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Abstract

Distributed Diverging Topic Models
A Novel Algorithm for Large Scale Topic Modeling in Spark

James Andrew Marquardt

Chair of the Supervisory Committee:

Associate Professor Martine De Cock

Institute of Technology

In their 2001 work Latent Dirichlet Allocation, Blei, Ng, and Jordan proposed the generative

model of the same name that has since become the basis for most research in the field of

topic modeling. The model overcame many of the shortcomings of previous probabilistic

models such as allowing the inference of topics in documents not present in the learning

phase, as well as allowing for topic mixtures. In the past decade the algorithm for inferring

the probabilities associated with the model has been implemented in many different lan-

guages, been extended to allow topic relationships with other entities such as emotion and

document label, and optimized in a variety of ways to allow faster learning. Latent Dirichlet

Allocation (LDA) has found applications within a wide variety of disciplines; including dig-

ital humanities, computational social science, e-commerce, and government science policy.

In short, the numerous advances and applications illustrate the significant influence of the

original LDA algorithm.

However, in spite of the numerous publications and tools created as a result of LDA, the

model suffers from one issue: it is extremely computationally intensive. This shortcoming is

so great that its utility towards large datasets of the scale of those mined from the Internet is

somewhat questionable. Additionally, the topic modeling algorithm often requires a degree

of active learning, requiring feedback from a domain expert, which in certain circumstances

would be ideally minimized.



In this work we present Distributed Diverging Latent Dirichlet Allocation (DD-LDA), a

novel algorithm for the creation of topic models based on the original Latent Dirichlet Al-

location model. The algorithm takes advantage of recent advances in distributed systems

approaches to computation, and demonstrates its utility through decreased time require-

ments as well as increased model performance via the ability to intelligently determine

appropriate model size.
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Chapter 1

INTRODUCTION

Inundation with potentially excessive amounts of data is a fact of life. While this may

have at one point been an inconvenience, the “big data” revolution has allowed enterprising

organizations and individuals to discover a wealth of knowledge within the deluge. Many

existing tools for doing this sort of profitable exploration are fairly limited to simple sta-

tistical analysis. While such tools are undoubtedly useful, there is much to be said for

more abstract exploration. Often, the answer to the question “how many people are saying

something” is far less interesting than the question “what are they saying.”

Various approaches have been proposed for the addressing of such inquiries, topic modeling

being a star among them. Topic modeling has become an indispensible tool in many inves-

tigations. It has been shown to be valuable in exploration of scientific literature and the

discovery of what academics focus on similar fields [3] [11]. Topic models have been featured

as an ideal way to summarize vast swaths of historical news articles in order to see how

the attentions of journalists have changed over time [33]. They have helped examine early

colonial perceptions of beauty [6] and model the political makeup of legislative districts [26].

In short, they have done a lot. Yet in spite of their many applications, are they feasible for

use on more than just samples?

1.1 Motivations

There is a reason many of the studies which use topic modeling as their primary exploratory

tool use a sample of the total data available: most available tools for topic modeling are

quite slow. Research into pared down versions of the algorithms behind the inference of

topic models has yielded some positive results [25], but there is definitely more that can be

done.

In this work we will propose a novel approach to topic modeling which builds on years of
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research on probabilistic models as well as modern advances in cluster computing. It is

the goal of this work to move towards the feasibility of applying topic modeling algorithms

deployed on big data frameworks to Internet scale data.

1.2 Thesis Layout

We will first cover an overview of the various big data technologies and topic modeling

techniques we will use in the development of our novel algorithm in Chapter 2. We will

then describe the algorithm that we are proposing, as well as provide justifications for using

the proposed methods in Chapter 3. Next, we will describe the data sets we will use in

order to test our proposed methods in Chapter 4. Descriptions of the various criteria we

will use to evaluate our algorithms will be given in Chapter 5. Our experiment design and

results will be described in Chapter 6. Finally, we will offer our observations and ideas for

future work in Chapter 7.
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Chapter 2

BACKGROUND

2.1 Distributed Computing

2.1.1 History

Distributed computing is a paradigm of computation that utilizes components located on

networked computers. These components are able to function together through the passing

of messages. Distributed computing is often differentiated from parallel computing in that

a distributed system will typically not have shared memory among the networked compo-

nents, as shown is Figure 2.1.

