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Holography is a powerful theoretical duality that relates quantum gravitational theo-

ries to non-gravitational theories in one less dimension. The most explored example of

this tool is the correspondence between general relativity on five dimensional Anti-de

Sitter space and a four dimensional supersymmetric Yang-Mills theory. This case is

extremely useful as the strong coupling regime of the Yang-Mills theory is solved by

weakly coupled gravity.

Another interesting class of strongly coupled field theories are those of a non-

relativistic nature that arise in condensed matter systems. Herein, motivated by the

generic symmetry structure of these theories, a non-relativistic version of holography

is proposed using an alternate theory of gravity, Hořava gravity. Justifications of this

proposal are thoroughly discussed. Various checks of the duality, such as correlation

functions and black hole thermodynamics are presented. This new holographic cor-

respondence provides a crucial tool to tackle strongly coupled problems in condensed

matter systems. On the other hand, Hořava gravity, thought to be a UV complete the-

ory of quantum gravity, will allow holography to move away from the strong coupling,

large number of colors limit that has restricted traditional AdS/CFT.
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Chapter 1

INTRODUCTION

1.1 Duality

1.1.1 Electromagnetic Duality

The notion of duality is a powerful concept available to modern physicists. Dualities

arise when it is discovered that one and the same physical system can have multiple

descriptions in the mathematical language of theoretical physics. The simplest and

longest know example is that of classical electromagnetism. In vacuum, Maxwell’s

equations describing the electric and magnetic fields, ~E and ~B, respectively, are re-

markably symmetric:

~∇ · ~E = 0, ~∇× ~E = −∂
~B

∂t
, ~∇ · ~B = 0, ~∇× ~B =

∂ ~E

∂t
. (1.1)

These equations are invariant under the transformation ~E → ~B and ~B → − ~E.

This means that a solution with a various field configuration is equivalent to the

configuration related by the above duality transformation, in the sense that they

are both solutions to Maxwell’s equations. Therefore, if we are interested in solving

Maxwell’s equations we have two options: we can either solve the question posed to us

involving various boundary conditions on the electric and magnetic fields; or we can

make the duality transformation, solve that problem, and then transform the solution

back to the original situation of concern. Although the simplicity of equations 1.1

make this approach somewhat unnecessary, we will shortly discuss much more useful

dualities.
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1.1.2 T-Duality

A more interesting example is that of T-duality. It illustrates an equivalence of

some theories having a small compact spatial direction with other theories having a

large compact direction. This can be simply illustrated in terms of a classical string.

For any object propagating in a compact direction Fourier analysis tells us that its

spatial momentum ~p is quantized in Kaluza-Klein modes. For a circle of radius R

this gives a kinetic contribution to the energy: E2
kin ≡ ~p 2 = (n/R)2, where n is

an integer classifying the quantized mode of the momentum. An object also has a

contribution to its energy due to its rest mass. For an ideal string this is just given

by its tension times its length. In a compact dimension a string has the interesting

option of wrapping around the direction multiple times, quantified by the integer

winding number m. The physical length of the string in that case is simply the

circumference of the compact direction times the number of times the string wraps

around: L = 2πRm. This gives a rest mass of M ≡ LT = (2πRm)(l2s/2π) = mR/l2s ,

where the string tension T has been expressed in terms of a constant ls, called the

string length1: T ≡ l2s/2π. The total energy of the string in this compact background

is therefore given by

E2 ≡ ~p 2 +M2 =
( n
R

)2

+

(
mR

l2s

)2

, (1.2)

which is invariant under the switching of the momentum mode and winding number,

n↔ m, if the radius of the circle is also inverted, R → l2s/R. Therefore the physical

spectrum given by possible energies of the string is equally described by propagation

around a large circle or a small one (with respect to ls.) This is sensible: a large circle

has relatively small Kaluza-Klein modes, but winding will contribute a large mass

due to the long length of the stretched string; for a small circle, the winding costs

relatively little energy, while the Kaluza-Klein modes have a small wavelength, and

1Not to be confused with the actual length of the string, L.
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hence large energy. T-duality shows that these two mathematical descriptions have

the same physical energy spectrum.

Although this example of T-duality for a classical string is illustrative, it may

appear trivial. Fortunately, at the level of quantum superstring theory T-duality is

still present and has a shocking consequence: of the five consistent superstring the-

ories, Type IIA and Type IIB are related by T-duality, as are the Heterotic-O and

Heterotic-E theories. This means that IIA and IIB are two possible descriptions of

the same underlying physical situation, analogues to the small and large compact di-

rections of the previous discussion. It is now believed that all five superstring theories

are related by some form of duality, and therefore they form a unique description.

1.1.3 Seiberg Duality

One final example duality shows another powerful aspect of the concept. As will be

taken advantage of, dualities are often at their most useful when the strong coupling

regime of one theory is dual to the weak coupling behavior of the other. This allows

difficult strongly coupled physics to be understood in the formalism of perturbation

theory. Glossing over details, Seiberg duality [77] is an example of such a duality:

it states the equivalence of the low energy behavior of two a priori different gauge

theories, and relates the strong coupling regime of one to the weak coupling regime

of the other.

1.2 Holography

1.2.1 The Holographic Principle

Gauge-gravity duality [69, 88, 41], or holography for short, is a powerful duality

displaying many of the above features. In its most general form, the holographic

principle is the statement that a quantum theory of gravity is equivalently described

by a theory without gravity and in one less dimension [86, 84]. This conclusion is
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reached by applying basic concepts of quantum mechanics and thermodynamics to

gravitational black hole solutions.

The heart of the argument is a measure of the amount of information needed to

describe a physical theory. This count of the degrees of freedom is quantified by

examining the size of the Hilbert space. Consider the simple quantum mechanical

system consisting of n spins. Each one can be in one of two states, spin-up or spin-

down, so the total number of possible states of the system is N = 2n. This is the

dimension of the Hilbert space, which importantly is related to the maximal entropy

possible for the system, Smax,

N ≡ eSmax . (1.3)

For the case of n spins the maximal entropy is Smax = n log 2. This is a measure of

the amount of information the system can store, in this case each of n spins can store

one bit of information, which has the numerical entropy Sbit = log 2.

For the more complex example of a quantum field theory (QFT) the maximal

number of degrees of freedom possible in a volume of space is infinite due to infinites-

imal wavelength fluctuations of the field. An understanding of how this entropy scales

with the volume can be obtained by introducing a cutoff and treating the theory on a

lattice. When considering gravity this is somewhat natural: near the Planck length lp

simple QFT can no longer be trusted and effects of quantum gravity must be included.

The number of sites in the lattice is V/a3, where V is the volume of space under con-

sideration, and a is the cutoff spacing of the lattice. On each site the field can be

quantified by a discrete set of ν possible values, which above was 2 for spin-up or

spin-down. This size of the Hilbert space of the lattice theory is therefore N = νV/a
3
.

Invoking 1.3 the maximal entropy of this system is

Smax =
V

a3
log ν, (1.4)

which is proportional to the volume of the system, given in units of the cutoff. This

scaling is a generic conclusion for field theory configurations with a finite energy
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density [84]. It implies that the number of bits needed to describe the theory is

proportional to the volume under consideration.

When the effects of gravity are incorporated the scaling of the size of the Hilbert

space is radically different. This is concluded from examining the entropy of black

holes. A black hole is a solution to a gravitational theory that contains regions that

are causally disconnected from an asymptotic region. This means that there are

observers inside the black hole region who can never communicate with observers

who are very far away from the black hole. The dividing boundary between locations

that can contact distant observers and those that cannot is called the horizon of the

black hole. Such objects are fascinating for various reasons, and, as to be discussed,

are of fundamental interest in holography.

The first interesting property of black holes is that they have an inherent entropy

[12]. This is a necessity if the second law of thermodynamics is to be maintained,

otherwise when entropy is thrown into a black hole the total entropy of the universe

would decrease. Various perpetual motion machines could then be constructed by

using black holes to transform thermal energy into work. The requirement that this

entropy is discernible from the exterior implies it is some function of the mass of

the black hole2. The proper quantity can be argued to be the area of the horizon

of the black hole. Primarily, the area of the horizon is a non-decreasing quantity

in any dynamic process [42], in analogy to entropy. By considering the process of

dropping a single bit of information into a black hole one can determine the minimal

amount of increase in entropy of the black hole and relate it to the change in area.

This determines the entropy to be proportional to the horizon area, while further

thermodynamical considerations [43] fix the proportionality constant,

SBH =
kBc

3A

4~GN

, (1.5)

2More precisely, it can only be a function of the externally visible properties of a black hole, its
“hair”: for a black hole in general relativity these are the mass, the angular momentum, and any
conserved charges.
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where A is the area of the event horizon, kB is the Boltzmann constant, c is the speed

of light, ~ is Planck’s constant, and GN is Newton’s gravitational constant.

Even more interesting than the existence of black hole entropy is that it is the

maximal amount of entropy a system in a given volume can obtain [13]. Consider a

system such as a QFT as described above. Suppose in a given volume V this system

has an initial entropy in excess of SBH , equation 1.5. One can then consider adding

additional energy to this system until it is dense enough that it collapses to a black

hole filling up the volume, with horizon area A. This process has decreased the entropy

to the final value of 1.5, and therefore violates the second law of thermodynamics3.

It is concluded that the system could not have had the supposed large initial entropy

and that the maximal entropy contained in a region of space with surface area A is

given by4 A/4 is the Planck length.

A remarkable result has emerged: when considering the influence of gravity the

maximal entropy contained in a system does not scale like its volume V , as true for a

lattice QFT, but like its surface area A, as given by SBH . The information theoretical

consequences of this is that the number of bits needed to describe the system is not

equal to the volume (in cutoff units) but is equal to the surface area (in Planck units).

This “holographic principle” refers to the reduction in the information contained in

a system by a whole dimension.

The arguments that lead to this conclusion require that the entropy of a black

hole is proportional to its horizon area. Although [12, 42, 43] show that this is indeed

the case in general relativity (GR), and derive the exact value 1.5, it can be expected

to hold in other geometric theories of gravity. As discussed in later sections, the

gravitational theories known as Einstein-Aether theory [54] and Hořava gravity [49]

can be shown to obey forms of the first law, that is, their black holes obey a relation

3Importantly, this process also decreases the entropy of the region exterior to V .
4Natural units will often be used where kB , c, ~, and GN are all equal to 1. Note that lp ≡√
GN~/c3



7

between their energy and a measure of their horizon area that can be interpreted

thermodynamically. This gives evidence that their black holes also have an entropy

proportional to their area. It is therefore generically expected that these gravity

theories obey the holographic principle as well.

The holographic principle is a form of a duality, the concept introduced in Section

1.1. It states that any system involving gravity has a dual description in terms of a

theory in one less dimension. Although in this generality it does not explain how,

holography guarantees that there are two ways to answer a physical inquiry: it can

be posed as a question concerning a gravitational system, or it can be asked in the

dual holographic theory. A precise example of this duality will be discussed in Section

1.2.3.

1.2.2 A Gedanken Allegory

This discussion of black holes, entropy, bits and information can feel removed from

our everyday physical intuition. The following story concretely illustrates the radical

departure from everyday experience that the holographic principle entails.

Suppose you are a successful graduate student, having recently obtained your

doctorate you are preparing to move across the country for your first post-doc. This

requires packing up your Jackson’s “Classical Electrodynamics,” your Wald’s “Gen-

eral Relativity,” your Srednicki’s “Quantum Field Theory,” and the rest of your trusty

textbooks that have gotten you this far. Being still in the grad student mindset you

wish to save as much money and space as possible, and are attempting to fit them all

in one box. Yet, now officially being a physicist, your scatterbrainedness is setting in,

and you think it best to label the box with every book you put in, to keep track.

It quickly becomes obvious that all the books will not fit, so you cleverly decide to

instead take copies of them: after scanning them you can shrink the page size down

to save space. You first cut them down to half the size, then a tenth, a millionth. You

keep shrinking down the page size as small as you possibly can: eventually you are



8

left with pages that have one word5 per Planck area, any smaller and the quantum

nature of spacetime becomes apparent, fluctuations scrambling the text and making

the sentences illegible.

As you are putting these tiny copies in, and writing the name of each book on the

box, you realize another problem: during the coming drive across the country you

are likely going to need to look up the LSZ reduction formula, the Penrose-Hawking

singularity theorem, or some other physical factoid. Although the name of each book

is on the exterior of the box, it will take far too long to dig through and pull out

the one you need, so you come up with another clever solution: you will make two

minimally sized copies of each book; one is put in the box; while the pages of the

other are pasted to the surface of the box, so their total contents are quickly located,

as needed.

You happily carry out this process for a while: scanning your books, shrinking

down their pages, making two copies, pasting the pages of one to the exterior of the

box, while putting the other inside. But eventually you run into a final problem:

despite shrinking down the pages to a minimal size while maintaining legibility, grad

school has left you with so many texts that you are running out of space to paste the

pages on the exterior of the box. Finally, the surface is completely covered in text,

you dare not paste over any pages on the exterior, and yet there must surely be more

room inside the volume of the box to hold additional books. Figuring that the worse

that can happen is that you forget what the last few unlabeled books are, you decide

to throw them in the box anyway. But the worse does happen: as this final book

enters the box, it and all it’s contents disappear to you, and in it’s place is a black

hole!

This tragic swallowing of your prized collection of texts is a consequence of the

holographic principle. Although it seems obvious that one can put more pages into the

5One bit really.
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volume of a box than one can put on its exterior, this is not so at a fundamental level.

A fully covered box surface was the signal that the maximal amount of information

that the box could store was reached, any more information added and your system

transformed to the only object that can store that much entropy, a black hole.

1.2.3 AdS/CFT

The Anti-de Sitter/Conformal Field Theory (AdS/CFT) [69, 88, 41] correspondence

is a precise example of a holographic duality. It states that the gravitational the-

ory of Type IIB string theory on the five dimensional, uniformly negatively curved

spacetime, known as Anti-de Sitter space, is equivalent to the non-gravitational, four

dimensional theory known as N = 4 supersymmetric SU(N) Yang-Mills theory.

This duality arises from considering the behavior of Dp-branes in ten dimensional

Type IIB string theory. These are objects with p spatial dimensions on which the

end points of open strings of the theory can end. Considering a stack of N coincident

D3-branes leads to two possible descriptions of their low energy behavior. Figure 1.1

shows the situation. One approach uses the perturbative description of the branes

given by the strings that can attach to them. The dynamics of these strings describe

the low energy behavior of the stack: only their massless excitations are important,

and it is seen that the strings attached to the branes decouple from any strings in

the ambient ten dimensional background that are not attached, in particular they no

longer interact with the closed strings that describe the graviton. Therefore the low

energy behavior of the D3-branes is described by a non-gravitational effective theory,

which the massless excitations of the strings determine to be 3+1 dimensional N = 4

supersymmetric SU(N) Yang-Mills theory. The gauge group of the Yang-Mills theory

is SU(N) because the string endpoints can have “labels” describing which of the N

D3-branes they attach to. It has the N = 4 supersymmetry as as a consequence of

being derived from the excitations of superstrings.

The other description of the low energy behavior of the stack of D3-branes follows
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Figure 1.1: Two descriptions of N D3 branes. One results in four dimensional N = 4

SU(N) SYM, while the other is IIB superstring theory on AdS5.

from letting them backreact on the geometry. The branes have inherent tension and

hence a mass density. Therefore when placed in the flat ten dimensional background

they will gravitationally interact and cause the spacetime geometry to warp. Near

the stack this backreacted geometry can be seen to be described by five dimensional

Anti-de Sitter (AdS) spacetime. Therefore, the low energy behavior of the D3-branes

is described by the gravitational Type IIB string theory on an AdS5 background. The

AdS/CFT correspondence captures this duality: IIB on AdS5 is dual to N = 4 super

Yang-Mills (SYM).

This example of holography was found as dual ways to describe a stack of branes,

but some general lessons are learned about what properties such a duality must ex-

hibit. One property that is given explicitly in this example is a “holographic dic-
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tionary,” that is, how are questions and formulas from one theory translated to the

other. For example, the simple electromagnetic duality of Section 1.1 had the trans-

lation of ~E → ~B and ~B → − ~E, while the dictionary of T-duality contains n↔ m and

R→ l2s/R. Table 1.2 gives a partial dictionary for the AdS/CFT correspondence.

IIB on AdS5 N = 4 SYM

string coupling: gs Yang-Mills coupling: g2
YM ≡ gs

radius of curvature: L4 ≡ 4πgsNl
4
s rank of gauge group: N

boundary values of fields: sources for operators:

φi|boundary L = LSYM + φi|boundaryOi
spin of field φi spin of operator Oi
mass of field φi scaling dimension of operator Oi

partition function with boundary values: partition function with sources:

ZIIB on AdS5(φi|boundary) ZSYM(φi|boundaryOi)

Figure 1.2: Entries in the holographic dictionary for AdS/CFT showing how quantities

of the gravitational theory on the left are related to those of the non-gravitational

one on the right.

Examining Table 1.2 allows determination of how the different regimes of the dual

theories align. If the coupling of the strings is small, gs � 1, they are very unlikely

to interact, quantum loop corrections will be unimportant, and the theory can be

treated as a classical theory of strings. The second row of the dictionary says that this

corresponds to a weak Yang-Mills coupling, gYM � 1 for the SYM theory. Classical

string theory on a curved background is still a very difficult theory, it is often necessary

to consider the geometry being weakly curved. In this regime the geometry does not

probe the extended nature of the strings and in first approximation they behave as

point particles. For AdS, this requires a large radius of curvature, as compared to the
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string length. The dictionary, Table 1.2, determines that this requirement, L/ls � 1,

implies that gsN � 1. Being in the classical regime with gs � 1, this in turn requires

that N , the rank of the gauge group of SYM is much larger than one. In gauge theories

with large gauge group it is understood that the perturbative expansion parameter

is more properly captured by the ’t Hooft coupling λ ≡ g2
YMN , than the Yang-Mills

coupling gYM itself [85].

This relation of parameters show that AdS/CFT has a particularly useful limit:

when the gravitational theory is classical and the string size can be neglected, the

gauge theory is at large N with a large ’t Hooft coupling; that is, classical supergravity

on AdS5 is dual to strongly coupled large N SYM. This is incredibly powerful as

it makes queries concerning the non-perturbative strongly coupled regime of SYM

much more approachable by translating them into questions concerning a weakly

coupled gravitational theory, general relativity6. Thus, in this regime, AdS/CFT is a

weak/strong duality, as was the Seiberg duality of Section 1.1.3.

An example of an explicit property that can be calculated in AdS/CFT is the

correlation function of the operator Oi. The last row of the dictionary 1.2 shows

the heart of the duality: the partition function of the two theories correspond. To

calculate the correlation function of Oi, two variations of the SYM partition function

with respect to the source φi|boundary are made. By the duality, this can instead be

calculated by varying the IIB partition function with respect to the boundary values

of the field φi.

Another very basic property that this explicit holographic duality illustrates is that

the symmetries of the dual theories must match. In particular are the symmetries

which the fields and operators of the theories form representations. N = 4 SYM, as

a 3 + 1 dimensional relativistic QFT, has fields that transform as representations of

the Lorentz group, SO(1, 3). The conformal nature of this field theory (the “C” in

6The supersymmetry can be thought of as simply dictating which types of matter fields exist.
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Conformal Field Theory) enhances this symmetry to the conformal group SO(2, 4).

On the gravitational side of the duality this symmetry group manifests itself as the

geometric isometries of AdS, which is a maximally symmetric solution to GR.

Another type of symmetry many field theories exhibit is global “spurionic” sym-

metry. The theory is not symmetric under such a transformation acting on just the

fields, the coupling parameters need to transform as well. The case of the theory of

a massive Dirac fermion is an example. The mass term explicitly breaks the axial

symmetry. However, this symmetry can be restored if the mass is assigned an axial

charge and is transformed as well. Although such spurionic symmetries do not in

general generate conserved charges, they are useful as they constrain how couplings

can appear in the low energy effective theory, or correlation functions.

While diffeomorphism invariance, the statement that physics does not depend on

the coordinate system used for spacetime, is often seen as a hallmark of the theory

of general relativity, it is already a property of any relativistic QFT formulated on a

fixed, potentially curved, background spacetime metric. One is always free to change

coordinate systems if it facilitates analysis, the only requirement is that the metric

needs to transform as well in order to maintain the proper geometric quantities, such

as covariant derivatives or volume measures. Therefore, diffeomorphisms act as a

spurionic symmetry of a QFT: in addition to transforming the dynamic fields of the

theory, the non-dynamic parameters captured by the metric need to be transformed

as well. In a QFT on a fixed spacetime background the metric acts analogously to

the Dirac fermion mass. One should think of the metric as a set of coupling constants

specified at every point in spacetime. Position dependent diffeomorphisms are now a

global symmetry under which these coupling constants transform.

