

Figure 3.3: Inertial trajectories of particles with St = 0.2 illustrating the (lowpass filter
type) effect of St on the frequency of the flow.

Specifically preferential concentration of inertial particles are understood using iFTLE.

Figure 3.4 (b) (e) & (h) (red contours) numerically visualize the attracting manifolds of

fluid particles, i.e., they were obtained by integrating eq. 2.1 and are therefore non-inertial,

fluid tracers. Furthermore in order to visualize attractive structures, we reverse the di-

rection of integration. In other words nFTLE were evaluated on non-inertial flow maps

integrated backwards in time, Φ0
7.5,Φ

0
15,Φ

0
22.5 as shown. Ridges of nFTLE represent expo-

nential stretching of fluid particles when integrated backwards in time. Therefore when
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Heavy particles Fluid nFTLE Light particles
(R = 0) Lagrangian (R = 1)(a)

t = 7.5

(b) (c)

(d)

t = 15

(e) (f)

(g)

t = 22.5

(h) (i)

Figure 3.4: Aerosols (R = 0) and bubbles (R = 1) advected according to the Maxey-Riley
equations from an initial uniform distribution (black dots). Attracting manifolds of the
underlying fluid particles are visualized by computing Finite time Lyapunov exponents
on flow maps Φ0

7.5,Φ
0
15,Φ

0
22.5 (backward integrated) for (b), (e), (h) correspondingly (red

contours). Other parameters are ω = 6π
10 , St = 0.2, ε = 0.25, A = 0.1.

fluid particles are advected forward in time, these ridges act as attractive material lines. Its

also noteworthy that fig. 3.4 (h) shows relatively more ridges. This indicates higher mixing

between particles initiated at the proximity of the ridges since fluid particles do not leave

the cell [0, 2] x [0, 1].

Figure 3.4 (a), (d), (g) shows aerosol (R = 0) particle trajectories at various times. Sim-

ilarly fig. 3.4 (c), (f), (i) represent bubble (R = 1) trajectories advected forward in time. It

is well-known that inertial particles preferentially concentrate depending on their inertia

(see Section 3.1.2), i.e., preferential concentration effects provide a rough estimate of parti-

cle trajectories based on the local vorticity and the inertia of the particles. However, nFTLE

of the underlying fluid system pinpoints these zones more accurately. Thus, they act as

a skeleton for aerosol (R = 0) attractive manifolds as shown by a striking resemblance
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between fig. 3.4 (a), (d), (g) and fig. 3.4 (b), (e), (h) respectively. Therefore, material lines

identified by FTLE qualify particle trajectories indicated by classical preferential concen-

tration theories, thereby supplementing existing literature. While aerosol (R = 0) particles

attract onto the attractive manifolds of the fluids, bubble (R = 1) particles are repelled

from the same. This can partly be explained by preferential concentration effects. How-

ever material lines of nFTLE accurately pinpoint and reveal these structures. These results

are suggestive of employing aerosol-like particles with R slightly less than 2
3 to visualize

attractive manifolds, the visible coherent features of the flow. Although neutrally buoyant

particles are preferred in flow visualization studies for the purpose of not altering the flow,

our results indicate that slightly denser particles with R slightly greater than 2
3 get orga-

nized faster in accordance with the underlying attractive LCS and can therefore be of use

in highlighting the coherent structures of the flow.

(St = 0.01) (St = 0.1) (St = 0.2)(a)

Particles

(b) (c)

(d)

iFTLE

(e) (f)

Figure 3.5: Inertial particle trajectories and corresponding iFTLE for various St, other
parameters are t = 15, ω = 6π

10 .

Figures 3.5 (a), (b) & (c) show aerosol (R = 0) particle positions at t = 15 for St vary-

ing from 0.01 where particles are behaving closer to fluids to 0.2 where significant dis-

sipation of phase space (x, y) is characteristic. Their corresponding iFTLE are shown in

fig. 3.5 (d), (e) & (f). Since these are computed using the respective forward integrated flow

maps, Φ15
0 , the ridges in contour represent material lines of exponential stretching when
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integrated forward in time. In other words, a pair of particles straddled along a ridge of

iFTLE are exponentially apart at t = 15. It is noteworthy that particle positions vary widely

with increase in St between fig. 3.5 (a), & (c). Despite the above fact iFTLE, a measure de-

rived from particle positions exhibits no significant change between fig. 3.5 (d), (e) & (f).