The primary motivation for the adoption of distributed computing paradigms deals with

Figure 2.1: Distributed vs. parallel systems. Arrows indicate inter and intra node commu-
nication

scale. It has been re-stated many times that Moore’s Law (the statement that every eighteen

months either the number of transistors that can fit on a chip will double or the cost of the

same number will be halved) may no longer hold true in the near future. As such, the cost

of adding computational power to a single computational node is becoming such that it is

becoming less cost effective. As an alternative to this type of vertical scaling, adding more

nodes to the system (also known as horizontal scaling) is a way to add computational power.

In theory, gains made by horizontal scaling are limited only by the number of nodes that
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can be successfully incorporated to a computational cluster (although in truth, issues such

as hardware and communication failure will cause the benefits to not be quite so great).

While the origins of distributed computing can be argued, one of the earliest works that

laid out the formal engineering basis for performing parallel tasks on a cluster of compu-

tational nodes was put forward in [1]. In this work, the author describes a formulation for

the expected speedup for using multiple computational nodes for an otherwise sequentially

executed task. Many of the original computational clusters grew out of work founded on

this paper, including early work on ARPANET’s distributed computation of routing tables

[19] and the commodity hardware Beowulf cluster described in [2].

2.1.2 Message Passing Interface

Message Passing Interface (MPI) is a standardized message passing system to allow the

coordination of parallel tasks over nodes in a computational cluster. This includes the

assignment of tasks to a node, communication between nodes during computation, and

how output from tasks is collected. The system allows for a high degree of control in the

parallelization of tasks.

While the framework offers certain benefits, it suffers from multiple issues. Firstly, as a

high degree of specificness is required, the resulting code can be fairly difficult to debug. In

addition, computation requires the movement of data to a computational node, creating a

severe bottleneck in terms of the communication overhead.

2.1.3 MapReduce

MapReduce is a programming model for distributed computation proposed for use by Google

in [9]. The model specifies a programming paradigm that simplifies all operations for a map

phase, wherein data on which operations are to be performed are mapped to a computational

node, and a reduce phase, in which operations on the mapped data are performed on the

node in which they exist. These map and reduce operations operate in much the same way as

the map and reduce operations in many functional programming languages do. The popular
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Hadoop distributed framework utilizes the MapReduce framework for writing programs.

The paradigm benefits in several ways. Firstly, MapReduce makes use of data locality when

performing computational tasks. Unlike MPI, which requires data to be moved to the node

on which it will be operated, operations under the MapReduce scheme will occur on the

computational node on which the data exists. Secondly, and also as a partial extension

of the first benefit described, the MapReduce paradigm is extremely simple from a user

perspective when compared to MPI. While in MPI a high degree of granularity is required

when specifying the flow of tasks, MapReduce programs can be written as a specification

of a single map and a single reduce phase. Finally, MapReduce benefits from being the

programming paradigm of choice for many of the most common distributed frameworks,

including Hadoop and Spark.

2.1.4 Distributed Filesystems

A Distributed Filesystem is a method of storing and accessing files based in a client/server

architecture. In a distributed file system, one or more central servers store files that can be

accessed, with proper authorization rights, by any number of remote clients in the network.

Much like an operating system organizes files in a hierarchical file management system, a

distributed system uses a uniform naming convention and a mapping scheme to keep track

of where files are located. When the client device retrieves a file from the server, the file

appears as a normal file on the client machine, and the user is able to work with the file in

the same ways as if it were stored locally on the workstation. When the user finishes working

with the file, it is returned over the network to the server, which stores the now-altered file

for retrieval at a later time.

