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Abstract

VIBRATION OF A SPINNING, CYCLIC SYMMETRIC ROTOR ASSEMBLED TO A
FLEXIBLE STATIONARY HOUSING VIA MULTIPLE BEARINGS

Wei Che Tai

Chair of the Supervisory Committee:

Professor I. Y. (Steve) Shen

Mechanical Engineering

A spinning cyclic symmetric rotor mounted on a stationary housing via multiple bearings

is a very common platform used in modern rotary machinery. Representative examples

include propellers, wind turbines, bladed turbine disks, and compressors. Nowadays, there

are two main industrial trends in designing machines with the cyclic symmetric rotors. The

first is to use larger rotors and lighter housing in order to increase efficiency and reduce

costs. The second is to employ ground-based measurements.

Motivated by the industrial trends, this research is to develop a reduced-order formula-

tion that accommodates arbitrary geometry of the spinning rotor and the stationary hous-

ing. Such a formulation is universal and will be valid for various cyclic symmetric rotors,

ranging from wind turbines to bladed turbine disks. Mathematically, the governing equa-

tion of motion with reduced order takes the form of a set of ordinary differential equations

with periodic coefficients associated with the spin speed. Characteristics drawn from this

formulation can then be applied to any cyclic symmetric rotor mounted on a flexible hous-

ing. Furthermore, unstable response (e.g., parametric resonances) and stable response (e.g.,

rotor-based and ground-based response) of the rotor-bearing-housing system will be studied

analytically, numerically, and experimentally, as follows.

In the analytical study, the system is first shown to have instabilities in terms of combi-

nation resonance of the sum type as a result of the periodic coefficients. All the resonance





peaks and corresponding bandwidth within a proper range of spin speeds, where the system

remains positive definite, are analytically predicted by the method of multiple scales. As a

result of combination resonance of the sum type, the instability occurs at extremely high

spin speeds

Next, the stable response of the stationary and spinning system is studied analyti-

cally. The stationary system has two types of modes: rotor-dominant modes and housing-

dominant modes. For the spinning system, two types of stable response are studied: the

rotor-based response and the ground-based response. Both responses of rotor-dominant

modes are similar to the case with rigid housing. The rotor-based response of housing-

dominant modes, however, possesses a specific frequency splitting due to dominant vibra-

tion of the housing. For a housing-dominant mode with natural frequency ω(H) obtained

from the stationary system, when the system is spinning at spin speed ω3, the rotor-based

response splits into a forward and backward frequency branch equal to ω(H) ± ω3. Such

frequency splitting is defined as gyroscopic splitting. The gyroscopic splitting is analyt-

ically predicted via a perturbation analysis. Subsequently, the ground-based response is

theoretically predicted. The theoretical prediction is briefly summarized as follows. The

rotor-based response of a housing-dominant mode has frequency components ω(H)±ω3 due

to gyroscopic splitting. Furthermore, if a rotor-based, cylindrical coordinate (r, θ, z) is em-

ployed to describe the vibration mode shape of a cyclic symmetric rotor, the mode shape

is circumferentially modulated by the exponential function ejkθ, where k is the harmonic

number which follows the identity k = n +M(N). In this identity, n is the phase index

governed by the cyclic symmetry of the rotor while M(N) is multiples of numbers of iden-

tical substructures N . When the response is viewed from a ground-based observer, the

circumferential harmonics kθ gives rise to additional frequency splitting −kω3. Together

with the gyroscopic splitting, the ground-based response splits into multiple forward and

backward frequency branches following the rule ω(H) − (k ± 1)ω3.

To confirm the results from the analytical study, a benchmark numerical model consisting

of a cyclic symmetric rotor, a stationary housing, and two bearings is developed. The rotor





is a circular disk with four evenly spaced radial slots and a rigid hub. The stationary

housing is a square plate with a central shaft subjected to fixed boundary conditions on the

displacements at four corners. Based on this model, a numerical integration of the equation

of motion ad use of the Floquet theory confirms the parametric resonance frequency and the

instability bandwidth obtained from the method of multiple scales. Through the benchmark

model, the gyroscopic splitting is also numerical confirmed for the rotor-based response.

Moreover, ground-based response at various speed in the form of waterfall plots confirms

that a housing-dominant mode splits following the rule (k ± ω3).

In order to verify the theoretical prediction of the ground-based response, a series of

experiments on a stationary and spinning test rig is carried out. First of all, frequency

response functions (FRFs) of the stationary rig are measured. Two FRFs are obtained

using two excitation mechanisms. The first is to use an automatic hammer while the second

is to use a piezoelectric (PZT) actuator. Two housing-dominant modes are identified by

comparing the FRFs. Their mode shapes are characterized by one-nodal diameter and

one-nodal line on the rotor and housing, respectively. Next, ground-based response of the

spinning rig is measured to obtain waterfall plots. For the waterfall plot obtained form the

hammer excitation, both housing-dominant modes reveal forward frequency branches which

agree very well with the theoretical prediction. Only one housing-dominant mode presents

a backward frequency branch. Nonetheless, the backward branch also agrees well with the

theoretical prediction.

Lastly, a closed-form solution of rotor-bearing-housing systems with a special class of

cyclic symmetry is derived. Specifically, the equation of motion can be transformed into a

set of ordinary differential equations with constant coefficients, when the hub is rigid and

the flexible portion of the rotor has only out-of-plane vibration motion. The transformed

equation of motion appears as a time invariant gyroscopic system, whose closed-form solu-

tion is hence readily available. Both the original and transformed equation of motion are

shown to have identical instabilities and rotor-based response through numerical simulations

via the benchmark model.
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Chapter 1

INTRODUCTION

The ultimate objective of this research is to provide a universal and rigorous modeling

methodology for cyclic symmetric rotors assembled to housings with arbitrary geometry

via multiple bearings. Hereinafter, such systems are referred to as rotor-bearing-housing

systems. This methodology shall be tenable and legitimate to all cyclic symmetric rotor-

bearing-housing systems. This methodology will also be tested and justified via multiple

avenues, including numerical simulations, analytical predictions, and experimental verifica-

tion. To this end, we aim to accomplish four specific goals in this research proposed as

follows.

1. The first goal is to develop a rigorous mathematical formulation that is capable of

modeling the rotor-bearing-housing systems and thus deriving the governing equation

of motion.

2. The second goal is to study characteristics of the equation of motion whose parametric

resonances and ground-based responses are of our primary interest. Both numerical

and analytical analyses on a benchmark model are proposed to predict parametric

resonances and ground-based stable responses.

3. The third goal is to verify the prediction of ground-based responses via calibrated

experiments. Two experiments are performed. The first is performed on the stationary

system and the other is on the spinning system.

4. The final goal is to derive analytic, closed-form, solutions of the equation of motion

of a special class of cyclic symmetric rotors. More specifically, the stationary mode

shapes of cyclic symmetric rotors have entirely out-of-plane motion. Examples include

spinning disks.
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1.1 Background and Literature Review

In this section a general background and literature review is introduced in response to the

itemized goals respectively.

1.1.1 Reduced-order Model for Cyclic Symmetric Rotor-bearing-housing Systems

A spinning cyclic symmetric rotor mounted on a stationary housing via multiple bearings

is a very common platform used in modern rotary machinery. Representative examples

include propellers, wind turbines, bladed turbine disks, and compressors.

Traditionally, the housing is massive and rigid, so vibration tends to be more pronounced

at the rotor. Therefore, most literature on rotor dynamics focuses on vibration analyses of

spinning rotors. Traditional analyses of cyclic symmetric rotary machines often ignore the

housing and bearings or assume rigid housing [7, 8, 9, 10, 11, 1, 12, 13, 14, 4, 2, 3], and

primarily focus on rotor-based responses [15, 16].

In the last decade, emergent applications started to call for designs that employ a lighter

housing or a larger rotor. A natural consequence is that vibration of the rotor and housing

becomes coupled through the bearings. As an example, wind turbines now adopt long,

huge blades, whereas the housing is reduced in weight to lower material costs. Research

has shown that wind turbines experience considerable coupled vibration between the blades

and the tower [17, 18, 19, 20, 21]. Such vibration could not only cause fatigue failures

but also health concerns known as Wind Turbine Syndrome [22]. Similarly, in developing

greener engines with higher fuel efficiency and less emission, turbine engine industry seeks

to reduce the weight (and hence rigidity) and to increase the bypass ratio of turbine engines.

This design trend tends to cause considerable coupled vibration between the rotating parts

and the stationary parts and motivates vibration analyses of entire rotor-bearing-housing

systems [23, 24].

Despite of the attempts to model a rotor-bearing-housing system, the rotor is assumed

to either take a specific geometry (e.g., a beam) or be rigid body and lumped mass [25, 26].

A universal model for cyclic symmetric rotors and housing with arbitrary geometry still

remains open.
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Developing such a universal formulation, however, is a non-trivial task. There are two

major challenges to overcome. The first challenge is that a systematic way to incorporate

a stationary housing and multiple bearings to a spinning cyclic symmetric rotor is yet to

be developed. The only knowledge thus far in this context is that presence of the bearings

may cause some rotor modes to coupled with the bearings, while other modes may not [27].

More specifically, if a rotor vibration mode presents unbalanced inertia forces or moments as

the rotor vibrates, the rotor vibration mode will couple with the housing. These vibration

modes are known as unbalanced modes [27].

The second challenge is that equations of motion could possess extremely high order if

a rotor-bearing-housing system is not properly formulated. Theoretically, such a system is

governed by partial differential equations with time-varying coefficients because the rotor’s

mass and stiffness distributions change periodically with respect to the housing [17, 18,

19]. If a finite element method is used to discretize the system, the order will be so high

that numerical solutions become impractical. Furthermore, due to the complex interaction

between rotating rotors and non-rotating housings, approximation techniques which are

involved with high degrees of freedom, such as the multi-blade coordinate transformation

[28, 29], are often to be used. These additional degrees of freedom further increase the

computational difficulties. Therefore, novel ways must be sought to significantly reduce the

order to make numerical predictions feasible.

In order to develop a universal formulation that can accommodate both spinning rotors

and stationary housings, two coordinate systems are employed in the formulation. A rotor-

based coordinate system is used for the spinning rotor to accommodate its cyclic symmetry

[1, 2, 3, 4]. A ground-based coordinate is used to describe response of the stationary housing

[5]. The rotor and the housing are then discretized in respective coordinate systems, for

example via mode shapes, to reduce the order. The rotor, housing, and bearings are then

assembled together to derive the equation of motion with a reduced order. This process will

be explained in detail in Chapter 2.
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1.1.2 Ground-based Response

Recently novel sensing techniques started to monitor ground-based response of spinning

cyclic symmetric rotors. For example, turbine engine industry has developed blade-tip-

timing sensing techniques to measure vibration of spinning bladed turbine disks [30, 31, 32,

33, 34]. The advantage of monitoring ground-based response is that it is easy to implement

practically and experimentally. Nevertheless, theoretical and numerical analysis regarding

ground-based response of coupled rotor-bearing-housing systems is still limited. Therefore,

there are practical needs for identifying characteristics of such system and thus analysing

ground-based responses. Studying both features will help understand experimental vibra-

tion response of the entire rotor-bearing-housing systems.

However, finding response or identifying characteristics of the coupled rotor-bearing-

housing systems is not trivial. It faces several challenges. The first challenge is complexity

of the ground-based response for a spinning rotor-bearing-housing system. When only a

rotor is considered, existing literature has shown that ground-based response of the rotor

will split into primary and secondary branches of frequency components governed by its

cyclic symmetry [3]. It remains open how the housing and bearings would affect these

primary and secondary frequency components.

Second, there is no mathematical analysis to guide numerical simulations after the equa-

tion of motion is derived. Generally speaking, coupled vibration between the rotor and

housing depends on geometry of the system as well as characteristics of the bearings. Nu-

merical simulations alone are difficult to provide complete insights into characteristics of

the coupled system. To better understand the system characteristics, a theoretical analysis

is needed prior to the numerical simulations.

Third, numerical solutions are hard to interpret. Theoretically speaking, one can solve

the equation of motion numerically and transform the solution back to the ground-based

observer. The solutions will be extremely complicated and will not make sense unless a

theoretical framework is developed prior to the numerical simulations. In order to keep

track of the numerical solutions, a theoretical analysis on the rotor-based and the ground-

based responses is needed to interpret the numerical simulations.
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Therefore, theoretical analysis on the equation of motion will help understanding the

ground-based response of the systems. A theoretical analysis along with numerical simula-

tions will be presented in Chapter 3 and 4 to understand the ground-based response.

1.1.3 Experimental Verification

In addition to numerical and analytical study on the systems, experimental verification

always plays an important role on justifying the methodology. Design and implementation

of comprehensive experiments to the extent that the numerical and analytical prediction

of the responses are justified are not an easy task. For spinning cyclic symmetric rotor-

bearing-housing systems, there are several difficulties.

The first difficulty is run-out signals. The run-out signals appear as multiples of spin

speed and are ubiquitous in the region of measuring responses of rotary machinery. Many

sources could contribute to the run-out signal. It could be mechanical reasons such as the

surface finish of the objects measured and rotor balance after assembly. It could be electrical

reasons, known as electrical run-out, which often appears when using proximity probe to

measure displacement [35]. To attenuate run-out signals, careful assembly of the systems,

precise alignment between the rotor and housing, and conditioning measurement equipment

are essential.

Second, appropriate experiment methods in regard to properly exciting the entire rotor-

bearing-housing systems remains open. Typically speaking, a generic quantity that charac-

terizes vibration of spinning rotors in ground-based coordinate is impulse response function

[5, 3]. In these literature, automatic hammers were used to generate impact forces on the

rotors as well as serve as input signal of impulse response functions of the systems. This

method, however, may not be most appropriate to a rotor-bearing-housing system because

the hammer may not impart enough energy to excite the heavier housing into needed vi-

bration.

Third, as aforementioned, the ground-based response of a spinning cyclic symmetric

rotor-bearing-housing system is complex. After the rotor is spinning, the ground-based re-

sponses of the rotor will split into primary and secondary branches of frequency components
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governed by its cyclic symmetry [3]. Direct measurement on the spinning rotor will result

in additional frequency components resulted from the presence of the stationary housing.

An experimental setup that addresses theses difficulties and successfully verifies the

theoretical predictions will be introduced in Chapter 6.

1.1.4 Closed-form Solution

To date, solutions of the equations of motion of spinning cyclic symmetric rotor-bearing-

housing systems rely on numerical methods. Numerical error sometimes can be detrimental

to the accuracy even the stability of solutions. When it first comes to solving differential

equations numerically, it is conventionally to test the numerical schemes through use of

equations whose analytical solutions are available. Therefore, closed-form solutions are

always desirable.

Generally speaking, existence of closed-form solutions highly depends on the geometry of

rotors. When rotors have complex geometry, closed-form solutions are not plausible. Closed-

form solutions, however, are achievable when rotors have specific geometry. For example,

axisymmetric rotors-bearing-housing systems can be solved to obtain closed-form solutions.

Tseng et al. [5] shows that equation of motion of an axisymmetric rotor-bearing-housing sys-

tem can take the form of ordinary differential equations with constant coefficients. Since the

differential equations have constant coefficients, standard eigenvalue approach is sufficient

to obtain closed-form solutions.

On the other hand, equation of motion of a general cyclic symmetric rotor-bearing-

housing takes the form of ordinary differential equations with periodic coefficients [6].

Closed-form solutions of this type of differential equations are generally limited, and often

times perturbation techniques have to be used to obtain approximated solutions [28, 36, 37].

Nevertheless, Josic and Rosenbaum [38] introduced a specific family of equations with peri-

odic coefficients that have closed-form solutions. This family of equations is formulated with

a time varying rotation matrix. Furthermore, Kozlov [39] also pointed out that periodic

systems are highly related to time invariant gyroscopic systems via proper time variant, or-

thogonal, coordinate transformations. Altogether, it is possible to seek a proper coordinate
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transformation that converts the formulation of a cyclic symmetric rotor-bearing-housing

system into ordinary differential equations with constant coefficients for a closed-form solu-

tion.

Despite the similarity between the equation of motion of the rotor-bearing-housing sys-

tem and the equations in [38, 39], the former is much more complicated equation of motion

and has much higher degrees of freedom than the latter. The techniques, therefore, can

not be applied directly to the rotor-bearing-housing systems unless certain simplification

or assumptions are made equation of motion of the system. One of those assumptions is

that the stationary mode shapes of the rotor have entirely out-of-plane motion. Under this

assumption, it can be shown that the repeated and distinct modes of the rotor are decoupled

in the centrifugal softening matrix, gyroscopic matrix in the equations of motion [3] and the

bearing stiffness matrix [6]. It will be demonstrated in Chapter 5 that rotor-bearing-housing

systems satisfying the assumption possess closed-form solutions.

Since the closed-form solutions only require the kinematics assumptions on the rotor, it

is equally applicable to rotor-bearing-housing systems with ball bearings and fluid dynamics

bearings. The latter is the main stream in the industry of hard disk drives (HDD) and has

wide applications in the field of turbomachinery.

1.2 Outline

This thesis consists of seven chapters. In Chapter 1, a general background and literature

review are given to explain the motivation, challenges, and significance of this research.

Also, the outline is given.

In Chapter 2, the mathematical formulation of the reduced-order model is derived. Two

coordinate systems are employed in the formulation. A rotor-based coordinate system is

used for the spinning rotor to accommodate its cyclic symmetry while a ground-based

coordinate is used to describe response of the stationary housing. The rotor, housing,

and bearings are assembled together to derive the equation of motion with reduced order.

Solutions of the equation of motion are obtained via the method of multiple scales or

numerical integrations.

In Chapter 3 and 4, the characteristics of the model are studied based on a benchmark
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model. The characteristics fall into two categories of response, unstable response (paramet-

ric resonances) and stable response (rotor-based and ground-based response).

In Chapter 3, parametric resonances of the equation of motion are studied. As a result

of the cyclic symmetry, the governing equation of the rotor-bearing-housing system appears

in the form of a set of ordinary differential equations with periodic coefficients. Based on

this governing equation, it can be shown that the coupled rotor-bearing-housing system may

experience parametric instabilities when the rotor spins at extremely high spin speed.