As a consequence, a pair of particles straddled along a ridge in fig. 3.5 (f) are most likely

to be found in different attractors of fig. 3.5 (c) at t = 15, while a similar pair of particles

initially straddled along a ridge from fig. 3.5 (d) are less constrained in their phase space as

seen in fig. 3.5 (a). This also indicates that increasing St has a significant effect on particle

trajectories in our specific flow while having very little on the organizing structure of the

flow, the LCS. Based on these observations it is also possible to devise a strategy to segre-

gate inertial particle by Stokes number. For instance higher St particles can be extracted

out of the flow at near vicinity of the attractors. Also the fact that nFTLE of fluid particles

act as an skeleton to inertial attractors, will aid in segregating the particles.

iFTLE of inertial particles with various St and R are shown in fig. 3.6. Contours of

heavy particles, R = 0 are shown in the first column while the second and the third

columns represent iFTLE of neutrally buoyant and light particles, respectively. Increas-

ing St for heavy particles (R = 0) leads to more ridges as shown. On the other hand

increasing St for bubbles (R = 1) lead to relatively fewer ridges of iFTLE, i.e., comparing

fig. 3.6 (m) & (o) it is clear that increasing St leads to relatively more and less ridges, re-

spectively, in the cell [0, 2] x [0, 1]. Since iFTLE are measures of exponential stretching of

material lines they can be construed as an indicator of mixing between particles. In light of

the above, it is clear that increasing St leads to relatively better mixing for aerosols (R = 0)

while the contrary is true for bubbles. This result emphasizes the fact that optimum mixing

occurs at different St for bubbles and aerosols.
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Heavy particles Neutrally buoyant particles Light particles
(R = 0) (R = 2/3) (R = 1)(a)

St = 0.01

(b) (c)

(d)

St = 0.1

(e) (f)

(g)

St = 0.2

(h) (i)

(j)

St = 0.5

(k) (l)

(m)

St = 1

(n) (o)

(p)

St = 2

(q) (r)

Figure 3.6: pFTLE for inertial particles with St ranging from 0.01 to 2 and R from 0 to 1
with ω = 2π

10 .

3.3 Dispersion and mixing of inertial particles

Figure 3.7 compares contour plots of single point dispersion, D1, two point dispersion,

D2 and inertial finite-time Lyapunov exponents evaluated for particles with R = 1 and
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St = 0.5. For instance, Figure 3.7 (a) plots the well know single point dispersion, D1 for

each particle as defined below in a contour plot.

D1(t) =
1

N

∑
all particles

||−→r1(0)−−→r1(t)||, (3.4a)

D2(t) =
1

4(N − 1)

∑
i over 4 neighboring particles

||−→r 1(t)−−→r i(t)||, (3.4b)

here −→r1(t) = (x1, y1) represents the position of particle under consideration at time t and

N denotes the total number of particles.

In accordance with the equations above, dispersion is defined as the standard devia-

tion of the distribution of particle pair distances. In eq. 3.4b each neighboring particles

refers to the four immediate neighboring particles from the initial uniform arrangement

of particles. From the above definitions D1, single point dispersion, is a measure of how

far the particles have traversed from their original position whileD2, two-point dispersion

measures relative separation between neighboring particles. In contrast to our definition,

Waugh et al. [2012] analyzed a measure analogous to D2, but their work computes particle

separations between all possible pairs of particles. They showed the analytical relationship

between FTLE, D2 and a closely related quantity finite size Lyapunov exponents (FSLEs).

We numerically extend these results for inertial particles by demonstrating similarities be-

tween two-point dispersion, D2 and iFTLEs. The above result is of great interest since it

hints at a possible theoretical connection between dispersion, a well studied measure in

fluid dynamics, and finite time Lyapunov exponents. Another consequence of our finding

is that material surfaces identified by iFTLEs are the ones that are maximally dispersed

through the flow.
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(a)

Single point dispersion, D1

(b)

Two point dispersion, D2

(c)

Inertial finite-time Lyapunov exponents

Figure 3.7: Single point dispersion, D1, two point dispersion, D2 and inertial finite time
Lyapunov exponents of particle trajectories at t = 15 for ω = 6π

10 , R = 1 and St = 0.5.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Concluding remarks

In this work, an attempt to interpret the characteristics of inertial particles through com-

puting Finite time Lyapunov exponents, has been made. Distinctions based on parameters

St, R of the particles and ω, the corresponding frequency of the flow have been discussed

with the help of iFTLE (inertial Finite time Lyapunov exponents), single point and two-

point dispersion statistics.