This general situation holds true for SYM, and so must manifest itself in the holo-

graphic AdS/CFT duality. On the gravitational bulk side the diffeomorphisms that

are spurionic symmetries of the field theory are part of the higher dimensional dif-

feomorphism invariance. Diffeomorphisms are a gauge invariance of GR. This means
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they are not a symmetry at all, but a redundancy in the description. Gauge vari-

ant quantities are simply not physical. The gauge variant description introduced

non-physical degrees of freedom to simplify the Lagrangian; the gauge invariance of

observables removes those extra degrees of freedom again. Bulk diffeomorphisms that

vanish near the boundary of AdS space correspond to such a gauge invariance, there-

fore they should not be interpreted as a global symmetry, instead they correspond to

a redundancy in the description of the bulk theory. On the other hand, changes of

coordinates that do not vanish at the boundary are not a redundancy: they are global

symmetries of the gravitational theory because they act on the boundary data. They

correspond to the spurionic diffeomorphisms acting on the metric of the field theory.

This matching of symmetries between the gravitational theory and the field theory is

a basic requirement for a holographic duality.

1.3 A Problem in Want of a Tool

The power of the AdS/CFT correspondence is that it allows the hard problem of

strongly coupled SYM to be solved in terms of weakly coupled GR. This is an amazing

tool that has been used toward understanding the viscosity of the quark-gluon plasma

[74], jet quenching [67], thermalization [10], chaotic fluid dynamics [2], and other

physically applicable problems.

Another class of strongly interacting field theories are those arising in condensed

matter systems, such as the quantum Hall effect [65] or Fermions at unitarity [28].

These systems are often describable in terms of an effective quantum field theory

that is inherently non-relativistic (NR). Lacking perturbative tools to tackle these

problems, there has recently been much interest in formulating holography for NR

QFTs, starting with the work of [80, 8]. In addition to the metric of GR, these

works included a massive vector field in the gravitational theory. This has the effect

of changing the solution from being that of AdS to a geometry that captures the

symmetries of the non-relativistic conformal group known as Schrödinger symmetry.
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Importantly, the dual NR CFTs thus obtained are seen to be a light-like reductions

of a relativistic CFT, from which they inherit most of their properties. They hardly

constitute generic NR QFTs.

The driving goal of this thesis is to find a holographic description of NR QFTs, not

by breaking Lorentz invariance by adding fields to a fundamentally relativistic duality

such as AdS/CFT, but by proposing a new holographic duality for a gravitational

theory that is inherently non-relativistic. A guiding principle is that the symmetries

of both dual theories, including the spurionic symmetries, must match, as discussed in

the previous section. In Chapter 2 the formal development of non-relativistic quantum

field theories is explored, with an emphasis on symmetries. This leads to Chapter 3

where a variant of Hořava gravity [49] is shown to have the same symmetry structure

as a generic NR QFT. Chapter 4 contains an explicit holographic dictionary relating

quantities of Hořava gravity and those of NR QFTs. Important example calculations,

including correlation functions and the thermodynamics of some black hole solutions

is presented in Chapter 5. Lastly, Chapter 6 summarizes the key lessons learned

within, and poses possible future developments for this subject.
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Chapter 2

NON-RELATIVISTIC FIELD THEORIES

Much of this chapter is taken from [56, 57] which was coauthored with Andreas

Karch.

2.1 Spurionic Symmetries of NR QFTs

As illustrated in the introduction, the spurionic symmetries of the field theory are

a crucial property that needs to be captured by a possible holographic duality. For

the case of relativistic QFTs this requirement was met by generic diffeomorphisms

being the gauge symmetries of general relativity. The nature and symmetries of non-

relativistic QFTs deserves further elucidation, being far from the modern theorists’

everyday thought.

In a non-relativistic quantum field theory, time plays a special role: there is a

preferred notion of spatial slices consisting of events happening simultaneously. This

can be implemented by considering the spacetime manifold to be equipped with a

co-dimension one foliation consisting of the spatial leaves. A global time defines the

invariant notion of whether one event occurs before or after another, and is hence

required in order to have a well defined causality. Non-relativistic theories can have

instantaneous interactions that, when turned on, have immediate influence at arbi-

trarily large spatial distances, but they cannot influence events that occurred at an

earlier global time. In this way causality is preserved in the absence of light cones.

Usually one wants to insist on translation invariance in time, t → t̃ = t − f

where f is a constant, so that the system allows for a conserved energy. Sometimes

this symmetry can be extended to include the case where f is linear in t, or even
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to the case where f is an arbitrary function of t. As will be reviewed, these two

special cases correspond to NR QFTs which are scale and conformally invariant,

respectively. Any such time coordinate has the right to be called a global time: the

leaves of the foliation remain at constant time even after the transformation f(t).

On the other hand, the Lorentzian diffeomorphism where f has spatial dependence,

violates the preferred foliation as it changes the time ordering of events. Such a

redefined temporal coordinate cannot be considered a global time because it would

alter the notion of which events occur before or after another, and hence violate

causality. Although in a NR QFT one can always work in a global time, and restrict

f to be a function of time only, insight and information can be gained by considering

a “non-physical” time and allowing spatial dependence of f . This is analogous to

using an arbitrary metric in a relativistic field’s action so that one can calculate

the stress-energy tensor, even if only interested in flat Minkowski space. As will be

discussed, from the non-relativistic viewpoint one can still consider these non-physical

temporal transformations by having them act on a background source coupling to

energy current.

For a NR QFT defined in d spatial dimensions invariance under purely spatial

diffeomorphisms is still expected. Furthermore, for many NR QFTs a different change

of spatial coordinates at different times can be performed, that is xi → x̃i(xi, t). In

particular, these time dependent spatial diffeomorphisms include Galilean boosts.

Together with translations and rotations these boosts play a special role as they leave

a flat space background with no electromagnetic field invariant. Correspondingly,

they do not just constrain the low energy effective action but are true (non-spurionic)

symmetries, and give rise to conserved charges.

Additionally, most NR QFTs allow for a conserved particle number current. In

this case the theory in the presence of background electric and magnetic fields coupling

to particle number can be formulated, and the theory possesses a position dependent

U(1) global spurionic symmetry acting on the associated background potential. These
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symmetries — time-dependent spatial diffeomorphisms, a U(1) rotation acting on the

background gauge field coupled to particle number, and time translation invariance

— can be taken as the defining symmetries of a large class of NR QFTs. This class

includes most interacting electron systems and in particular the quantum Hall states.

As will be shown in Section 2.4, if the theory allows for arbitrary reparametrizations of

time it describes a conformal NR QFT, of which the unitary Fermi gas is an example.

For these conformal theories there again exists a subgroup of transformations that

leaves the trivial field theory metric and gauge potential invariant. This subgroup

is often referred to as the Schrödinger group. The mathematical structure of these

symmetries will be worked out in the following sections.

Spurionic symmetries put strong constraints on possible terms in the low energy

effective action of an interacting NR QFT. This was exploited for the unitary Fermi

gas in [81], and for quantum Hall states in [52]. For the quantum Hall states these

symmetries allow one to relate the Hall viscosity and the change in filling fraction

when the theory is put on a sphere to a single coefficient in the low energy effective

action. Furthermore, the leading correction to the Hall conductivity in the presence

of a background electric field with slow spatial variation is completely determined

by the symmetry in terms of thermodynamic quantities. As the Hall states describe

gapped states, the only fields appearing in the low energy effective action are the back-

ground metric and background electric fields, making symmetries very powerful. In

the unitary Fermi gas the interplay between NR conformal invariance and NR diffeo-

morphisms constrains several transport coefficients in the hydrodynamic description

of this system [81].

As in the relativistic case, a guiding principle for constructing a gravitational dual

should be the defining spurionic symmetries of a generic NR QFT. A holographic

gravity dual should have the same set of symmetry transformations as the field the-

ory of interest: time dependent spatial diffeomorphisms, spatially dependent tempo-

ral diffeomorphisms, and the U(1) symmetry acting on the background gauge field
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coupled to particle number. This set of transformations will be referred to as “NR

electro-diffeomorphisms”. If the temporal diffeomorphisms are restricted, excluding

the non-physical spatially dependent ones that violate the preferred foliation, one

has the “NR general covariance” of [50]. Furthermore, by excluding the U(1) gauge

symmetry one has the “foliation preserving diffeomorphisms” of [49]. It should be

emphasized that any NR QFT that has NR electro-diffeomorphisms as its symmetry

group must still have a notion of global time in order to have a well defined causality.

This means the spacetime manifold comes equipped with a foliation by spatial leaves

parametrized by a global time. Such a theory can therefore be restricted to have only

NR general covariance by working in coordinates adapted to the foliation. Although

the symmetry group of NR electro-diffeomorphisms can give more information about

a theory, it can only describe the same causal theories that NR general covariance

can.

2.2 Non-relativistic Electro-diffeomorphism Symmetry

In the previous section’s discussion of NR QFTs it was seen that coordinate changes

and global U(1) rotations are spurionic symmetries of many systems of interest. These

transformations are now formalized.

As first introduced in [81], and extended in [80], many NR QFTs with conserved

particle number are invariant under diffeomorphism and U(1) transformations if the

background fields transform as:

δAt = ξµ∂µAt + ḟAt + Akξ̇
k − λ̇,

δAi = ξµ∂µAi + Ak∂iξ
k + At∂if +meΦgikξ̇

k − ∂iλ,

δΦ = ξµ∂µΦ +Bkξ̇
k − ḟ ,

δBi = ξµ∂µBi +Bk∂iξ
k +Bi(Bkξ̇

k − ḟ)− ∂if,

δgij = ξµ∂µgij + gik∂jξ
k + gkj∂iξ

k + (Bigjk +Bjgik)ξ̇
k. (2.1)

The diffeomorphism parameters, ξt ≡ f and ξi, and the gauge parameter λ can be
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arbitrary functions of space and time. This is the symmetry group of “NR electro-

diffeomorphisms.” Interpretation can be given to these background fields by exam-

ining an action with this symmetry. Consider free NR particles described by the

action

S =

∫
dtddx

√
ge−Φ

[
ı

2
eΦ(ψ†Dtψ −Dtψ

†ψ)− gij

2m
Diψ

†Djψ

−g
ijBj

2m
(Dtψ

†Diψ +Diψ
†Dtψ)− gijBiBj

2m
Dtψ

†Dtψ

]
, (2.2)

where Dµψ ≡ ∂µψ − ıAµψ is the gauge covariant derivative. This action is invariant

under the transformations 2.1 if the field ψ transforms as

δψ = ξµ∂µψ − ıλψ. (2.3)

By varying the action 2.2 with respect to the background fields they are given physical

meaning [80]: gij is the spatial metric and couples to the stress tensor T ij; Aµ is the

gauge field and couples to the particle number density and current (n,~j); and (Φ, ~B)

are the sources that couple to the energy density and current (ε, ~E).

Among the general transformations described by equations 2.1 is a subgroup that

leaves the trivial background, gij = δij and Aµ = Φ = Bi = 0, invariant. These are

determined to be translations, spatial rotations, and Galilean boosts. The latter are

given by

~ξ(t, ~x) = ~vt, λ(t, ~x) = ~v · ~x. (2.4)

In this sense the only true non-trivial symmetries that are a consequence of NR electro-

diffeomorphism invariance are Galilean boosts. More general transformations are only

a symmetry if we treat the background fields as spurions, transforming according to

2.1.

2.3 Conservation Laws

The spurionic symmetry transformations of the background fields, as captured in 2.1,

leads to expressions for the conservation of particle number, momentum, and energy
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[81, 80]. In general backgrounds the latter two are only conserved if one takes into

account the momenta and energy stored in the external fields. The connected part

of the generating functional, W , is defined as eıW ≡
∫
Dψ†DψeıS. Assuming that W

can be written as an integral of a local density,

W [Φ, Bi, gij, At, Ai] =

∫
dtddxW , (2.5)

the invariance of the action S under the field transformations 2.1 implies, upon inte-

grating by parts, the conservation laws:

∂tn+ ∂kj
k = 0, ∂tπi + ∂kT

k
i = 0, ∂tε+ ∂kE

k = 0, (2.6)

which are the conservation of particle number, momentum, and energy, respectively.

The conserved densities and currents are given by:

n ≡ −δW
δAt

, jk ≡ − δW
δAk

,

πi ≡ −Bi

(
δW
δΦ

+Bj
δW
δBj

)
− (Bkgij +Bjgik)

δW
δgkj

− Ai
δW
δAt
−meΦgij

δW
δAj

,

T ki ≡ δkiW −Bi
δW
δBk

− 2gij
δW
δgkj

+ Ai
δW
δAk

,

ε ≡ δW
δΦ

+Bi
δW
δBi

− At
δW
δAt

, Ek ≡ δW
δBk

− At
δW
δAk

. (2.7)

In what follows the case of Bi = 0 is of main interest. For such backgrounds the

momentum density and particle number current are linked [81, 37],

πi = nAi +meΦji. (2.8)

Even when Φ = Bi = 0 the variation of W with respect to these fields is needed to

to calculate the energy density ε and current ~E.

2.4 NR Scale and Conformal Invariance

In addition to the above diffeomorphism and U(1) transformations the spurionic sym-

metry of some NR QFTs can be extended to include a type of conformal invariance
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[80]. The additional generator ω(t, ~x) acts on the background fields via:

δωΦ = −2ω, δωgij = 2ωgij, (2.9)

with the rest invariant.

Although the action 2.2 is not invariant under this transformation, it can be

made so by exchanging the “minimal coupling” used here for “conformal coupling”

[80]. Alternatively, the restricted case of Φ = Bi = 0 can be considered, as in

[81]. To maintain Bi = 0, the transformations 2.1 require that ∂if = 0, which

is simply the statement that temporal diffeomorphisms that violate the preferred

foliation by a global time are not allowed in NR general covariance. Conversely, the

existence of a global time allows1 Bi = 0, by working in adapted coordinates. From

the transformations 2.1 and 2.9, it is seen that Φ = 0 is maintained for ω = −ḟ(t)/2.

In this way it is apparent how in the restricted case of [81] time reparametrization

contains the information of the conformal structure of the theory. They are intimately

linked by demanding that Φ remains zero.

It is useful to define the notion of the conformal dimension of an operator [81].

By the argument above, for NR general covariance this can be determined by the

operator’s behavior under infinitesimal time reparametrization. In general, an oper-

ator/field transforming as

δO ⊃ fȮ + ∆OḟO (2.10)

is said to have the conformal dimension ∆O. In the restricted case of Φ = Bi = 0,

and using using ω = −ḟ/2, equations 2.1 and 2.9 imply the remaining background

fields transform as:

δAt ⊃ fȦ0 + ḟAt, δAi ⊃ fȦi, δgij ⊃ fġij + 2ωgij = fġij − ḟ gij. (2.11)

1On the spatial leaves defined by a global time the above action 2.2 is required to reproduce the
Schrödinger equation. This in turn gives Bi = 0 in such a coordinate frame. Using the observation
that nµ ≡ (e−Φ,−e−ΦBi) transforms as a spacetime one-form, one can interpret the action 2.2 as
giving time evolution in the nµ direction.
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Therefore, At, Ai, and gij are conformal operators with dimensions 1, 0, and −1, re-

spectively. With these transformations of the background fields the action 2.2 (with

Φ = Bi = 0) is invariant under arbitrary f(t); the free action is “conformally invari-

ant” if the scalar field is assigned the conformal transformation

δψ ⊃ −d
2
ωψ =

d

4
ḟψ. (2.12)

If a theory is formulated with this conformal invariance, there is a subgroup of the

spurionic symmetry transformations that leave the trivial background gij = δij and

Aµ = 0 invariant. It has already been seen that translations, rotations, and Galilean

boosts maintain this background. A second special case is the scale transformation.

This corresponds to a constant conformal transformation, ω = −κ/2, which, by

above, requires the time reparametrization f = κt. In order to leave the trivial

background metric invariant these transformations need to be combined with a spatial

diffeomorphism that corresponds to rescaling the spatial coordinates

ξi =
ḟ

2
xi =

κ

2
xi. (2.13)

The relative weight of 1/2 between the rescaling of time and space corresponds to a

dynamical critical exponent of z = 2, as expected for a Schrödinger system.

In later sections examples of gravity backgrounds that have scaling symmetries

for z 6= 2 will be discussed. In order for this more general scale transformation to

be a symmetry of a Galilean invariant QFT the conformal transformation must be

modified to

δωΦ = −zω, δωgij = 2ωgij, δωm = (z − 2)ωm, (2.14)

that is, the mass m must now be treated as a spurionic field. Preserving the trivial

background under the temporal rescaling f = κt then requires the conformal trans-

formation ω = −κ/z and the spatial rescaling ξi = κxi/z, as expected for dynamical

critical exponent z. It has been argued in [8], based on a holographic construction,
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that such scale and Galilean invariant fixed points should exist in interacting NR

QFTs. In the action 2.2, as in Schrödinger’s equation, m is a parameter, not a field.

In this case, the z = 2 scale transformation gets singled out as the only true scale

symmetry that leaves the mass invariant. All other values of z can formally be real-

ized as spurionic symmetries under which m transforms. This is also the case in the

z 6= 2 backgrounds of [8], where the compact light-like direction scales non-trivially

for z 6= 2, and hence so does the compactification radius which sets the mass of the

Kaluza-Klein particles. In principle a system with z 6= 2 scaling can be constructed

by promoting m to a dynamical field in all the above, and adding a hidden sector

action Sm which sets the scaling of m to be given by the transformation 2.14, but this

will not be attempted here.

For the z = 2 case realized by the free field theory above, there is one more sym-

metry generator that leaves the trivial background invariant. It is usually referred to

as the “special conformal” transformation of the Schrödinger group, and corresponds

to the combination

ω = −Ct, f = Ct2, ξi = Ctxi, λ =
1

2
C~x2. (2.15)

Interactions can be added to the free theory that preserve the spatial diffeomor-

phism and the global U(1) symmetries. In particular, the physically important case

of a Coulomb interaction (as relevant for electron systems) has the full NR general

covariance, while a short range interaction in the limit of infinite scattering length (as

relevant for the unitary Fermi gas) additionally has NR conformal invariance. Hence

their low energy physics are constrained by these symmetries. General interactions

need not preserve the full conformal symmetry of the free theory. If the theory re-

mains invariant under transformations of the form f(t) = f0 + f1t then it has time

translation and scale invariance. For the case of f1 = 0 the theory only has time

translation invariance.
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2.5 Relativistic Parent Theory

One can obtain a NR QFT by taking the speed of light c→∞ limit of a relativistic

field theory. In order to yield non-trivial results, a chemical potential µ must be turned

on to provide the rest mass m of particles. This causes the free energy associated with

a particle to remain finite in the large c limit, while the free energy associated with

an antiparticle goes to infinity as twice its rest energy and they therefore completely

decouple. The absence of antiparticles in a NR QFT means that virtual pairs cannot

lead to particle creation. Instead the existence of particles requires a chemical po-

tential to pay their rest mass. The non-relativistic theory then describes fluctuations

around this energy. Extensive use of this concept and the c→∞ limit will be made

throughout.

An illustrative example of this process, which will be paralleled later in Section

3.2.1, is to consider the Kaluza-Klein compactification of a free complex relativistic

scalar. It is widely appreciated that momentum around the compact direction gives

a tower of lower dimensional modes of mass mn ≡ |n|mkk, where the compactifica-

tion radius is related to the Kaluza-Klein mass as Rkk ≡ 1/(mkkc).
2 Additionally,

the compact momentum also gives the lower dimensional modes a U(1) charge: the

symmetry of translation around the circle acts as a phase rotation on the n-th Kaluza-

Klein mode, in accordance to it having charge qn ≡ n. Turning on a chemical potential

µ = mkkc
2, the modes have the energy

En =

√
~p 2c2 + (mnc2)2 − qnµ. (2.16)

Taking the c→∞ limit, while keeping the Kaluza-Klein mass mkk fixed, corresponds

to taking the null Rkk → 0 limit and reduces the mode’s energy to

En ≈
~p 2

2nmkk

+mkkc
2(|n| − n). (2.17)

2Non-relativistically one still has ~ = 1, so energy is measured in inverse time. E = mc2 (or more
precisely KE = mv2/2) implies that mc = E/c has units of inverse length.
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The modes with positive charge n have the expected non-relativistic dispersion rela-

tion, while the “anti-particles” with negative charge n have an energy that grows like

c2, and hence decouple from the low energy theory.