Two numerical examples are conducted using the equations of motion to demonstrate

the parametric resonances. The first example has an axisymmetric disk as the spinning

rotor, while the second example has a cyclic symmetric rotor in the form of a circular

disk with evenly spaced radial slots. The numerical model used this example will be the

benchmark model for the rest of the paper. In both examples, the rotor is supported on

a stationary elastic plate (i.e., the housing) via two elastic bearings. We then analyze

stability of the rotor-bearing-housing system as a function of the spin speed to study how

cyclic symmetry affects the stability. Finally, how damping affects the stability of a coupled

rotor-bearing-housing system is demonstrated.

In Chapter 4, the rotor-based and ground-based response are studied. After understand-

ing the unstable response, efforts are made to understand the rotor-based and ground-based

response of the coupled rotor-bearing-housing system at conventional spin speed where the

response is stable. Effects of coupling on the rotor-based and ground-based response are

discussed in two theoretical analyses. At the beginning, the first theoretical analysis is

performed on the coupled, stationary, system to demonstrate the interaction between the

stationary rotor and housing resulted from bearing deformation. The analysis shows that

the stationary system has two major types of modes: rotor-dominant modes ω(R) and

housing-dominant modes ω(H). Later, effects of coupling on the rotor-based response of

the spinning system are studied. Next, the second theoretical analysis is performed on the

spinning system to study the interaction between the spinning rotor and housing resulted

from periodic bearing deformation. First of all, the analysis suggests that the rotor-base

response of rotor-dominant modes is similar to that of a system with rigid housing and

does not show significant effects of coupling with the housing. Hence it is not discussed
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in detail. Secondly, it shows that the rotor-based response of housing-dominant modes has

forward and backward frequency splitting amount to the spin speed ±ω3, which manifests

the interaction between the spinning rotor and flexible housing. Such frequency splitting

is defined as gyroscopic splitting. The gyroscopic splitting is analytically predicted by a

perturbation method. The numerical fast Fourier transform (FFT) of the rotor-based re-

sponse of housing-dominant modes of the benchmark used in Chapter 3 is computed and

the results successfully verify the theoretical prediction. Lastly, the ground-based response

of housing-dominant modes is theoretically predicted by transforming the rotor-based re-

sponse to a ground-based observer. The prediction states that the ground-based response

has multiple, patterned, frequency components ω(H) − (k ± ω3), where k is the index gov-

erned by the cyclic symmetry of the rotor while ±ω3 comes from the gyroscopic splitting of

housing-dominant mode ω(H), as comprehensive interactions between the spinning rotor and

housing. Once again, the benchmark model is used to confirm the theoretical prediction of

the ground-based response and help highlight important characteristics of stable responses

of the coupled system. The frequency components are observed in numerical waterfall plots

are generated via the benchmark model.

In Chapter 5, the closed-form solution for a special cyclic symmetric rotor is derived.

It begins with two important kinematic assumptions. Next, a brief review of equation of

motion is given. Two preliminary work facilitating the derivation are prepared. The first

is simplification of the periodic coefficients of the system. The second is discussion on

boundary forces and moments and their relation between mode shapes with distinct and

repeated natural frequencies. Third, existence of the coordinate transformation that gives

rise to closed-form solution is proved. Finally, two numerical simulations are performed

to verify the proof and further discussion of potential applications and implications of the

closed-form solution are also given.

In Chapter 6, the experimental verification of the rotor-bearing-housing system is dis-

cussed in great detail. It consists of three parts. At the beginning, the experimental setup is

introduced. The setup is to mimic the numerical benchmark as much as possible. Next, the

experimental methods, results, and discussion of measured response of the stationary system

are presented. Two frequency response functions (FRFs) are obtained using two excitation
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modes. The first is to use automatic hammer while the second is to use the piezoelectric

(PZT) actuator. Two housing-dominant modes Ω
(H)
L and Ω

(H)
H are identified by compar-

ing the magnitude of peaks in the FRFs. At last, the experimental methods, results, and

discussion of measured response of the spinning system are presented. In particular, the

measured response is the ground-based response which is used to verify the theoretical and

numerical analyses in Chapter 4. The same excitation modes are used to excite the spinning

system. Waterfall plots are obtained. The waterfall plot associated with the first excitation

mode reveal the forward and backward frequency branches of Ω
(H)
H , which confirms well

with the theoretical prediction. For the other mode Ω
(H)
L , it shows only the forward branch

with absence of the backward branch. Nonetheless, the forward branch also confirms well

with the prediction.The waterfall plot associated with the second mode is also generated.

Yet, it does not provide more information than the first plot.

In Chapter 7, conclusions of all the previous chapters are summarized and extension of

current work is briefly discussed based on the collective findings in this thesis.
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Chapter 2

REDUCED-ORDER MODEL

In this chapter, the mathematical formulation of the equation of motion with reduced

order (referred to as the reduced-order model hereinafter) will be derived.

As aforementioned, two coordinates are employed to describe the rotor and housing re-

spectively and derive the equation of motion with reduced order. Specifically, the derivation

consists of the following steps.

The first step is to extract mode shapes of the rotors and housings. Since the two

coordinates are fixed relative to the rotor and the housing, respectively, the rotors and

housings could be considered stationary in the respective coordinates. Then a finite element

analysis is conducted on the rotor and housing to obtain their natural frequencies and mode

shapes. Since the mode shapes are orthogonal in respective coordinate systems, they form

two complete sets of basis.

The second step is discretization through use of the two coordinate systems. Since the

mode shapes are complete, rotor-based response of the spinning rotor can be represented in

terms of its mode shapes and their modal response (also known as generalized coordinates).

Likewise, ground-based response of the stationary housing can be represented in terms of

its mode shapes and their modal response. Therefore, kinetic and potential energies of the

rotor and housing can be discretized in terms of these two sets of generalized coordinates.

Similarly, bearing deformation resulting from relative displacements between the rotor and

housing can also be discretized. (Since two coordinate systems are present, the relative

displacement is only meaningful after a coordinate transformation is performed.)

2.1 Coordinate Systems

To begin with, we employ two coordinate systems in the formulation to over come the dif-

ficulties of modelling the coupled rotor-bearing-housing systems. A rotor-based coordinate
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system is used for the spinning rotor to accommodate its cyclic symmetry [1, 2, 3, 4]. A

ground-based coordinate is used to describe response of the stationary housing [5].

2.1.1 Space Fixed Coordinate XYZ

Let O be a convenient reference point on the housing. With O being the origin, one can

define an inertia frame XY Z with unit vectors I, J, and K. Now consider an arbitrary

point P in the housing with position vector

r ≡ rxI+ ryJ+ rzK (2.1)

2.1.2 Rotating Coordinate xyz

Let i, j, and k be the unit vectors of the xyz coordinate system and I, J, and K be the unit

vectors of the inertia frame XY Z (or X̃Ỹ Z̃) coordinate system. Then

The ground-based coordinate XY Z is the inertia frame with a fixed point O1 as the

origin.

The rotor-based coordinate xyz, on the other hand, is a coordinate with O2 as the origin

and rotating about its z axis with constant angular velocity ω3; moreover, z axis is fixed in

the space

Let I, J, and K be the unit vectors of XY Z while i, j, and k be the unit vectors of xyz.

Then

⎛
⎜⎜⎜⎝

i

j

k

⎞
⎟⎟⎟⎠ = R(t)

⎛
⎜⎜⎜⎝

I

J

K

⎞
⎟⎟⎟⎠ (2.2)

In equation (2.2), R(t) is a coordinate transformation matrix between XY Z and xyz

R(t) =

⎡
⎢⎢⎢⎣
cos(ω3t) −sin(ω3t) 0

sin(ω3t) cos(ω3t) 0

0 0 1

⎤
⎥⎥⎥⎦ (2.3)

After employing the two coordinate sytems XY Z and xyz, the stationary housing and

the spinning rotor can be formulated under XY Z and xyz, respectively.
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2.2 Formulation of the Stationary Housing

The stationary housing is modelled as an elastic structure with arbitrary shapes. When the

housing undergoes an elastic deformation WH(r̂, t), where the superscript (H) refers to the

stationary housing, it can be approximated in terms of nh vibration modes via

WH(r̂, t) ≈
nh∑
n=1

WH
n (r̂)qHn (t) (2.4)

In equation (2.4),

WH
n (r̂) ≡WH

xn(r̂)I+WH
yn(r̂)J+WH

zn(r̂)K (2.5)

is the n-th vibration mode shape and qHn (t) is the corresponding generalized coordinate. In

addition, the mode shapes satisfy the orthonormality conditions
∫
WH

m(r̂)·WH
n (r̂)dm = δmn

and
∫
VH

[
WH

m(r̂),WH
n (r̂)

]
dV =

[
ωH
n

]2
δmn, where δmn is the Kronecker delta, ωH

n is the

natural frequency of the n-th vibration mode, and VH [•, •] is an potential energy inner-

product operator. Since the housing is stationary, the motion of point P results entirely

from the elastic deformation WH(r̂, t). Hence, the displacement of P is

RH
P ≡ WH(r̂, t) (2.6)

and the velocity of point P is

ṘH
P =

nh∑
n=1

WH
n (r̂)q̇Hn (t) (2.7)

where (2.4) has been used. Moreover, the kinetic energy of the housing is TH = 1
2

∑nh
n=1

[
q̇Hn

]2
and the potential energy of the housing is V H = 1

2

∫
Vh[W

H ,WH ]dV = 1
2

∑nh
n=1

[
ωH
n q

H
n (t)

]2
.

2.3 Formulation of the Rotor

The rotor is modelled as an elastic solid of arbitrary geometry with its centroid G located on

the spin axis (i.e., rotor is perfectly balanced). Moreover, the rotor is subject to free-body

boundary conditions and can undergo rigid-body motion as well as elastic deformation. To

formulate the motion of the rotor, let us first define a virgin state for reference. In the

virgin state, the rotor-bearing-housing system experiences no elastic deformation and no
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Figure 2.1: Coordinate System xyz for the Spinning Rotor

rigid-body motion except the spin of the rotor. Moreover, let G′ denote the location of the

centroid in the virgin state; see Fig. 2.1. (Note that G and G′ coincide in the virgin state,

but will correspond to two different points in actual motion.) With G′ as the origin, one

can define an inertia Cartesian coordinate system X̃Ỹ Z̃ with Z̃ being the spin axis in the

virgin state. (Note that the rotor might wobble in actual motion; therefore, Z̃ is not the

spin axis in actual motion.) Also, one can define a rotating coordinate system xyz with

constant angular velocity ω3. It is also convenient to assume that xyz coincides with the

principal axes of the rotor in the virgin state. Note that xyz axes do not attach to the rotor,

because the rotor can rock and translate, but xyz axes cannot. Nonetheless, xyz axes are

the best coordinate system to describe the motion of the rotor.

Now let us consider the motion of a point P on the rotor. In the virgin state, position of

P relative to G′ is defined by vector r̃ (Fig. 2.1), where r̃ ≡ r̃xi+ r̃yj+ r̃zk. In the deformed

state, the position of P with respect to the inertia frame XY Z becomes

RR
P (r̃, t) =

−→
OG′ +r̃+WR(r̃, t) (2.8)
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where WR(r̃, t) is the displacement of P that includes rigid-body motion (excluding the

spin) and elastic deformation. The superscript (R) refers to the rotor.

Under the coordinate system xyz, several sets of complete mode shapes are available.

For example, when the rotor is stationary, undamped, and subjected to free boundary

conditions, the rotor will have a set of complete mode shapes

WR
n (r̃) ≡WR

xn(r̃)i+WR
yn(r̃)j+WR

zn(r̃)k (2.9)

with natural frequencies ωR
n , n = 0, 1, 2, . . .. (For rotors with complicated geometry, WR

n (r̃)

and ωR
n can be calculated through finite element analyses, for example.) Moreover, these

mode shapes are orthogonal satisfying
∫
WR

m(r̃)·WR
n (r̃)dm = δmn and

∫
VR

[
WR

m(r̃),WR
n (r̃)

]
dV =[

ωR
n

]2
δmn, where VR [•, •] is a potential energy inner-product operator of the rotor. Also

note that the mode shapes WR
n (r̃) include six infinitesimal rigid-body modes with zero nat-

ural frequencies. Let us label the zero-th mode as the infinitesimal rigid-body spin of the

rotor, i.e.,

WR
0 (r̃) ≡

1√
Ī3

(−ỹi+ x̃j) (2.10)

where Ī3 is the centroidal mass moment of inertia about the spin axis.

Since the vibration mode shapes are complete, the position vector RR
P (r̃, t) of the rotor

in (2.8) can be approximated as

RR
P (r̃, t) ≈

−→
OG′ +r̃+

nr∑
n=1

WR
n (r̃)q

R
n (t) (2.11)

where qRn (t) is the generalized coordinates whose response is to be determined, and nr is

the number of modes retained in the series for approximation. Note that the rigid-body

spin of the rotor, WR
0 (r̃), does not appear in RR

P (r̃, t), because the spin of the rotor is

redundant and has been described by the rotation of the coordinate system xyz. With the

displacement in (2.11), the potential energy of the rotor is

V R =
1

2

∫
VR[W

R,WR]dV =
1

2

nr∑
n=1

[
ωR
n q

R
n (t)

]2
(2.12)

According to (2.11), the velocity of point P is

ṘR
P (r̃, t) = ω × r̃+

nr∑
n=1

WR
n (r̃)q̇

R
n (t) +

nr∑
n=1

[
ω ×WR

n (r̃)
]
qRn (t) (2.13)
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where ω = ω3k. With the velocity field (2.13), the kinetic energy of the rotor is

TR =
1

2
Ī3ω

2
3 +

1

2

nr∑
n=1

[
q̇Rn
]2

+
1

2
ω2
3

nr∑
n=1

nr∑
m=1

λmnq
R
m(t)qRn (t)

+ ω3

nr∑
n=1

JR
bnq̇

R
n (t) + ω2

3

nr∑
n=1

JR
cnq

R
n (t)

+ ω3

nr∑
n=1

nr∑
m=1

gnmq
R
m(t)q̇Rn (t) (2.14)

where

λmn = λnm ≡ δmn −
∫
WR

mz(r̃)W
R
nz(r̃)dm (2.15)

JR
bn ≡ k ·

∫
r̃×WR

n (r̃)dm (2.16)

JR
cn ≡

∫ [
r̃ ·WR

n (r̃)− r̃zW
R
nz(r̃)

]
dm (2.17)

gnm = −gmn ≡ k ·
∫ [

WR
m(r̃)×WR

n (r̃)
]
dm (2.18)

For (2.15) to (2.18), the integration is carried out with respect to the rotor.

2.4 Bearing Deformations

The purpose of this section is to derive bearing deformations in terms of qHn (t) and qRn (t).

Let A and A′ be two mating surfaces of a bearing (e.g., inner race and outer race), where

A is on the rotor and A′ is on the stationary housing. When the spindle vibrates, the two

bearing surfaces move relatively to each other. In addition, the relative motion could be

linear or angular.

To determine the linear bearing deformation, let rA and rA′ be the position vector of A

and A′, respectively. Then rA − rA′ defines the linear bearing deformation. According to

Fig. 2.2 and (2.11),

rA =
−→
OG′ +

−→
G′A +

nr∑
n=1

WR
n (r̃A)q

R
n (t) (2.19)

According to (2.6),

rA′ =

nh∑
n=1

WH
n (r̂A)q

H
n (t) (2.20)
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Figure 2.2: Bearing Position A and A′

Based on (2.19) and (2.20), the linear bearing deformation is rA− rA′ ≡ ΔxI+ΔyJ+ΔzK,

where

Δx ≡
nr∑
n=1

[
WR

xn(r̃A) cosω3t−WR
yn(r̃A) sinω3t

]
qRn (t)

−
nh∑
n=1

WH
xn(r̂A)q

H
n (t) (2.21)

Δy ≡
nr∑
n=1

[
WR

xn(r̃A) sinω3t+WR
yn(r̃A) cosω3t

]
qRn (t)

−
nh∑
n=1

WH
yn(r̂A)q

H
n (t) (2.22)

and

Δz ≡
nr∑
n=1

WR
zn(r̃A)q

R
n (t)−

nh∑
n=1

WH
zn(r̂A)q

H
n (t) (2.23)

Note that the coordinate transformation (2.2) is used, because WR
n (r̃A) in (2.18) is repre-

sented in coordinates xyz and must be transformed into the inertia frame XY Z.
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For the angular deformation of the bearing, the elastic deformation of the stationary

housing will induce an infinitesimal rigid-body rotation

α ≡ αxÎ+ αyĴ+ αzK̂ =
1

2
∇×

nh∑
n=1

WH
n (r̂A)q

H
n (t) (2.24)

where r̂A is the position vector of A in the XY Z frame. Similarly, the rotor will experience

an infinitesimal rigid-body rotation

β ≡ βxi+ βyj+ βzk =
1

2
∇×

nr∑
n=1

WR
n (r̃A)q

R
n (t) (2.25)

Note that β in (2.25) is written in the rotating frames xyz. Transforming β back to the

inertia coordinates XY Z via (2.2) results in

β =

nr∑
n=1

(βxn cosω3t− βyn sinω3t) q
R
n (t)I

+

nr∑
n=1

(βxn sinω3t+ βyn cosω3t) q
R
n (t)J

+

nr∑
n=1

βznq
R
n (t)K (2.26)

The angular displacements of A relative A′ are ξ ≡ ξxI+ ξyJ+ ξzK, where

ξx =

nr∑
n=1

[βxn cosω3t− βyn sinω3t] q
R
n (t)−

nh∑
n=1

αxnq
H
n (t) (2.27)

ξy =

nr∑
n=1

[βxn sinω3t+ βyn cosω3t] q
R
n (t)−

nh∑
n=1

αynq
H
n (t) (2.28)

and

ξz =

nr∑
n=1

βznq
R
n (t)−

nh∑
n=1

αznq
H
n (t) (2.29)

2.5 Vector and Matrix Notation

To keep track of the lengthy derivation, let us use vector and matrix notation.

2.5.1 Vector of Generalized Coordinates

q(t) =
[
(qH)T (t), (qR)T (t)

]T
(2.30)

where qH(t) = [ qH1 , q
H
2 , · · · , qHnh

]T and qR(t) = [ qR1 , q
R
2 , · · · , qRnr

]T .
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2.5.2 Modal Vector and Matrix of Bearing deformations

Let us define the bearing linear and angular deformation modal matrices of each housing

and rotor mode in terms of modal vectors.