Dynamics of inertial particles were found to be monotonically dissipative as opposed

to non-inertial flows where the phase space (x, y) is preserved. We assumed a periodic

stream-function, known as the double gyre to numerically illustrate this phenomenon.

Stokes number, St, the non-dimensional particle response time to flow was increased to

demonstrate higher rates of dissipation resulting in increasingly thinner structures. These

effects were existent irrespective of the density of particles. A comparison of these effects

on both aerosols and bubbles was drawn by altering R, the non-dimensional density pa-

rameter.

It is numerically shown that with R = 2
3 , the neutrally buoyant particles initiated with

local flow velocity v(0) = u(0), follow the corresponding fluid particles, i.e., v(t) = u(t).

On the other hand the value of the non dimensional density parameter, R had a signif-

icant effect on both aerosol and bubble particle trajectories. In fact inertial particles are

seen preferentially concentrating on specific regions of the flow depending on R. This is

because aerosols experience more centrifugal force pushing them out of vorticity centers

while bubbles are under the influence of stronger pressure gradient forces driving them

radially inwards towards low vorticity, high rate of strain regions. These effects are shown
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to be more pronounced with increase in St, since increasing St leads to higher dissipation

rate of phase space, (x, y).

Furthermore, increasing ω, the flow frequency emphasizes the filtering effect of St on

particle response. Remarkable similarities between the trajectories of particles on a steady

(ω = 0) and high frequency (ω = 10) flows have been observed in accord with the attenuat-

ing effect of St on flow frequency. Although such effects have been observed by Bec et al.

[2006], our results extend these observations to bubbles whose densities are less than the

base fluid.

Inertial Finite time Lyapunov exponents (iFTLE) were evaluated on particle trajectories

and were used to provide supplementary information in interpreting the dynamics. The

main result is that inertial particles were observed to be attracted/repelled from the attrac-

tive manifolds (nFTLE) of the fluids. This result supplements other well-known results of

preferential concentration. Our results indicate that nFTLE of the underlying fluid system

acts as an skeleton in organizing the inertial particles. Consequently nFTLE are more ac-

curate in pinpointing zones of preferential concentration of inertial particles. Based on our

results we propose applying inertial particles in identifying coherent features of the flow.

Increasing St of particles leads to relatively higher rate of phase space dissipation.

However iFTLE contours of the corresponding system retain most significant ridges as St

is increased. In addition magnitude of the ridges are comparable to each other. Therefore a

scenario with very similar iFTLE contours with dissimilar particle trajectories is reported.

Taking into account the attractors formed by higher St particles, the above fact implies

that higher St particles straddled along a ridge of iFTLE are most likely to be entrained

into different attractors while relatively lower St particles are observed to fill most of the

phase space. This result is suggested to have implications on techniques to segregate iner-

tial particle by Stokes number.

Inertial finite-time Lyapunov exponents being measures of exponential stretching can
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be construed as an indicator of mixing of inertial particles. Considering this fact increasing

St for bubbles results in qualitatively fewer ridges indicating poor mixing between them.

On the other hand increasing St has a contradictory effect on aerosols with noticeably more

ridges, indicating better mixing. The above findings suggest that optimum mixing occurs

at different St for bubbles and aerosols.

Furthermore, qualitative similarities are shown between the well studied two-point

dispersion and iFTLE. Two point dispersion evaluated on the inertial particles shows close

similarities with dominant ridges of iFTLE. We numerically extend the results of Waugh

et al. [2012] for inertial particles.

4.2 Future work

The current work relied on a simple two dimensional planar stream-function generated

flow in illustrating the use of iFTLE. Consequently a natural extension would be to exam-

ine these effects on 3D flows. This is especially beneficial since most flows in nature and

industrial process are 3D. In section 3.2 our results indicated that increasing St retains the

dominant ridges of iFTLE. In light of this finding, devising a control strategy to segregate

particles based on St can be a future possibility. Furthermore, based on the fact that inertial

particles are attracted onto the nFTLE of the fluid system, it is suggested that inertial flow

visualization can be employed to visualize these structures in experiments.

Results from section 3.3 suggest that particles straddled along a ridge of iFTLE get dis-

persed throughout the flow because of the fact that dominant ridges of iFTLE coincide

with those from D2, a two-point dispersion measure. Therefore these locations become

a natural choice for initiating particles in flow visualization studies. Conducting experi-

mental studies along these lines is another future possibility. In addition our finding that

material surfaces identified by iFTLE ridges being the most dispersed surfaces of flow has

significant applications in designing chemically reactive process, especially non premixed
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combustion processes. For instance designing the interface between oxidant and fuel to

align with a ridge of iFTLE is expected to increase the rate of reaction. This is ascribed to

our finding that iFTLE ridges are maximally dispersed1, as a result the interfacial length

is expected to be optimized thereby mixing oxidant and fuel molecules well. However as

pointed out earlier, these results were obtained assuming a planar two dimensional flow.