In the same spirit, the transformations 2.1 can easily be derived by taking a non-

relativistic limit of the relativistic theory of a charged massive field. Of course this

procedure does not give the most general NR QFT, but it does give a simple way

to derive the transformation properties of the free field theory. This is easiest to

illustrate in the case of a scalar [81]. The relativistic action

S = −
∫
ddxdt

√
−g1

2

(
gµνDµφ†Dνφ+ c2m2e2σφ†φ

)
, (2.18)

where Dµφ ≡ ∂µφ − ıCµφ is the gauge covariant derivative of the gauge field Cµ,

is invariant under the infinitesimal general relativistic coordinate and U(1) gauge

transformations:

δφ = ξρ∂ρφ− ıΛφ,

δCµ = ξρ∂ρCµ + Cρ∂µξ
ρ − ∂µΛ,

δgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gρν∂µξ

ρ. (2.19)

Powers of the speed of light have been explicitly displayed throughout so the non-

relativistic c → ∞ limit can be taken. Note that the relativistic mass is defined as

meσ, this is crucial as it has a different scaling dimension than the non-relativistic

mass m, as discussed above. Additionally, m and σ will be treated as spurionic fields

and be allowed to have spacetime dependence. Following [81] one could now define

the non-relativistic field by factoring out the fast phase rotation due to the scalar

field’s rest mass: φ ≡ e−ımc
2tφNR/

√
c. For charged scalars this phase can instead be

gauged away via the gauge transformation Λ = −c2mt. Therefore
√
cφ itself can be

treated as a non-relativistic charged scalar by working with the background gauge

potential Cµ = −∂µΛ = δµtmc
2. Although relativistically such a gauge field would

be considered highly trivial as it has zero field strength, here it plays an important
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role due to the fact that c dependent gauge transformations, such as the above Λ,

and the c→∞ limit do not commute. Also note that, unlike constant spatial vector

potentials, a constant Ct can, in general, not be completely gauged away. The term∫
M
jµCµ (where M is the space-time manifold) is usually taken to be gauge invariant

as long as jµ is a conserved current. Under a gauge transformation δC = −dΛ, the

change in action is

δS = −
∫
M

jµ∂µΛ = −
∫
∂M

(Λjµ)dSµ +

∫
M

Λ∂µj
µ. (2.20)

The second term vanishes by current conservation. The contributions to the bound-

ary term from spatial boundaries vanish for any localized current. However, for the

boundaries of the integral at the final and initial times, t = tf and t = ti, j
0 gener-

ically will not vanish. The total charge Q is conserved, and if it is non-zero at one

time, it is non-zero at all times. In particular, for Λ = mc2t (which would be needed

to set the above constant Ct to zero) one has

δS = −mc2Qt
∣∣tf
ti

= mc2Q(ti − tf ) (2.21)

which clearly is non-zero as long as Q is non-zero. The action is only invariant under

the restricted class of gauge transformations which vanish at tf and ti. However, to

remove a constant Ct would require a gauge transformation which is non-vanishing

on initial and final surfaces.

As a warm-up, consider, as in [81], the metric expansion3:

gµν =

−c2 + 2At
m

Ai
m

Aj
m

gij

 . (2.22)

For a constant m and σ = 0, substituting this form of the metric, the gauge field

background Ct = mc2, and the rescaled field ψ =
√
mcφ into the relativistic action

3The leading piece of gtt goes as c2 because the non-relativistic time t is used as the temporal
coordinate, not x0 ≡ ct. Likewise for the behavior of gti.
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2.18, and after discarding negative powers of c, one obtains

S =

∫
dtddx

√
g

[
ı

2
(ψ†∂tψ − ∂tψ†ψ) + Atψ

†ψ − gij

2m
(Diψ

†Djψ)

]
, (2.23)

which is the non-relativistic action 2.2 with Φ = Bi = 0. The action of spatial diffeo-

morphisms and the global U(1) on the remaining background fields can be determined

from the transformation 2.19 for the generators ξµ = (λ/mc2, ξi).

There are two important points in the details of this calculation, both concerning

the gauge field Cµ. First, the mass term in the relativistic action 2.18, for σ = 0,

would contribute the term −1/2c2m2ψ†ψ to the non-relativistic action, forcing ψ = 0

in the c → ∞ limit. For the background Ct = mc2 this mass term is canceled by

the −CµgµνCνψ†ψ term coming from the covariant derivative. This is understood

as tuning a chemical potential that provides the rest mass of the particles, so that

the non-relativistic action only describes fluctuations around this energy. Thus the

magnitude of the gauge field acts as a chemical potential and needs to be fixed to

cancel the mass term and allow a non-trivial non-relativistic limit.

Secondly, it needs to be assured that a consistent expansion in powers of c has

been done, both of the metric and the gauge field. Cµ naturally has a piece of order

c2 from performing the gauge transformation removing the fast phase of the scalar

field. A consistent expansion can be made so that the next term comes in at zeroth

order: Cµ = c2bµ + vµ +O(c−2). As will be discussed in more detail in Sections 3.2.2

and 4.2, for the expansion of the temporal diffeomorphism generator ξt = f − α/c2

the gauge field transforms as

δvµ ⊃ −Ct∂µα/c2 = −bt∂µα, (2.24)

that is, the O(c0) piece of Cµ is generated by the subleading temporal diffeomorphism

α. As the warm-up example above had vµ = 0 throughout, to maintain this restriction

an O(c0) gauge transformation was implicitly performed. Therefore, the appearance

of the gauge transformation λ as the subleading term of the temporal diffeomorphism

is only an artifact of demanding α = −λ/m, so that vµ stayed zero.
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The warm-up example can be extended to include general backgrounds. As dis-

cussed above, the gauge field can be consistently expanded as Cµ ≡ c2bµ + vµ. The

consistent expansion of the metric can be determined by first considering the case

of Cµ = c2btδ
t
µ, similar to the warm-up example. In this frame the metric can be

decomposed in the ADM form4

gµν =

−c2N2 +NkNk Ni

Nj Gij

 , (2.25)

where Nk = GkiNi. The general leading gauge field Cµ = c2bµ can be obtained

from Ct = c2bt by performing a coordinate transformation, Cµ → JνµCν . Under this

transformation the metric change by two Jacobian factors, gµν → JρµgρσJ
σ
ν , and it

can be see that all components generically gain O(c2) pieces. One is therefore lead to

expand the metric as5

gµν =

−c2N2 +NkNk Ni + c2Pi

Nj + c2Pj Gij − c2 PiPj
N2

 . (2.26)

The non-relativistic action 2.2 and transformations 2.1 can now be derived by

taking the formal c→∞ limit of this relativistic theory. First, the chemical potential

must provide the rest energy of the particles. As discussed above, this is achieved

by a cancellation between the mass term and the magnitude of the gauge field. In

general there are also O(c4) pieces of CµC
µ. For the action to have a non-trivial

non-relativistic limit this piece must vanish, requiring

Pi
N2

= −bi
bt
. (2.27)

This can be understood as the requirement that the theory has a global time, needed

for a causal non-relativistic theory. As discussed above in Section 2.4, in adapted

4The lack of At in this expansion will be discussed further in Section 4.4.
5This can be seen to be a consistent expansion, meaning no other positive power of c pieces get

turned on by coordinate transformations.
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coordinates the vector Bi vanishes. The relation of this NR field to bi and Pi, given

by 2.30 to follow, justifies the identification in 2.27: in general these fields only arise

due to coordinate changes to a non-adapted frame. The O(c2) piece of CµC
µ will play

the role of a chemical potential and cancel the mass term. Explicitly this requires

bt
N

= meσ. (2.28)

Plugging the rescaled field φ → φ/
√
c and the expansions for the gauge field and

metric into the relativistic action 2.18 (with the generalized spacetime dependent

mass), and discarding negative powers of c, one obtains

S =

∫
dtddxmeσL, (2.29)

where L is the Lagrangian density of the action 2.2 if the following identifications are

made:

e−Φ ≡ mN2

bt
,

Bi ≡ −
bi
bt

=
Pi
N2

,

At ≡ vt +
btN

kNk

2N2
,

Ai ≡ vi +
btNi

N2
− biN

kNk

2N2
,

gij ≡ Gij −
biNj

bt
− bjNi

bt
+
bibjN

kNk

b2
t

. (2.30)

These field combinations transform as 2.1 if the relativistic generators of the trans-

formations 2.19 are expanded as ξµ = (f, ξi) and Λ = λ. Gauge transformations of

order O(c2) can no longer be performed as they would not leave the O(c2) piece of

CµC
µ invariant, which was needed to have a well defined c → ∞ limit. The role of

the subleading temporal diffeomorphism α, introduced previously, and its relation to

the specific combinations of relativistic fields in the dictionary 2.30 will be discussed

in Section 4.2.
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For constant m and σ the field can be rescaled as ψ ≡ φ
√
meσ/2 and the above

exactly reproduces the Lagrangian density of the action 2.2. This rescaling only

changes the dimension of the field and, in fact, can be done even for time dependent

m and σ. The role of the field σ can most easily be understood by enforcing NR

conformal invariance on the above action. For the general z 6= 2, the transformation

2.14 will be a spurionic symmetry of the action if

δωe
σ = −(d+ z − 2)ωeσ. (2.31)

It is now clear why the NR action 2.23 of [81] has NR conformal invariance. The

transformation ω can be used to set meσ to a constant. Recall from Section 2.4 that

the restricted case of [81] with Bi = Φ = 0 is maintained by performing ω = −ḟ/z

whenever the temporal redefinition f(t) is performed. In turn, transformations 2.14

and 2.31 imply that meσ will generically become a function of time. But such a factor

can be absorbed into the fields by a redefinition, due to the anti-symmetric nature

of the time derivative in the action 2.2. This means the restricted case [81] will have

NR conformal invariance and the field has the transformation

δωψ ≡ δω
(
φ
√
meσ/2

)
=

1

2
√
m
φeσ/2δωm+

1

2
φ
√
me−σ/2δωe

σ = −d
2
ωψ, (2.32)

in essence deriving 2.12.
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Chapter 3

A NON-RELATIVISTIC GRAVITATIONAL THEORY

Much of this chapter is taken from [56, 57] which was coauthored with Andreas

Karch, as well as [55].

3.1 Hořava Gravity

A gravitational theory centered around foliation preserving diffeomorphisms was in-

troduced by Hořava in [49]. In its most simple form, Hořava-Lifshitz theory de-

scribes the dynamics of a lapse field N , a shift vector NI(t, xI), and a spatial metric

GIJ(t, xI)
1. In the language of [49] the theory is “projectable” if N is a function of

t only, and non-projectable when N is allowed to have spatial dependence as well.

As shown in the next section, the most general low energy action consistent with

symmetries and containing up to two derivatives is almost completely fixed to be

that of Einstein gravity written in terms of these fields. In addition to the two free

dimensionful parameters of Einstein’s gravity, the Newton’s constant GN and the

cosmological constant Λ, the low energy limit of projectable Hořava gravity has two

additional free parameters: λ̃, which determines the relative coefficient of the two

allowed kinetic terms for the spatial metric; and β̃, which determines the speed of the

spin two graviton2. In the non-projectable case, which will be the main interest in

1Indices have the following meaning: i, j, . . . run over the d spatial dimensions of the field theory;
µ, ν, . . . run over the d+ 1 field theory directions including time; I, J , . . . run over the D = d+1
spatial dimensions of the bulk including the radial coordinate r; and, last but not least, M , N ,
. . . run over all d+ 2 bulk directions including time and r. Section 3.2.1 will require discussion of
a d+ 3 dimensional bulk, there indices X, Y , . . . will cover the d+ 2 directions of M , N , . . . plus
one additional direction ζ.
2Without Lorentz invariance the speeds of light and gravity can be different.
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this work, there is another two derivative term involving spatial derivatives of N that

can be included in the low energy action. The corresponding coupling constant is

referred to as α̃. These parameters are one of the issues that makes it difficult to find

a version of Hořava gravity that is a consistent theory of our world. In order to agree

with the observed Lorentz invariance one needs a mechanism to set λ̃ ≈ β̃ ≈ α̃ ≈ 0,

the values they take in general relativity. For applications to NR holography, this

is of no concern. In fact, one could hope that by adjusting these couplings Hořava

gravity could holographically describe a wide class of NR QFTs.

The projectable version of Hořava-Lifshitz theory was extended in [50, 25] to

include NR general covariance (that is, the U(1) symmetry corresponding to parti-

cle number conservation in addition to foliation preserving diffeomorphisms). In this

case, the theory contains two additional non-dynamical fields, the “potential” A(t, xI)

(which arises as the subleading term of N in a non-relativistic expansion and in that

sense it restores spatial dependence to N) and at least one of the following: a field

AIJ , which can be thought of as the subleading term of the spatial metric, or the so

called “prepotential” field ν(t, xI). The one exception is the case of D = 2 spatial

dimensions, for which no extra field beyond A is required. These versions do not allow

a straightforward holographic interpretation. In D = 2 dimensions the equations of

motion for A immediately force spatial slices to be flat, whereas for holographic in-

terpretations following the standard recipe an asymptotically hyperbolic spatial slice

is expected3. Similarly, the theory with AIJ requires a flat spatial slice4. The sce-

nario with the prepotential ν has a different problem. Under the U(1) symmetry ν

shifts. Therefore, as discussed more in Section 3.1.2, the U(1) gauge invariance in the

3AdS in flat slicing has been found as a solution to projectable Hořava gravity [36], but given in
the Gullstrand-Painleve coordinates, which do not extend to the boundary. These are related to
the traditional Fefferman-Graham coordinates [32] by a “non-physical” temporal transformation,
and so correspond to gauge inequivalent configurations of Hořava gravity.
4While it is possible to introduce a “spatial cosmological constant” Ω in the theory with AIJ , the

constraints that arise as the equations of motion of A and AIJ are only satisfied if Ω = 0.
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bulk is completely fixed by choosing ν = 0 gauge; there are no residual transforma-

tions left that could be interpreted as global symmetries acting on the background

data of the dual field theory. One could instead adopt the Nr = 0 gauge, which

leaves r-independent gauge transformations as a residual symmetry. In this case the

asymptotic value of ν would have to be interpreted as the source of a boundary op-

erator. Like the background electric and magnetic fields, this background spurionic

field would not be invariant under the U(1) global transformation. Unlike the former,

which do transform exactly like background fields should under a U(1) transforma-

tion, ν shifts also in the boundary theory. The only example of an operator that

transforms like this would be the phase of a U(1) charged operator; if either added to

the Lagrangian or having acquired an expectation value, the presence of this operator

would signal that in the boundary theory the U(1) symmetry is broken (explicitly or

spontaneously, respectively). Thus the theory with ν can at best capture the dual to

a NR QFT with a broken U(1).

The following sections will derive a different field content that obeys the symme-

tries of NR electro-diffeomorphisms by taking a particular Kaluza-Klein compactifi-

cation of GR, as well as by taking the infinite speed of light limit of Einstein-Maxwell

theory. The main thrust of this thesis is that by working in coordinates adapted

to the global time, and restricting the symmetry transformations to exclude the

non-physical temporal diffeomorphisms, non-projectable Hořava gravity coupled to

electric and magnetic fields captures NR general covariance, and therefore should be

holographically dual to a generic NR QFT with these same symmetries.

3.1.1 Foliation Preserving Diffeomorphisms

Hořava gravity is an alternate metric theory of gravity [49]. Like general relativity, its

low energy behavior can be expressed in the context of geometry. In GR a dynamic

spacetime manifold encodes the influence of gravity: the manifold responds to the

presence of mass and energy, while simultaneously the geometry dictates the evolution
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of said matter. A hallmark of GR, capturing its geometric nature, is the coordinate

invariance of observables. This is captured in the physical description by demanding

that diffeomorphisms, that is, local changes of coordinates on the manifold, are a

gauge symmetry of the theory.

Hořava gravity shares much of this geometric flavor, but, unlike GR, in addition

to a dynamic spacetime there is a fundamentally special foliation of the manifold, Σt.

Hořava gravity has a preferred notion of time which is geometrically captured by the

leaves of a co-dimension one foliation: these slices consist of simultaneous events. The

foliation structure breaks the general covariance enjoyed by just the manifold. The

preferred global time of Hořava gravity means that Lorentzian coordinate changes that

mix spatial directions into a new time coordinate are no longer allowed. These would

alter the notion of which events are simultaneous and violate the preferred foliation of

the manifold. The temporal coordinate can still be reparametrized: sending t→ t̃(t)

for an arbitrary monotonic function t̃ preserves the simultaneity of events, and hence

the foliation structure. Spatial diffeomorphisms that change coordinates on a leaf

are still allowed, and indeed can even be time dependent. These transformations,

spatial diffeomorphisms xI → x̃I(t, xI) and time reparametrizations t → t̃(t), are

collectively called foliation preserving diffeomorphisms, and are a gauge symmetry of

Hořava gravity.

The degrees of freedom of Hořava gravity can be understood in this low energy

geometric picture. A spacetime manifold in coordinates adapted to the foliation will

have a metric of the ADM form

G̃MNdx
MdxN = −N2dt2 +GIJ

(
dxI +N Idt

) (
dxJ +NJdt

)
. (3.1)

Here GIJ is the spatial metric on the leaves of the foliation at a constant t, N is the

lapse function, and N I is the shift, a spatial vector. The low energy action of Hořava
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gravity is expressed in terms of these fields as [39]5

S =

∫
dtddxdr (Lkin − LV ) , (3.2)

where the kinetic term is given in terms of the extrinsic curvature of the leaves,

KIJ ≡
1

2N

(
ĠIJ −∇INJ −∇JNI

)
, (3.3)

and its trace, K = GIJKIJ , by

Lkin =
1

16πGH

√
GN

[
KIJK

IJ −
(

1 + λ̃
)
K2
]
. (3.4)

Here G is the determinant of the spatial metric GIJ , and ∇I is its Levi-Civita connec-

tion. The gravitational constant GH is a dimensionful parameter that sets the scale

where quantum effects become important, that is, it determines the Planck length.

The simplest potential term involving up to two derivatives, as appropriate for the

low energy limit, is given by [18, 20]

− LV =
1

16πGH

√
GN

[
(1 + β̃)(R− 2Λ) + α̃

(∇IN)(∇IN)

N2

]
, (3.5)

where R is the Ricci scalar of GIJ and Λ is the cosmological constant.

The constants (λ̃, α̃, β̃) are free dimensionless coupling constants that are allowed

by demanding only foliation preserving diffeomorphisms and not the full relativistic

diffeomorphism invariance of GR6. For λ̃ = α̃ = β̃ = 0 this action becomes, up to

a total derivative, the standard Einstein-Hilbert one, written in terms of the ADM

decomposition of the full d + 2 dimensional bulk metric G̃MN . Even in the λ̃ =

α̃ = β̃ = 0 limit this is not the theory of standard GR. Despite identical actions,

the gauge invariances of Hořava gravity lack the general temporal diffeomorphism

t → t̃(t, xI). As a consequence Hořava gravity contains an extra scalar degree of

freedom as compared to GR.

5Note that the coupling constants are not the same as [39], despite similar names.
6With no further field content β̃ can be set to zero by performing a field and parameter redefinition

[33].
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Hořava gravity departs much more drastically from GR in its high energy behav-

ior. Although this regime will not be further explored, a brief discussion is pertinent.

Because of the fundamental foliation of spacetime, a preferred notion of time exists

in Hořava gravity, and Lorentz symmetry is broken. This allows temporal and spa-

tial coordinates to have different mass dimensions and is captured by the dynamical

critical exponent zH : [xI ] = −1 while [t] = −zH , implying [GH ] = zH −D. An inter-

esting case is near a UV fixed point with zH = D. The UV action will be dominated

by terms with 2D spatial derivatives, while there will be the same kinetic term 3.4,

involving KIJ and which contains only two time derivatives. This appears to lead to

a unitary, power counting renormalizable theory [49, 5, 3], as evidenced by the fact

that now [GH ] = 0. The low energy action 3.5 with an effective zIR = 1 would then

be the flow from this UV fixed point due to relevant deformations.

Under spatial diffeomorphisms ξI and time reparametrizations f(t) the fields trans-

form as

δGIJ = ξK∂KGIJ + fĠIJ +GIK∂Jξ
K +GKJ∂Iξ

K ,

δNI = ξK∂KNI + fṄI +NK∂Iξ
K +GIK ξ̇

K + ḟNI ,

δN = ξK∂KN + fṄ + ḟN. (3.6)

These can be derived by taking the c → ∞ limit of the transformation of the rela-

tivistic metric G̃MN with the diffeomorphism parameters ξM =
(
f, ξI

)
(after explicitly

restoring the speed of light to the metric: N → cN) [48].

3.1.2 NR General Covariance and the Scalar Khronon

Hořava gravity can be usefully embedded into standard GR via a Stückelberg-like

mechanism [34, 18, 20]. This formalism makes the extra degree of freedom explicit

by coupling Einstein gravity to an additional scalar field φ. When the scalar field

acquires an expectation value the gauge symmetry of GR is broken down to only

spatial diffeomorphisms along the level sets of φ. In this way φ can be used to define
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the preferred foliation by a global time, and is referred to as the khronon [18, 20]. This

view of Hořava gravity as GR with diffeomorphism invariance broken by a background

field has also been recently emphasized in [63].

To have the symmetries of foliation preserving diffeomorphisms, φ needs to have

the reparametrization symmetry in field space φ → φ̃(φ), which becomes the time

reparametrization symmetry of Hořava gravity7. This reparametrization invariance

can be made explicit by working with the time-like unit vector normal to the leaves

of constant φ,

uM ≡
−∂Mφ√

−G̃NP∂Nφ∂Pφ
. (3.7)

In the “unitary gauge” the time coordinate is chosen to be the expectation value of

the khronon, t = φ, and this vector has u0 = −N and all its spatial components

vanish. The geometric quantities of the foliation appearing in Hořava gravity can all

be expressed in terms of the khronon field. In particular, in unitary gauge the spatial

components of

KMN ≡
(
G̃MP + uMuP

)
∇̃PuN (3.8)

become the extrinsic curvature KIJ . The most general covariant action involving two

derivatives of the normal vector uM is related to Einstein-Aether theory [54], and

given by

SK =
1

16πGK

∫
dtdDx

√
−G̃
[
R̃− 2Λ

+c4u
M∇̃Mu

NuP ∇̃PuN − c2

(
∇̃Mu

M
)2

− c3∇̃Mu
N∇̃Nu

M

]
. (3.9)

7As explained in [20], a similar construction also underlies other modified theories of gravity. A
time dependent condensate of a scalar with a shift symmetry (giving rise to a theory with time
dependent spatial diffeomorphisms together with time translation symmetry) underlies the “ghost
condensation” model [6] as well as shift-symmetric k-essence [7]. When even time translation
symmetry is absent and only time dependent spatial diffeomorphisms are preserved, the symmetry
group governs the effective theory of standard inflation [23, 87]. If time translation invariance is
combined with time independent diffeomorphisms one has the symmetry of Einstein-aether theory
[54] or gauged ghost condensation [22].
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The reader should recall that the tilded quantities refer to those derived from the full

d+ 2 dimensional Lorentzian metric.