Distributed file systems can be advantageous because they make it easier to distribute

documents to multiple clients and they provide a centralized storage system so that client

machines are not using their resources to store files.

One of the most pervasive distributed filesystems is the Hadoop Distributed Filesystem

(HDFS). HDFS is implemented in the Java programming language for Hadoop, but has

found applications in other cluster frameworks. Files are distributed and maintained across
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many “data” nodes, with a level of redundancy being maintained. Access to the files is

controlled via a “head” node, which tracks the location of data within the cluster’s data

nodes. Redundant head nodes are typically maintained as well.

2.1.5 Spark

Apache Spark is an open-source in-memory data analytics cluster computing framework. It

is often seen as a successor to Hadoop, and has been shown to outperform Hadoop compu-

tation time for certain tasks by as much as 100 times. The major advantage Spark presents

over traditional Hadoop disk-based MapReduce is its in memory computation paradigm.

In Hadoop, MapReduce computation is performed by loading data from disk, performing

computations on the data, and writing it back out to disk. With Spark, data is held in a

cluster’s shared memory, allowing for repeated queries to the same data without waiting

for slow disk reads. This has been shown to be very advantageous for highly iterative pro-

cesses such as training a logistic regression model, where the same data will be referenced

repeatedly. In [34], the time to convergence of training a logistic regression model on four

node Spark and Hadoop models were compared using a 29 gigabyte dataset. Training using

a large number of iterations was shown to complete as much as 100 times faster using a

Spark cluster as opposed to a Hadoop cluster, as seen in Figure 2.2.

Figure 2.2: Runtime of Hadoop and Spark on logistic regression model training
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2.2 Approximation Methods

The goal of all tasks described in this work is to determine a distribution of unobserved

variables using various methods. In this section, we explain two of the most commonly used

methods of approximation used in topic modeling.

2.2.1 Variational Inference

Variational inference is an increasingly popular method of approximating posterior prob-

ability distributions. The approach seeks to eliminate some of the “guess work” involved

when attempting to approximate multiple distributions which co-vary to an unknown de-

gree. Variational inference does this by assuming the relationships among distributions are

known a priori. In some applications, such as topic modeling, the distributions are assumed

to have little to no co-variance. By fixing the co-variance in this way, the distributions can

then be sampled independently to arrive at an approximate posterior distribution [5].

While the potential independence assumptions made by variational inference lend them-

selves to easy computation using MapReduce, the volume of commonly used topic modeling

toolkits [17] [18] which continue to use alternative approximation methods seems to indicate

a reluctance to adopt variational inference. For this reason, in this work we choose to ignore

this approximation method.

2.2.2 Gibbs Sampling

By far the most commonly used approach to posterior approximation in topic modeling is

Gibbs sampling. Gibbs sampling or is a Markov Chain Monte Carlo (MCMC) algorithm for

obtaining a sequence of observations which are approximated from a specified multivariate

probability distribution. By continuously re-sampling from either a random or pre-specified

distribution, the exact posterior can be approximated. Given an infinite number of sam-

pling iterations, the approach will converge on the true posterior [7]. Conversely given a

low number of sampling iterations, the posterior approximation will be poor.

Given its formulation as a MCMC method, it well suited to approximations within Bayesian

Networks, such as those described in Section 2.3.2. As such, it is commonly used in many
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topic modeling toolkits in order to perform approximation. Because of its pervasive adop-

tion, we focus on Gibbs sampling for approximation for the remainder of this work.

2.3 Topic Models

One of the tasks of machine learning is to uncover abstract representations of documents.

This task is relevant both for presenting summarizations of documents to be ingested by a

human reader as well as for extracting features to be used in other machine learning tasks

such as classification. Topic models are one such way of performing this extraction.