In this regard, a carefully study modeling the effect of 3D turbulence and accurate reaction

kinetics is essential in establishing the aforesaid hypothesis.

1IFTLE ridges were found to coincide well with those from D2, a two-point dispersion measure.



35

BIBLIOGRAPHY

H. Aref. Stirring by chaotic advection. Journal of Fluid Mechanics, 143:1–21, 1984.

A. Babiano, J. H. E. Cartwright, O. Piro, and A. Provenzale. Dynamics of a small neutrally

buoyant sphere in a fluid and targeting in Hamiltonian systems. Physical Review Letters,

84(25):5764–5767, 2000.

Jeremy Bec, Luca Biferale, Guido Boffetta, Antonio Celani, Massimo Cencini, Alessandra

Lanotte, S Musacchio, and Federico Toschi. Acceleration statistics of heavy particles in

turbulence. Journal of Fluid Mechanics, 550:349–358, 2006.

FJ Beron-Vera, MJ Olascoaga, and GJ Goni. Oceanic mesoscale eddies as revealed by la-

grangian coherent structures. Geophysical Research Letters, 35(12), 2008.

Luca Biferale, G Boffetta, A Celani, BJ Devenish, A Lanotte, and Federico Toschi. La-

grangian statistics of particle pairs in homogeneous isotropic turbulence. Physics of Flu-

ids, 17(11):115101, 2005.

G Boffetta and IM Sokolov. Statistics of two-particle dispersion in two-dimensional turbu-

lence. Physics of Fluids, 14(9):3224–3232, 2002.

L Chen, S Goto, and JC Vassilicos. Turbulent clustering of stagnation points and inertial

particles. Journal of Fluid Mechanics, 553:143–154, 2006.

Clayton T Crowe. Multiphase flow handbook. CRC Press, 2005.

John K Eaton and JR Fessler. Preferential concentration of particles by turbulence. Interna-

tional Journal of Multiphase Flow, 20:169–209, 1994.

John R Fessler, Jonathan D Kulick, and John K Eaton. Preferential concentration of heavy

particles in a turbulent channel flow. Physics of Fluids, 6(11):3742–3749, 1994.



36

JCH Fung and JC Vassilicos. Two-particle dispersion in turbulentlike flows. Physical Review

E, 57(2):1677–1690, 1998.

MA Green, CW Rowley, and George Haller. Detection of lagrangian coherent structures in

three-dimensional turbulence. Journal of Fluid Mechanics, 572:111–120, 2007.

G. Haller. Lagrangian coherent structures from approximate velocity data. Physics of Fluids,

14(6):1851–1861, June 2002.

G Haller and AC Poje. Finite time transport in aperiodic flows. Physica D: Nonlinear Phe-

nomena, 119(3):352–380, 1998.

G. Haller and T. Sapsis. Where do inertial particles go in fluid flows. Physica D, 237:573–

583, 2008.

G Haller and G Yuan. Lagrangian coherent structures and mixing in two-dimensional

turbulence. Physica D: Nonlinear Phenomena, 147(3):352–370, 2000.

George Haller. A variational theory of hyperbolic lagrangian coherent structures. Physica

D: Nonlinear Phenomena, 240(7):574–598, 2011.

JH LaCasce. Statistics from lagrangian observations. Progress in Oceanography, 77(1):1–29,

2008.

Nadeem A Malik and JC Vassilicos. A lagrangian model for turbulent dispersion with

turbulent-like flow structure: Comparison with direct numerical simulation for two-

particle statistics. Physics of Fluids, 11(6):1572–1580, 1999.

M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform

flow. Physics of Fluids, 26:883–889, 1983.

MR Maxey. The gravitational settling of aerosol particles in homogeneous turbulence and

random flow fields. Journal of Fluid Mechanics, 174:441–465, 1987a.

MR Maxey. The motion of small spherical particles in a cellular flow field. Physics of Fluids

(1958-1988), 30(7):1915–1928, 1987b.



37

MR Maxey and S Corrsin. Gravitational settling of aerosol particles in randomly oriented

cellular flow fields. Journal of the atmospheric sciences, 43(11):1112–1134, 1986.
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