To make contact with Hořava gravity one chooses the time coordinate t to be the

scalar field φ, breaking the general covariance of the khronon-metric theory. Under

this gauge fixing the khronon action 3.9 then becomes to the low energy Hořava action

3.2 upon making the identification of constants [11]:

GH

GK

= 1 + β̃ =
1

1− c3

, 1 + λ̃ =
1 + c2

1− c3

, α̃ =
c4

1− c3

. (3.10)

By examining the weak-field, slow-motion limit of the action 3.9 it is seen that the

effective Newton’s constant is [21, 11]

GN ≡
1− c3

1− c4
2

GH . (3.11)

Lastly, the equations of motion following from the action 3.9 can be linearized around

the flat background solution to determine the speed of the modes. The low momentum

dispersion relations determine the wave speeds squared to be [53, 39]:

s2
2 =

1

1− c3

, s2
0 =

(c2 + c3)(D − 1− c4)

c4(1− c3)(D − 1 +Dc2 + c3)
, (3.12)

for the spin two modes of the metric and the spin zero mode of the foliation, respec-

tively8

A powerful use of the khronon formalism is in the probe regime where the ci are

parametrically small. In this case the backreaction of the khronon on the geometry

can be ignored and any solution of vacuum GR descends to a solution of Hořava

gravity. In the probe limit, the action 3.9 is just that of GR, so the metric equations

of motion are clearly satisfied by vacuum GR solutions. The equation of motion for the

8In terms of the khronon language, the field redefinition that sets β̃ = 0 (equivalently c3 = 0)
involves the redefinition G̃effMN ≡ G̃MN−σuMuN . This is equivalent to determining which effective
metric G̃effMN matter couples minimally to. For example, in an electromagnetic action, contracting
the field strength FMN via G̃effMN for σ = 0 or σ = β̃ is equivalent to working in units with the
speed of the photon or that of the spin two graviton equal to one, respectively.
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khronon φ can then be solved on the fixed background given by the metric solution.

By making the Lorentzian coordinate change to unitary gauge t → t̂ ≡ φ(t, xI) the

resulting lapse N , shift NI , and spatial metric GIJ of the ADM decomposition 3.1 are

now a solution to Hořava gravity. In the probe limit the khronon does not influence

the geometry of the manifold, it merely imprints the preferred notion of time via its

level sets.

From the identification of parameters 3.10, the probe limit of the khronon formal-

ism gives the Hořava coupling constants:

β̃ ≈ c3 � 1, λ̃ ≈ c2 + c3 � 1, α̃ ≈ c4 � 1, (3.13)

while the speeds of the modes 3.12 reduce to

s2
2 ≈ 1, s2

0 ≈
c2 + c3

c4

=
λ̃

α̃
. (3.14)

Interestingly, even in the probe limit the scalar mode can have arbitrary sound speed.

In taking the limit this physical speed should be held fixed; that is, the ratio λ̃/α̃

is held fixed while both constants are taken to zero. This technique will be used in

Section 5.6 to compute numerical profiles for the khronon in the background of an

Anti-de Sitter-Schwarzschild black hole.

One can also use the scalar khronon to formulate the generally covariant version

of Hořava gravity [50, 25]. As initially introduced in [48] the transformations of the

Hořava fields 3.6 can be extended to include a U(1) transformation by expanding to

the next order in the speed of light. For N → N+A(t, xI)/c
2 and ξt = f−α(t, xI)/c

2

the action of the U(1) transformation α is:

δαN = 0, δαGIJ = 0,

δαNI = N2∂Iα,

δαA = − ˙(αN) +NN I∂Iα, (3.15)

while under foliation preserving diffeomorphisms A transforms as N does. As it stands

the action 3.2 is not invariant under this transformation. First developed in [50], and
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later generalized in [25], this can be fixed by postulating the “prepotential” field ν

that shifts under the α transformation. In fact, this field can be associated with the

scalar khronon, as follows.

For a consistent interpretation of α as a gauge transformation how it acts on the

khronon needs to be understood. Restoring factors of the speed of light the expansion

of the khronon around unitary gauge is

φ = c2t+ χ(t, xI). (3.16)

From this the transformation t → t + α/c2 is expected to be reinterpreted as the

shift χ → χ − α, that is, the subleading relativistic temporal diffeomorphism α can

be interpreted in a non-relativistic foliation preserving way as instead shifting the

khronon fluctuation χ. Therefore, the prepotential ν is naturally identified with χ,

the subleading piece of the khronon in the c → ∞ expansion. The transformation

of χ can also be found by considering the khronon to be the phase of a complex

scalar. Expanding the relativistic transformation of a scalar, and demanding the

reparametrization invariance of the khronon field, one finds

δχ = ξK∂Kχ+ fχ̇− ḟχ− α. (3.17)

It is easy to check that the following combinations are invariant under the U(1)

transformation α

N̂I ≡ NI +N2∂Iχ, Â ≡ A− ˙(χN) +NN I∂Iχ+
N3

2
GIJ∂Iχ∂Jχ. (3.18)

In the projectable case, this reproduces the “minimal substitution” of [25] if the

identification ν ≡ −Nχ of the prepotential with the khronon fluctuation is made9.

In particular Â is equivalent to [25]’s A− a.

Using this form of covariant Hořava gravity an obstruction in creating a holo-

graphic duality is apparent. The khronon must be added to the bulk action to yield

9The factor of the lapse N is due to differing definitions of α as the subleading piece of the
temporal diffeomorphism when compared with [50, 25].
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invariance under α. From the statement of holography, this action can give the corre-

lation function of the operator dual to the khronon by examining its on-shell boundary

value. This operator is not gauge invariant though, and will shift under α as χ does.

The only operator that shifts under a gauge transformation is the phase of a charged

field; it acquiring a nontrivial correlation function indicates that the U(1) symmetry

is in fact broken in the field theory. This is apparent by considering how the bulk

transformation generated by α manifests itself as the global U(1) rotation of the field

theory. If one uses the freedom 3.15 to gauge fix Nr = 0, it is seen that r independent

α maintains this bulk gauge choice and would be expected to correspond to boundary

U(1) transformations, leading to the above issue by shifting χ. Alternatively, α could

be used to gauge away the khronon in the bulk. This does not solve the issue as now

there are no residual α transformations that could be interpreted as acting on the

boundary data. In this case the boundary U(1) appears broken too.

There are two additional issues with the scalar khronon formulation leading to its

abandonment as a holographic gravitational theory that captures the full NR general

covariance symmetry. First is a purely classical gravitational consideration. By its

nature the khronon field needs a uniform spatial distribution to define the leaves of

the foliation. Such a configuration should generically be gravitationally unstable to

clumping, and therefore may not even define a consistent theory10. The second issue

is quantum in nature. In order to recover the time reparametrization invariance of

Hořava gravity the khronon φ needs to have a global field redefinition symmetry. In

quantum gravity there is expected to be no global symmetries so this construction

seems problematic beyond the classical level.

These shortcomings hint at a solution; as the khronon is seen to transform as the

phase of a complex scalar, this scalar should be considered charged, and the accompa-

nying gauge fields included in the bulk. Being a gauged phase, this field would have

10Problems along these lines are known in the related ghost condensation theories [26, 76].
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no stress tensor and therefore avoid the issue of clumping. Time reparametrization

can be implemented without the need of postulating global symmetries, and therefore

can be consistent with tenets of quantum gravity. As this construction requires the

inclusion of a bulk vector field to set a preferred time slicing it will be referred to as

a vector khronon. The hope of [50, 25], that the shift NI could play a dual role as

a gauge field for both spatial diffeomorphisms ξI and the U(1) generator α seems to

not be borne out, at least for holographic purposes. The role of bulk gauge fields will

be pursued shortly, but first an alternate motivation for their necessity is discussed.

3.2 Vector Khronons

3.2.1 Kaluza-Klein Vector Khronon

The first attempts [80, 8, 35] at a gravitational dual to a non-relativistic field theory

shared an unexpected feature: they had two extra dimensions compared to the field

theory they described. This can be understood by realizing that these NR QFTs are

basically light-like compactifications of relativistic field theories in one higher dimen-

sion. The simplest example is given by a light-like compactification with periodic

boundary conditions for all fields. More interesting examples can be obtained by

imposing twisted boundary conditions for R-charged fields along the light-like circle

[47, 1, 68]. This twisting removes some of the zero modes on the circle and makes the

field theory more tractable. With compactification on a light-like circle, the lower di-

mensional field theory preserves a non-relativistic subgroup of the higher dimensional

relativistic Lorentz symmetry, the Schrödinger group. The holographic dual descrip-

tion correspondingly is also a light-like compactification, of general relativity on AdS

spacetime. Momentum modes along the light-like direction, ζ, appear as separate

conserved particle number sectors in the NR QFT, not as spatial momentum modes.

This direction and the traditional holographic radial coordinate gives two extra di-

mensions to the bulk geometry. For an interesting non-relativistic interpretation of
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this geometry see [27].

Near the boundary r → 0, the metric of these bulk geometries can be parametrized

as [80]11

dŝ2 = −2e−Φ

mr2

(
dt−Bidx

i
) (
dζ − Atdt− Aidxi

)
+
gijdx

idxj + dr2

r2
. (3.19)

The gauge gµr = gζr = 0 has been chosen, but this does not completely fix the diffeo-

morphisms of the theory. Under the residual transformations these fields parametriz-

ing the metric transform exactly like the NR QFT fields 2.1, for ξζ ≡ λ. This justifies

this example as a non-relativistic holographic duality.

The NR QFT holographically described by GR on this background is highly con-

strained: most of its properties are inherited from the relativistic theory upon the

light-like compactification, even with twisted boundary conditions. For d = 2 it is

known that the field theory dual to the spacetime 3.19 is simply the discrete light cone

quantization ofN = 4 SYM theory in four spacetime dimensions [47, 68]. Field theory

properties, such as hydrodynamics and thermodynamics, follow from this relativistic

reduction [47, 75]. Here this known non-relativistic duality is used as motivation:

it has long been understood that a light-like compactification can be equivalent to

a spatial compactification on a circle of vanishing radius, plus an appropriate boost

[78, 79]. In what follows a c → ∞ scaling limit will be shown to make a spatial

compactification light-like and recover the metric 3.19.

This construction is equivalent to considering a chemical potential that provides

the rest mass of the charged Kaluza-Klein momentum modes for a purely spatial

circle and then taking the c → ∞ limit12, exactly as executed in the field theory

11The r−4 “Lifshitz” term in [80, 8] is unimportant for this discussion. It is separately invariant
under the symmetry transformations. It encodes the effect of R-twisted boundary conditions in
the field theory [47, 1, 68]. To get a non-trivial field theory with the desired Schrödinger invariance
twisting is not needed and the light-like circle compactification with periodic boundary conditions
suffices.
12 The same is also true when considering twisted boundary conditions, even though in that case
the construction is a little more complicated. It was shown in [16] that N = 4 Super Yang-Mills
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construction of Section 2.5. This allows direct identification of the correct bulk fields

that map to the field theory sources of Section 2.2, as well as the bulk version of the

constraint relating the chemical potential to the rest mass.

Consider a d + 3 dimensional spacetime with metric ĜXY , and compactify along

the last direction ζ. The Kaluza-Klein decomposition of the metric is

ĜXY ≡ L2

G̃MN +GζζCMCN −GζζCN

−GζζCM Gζζ

 , (3.20)

where L is a characteristic length scale of the geometry, such that the displayed

metric components, as well as chosen coordinates, are unitless. The proper size of the

compactified direction is dŝ2 ≡ L2R2
kke
−2Σdζ2, where the dimensionless Kaluza-Klein

radius Rkk is introduced. To recover a light-like compactification the limit Rkk → 0

needs to be taken. The formal dimensionless expansion parameter is this radius, but

defining Rkk ≡ (Lmkkc)
−1 in terms of a Kaluza-Klein mass the formal c → ∞ limit

can be taken instead. The Kaluza-Klein mass mkk can be identified with the non-

relativistic field theory mass m. The bulk proper Kaluza-Klein mass on the other

hand is meΣ, in units with L = 1. It should be emphasized that this limit is simply

a coordinate scaling limit: the proper size of the compact direction is taken to zero,

while time is rescaled such that the Kaluza-Klein mass remains finite.

Expanding the Kaluza-Klein gauge field as CM = c2bM + vM , and the asymptotic

d+ 2 dimensional metric as

G̃MN =

−c2N2 +NKNK c2PI +NI

c2PJ +NJ −c2 PIPJ
N2 +GIJ

 , (3.21)

yields a line element, dŝ2 = ĜXY dx
XdxY , with pieces of O(c2) and O(c0), as well as

vanishing negative powers of c. To be a non-singular consistent scaling limit of the

compactified on a spatial circle with twisted boundary conditions can be obtained by a combination
of T-dualities and shifts from the usual black D3-brane metric. The Null-Melvin Twist procedure
of [47, 1, 68] used to generate the metric 3.19, including the additional r−4 Lifshitz term, is an
infinite boost limit of this compactification, which once again can be interpreted as setting the
chemical potential equal to the rest energy followed by a c→∞ limit.
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d + 3 dimensional geometry the O(c2) pieces must vanish. Additionally, matching

the O(c0) components to those of the asymptotic metric 3.19 yields restrictions and

identifications. Examining the O(c2) term of the dt2 piece, the asymptotic restriction

meΣ =
bt
N
, (3.22)

is required of the fields. This is the bulk implementation of the field theory constraint

2.28, which is the requirement that the chemical potential compensates the rest energy

and allows a NR limit. Combining this with the “null” dtdζ and dxidζ pieces, and

matching to the metric 3.19, the identifications:

e−Φ

m
≡ r2N2

bt
, (3.23)

Bi ≡ −
bi
bt
, (3.24)

are obtained, where it is understood that this is a matching of the asymptotic r → 0

fields. The vanishing of the O(c2) term of the dtdxi piece yields the restriction

PI = −N2 bI
bt
, (3.25)

which, recalling Section 2.5, encodes the requirement of the existence of a global

time. Matching the remaining metric components to equation 3.19, the following

identifications are obtained:

At ≡ vt +
btN

INI

2N2
, (3.26)

Ai ≡ vi +
btNi

N2
− biN

INI

2N2
, (3.27)

gij ≡ r2

(
Gij −

biNj

bt
− bjNi

bt
+
bibjN

INI

b2
t

)
. (3.28)

It should be noted that the same partial gauge fixing which yielded the d + 3

dimensional metric 3.19 has been used to set Ĝrr = 1/r2 and Ĝrζ = Ĝrµ = 0. In

terms of the Kaluza-Klein fields this can be seen to yield:

Grr =
1

r2
, br = Pr = 0, Nr +

e−2Σ

m2
btvr = 0, Gri +

e−2Σ

m2
vrbi = 0. (3.29)
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Therefore, extending the above definitions 3.24, 3.27, and 3.28 to hold when an index

is r this partial gauge fixing gives Br = Ar = gri = 0.

Compared to the field theory non-relativistic limit 2.30 the above identifications

are equivalent, up to powers of r. While the fields (Φ, Bi, At, Ai, gij) of metric 3.19

are functions of only the field theory coordinates t and xi, the Kaluza-Klein fields

(Σ, PI , N,NI , bM , vM , GIJ) generically depend on the holographic radial direction as

well13. The above identifications can be taken to determine the asymptotic r behavior

of these fields. From the identification 3.24, bt and bi must have the same asymptotic

radial dependence, which, combined with 3.28, gives the leading asymptotic behavior

of Gij and Ni as r−2. From the definition 3.23, N2/bt goes as r−2, while the relations

3.26 and 3.27 determine vM to be asymptotically independent of r.

Further determination requires assumptions on the behavior of Σ. For the asymp-

totic form e−Σ ≡ e−σ(t,~x)/rδ and using 3.22, the asymptotic behaviors N ∼ rδ−2 and

bM ∼ r2δ−2 are determined. Note that for δ = 1 the lapse goes as N ∼ r−1 and the

metric is asymptotically AdS. One can extend the symmetries to include the non-

relativistic conformal transformations of 2.9 by considering radial diffeomorphisms,

as in [80], which in fact fix δ = 1. These transformations will be more fully explored

in the next section.

The Kaluza-Klein viewpoint illuminates the factor of meσ arising in the non-

relativistic Lagrangian density derived by the c → ∞ limit of the relativistic field

theory in Section 2.5. Upon dimensional reduction the volume density of the higher

dimensional theory yields the lower dimensional volume density, as well as a factor

related to the proper Kaluza-Klein mass. In this case this gives an overall factor of√
Gζζ = e−Σ/mc causing the non-relativistic Lagrangian to be exactly that of 2.2,

even for spacetime dependent m and Σ.

13In each case the ζ independent modes are being considered, corresponding to unbroken U(1)
invariance.
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3.2.2 Einstein-Maxwell Vector Khronon

To the point of excess, a more general derivation of a holographic map relating bulk

and NR QFT fields will now be presented. The motivation follows from the previous

sections: it was seen that GR on a d+3 dimensional manifold can capture the generic

symmetries of a d + 1 dimensional NR QFT by taking a particular compactification

and scaling limit. This specific duality is overly restrictive; despite containing fields

that obey NR electro-diffeomorphism invariance most of the properties are simply

inherited from the relativistic derivation.

Instead one can start with the Kaluza-Klein reduced field content of Section 3.2.1,

a graviton and a Maxwell field (the scalar will not play a role here), and show that

the NR limit can be taken directly in Einstein-Maxwell theory. Previously, spatial

compactification and a scaling limit gave a light-like compactification of d+ 3 dimen-

sional general relativity. Now, starting with the d+ 2 dimensional field content of the

Kaluza-Klein theory, that is the Einstein-Maxwell system, a true14 d+ 2 dimensional

non-relativistic c→∞ limit will be taken.

The relativistic diffeomorphism generators are expanded as ξM = (f − α/c2, ξI),

under which the d+ 2 dimensional metric transforms as

δG̃MN = ξP∂P G̃MN + G̃MP∂Nξ
P + G̃NP∂Mξ

P . (3.30)

For the consistent expansion

G̃MN ≡

−c2N2 − 2N2A+NKNK c2PI +NI

c2PJ +NJ −c2 PIPJ
N2 +GIJ

 , (3.31)

under the diffeomorphism transformations in the c → ∞ limit, the metric fields

14This is to contrast with the scaling limit of the previous section. There, after the c→∞ limit,
the d + 3 dimensional spacetime metric was finite. In this section if the Einstein-Maxwell fields
were recombined back into a higher dimensional spacetime metric it would contain nonsensical
O(c2) pieces.
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transform as:

δN =ξK∂KN + fṄ + ḟN − PK
N
ξ̇K ,

δA =ξK∂KA+ fȦ− (α̇−N I∂Iα)

(
1 +

NKPK
N2

)
+ 2

APK
N2

ξ̇K − 2ANK∂Kf,

δNI =ξK∂KNI +NK∂Iξ
K + fṄI + ḟNI +GIK ξ̇

K

+ ∂If
(
NKNK − 2N2A

)
+N2∂Iα− α̇PI ,

δGIJ =ξK∂KGIJ +GIK∂Jξ
K +GJK∂Iξ

K + fĠIJ

+NI∂Jf +NJ∂If − PI∂Jα− PJ∂Iα,

δPI =ξK∂KPI + PK∂Iξ
K + fṖI + ḟPI −

PIPK
N2

ξ̇K −N2∂If. (3.32)

The relativistic Maxwell gauge field can be expanded as CM ≡ c2bM + vM . It

transforms under the action of the gauge generator Λ ≡ c2β + λ and the relativistic

diffeomorphisms ξM as

δCM = ξN∂NCM + CN∂Mξ
N − ∂MΛ. (3.33)

Taking the c→∞ limit gives the transformations for the gauge fields:

δbt =ξK∂Kbt + f ḃt + ḟ bt + bK ξ̇
K − β̇,

δbI =ξK∂KbI + bK∂Iξ
K + f ḃI + bt∂If − ∂Iβ,

δvt =ξK∂Kvt + fv̇t + ḟvt + vK ξ̇
K − λ̇− btα̇,

δvI =ξK∂KvI + vK∂Iξ
K + fv̇I + vt∂If − ∂Iλ− bt∂Iα. (3.34)

Lastly, consider a complex scalar Ψ charged under the gauge field. It has the

relativistic transformation

δΨ = ξM∂MΨ− ıΛΨ. (3.35)

Expanding the field as Ψ ≡ ρe−ıη for η ≡ c2φ + χ, in the c → ∞ limit, the real
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magnitude and phases transform as:

δρ =ξK∂Kρ+ fρ̇,

δφ =ξK∂Kφ+ fφ̇+ β,

δχ =ξK∂Kχ+ fχ̇+ λ− φ̇α. (3.36)

In the backgrounds to be considered Ψ = 0, so the particular form of the matter

fields is not essential. What is needed is that some charged matter exists in the bulk,

so that a constant At can not be simply gauged away. In the Kaluza-Klein example

of the previous subsection the role of the charged matter was played by the massive

Kaluza-Klein gravitons.