A topic model is a statistical model of the mixture of abstract “topics” that a document

is comprised of. For example, given known topics for “banking” and “trade,” one could

represent the blog posts of a various amateur economists as some mixture of these two

topics. For posts discovered to be mostly comprised of the “banking” topic, one would

expect to see a large number of “banking” related words, and similarly for posts related

to the “trade” topic. Posts with a roughly even proportion of the “banking” and “trade”

topics may expect to see a similar distribution of both “banking” and “trade” related words.

Probabilistic topic modeling captures this concept of topic proportions being affected by the

presence of topical words in a mathematical framework.

It should be understood, however, that topic models are not limited to modeling textual

documents. In fact, they have been applied in a variety of contexts including image process-

ing [32] and finance [10]. However, in order to make this work more easily understandable,

future references in this work to “document features” or “terms” will refer to a term vector

document representation and the individual words contained in a document respectively.

2.3.1 Probabilistic Latent Semantic Indexing

A precursor to LDA, Probabilistic Latent Semantic Indexing (pLSI) attempts to model the

causal relationships between document content and the latent variables which it is comprised

of [12]. In Figure 2.3, the words w which comprise a document d are shown to be generated

by a latent variable c, which can be thought of as a “topic.” These causal relationships are

then said to apply to a corpus of M documents, each having N words. The probability of
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Figure 2.3: Plate notation for pLSI

co-occurence of a document and a word is modeled according to Equation 2.1.

P (w, d) =
∑
c

P (c)P (d|c)P (w|c) = P (d)
∑
c

P (c|d)P (w|c) (2.1)

The model states, as shown in Equation 2.1, that the probability of word w and document d

co-occurring is determined by the probability of occurrence of document d multiplied by the

sum of the product of the probability of topic c occurring in document d and the probability

of word w having topic c for all potential topics c.

The model has drawn a degree of ire as a result of its not being a generative model. It has

also been shown to lead to overfitting during probability inference. Despite these issues, it

is notable for being the basis for Latent Dirichlet Allocation.

2.3.2 Latent Dirichlet Allocation

One of the most common forms of topic models is Latent Dirichlet Allocation (LDA) [5].

LDA is a generative model that represents documents as a mixture of latent variables. These

latent variables are the “topics” of the topic models, and are probability distributions over

the possible document features that may be present in a document. The model assumes a

Dirichlet prior over both the distribution of topics within a document and the distribution

of features within a topic. A concise formulation of the model was presented in [5] as seen

in Figure 2.4. In this model α and β are the paramaters for the Dirichlet priors for the per

document topics and the per topic word distributions, respectively. θ is the topic distribu-

tion for a given document. Z is the topic which generates feature W . ϕ is the distribution

of words for a given topic. M is the document count of the corpus being examined and N
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Figure 2.4: Plate diagram of LDA

is the number of unique terms within the corpus. By sampling from topics and features

within topics, it is possible to generate all documents.

By envisioning documents as the product of the set of causal relationships described above,

it is possible to uncover the probability of each word for each topic.

In order to estimate the probabilities associated with the aforementioned model, we use

Gibbs Sampling. Other methods involving variational inference have been proposed, al-

though those using Gibbs Sampling are by far the most common. The probability of a word

w being generated given a topic z is estimated according to Equation 2.2,

P (w|z) = ϕ̂(w)
z =

nz
(w) + β

nz(·) +Nβ
(2.2)

and the probability of a topic z being generated given a topic model τ is estimated according

to Equation 2.3.

P (z|τ) = θ̂(d)z =
nz

(d) + α

n·(d) +Kα
(2.3)

Parameters α and β intuitively specify how close Equations 2.2 and 2.3 are to a maximum

likelihood estimation: if their value is zero, Equations 2.2 and 2.3 become a maximum

likelihood estimation, while high values make them tend to a uniform distribution. Typical

values for these parameters are α = 50/K and β = 0.1; values that are commonly used

in many available topic modeling toolkits which implement LDA. The number of topics K

depends on the data and therefore differs for each problem. A typical and straightforward

solution is simply trying different values to see which one offers the best results for the
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desired task. Other values used in the above equations are described in Table 2.1.