WH(rA′) ≡ [WH
1 (rA′),WH

2 (rA′), · · · ,WH
nH

(rA′)] (2.31)

WR(r̃A) ≡ [WR
1 (r̃A),W

R
2 (r̃A), · · · ,WR

nR
(r̃A)] (2.32)

αH(rA′) ≡ [αH
1 (rA′),αH

2 (rA′), · · · ,αH
nH

(rA′)] (2.33)

βR(rA) ≡ [βR
1 (rA),β

R
2 (rA), · · · ,βR

nR
(rA)] (2.34)

Eqn. (2.31) to (2.34) are hereafter termed linear/angular housing/rotor-bearing modal

matrix for simplicity.

Then, we can define the housing-bearing-rotor modal matrix BB(t), which is written in

vector form in terms of housing/rotor-bearing modal matrices as

BB(t) =

⎡
⎣ WH(rA′) R(t)WR(r̃A)

αH(rA′) R′(t)βR(r̃A)

⎤
⎦ (2.35)

In (2.35), R(t) is the coordinate transformation matrix defined in (2.3) whereas R′(t)

is a 2 by 2 matrix that contains only the time dependent entries ofR(t). Both of them are re-

sponsive to coordinate transformation introduced in Eq.(2.3). In addition, WH(rA)/W
R(r̃A)

andαH(rA)/β
R(r̃A) are the linear/angular housing/rotor-bearing modal matrices defined in

(2.31) to (2.34). They represent the mode shapes and angular deformation of housing/rotor

at the positions of bearings, which dicretize the relative motion of A′ and A.

2.5.3 Matrix form of bearing deformations

With the vector notation, the linear and angular bearing deformations can be rewritten as

Δb ≡ (Δx,Δy,Δz, ξx, ξy)
T = BB(t)q(t) (2.36)

In (2.36), BB(t) is defined in (2.35).
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2.6 Generalized Forces

2.6.1 Generalized Bearing Forces

To simplify (2.35), let us define a 5 by 5, general coordinate transformation matrix T(t)

T(t) = R(t)⊕R′(t) (2.37)

where ⊕ is the direct sum. In addition, T(t) is orthonormal satisfying TT (t)T(t) = I,

where I is identity matrix. Again, WH(rA)/W
R(r̃A) and αH(rA)/β

R(r̃A) are the lin-

ear/angular bearing deformation modal matrices of the housing part and rotor part, re-

spectively, i.e., the linear/angular housing-bearing and rotor-bearing modal deformation

matrices defined in Subsec. 2.5.2. Then we can define the housing-bearing modal matrix

and rotor-bearing modal matrix as

BH =

⎡
⎣ WH(rA′)

αH(rA′)

⎤
⎦ (2.38)

and

BR =

⎡
⎣ WR(r̃A)

βR(r̃A)

⎤
⎦ (2.39)

Then, (2.35) can be rewritten as a compact form as

BB(t) =
[
BH T(t)BR

]
(2.40)

BB(t) is hereafter termed the housing-bearing-rotor modal matrix because it contains

both the rotor-bearing and housing-bearing modal matrices. Two things worth noticing

in (2.38), (2.39), and (2.40). First of all, since BH and BR are defined in the respective

coordinates of the rotor and housing, they are both constants. Secondly, since BB(t) is

defined by means of mixture of the two coordinates, now it has time varying components

which presenting the rotor is spinning with respect to the stationary housing.

Given a 5 by 5 bearing stiffness matrix K̃B, the generalized bearing stiffness KB(t) takes

the form
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KB(t) ≡
∑

(BB(t))T K̃BBB(t) (2.41)

which has the period 2π/ω3 because of the periodicity of BB(t), For each bearing, the

bearing forces consist of three force components and two moment components. Moreover,

the bearing forces are linear combination of spring forces described by

Fb ≡ (Fxb, Fyb, Fzb,Mxb,Myb)
T = −K̃BΔb (2.42)

where K̃B is the 5 × 5 stiffness matrix in physical domain. The virtual work done by the

bearing forces is

δWb =
∑

FT
b δΔb = −δqTQb (2.43)

where the summation sums over all the bearings and Qb is the generalized bearing force

vector. Substitution of (2.36) and (2.42) into (2.43) yields Qb = KB(t)q, where KB(t) ≡∑
(BB)T (t)K̃BBB(t).

2.6.2 Generalized Damping Forces

For rotating machines, damping is very difficult to model accurately and effectively. If the

damping model is too simple, predictions on forced response amplitude will be inaccurate.

If the damping model is too complicate, it could become impractical to apply. As a com-

promise, the damping model used in this section assumes proportional damping and modal

viscous damping factors.

For the stationary housing, Let us assume a damping force density (damping force per

unit volume) as

FH(r̂, t) = −2ρH

nH∑
n=1

ζHn ω
H
n WH

n (r̂)q̇Hn (t) (2.44)

where ρH is the density of the stationary housing, and ζHn is the viscous damping factor of

each housing mode. In this case, the model allows some flexibility through ζHn while keeping

the complexity of the model under control. The virtual work done by the damping force is

∫
VH

(FH · δRH
P

)
dVH = −2

nH∑
n=1

ζHn ω
H
n q̇

H
n (t)δqHn (t) (2.45)
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where (2.6) have been used.

For the rotating part, there are two types of damping: internal damping and external

damping. For asymmetric rotors, external damping is very difficult to model accurately and

remains largely open. Therefore, we will only focus on internal damping only. For internal

damping, let us assume

FR(r̃, t) = −2ρR

nR∑
n=1

ζRn ω
R
nW

R
n (r̃) · qRn (t) (2.46)

where ρR is the density of the rotor, and ζRn is the internal viscous damping factor of each

rotor mode. The virtual work done by the internal damping force is

∫
VR

(FR · δRR
P

)
dVR = −2

nR∑
n=1

ζRn ω
R
n q̇

R
n (t)δq

R
n (t) (2.47)

where (2.11) have been used.

Finally, the virtual work done by all the damping forces is arranged in a matrix form.

δWd = −δqTDq̇ (2.48)

where

D = 2× diag
[
ζH1 ω

H
1 , . . . , ζ

H
nH
ωH
nH
, ζR1 ω

R
1 , . . . , ζ

R
nR
ωR
nR

]
(2.49)

2.7 Equations of Motion

With the kinetic energy, potential energy, and generalized bearing forces of the rotor-

bearing-housing system, one can derive the equations of motion through use of Lagrangian

equations. The resulting equation of motion is

q̈+ [G+D]q̇+
[
K+KB(t)

]
q = 0 (2.50)

In (2.50),

G =

⎡
⎣ 0 0

0 G22(n,m)

⎤
⎦ (2.51)

with G22(n,m) = 2ω3gnm given in (2.18) and D is defined in (2.49). Also,

K =

⎡
⎣ ωH 0

0 ωR − ω2
3Kλ(n,m)

⎤
⎦ (2.52)
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where ωH ≡ diag
[{
ωH
1

}2
,
{
ωH
2

}2
, . . . ,

{
ωH
nh

}2]
, ωR = diag

[{
ωR
1

}2
,
{
ωR
2

}2
, . . . ,

{
ωR
nr

}2]
,

and Kλ(n,m) = λnm defined in (2.15). KB(t) in (2.50) is symmetric and has periodic

coefficients with the spin speed ω3.

2.7.1 Convergence Rate

The essence of this mathematical model is component-mode synthesis, in which the rotor

and housing are each treated as an individual component. Therefore, the shape functions

used to discretize each component will affect convergence rate of the model.

In this model, natural boundary conditions are imposed on each component at the bear-

ings to obtain mode shapes as the shape functions. Such an approach provides great con-

venience, because mode shapes form a complete set of admissible functions. Moreover, this

approach allows a simpler formulation of the centrifugal softening, gyroscopic effects, and

bearing deformation in general. Nevertheless, a trade-off is the convergence rate, because

the natural boundary conditions may not be satisfied after the components are assembled.

When modelling flexible multi-body systems, Meirovitch [40] points out that convergence

can suffer if the admissible functions (mode shapes in our case) of substructures are not

chosen properly. The poor convergence results from the fact that a finite linear combination

of the admissible functions is not able to satisfy the natural boundary conditions. As a result,

a relatively large numbers of degrees of freedom are needed for a reasonable convergence.

To prevent poor convergence rate, we use the concept of balanced and unbalanced modes

[27] to minimize the number of mode shapes that are capable of satisfying all natural

boundary conditions. (Since unbalanced modes include both unbalanced inertia forces and

moments, their linear combination comprises the minimum number of mode shapes to satisfy

all possible natural boundary conditions.) We also conducted a convergence test to ensure

that the equations of motion have a decent convergence rate.
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Chapter 3

PARAMETRIC RESONANCE

There are two things worth noting regarding the equation of motion (2.50). First, not

all rotor modes need to be retained in (2.50). According to Kim et al. [27], presence of

bearings may cause some rotor modes to coupled with the bearings, while other modes may

not [27]. If a rotor mode presents unbalanced inertia forces or moments as the rotor vibrates,

the rotor mode is called an unbalanced mode. The unbalanced inertia forces or moments

will result in a resultant deforming the bearings. Therefore, only unbalanced modes will be

coupled to the housing via the bearings, and only unbalanced modes need to be retained in

(2.50).

Second, instability of the rotor-bearing-housing system can be found analytically or

numerically. For analytical solutions, one can use any perturbation methods, such as the

method of multiple scales, to (2.50). Since KB(t) is symmetric in (2.50), the rotor-bearing-

housing system will present instability in the form of combination resonances of the sum

type, if the gyroscopic matrix G and the damping matrix D are not present. Moreover, the

range of spin speed in which the combination resonance occurs can be predicted analytically

in terms of the coefficients in K and KB(t).

The instability can also be found by numerically integrating the equation of motion

(2.50). For example, (2.50) can be written in a state-space form and integrated over one

period of time to find the fundamental matrix. If any eigenvalue of the fundamental matrix

has a magnitude greater than unity, the rotor-bearing-housing system is unstable.

To demonstrate the instability, we perform two numerical examples along with analytical

analysis. The first one is Axisymmetric Rotor and the second one is Cyclic Symmetric Rotor.
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Figure 3.1: FEA Model: Axisymmetric Rotor

3.1 Example 1: Axisymmetric Rotor

In this example, the rotor is a circular disk with a rigid hub; see Fig. 3.1. The disk has

outer diameter of 152.8 mm, inner diameter of 37.28 mm, and thickness of 0.79 mm. The

disk is elastic with Young’s modulus 280 GPa and Poisson’s ratio of 0.33 and has density of

2700 kg/m3. The disk has a rigid hub at the center with outer diameter of 37.28 mm, inner

diameter of 25 mm and thickness of 4.74 mm. Also, the hub is symmetric with respect

to the disk plane. Based on the rotor geometry, gyroscopic term will be negligible, i.e.,

G = 0. Moreover, damping is assumed to be zero, i.e., D = 0, in this example to serve as

a reference.

The housing consists of a square plate and a shaft; see Fig. 3.2. The length and thickness

of the square plate are 180 mm and 3.95 mm, respectively. The plate is elastic with Young’s

modulus 280 GPa and Poisson’s ratio of 0.33 and has density of 2700 kg/m3. Moreover, the

square plate is simply supported at the four corners. The shaft is rigid and is located at

the center of the plate. The shaft has outer diameter of 25 mm and length of 5.925 mm.

The rotor and housing are connected via two ball bearings. The outer race of the upper

bearing is located at 0.79 mm above the disk plane on the rigid hub. The outer race of

the lower bearing is located at 0.79 mm below the disk plane on the rigid hub. The inner

races of the bearings are located on the shaft of the housing. Moreover, the bearing stiffness
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Figure 3.2: FEA Model: Housing

coefficients are given as

K̃B = diag
[
2.16 × 107, 2.16 × 107, 5.76 × 106, 58.5, 58.5

]
(3.1)

where the coefficients in (3.1) are in MKS units.

To obtain natural frequencies ωR
n and mode shapesWR

n (r) of the rotor, we first note that

the rotor is subjected to free boundary conditions. Therefore, the rotor will present both

rigid-body modes and elastic modes. The rigid-body modes are obtained analytically (cf.

(2.10)), while the elastic modes are obtained via a finite element analysis in ANSYS. The

elastic modes basically appear as disk vibration with nodal diameters and nodal circles.

A quick calculation via [27] indicates that only zero- and one-nodal-diameter modes are

unbalanced modes.

For this example, the following modes are retained in (2.50): (a) three rigid-body trans-

lational modes of the rotor along the x, y and z axes, (b) two rigid-body rocking modes

of the rotor around x and y axes, (c) unbalanced modes of the rotors including zero- and

one-nodal-diameter modes whose natural frequencies are lower than 4000 Hz, and (d) 14

elastic modes from the housing.

To predict the stability of the rotor-bearing-housing system, the equation of motion

(2.50) is rewritten in a state-space form and numerically integrated over a period of time

to obtain its fundamental matrix. If any eigenvalue has a magnitude greater than 1, the
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Figure 3.3: Parametric Resonances of the Axisymmetric Rotor

system is unstable. Figure 3.3 shows the largest magnitude of all eigenvalues from the fun-

damental matrix. As shown in Fig. 3.3, there are three instability zones and each instability

zone corresponds to a combination resonance of the sum type. Each combination resonance

involves vibration mode from the housing and a vibration mode from the rotor. The vibra-

tion mode from the housing is the same for all instability zones. As far as the rotor modes,

the first and the last instability zones are dominated by rigid-body rocking modes and

rigid-body translational modes, respectively. The second instability zone is dominated by a

one-nodal-diameter unbalanced mode with natural frequency of 1325.90 Hz. For the speed

range shown in Fig. 3.3, the stiffness matrix K remains positive definite. If the spin speed

increases further, K will lose its positive definiteness (cf. (2.52)) resulting in an divergence

instability.

For this example and its instability, there are several issues worth further exploration.

First, equation of motion of an axisymmetric rotor-bearing-housing system can be written

in a different form than (2.50). Since the spinning rotor is axisymmetric, one can use a
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ground-based observer to describe motion of the spinning axisymmetric rotor. By doing so,

Tseng et al. [5] shows that equation of motion of an axisymmetric rotor-bearing-housing

system can take the form of ordinary differential equations with constant coefficients, i.e.,

q̈′ +G′q̇′ +K′q′ = 0 (3.2)

where q′ is a vector of generalized coordinates from the ground-based observer only, and G′

and K′ are corresponding constant gyroscopic and stiffness matrices observed in the ground-

based coordinates. (Note that G �= G′ and K �= K′.) For systems with an axisymmetric

rotor, equations of motion (2.50) and (3.2) are equivalent. One equation of motion can

be derived from the other, if a coordinate transformation is introduced between the rotor-

based coordinates and the ground-based coordinates 1. Such transformation has also been

discussed in [41].

Second, the stability predicted from (2.50) and (3.2) should be identical. According to

Huseyin [42], the stability of the rotor-bearing-housing system can be predicted through use

of the characteristic equation of (3.2). Let λ be eigenvalues of the system, the characteristic

equation of (3.2) can be written as a function of λ2, i.e.,

f(λ2) ≡ ∣∣−λ2 − iλG′ +K′∣∣ = 0 (3.3)

Complex λ in (3.3) indicates instability of the system. After we transform the equation

of motion to the ground-based observer, we have also calculated λ according to (3.3). We

observe that λ becomes complex at the same spin speed, where the rotor-bearing-housing

system experiences instability as shown in Fig. 3.3. For example, Fig. 3.4 shows the root

loci λ2 of the system after transformed to the ground-based formulation from around 58000

rpm to 60500 rpm. As seen in Fig. 3.4, root loci λ2 disappears between 59000 rpm to 60500

rpm, which is corresponding to the first instability zone in Fig. 3.3 and has roughly the

same width. Therefore, the stability predicted from (2.50) and (3.2) are indeed the same.

Third, instability does appear in gyroscopic systems under certain conditions. Meirovitch

[43] shows that eigenvalues of undamped gyroscopic systems are purely imaginary implying

no instability. That conclusion, however, is achieved under the assumption that the stiffness

1Please refer to Appendix A for detail
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Figure 3.4: Root Loci of λ2 v.s. ω3

matrix K′ is positive definite. Huseyin [42] indicates that the instability can occur when a

gyroscopic system loses its positive definiteness. According to our calculation, all instabili-

ties in Fig. 3.3 occur after the stiffness matrix K′ in (3.2) has lost its positive definiteness.

This finding is consistent with the stability predictions by Huseyin [42] and Meirovitch [43].

3.2 Example 2: Cyclic Symmetric Rotor

In this example, the rotor is a circular disk with four radial slots evenly spaced in the

circumferential direction; see Fig. 3.5. The slotted disk also has a rigid hub. The disk has

the same dimensions and material as in Example 1, except that the slots are 4.8 mm wide

and 52 mm long. The housing remains the same, and the rotor is mounted on the housing

through the same two bearings. Again, there is no gyroscopic term, i.e., G = 0. Both

undamped and damped systems are considered.
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Figure 3.5: FEA Model: Cyclic Symmetric Rotor

3.2.1 Undamped System

In this part of the example, damping term is assumed to be zero, i.e., D = 0. For the

rotor, its rigid-body modes are calculated analytically. For the rotor’s elastic modes, their

natural frequencies ωR
n and mode shapes WR

n (r) are obtained via ANSYS. For this example,

the following modes are retained in (2.50): (a) three rigid-body translational modes of the

rotor along the x, y and z axes, (b) two rigid-body rocking modes of the rotor around x

and y axes, (c) unbalanced modes of the rotors with natural frequencies lower than 4000

Hz, and (d) 14 elastic modes from the housing. Please note that the unbalanced modes

for the cyclic symmetric rotor are significantly different from those of the axisymmetric

rotor in Example 1. Altogether, 34 modes are retained in (2.50) for the cyclic symmetric

rotor-bearing-housing system due to the large number of unbalanced modes under 4000 Hz

resulting from the slots.