This procedure has given a consistent set of fields that transform sensibly in the

c → ∞ non-relativistic limit. To go further, for example to construct an action and

determine which fields have non-trivial dynamics, some simplifying restrictions will be

made. Most importantly, the theory is required to have a global time. As discussed

in Section 2.1 this is necessary to have a causal non-relativistic theory. It can be

implemented by constructing a spacetime foliation whose leaves contain events that

happen at the same global time. Parallel to the previous discussion, this could be

achieved by considering a scalar field whose level sets define the foliation leaves. The

shortcomings of this scalar khronon formalism, enumerated in Section 3.1.2, requires

a different approach in the pursuit of a bulk theory.

These problems will be circumvented by considering φ to be the gauged phase

of a charged field, but global time will not be defined via its level sets. Instead,

given the expectation value φ = t, this phase is set to zero by performing the gauge

transformation β = −t, which will turn on a constant time component of the gauge

field, bt. Thus the vector bM acts as a “khronon” and determines the foliation by a

global time: when in adapted coordinates it has only a temporal component. Once the

expectation value of φ has been gauged away, in order to preserve φ = 0, the “large”

gauge transformations β can no longer be performed. Time reparametrizations are
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present in the theory as performing a spatially independent f(t) maintains bI = 0,

that is, it stays within a physical global time.
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Chapter 4

A NON-RELATIVISTIC HOLOGRAPHIC DUALITY

Much of this chapter is taken from [56, 57] which was coauthored with Andreas

Karch, as well as [55].

4.1 Holographic Map

As discussed in the introduction, a holographic duality must capture the spurionic

symmetries exhibited by the theories. For the NR QFTs of Section 2.2 the background

sources transform as 2.1 under the non-relativistic electro-diffeomorphism transfor-

mations. From the previous Chapter a set of possible bulk fields that transform in a

non-relativistic way was derived. What remains is to determine a map between bulk

gravitational quantities and boundary field theory ones, using the spurionic symme-

tries as a guide.

By examining the above transformations 3.32-3.34 of bulk fields, combinations

which asymptotically transform as the NR QFT fields 2.1 can be determined. Firstly,

for β = 0, the two combinations

− bi
bt
,

Pi
N2

, (4.1)

both transform as the non-relativistic field Bi, with which they will be identified. This

relation between the metric field PI and the gauge field bI , as discussed in Section

2.5, is required for the existence of a global time.

It is then seen that both N and bt transform like e−Φ, and in generality the

asymptotic identification

e−Φ ≡ rγ(δΦ+1)N

(
N

bt

)δΦ
, (4.2)
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can be made, where the factor rγ(δΦ+1) is required to strip off the asymptotic ra-

dial behavior of the bulk fields, and δΦ is an arbitrary power. This parametrization

assumes that asymptotically bt ∼ r0, which is natural for the vector khronon, and

that therefore N ∼ 1/rγ. Additional restrictions on δΦ and γ due to the conformal

dimensions of the NR fields will be discussed shortly. Lastly, it can be seen that the

combinations:

At ≡vt +

(
bt
N

) 2
γ
−1(

N INI

2N
−NA

)
,

Ai ≡vi +

(
bt
N

) 2
γ
−1 [

Ni

N
− bi
bt

(
N INI

2N
−NA

)]
,

gij ≡r2ĝij = r2

[
Gij −

biNj

bt
− bjNi

bt
+ 2

bibjN

b2
t

(
N INI

2N
−NA

)]
, (4.3)

asymptotically transform under f , ξi, and λ as the field theory gauge fields and metric

if the mass is identified as

m ≡ rγ(δΦ+1)−2

(
bt
N

) 2
γ
−δΦ−1

. (4.4)

This requirement comes from examining the transformation of Ai, and equating the

coefficient of ĝij ξ̇
j with the bulk fields corresponding to meΦ, to reproduce 2.1.

4.2 Subleading Temporal Diffeomorphisms

The role of the subleading temporal diffeomorphism α is overdue for a discussion.

The field theory quantities are not affected by this transformation, as seen in 2.1.

There are two different scenarios for the role of α in the bulk; both of them have an

interesting holographic interpretation and lead to physically distinct pictures. One

option is that the bulk action is not invariant under α transformations, it is simply

not a symmetry of the gravity dual either, and should never be performed. This

is a consistent truncation of the c → ∞ expansion, and also allows A to be set to

zero, that is, the subleading expansion of the lapse N need not be considered. The

above then gives a well defined dictionary between bulk gravitational and field theory
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quantities, parametrized by the two constants γ and δΦ. The fields defined in 4.3 are

then just a part of the boundary sources; there are additional gauge invariant bulk

fields, such as e.g. Nr, and hence also additional field theory sources.

Alternatively, the subleading temporal diffeomorphism α can be a gauge invari-

ance of the bulk theory. That is, it can be interpreted as a redundancy of the bulk

description, and that is why it does not effect the field theory data. The fields defined

in 4.3 are only invariant under α for γ = 1, or equivalently N ∼ 1/r. Appearing mys-

terious in the Kaluza-Klein derivation of Section 3.2.1, this justifies the combinations

of bulk fields that give the field theory ones. As that bulk theory contains the full

diffeomorphism invariance of GR, the only physical boundary fields are those that

are invariant under the bulk redundancy α, and therefore the ones appearing in 4.3

with γ = 1. This also elucidates the appearance of the subleading temporal diffeo-

morphism in the NR QFT work of [81] and the generally covariant Hořava-Lifshitz

theory of [50, 25]. As they inherently consider uncharged fields they do not have the

explicit gauge field vµ. From equation 3.34, to consistently consider the transforma-

tion α, but to maintain vµ = 0, one must implicitly perform a gauge transformation

λ. The α variant piece vI of the invariant AI , defined above, was held fixed. Thus

the redundancy α was made physical by linking it to the transformation λ, which is

a global symmetry of the field theory.

4.3 NR Scale and Conformal Invariance

Additionally, it is desirable to be able to describe NR QFTs that have the NR confor-

mal symmetry of 2.14. As with traditional holography, this transformation is captured

by symmetries of the bulk theory. Unlike the usual AdS/CFT correspondence, these

symmetries are not strict isometries of the spacetime geometry, but instead manifest

as transformations acting on the above combinations identified as field theory quanti-

ties. As in traditional holography and [80], the conformal structure of the field theory

is captured by radial diffeomorphisms in the gravitational bulk. Under ξr = −ω(t, ~x)r
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the field theory data transform as:

δe−Φ ⊃rγ(δΦ+1)ξr∂r

(
N

(
N

bt

)δΦ)
= γ(δΦ + 1)ωe−Φ,

δgij ⊃r2ξr∂r (ĝij) = 2ωĝijr
2 = 2ωgij,

δm ⊃rγ(δΦ+1)−2ξr∂r

(
bt
N

) 2
γ
−δΦ−1

= (γ(δΦ + 1)− 2)ωm, (4.5)

which agrees with the field theory conformal transformation 2.14 for z ≡ γ(δΦ + 1).

The interesting case when the bulk is AdS (that is, N ∼ 1/r) and the mass is invariant

under scale transformations, corresponds to

γ = 1, z = 2, δΦ = 1. (4.6)

Another interesting possibility of a case with an invariant mass (that is, z = 2) is the

Lifshitz background with γ = 2, requiring δ = 0.

For NR general covariance the bulk transformations that preserve the trivial

asymptotic background Φ = BI = At = AI = 0 and GIJ = δIJ/r
2, should agree

with the field theory symmetries. The first case of a scale transformation starts with

the temporal rescaling f = κt. To maintain Φ = 0, from above, the radial rescaling

ξr = κr/z is required. To maintain Gij the spatial rescaling ξi = κxi/z must be per-

formed, in agreement with a dynamical critical exponent of z. Lastly, BI , GrI , and

AM = 0 are automatically maintained under these scale transformations. In complete

parallel to the field theory discussion in Section 2.4, m changes for z 6= 2, in which

case the symmetry is only spurionic. Although these bulk combinations have the

same isometries as the field theory quantities with which they are identified, the bulk

fields themselves may not be invariant. Under the scale transformations generically

δbt = κbt, δN = κ
(

1− γ

z

)
N. (4.7)

As discussed further in Section 5.3, this non-invariance of N can be interpreted as

evidence for hyperscaling violation of the theory. On the other hand, in the bulk action
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of probe fields, bulk fields are expected to enter only in the invariant combinations

identified above. There factors of bt/N act like the σ field of previous sections, adding

it to the action can change the dimension of the probe fields.

For the special case of z = 2 there is an additional transformation of the bulk fields

preserving the trivial background. This “special conformal” transformation involves

the time reparametrization f = Ct2. To preserve Φ = 0, from above, the radial

redefinition ξr = Ctr must also be performed. Preservation of the trivial metric then

requires ξi = Ctxi. Lastly, maintaining the form of the bulk fields that correspond to

the trivial gauge configuration requires the gauge transformation λ = C(~x2 + r2)/2.

As with the scale transformation, not all bulk fields are invariant under this special

conformal transformation. In addition to N and bt, and the issues discussed above,

the shift vector is not invariant under the time dependent ξI , but transforms as

δNI =
CxI

r2
. (4.8)

These fields should correspond to gauge invariant operators in the field theory, and

thus it appears that NR conformal invariance is generically untenable. It can be

recovered for the special case of bulk invariance under the subleading temporal dif-

feomorphism α. This transformation allows the shift NI to be held to zero, as well

as the maintenance of A = 0 for the subleading term of the lapse. As shown above,

α invariance restricts N ∼ 1/r, that is, the bulk background is that of AdS. The

NR scale and conformal isometries of Section 2.4 are therefore realized by this bulk

theory.

4.4 Bulk Action

Consider, initially, bulk theories without the α transformation. This also allows the

consistent setting of A = 0; the subleading piece of the lapse N does not need to

be considered in the c expansion. As previously discussed, by working in a global

time bI = PI = 0 can be maintained. This gives the following consistent field con-
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tent: the metric is decomposed in the ADM variables N , NI , and GIJ adapted to the

preferred foliation; the gauge vector behaves as the non-relativistic decomposition vt

and vI with respect to the global time. The background “large” gauge field bt de-

termines the foliation by a global time, and should be considered a parameter that

must be tuned to yield a NR holographic duality, much like the cosmological constant

in traditional holography. The gauge transformations are spatial diffeomorphisms ξI ,

temporal reparametrization f(t), and the U(1) transformation λ. This is exactly the

field content and symmetries of Hořava gravity coupled to non-relativistic electromag-

netic fields: our proposal for a holographic dual to a generic NR QFT obeying the

symmetries 2.1 is this non-relativistic gravity theory, on a background spacetime with

a non-zero bt. The bulk action will therefore be determined by the couplings (λ̃, β̃, α̃)

of Hořava gravity, as well as those introduced with non-relativistic electromagnetic

fields. To go further and consider bulk theories with the α transformation, it is noted

that the covariant Hořava-Lifshitz theory of [50, 25], coupled to electromagnetic fields,

is a bulk theory with α invariance and the same fields and symmetries as above. It

therefore is capable of holographically describing Schrödinger invariant NR CFTs.

4.5 Horizons and Thermodynamics

As illustrated in the introduction, holography and AdS/CFT grew out of under-

standing black hole thermodynamics in GR, and from combining principles of quan-

tum mechanics and black hole entropy. If these same arguments can be applied

to black holes of Hořava gravity, the notion of holography naturally extends to a

much larger class of theories, most notably those of an intrinsic non-relativistic na-

ture [49, 14, 15, 56, 57, 39]. Beyond this, such solutions are extremely important in

holography: black holes geometries at a Hawking temperature TH are dual to thermal

field theory states at the same temperature, as was know very early on in AdS/CFT

[40, 69, 88]. Black holes can be understood geometrically as spacetimes that have re-

gions that are causally disconnected from asymptotic observers at temporal infinity.
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The lack of Lorentz invariance makes causality a subtler notion in Hořava gravity

than it is in GR. In Einstein gravity the causal structure of a solution is most apparent

when brought into Penrose form. Light cones form forty-five degree diagonal lines

and define the invariant notion of whether one event is space-like, null, or time-like

separated from another. This nature of separation between two events and the domain

of influence for a given region are easily deduced from the Penrose diagram. From

this construction event horizons are identified as the null boundary that separates the

domain of dependence of future infinity from the rest of the manifold.

In Hořava gravity a light cone is not a limiting object, and the notion of causality is

maintained by the existence of a preferred global time instead. Indeed, as seen in the

previous sections, fields in Hořava gravity can have arbitrarily fast propagation speed,

there is no limiting role of the speed of light that is fundamental to GR. Despite this,

a mode traveling with any speed in the preferred frame can only propagate forward

in global time. The leaves of the foliation labeled by the preferred time define the

invariant notion of whether one event is before, simultaneous with, or after another.

Likewise, the foliation by a preferred time can define the notion of causal bound-

aries and horizons in Hořava gravity. Simplistically, the leaf of the foliation labeled

by t = ∞ forms a causal boundary of the manifold. Only events on leaves labeled

by earlier times can possibly influence this boundary. Naively, this leaf may be ex-

pected to simply form the boundary of the manifold defined as future infinity, much

as t = ∞ is future null infinity in Minkowski space. More interestingly, this leaf can

“bend down” as it foliates the manifold and may never penetrate some region. This is

analogous to the asymptotically flat Schwarzschild black hole in Schwarzschild time:

the line t =∞ is partially asymptotic null infinity, but partially the event horizon at

r = rh, see Figure 4.1.

It is important to note that in GR the fact that leaves of Schwarzschild time

converge at the event horizon is not an invariant statement about the geometry of

the spacetime: different coordinates can have a foliation that does nothing special at
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(a) (b)

Figure 4.1: a) The Penrose diagram for Minkowski space. The thin green lines are

slices of constant time, while t = ±∞ is null infinity in solid black. b) The Pen-

rose diagram for a Schwarzschild black hole. The thin green lines are of constant

Schwarzschild time, t = ±∞ is partially null infinity in solid black, and partially the

event horizon in dashed blue. The singularity at r = 0 is in dotted red.

rh. To identify the leaf t = ∞ as a causal boundary of the black hole spacetime in

GR one also need to use the fact that it is a null surface. Only then is it concluded

that nothing inside the radius rh can influence events outside: that is, the leaf t =∞

does form a causal boundary of the foliation.

The case in Hořava gravity is somewhat simpler in this respect. Causality is

encoded in the foliation itself, not any light cone structure. The convergence of its

leaves is an invariant statement, and such a region is a causal boundary. Such a slice

(that isn’t asymptotic infinity) is called a “universal horizon” [29, 11, 19]: an event

behind it cannot influence events outside as they are all at “earlier” times as measured

by the preferred foliation. Solutions to Hořava gravity with universal horizons will be

called black holes, and explored in the next chapter.

The existence of causal horizons in Hořava gravity begs the question of whether
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they obey a thermodynamic description as do their counterparts in GR [19, 14, 15].

Motivation for such a description follows from arguments analogous to Bekenstein’s

original proposals [12]: a causal horizon must have intrinsic entropy if the second

law is not to be violated when exterior entropy falls in. Consistency with a first law

then implies a temperature of the horizon. For Hořava gravity, additional motivation

comes from its claim as a UV complete quantum theory of gravity [19]. From a

microscopic description, the entropy of a macroscopic system is a measure of the

number of fundamental degrees of freedom contained. The macroscopic second law is

then a reflection of the unitarity of the microscopic theory. If Hořava gravity is truly

a sensible quantum theory of gravity macroscopic systems such as black holes defined

by their universal horizons must obey a second law of thermodynamics.
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Chapter 5

EVIDENCE AND SOLUTIONS

Much of this chapter is taken from [55], as well as [56, 57] which were coauthored

with Andreas Karch. The work of Section 5.4 is from [58], to which the author

contributed.

5.1 String Theory Embeddings

The previous chapter has argued that, based on its symmetry structure, Hořava grav-

ity is the natural holographic dual of a generic NR QFT. To check that this is correct,

it would be nice to confirm that the construction can be consistently embedded into

string theory. This embedding is facilitated by the observation that NR systems can

be derived as a c→∞ limit of a relativistic theory by setting the chemical potential

equal to the rest energy of the lightest charged particle. In order to give string theory

embeddings of this scenario, examples of relativistic holographically dual pairs where

the field theory side has a global U(1) symmetry with massive charged particles need

to be found.

One such example was in fact already presented in Section 3.2.1. Start with the

known duality between AdS5 in type IIB string theory and N = 4 SYM gauge theory

and compactify the latter on a space-like circle with periodic boundary conditions. In

this case the resulting 2+1 dimensional relativistic field theory has a new global U(1)

symmetry associated with shifts around the compact circle. The charged particles

are the momentum modes in the compact direction and they naturally have a mass

equal to the inverse circle radius. The non-relativistic limit in this theory introduces a

chemical potential for this U(1) particle number equal to the rest mass of the Kaluza-
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Klein particles and then takes the c → ∞ limit. This is exactly what was done in

Section 3.2.1 so that in this limit the circle becomes light-like. In this Kaluza-Klein

example, a massless scalar in the relativistic geometry (for example the IIB dilaton)

is described exactly in terms of the non-relativistic action 2.2 translated into Hořava

fields via the map 4.3. The at first sight unnatural N/bt prefactor is introduced in

the action from the higher dimensional origin; it is exactly the
√
Gζζ prefactor in the

bulk action due to the line element in the compact direction. This can be interpreted

as needed order to avoid hyperscaling violation, as alluded to at the end of Section

3.2.1.

While many examples of holographic dualities in the presence of finite chemical

potential are understood by now, the task of finding additional examples where the

charge carriers are massive so that the NR limit can be implemented is somewhat more

non-trivial. One example is ABJM theory which allows a supersymmetric preserving

mass term and a non-relativistic limit [71, 66]. Gravitational solutions of M-theory

matching the global symmetries of this NR CFT were studied in detail in [59]. There

it was found that the prospective gravity dual did not have the same amount of

supersymmetry as the NR ABJM field theory. This leads one to question the role

of supersymmetry in non-relativistic holography. Although it is crucial in traditional

AdS/CFT, often providing stability to the best known examples, it may not be as

important for NR physics.

Another large class of examples of holographically dual pairs with a finite density

of massive charge carriers is based on probe branes [61] which were first studied

at finite chemical potential in [64]. In this situation the thermodynamics and the

spectrum of hydrodynamic modes was recently analyzed in the NR limit advertised

here [62, 4]. While in those papers the results were not phrased in the language of

Hořava gravity, the findings, especially of the latter, are completely consistent with

the picture developed here. For two physically distinct probe systems (with d = 3 and

d = 2 spatial dimensions respectively), in the scaling limit the probe brane system



63

is found to be governed by a NR CFT with dynamical critical exponent z = 2 and

hyperscaling violating exponent Θ = 1.

All of these examples provide realization of the non-relativistic holographic duality

proposed here, by embedding it into a known relativistic dual. Although this is

expected to not always be possible, it does provide evidence that Hořava gravity has

a holographic interpretation.

5.2 Asymptotically Hyperbolic Solutions

Understanding the asymptotic structure of gravitational theories has proven to be a

fruitful endeavor. Various “No Hair” theorems have used these techniques to deter-

mine that black holes in GR are labeled by a small number of parameters. In the

context of Einstein-Aether theory and Hořava gravity this has been done for asymp-

totically flat solutions [29, 11, 14]. Generically, static spherically-symmetric solutions

have three defining parameters. The requirement of asymptotic flatness reduces this

number to two. The solutions are reduced to a one parameter family, the mass, upon

requiring regularity at the spin-zero sound horizon, that is, the trapped surface for

waves of the speed s0 given in 3.12 [29, 11].

The focus of this section is on understanding the space of solutions to Hořava

gravity that have an asymptotically Lifshitz metric:

lim
r→0

ds2 ≈ −
(
L

r

)2z

dt2 +

(
L

r

)2

dr2 +

(
L

r

)2

d~x2, (5.1)

where z is the dynamical critical exponent that controls the anisotropy of time versus

space, and L is a length giving the scale of the curvature. As the spatial metric given

by slices of constant t asymptotically has uniform negative curvature, spacetimes 5.1

will be referred to as hyperbolic. Metrics of this form are important in the arena

of holography. Allowing z = 1, one obtains the metric of Anti-de Sitter space in

Poincaré coordinates. Such boundary conditions are crucial from the viewpoint of

standard AdS/CFT [69, 88, 41]. For z 6= 1 the metric 5.1 exhibits an anisotropic
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scaling symmetry of time relative to space. General relativity on such backgrounds

has been argued to be dual to non-relativistic field theories [60, 9]. More pertinently,

although GR requires additional matter to support this geometry, such a metric is

a vacuum solution to Hořava gravity [39, 56]. This leads to speculation that the

Lifshitz metric may play the fundamental role in a holographic duality involving

Hořava gravity that AdS space plays in traditional holography.