As mentioned, Gibbs Sampling is used to arrive at the above estimations. For LDA, the

Table 2.1: Values used in LDA with Gibbs sampling to find underlying topics

value description

nz
(w) Number of times term w is assumed to have been generated by

topic z.

nz
(d) Number of times a term instance of document d is assumed to

have been generated by topic z.

nz
(·) Total number of times a term has supposedly been generated by

topic z.

n·
(d) Total number of term instances of document d generated by any

topic.

n′z
(w)

Number of times term w is assumed to have been generated by

topic z, but without counting the current assignment of w.

n′z
(d)

Number of times a term instance of document d is assumed to

have been generated by topic z, but without counting the current

assignment of w.

n′z
(·)

Total number of times a term has supposedly been generated by

topic z, but without counting the current assignment of w.

n′·
(d)

Total number of term instances of document d generated by any

topic, but without counting the current assignment of w.

Gibbs Sampling algorithm requires the typical random initialization of all values described

in Table 2.1. This is done by sampling topics from a uniform distribution for every term

in every document. The term probabilities are then adjusted through an iterative process.

At each step, a term is sampled and removed from the model. A topic is then sampled

according to Equation 2.4.

P (z|w, τ) ∝ P (w|z)× P (z|τ) =
n′z

(w) + β

n′z
(·) +Nβ

· n
′
z
(d) + α

n′·
(d) +Kα

(2.4)
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This topic is then associated with having generated the term that was previously removed,

and the term is added back to the model. This process is repeated for all terms in all docu-

ments. Iterations typically continue until either the model satisfies some metric indicating

convergence, or a predefined number of iterations have occured. Commonly perplexity, as

described in Section 5.1, is used as a convergence metric [25] [5].

2.3.3 Extensions of Latent Dirichlet Allocation

Latent Dirichlet Allocation has been at the center of many extensions. The Hierarchical

Dirichlet Process (HDP) model described in [30] adds an additional Dirichlet prior to the

original model, H in Figure 2.5. The purpose of this additional causal relationship is to

model corpora as a mixture of many topic models.

Figure 2.5: Hierarchical Dirichlet Process plate model

The HDP model has been the focus of works studying topic clustering as in [4], [21],
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and [14]. Term-topic probabilities within this model can be inferred using an adaptation of

the model described in Section 2.3.2.

Various other modifications to the original LDA model have yielded models optimized for

modeling causal relationships between topics and various predefined class labels. In [15], a

model is proposed that defines a causal relationship between sentiment expressed in a docu-

ment and topic proportion. The model shown in Figure 2.6 presents the sentiment expressed

Figure 2.6: sLDA Plate model

as y, and attempts to define a causal relationship between it and the topic distribution of

a document D.

2.4 Existing Distributed Algorithms for Topic Models

There exist several distributed implementations of the topic distribution inference algorithm

described in Section 2.3.2. Many of these implementations attempt to perfectly replicate

the sampling algorithm. In this section, we describe two implementations most relevant to

this work.

2.4.1 Asynchronous - LDA (Async-LDA)

Async-LDA is an implementation of the Gibbs Sampling for LDA approach [28]. In this

implementation, computational nodes within a MPI cluster perform the Gibbs Sampling

algorithm over a subset of documents from a corpus. After a fixed number of sampling

runs, the resulting topic distributions are merged, using an approach equivalent to what
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is described in Section 3.2. In the work in which this method is proposed, Async-LDA is

shown to achieve a near perfect speedup as computational nodes are added to the cluster

for larger datasets (e.g. PUBMED with 737,869,083 terms in the corpus) while achieving

less optimal speedups for smaller datasets (e.g. NYT with 99,542,125 terms in the corpus)

as shown in Figure 2.7.