To ensure that enough number of modes is retained, we check the convergence by con-

sidering a stationary rotor with ω3 = 0. Theoretically, the solution of (2.50) will converge

to the exact solution when infinitely many modes are retained. When ω3 = 0, the exact

solution can be approximated fairly well by using a finite element analysis of the entire

rotor-bearing-housing system. Table 3.1 compares the first fourteen natural frequencies

between these two sets of solutions. The frequencies in the column labeled “ANSYS” are
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Table 3.1: Natural Frequency (Hz): ANSYS vs. MATLAB R©

Mode ANSYS MATLAB R© % Relative Error

1 148.55 149.41 0.58

2 148.55 149.41 0.58

3 294.22 296.10 0.64

4 313.30 313.22 0.03

5 423.82 423.99 0.04

6 423.82 423.99 0.04

7 452.99 452.89 0.00

8 440.45 456.42 3.63

9 472.59 472.59 0.02

10 925.25 928.78 0.38

11 925.27 929.01 0.40

12 1104.70 1109.39 0.42

13 1104.70 1109.39 0.42

14 1138.70 1139.08 0.03

natural frequencies predicted from the finite element analysis of the entire rotor-bearing-

housing system with ω3 = 0. The frequencies in the column labeled “MATLAB R©” are

natural frequencies predicted from (2.50) with 34 modes retained. According to Table 3.1,

the largest relative error between these two solutions is 3.63%. Therefore, 34 modes are

enough to ensure convergence in predicting an accurate response of the cyclic symmetric

rotor-bearing-housing system.

When the spin speed ω3 �= 0, equation of motion (2.50) can be analyzed via the method

of multiple scales to predict the speed range in which combination resonance may occur.

Table 3.2 shows the first four predicted speeds ω and their bandwidth σ, where the combi-

nation resonance occurs at ω − σ/2 < ω3 < ω + σ/2.

At the same time, (2.50) can be numerically integrated as explained above. Figure 3.6
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Figure 3.6: Parametric Resonances of Cyclic Symmetric Rotor

shows the largest magnitude of eigenvalues from the fundamental matrix. (The numerical

integration was only performed within 64,000 rpm to 135,000 rpm with resolution of 100

rpm.) As shown in Fig. 3.6, there are five instability zones. The five instability zones

basically have the same mechanism as those shown in Example 1. Each instability zone

results from a combination resonance between a housing mode and a rotor mode. The

housing mode involved is the same from Example 1. The first instability zone involves rigid-

body rocking of the rotor. The second, third, and fourth instability zones each involves

an unbalanced mode of the rotor. Finally, the last instability zone involves rigid-body

translation in the radial (x and y) directions.

There are several things worth discussing. First, the predictions from the method of

multiple scales (cf. Table 3.2) are quite accurate. According to Fig. 3.6, the first four

instability zones center around 64,000 rpm, 81,000 rpm, 122,000 rpm, and 135,000 rpm.

These predictions, in general, agree well with those shown in Table 3.2.

Second, combination resonances resulting from the rigid-body translation and rocking

modes are almost identical for the axisymmetric and cyclic symmetric rotors. Combination
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Table 3.2: Instabilities: the Method of Multiple Scales

Instabilities Speed ω (rpm) Bandwidth σ (rpm)

1 64075.78 1193.66

2 81426.85 311.12

3 122565.22 3761.47

4 135695.50 629.20

resonances resulting from the unbalanced modes, however, are very different. For the ax-

isymmetric rotor, only one unbalanced mode with a natural frequency of 1325.90 Hz leads

to an instability zone. For the cyclic symmetric rotor, it has three unbalanced modes under

4000 Hz (i.e., 419.24 Hz, 1080.30 Hz, and 1272.40 Hz, respectively). These unbalanced

modes lead to the second, third and fourth instability zones shown in Fig. 3.6.

3.2.2 Effects of Damping

To examine how damping affects the instability, let us incorporate the damping terms D �= 0

into the equation of motion (2.50) in two steps.

In the first step, the rotor damping is absent (i.e., ζR = 0), whereas the housing damping

ζH is assumed constant. Figure 3.7 is the blowup of the fourth instability zone in Fig. 3.6

in the interval of 136,000 to 152,000 rpm after damping of the housing modes is included.

As seen in Fig. 3.7, the width of the instability zone increases as the viscous damping factor

of the housing increases (following the arrow). In other words, the housing damping has a

destabilizing effect.

In the second step, the viscous damping of the housing ζH remains the same, but the

rotor damping is introduced such that ζR = 0.05ζH . Figure 3.8 is the same blowup of the

fourth instability zone with damping of both the housing and rotor included. As seen in

Fig. 3.8, the width of the instability zone decreases as the rotor damping increases. In other

words, the rotor damping has a stabilizing effect.

The numerical results shown in Figure 3.7 and Figure 3.8 may seem somewhat counter-
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Figure 3.7: Effect of Housing Damping on Instability Zone

intuitive. There are, however, theoretical supports that housing damping could destabilize

the system and rotor damping could do the opposite. Let us investigate this in more detail

as follows.

According to Eq. (2.49), the damping matrix D has non-uniform diagonal values re-

sulting from different natural frequencies and viscous damping factors of the housing and

rotor modes. The effect of non-uniform damping on parametrically excited systems, whose

equations of motion are similar to Eq. (2.50), is particularly intriguing [44, 45, 46]. Accord-

ing to [44, 45], non-uniform damping could worsen combination resonances by increasing

the width of instability zones under certain circumstances. The particular circumstances

depend highly on the structure of the periodic matrices as well as the damping ratio of each

mode. Therefore, effects of non-uniform damping may vary significantly from one problem

to another.

On the other hand, this phenomenon can be viewed from a different perspective. If

there exists a coordinate transformation such that Eq. (2.50) can be transformed into an

equation with constant coefficients (as in Example 1), it would take the form

q̈′ + [G′ +D′
R +D′

H ]q̇′ + [K′ + S′
R]q

′ = 0 (3.4)
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Figure 3.8: Effect of Housing and Rotor Damping on Instability Zone

In (3.4) D′
R and S′

R are constant damping and circulatory matrices resulting from the damp-

ing of the rotor modes, whereas D′
H results from the damping of the stationary housing.

Equation (3.4) is a standard form of damped gyroscopic systems with non-conservative

forces [47, 48, 49, 50].

For such systems, damping can destabilize the otherwise stable gyroscopic systems, and

yet combination of damping and circulatory matrices can do the opposite [47, 49, 50]. In

the case of asymmetric rotors, such a coordinate transformation may not even exist, and

Eq. (3.4) is not necessarily achievable. Nonetheless, the criteria provided in [47, 49, 50] are

still good guidelines to investigate the qualitative behavior of Eq. (2.50) when damping is

present.

Based on the results from [47, 49, 50], the presence of housing damping will introduce

only D′
H , which tends to destabilize the coupled rotor-bearing-housing system. This is

exactly what the numerical results show in Fig. 3.7. In contrast, the damping of the rotor

modes contributes to both damping and circulatory matrices in (3.4), which can stabilize the

coupled rotor-bearing-housing system. This is exactly what the numerical results show in

Fig. 3.8. Therefore, the numerical results in Fig. 3.7 and Fig. 3.8 are in line with theoretical

predictions from the literature [47, 49, 50].
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Chapter 4

FREE RESPONSE

As stated in Chapter 3, the equations of motion has instability when spin speed is

extremely high. The response at conventional spin speed is generally stable. Moreover,

response of the system at conventional spin speed is more important in practical use.

4.1 Rotor-Based Response

In this section, we predict the rotor response for a rotor-based observer by analyzing the

equation of motion (2.50) theoretically. We also confirm the prediction by solving (2.50)

numerically using the benchmark example. The benchmark model is the same as that in

Sec. 3.2.

4.1.1 Theoretical Analysis

In the equation of motion (2.50), the gyroscopic matrix G and centrifugal matrix Kλ are

determined solely by the mode shapes of the rotor. Therefore, it is the periodic bearing

stiffness term KB(t) in (2.50) that describes the coupling effects between the rotor and

housing. By expanding (2.41), KB(t) can be arranged into a block matrix form

KB(t) =

⎡
⎣ Λ Φ

Ψ Ξ

⎤
⎦ (4.1)

In particular, each block can be written in index notation

Λij = (BH
i )T K̃BBH

j (4.2)

Φij = (BH
i )T K̃BT(t)BR

j (4.3)

Ψij = (BR
i )

TTT (t)K̃BBH
j (4.4)

and

Ξij = (BR
i )

TTT (t)K̃BT(t)BR
j (4.5)
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where Bi is the i-th column of BH and BR defined in (2.38) and (2.39), and the superscripts

R and H indicate if Bi results from the rotor or the housing, respectively. Also, T(t) is the

coordinate transformation matrix defined in (2.37). For many practical applications, the

bearing stiffness K̃B is symmetric and so is (4.1), which implies that Φ = ΨT .

Equation (4.2) indicates that Λ is constant and thus irrelevant to the periodicity of

KB(t). Furthermore, (4.5) shows that whether or not Ξ is periodic explicitly depends

on K̃B because TT (t) and T(t) may cancel each other after multiplying with K̃B . For

certain types of bearings, K̃B has a specific structure such that T(t)T K̃BT(t) ends up

being constant. For example, when K̃B is from a ball bearing or hydrodynamic bearing,

T(t)T K̃BT(t) is constant and thus Ξ has no contribution to the periodicity either.

In contrast, (4.3) indicates that Φ is always periodic because of T(t). Moreover, Φ

results from bearing deformation matrices of the housing and rotor or the housing-bearing

and rotor-bearing modal matrices (i.e., BH and BR). In other words, the relative motion

between the housing and rotor always introduces the periodicity of KB(t) regardless of types

of bearings.

To better explain the physics, T(t) in (2.37) can further be written in the form of a

matrix exponential function, i.e.,

T(t) = exp[(Θ⊕Θ′)t] (4.6)

where exp[•] defines the matrix exponent and

Θ =

⎡
⎢⎢⎢⎣

0 −ω3 0

ω3 0 0

0 0 0

⎤
⎥⎥⎥⎦ ; Θ′ =

⎡
⎣ 0 −ω3

ω3 0

⎤
⎦ (4.7)

are two gyroscopic matrices arising from the two coordinate transformation matrices R(t)

and R′(t) defined in (2.37). Substitution of (4.6) into (4.3) then leads to

Φij = (BH
i )T K̃B exp[(Θ⊕Θ′)t]BR

j (4.8)

In (4.8), there are several things worth further discussion. First of all, when the rotor

is at rest, i.e., ω3 = 0, Φij is a constant matrix. This occurs because Θ and Θ′ in (4.7)
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are zero causing exp[(Θ ⊕ Θ′)t] to be an identity matrix. Moreover, the rotor-based re-

sponse and ground-based response are identical sharing the same natural frequencies of the

coupled rotor-bearing-housing system. Naturally, these natural frequencies are governed by

frequency components of the rotor and housing as well as the bearing coupling effect (i.e.,

time-independent part of KB(t)). As the coupled rotor-bearing-housing system vibrates,

each vibration mode will consist of simultaneous rotor motion and housing motion. Some of

these modes will be dominated by rotor response, and they will be called ”rotor-dominant

modes” for the rest of the paper. A rotor-dominant mode has a natural frequency ω(R),

where R indicates that rotor is the dominant component and the pair of parentheses indi-

cates that the vibration mode encompasses the entire rotor-bearing-housing system. (Note

that the rotor-dominant modes are not the rotor modes in (2.11).) For the rotor-dominant

modes, their rotor response discretized in (2.11) in terms of qRn (t) will have a strong com-

ponent of ejω
(R)t. In contrast, their housing response discretized in (2.7) in terms of qHn (t)

will be much smaller.

On the contrary, other coupled rotor-bearing-housing modes will be dominated by hous-

ing response, and they will be called ”housing-dominant modes” for the rest of the paper.

A housing-dominant mode has a natural frequency ω(H), where H indicates that housing

is the dominant component and the pair of parentheses indicates that the vibration mode

encompasses the entire rotor-bearing-housing system. (Again, please note that the housing-

dominant modes are not the housing modes in (2.7).) For the housing-dominant modes,

their housing response discretized in (2.7) in terms of qHn (t) will have a strong component

of ejω
(H)t. In contrast, their rotor response discretized in (2.11) in terms of qRn (t) will have

a smaller response.

When the rotor spins at low speed, the time-dependent part of Φij(t) starts to appear

in the form of the two gyroscopic matrices in (4.7) coupling every rotor mode and housing

mode. Since the spin speed is low, Φij(t) can be treated as a perturbation to the stationary

case of ω3 = 0. Perturbation solutions developed in [51] can then be used to predict response

of (2.50). Now let us consider a housing-dominant mode with response ejω
(H)t when ω3 = 0.

As the rotor spins, the product of KB(t)q in (2.50) and use of [51] will lead to a modal

response ej(ω
(H)±ω3)t in the rotor modes qRn (t).
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Figure 4.1: Mode Shapes of Elastic Modes

(1,1) Mode (1,0) Mode Housing Mode

This implies that rotor modes will see strong frequency components of

ωH ± ω3 for qRn (t) (4.9)

Similarly, the product of KB(t)q in (2.50) will generate ej(ω
R±ω3)t for modal response qHn (t)

of the housing. This implies that housing modes will see strong frequency components of

ωR ± ω3 for qHn (t) (4.10)

These phenomena in (4.9) and (4.10) are termed gyroscopic splitting in this paper.

4.1.2 Numerical Study

To demonstrate this gyroscopic splitting phenomena, (2.50) is solved numerically for the

benchmark numerical example. The natural frequencies ωR
n and mode shapes WR

n (r̃) of

the rotor are obtained via a finite element analysis in ANSYS by the same manner as we

did in the numerical example Cyclic Symmetric Rotor in Sec. 2, Chapter 3. Similarly, the

rotor is subjected to free boundary conditions. Therefore, the rotor will also present both

rigid-body modes and elastic modes.

A quick calculation via [27] indicates that phase indices n = 1, n = 3, and n = 4 modes

are unbalanced modes, which will be coupled to the housing vibrations and therefore will

be included. All the other elastic modes of the rotor will not be coupled to the housing.

The following 10 representative modes are retained in (2.50) for this example: (a) three

rigid-body translational modes of the rotor along the x, y and z axes, (b) two rigid-body
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rocking modes of the rotor around x and y axes, (c) a pair of one-nodal-diameter one-nodal-

circle modes (n = 1 and n = 3) of the rotor with repeated natural frequencies (thereafter

denoted as (1,1) modes), (d) one zero-nodal-diameter one-nodal-circle mode (n = 4) of the

rotor with a distinct natural frequency (thereafter denoted as (1,0) mode), and (e) a pair

of modes from the housing with repeated natural frequencies. Figure 4.1 shows the mode

shapes of all elastic modes included.

The numerical scheme used is ODE45 in MATLAB R©, which used the fourth and fifth

order Runge-Kutta formulas. The absolute and relative errors are 10−6 and 10−9, respec-

tively. A set of unit initial displacements is given to both housing modes, and a time series

of free response is obtained by solving (2.50) using ODE45. Also, a fast Fourier transform

(FFT) is applied to the time series to obtain corresponding frequency response.

Two rounds of simulations are conducted. The first round of simulations is for the case of

ω3 = 0 as a reference. In this case, coefficients of (2.50) are constant. Free response of a set

of ordinary differential equations with constant coefficients can be obtained by solving for

the corresponding eigenvalues. Table 4.1 shows all eigenvalues of (2.50) when ω3 = 0, which

correspond to the natural frequencies of coupled rotor-bearing-housing modes. In particular,

there are eight rotor-dominant modes and two housing-dominant modes. Inspection of

eigenvectors confirms that the rotor-dominant modes have very little housing vibration.

Similarly, the housing-dominant modes have very little rotor vibration. There are a couple

of things worth noting. First, all coupled rotor-bearing-housing modes are repeated except

the (1,0) mode and out-of-plane translation mode. Second, unit initial conditions qH1H(0) =

qH2H(0) = 1 will theoretically excite all coupled rotor-bearing-housing modes.

Figure 4.2 shows the FFT of the free responses of a few representative rotor and housing

modes. The response can be classified into three different groups. The first group is qHnH

represented by the dash line. This is the modal response from a housing mode. The second

group is qRnr represented by three solid lines. These are frequency response from three

representative rotor modes: one rigid-body rocking mode, one in-plane translational mode,

and one (1,1) mode. These modes all have a significant in-plane displacement component

during in-plane translation or rocking motion. These modes are also all repeated modes.

The third group is qRnd, represented by two dash-dotted lines. They are modal response
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Table 4.1: Natural Frequency of Coupled Rotor-Bearing-Housing Modes, ω3 = 0

Mode Dominant Dominant Frequency

Number Part Shape (Hz)

1,2 Rotor Rocking 184.18

3 Rotor (1,0) 316.66

4,5 Housing 1 nodal line 937.04

6,7 Rotor (1,1) 1192.6

8 Rotor Out-of-plane 4072.51

translation

9,10 Rotor In-plane 5043.29

translation

from rotor’s out-of-plane translational mode and (1,0) modes. These modes do not have

any in-plane components. Moreover, they are all distinct modes.

There are two things worth noting in Fig. 4.2. First, qRnd modes from the rotor have

very small response. This occurs because the in-plane and out-of-plane motions are very

weakly coupled in this numerical example. The vibration of the housing is primarily rocking

and slightly out-of-plane. Therefore, excitation at the housing modes does not generate

significant in-plane response. In contrast, qRnr modes coupled very well with housing mode

qHnH , because they both have significant rocking component. As a result, qRnr modes are

strongly excited presenting significant response. Second, the response shows that a housing

mode occurs at 936.7 Hz, a rocking mode at 183.3 Hz, and a (1,1) mode at 1200 Hz. These

frequencies are very close to those in Tab. 4.1 indicating that numerical integration from

ODE45 is quite accurate.

In the second round of simulations, the rotor spins at 7200 rpm. Figure 4.3 shows the

frequency response under the same initial conditions. The notation of qHnH , qRnr, and qRnd

remains the same as in Fig. 4.2. Comparing Fig. 4.2 with Fig. 4.3, we note that the housing

mode frequency in rotor response qRnr has split from 936.7 Hz in Fig. 4.2 into two frequency



42

0 200 400 600 800 1000 1200 1400 1600

10
−15

10
−10

10
−5

10
0

Hz

N
or

m
al

iz
ed

 M
ag

ni
tu

de

 

 

q
nH
H

q
nr
R

q
nr
R

q
nr
R

q
nd
R

q
nd
R

316.7 Hz

1200.0 Hz

936.7 Hz

183.3 Hz

936.7 Hz

Figure 4.2: FFT of Free Responses when ω3 = 0

components at 936.7±120 Hz, which are 816.7 Hz and 1056.7 Hz, respectively. This confirms

the gyroscopic splitting predicted in (4.9). Similarly, the rotor mode frequency in housing

response qHnr has split from 1200 Hz in Fig. 4.2 into two frequency components at 1200±120

Hz, which are 1080 Hz and 1320 Hz, respectively. This confirms the gyroscopic splitting

predicted in (4.10).