The Poincaré-like coordinates of 5.1 are a natural choice to work in as they most

simply lead to the definition of the boundary at r = 0 via an anisotropic confor-

mal transformation [51]. However, in order to fully explore the interior geometry of

an asymptotically hyperbolic spacetime it is important to use coordinates that are

nowhere singular. From experience with black holes in Minkowski and AdS spaces,

the partial-null Eddington-Finkelstein-like (EF) coordinates are a better choice: they

are not singular at the metric horizon, unlike Schwarzschild and Poincaré coordinates.

To obtain the Lifshitz metric 5.1 in EF coordinates one first defines the radial tortoise

coordinate r∗ ≡ 1/z(r/L)z. From this the EF time is defined as the null coordinate

v ≡ t− r∗, and the metric becomes

ds2 = −dv
2

r2z
− 2

dvdr

rz+1
+
d~x2

r2
, (5.2)

where units have been chosen such that L = 1.

In Hořava gravity, in addition to the asymptotic behavior of the metric, the bound-

ary conditions of the foliation must be specified. For holography it is natural to use

a time coordinate that is asymptotically the Poincaré time of 5.1: this time appears

as the conformal boundary time and would correspond to a global time coordinate of

the dual field theory on a flat background. In the khronon language of Section 3.1.2

this requires φ|r→0 = t = v + r∗, or in terms of the foliation normal vector in EF

coordinates,

uM =

(
− 1

rz
,−1

r
,~0

)
. (5.3)

Respecting the stationarity and planar symmetry properties of the Lifshitz metric
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5.1, the general ansatz of the full metric in EF coordinates is

ds2 = −e(r)dv2 − 2f(r)dvdr +
d~x2

r2
. (5.4)

The general foliation normal vector respecting these symmetries is

uM =

(
−a(r)2e(r) + f(r)2

2a(r)f(r)
,−a(r),~0

)
, (5.5)

where the unit norm constraint has been imposed. The required asymptotic behavior

to reproduce the hyperbolic spacetime of 5.2 and 5.3 gives the leading behavior as

r → 0 of the free functions:

e(r) ∼ 1

r2z
, f(r) ∼ 1

rz+1
, a(r) ∼ 1

r
. (5.6)

The remainder of this section will be restricted to D = 3, that is, a four dimen-

sional spacetime. This allows explicit expressions to be written down simply, although

generalization is straightforward. A useful trick to simplify the khronon action 3.9 is

to note that a hypersurface orthogonal vector such as uM has vanishing curl

u[N∇PuQ] = 0. (5.7)

Therefore, in four dimensions, for ωM ≡ εMNPQu
N∇PuQ = 0, one can write

(uM∇MuN)2 = (uM∇MuN)2 − ωMωM = −1

2
FMNF

MN , (5.8)

for the “field strength” FMN ≡ ∂MuN − ∂NuM . This simplifies the c4 term in the

khronon action 3.9, as it removes any factors of the connection in the derivative. The

task is to now examine the equations of motion coming from the action 3.9 with

the ansatzes 5.4 for the metric and 5.5 for the foliation normal vector. Plugging in

a series solution for the functions (e, f, a), with leading behaviors given by 5.6, the

equations of motion can be solved order by order as r → 0. This gives evidence to the

number of free parameters that classify a general solution by determining the number

of free coefficients in the series expansions of (e, f, a). The full equations of motion
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are cumbersome and not very enlightening, and will not be shown here. To zeroth

order the solution is simply the Lifshitz background 5.2, requiring [39]

c4 =
z − 1

z
, Λ = −(D − 2 + z)(D − 1 + z)

2
, (5.9)

that is, the dynamical critical exponent z is determined by the coupling c4, and the

cosmological constant is in turn fixed. To higher order there is a drastic difference

whether z = 1 or not.

5.2.1 z = 1

For z = 1 (c4 = α̃ = 0) the metric is asymptotically Anti-de Sitter space. The general

asymptotic series expansion has coefficients proportional to (z−1), therefore this case

must be treated separately. Examining the order by order expansion of the equations

of motion as r → 0 it appears the series for e and f truncates. To order r30 the

functions are determined to be:

a(r) =
1

r
+ Car

2 +
1

2

(
(c3 + 1)C2

a + (c3 − 1)CaCe +
c3

4
C2
e

)
r5 + · · · , (5.10)

e(r) =
1

r2
+ Cer −

1

4
c3(Ce + 2Ca)

2r4, (5.11)

f(r) =
1

r2
, (5.12)

where Ce and Ca are constants, and only the first three terms of a(r) are shown,

although importantly no more free parameters appear. The truncation of an asymp-

totic series solution is often the signature of an analytic solution, which will indeed

be constructed in Section 5.5.

5.2.2 z 6= 1

For z 6= 1 the asymptotic series analysis is more subtle. Stripping off the leading

boundary behavior given by 5.6, and expanding the free functions in a series solution,
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gives:

a(r) =
1

r

(
1− 1

2
Cer

z+2 +
(2z2 + 2z − 1)C2

e

4z(z + 1)
r2(z+2) − (9z2 + 9z − 8)C3

e

16z(z + 1)
r3(z+2) + · · ·

)
e(r) =

1

r2z

(
1 + Cer

z+2 +
(z − 1)(z + 2)C3

e

24z(z + 1)
r3(z+2) − (z − 1)(z + 2)C4

e

24z(z + 1)
r4(z+2) + · · ·

)
f(r) =

1

rz+1

(
1 +

(z − 1)(z + 2)C2
e

8z(z + 1)
r2(z+2) − (z − 1)(z + 2)C3

e

6z(z + 1)
r3(2+z) + · · ·

)
. (5.13)

Importantly, up to order r5(z+2), the expansion is seen to contain only one free coef-

ficient, Ca, contrary to general expectations [29]. Also evident is the fact that, apart

from the leading singular factor, the functions (a, e, f) are only functions of rz+2.

To find the missing constant it helps to recognize when the above procedure fails.

It has been assumed that the free functions can be expanded as their leading singular

behavior times an analytic function. Whether this analyticity is justified depends

on what the subleading characteristic exponents are. These can be determined by

making the ansatz

e(r) =
1

r2z
, f(r) =

1

rz+1
, a(r) =

1

r

(
1 + a∆r

∆
)
, (5.14)

and using the equations of motion for r → 0 to determine the allowed powers ∆. This

procedure yields

∆± =
1

2

z + 2±

√
(z + 2)2 − 8(1− c3)(z − 1)

c2 + c3

 . (5.15)

The only requirement on ∆ is that it is non-negative in order to maintain the desired

boundary behavior of a(r). Generically, ∆± is non-integer and therefore the ansatz

of analyticity is not justified. Indeed, z = 1 is a special case for which ∆± = (0, 3).

In general for ∆ to be an integer requires a specific choice of couplings. For

concreteness take the case of z = 2. Then for the choice c2 = (1 − 3c3)/2 it is seen
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that ∆± = 2. In this case the asymptotic series expansion of the functions is:

a(r) =
1

r

(
1 + Car

2 +
1

2
(C2

a − Ce)r4 + (Ca(C
2
a − Ce)− C3

a)r6 + · · ·
)

e(r) =
1

r4

(
1 + Cer

4 − 1

72

(
Ce + C2

a

)2 (
2(C2

a − Ce) + C2
a(3c3 − 4)

)
r12 + · · ·

)
f(r) =

1

r3

(
1 +

1

12

(
Ce + C2

a

)2
r8 +

1

32

(
Ce + C2

a

)2 (
C2
a(c3 − 5)− 4Ce

)
r12 + · · ·

)
.

(5.16)

Up to O(r12) the expansion is seen to have two free parameters, Ca and Ce, and

reduces to 5.13 for Ca = 0. Importantly, as evident in the general case from equation

5.14, only the subleading behavior of the function a(r) is modified; generically the

subleading piece of e(r) goes as r2−z, while that of f(r) goes as rz+3.

Thus for any z it is found that planar symmetric stationary solutions of Hořava

gravity are determined by two constants: Ce, the coefficient of r2−z in the expansion

of e(r), and Ca, the coefficient of r∆−1 in the expansion of a(r). The demand for

an asymptotically hyperbolic spacetime has reduced the three dimensional parameter

space of solutions to these two. As in [29, 11], this parameter space can be argued

to reduce to one constant for physically acceptable solutions. The key point is that

although desired boundary conditions have been imposed at asymptotic infinity, there

is no guarantee that the solutions are non-singular in the interior (disregarding singu-

larities hidden by horizons). An important place to demand regularity of the solution

is the spin-zero sound horizon, that is, the trapped surface for waves of the speed s0

in 3.12. This is physically reasonable as it is expected to be true for solutions that

describe the late stages of gravitational collapse, as is argued in general relativity for

the regularity of the metric horizon. This requirement of regularity reduces the two

parameters describing an asymptotically hyperbolic Hořava solution to one, the mass.
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5.2.3 Spacetime Mass

An important use of the near boundary asymptotic expansion of solutions is in the

determination of the mass of a spacetime. Hořava gravity has a preferred notion of

time due to its foliation Σt. This leads to the definition of the mass of the spacetime

as the on-shell Hamiltonian with respect to the preferred slicing, following [44]. The

first step in this process is to include the Gibbons-Hawking term in the action in

order to make the variational problem well-posed. This is accomplished by defining

the total action

ST ≡
1

16πGK

∫
M

√
−G̃LK +

1

8πGK

∫
∂M

√
|h|K, (5.17)

where: LK is determined from the khronon action 3.9; the first integral is over the

manifold M, while the second is the Gibbons-Hawking term over its boundary ∂M;

and K is the trace of the extrinsic curvature of the boundary, while h is the determi-

nant of its induced metric.

When the Ricci scalar in LK is decomposed with respect to the ADM variables of

the foliation there arise two total derivatives:

−∇N

(
uN∇Mu

M
)

+∇N

(
uM∇Mu

N
)
. (5.18)

These lead to additional boundary terms, and the structure of ∂M deserves eluci-

dation. For the asymptotically hyperbolic spacetimes of concern there is a time-like

boundary at r = 0. This has the outward space-like normal sN , and it will be assumed

that sNuN = 0 at r = 0. Therefore the first boundary term arising from equation 5.18

does not contribute here. The second term combines with the Gibbons-Hawking term

to give the extrinsic curvature of the two-surface of constant t at r = 0 as embedded

in the preferred foliation and denoted 2K.

The next components of ∂M are the past and future space-like boundaries of

the foliation, given schematically by t = ±∞. These surfaces have normal uN , and

therefore the boundary contribution from the second term of 5.18 vanishes due to the
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unit norm of uN . The first term can then be seen to completely cancel the Gibbons-

Hawking term, leading to no net boundary contributions from past and future infinity.

The final boundary possible is that of the universal horizon for black hole space-

times. As discussed in Section 4.5, and explored further later, this is a surface that

the asymptotic foliation Σt does not penetrate, and is the causal boundary of the

spacetime. To understand its boundary contributions to the Hamiltonian it pays to

be more precise. Consider a spacetime with a Killing vector χN that is asymptotically

time-like. As one travels inwards along the leaves of Σt the product χNuN , which is

initially negative, can approach 0 at some value of r = rh [14]. The Killing vector

is therefore tangent to this surface. Causal evolution in the direction of increasing

global time t is therefore necessarily toward the center of the spacetime, and can never

reach the asymptotic boundary at r = 0. Thus this surface at a constant radius rh

is a universal horizon, and a boundary of the leaves of the foliation. Unlike GR, the

surface r = rh is space-like, with time-like normal uN . Indeed, it is none other than

the surface at t = ±∞, as schematically argued in the introduction. Therefore, the

universal horizon contributes no additional boundary terms from 5.18.

The next step in transforming to a Hamiltonian is to write the Lagrangian in terms

of PMN , the momentum conjugate to the spatial metric of the ADM decomposition,

GMN
1. Recalling the definition of the extrinsic curvature in terms of the ADM fields,

it is seen that only spatial derivatives of the shift NI appear in the action, highlighting

its nature as a constraint. To transform to a Hamiltonian these spatial derivatives are

integrated by parts to give another boundary term that contributes on the boundaries

of the leaves of the foliation, ∂Σt:

− 1

8πGK

∫
∂Σt

√
HdΩ

NMPMNn
N

√
G

, (5.19)

where: H is the determinant of the induced metric on surfaces of constant t and r;

1The purely spatial indices I, J . . . can be extended to spacetime indices M,N . . . through the
definition of the spatial metric as a projector: GMN ≡ G̃MN + uMuN .
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Ω are the coordinates along these surfaces; the momentum is PMN ≡
√
G(KMN −

1+c2
1−c3KGMN); and nN is the outward normal to the boundaries of the leaves of the

foliation.

The first contribution comes from the component of ∂Σt at the asymptotic bound-

ary r = 0. Here the outward normal nN is the space-like vector sN , and this term

generically contributes. The other possible contribution comes from the internal

boundary of the universal horizon at r = rh. Here the normal is uN , the time-

like vector that is orthogonal to the leaves of Σt, and therefore PMNu
N = 0 and there

is no contribution.

Putting this all together gives the value of the on-shell Hamiltonian for a solution

to Hořava gravity:

H ≡ − 1

8πGK

∫
S0
t

√
HdΩ

(
2KN − N IPIJs

J

√
G

)
, (5.20)

where S0
t is the surface at the boundary r = 0 and constant t. For the asymptotically

hyperbolic solutions at hand this quantity generically diverges. The physical mass

of a spacetime will therefore be defined to be the difference between its on-shell

Hamiltonian and that of a reference background. Importantly, as the Hamiltonians

are regulated by a cut-off near the r = 0 boundary, these surfaces need to be chosen

for each background such that the value of the fields agrees upon them. Therefore

the lapse on the cut off is equal for each spacetime: N(ε) = N0(ε0), where N is the

lapse for the solution under examination, evaluated on the surface r = ε, while N0 is

the lapse of the reference background, evaluated on the surface r = ε0.

For z = 1 the solution asymptotically approaches Anti-de Sitter space, which will

be used as the reference background. Converting to the ADM coordinates of Σt, the

expansion of the functions 5.10 can be used to determine the behavior of the integrand

of the Hamiltonian 5.20 near r = ε. For these solutions the first term concerning 2K

contributes

− 1

8πGK

∫
Sεt

d2x

(
2

ε3
+ 2Ce

)
. (5.21)
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The second term in the integrand involving the momentum PIJ contributes a term of

order ε3, and therefore vanishes as the cut off is removed. Requiring that the lapse

on the cut off surfaces of the solution and AdS space agree determines the relation

1

ε
+
Ceε

2

2
=

1

ε0
. (5.22)

Using equation 5.20 this determines the mass of the solution to be

Mz=1 ≡ Hz=1 −HAdS =
−CeA
8πGK

, (5.23)

where A ≡
∫
d2x is the volume of the transverse space.

For z 6= 1 one again finds that the on-shell Hamiltonian is divergent. In this

case it can be regulated by performing a background subtraction by Lifshitz space,

with appropriate z. Repeating the above arguments using the naive expansion 5.13

leads to the identical value of 5.23 for the mass of the solution. On the other hand,

the correct expansion for z 6= 1 has the subleading power ∆ given in 5.15, which

generically contributes to the mass. For the example given by the series 5.16 the

above procedure yields the mass

Mz=2,∆=2 =
(2C2

a − Ce)A
8πGK

. (5.24)

The generic behavior of the mass of a z 6= 1 spacetime remains to be understood. An

analytic solution going beyond an asymptotic series expansion would shed light on

this point. Regardless, the definition of mass as the on-shell Hamiltonian 5.20 for a

solution remains well defined, up to regularization as discussed.

A “first law” could now be derived relating the variation of mass of two solutions

that have a small variation of the dimensionful constants Ce or Ca. As it stands

this is not a very useful statement: from the asymptotic expansion alone there is no

explicit relation between the parameters Ce and Ca and the radius of the universal

horizon, rh. A more rigorous first law is generally derived by making use of the

identity ∇M(∇NχM) = RNMχ
M , the equations of motion, and Gauss’s law. Such a
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derivation can indeed be done in the case of Hořava gravity and has been derived for

Einstein-aether theory in [17]. See also [70] for a derivation following Wald’s Noether

charge method applicable to asymptotically flat solutions. An explicit example of the

first law, following from an analytic solution, will be given in Section 5.5.

5.3 Lifshitz Backgrounds and Galilean Correlation Functions

An important use of a holographic duality is in the calculation of correlation functions

of field theory operators. As discussed in the Introduction concerning the holographic

dictionary for AdS/CFT, the duality relates the gravitational partition function, as

a functional of the boundary value of fields, to the QFT partition function, as a

functional of the sources of operators. Therefore, by studying the behavior of a bulk

field as a function of its boundary value, the correlation function of the dual field

theory operator can be calculated.

As discussed in Section 4.1 the asymptotic behavior of the lapse function N is

captured by the exponent γ and sets the form of the holographic map. Interestingly,

the radial behavior of the lapse N for metric 5.1 with α̃ < 1 is capable of reproduc-

ing an arbitrary γ. The Lifshitz spacetime undoubtedly deserves further study in a

holographic context.

To calculate correlation functions one needs to examine the on-shell action of the

dual bulk fields. For a bulk probe scalar with z = 2 the non-relativistic action 2.2 will

be used, written in terms of the Hořava fields. This gives the following bulk action

for a charged probe scalar:

SΨ =

∫
dtdrddx

√
G
N2

bt

[(
ıbt

2N2
Ψ†
(
Dt −NJDJ

)
Ψ + h.c.

)
−G

IJ

2m
DIΨ†DJΨ− M2

2m
Ψ†Ψ

]
, (5.25)

where the metric and gauge covariant derivatives are given by Dt = ∂t − ıv0, DI =

∇I − ıvI , and M is the non-relativistic bulk mass. The combination of temporal
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and spatial derivatives in the kinetic term is expected for invariance under foliation

preserving diffeomorphisms. For α̃ = 0, by the metric 5.1 above AdS is a solution, on

this background the probe scalar action becomes:

SΨ =

∫
dtdrddx

1

btrd+3

[
ıbtr

2Ψ†∂tΨ−
r2

2m
∂IΨ

†∂IΨ−
M2

2m
Ψ†Ψ

]
, (5.26)

where it is assumed that m and bt are constant. This agrees with the action of [80]

up to overall normalization. Therefore, their calculation of the correlation function of

the field theory operator dual to this scalar follows through, and in momentum space

gives2

〈OO〉 ∼
(
~k2 − 2mbtω

)ν
, (5.27)

where

ν =

√
(d+ 2)2

4
+M2.

Upon Fourier transforming to real space this gives the restrictive form dictated by

Galilean and scale symmetry [46, 45, 72], providing a quantitative check of the duality.

Comparison to [80, 8] shows that the constant mbt plays the role of the charge or

particle number of the operator O.

This form of the probe scalar action can also be motivated as a derivative expan-

sion. At zero derivatives is simply the mass term. At one derivative, using the NR

fields, the following terms can be constructed:

Ψ†bt∂tΨ, Ψ†N I∂IΨ, Ψ†bI∂IΨ, Ψ†P I∂IΨ. (5.28)

For Hořava gravity the last two terms are absent, while the first two are taken in

the combination that is invariant under foliation preserving diffeomorphisms. At two

derivatives the leading term is simply the canonical spatial gradient squared term.

Other bulk probe actions are possible, given only the symmetry restrictions of Hořava

gravity. In particular, the Lagrangian can be multiplied by the overall factor (bt/N)Θ.

2[80] contains a typo involving the incorrect exponent in this expression, compare to [8].
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The effect of this factor is to shift the dimension of the operator coupled to the bulk

field, mimicking the σ field of Section 2.5. As discussed in Section 5.1 it can also be

understood to represent hyperscaling violation, as the dimension of the operator is

changed by replacing d→ d−Θ, modifying the effective number of spatial dimensions

of the theory. The scalar action with Θ = 1 in many ways appears to be the most

natural. In that case no inverse powers of bt appear in the action and the potential

simply has an overall prefactor of N as part of the usual measure. This is exactly

the scalar action one would have written down in Hořava gravity without the extra

Maxwell field.

5.4 AdS2 Background Correlation Functions

An interesting class of NR QFTs are those that have background U(1) gauge fields.

This motivates examining Hořava gravity coupled to an electromagnetic potential

VM , to capture this symmetry. In the khronon formalism of Section 3.1.2, this is

accomplished by adding to the action the Lagrange density

LEM =
1

16πGK

√
−G̃

[
−µFMNFMN +

κ

4
uMFMNu

PFNP
]
, (5.29)

where FMN ≡ ∂MVN − ∂NVM is the electromagnetic field strength, and the κ term is

a novel additional Lorentz scalar allowed by the existence of the aether vector uM .