Figure 2.7: Speedup for Async-LDA on the PUBMED and NYT datasets

2.4.2 Approximate Distributed - LDA (AD-LDA)

In a parallel work to [28], AD-LDA was proposed to accomplish the same task of distributing

the LDA Gibbs Sampling algorithm with the exception of using MapReduce as the distri-

bution paradigm [22]. The procedure used is essentially equivalent to the one described in

Section 2.4.1, with the map phase responsible for determining break up of documents and

the reduce phase responsible for the aggregation of the resulting term-topic counts.

A particularly important contribution of the original AD-LDA work is the battery of scal-

ability experiments conducted. The authors implement an equivalent version of AD-LDA

using MPI, and note its performance with respect to the MapReduce implementation as the

size of the cluster increases. The authors conclude that as the cluster size become large,

the ability of the MPI implementation to scale decreases drastically. This serves as a moti-

vation for adopting MapReduce as the programming paradigm for extremely large clusters
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for performing topic model training.



16

Chapter 3

PROPOSED DISTRIBUTED ALGORITHM

3.1 Justification

It has been noted in the works discussed in Section 2.4 that an insufficient number of Gibbs

Sampling iterations in distributed implementations of LDA will lead to topics which do

not converge, leading to a suboptimal final solution. This is analogous to the problem of

arriving at a poor approximation of the posterior distribution using Gibbs sampling for all

applications mentions in Section 2.2.2. In this work, we propose to leverage diverging topics

as an advantage to the overall topic model, rather than a hindrance.

Additionally, we propose to deploy this algorithm using the Spark cluster computing frame-

work. We note that Gibbs sampling is a highly iterative task, and as discussed in Sec-

tion 2.1.5, Spark performs well on highly iterative tasks.

3.2 Implementation

We propose two algorithms as an alternative to sequential methods for approximating topic

distributions in LDA. In both, using MapReduce, subsets of documents from a corpus are

mapped to different computational nodes. A topic model is trained for each of these subsets

using Gibbs sampling. The resulting topic models are then returned from the reducer in

the form of the counts described in Section 2.3.2, using the process described in the same

section, acording to Listing 3.1. The only variation from the original process is that random

initialization only occurs on the first iteration; successive iterations use counts forwarded

from the post-reduce phase.

Listing 3.1: MapReduce code for topic model training

Function Map( document ) {
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emit ( hash ( document ) , document ) ;

}

Function Reduce ( id , documents ) {

TopicModel = LDA( documents ) ;

emit ( TopicModel ) ;

}

After each iteration of algorithm, topic counts are merged in order to generate a single

topic model. The resulting counts are then broadcast to all computational nodes and used

for initialization for the next round of Gibbs sampling. This process is repeated until the

perplexity of the models present at successive iterations improves by less than 0.1%. The

entire procedure is presented in Figure 3.1.

Figure 3.1: Flow of the proposed algorithms

In this workflow, an initial value K specifies the initial number of topics to assume for

the model. Model training then occurs on a subset of documents within a corpus at n

computational nodes (P). The topic counts are then merged in the Optimize phase, by

summing the counts for matching topics from all nodes. The resulting counts are broadcast

in order to use as the intial counts for the next round of Gibbs sampling. Training and

Optimize then repeat until the perplexity convergence threshold is met.

The two algorithms proposed in the Sections 3.2.1 and 3.2.2 differ in how they determine
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which topic models are to be merged at the Optimize step.

3.2.1 Optimized Distributed - LDA (OD-LDA)

This algorithm attempts to perfectly reproduce the sequentially trained models from LDA

in a distributed system. This approach a very similar one to that taken in [22], with one

notable exception. In [22], the authors note that it is unnecessary to attempt to find a

perfect matching of topics from each computational node. Rather, the authors note that if

topics with the same topic ID from each node are merged across all nodes the model will

tend to converge upon additional iterations.

In our approach, we search the space of all possible topics from all computational nodes to

find a matching that lowers the divergence between topics, as determined by their Jensen-

Shannon Divergence, defined in Equation 3.1.