4.2 Ground-Based Response

In this section, we will predict the ground-based response of the spinning rotor. In particular,

we will investigate how the gyroscopic splitting affects ground-base response of a cyclic

symmetric rotor through both theoretical predictions and numerical simulations.

4.2.1 Theoretical Analysis

As seen in Fig. 4.3, modal response of the rotor consists of two parts: response from

the rotor-dominant modes (e.g., response at 183.3 Hz or 1200 Hz) and response from the

housing-dominant modes with gyroscopic splitting. For rotor-dominant modes, the housing
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Figure 4.3: FFT of Free Responses when ω3 = 7200 RPM (120 Hz)

undergoes very small vibration and is negligible. Therefore, ground-based response of rotor-

dominant modes can be predicted via [3], which studies a spinning, cyclic symmetric rotor

with a rigid housing theoretically and experimentally. There is no need to repeat it here.

The focus in this section is the ground-based response of the housing-dominant modes.

Without loss of generality, let us focus on a representative rotor mode qRn (t) that has a

significant response from a housing-dominant mode. Moreover, the housing-dominant mode

has a natural frequency ω(H), when ω3 = 0. (For example, ω(H) = 936.7 Hz from Fig. 4.2.)

As the rotor spins, free vibration of the rotor mode presents gyroscopic splitting (4.9), and

its rotor-based response becomes

qRn (t) = c2e
j(ω(H)−ω3)t + c3e

j(ω(H)+ω3)t + cc (4.11)

where c2 and c3 are constants to be determined from the initial conditions, cc denotes

complex conjugate.

Let the corresponding mode shape of the rotor be WR(r̃) ≡ WR(r, θ, z). The rotor
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response WR
nr(r̃, t) in the rotating frame xyz will be

WR(r̃, t) ≡ WR
n (r, θ, z)q

R
n (t) for xyz (4.12)

and the rotor response WG
nr(r̃, t) in the rotating in the fixed coordinates XY Z will be

WG(r, t) ≡ WR
n (r,−ω3t, z)q

R
n (t) for XY Z (4.13)

For a cyclic symmetric rotor, its mode shapes WR
n (r̃) take a special form [3]. To reveal

the special form concisely, we need to switch to complex mode shapes ŴR
n (r̃) for a moment.

After the special form is explained, we will relate the complex mode shapes ŴR
n (r̃) back to

the real mode shape WR
n (r̃) to finish the derivation of ground-based response.

Let us assume that the rotor consists ofN identical substructures, each spanning an angle

of 2π/N . Let W(i)(r̃) denote the mode shape WR(r̃) at the i-th substructure. According

to [3], mode shapes at two neighboring substructures will differ by a constant phase angle;

that is,

Ŵ(i+1)(r̃) = Ŵ(i)(r̃)ej2πn/N ; n ∈ (1, 2, 3, ..., N) (4.14)

Hence, one can use the phase angle 2πn/N or only the number n to characterize a vibration

mode of the cyclic symmetric rotor. This number n is called phase index.

Also, vibration mode shapes of a stationary, cyclic symmetric rotor can be expanded in

terms of a Fourier series [3]:

ŴR
n (r̃) =

∑
k=n+M(N)

Âk(r, z)e
jkθ (4.15)

where M(N) denotes an integer multiple of N and Âk(r, z) are the Fourier coefficients.

Equation (4.15) implies that only 1 out of every N Fourier coefficients is nontrivial for a

cyclic symmetric rotor with N substructures.

The complex mode shapes ŴR
n (r̃) are related to the real mode shape WR

n (r̃) as follows.

For some n, ej2πn/N in (4.15) is a real number (e.g., N = 4 and n = 2). In this case,

the complex mode shape ŴR
n (r̃) is a real function, and is identical to the real mode shape

WR
n (r̃). Moreover, this mode will have a distinct natural frequency. For other n, ej2πn/N

in (4.15) is a complex number (e.g., N = 3 and n = 1). In this case, the two complex
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modes ŴR
n (r̃) and ŴR

N−n(r̃) corresponding to phase indices n and N − n not only are

complex conjugate but also have repeated natural frequencies. Therefore, the real mode

shape WR
n (r̃) is a linear combination of ŴR

n (r̃) and ŴR
N−n(r̃)

1.

Substituting (4.11) and (4.15) into (4.12) results in the rotor response seen by a rotor-

based observer

WR
nr(r̃, t) =

∑
k=n+M(N)

Ak[e
j[(ω(H)+ω3)t+kθ] + ej[(ω

(H)−ω3)t+kθ]] + cc (4.16)

By replacing θ = −ω3t in (4.16) (cf. (4.13)), we obtain the rotor response seen by a ground-

based observer

WG
nr(r̃, t) =

∑
k=n+M(N)

Ak[e
j(ω(H)−(k−1)ω3)t + ej(ω

(H)−(k+1)ω3)t] + cc (4.17)

Equation (4.17) indicate that the rotor’s ground-based response will have frequency com-

ponents ω(H) − (k + 1)ω3 and ω(H) − (k − 1)ω3, where k = n + M(N). The presence of

these frequency components manifests the coupling effect between the rotor and housing,

because the phase index n belongs to the rotor and the natural frequency ω(H) comes from

the housing dominate mode.

There are two things worth noting for (4.17). First, (4.17) is derived with the assumption

of a real mode shape. For distinct modes, (4.17) can be used directly. For repeated modes,

(4.17) needs to include both phase indices n and N−n to account for the linear combination

of two complex modes ŴR
n (r̃) and ŴR

N−n(r̃). Second, whether or not the ground-based

response will appear with all the frequency components ω(H)−(k+1)ω3 and ω
(H)−(k−1)ω3

will depend on the excitation. If a frequency component is not excited, it will not appear

in the ground-based response.

4.2.2 Numerical Confirmation

For the benchmark numerical example, there are four identical substructures. Therefore,

N = 4. Moreover, the (1,1) mode is the only elastic mode that presents significant gyroscopic

splitting. The phase index of (1,1) mode is n = 1 or n = 3. According to (4.17), the rotor’s

1Please refer to Appendix B for detail
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Figure 4.4: Waterfall Plot of Ground-based Response of the Rotor

response seen by a ground-based observer should have frequency components ωH0 ± 2ω3,

ωH0 ± 4ω3, ω
H0 ± 6ω3, and so on.

Figure 4.4 shows the waterfall plot of simulated rotor response seen from a ground-

based observer. As seen in Fig. 4.4, the ground-based response contains multiple frequency

branches of various frequency components. As explained earlier, many of these frequencies

components are rotor modes and thus not related to gyroscopic splitting of the housing

mode; therefore, they have been well studied in detail in [3]. The current focus is to look

for harmonic branches arising from the combination of gyroscopic splitting and the cyclic

symmetry patterns occurring at ωH0±2ω3, ω
H0±4ω3, ω

H0±6ω3, and so on. These frequency

branches symbolize coupled vibration of the rotor and the housing.

With ωH0 being 936.7 Hz, we can easily identify frequency branches ωH0±2ω3, ω
H0±4ω3,

and ωH0 ± 6ω3, which are denoted by the thin solid lines. Figure 4.4 clearly shows that

rotor response presents significant peaks at those frequencies as the spin speed increases.

This confirms the theoretical predictions in (4.17).
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Chapter 5

CLOSED-FORM SOLUTIONS

For a stationary cyclic symmetric rotor, the vibration mode shapes are twofold, i.e., the

repeated modes and distinct modes which are governed by different phase indices nr and

nd, respectively. Literature [27] discusses in great detail that repeated modes and distinct

modes are completely decoupled in the centrifugal softening matrix and gyroscopic matrix

in the formulation of the spinning rotor. (cf. (2.15) and (2.18)).

With certain kinematic assumptions, the rotor-bearing deformation modal matrix BR

(2.39) can be simplified and thus the repeated modes and distinct modes are decoupled in

KB(t) (2.41). In such case, (2.50) can be simplified to have constant coefficients by a coor-

dinate transformation and thus traditional analyses in time invariant linear systems, such

as eigenvalues and eigenvectors, state-space, or response function techniques, are sufficient

to derive the closed-form solutions of the system.

In this section, the mathematics of matrix exponential will be extensively used. The

relevant proofs can be found in [52].

5.1 Kinematic Assumption

In order to derive the closed-form solution, two kinematic assumptions are made.

1. the rotor consists of two parts, a rigid hub and the flexible parts. The rigid hub is

assembled to stationary housing via bearings

2. The mode shape of flexible parts is assumed to be entirely out-of-plane.

5.2 Equation of Motion

In order to easily keep track on the derivation of closed-form solutions, let us quickly review

the formulation of the equations of motion of the system. Please refer to Chap. 2 Reduced
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Order Model for detail of the derivation. Based on (2.50), the equations of motion governing

the free vibration of a spinning cyclic symmetric rotor coupled to the housing via bearings

takes the mathematical form.

q̈+Gq̇+
[
K+KB(t)

]
q = 0 (5.1)

In (5.1),

G =

⎡
⎣ 0 0

0 G22(n,m)

⎤
⎦ (5.2)

with G22(n,m) = 2ω3gnm = −2ω3gmn, where gnm ≡ k · ∫ [WR
m(r̃)×WR

n (r̃)
]
dm. Also,

K =

⎡
⎣ ωH 0

0 ωR − ω2
3Kλ(n,m)

⎤
⎦ (5.3)

where ωH ≡ diag
[{
ωH
1

}2
,
{
ωH
2

}2
, . . . ,

{
ωH
nH

}2]
, ωR ≡ diag

[{
ωR
1

}2
,
{
ωR
2

}2
, . . . ,

{
ωR
nR

}2]
,

and Kλ(n,m) = λnm ≡ δmn − ∫
WR

mz(r̃)W
R
nz(r̃)dm. As detailed in Sec. 2.1 Coordinate

Systems, the equation of motion is derived under two coordinate systems: a ground-based

system XY Z and a rotor-based system xyz. ω3 is defined as the spinning speed. Let I,

J, and K be the unit vectors of XY Z and i, j, and k be the unit vectors of xyz. The

coordinate transformation between the two coordinates can be found in (2.2) as

⎛
⎜⎜⎜⎝

i

j

k

⎞
⎟⎟⎟⎠ = R(t)

⎛
⎜⎜⎜⎝

I

J

K

⎞
⎟⎟⎟⎠ (5.4)

where R(t) is a coordinate transformation matrix given by

R(t) =

⎡
⎢⎢⎢⎣

cos(ω3t) − sin(ω3t) 0

sin(ω3t) cos(ω3t) 0

0 0 1

⎤
⎥⎥⎥⎦ (5.5)

The following explains how KB(t) is derived. Let us assume rA′ is the bearing position of

the housing while r̃A is that of the rotor. According to (2.31), we can define a linear housing-

bearing deformation modal matrix WH ≡ [WH
1 (rA′),WH

2 (rA′), · · · ,WH
nH

(rA′)] and the

corresponding angular deformation modal matrix αH ≡ [αH
1 (rA′),αH

2 (rA′), · · · ,αH
nH

(rA′)].
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Then, from (2.38), the linear and angluar bearing deformations contributed by the housing,

i.e., the housing-bearing deformation modal matrix is defined as

BH =

⎡
⎣ WH

αH

⎤
⎦ (5.6)

Next, let us retain rotor modes in a sequential order where repeated mode pairs are

retained prior to all distinct modes such that one can define the rotor-bearing deformation

modal matrix (cf. (2.39)) as

BR =

⎡
⎣ WR

1,1(r̃A) WR
1,2(r̃A) · · · WR

nr,1(r̃A) WR
nr,2(r̃A) WR

1 (r̃A) · · · WR
nd(r̃A)

βR
1,1(r̃A) βR

1,2(r̃A) · · · βR
nr,1(r̃A) βR

nr,2(r̃A) βR
1 (r̃A) · · · βR

nd(r̃A)

⎤
⎦

=
[
B

R,1/2
1 · · · B

R,1/2
nr BR,nd

]
(5.7)

where subscript nr denote the nrth repeated mode pair and the superscript R, 1/2

denotes that B
R,1/2
nr contains one pair of two rotor-bearing deformation modal vectors of

the nrth repeated modes, BR,1
nr and BR,2

nr , while superscript R,nd denotes that the rotor-

bearing deformation matrix BR,nd contains all nd’s distinct modes. That is, in (5.7),

BR,1/2
nr =

⎡
⎣ WR

nr,1 WR
nr,2

βR
nr,1 βR

nr,2

⎤
⎦

=
[
BR

nr,1 BR
nr,2

] (5.8)

and

BR,nd =

⎡
⎣ WR

1 · · · WR
nd

βR
1 · · · βR

nd

⎤
⎦

=
[
BR

1 · · · BR
nd

] (5.9)

Next, let us define a reduced transformation matrix R′(t) to be the 2 by 2 matrix in

R(t) containing only the time dependent entries; see (5.5) or (2.3). From (2.37), we can

therefore define a 5 × 5 transformation matrix T(t) between the rotor and the housing at

the bearing location as

T(t) ≡ R(t)⊕R′(t) (5.10)
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where ⊕ is the direct sum of R(t) and R′(t). T(t) satisfies the following property:

d

dt
T = STT = TST (5.11)

In (5.11)

ST = ω3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.12)

Finally, the housing-bearing-rotor modal matrix BB(t) is defined the same as (2.40)

BB(t) =
[
BH T(t)BR

]
(5.13)

If the bearing is elastic with a 5 × 5 stiffness matrix K̃B , the generalized bearing stiff-

ness KB(t) associated with the bearing deformation, or the housing-bearing-housing modal

matrix, BB(t) will take the form (also see (2.41))

KB(t) ≡
∑

(BB(t))T K̃BBB(t) (5.14)

Note that KB(t) is a periodic matrix with the period 2π/ω3 resulting from the periodicity

of BB(t).

5.3 Simplification of the Time Varying Housing-bearing-rotor Modal Matrix
BB(t)

In this section, we will show how BB(t) can be simplified, given the kinematic assumptions

in Sec. 5.1. When the flexible parts of the rotor only has out-of-plane motion, the boundary

forces and moments of repeated modes and distinct modes have complete different charac-

teristics. The former always have rocking moments exerting on the hub while the latter

always have out-of-plane force that causes hub vibrating out-of-plane as well.

5.3.1 Boundary Forces and Moments

In order to derive the boundary forces and moments of the rotor modes, let us consider the

position vector of the rotor r̃ in a cylindrical coordinate, i.e., r̃ = r cos θex+r sin θey+zez =
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Figure 5.1: Mode Shape of a Distinct Rotor Mode with Phase Index n = 4. The Hub Moves
Entirely Out-plane.

b(r̃)ejθ +b∗(r̃)e−jθ + zez, where b(r̃) ≡ r/2(ex− jey) and b∗(r̃) are the complex conjugate

pair.

According to [3], the boundary force and moment exerted by repeated modes or distinct

modes at the interface between the rigid hub and flexible parts can be calculated by the

formula as follows.

F = 2π

∫
A0(r, z)dA, n = N (5.15)

and

M = S1 + S2 + S3 (5.16)

In (5.2)

S1 = 2π

∫
[b(r̃)×A−1(r, z)]dA, n = N − 1 (5.17)
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S2 = 2π

∫
[b∗(r̃)×A1(r, z)]dA, n = 1 (5.18)

S3 = 2π

∫
[zez ×A0(r, z)]dA, n = N (5.19)

where A0,−1,1 are the Fourier coefficients of rotor mode shapes (cf. (4.15)).

Since the vibration motion of the flexible part is assumed to have only out-of-plane

motion (see Sec 6.2 Kinematic Assumption), i.e., Ak = Ak,zez, the repeated modes exerts

only unbalanced inertia moments S1 or S2 whereas distinct modes exerts only unbalanced

inertia force F = Fzez at the boundary, which can be easily verified by substituting Ak =

Ak,zez into (5.15) to (5.19). Furthermore, since the hub is assumed rigid (also see Sec 6.2

Kinematic Assumption), the unbalanced inertia force F = Fzez will cause the hub to have

infinitesimal out-of-plane translation along the ez direction. As a result, the rotor-bearing

modal vector of distinct modes BR
nd in (5.9) now becomes

BR
nd = Bnd,zez (5.20)

Fig. 5.1 shows the mode shape of a distinct mode with phase index n = 4 from FEA.

As seen, the hub has entirely out-of-plane motion.

Similarly, since S1 or S2 are unbalanced moments containing either ex or ey components,

the hub will have infinitesimal rocking motions. Thus, the rotor-bearing modal vectors of

repeated modes BR
nr,1 and BR

nr,1 in (5.8) now only have ex and ey components.

BR
nr,1 = BR

nr,1,xex +BR
nr,1,yey

BR
nr,2 = BR

nr,2,xex +BR
nr,2,yey

(5.21)

The rotor-bearing modal vectors of one repeated modes pair BR
nr,1 and BR

nr,1 are orthog-

onal to each other, which can be shown in detail as follows. To verify the orthogonality,

let us substitute A1 = A1,zez and A−1 = A−1,zez into (5.17) and (5.18) and notice that

A−1(r, z) = A∗
1(r, z) are the complex conjugate pair because the repeated modes have phase

indices n = −1 and n = N − 1 [27].
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S1 = 2π

∫
[
r

2
(−jA−1,zex −A−1,zey)]dA = −S∗jex − S∗ey, n = N − 1

S2 = 2π

∫
[
r

2
(jA1,zex −A1,zey)]dA = Sjex − Sey, n = 1

(5.22)

where S ≡ 1/2
∫
[rA1,z]dA is the complex unbalanced moment vector.

In order to arrive at the real moment vectors from the complex conjugate complex

moments S1 and S2, we define a pair of real moment vectors.

⎡
⎣ SR

SI

⎤
⎦ =

√
2

2

⎡
⎣ 1 1

−j j

⎤
⎦
⎡
⎣ S1

S2

⎤
⎦

=

√
2

2

⎡
⎣ Sj − S∗j

S + S∗

⎤
⎦ ex +

√
2

2

⎡
⎣ −S − S∗

Sj − S∗j

⎤
⎦ ey

(5.23)

where the superscriptsR and I denote the real part and the imaginary part respectively.

Taking the vector product on SR and SI results in

SR · SI =
1

2
[(S + S∗)(S − S∗)j − (S + S∗)(S − S∗)j] = 0 (5.24)

From (5.23), SR and SI are orthogonal to each other because their vector product is

equal to zero. Since the hub is assumed rigid, this orthogonal pair of moments SR and

SI will respectively give rise to the hub orthogonal infinitesimal rocking motions. As a

result, the rotor-bearing modal vectors of repeated modes BR
nr,1 and BR

nr,1 differ by a rigid

body rotation along the z axis by ±π/2. Conventionally, we define the sequential order of

repeated modes such that BR
nr,1 and BR

nr,1 comply with the following equation.