There is undoubtedly a rich structure of solutions to this theory, but a relatively

simple one is readily available [58]. Consider a metric ansatz, in EF coordinates, for

a spacetime with an asymptotically flat region at r → 0:

ds2 = −e(r)dv2 − 2f(r)dvdr +
1

r2

(
dθ2 + sin(θ)dφ2

)
, (5.30)

where θ and φ are the usual angular coordinates on the two-sphere S2. The normal

vector uM has the same form as the ansatz 5.5, while the gauge potential can be taken

to have only a time-like component Vt. To be asymptotically flat requires Λ = 0 and
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that the free functions of this ansatz behave like

e(r) ∼ 1, f(r) ∼ 1

r2
, a(r) ∼ 1

r2
, Vt ∼ Qr, (5.31)

as r → 0. Inserting this ansatz into the equations of motion following from the

khronon action 3.9 with the electromagnetic term 5.29 included, one sees that the

near boundary expansion leads to an obvious truncation of all of functions except

a(r):

e(r) = (1− Car)2 ,

f(r) =
1

r2
,

a(r) =
1

r2
− Ca

r
+ C2

a − C3
ar + · · · ,

Vt(r) =

√
4(2− c4)C2

a

κ+ 8µ
r. (5.32)

Closer inspection shows that a(r) is in fact a geometric series and can be resummed

to give

a(r) =
1

r2(1− Car)
=

1

r2
√
e(r)

. (5.33)

Transforming to a preferred time coordinate of Hořava gravity shows that this solution

is in fact the extremal Reissner-Nordstrom black hole, with the global time given by

the canonical time.

Although it is interesting to see that the flat extremal Reissner-Nordstrom black

hole is a solution of Hořava gravity coupled to electromagnetism, it is not directly

an easily interpretable holographic spacetime. On the other hand, it is well known

that the near horizon geometry of this solution is AdS2 × S2, and does have a clear

holographic interpretation. This motivates looking for solutions of the form AdS2 ×

M2, whereM2 is a maximally symmetric two-manifold. Plugging this metric ansatz

into 3.9 and 5.29 it is indeed found that AdS2 ×M2 is a solution for Vt = QL/r and

Λ = (−2 + c4 + (8µ+ κ)Q2)/2L2, where L is the curvature radius of the AdS2 and Q
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is a charge. The radius of curvature of the manifold M2 is given by

L2
M2 =

L2

(8µ+ κ)Q2 + c4 − 1
, (5.34)

that is: it is a flat plane for |Q| =
√

(1− c4)/(8µ+ κ); a sphere for |Q| >
√

(1− c4)/(8µ+ κ);

and a hyperplane for |Q| <
√

(1− c4)/(8µ+ κ)

Given these solutions to Hořava gravity with a straightforward holographic inter-

pretation, the correlation function for operators dual to probe scalars can be calcu-

lated, as in Section 5.3. Specifically, using the action 5.25 the correlation function in

the background of AdS2 × R2 can be calculated. The results of this calculation can

be compared with the fully relativistic situation in [31], in order to probe the differ-

ences between employing holography for fields on the same background that respect

different boundary symmetries.

Given the translational symmetry of the background AdS2 × R2 the ansatz Ψ =

ψ(r)e−ı(ωt−
~k·~x) can be made. Plugging this into the action 5.25, the equation of motion

of this probe scalar is determined to be

ψ′′(r)− ψ′(r)

r
+

(
2q

(
ω +

Q

r

)
−
~k2 +M2

r2

)
ψ(r) = 0, (5.35)

where q ≡ mbt is the charge of the operator dual to Ψ. This can be solved exactly in

terms of Whittaker functions of the first kind M[a; b; z]:

ψ(r) = C1

√
rM

[
−ıQ

√
q

2ω
; ν; ır

√
8qω

]
+ C2

√
rM

[
−ıQ

√
q

2ω
;−ν; ır

√
8qω

]
,

(5.36)

where C1 and C2 are constants, and ν ≡
√

1 + ~k2 +M2.

Deep in the interior of this geometry, as r →∞, the Whittaker functions are seen

to have both infalling and outgoing contributions. Boundary conditions are chosen to

eliminate the outgoing modes, in order to reconstruct a retarded correlation function

from these perturbations. This fixes the ratio of C1/C2. The near boundary behavior

of the solution is of the form

ψ(r → 0) ∼ A(ω,~k)r∆− +B(ω,~k)r∆+ , (5.37)
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where ∆± = 1 ± ν and determines the scaling dimension of the dual field theory

operator to be ∆+. Following [31, 30], the retarded correlation function of the dual

operator is given by the ratio of its expectation value, coming from the normalizable

term r∆+ , to its source value, coming from the non-normalizable term r∆− :

GR(ω,~k) ≡ B(ω,~k)

A(ω,~k)
= e−2πıν

Γ(−2ν)Γ
(

1
2

+ ν − ıQ
√

q
2ω

)
Γ(2ν)Γ

(
1
2
− ν − ıQ

√
q

2ω

) (ı√8qω
)2ν

. (5.38)

While there are similarities between this correlation function and those calculated

in [31, 30], there are fundamental differences that reflect the non-relativistic nature of

the current duality. From above, ν is strictly real and positive, while for relativistic

charged scalars ν can become imaginary as the gauge coupling increases. In the

relativistic case this is understood to be due to the pair production of charged particles

by a strong electric field [31]. This non-relativistic result is in concordance with that

interpretation: due to the absence of anti-particles, a non-relativistic field theory will

not undergo pair production, regardless of the strength of the electric field.

It is reassuring to note that as the electric field is turned off in the Q → 0 limit,

the behavior of the correlation function 5.38 with frequency ω is

lim
Q→0

GR(ω,~k) = e−2πıν Γ(−2ν)

Γ(2ν)

(
ı
√
qω/2

)2ν

, (5.39)

which recovers the power law behavior GR(ω,~k) ∼ ων for the correlation function of

the non-relativistic scalar from Section 5.3 and [80, 8]. For generic Q the solution

5.38 has a nontrivial dependence on the frequency ω due to the Gamma functions. In

particular, the presence of the combination Q
√
q/ω indicates the emergence of a new

scale in the dual NR field theory. This is partially expected: the gauge coupling Q

scales as a velocity, which is a dimensionful quantity non-relativistically. This velocity

may be analogous to a Fermi-like velocity.

Another interesting limit possible for NR QFTs, for the reasons mentioned above,

is the strong field limit with Q→∞:

lim
Q→∞

GR(ω,~k) = e−3πıν Γ(−2ν)

Γ(2ν)
(ı2Qq)2ν . (5.40)
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Of note, is the independence of this correlation function of frequency ω, implying in-

stantaneous response. This is sensible in light of the previous paragraph: the velocity

set by the gauge coupling Q has been sent to infinity. Whether the analogy between

this velocity scale and the presence of a Fermi-like surface can be made more precise

is an open question.

5.5 An Analytic Solution

For z = 1, by examining the asymptotic expansion of the equations of motion 5.10 it is

seen that the power series solutions for e(r) and f(r) appear to terminate. Therefore,

making the ansatz:

e(r) =
1

r2
+ Cer −

1

4
c3(Ce + 2Ca)

2r4, f(r) =
1

r2
, (5.41)

the equations of motion are seen to be solved by

a(r) =
2
(√

4 + 4Cer3 + (1− c3)(Ce + 2Ca)2r6 + (Ce + 2Ca)r
3
)

4(1 + Cer3)r − c3(Ce + 2Ca)2r7
. (5.42)

This solution still depends on two parameters, Ce and Ca, and it needs to be

checked whether it is non-singular in the interior. As mentioned above, due to the

nature of the equations of motion, a possible singular point of solutions is the sound

horizon for the scalar mode with speed s2
0 = ((c2+c3)(2−c4))/(c4(1−c3)(2+3c2+c3)).

For asymptotically AdS solutions, from equation 5.9, z = 1 implies that c4 = 0, and

therefore the scalar sound speed is s0 → ∞. Intuitively, for an infinite speed scalar

mode, its sound horizon should be at the same position as the universal horizon which

traps modes of any speed. In Section 5.2.3 it was determined that the condition for

the location of the universal horizon is χMuM = 0, for χM the asymptotically time-like

Killing vector.

For the above analytic solution to be physical it must be non-singular at the

universal horizon. One quantity to examine is
(
χMuM

)2
: being a square it must be

non-negative for a physical spacetime, while by above it must vanish at the universal
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horizon. Therefore its first derivative must also vanish there in order to satisfy these

two properties. For the above solution

(
χMuM

)2
=

1

r2
+ Cer + (1− c3)(Ce + 2Ca)

2r4, (5.43)

and requiring that this and its first derivative vanishes at the universal horizon, r = rh,

implies

Ce = − 2

r3
h

Ca =
1− 1/

√
1− c3

r3
h

. (5.44)

This simplifies the solution to be:

e(r) =
1

r2
−2r

r3
h

− c3r
4

(1− c3)r6
h

, f(r) =
1

r2
, a(r) =

r3
h

r3
hr +

(
1√

1−c3
− 1
)
r4
. (5.45)

5.5.1 Adapted Coordinates and the Universal Horizon

It is important to note that the metric and foliation normal vector following from

the solution 5.45 are not written in the preferred global time of Hořava gravity. In

order to more fully understand the causal structure of this solution it is useful to

change to the ADM coordinates adapted to the foliation. This is done by choosing

the time coordinate to be the khronon φ, so that uM has only a time component. The

transformation from the above EF coordinates xM = (v, r, ~x) to the ADM coordinates

t and yI = (r, ~x) has Jacobian’s:

tM ≡ ∂xM

∂t
, eMI ≡

∂xM

∂yI
,

t̃M ≡
∂t

∂xM
, ẽIM ≡

∂yI

∂xM
. (5.46)

The global time of the ADM variables, t, and the null time of the EF coordinates

v are related by the ansatz t = v + h(r), for h a function of the radial coordinate r.

Under this coordinate change the hypersurface orthogonal vector uM becomes:

ũt =
∂xM

∂t
uM = uv, ũI = eMI uM = (−h′(r)uv + ur,~0). (5.47)
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By definition of adapted coordinates ũI = 0 is required, and therefore determines

h′(r) = ur/uv, which can be evaluated for the above solution. This then gives the

ADM spatial metric GIJ

GIJ ≡ eMI gMNe
N
J =


h′(r) (gvvh

′(r)− 2gvr) 0 0

0 1
r2 0

0 0 1
r2

 =


r6
h

r2(r3−r3
h)2 0 0

0 1
r2 0

0 0 1
r2

 .

(5.48)

The ADM shift vector NI is given by the time-space component of the transformed

spacetime metric:

NI ≡ tMgMNe
N
I =

(
−h′(r)gvv + gvr,~0

)
=

(
r√

1− c3(r3 − r3
h)
,~0

)
. (5.49)

Lastly, the ADM lapse function N is determined by the time-time component of the

transformed spacetime metric:

N2 ≡ N INI − tMgMN t
N =

(r3 − r3
h)

2

r2r6
h

, (5.50)

giving the final ADM form of the spacetime metric:

ds2 = −(r3 − r3
h)

2

r2r6
h

dt2 +
r6
h

r2(r3 − r3
h)

2

(
dr +

r3(r3 − r3
h)√

1− c3r6
h

dt

)2

+
d~x2

r2
. (5.51)

This allows one to interpret the meaning of the constant rh in the context of

adapted coordinates. On the two-sphere at this radial coordinate the lapse function

N vanishes, but the lapse function is what determines the normal distance from

one spatial leaf of the foliation at global time t0 to the next at t0 + ∆t. Therefore

the distance between the leaves is ever decreasing and they bunch up as r = rh is

approached on any of them. As the preferred asymptotic global time runs to infinity,

the leaves of Σt never penetrate this two-sphere. This shows how causality and causal

boundaries can arise in a theory like Hořava gravity that have no intrinsic limiting

speed. Disturbances can propagate arbitrarily fast, but they can only propagate

forward in the preferred global time t. As the entire region exterior to r = rh is to the
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past of the interior region (always at an “earlier” global time) nothing can escape the

interior. The location of the universal horizon is therefore a radius where the lapse

function vanishes.

5.5.2 Near Horizon Geometry and Temperature

A classic method to derive the temperature of a black hole in GR is to examine the near

horizon geometry. Generically the Euclidean manifold has a conical singularity at the

Killing horizon unless the Euclidean time has a specific periodicity. The formalism

of finite temperature QFT then dictates the temperature to be the inverse of this

period. It therefore is expected it to be beneficial to examine the geometry near the

universal horizon, although the findings will be radically different then the generic

case in GR.

Examining the near horizon r → rh limit of the solution 5.51 can be tricky due to

the off-diagonal dtdr term coming from the shift vector 5.49. In GR this term would

be removed by a temporal diffeomorphism, but this is not allowed in the foliation

preserving diffeomorphisms of Hořava gravity. On the other hand, a time-dependent

radial diffeomorphism to eliminate this cross term is still allowed. To this end it is

first useful to redefine the radial coordinate,

ρ ≡
√

1− c3r
6
h

[
1

2r2r3
h

− ArcTan
(

2r + rh√
3rh

)
+
Log(rh − r)

3r5
h

− Log(r2 + rhr + r2
h)

6r5
h

]
,

(5.52)

which goes to +∞ at the boundary r → 0, and −∞ at the universal horizon r → rh.

The reason for this definition is that it makes the dr + N rdt term of the metric

5.51 conformally flat. A new time dependent radial coordinate which diagonalizes

the metric can be defined: ξ = ρ + t. For a fixed t, ξ has the same behavior as ρ:

ξ → +∞ at the boundary, and ξ → −∞ at the horizon. This has the price of making

the metric non-static, giving the near-horizon behavior

rh − r ≈ exp(3ρ/(
√

1− c3rh)) = exp(3(ξ − t)/(
√

1− c3rh)), (5.53)
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which gives the near-horizon form of the metric:

ds2 ≈ −9e
6(ξ−t)√
1−c3rh dt2

r4
h

+
dξ2

r2
h(1− c3)

+
dx2

r2
h

. (5.54)

The non-static term can be removed by performing an allowed time reparametrization,

τ = −
√

1− c3rhexp(−3t/(
√

1− c3rh))

3
, (5.55)

which goes to −∞ as t→ −∞, and τ → 0 as t→ +∞. One last radial coordinate R

can be defined to put the ξ-τ terms of the metric into a conformal form:

dξ2

r2
h(1− c3)

≡ 9exp(6ξ/(
√

1− c3rh)dR
2

r4
h

. (5.56)

This gives the final form of the near-horizon metric,

ds2 =
1

(3R)2

(
−dτ 2 + dR2

)
+
dx2

r2
h

, (5.57)

which is recognized to be AdS2 with curvature radius 1/3 (relative to the asymptotic

AdS4 geometry of the solution) crossed with R2.

Unlike generic black holes in GR, the near horizon geometry is not Rindler space.

Therefore an approach following Euclideanization and the subsequent periodicity of

imaginary time is not available to define a temperature. Fortunately, despite having no

extrinsic scale, it is understood how AdS2 can have a notion of temperature [83]. This

arises because different choices of time coordinate in AdS2 can lead to inequivalent

vacua of a QFT upon quantization. For the case at hand, there is an inherited time

t, which is the Poincaré time of the decoupled asymptotic AdS4 geometry. This is

the time that would correspond to the Minkowski time of the dual NR QFT in flat

space. Of interest is the behavior of objects like correlation functions with respect

to the time t. Due to the relation between the AdS2 time τ and the AdS4 time t

from equation 5.55, it is seen that the former is periodic in the imaginary part of the

latter. This implies that any calculation performed in the vacuum of the near horizon

geometry will be periodic in the imaginary part of t, and therefore exhibits thermal
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behavior from the view of the boundary observer. The inverse of this period gives the

temperature of the spacetime

TH =
3

2πrh
√

1− c3

. (5.58)

5.5.3 Entropy and the First Law

The formula 5.23 for the mass of an asymptotically hyperbolic spacetime allows the

first law to be displayed for this black hole. The solution 5.51 has Ce = −2/r3
h and

therefore determines the mass to be:

M =
A

4πGKr3
h

. (5.59)

Taking the on-shell action to be the Helmholtz free energy divided by temperature

allows the calculation of the entropy. The on-shell action needs to be regulated by a

background subtraction, and the extent of temporal integration of the two spacetimes

is related to maintain the same geometries on the cut off surfaces [89]. This process

yields the regulated on-shell action I for this solution:

I =
−βA

8πGKr3
h

, (5.60)

where β is the inverse of the black hole temperature TH given by 5.58. Thermodynamic

identities now give the entropy:

S ≡ βM − I =
3βA

8πGKr3
h

=

√
1− c3Ah
4GN

, (5.61)

where Ah is the transverse area of the horizon and, recalling equation 3.11, for this

solution GN = (1−c3)GH = GK is the Newton constant. The first law is thus checked

and this Hořava black hole is seen to obey sensible thermodynamics.

5.5.4 Tunneling Method

An alternate and intuitively pleasing method to calculate a black hole’s temperature

is the so-called tunneling method [73]. The foundational idea is that near a horizon
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the virtual pairs of particles in the quantum vacuum can be disassociated with the

“negative mass” partner ending up in the black hole, in order to maintain energy

conservation. The positive energy partner is then free to travel to the asymptotic

region and be interpreted as Hawking radiation.

Calculationally, this method makes use of the fact that a given quanta of this

radiation was extremely blueshifted near the horizon, and therefore a semiclassical

approach can be used. Considering a scalar field, this allows a WKB approximation

of the wavefunction Φ of an excitation as:

Φ(x) ≈ φ0exp (ıS[φ(x)]) , (5.62)

where S is the action of the scalar field, φ is its classical solution, and φ0 is a constant

amplitude. This wavefunction determines the rate that the scalar field can tunnel

through the horizon. With the WKB approximation the quantum probability of

emission is:

Γ ≡ Φ∗Φ ∝ exp(−2 Im[S]). (5.63)

If this emission distribution is Boltzmann than a temperature can be meaningfully

associated to the process.

Although the WKB approximation requires knowledge of the equation of motion

of the scalar field, the simpler eikonal/Hamilton-Jacobi approximation only requires

a dispersion relation for the field. From the wavefunction 5.62, the Hamilton-Jacobi

equations can be derived by acting the momentum operator on Φ:

kM = ∇MS[φ(x)]. (5.64)

Combining this with the dispersion relation for φ allows the determination of Im[S],

and therefore the tunneling probability.

In GR it is argued that due to the extreme blueshift near the horizon the appro-

priate dispersion relation to use is that of a massless particle, k2
t = ~k2, regardless of

the actual equation of motion of the field. While this dispersion relation is fixed in
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GR due to Lorentz invariance, in Hořava gravity it could take on the very general

form:

k2
t =

~k2zφ

k
2(zφ−1)
0

+ · · · , (5.65)

where zφ is an integer determining the nature of the dispersion, k0 is a constant of

dimension one, and the dots schematically imply that all powers of ~k2 less than zφ,

as well as derivatives of ~k can be included, see [17] for a more precise discussion.

A tractable, and seemingly natural, choice is zφ = 2. This gives a dispersion that

is similar to the Schrödinger equation. Proceeding with the traditional methods of

calculating ImS, one obtains the temperature of a static spherically symmetric black

hole in Hořava gravity [17, 15]:

TUH =
aMsM |χ|

4π

∣∣∣∣
r=rh

, (5.66)

where sM is the outward pointing space-like vector orthogonal to uM , aM ≡ uN∇NuM ,

and χM = (1, 0, 0, 0) is the asymptotically time-like Killing vector. For the above

analytic solution 5.51 this gives the temperature:

TUH =
1

2
TH , (5.67)

that is, one half of the value as determined by the geometric method of Section

5.5.2. Interestingly, another tractable value is the zφ → ∞ limit [17], for which the

temperature is twice that of the zφ = 2 case, and therefore agrees with the geometric

method.

The fact that the tunneling method calculation has the ambiguity of the free

parameter zφ makes it a somewhat unappealing technique to calculate the Hawking

temperature, which is expected to be universal. In GR, the possible ambiguity arising

for fields of different mass or spin has been shown to be irrelevant in the calculation of

Hawking radiation because the extreme blueshift of the near-horizon region dictates

that only the linear high energy dispersion relation, constrained by Lorentz invariance,

plays a role. It can be hoped that similarly the high energy dispersion relation of fields
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near the universal horizon in Hořava gravity is unique. Some evidence, presented in

Section 6, points towards the zφ = ∞ limit being this unique relation. In this case

the temperature as calculated via the tunneling method agrees with that extracted

from the near horizon geometry.

The temperature derived via the tunneling method for zφ = 2 has recently been

reproduced in [24] by arguments concerning ray tracing near the universal horizon

and their relation to the surface gravity. It is claimed this calculation is universal

regardless of the exact dispersion, but that would contradict the tunneling method in

the zφ →∞ limit. Whether the ray tracing method can be used in this regime would

provide crucial insight into the temperature of universal horizons.

5.5.5 An Asymptotically Flat Solution

Another analytic black hole which provides a testing ground of the ideas developed

above has been presented in [17]. The four dimensional metric is given as:

ds2 = −e(r)2dt2 +
1

e(r)2
(dr − f(r)e(r)dt)2 + r2dΩ2, (5.68)

where:

e(r) = −1 +
rh
r
, f(r) =

√
µrh
r

+
(2− c4)r2

h

2(1− c3)r2
. (5.69)

Asymptotic infinity is the region r → ∞, which is seen to be Minkowski space in

spherical coordinates. Importantly, the metric is written in a preferred global time,

and therefore e(r) is the lapse function of the ADM decomposition and, as above, it

vanishing at r = rh signals the location of a universal horizon. The constant µ further

parametrizes the solution.