JSDπ1,...,πn(P1, P2, ..., Pn) = H(
n∑
i=1

πiPi)−
n∑
i=1

πiH(Pi) (3.1)

In this equation, πi refers to the weight assigned to probability distribution Pi. For our

purposes, each distribution is weighted equally. H(Pi) refers to the Shannon entropy of

probability distribution Pi, as defined in Equation 3.2.

H(P ) =
n∑
j=1

pj log(
1

pj
) (3.2)

In this equation, P is a discrete probability distribution, and pi is the jth term of the dis-

tribution. The equation for H(P ) will in effect capture the amount of information received

for every event in P

We choose this divergence metric both for it being a symmetrical measurement as well as

its ability to measure divergence between more than two distributions (as opposed to other

metrics such as KullbackLeibler divergence).

In order to arrive at the combinations of topics to be merged, we examine all possible

groupings (equivalent to the number of topics) of topic models such that no two models in-

volved can originate from the same computational node. For example, assume an example

where we seek to create a topic model of K=3 topics on a cluster with three computational
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nodes named A, B and C. In this example the topic model with an ID of 1 from node

A is denoted as A1. The possible groupings include [{A1,B1,C1},{A2,B2,C2},{A3,B3,C3}],

[{A1,B2,C3},{A2,B3,C1},{A3,B1,C2}], and so on. Each of these possible groupings will have

its JSD, and the grouping whose mean divergence is lowest will be merged. This differs

from the approach taken in [22] in that the authors of that work only consider merging

topics with the same topic ID from each node.

3.2.2 Distributed Diverging - LDA (DD-LDA)

This implementation makes use of an observation made on the work in [22]. In it, the au-

thors state that if the number of Gibbs sampling iterations performed during the inter-node

topic model training is low enough, topics of the same topic ID will tend to be less similar.

We interpret this observation to mean that the resulting distributions may in fact belong

to completely disparate topics, and should be treated as such by not automatically merging

them.

In this proposed model, upon receiving the counts from the MapReduce phase, we examine

topics of the same ID from each computational node. Using Jensen-Shannon Divergence,

we determine if the term-topic distribution they produce is below a pre-selected threshold.

If it is, we determine that the topics should be merged by summing counts. If they are

not, we examine all possible groupings of these same topics of same ID and same compu-

tational node to determine the configuration such that the resulting groups will each have

a divergence less than the selected threshold and the mean divergence of the two groups is

minimized. These groupings of models will be merged and the topic count will be increased

by one. If no such grouping exists, we determine the topics to be unique, and perform no

merging. In this case, we increase the topic count by the number of computational nodes

minus one. This workflow is shown in Figure 3.2 and Figure 3.3, which is the internal

operation of DD-LDA for the Optimize phase of Figure 3.1.

In Figure 3.2, the JSD of all topics with the same topic ID are checked to see if they satisfy

the divergence criteria. If they do not, an additional check is performed in Figure 3.3 to find
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Figure 3.2: Initial check of topic models from reduce phase in Optimize

Figure 3.3: Check of split of topic models from reduce phase in Optimize

a splitting of the topic distributions for one where the mean JSD of the two arrangements

would be below the threshold.

A unique facet of this implementation is that the pre-specified topic number K serves

only as a lower limit to the number of topics that the model will eventually be comprised

of.
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Chapter 4

DATA SETS

As we aim to test the scalability (in addition to other evaluation metrics) of the algo-

rithms proposed in Section 3, we require all experiments to run using reasonably large data

sets. The choice to use large data sets is additionally necessary as a large amount of the

original data is removed during the various pre-processing steps detailed in Chapter 4.4.

To satisfy this size requirement, we evaluate our experiments on the myPersonality and

Stack Overflow data sets. We additionally use the Wikipedia abstracts data set for evalua-

tion metrics requiring an external corpus.

4.1 myPersonality Project

The myPersonality data set is available through the myPersonality Project [13]. myPerson-

ality is a popular Facebook application that allows users to take real psychometric tests,

and is used to record their psychological and Facebook profile. Data collection began in

June 2007. The data set contains more than 6,000,000 survey results together with more

than 4,000,000 individual Facebook profiles.