BR
nr,2 = T(

π

2
)BR

nr,1 (5.25)

where π/2 is substituted into (5.10) which denotes the rigid body rotation by π/2.

Fig. 5.2 shows a pair of repeated mode shapes with phase index n = 1 and n = 3

from FEA. As seen, the hub undergoes orthogonal infinitesimal in-plane rocking motions,

respectively in the fist and second modes.
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Figure 5.2: Mode Shape of a Pair of Repeated Modes with Phase Index n = 1, 3. The Hub
Has Rocking In-plane Motions. The Red Double-headed Arrows Indicate the Directions of
Rocking Motions. It is Clearly Seen that the Arrows are Orthogonal to One and the Other.

Substituting (5.20) into (5.9) and Premultiplying with (5.10) leads to

T(t)BR,nd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosω3 − sinω3 0 0 0

sinω3 cosω3 0 0 0

0 0 1 0 0

0 0 0 cosω3 − sinω3

0 0 0 sinω3 cosω3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

B1,z · · · Bnd,z

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

B1,z · · · Bnd,z

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= BR,nd

(5.26)

The most important consequence of (5.25) is that we can see that the distinct modes do

not contribute any time varying components to the bearing deformations. As a result, the

housing-bearing-rotor modal matrix BB(t) (5.13) now can be simplified.
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BB(t) =
[
BH T(t)B

R,1/2
1 · · · T(t)B

R,1/2
nr BR,nd

]
(5.27)

In (5.27), BB(t) contains two parts, the constant parts and time varying parts. The

constant parts contains BH and BR
nd. The time varying parts contains the rotor-bearing

modal matrix of each paired repeated modes B
R,1/2
nr .

5.4 Coordinate Transformation

Thus far, we have already finished all the preliminary derivations on bearing deformation and

boundary forces and moments of repeated modes and distinct modes as the consequences of

the kinematic assumptions. It is being shown in the previous section that only the repeated

modes contribute to the time varying part of the housing-bearing-rotor modal matrix BB(t).

Furthermore, the rotor-bearing modal vectors BR
nr,1 and BR

nr,1 differ by a rigid body rotation

along the z axis by ±π/2 (5.25). Our goal now then is to find a real-valued, time variant,

coordinate transformation q = Q(t)q′ such that (5.1) can be transformed into a system of

ordinary differential equations with constant coefficients. Let us assume such Q(t) exists,

and hence it can be written as an exponential of a real-valued, constant, matrix S, such

that

Q(t) = exp[St] (5.28)

To avoid the trivial case Q = I, S is assumed to be equal to a non-zero matrix.

Q(t) satisfies the following property.

d

dt
Q(t) = SQ(t) = Q(t)S (5.29)

for Q(t) is a matrix exponential of S.

5.4.1 Decomposition of S

Based on (5.27), let us assume S admits a form

S = SH ⊕ SR,2nr ⊕ SR,nd (5.30)
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In (5.30) SH has the dimension nH ×nH, SR,2nr has 2nr× 2nr, and SR,nd has nd×nd

where nH, nr, and nd are total numbers of retained housing modes, repeated rotor mode

pairs, and distinct rotor modes, respectively.

It follows that Q(t) = QH(t) ⊕ QR,2nr(t) ⊕ QR,nd(t) = exp[(SH)t] ⊕ exp[(SR,2nr)t] ⊕
exp[(SR,nd)t], i.e., the coordinate transformation takes place on housing modes, repeated

rotor mode pairs, and distinct rotor modes, respectively.

5.4.2 Time Derivatives of q′

The the time derivatives of q′ can be calculated as follows.

⎧⎪⎨
⎪⎩

q̇ = Q(t)q̇′ +Q(t)Sq′

q̈ = Q(t)q̈′ + 2Q(t)Sq̇′ +Q(t)S2q′
(5.31)

Substitution (5.31) into (5.1) and premultiply by the inverse Q−1 yields

q̈′ +
[
Q−1(t)GQ(t) + 2S

]
q̇′

+
[
Q−1(t)KQ(t) +Q−1(t)GQ(t)S+Q−1(t)KB(t)Q(t) + S2

]
q′ = 0 (5.32)

It follows that the following equations have to be satisfied for (5.32) to have constant

coefficients.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q−1(t)KB(t)Q(t) = C1

Q−1(t)KQ(t) = C2

Q−1(t)GQ(t) = C3

(5.33)

where Ci, i = 1, 2, 3 are non-singular constant matrices.

5.5 Existence of Q(t)

To find Q let us plug (5.14) into the first equation in (5.33).

Q−1(t)(BB(t))T K̃BBB(t)Q(t) = C1 (5.34)
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For (5.34) to be valid, the following two equations have to be satisfied.

⎧⎪⎨
⎪⎩

BB(t)Q(t) = C̃

Q−1(t)(BB(t))T = Ĉ
(5.35)

where Ĉ and C̃ are two non-singular constant matrices. One thing worth noticing is

that if Q(t) is an orthonormal matrix satisfying QT = Q−1 the two equations in (5.35)

will be both satisfied and Ĉ = C̃T . To this end, we will prove such a Q(t) which satisfies

the first equation in (5.35) exists and Q(t) is an orthonormal matrix such that the second

equation is trivially satisfied.

Taking the time derivative on both sides of the first equation in (5.35) and noticing C̃

is a constant matrix gives us an auxiliary equation.

d

dt

(
BBQ

)
=

d

dt
C̃

ḂBQ+BBQ̇ = 0(
ḂB +BBS

)
Q = 0

ḂB = −BBS (5.36)

In (5.36) ḂB is

ḂB =
[
0 TSTB

R
]

= T
[
0 STB

R
]

(5.37)

where (5.11), (5.12), and (5.13) are used. Plug in (5.13) and (5.37) into (5.36) to arrive

at the final auxiliary equation

T
[
0 STB

R
]

=
[
BH TBR

]
S

T
[
0 STB

R
]

= T
[
TTBH BR

]
S

[
0 STB

R
]

=
[
TTBH BR

]
S (5.38)

Eqn. (5.38) is the master equation we will solve for S (and thus for Q) provided that B

is known. Before we really go into solving (5.38), let us apply the composition of S (5.30)

to (5.38) first.
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If we plug (5.7) and (5.30) into (5.38) we arrive at three separate equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = −TTBHSH

ST

[
B

R,1/2
1 · · ·

]
= −

[
B

R,1/2
1 · · ·

]
SR,2nr

STB
R,nd = −BR,ndSR,nd

(5.39)

5.5.1 Existence of SH and SR,nd

From (5.39) it immediately follows that SH = 0, i.e., QH(t) = e0 = I is an identity matrix.

Furthermore, substitution of (5.26) into STB
R,nd leads to

STB
R,nd = ω3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

B1,z · · · Bnd,z

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (5.40)

It follows from (5.40) and the third equation in (5.39) that SR,nd = 0 since BR,nd is a

non zero matrix. Therefore, QR,nd(t) = e0 = I.

5.5.2 Existence of SR,2nr

From the second equation in (5.39) we can see that the transformation SR,2nr should take

place between each paired BR,1/2. Therefore, it suggests SR,2nr admit a form

SR,2nr = blckdiag
(
S
R,1/2
i

)
, i = 1, 2, 3, · · · , nr (5.41)

where blckdiag denotes that SR,2nr is a block diagonal matrix composed of S
R,1/2
i .

S
R,1/2
i is a 2 by 2 matrix corresponding to each repeated mode pair B

R,1/2
i in (5.39). Sub-

stitution (5.41) into the second equation of (5.39) leads to nr’s separated equations.

STB
R,1/2
i = −B

R,1/2
i S

R,1/2
i , i = 1, 2, 3, · · · nr (5.42)

For simplicity, let us drop the superscript R, 1/2 for now. In (5.42), since Bi are comprised

of two linearly independent bearing deformation vectors contributed by ith repeat mode
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pair it is always possible to find a left inverse B†
i = (BT

i Bi)
−1BT

i such that

B†
iBi = I2×2 (5.43)

Substitution (5.43) into (5.42) leads to

−B†
iSTBi = Si (5.44)

Thus we can find every Si by the same procedure from (5.42) to (5.44). In fact, it is

shown in (5.25) that Bi are comprised by two orthogonal vectors, i.e., BT
i Bi = ciI for some

constant ci > 0 , such that

B†
i = (BT

i Bi)
−1BT

i =
1

ci
BT

i (5.45)

As a result, (5.44) becomes −1/ciB
T
i STBi which is a skew symmetric matrix since ST is

skew symmetric.

Because cBT
i STBi is a 2 by 2 skew symmetric matrix and BT

i Bi = ciI so (5.44) admits

the form

Si = − 1

ci
BT

i STBi = ±
⎡
⎣ 0 ω3

−ω3 0

⎤
⎦ (5.46)

We can determine the sign by properly define the sequential order that the repeated modes

are retained. If we adopt the conventional sequential ordering defined in (5.25), we will have

+ sign. Consequently, QR,2nr becomes

QR,2nr = exp[(SR,2nr)t]

= exp[blckdiag
(
S
R,1/2
i

)
t]

= blckdiag

⎛
⎝
⎡
⎣ cosω3t sinω3t

− sinω3t cosω3t

⎤
⎦
i

⎞
⎠ i = 1, 2, 3, · · · , nr

(5.47)

Altogether, the coordinate transformation Q(t) is thus found as

Q(t) = QH ⊕QR,2nr ⊕QR,nd

= InH×nH ⊕ blckdiag

⎛
⎝
⎡
⎣ cosω3t sinω3t

− sinω3t cosω3t

⎤
⎦
i

⎞
⎠⊕ Ind×nd i = 1, 2, 3, · · · , nr

(5.48)
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5.6 Commutativity between Q, K, and G

Thus far, we have proved the first equation in (5.33). If we could prove the last two

equations, the transformed equations of motion (5.32) will have constant coefficients. From

(5.32), the most intuitive way to have Q satisfy the last two equations would be that Q is

commutative with K and G. In this case, the last two equations in (5.33) will be satisfied

as such. ⎧⎪⎨
⎪⎩

Q−1(t)KQ(t) = Q−1(t)Q(t)K = K

Q−1(t)GQ(t) = Q−1(t)Q(t)G = G
(5.49)

It is possible to do so because the coordinate transformation Q(t) (5.48), the stiffness

softening matrix Kλ (5.2), and the gyroscopic matrix G22 (5.3) both admit patterned

structures associated with the repeated modes. From (5.48), the housing modes, repeated

modes, and distinct modes are all decoupled in Q. Similarly, they are also decoupled in Kλ

and G22 based on (5.2) and (5.3) and [27]. That is, the housing modes, repeated modes,

and distinct modes constitute three independent subspaces. Therefore, we can write K and

G as the direct summation of the subspaces (cf. (5.48)).

⎧⎪⎨
⎪⎩

K = 0H ⊕ [ωR,2nr −K2nr
λ ]⊕ [ωR,nd −Knd

λ ]

G = 0H ⊕G2nr
22 ⊕Gnd

22

(5.50)

As a result, the matrix multiplication KQ(t) and GQ(t) occur at individual subspaces.

Since the transformation between the housing modes and distinct modes are trivial (both

of QH and QR,nd are identity matrices), it is sufficient to prove that commutativity occurs

at the repeated modes. Let us also decompose G and K into three subspaces separating

housing, distinct, and repeated modes as follow.

G = 0⊕Gnd ⊕G2nr (5.51)

and

K = ωH ⊕ [ωR,nd − ω2
3K

nd
λ ]⊕ [ωR,2nr − ω2

3K
2nr
λ ] (5.52)

where G,nd ⊕ G2nr is the decomposition of G22 in (5.2), [ωR,nd − ω2
3K

nd
λ ] ⊕ [ωR,2nr −

ω2
3K

2nr
λ ] is the decomposition of (5.3) and ωH is equal to ωH (5.3).
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First of all, ωR,2nrQR,2nr = QR,2nrωR,2nr is trivially satisfied because each paired re-

peated modes have same natural frequency so it follows that ωR,2nrQR,2nr = ωR
nrIQ

R,2nr =

QR,2nrωR
nrI = QR,2nrωR,2nr.

Next, the commutativity between K2nr
λ , G2nr

22 and QR,2nr is proved as follows. Let us

first examine the structure of K2nr
λ and G2nr

22 associated with repeated modes. Also, let

us define a pair of real repeated modes Wp,R and Wp,I by the pth paired complex modes

Wp,C
n=1 and Wp,C

n=N−1 with phase indices n = 1 and n = N − 1.

⎡
⎣ Wp,R

Wp,I

⎤
⎦ =

√
2

2

⎡
⎣ 1 1

−j j

⎤
⎦
⎡
⎣ Wp,C

n

Wp,C
−n

⎤
⎦ p ∈ nr (5.53)

Please note that since phase indices n = 1 and n = N − 1 presenting the complex conju-

gate pairs, the subscripts are replaced with n and −n for simplicity. Also, the superscripts

R and I are replaced with 1 and 2 as well. That is, Wp,R = Wp1 and Wp,I = Wp2 .

Also, vibration mode shapes of a stationary, cyclic symmetric rotor can be expanded in

terms of a Fourier series [3] (also see (4.15)):

WR(r̃) =
∑

k=n+M(N)

Ak(r, z)e
jkθ (5.54)

where M(N) denotes an integer multiple of N and Ak(r, z) are the Fourier coefficients.

5.6.1 Commutativity between K2nr
λ and QR,2nr

With (5.53), K2nr
λ can be calculated in terms of two arbitrary repeated mode pairs p and q

where p, q ∈ nr. Kλ(p1, q2) and Kλ(p2, q1) are calculated as follows.

Kλ(p1, q2) = λp1q2 ≡ δp1q2 −
∫
W p1

z (r̃)W q2
z (r̃)dm

= − 1

2

∫
[jW p,C

−n,zW
q,C
n,z − jW p,C

n,zW
q,C
−n,z]dm

(5.55)

and

Kλ(p2, q1) = λp2q1 ≡ δp2q1 −
∫
W p2

z (r̃)W q1
z (r̃)dm

= − 1

2

∫
[jW p,C

n,zW
q,C
−n,z − jW p,C

−n,zW
q,C
n,z ]dm

(5.56)
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In substitution of (5.53) into (5.55) and (5.56), terms associated with
∫
W C

n,zW
C
n,zdm or∫

W C−n,zW
C−n,zdm vanish because every repeated mode pair has phase index 2n �= M(N)

resulting
∫
ejkθ = 0, k �= 0 in (5.54).

There are two different scenarios between p and q; that is, p �= q or p = q. For the

first scenario, p �= q, from (5.55) and (5.56), it immediately follows that λp1q2 = −λp2q1 .
Furthermore, for the second scenario, p = q, it follows that λp1q2 = λp2q1 = 0.

Since repeated modes only differ by a rigid body rotation the integrations of Kλ(p1, q1)

and Kλ(p2, q2) between mode p1 and q1 and that between p2 and q2 are identical. As a

result, λp2q2 = λp1q1 for p �= q or p = q.

In sum, K2nr
λ only contains two types of block matrices. When the block matrix is at

off diagonal, it admits the form
⎡
⎣ a −b
b a

⎤
⎦ (5.57)

and when it is at diagonal, it admits the form

⎡
⎣ c 0

0 c

⎤
⎦ (5.58)

for some constants a, b, and c.

It can be easily shown that (5.57) and (5.58) commute with the block matrix in QR,2nr

(5.47) and therefore K2nr
λ commutes with Q2nr.

Hence, the proof of the commutativity between K2nr
λ and QR,2nr is complete. Further-

more, the proof can be verified numerically by using the benchmark model. Table 5.1 shows

the numerically computed K2nr
λ of 3 representative pairs of repeated modes, including one

paired rocking modes, one paired translational modes, and one paired elastic (1,0) modes1

obtained from the FEA rotor model in Fig. 3.5.

It is clearly shown in Table 5.1 that the block matrices between each pair of repeated

modes in K2nr
λ admit the form described in (5.57) and (5.58) despite of minor numerical

error.

1Here adopts the same notation of modes from Chap. 3 and Chap. 4.
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Table 5.1: Numerical Values of K2nr
λ of Representative Repeated Modes. The Numerical

values are Rounded to Three Effective Digits.

Mode Type Rocking Mode about x Rocking Mode about y Translation in x Translation in y (1,1) Mode 1 (1,1) Mode 2

Rocking Mode about x 2.74e-04 -2.17e-14 0.00e+00 0.00e+00 2.59e-04 -3.15e-04

Rocking Mode about y -2.17e-14 2.74e-04 0.00e+00 0.00e+00 3.15e-04 2.56e-04

Translation in x 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00

Translation in y 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00

(1,1) Mode 1 2.59e-04 3.15e-04 0.00e+00 0.00e+00 9.22e-04 1.82e-09

(1,1) Mode 2 -3.15e-04 2.59e-04 0.00e+00 0.00e+00 1.82e-09 9.22e-004

5.6.2 Commutativity between G22 and QR,2nr

Proof of the commutativity in this section is analogue to what has been done in the last

section. First of all, we calculate G22(p1, q2) and G22(p2, q1) as follows.

G22(p1, q2) = gp1q2 ≡
k

2
·
∫

Wq2(r̃)×Wp1(r̃)dm

=
k

2
·
∫

[−jWq,C
n ×Wp,C

−n + jWq,C
−n ×Wp,C

n ]dm

(5.59)

and

G22(p2, q1) = gp2q1 ≡ k

2
·
∫

Wq1(r̃)×Wp2(r̃)dm

=
k

2
·
∫

[jWq,C
n ×Wp,C

−n − jWq,C
−n ×Wp,C

n ]dm

(5.60)

It follows that from (5.59) and (5.60) gp1q2 = −gp2q1 for either p = q2 or p �= q. Conse-

quently, the block matrices of G2nr
22 all take the form similar to (5.57). In particular, when

block matrix is at off diagonal, it is exactly the same with (5.57). When it is at diagonal,

it is the same with (5.57) except a = 0 because G2nr
22 is skew symmetric. As a result, G2nr

22

commutes with Q2nr(t) sharing the same reason with that K2nr
λ does with Q2nr(t).