Similar manipulations as applied to the asymptotically AdS black hole of Sec-

tion 5.5.2 can be brought to bear. After diagonalizing the metric by performing a

time-dependent radial diffeomorphism, followed by a time reparametrization, the near
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horizon geometry of 5.68 becomes:

ds2 ≈ r2
h

R2

(
−dτ 2 + dR2

)
+ r2

hdΩ2, (5.70)

where: R→∞ at the universal horizon; and the geometry is again recognized to be

AdS2, now crossed with a sphere, both of radius rh.

The temperature of this solution follows from the relation between the near horizon

AdS2 time τ and the asymptotic Minkowskian time t:

τ ≡ − rh√
µ+ 2−c4

2(1−c3)

exp

− rht√
µ+ 2−c4

2(1−c3)

 . (5.71)

Periodicity in the imaginary part of t determines the temperature to be:

TH =
1

2πrh

√
µ+

2− c4

2(1− c3)
. (5.72)

Comparing to the calculation of temperature presented in [17], it is again seen that

the tunneling method agrees with this geometric method for zφ = ∞, and not for

zφ = 2.

5.6 Numerical Solutions

5.6.1 Probe Limit

As discussed in Section 3.1.2, a powerful use of the khronon formalism is the probe

limit regime. When the khronon does not backreact, any solution to GR is a solution

to Hořava gravity; the khronon simply determines what time coordinate needs to be

used to be a preferred global time.

An interesting class of manifolds to examine with this technique are those which

are black holes of GR [19]. These are defined by having event horizons: null causal

boundaries of the asymptotic region. Whether the event horizon3 maintains an im-

3From hereon the event horizon will be referred to as the metric horizon to avoid confusion with
the universal horizon, which is the true causal boundary of Hořava gravity.
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portant status can be explored with the probe limit technique. A particularly inter-

esting black hole geometry, from the viewpoint of holography, is the Anti-de Sitter-

Schwarzschild (AdS-S) solution. In four dimensions the metric in Poincaré coordinates

is:

ds2
AdS−S = −1− r3

r2
dt2 +

1

r2(1− r3)
dr2 +

1

r2
d~x2, (5.73)

where the boundary is at r = 0, and the radius of the metric horizon has been set to

one. It is beneficial to work in coordinates that are non-singular at the metric horizon.

Using the Eddington-Finkelstein time v ≡ t−r∗, where the tortoise coordinate is given

by r∗ =
∫ r
dr′/(1− r′3), the metric becomes:

ds2
AdS−S = −1− r3

r2
dv2 − 2

r2
dvdr +

1

r2
d~x2. (5.74)

On this background the khronon equation of motion can be derived from the probe

action4:

Sφ = − c4

16πGK

∫
dvdrdx2

√
−g
[

1

2
FMNF

MN + s2
0(∇Mu

M)2

]
, (5.75)

recalling that FMN ≡ ∂MuN − ∂NuM , and s0 is the sound speed of the scalar mode of

Hořava gravity, given by s2
0 = (c2 +c3)/c4 in the probe limit, whereas the sound speed

of the spin two graviton is s2 = 1. From the action 5.75, it is seen that in the probe

limit the only effective coupling constant is the speed s0. A useful parametrization of

the khronon orthogonal vector for a static, transversely constant ansatz is:

uM =

(
−1 + f(r)

2r

√
1− r3

f(r)
,−1

r

√
f(r)

1− r3
, 0, 0

)
. (5.76)

As such it is explicitly normalized to be unit time-like in the AdS-S background,

uMu
M = −1. The boundary condition that the global time is asymptotically Poincaré

time requires φ → t = v + r∗ at the boundary. In EF coordinates this is equivalent

to uM → (−1/r,−1/r, 0, 0), or f(0) = 1 for the above parametrization.

4This is because RMNu
MuN = const for AdS-S and a normalized uM .
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Varying the action 5.75 with respect to f(r) gives the equation of motion for the

khronon. This second order non-linear ODE is seen to have the expected singular

points at the boundary, r = 0, and the metric horizon, r = 1. Additionally, there is

a singular point whenever the magnitude of the khronon vanishes, f(rcrit) = 0, but,

from examining the expression 5.76 for the khronon normal vector, uM is non-singular

for f(rcrit) = 0 only if rcrit = 1, that is, this is not a new singular point, but just the

metric horizon again. This is understood by recognizing that in the probe limit s2 = 1

and therefore the metric horizon is more properly understood as the sound horizon

for the spin two degrees of freedom of the metric. Lastly, there is a singular point

at the sound horizon for the scalar mode, rs, where the magnitude of the khronon

function satisfies

f(rs)
2 − 2f(rs)

1 + s2
0

1− s2
0

+ 1 = 0. (5.77)

This gives fs ≡ f(rs) = (1 ± s0)2/((1 − s0)(1 + s0)). The bottom sign is chosen as

the physically acceptable condition for two reasons: there should be a non-singular

solution for the limit s0 → 1 corresponding to the scalar and spin two sound horizons

coinciding, which requires f → 0 as above; additionally, in the following numerical

construction, solutions using the top sign either do not match the desired boundary

condition f(0) = 1 or are singular at the metric horizon.

A final important radial coordinate can be seen from the parametrization for uM

in 5.76. Recall from Section 3.1.2 that when written in the preferred global time the

hypersurface normal vector uM has only a temporal component which is given by the

ADM lapse function N . Additionally, in transforming from the EF time v to the

preferred global time the temporal component of uM is unaltered, see equations 5.47.

This implies that at a coordinate where uv vanishes, so does the lapse function N

of the preferred foliation and therefore this is the location of the universal horizon,

rh. From the parametrization 5.76 this determines the universal horizon to be the

radial coordinate such that f(rh) = −1. This further implies, from examining ur,

that physical solutions must have rh > 1, that is the universal horizon is inside of the
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metric horizon.

5.6.2 Solutions

The second order non-linear ODE for f(r) can be numerically solved via a shooting

method. At the scalar sound horizon the function is given by f(rs) = fs, see equation

5.77 above. Requiring a regular solution at this singular point in turn determines the

value of f ′(rs) from two possible choices. Using this data as boundary conditions,

numerical integration can be performed in either direction, increasing or decreasing

r, to find a full solution. In practice, boundary conditions are imposed a small dis-

tance ε from the scalar sound horizon, and a Taylor series is used that matches the

desired behavior at rs. This is the typical trick to improve numerical stability while

integrating near a singular point. The technique of matching a numerical solution to

a local Taylor series must also be done to jump over the singular point at the metric

horizon r = 1.

For a given scalar speed s0, taking the location of the sound horizon rs as the

shooting parameter, and using the previously mentioned boundary conditions there,

the equation of motion can be numerically integrated out to the boundary r = 0. By

varying rs one can obtain the value that is needed to meet the boundary condition

f(0) = 1, which is the requirement that the foliation asymptotically tends to that of

Poincaré time. For every s0 this gives a unique regular solution that is asymptotically

AdS.

Case I: s0 < 1

For the scalar speed s0 < 1 the sound horizon is outside of the metric horizon, that is

rs < 1. To implement the above numerical procedure a Taylor series expansion about

rs which solves the equation of motion to order (r − rs)4 is used, and the required

boundary conditions are implemented at r = rs − ε for ε = 10−3. Figure 5.1 shows

two plotted solutions for rs differing by 10−9, the accuracy used throughout. The
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Figure 5.1: The profile of the khronon function f(r) for s0 = 2/10 is plotted from rs

to the boundary at r = 0. The lower red branch has rs = 212192121/250000000 ∼

0.848768 while the upper blue branch has rs larger by 10−9.

desired solution with f(0) = 1 lies between the plotted two. Figure 5.2 presents

crucial results for speeds s0 < 1: the rs giving the correct boundary conditions is

shown, along with rh, the radial coordinate at which f(r) first becomes equal to −1,

which is the location of the universal horizon, as argued above.

The three other possible combinations of boundary conditions for f(rs) and f ′(rs)

do not give physically acceptable solutions. Two of them always have f(0) > 1 or

f(0) < 1 for all rs, never switching as in Figure 5.1. This means they do not realize

the desired condition of Poincaré time at the asymptotic boundary. The final possible

class of solutions, those with fs = (1+s0)/(1−s0) and f ′(rs) > 0, do exhibit the correct

asymptotic f(0) → 1 behavior, but are divergent at the metric horizon. Examining

uM in 5.76 it is seen that this leads to a non-regular solution for the hypersurface

orthogonal vector. An example of this class is shown in Figure 5.3.
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s0 rs rh

0.1 0.823037721 1.12386952

0.2 0.848768484 1.13782822

0.3 0.872378252 1.15121426

0.4 0.894577562 1.16436206

0.5 0.915465270 1.17473414

0.6 0.935021618 1.18484700

0.7 0.953227190 1.19334154

0.8 0.970092978 1.20092572

0.9 0.985661688 1.20752533

Figure 5.2: The location of the scalar sound horizon rs, and the radius of the universal

horizon rh, for speeds s0 < 1.

Figure 5.3: The profile of the khronon function f(r) for s0 = 2/10 with incorrect

boundary conditions at rs. Although the behavior is as desired at r = 0, f(r) is

divergent at the metric horizon r = 1.
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Case II: s0 > 1

For the khronon speed s0 > 1 the scalar sound horizon is inside the metric horizon,

that is rs > 1. The numerics are implemented by the shooting method as above.

Figure 5.4 gives the data of the solutions: rs and rh for each s0. Of importance it

s0 rs rh

1.1 1.013189612 1.218154746

1.2 1.025420211 1.223152116

1.3 1.036500000 1.226276947

1.4 1.046758982 1.229434208

1.5 1.056222636 1.232232389

1.6 1.064967826 1.234712679

1.7 1.073108780 1.237040172

1.8 1.080589512 1.238919367

1.9 1.087514072 1.240540799

2 1.094025032 1.242147735

4 1.166242711 1.254600129

8 1.210285515 1.258505374

16 1.234393424 1.259559808

32 1.246977962 1.259830158

64 1.253404370 1.259898282

128 1.256651377 1.259915354

Figure 5.4: The location of the scalar sound horizon rs, and the radius of the universal

horizon rh, for speeds s0 > 1.

is seen that the universal horizon rh is always behind the metric horizon at r = 1,
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and always behind the scalar sound horizon rs. From the data it appears that rh is

bound between (1.11, 1.26) as s0 → (0,∞), respectively. In fact, the analytic solution

of Section 5.5 can be used to determine the s0 →∞ behavior. Since that solution is

asymptotically Anti-de Sitter, if the probe limit is taken it will correspond to one of

the numerical solutions above. Recalling that the solution has c4 = 0, in the probe

limit this solution has a scalar speed of s2
0 = (c2 + c3)/c4 →∞. From the metric 5.45,

in the probe limit, the analytic solution has the metric component:

gvv = − 1

r2
+

2r

r3
h

. (5.78)

The metric horizon is where this component vanishes, giving gvv = −1 + 2/r3
h = 0,

that is rh = 21/3 ≈ 1.2599, agreeing with the numerical bound above.

5.6.3 Universal Horizon

These numerical solutions all have the behavior that uv → 0 as r → rh. By writing

the khronon as φ = v + h(r) it is easy to see that h(r) =
∫ r
dr′ur/uv + const, as in

Section 5.5.1. Therefore the vanishing of uv implies that the khronon diverges5 at this

radius, consequently the spatial slices of the foliation defined by the level sets of φ

pile up at this radius and do not penetrate to smaller r. This is shown, for s0 = 7/10,

in Figure 5.5. Despite foliating the entire exterior of the black hole the leaves coming

from the asymptotic boundary pile up at rh ≈ 1.19 and do not reach further into the

interior. It is important to note that the interior region r > rh still has a foliation by

a preferred global time: Figure 5.5 only shows the foliation that is connected to the

asymptotic boundary for clarity, the numerical solution for the khronon, and hence

the foliation, can be constructed arbitrarily far into the interior, as in [11]. This shows

that the foliations of the interior are disconnected from the foliation that reaches the

asymptotic boundary.

5This divergence is physically acceptable as it can be removed via an allowed temporal
reparametrization. The invariant field uM is non singular.
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Figure 5.5: The Penrose diagram of the AdS black hole. The singularity at r →∞ is

in dotted red at the top, the boundary r = 0 is in thick black on the right, the metric

horizon at r = 1 is in thick dashed blue, while the thin dashed blue is the scalar sound

horizon at rs. The level sets of the khronon with s0 = 7/10 are shown in thin green.

The khronon defines the preferred global time coordinate of Hořava gravity, while

causality means that influences can only propagate forward in global time, although

arbitrary speed is allowed. In particular any disturbance at r > rh can only propagate

towards larger r: everywhere exterior to rh is at an “earlier” global time. In this

sense the surface rh, which is the boundary of the exterior foliation, defines a causal

boundary for the asymptotic observer and is therefore justly a universal horizon.

The status of the metric horizon at r = 1 can now be made clear. In Hořava gravity

this surface is properly understood as the sound horizon for the spin 2 graviton. Like

the scalar sound horizon at rs, these spheres are trapped surfaces for the low energy
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modes of their respective gravitons. On the other hand, higher energy corrections to

Hořava gravity will modify the dispersion relations of the gravitons to allow arbitrary

speed6. This allows the gravitons, and any other fields considered, to escape their

respective sound horizons, but they will still be inevitably trapped by the universal

horizon as this is a trapped surface for modes of infinite speed. Therefore the relative

unimportance of the metric horizon as a sound horizon, as compared to the universal

horizon as a causal boundary, is understood in Hořava gravity.

6These corrections are not expected to modify the low energy picture of the universal horizon as
the curvature is generically small there.
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Chapter 6

DISCUSSION

6.1 Lessons Learned

In the large landscape of internally consistent quantum field theories, the highly

constrained class of relativistic quantum field theories occupies only a small corner.

This work suggests that something similar should be true on the dual holographic

side. While the well studied case of gravitational theories with the full relativistic

diffeomorphism invariance of Einstein gravity seems to require string theory for its

high energy completion, the holographic dual to a generic NR QFT seems to simply

be a high energy fixed point of Hořava gravity, with non-trivial dynamical scaling

exponent zHL, coupled to an almost arbitrary matter sector. This basic picture has

been one of the motivations behind the original work of [48, 49] and was also recently

emphasized in [38, 15].

The duality proposed here was largely motivated by the similar symmetry struc-

tures of this alternate theory of gravity [49] and a generic non-relativistic quantum

field theory [81]. The work of [80, 8, 35] involving light-like compactifications of rel-

ativistic holographic duals also gave crucial clues hinting at the correct field content

of the bulk theory, as discussed in Sections 3.2.1 and 3.2.2.

An important check of this proposal is the calculation of correlation functions. In

Section 5.3 this was performed for a probe scalar on the background of AdS4 and

was shown to obey the rigid structure required by Galilean and scale symmetries. In

Section 5.4 a correlation function was calculated for a probe scalar on the background

of AdS2 × R2. The results show distinct non-relativistic characteristics, as compared

to the relativistic calculations of [31, 30] on this same background.
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Section 5.2 explores the class of solutions to Hořava gravity that asymptote to

Lifshitz spacetimes. These are an important class of solutions from the viewpoint of

holographic application. Lifshitz spacetimes in general relativity have been argued to

be dual to non-relativistic quantum field theories. Given that these spacetimes are

vacuum solutions of Hořava gravity lends evidence to the proposal that this alternate

theory of gravity is dual to generic NR QFTs.

The crucial object at the heart of holography is the black hole. This gravitational

object is fascinating classically for its causal and geometric structure. Quantum

mechanically black holes present the remarkable fact that they are thermodynamic

objects, with a temperature and entropy. Simple counting then shows that the amount

of information needed to describe any volume of space is equivalent to that of a field

theory on the bounding surface area, and holography is born.

If Hořava gravity is to follow this paradigm in the same way that general relativ-

ity does, understanding of its black holes is a requisite. A primary feature, discussed

throughout, is that despite lacking Lorentz invariance and the geometric structure

of null light cones, Hořava gravity does have a well defined causal structure due to

signals only propagating forward in the preferred time. This leads to the possibility

of a causally disconnected region of the spacetime, when the foliation by global time

that covers asymptotic infinity does not penetrate the entire manifold, as discussed

in Section 5.6.3. The boundary of this region behaves like an event horizon of gen-

eral relativity: it is a surface from which no causal signals can escape and influence

infinity. Black holes exist in Hořava gravity and are the region behind this boundary

or “universal horizon”.

Numerical Hořava black holes were constructed in Section 5.6, proving existence

of universal horizons. These solutions exhibit interesting properties, such as the de-

pendence of the location of the universal horizon on the speed of the scalar graviton,

but, being numeric, they would be cumbersome to explore the important issue of

thermodynamics. Luckily, Section 5.5 provides an analytic spacetime that is seen to
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have a universal horizon. Calculations of its mass 5.59, entropy 5.61, and temperature

5.58 obey a first law of thermodynamics, giving crucial evidence that the holographic

principle applies to Hořava gravity.

6.2 Open Questions

There is much to be explored in the subject of non-relativistic holography. Initial

directions to be explored is to simply follow routes that that traditional AdS/CFT has

opened. One arena is referred to as the “fluid/gravity” correspondence, this allows the

exploration of hydrodynamics in terms of the gravitational behavior of black holes.

Interesting properties of non-relativistic fluids such as viscosity parameters can be

calculated with this holography.

To get truly novel results along these lines black hole solutions of Hořava gravity

that are asymptotically Lifshitz spaces would be desirable. Such solutions would also

clear up the uncertainty in the definition of mass in z 6= 1 backgrounds, as discussed

in Section 5.2.3.

To make contact with possible real world systems further developments are re-

quired. To make contact with the quantum Hall effect, solutions of Hořava gravity

with magnetic fields present are needed. In order to capture the NR conformal sym-

metry of Fermions at unitarity the additional U(1) invariance of Section 4.2 needs to

be incorporated. This is particularly tempting to explore in three dimensions as it

can be accomplished with the inclusion of only one additional field.

The prospect that Hořava gravity may be a complete quantum theory would allow

holography to move away from the weakly curved gravity regime. This would explore

dual field theories outside of the strongly coupled, large number of colors regime that

have restricted traditional AdS/CFT. Hořava gravity comes with an intrinsic scale,

the Planck mass Mpl. For energies far below the Planck mass the action should be

limited to two derivative terms and is uniquely fixed to be 3.2. This is the appropriate

action to use when L, the typical curvature radius of spacetime, is large in Planck



101

units. From experience with relativistic holography, this limit corresponds to a large

Nc limit in the dual QFT, which allows one to study a classical bulk theory. One

of the big selling points of Hořava gravity is that it is a candidate for a UV finite

quantum theory of gravity. At energies far above the Planck scale the theory is

argued to flow to a UV fixed point with a different dynamical critical exponent zHL.

As a consequence, at this putative UV fixed point the counting of derivatives needs

to distinguish between spatial derivatives, which have dimension 1, and temporal

derivatives, which have dimension zHL. All marginal and relevant terms (that is

terms with dimension less than or equal to D+zHL, which compensates the dimension

−D − zHL of the integration measure dDx dt) need to be included in the action. In

particular, the potential energy, which depends on the curvature of the spatial metric

GIJ and its spatial derivatives, should include terms with up to D + zHL derivatives

of the metric. For the special case of D = 3, zHL = 3 a full list of the possible terms

in the potential, subject to certain discrete symmetry assumptions, has been worked

out1 in [82].

Section 5.5 confirmed the thermodynamics of an analytic black hole. This is

reassuring, but it also raised some interesting questions. The first of these is that

the near horizon geometry is not Rindler space, as it generically is in GR. This also

arises in the asymptotically flat black hole of [17]. Instead the geometry is AdS2

crossed with the transverse space, R2 or S2, respectively. This indeed appears to be

the generic situation in Hořava gravity: the universal horizon occurs where the lapse

N vanishes, if it does so linearly, then gtt vanishes quadratically, once the metric is

diagonalized as in Section 5.5.2. Despite this, a notion of temperature can still be

defined via the methods of [83].

The second interesting, and likely related issue, arises in the calculation of the

1In the original work of [49] a simpler potential has been used by imposing the additional con-
straint of detailed balance. It seems to still be under debate whether this constraint can be
imposed at the full quantum level. This question is not relevant for the MplL� 1 case.
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temperature via the tunneling method. This approach has the weakness that the

dispersion relation Eq. 5.65 is not unique once Lorentz invariance is abandoned.

When using the tunneling method in GR the extreme blueshift of the horizon is used

to justify the linear dispersion kt = |~k| regardless of the mass of the particle. In

Hořava gravity the same logic can be used. For modes of extremely high momenta,

the leading power zφ in Eq. 5.65 dominates all lower powers in the dispersion. As zφ

is not uniquely fixed by symmetry, as it is in GR, this argument favors as large a zφ

as possible. It therefore seems natural to use zφ → ∞ for the dispersion in the near

universal horizon calculation of the tunneling method. It is also reassuring that this

form of the dispersion gives a temperature that agrees with the geometric method of

Section 5.5.2, while the “minimal” choice zφ = 2 disagrees by a factor of two. Why

this may be related to the near universal horizon geometry is the fact that AdS2 can

be seen as the z →∞ limit of the Lifshitz spacetime Eq. 5.1. A better understanding

of the natural action for a non-relativistic scalar in these background geometries will

prove crucial in justifying these arguments.
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