Similarly, the proof can be verified numerically by using the benchmark model once

again. Table 5.2 shows the numerically computed G2nr
22 of the same representative pairs

2The case p = q is trivial to prove because G2nr
22 is skew symmetric.
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Table 5.2: Numerical Values of G2nr
22 of Representative Repeated Modes. The Numerical

values are Rounded to Three Effective Digits.

Mode Type Rocking Mode about x Rocking Mode about y Translation in x Translation in y (1,1) Mode 1 (1,1) Mode 2

Rocking Mode about x 0.00e+00 -2.74e-04 -4.12e-17 0.00e+00 -2.16e-04 -1.77e-04

Rocking Mode about y 2.74e-04 0.00e+00 0.00e+00 -4.12e-17 1.77e-04 -2.16e-04

Translation in x 4.12e-17 0.00e+00 0.00e+00 -1.00e-00 5.95e-11 1.14e-10

Translation in y 0.00e+00 4.12e-17 1.00e-00 0.00e+00 1.71e-10 -1.97e-10

(1,1) Mode 1 2.16e-04 -1.77e-04 -5.95e-11 -1.71e-10 0.00e+00 -6.65e-04

(1,1) Mode 2 1.77e-04 2.16e-04 -1.14e-10 1.97e-10 6.65e-04 0.00e+00

of repeated modes. It is clearly shown in Table 5.2 that the block matrices of G2nr
22 also

comply with (5.57).

5.7 Discussions

5.7.1 Discussion on Transformed Equations of Motion

In the previous two sections, Q(t) in (5.48) has been proved transform the equations of

motion (5.1) into constant coefficients (5.32). To find the explicit form of the transformed

equations we notice that (5.32) have constant coefficients. Thus, one can substitute any

convenient time t into (5.32) to obtain the explicit form. One such time will be the reference

time t = 0. By substituting t = 0 into (5.28) and (5.32) leads to the transformed equations

of motion.

⎧⎪⎨
⎪⎩

q̈′ = − [G+ 2S] q̇′ − [
K+GS+KB(0) + S2

]
q′

q = Q(t)q′
(5.61)

In the first equation of (5.61), all the coefficients are constant. In particular, KB(0) is

constant because t = 0 is specified. Also, S is defined in (5.30).

There are several things worth discussing regarding (5.61). First of all, since the first

equation in (5.61) has constant coefficients, it can be solved as eigenvalue problems to obtain

q′.
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Secondly, let us consider the case when spin speed ω3 is slow. When ω3 is slow Kλ in K,

G, S, and S2 are small and can be ignored. In this regard, (5.61) can be reduced to have

approximate solutions q∗ by solving the reduced equations of motion.

⎧⎪⎨
⎪⎩

¨̃q = −
[
K̃+KB(0)

]
q̃

q∗ = Q(t)q̃

(5.62)

where

K̃ =

⎡
⎣ ωH 0

0 ωR

⎤
⎦ (5.63)

From (5.62) and (5.63), we notice that q̃ is the response of the system when it is at rest.

By solving (5.62) we obtain the eigenvalues of the system. Generally speaking, when the

rotor is at rest, the system has two major groups of eigenvalues, the rotor-dominant modes

ω̃(R) and housing dominant modes ω̃(H)3. Let us consider a housing-dominant mode ω̃(H)

with rotor response of paired repeated modes q̃R1 and q̃R2 with some arbitrary amplitudes

and phases.

q̃R1 = A cos(ω̃(H)t+ ψ)

q̃R2 = B cos(ω̃(H)t+ φ) (5.64)

To obtain the approximated response qR
∗

1 and qR
∗

2 we apply (5.48) to inverse transform

(5.65) with manipulation of trigonometric identity.

3First introduced in Subsec. 4.1.1
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⎡
⎣ qR

∗
1

qR
∗

2

⎤
⎦ =

⎡
⎣ cosω3t sinω3t

− sinω3t cosω3t

⎤
⎦
⎡
⎣ q̃R1

q̃R2

⎤
⎦ (5.65)

=

⎡
⎣ cosω3t sinω3t

− sinω3t cosω3t

⎤
⎦
⎡
⎣ A cos(ω̃Ht+ ψ)

B cos(ω̃Ht+ φ)

⎤
⎦

=

⎡
⎣ C cos(ω̃Ht− ω3t+ ψ) + C cos(ω̃H t+ ω3t+ ψ)

−C sin(ω̃H t+ ω3t+ φ) + C sin(ω̃H t− ω3t+ φ)

⎤
⎦

+

⎡
⎣ D sin(ω̃Ht+ ω3t+ ψ)−D sin(ω̃H t− ω3t+ ψ)

D cos(ω̃Ht− ω3t+ φ) +D cos(ω̃Ht− ω3t+ φ)

⎤
⎦ (5.66)

where C = A/2 and D = B/2.

As seen in (5.66), the housing dominant mode has the frequency splitting ±ω3 for the

rotor response of a pair of repeated modes, which agree with the numerical simulation and

the perturbed solutions obtained in Sec. 4.1. Furthermore, since the frequency splitting

±ω3 results from the coordinate transformation Q(t), the theoretical analysis done in Sec.

4.1 also correctly refers to the splitting as the Gyroscopic Splitting4.

Lastly, the transformed system of equations (5.62) is a gyroscopic system with constant

coefficients. As discussed in Sec. 3.1, such a system is stable unless the stiffness matrix

loses the positive definiteness. Therefore, the instability tends to occur at extremely high

speed after the stiffness matrix loses the positive definiteness due to centrifugal softening

effects. In Sec. 3.2, the benchmark example has all the instabilities occur at extremely high

spin speed. It is confirmed that the mechanism of instabilities are indeed due to the loss of

positive definiteness.

5.7.2 Numerical Verification

In order to verify the closed-form solutions, we perform two numerical simulations employing

the benchmark model. In the first simulation, the instabilities of the equations of motion and

4In Sec. 4.1, the frequency splitting ±ω3 was referred to as the Gyroscopic Splitting because the perturbed
solutions originated from the gyroscopic matrix of the coordinate transformation T(t) in (2.37), Subsec.
2.6.1.
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Figure 5.3: Numerical Instabilities Predicted by Solving the Periodic Equation of Motion
Numerically. The Instabilities are Determined by Unity of the Maximal Magnitude of
Eigenvalues of the Fundamental Matrix. 34 Modes are Retained.

the transformed equations are compared with each other. The former is numerical integrated

over one period to obtain the eigenvalues of the fundamental matrix while the latter is

solved to obtain eigenvalues of the time invariant gyroscopic system. As aforementioned,

the instabilities of the equations of motion depend on the unity of the eigenvalues of the

fundamental matrix. In contrast to the time variant system, the instabilities of the time

invariant system can be determined by the positiveness of real part of eigenvalues. Figure 5.3

and Fig. 5.4 show the absolute value of the maximal eigenvalue of the fundamental matrix

and that of the transformed equations respectively. Both Fig. 5.3 and Fig. 5.4 show exactly

the same instabilities with identical bandwidth and spin speeds where they occur.

In the second simulation, the FFT of free responses are compared. In order to justify

the simulation, both the equations of motion (5.1) and transformed equations (5.61) are

solved by the same numerical scheme, given the same initial conditions q(0). Eqn. (5.1)

is integrated numerically to obtain time domain responses whose FFT are later calculated
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Figure 5.4: Exact Instabilities Predicted by Solving the Eigenvalue Problem of the Trans-
formed, Time Invariant Equation of Motion. The Instabilities are Determined by Positive-
ness of the Maximal Magnitude of Real Part of Eigenvalues of the Time Invariant System.
Identical 34 Modes are Retained.

to obtain frequency domain response following the same method introduced in Chap. 4.

On the other hand, the FFT of the responses of (5.61) are obtained in three steps. First

of all, the transformed equations are also integrated numerically using the same numerical

scheme with identical accuracy to obtain transformed, time domain, responses. Next, the

responses are inversely transformed by means of (5.61). Finally, the FFT of the responses

are calculated in the same manner with (5.1). Figure 5.5 shows the FFT of a representative

housing response of both equations respectively. It is evident that the FFT are on top of each

other of all spin speeds. Furthermore, the FFT of the rotor-dominant mode ω(R) remains

unchanged with respect to spin speed, which agrees well with the analytical derivation in

Subsec. 4.1.1. Similarly, Fig. 5.6 shows the FFT of a representative rotor response. The

FFT once again match each other. In addition, the gyroscopic splitting 5 is observed on

5First defined in Subsec. 4.1.1.
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Figure 5.5: FFT of a Housing Response. Comparison between the Numerical and Ex-
act Solutions Reveals the Same FFT solutions. The Gyroscopic Splitting Appears at the
Housing-dominant Mode ω(H). 34 Modes are Retained.

both FFT, which also agrees with the analytical derivation.

In summary, the two numerical simulations successfully verify that (5.1) and (5.61)

are indeed equivalent by showing their identical solutions in terms of instabilities and free

responses.

5.8 Further Discussion

The discussion thus far not only shows that the benchmark model has the close solutions

but bring rise to other aspects of general spinning cyclic symmetric rotor-bearing-housing

systems that worth further exploration. The first is the instability at low spin speed. It is

proved in the previous sections that if the periodic coefficients in (5.13) completely originate

from the repeated modes the equations of motion can be transformed to have constant

coefficients by the use of techniques illustrated foregoing. Also, the transformed system is
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Figure 5.6: FFT of a Rotor Response. Comparison between the Numerical and Exact Solu-
tions Reveal the Same FFT solutions. The Rotor-dominant Mode ω(R) Appears Unchanged
in the Housing Response. 34 Modes are Retained.

a time invariant gyroscopic system which is generally stable at low spin speed. In other

words, it is possible for a general spinning, cyclic symmetric rotor-bearing-housing system

to have instabilities occur at low spinning speed only when the distinct modes contribute

to the periodic coefficients as well. The second is the bearing types. In the development

of closed-form solutions, the bearing types are not specified throughout the entire process.

Thus, the closed-form solutions are tenable as long as the kinematics assumptions in the

early section are still satisfied regardless of bearing types. Therefore, the benchmark model

serves as a good example to examine other cyclic symmetric rotor-bearing-housing systems

which have different bearing types, such as fluid dynamic bearings, enabling richer dynamic

behaviors including periodic damping coefficients where heavy numerical computations are

expected. The third is the housing geometry. Similar to bearing types, the housing geometry

is not specified in the proof either. Consequently, the square plate in the benchmark can be
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replaced with housings with other geometries. One interesting application will be examining

the effects of asymmetric housing.
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Chapter 6

EXPERIMENTAL STUDY

In order to verify the prediction of the ground-based responses of the system in Subsec.

4.2.1 and 4.2.2, Chapter 4, we conduct experiment study as follows. The experimental

study includes three major components. First, we will explain experimental setup and

excitation methods. Then we will present experimental results when the rotor is stationary.

In particular, frequency response functions (FRFs) are obtained using an automatic hammer

and a piezoelectric actuator, respectively. Comparison of the two FRFs helps identify

housing-dominant modes, and their mode shapes are subsequently identified. Finally, we

conduct experiments to measure ground-based response when the rotor spins at various

speeds. Waterfall plots are obtained to confirm evolution of the housing-dominant modes

with respect to the spin speed as predicted.

6.1 Experimental Setup

Figure 6.1 shows the rotor-bearing-housing system used in the experiment study. The system

is to mimic the benchmark numerical model above as much as possible. The experimental

setup consists of three components: a square housing, a spindle motor with ball bearings,

and a slotted disk.

The housing is a square plate with a thickness of 4.7 mm and equal width and length of

120 mm. Material of the square plate is Aluminum with Young’s modulus of 69 GPa and

density of 2700 kg/m3. The housing has a large circular hole with a diameter of 38 mm at

the center to seat the spindle motor. The housing also has four small circular holes at four

corners. These small holes have a diameter of 7.26 mm and are located 9.4 mm away from

their surrounding edges. The square housing is then supported at the four small circular

holes and fastened to an isolation table via four bolts and washers with a pre-load of 4 N-m.

The spindle motor is then mounted onto the square housing via three screws with pre-load
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of 50 mN-m.

The slotted disk has an inner diameter of 25 mm, an outer diameter of 95 mm, and a

thickness of 0.97 mm. Material of the disk is Aluminum with Young’s modulus of 69 GPa

and density of 2700 kg/m3. The disk has four evenly spaced radial slots, each of which has

length of 15.8 mm and two semi-circular ends of 1.6 mm radius. Since measurements will

be made at the outer rim where displacement is the largest, the radial slots do not extend

to the outer rim (cf. Fig. 3.6) in order to ensure continuous measured response. The slotted

disk is then clamped onto the spindle motor through the central hole.

Figure 6.2 shows the experimental setup. The setup consists of an automatic hammer,

a PZT-based piezoelectric actuator, a laser Doppler vibrometer (LDV), an accelerometer,

and a spectrum analyzer. The hammer excites the rotor whereas the PZT actuator excites

the housing providing two different ways to generate input excitations. The LDV and

accelerometer measure response of the rotor and housing, respectively. As introduced in

Chapter 1, the conventional excitation method in measuring ground-based response of the

system, i.e., using the automatic hammers, may not be sufficient to excite the housing.

Therefore, we use piezoeletric (PZT) actuators to excite the system besides the hammers.

As result, the swept sine analysis is chosen to be compatible to the use of PZT actuators.

Consequently, there are two modes to conduct the experiments.

The first mode is to use the hammer and LDV together. In this mode, the hammer is

fixed in the space and taps at the inner rim of the rotor while the LDV aims at the outer

rim of the rotor. A load cell at the tip of the hammer measures the excitation force and the

LDV measures out-of-plane velocity of the outer rim. Both signals are fed into the spectrum

analyzer to obtain an input-output relationship in the frequency domain. We will call this

relationship a frequency response function (FRF) for convenience, although FRF does not

theoretically exist for such a system because the equation of motion has time-dependent

coefficients [3].

The second mode is to use the PZT actuator and LDV. The PZT actuator is attached to

the bottom of the housing and driven by a sinusoidal source from the analyzer. At the same

time, the LDV measures the velocity at the outer rim. Both the source signal and measured

velocity are fed into the spectrum analyzer. A frequency response function is obtained as
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Figure 6.1: The Assembled System: The Slotted Disk, Spindle Motor, and Square Plate

the PZT actuator scans through the frequency domain to complete a swept sine analysis.

If the response of the housing is needed, the accelerometer measurement is used in lieu of

the LDV measurement.

6.2 Measured Response of Stationary Rotor

Also mentioned in Chapter 1, the ground-based response of a spinning cyclic symmetric

rotor-bearing-housing system contain abundant frequency components. In order to facilitate

data analysis on experiments on the spinning system, the characteristics of the stationary

system should be studied first.

The purpose of this part of the experiment is to identify housing-dominant modes of
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the rotor-bearing-housing system in Fig. 6.1 while the rotor is stationary. Two different

methods are used to measure FRFs: the automatic impact hammer and the PZT actuator.

Figure 6.4 shows two FRFs obtained from the experiments. The top FRF is obtained via

the hammer on rotor and LDV on rotor, whereas the bottom FRF is via the PZT on housing

and LDV on rotor. Generally speaking, housing-dominant modes are more difficult to excite

from the rotor than the housing. With this clue in mind, we note that the top FRF with rotor

excitation has one clear peak near 1400 Hz, denoted by Ω(R), which corresponds to a rotor-

dominant mode. In contrast, there are two small and round peaks near 1300 Hz, denoted

by Ω
(H)
L and Ω

(H)
H . The magnitude of these two modes is roughly 1 order-of-magnitude less

than that of the rotor mode Ω(R). They could very well be two housing-dominant modes.

Moreover, the bottom FRF with housing excitation shows a strong Ω
(H)
L resonance peak

further enhancing the likelihood of Ω
(H)
L being a housing-dominant mode.

To prove that Ω
(H)
L and Ω

(H)
H are two housing-dominant modes, we measured mode

shapes experimentally as follows.

For the disk, its outer rim is partitioned into twenty-four divisions evenly in the hoop

direction. The automatic hammer taps at a fixed position on the inner rim, while the LDV

measures the disk response of each division at the outer rim. An FRF is then obtained for

each division, and its magnitude and phase at Ω
(H)
L and Ω

(H)
H are mapped out to extract

the mode shape along the outer rim.

To measure mode shapes of the plate, we use an accelerometer instead of LDV to reach

the plate beneath the disk (see Fig. 6.1). The plate is meshed into twenty equal grids,

and the accelerometer is attached to each grid point. Measured FRF from the automatic

hammer and acceleration from each grid then gives the mode shapes via the magnitude and

phase at Ω
(H)
L and Ω

(H)
H .

Figure 6.5 and Fig. 6.6 show the extracted mode shapes for Ω
(H)
L and Ω

(H)
H , respectively,

with the plate’s mode shape on the left and the disk’s on the right. The magnitudes of the

plate’s mode shape and the disk’s mode shape are normalized respectively because they have

different units. (Please note that the plate and disk are measured in terms of acceleration

and velocity respectively.) Based on the measured mode shapes at each division (for disk)

and grid point (for plate), Matlab R© is used to generate the contour plots shown in Fig. 6.5



76

and Fig. 6.6 via interpolation. Moreover, the orientation of the plate and disk (e.g., the

slots) in Fig. 6.5 and Fig. 6.6 is identical to that of the assembled system physically shown

in Fig. 6.1. Note that these two modes are housing-dominant modes, because the plate’s

mode shapes are much larger after we compare with those of other modes.

There are several issues worth noting in Fig. 6.5 and Fig. 6.6. First of all, phenomena of

rotor-housing coupling, such as the frequency splitting in the form of Ω(H)±(1−k)ω3, result

from the rotor’s features in the circumferential direction. Despite that the slotted disk in

the experiment is somewhat different from the benchmark numerical model (cf. Fig. 3.6),

their features in the circumferential direction are identical. For example, both slotted disks

have the same phase index and the same mode shape distribution in the circumferential

direction. Therefore, the slotted disk in the experiment can be used to verify the theoretical

predictions above without any problem.

Second, Ω
(H)
L and Ω

(H)
H modes are characterized by one nodal diameter in the disk

and one nodal line in the plate. As a result, the two opposite halves of the plate (or

disk) vibrate in an out-of-phase manner, leading to in-plane deformations of the bearings.

As demonstrated in the benchmark numerical model, gyroscopic splitting occurs in those

housing-dominant modes whose mode shapes of rotors and housings cause bearings in-

plane deformation. Therefore, Ω
(H)
L and Ω

(H)
H modes should present frequency splitting

Ω(H) ± (1− k)ω3.

Finally, the nodal diameters and nodal lines of Ω
(H)
L and Ω

(H)
H have a phase shift between

each other. For example, the nodal diameter of Ω
(H)
L and Ω

(H)
H is along 50◦ and 120◦,

respectively. This phenomenon results from asymmetry of the spindle motor and is explained

in detail as follows.

Theoretically, the housing in Fig. 6.1 is square and should have two house-dominant

modes with repeated natural frequencies. The two repeated modes can be linearly combined

in any way, forming a nodal line of arbitrary orientation on the plate. In the experiment,

however, the flange of the spindle motor has a cutout to facilitate assembly and electrical

routing; see Fig. 6.3 The cutout forms a small perturbation destroying the symmetry of the

housing and split the repeated modes in frequency. Therefore, the two housing-dominant

modes Ω
(H)
L and Ω

(H)
H now have slightly different frequency as shown in Fig. 6.4. Moreover,
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the linear combination cannot be formed arbitrarily, and the nodal line has a fixed orien-

tation. This also explains why Ω
(H)
H mode was not excited in Fig. 6.4 because the PZT

actuator was on the nodal line of the Ω
(H)
H mode.

6.3 Measured Response of Spinning Rotor

In the spin test, we aim to obtain waterfall plots consisting of FRFs measured at various

spin speeds. The measurements are focused on the two housing-dominant modes.

The goal is to verify that Ω
(H)
L and Ω

(H)
H will split into multiple frequency components

±(1− k)ω3. Since the rotor has four evenly spaced slots, the rotor consists of four identical

substructures. Therefore, N = 4. The disk of Ω
(H)
L and Ω

(H)
H modes has one nodal-diameter.

As a result, n = 1 or n = 3. A quick calculation of 1− k = 1−M(N)− n, where M(N) is

multiples of N , shows that the frequency splitting should occur at ±0ω3, ±2ω3, ±4ω3, and

so on. This is consistent with the benchmark numerical model above.

Figure 6.7 shows a waterfall plot consisting of multiple FRFs obtained by hammer ex-

citation (on rotor) and LDV pickup (from rotor) with spin speed from 0 to 6000 rpm. The

housing dominant modes Ω
(H)
L and Ω

(H)
H do split into primary branches Ω

(H)
L−δ and Ω

(H)
H+δ as

well as secondary branches Ω
(H)
L−δ +4ω3 and Ω

(H)
H+δ ± 4ω3. All the branches are denoted with

asymptotes (solid and dash lines) to indicate corresponding frequency splitting. Moreover,

peaks of resonance are shown in red circles. Let us analyze the experimental results in detail

as follows.

First of all, let us focus on the primary branches. According to the predictions, the

primary branches of the housing-dominant modes should take the form of Ω(H) ± 0ω3, i.e.,

the frequency should not depend on spin speed. In the experiment, however, the primary

branch Ω
(H)
H deviates slightly forward and Ω

(H)
L slightly backward as the spin speed changes.

Therefore, we use the notation Ω
(H)
L−δ and Ω

(H)
H+δ to denote the slight speed dependence δ,

which did not appear in the theoretical predictions. Nevertheless, the value of δ is very

small, generally less than 5% of the natural frequency of the housing-dominant modes. For

example, when spin speed is 6000 rpm, δ is around 40 Hz for Ω
(H)
L and is 28 Hz for Ω

(H)
H .

Although it is not clear exactly what causes the speed dependence δ, a possible source is

asymmetry. As explained earlier, Ω
(H)
L and Ω

(H)
H have different natural frequencies because
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of the spindle motor asymmetry. Absence of repeated modes may cause the gyroscopic

splitting to deviate slightly from ±1ω3. Accordingly, the ground-based response of the

rotor could also deviate from the predicted frequency splitting (1− k)ω3.

Now, let us focus on the secondary branches. With the presence of speed dependence δ,

the frequency splitting now becomes Ω
(H)
L−δ± (1−k)ω3 and Ω

(H)
H+δ± (1−k)ω3 for the ground-

based rotor response. According to Fig. 6.7, we see two forward branches Ω
(H)
L−δ + 4ω3 and

Ω
(H)
H+δ + 4ω3 as well as one backward branch Ω

(H)
H+δ − 4ω3.

Let us focus on the forward branches Ω
(H)
L−δ + 4ω3 and Ω

(H)
H+δ + 4ω3 for now. Since their

magnitude is much smaller than that of primary branches, these secondary branches may not

be distinguishable all the time. For example, between 4800 rpm and 6000 rpm, Ω
(H)
H+δ +4ω3

is close to the primary branch of a nearby rotor-dominant mode. Therefore, Ω
(H)
H+δ + 4ω3

is not recognizable due to its small magnitude compared with the nearby rotor-dominant

mode. In this case, we label the secondary branch with a dash line.

For the forward branches, the predictions Ω
(H)
L−δ±(1−k)ω3 and Ω

(H)
H+δ±(1−k)ω3 are quite

accurate. Even when the spin speed is 6000 rpm, the measured frequency split between the

primary and secondary branches agrees so well with the theoretical prediction 4ω3 that the

error is within 1%.

For the backward splitting, only one backward branch Ω
(H)
H+δ − 4ω3 is observed and its

magnitude is quite small. It has the same features as the forward branches. For example,

part of the backward branch is not observable, and the splitting −4ω3 is extremely accurate.

The other backward branch Ω
(H)
L−δ − 4ω3, however, is not observable in Fig. 6.7. It is not

clear why the backward branch did not appear in the experiment. Some observations from

Fig. 6.7 suggest that damping may be stronger for backward modes and at higher spin speed.

For example, the magnitude of Ω
(H)
H+δ − 4ω3 is smaller than that of Ω

(H)
H+δ + 4ω3. Also, the

magnitude reduces as spin speed increases, especially for the backward branch Ω
(H)
H+δ − 4ω3.

Maybe the damping is too large thus eliminating the backward branch Ω
(H)
L−δ − 4ω3.

Finally, we have also measured waterfall plots using the PZT actuator (on housing

excitation) and LDV (on rotor pickup). Figure 6.8 shows the measured waterfall plot from

0 rpm to 4800 rpm. There are several things worth noting. First, the primary branches Ω
(H)
L−δ

and Ω
(H)
H+δ also have frequency dependence ±δ, which is consistent with the measurements
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from the hammer and LDV. δ in this case is around 31 Hz at Ω
(H)
L and around 20 Hz at

Ω
(H)
H . Second, Ω

(H)
L−δ and Ω

(H)
H+δ are the most prominent modes compared to other modes in

this waterfall plot. This again shows that Ω
(H)
L−δ and Ω

(H)
H+δ are housing dominant modes.
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Figure 6.2: The Experiment Set Up. The Upper Schematics: The First Mode
LDV/Hammer. The Lower Schematics: The Second Mode LDV/PZT Actuator. The Ac-
celerometer is not Drawn for Simplicity.
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Figure 6.3: The Cutout that Causes the Asymmetry on Housing
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Figure 6.4: FRFs: Housing Dominant Modes. The Upper: FRFs with the Hammer/LDV.
The Lower: FRFs with the PZT/LDV
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Figure 6.8: Waterfall with PZT/LDV



86

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Through the theoretical, numerical, and experimental studies above, we reach the following

conclusions.

1. For a spinning, cyclic symmetric rotor supported with linear bearings and an elastic

housing, its equation of motion takes the form of a set of ordinary differential equation

with periodic coefficients as shown in (2.50). The period is 2π/ω3.

2. When the rotor is axisymmetric, the rotor-bearing-housing system could become un-

stable due to combination resonance of the sum type. The combination resonance

involves a vibration mode of the housing and a vibration mode from the rotor. The

vibration mode from the rotor can be a rigid-body translation mode, a rigid-body

rocking mode, or an elastic rotor mode that has unbalanced inertia forces or moments

(i.e., an unbalanced rotor mode). This combination resonance only occurs when the

stiffness matrix, viewed from the ground-base observer, loses its positive definiteness.

3. When the rotor is cyclic symmetric, the rotor-bearing-housing system could become

unstable due to combination resonance of the sum type. The combination resonance

has the same characteristics as in the case of an axisymmetric rotor. Since cyclic

symmetric rotors have more unbalanced modes, more combination resonances appear

in spinning cyclic symmetric rotor-bearing-housing systems.

4. When damping is present in a coupled rotor-bearing-housing system, qualitative be-

havior of the instability is similar to that of a damped gyroscopic system with non-

conservative forces. Damping of the housing widens the instability zones further desta-



87

bilizing the system. Rotor damping tends to stabilize the system by reducing the width

of the instability zones.

5. Response of a rotor-bearing-housing system is in general a coupled vibration between

the rotor and the housing. The coupled vibration can be classified as rotor-dominant

modes and housing-dominant modes.

6. The phenomenon of gyroscopic splitting between rotor and housing is a characteris-

tic of coupled rotor-bearing-housing system. Specifically, rotor response seen from a

rotor-based observer shall contain frequency components that consist of a natural fre-

quency of a housing-dominant mode plus or minus the spin speed, i.e., (4.9). Similarly,

housing response seen from a ground-based observer shall contain frequency compo-

nents that consist of a natural frequency of a rotor-dominant mode plus or minus the

spin speed, i.e., (4.10). The gyroscopic splitting stems from the bearing coupling and

the coordinate transformation between the rotor and housing.

7. The coupling of the rotor and housing will lead to specific frequency components in the

rotor response as seen from a ground-based observer. For a housing-dominant mode,

these frequency components will appear in the form of ω(H)−(k+1)ω3 and ω
(H)−(k−

1)ω3, where ω
(H) is the natural frequency of the housing-dominant mode. Moreover,

k = n+M(N), where n is the phase index of the rotor mode that forms the housing-

dominant mode, N is the number of substructure in the cyclic symmetric rotor, and

M(N) is integer multiples ofN . The presence of these frequency components manifests

the coupling effect between the rotor and housing, because the phase index n belongs

to the rotor and the natural frequency ω(H) comes from the housing-dominant mode.

8. The phenomena of housing-dominant modes, gyroscopic splitting, and ground-base

response of frequencies ω(H)− (k±1)ω3 are all confirmed in the benchmark numerical

model as well as in the calibrated experiments.

9. When the elastic part of a cyclic symmetric rotor has only out-of-plane motion and the
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hub is rigid, only the repeated modes contribute to the periodic coefficients in the bear-

ing stiffness (2.41). Consequently, the equation of motion (2.50) can be transformed

into a time invariant gyroscopic system via an orthonormal coordinate transformation.

Such system can then be solved exactly to obtain closed-form solutions.

10. In solving the transformed equation of motion, the gyroscopic splitting phenomenon

is derived from the coordinate transformation.

11. Response of transformed equation of motion is verified to be identical to those from

the original equation of motion via two numerical simulations.

7.2 Future Work

Based on the research progress achieved in this paper, current work can be extended to the

following aspects in the future.

1. Instability regarding gyroscopic systems

2. Force response to excitations from the supports

3. Consideration of fluid dynamic bearings

The first area worth further study is instability of gyroscopic systems. Practically speak-

ing, most rotary machines with cyclic symmetric rotors are gyroscopic systems, and gyro-

scopic forces dramatically influence the vibration responses. Despite the importance, how

gyroscopic forces affect cyclic symmetric rotor-bearing-housing systems still lack fundamen-

tal understanding. In particular, Ariaratnam and Namachchivaya [36] pointed out para-

metrically excited gyroscopic systems may experience instability in terms of combination

resonance of difference type. When it comes to rotary machinery, combination resonance of

difference type is much more dangerous because it tends to happen when the spin speed is

low. Hence, it is more crucial than the combination resonance of summation type discussed

in Chap. 2.
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The second area is force responses to excitations from the supports. For example, off-

shore wind turbines recently demonstrated their economic potential to efficiently harness

renewable energy. In particular, floating offshore wind turbines employ floating foundations

in order to harvest steady wind powers in deep ocean regions. The dynamic response be-

tween the turbine and platform in response to excitations from the wave motion is a major

challenge [25, 26]. In terms of the current formulation, the offshore wind turbine/platform is

equivalent to a cyclic symmetric rotor on a flexible housing subjected to prescribed excita-

tions. It is expected that the dynamics of housings will essentially influence the interaction

with rotors.

The third area is coupled rotor-bearing-housing systems with fluid dynamic bearing.

When fluid dynamic bearings are present in the model, not only the bearing stiffness but

the bearing damping will be periodic. The effects of periodic bearing damping remain

largely unknown to spinning cyclic symmetric rotor-bearing-housing systems.
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Appendix A: Coordinate Transformation of Elastic Displacement Field of Ax-
isymmetric Rotors

Let us define q and q′ as the rotor-based and ground-based response respectively. The

rotor-based and ground-based elastic displacement field of an axisymmetric rotor can be

transformed from one the other as follows.

W(r̃, t) = W(r, θ, z)q

= W(r, φ − ω3t, z)q

= A(r, z)ej(φ−ω3t)q

= [A(r, z)ejφ]e−jω3tq

= W(r, φ, z)q′ (1)

where W(r, θ, z) is the vibration motion as viewed in the rotor-based coordinate on which

θ is measured whereas W(r, φ, z) is the vibration motion as viewed in the ground-based

coordinate on which φ is measured. Therefore, the ground-based response is related to the

rotor-based response as q′ = e−jω3tq.
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Appendix B: Linear Combination of Complex Mode Shapes to Real Mode
Shapes

A pair of real repeated modes WR and WI can be derived by the linear combination of a

pair of complex modes WC
n=1 and WC

n=N−1 with phase indices n = 1 and n = N − 1.

⎡
⎣ WR

WI

⎤
⎦ =

√
2

2

⎡
⎣ 1 1

−j j

⎤
⎦
⎡
⎣ WC

n

WC−n

⎤
⎦ p ∈ nr (2)
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Figure 1: The Rotor-bearing-housing System. The Rotor and Housing are Modeled by Solid
Elements

Appendix C: Finite Element Model of the Stationary Rotor-bearing-Housing
System

The finite element analysis is performed in ANSYS. The rotor and housing are modeled

by solid elements; see Fig. 1. The bearings are modeled by two methods. The first one is

to use the multiple purpose constraint elements MPC184 with options of rigid beam and

general joint. The rigid beam is used to constrain the degrees of freedom of the inner race

and outer race of the rotor and housing to the general joints at the center of bearings; see

Fig. 2. The second is to use MPC184 with options of rigid beam and general joint and the

pilot node element TARGE170 and the surface contact element CONTA174. CONTA174

is used to constrain the degrees of freedom of the inner race and outer race of the rotor and

housing to the pilot node created by TARGE170 which is later connected with MPC184

general joints at the center via MPC184 rigid beam; see Fig. 3.
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Figure 2: The Bearing. MPC184 Rigid Beam Constrain the DOF of the Inner and Outer
races to MPC184 General Joints. The Two Local Coordinates Indicate the Position of
General Joints. The Stiffness is Defined as Material Property of the Joints.

The source codes of the model using the contact element method is included as follows.

/prep7

csys,0

n,13837,0,0,6.715! lower bearing node of rotor

n,13838,0,0,6.715! lower bearing node of stator

n,13839,0,0,7.505! pilot node of rotor

n,13840,0,0,7.505! pilot node of stator

n,13841,0,0,8.295! upper bearing node of rotor

n,13842,0,0,8.295! upper bearing noe of stator
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Figure 3: The Bearing. The Contact Element CONTA174 Constrain the DOF of the Inner
and Outer Races to The Pilot Nodes Created by the Target Element Which is Later Con-
nected to MPC184 General Joints via MPC184 Rigid Beam. The Two Local Coordinates
Indicate the Position of The Pilot Nodes. The Stiffness is Defined as Material Property of
the Joints.

csys,0

! step 1: Define a pilot node at the joint node of rotor with real constant 6

et,6,170

keyopt,6,2,1

real,6

tshap,pilot

type,6

e,13839 ! pilot element of rotor

! step 2: select the nodes of the corresponding surfaces

allsel
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esel,s,mat,,2 ! the hub

nsle

csys,1

nsel,r,loc,x,12.495 ! inner race of the hub

! step 3: create the contact elements on the surface of rotor

et,7,174

keyopt,7,4,2

keyopt,7,2,2

keyopt,7,12,5

type,7

real,6

esurf

nsel,all

csys,0

! step 1: Define a pilot node at the joint node of stator with real constant 7

et,6,170

keyopt,6,2,1

real,7

tshap,pilot

type,6

e,13840 ! pilot element of stator

! step 2: select the nodes of the corresponding surfaces

allsel

esel,s,mat,,1 ! the shaft

nsle

csys,1

nsel,r,loc,x,12.495 ! outter race of the shaft

! step 3: create the contact elements on the surface of rotor

et,7,174
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keyopt,7,4,2

keyopt,7,2,2

keyopt,7,12,5

type,7

real,7

esurf

nsel,all

!rigid beam of pilot node of rotor and bearing node of rotor

et,3,mpc184

keyopt,3,1,1 !1:rigid beam

keyopt,3,2,1 !lagrange multiplier

mat,1

type,3

e,13837,13839

e,13839,13841

!rigid beam of pilot node of stator and bearing node of stator

et,3,mpc184

keyopt,3,1,1 !1:rigid beam

keyopt,3,2,1 !lagrange multiplier

mat,1

type,3

e,13838,13840

e,13840,13842

!bearing

csys,0

et,4,mpc184

keyopt,4,1,16 !general link
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keyopt,4,4,0 !1:only dis DOF are activated, 0:dis&rot DOFs are activated

sectype,4,joint,gene !general joint lower b

local,12,0,0,0,6.715

local,13,0,0,0,6.715

secjoint,,12,13

sectype,5,joint,gene !general joint upepr b

!!there we use only 3 dof, so we don’t need to constraint more dof by secjoint and don’t

need to name local coord as below

local,14,0,0,0,8.295

local,15,0,0,0,8.295

secjoint,,14,15

kyyy=2.16e7

kxxx=2.16e7

kzzz=5.76e6

krotx=58.5e3

kroty=58.5e3

krotz=0

tb,join,3,,,stif !3 is material number

tbdata,1,kxxx

tbdata,7,kyyy

tbdata,12,kzzz

tbdata,16,krotx

tbdata,19,kroty

tbdata,21,krotz

csys,0

mat,3

secnum,4

type,4
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e,13837,13838

mat,3

secnum,5

type,4

e,13841,13842