Aside from its sheer size, the myPersonality data set is attractive for this research due

to its being representative of a diverse population, ensuring that quality metrics for these

experiments are not unrealistic due to homogeneous data. While gender is not necessarily

balanced, both males and females are well represented, as shown in Table 4.1.

Gender Proportion

Male 0.632

Female 0.368

Table 4.1: Distribution of gender in the myPersonality data set
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In the data set, the vast number of entries contain only one status update per user.

Higher posting counts decrease in frequency, with the overall distribution of post counts

having a long right tail as shown in Figure 4.1.

Figure 4.1: Distribution of wall posts per user within the myPersonality dataset

In terms of age, the data set is well representative of online social network users, as

shown in Figure 4.2.

Reported relationship statuses for users in the data set are varied as well, as shown in

Figure 4.3.

As this research is focused on the application of probabilisitc models to textual data,

we use only those users within the data set that have consented to have their Facebook

status updates made available. At the the time the data set was acquired for the research

presented in this work, the status updates of 442,815 users had been made available. For

these users, there were 25,407,612 total status updates, for an average of 57.4 status updates

per user. Statistics for this section of the total data set are presented in Table 4.2.

4.2 Stack Overflow

Stack Overflow is the flagship site of the Stack Exchange Network, a network of question

and answer websites. Within the network, each site focuses on addressing questions for a
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Figure 4.2: Distribution of user age within the myPersonality dataset

Mean 50.6

Median 1

Minimum 1

Maximum 54,083

Standard Deviation 143.8

Table 4.2: Per user status update count statistics in myPersonality data set

particular area of interest, e.g. statistics, server management, and Unix. The Stack Over-

flow site focuses on questions involving computer programming. At the time of this writing,

Stack Overflow maintains a population of 2,700,000 registered users having asked more than

7,100,000 questions.

The data available on Stack Overflow is interesting for this research as it can be seen as

being more homogeneous than the data present in the myPersonality data set. While the

specific technologies mentioned are varied, the Stack Overflow community ensures that all

posts are focused on some aspect of computer programming. This aspect of the data is

important for this research as probabilistic approaches modeling documents may perform
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Figure 4.3: Reported relationship status frequency for users in the myPersonality data set

with differing degrees of quality on heterogenous and homogenous data.

Stack Overflow profiles are made publicly available through periodic data dumps that are

accessible without pre-authorization through the organization’s data website. For this work

we use the data dump of the Stack Overflow user posts accessed on August 28, 2014. The

word count per post distribution is again very skewed, as shown is Table 4.3.

Mean 89.5

Median 57.0

Minimum 3

Maximum 65,849

Standard Deviation 108.6

Table 4.3: Post word count statistics in Stack Overflow data set
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4.3 Wikipedia

Some evaluation metrics require the use of a large external corpus. For such metrics, we

choose to use Wikipedia abstracts data set. Wikipedia provides access to downloads of

extended abstracts for articles within their collection.

The use of this data set as an external corpus for validation is important due to its extreme

subject variety. Metrics that rely on calculating the probability of a word occurence in

an external data set may unrealistically favor models trained on texts with similar subject

matter.

This data dump is composed of 4,636,227 documents with 414,954,300 total words. The

distribution of word counts is extremely skewed, as shown in Table 4.4.

Mean 89.5

Median 57.0

Minimum 3

Maximum 65,849

Standard Deviation 108.6

Table 4.4: Abstract word count statistics in Wikipedia data set

4.4 Pre-processing Steps

Prior to all experiments, data sets undergo several pre-processing steps. These pre-processing

steps are designed to address the issues mentioned in [29], which address several issues sur-

rounding nonsensical topics in probabilistic topic models. It has been noted that often many

topic models will contain topics which assign high probability to words which do not convey

much meaning to a human reader (e.g. “a”, “at”, “the”, “like”). We attempt to minimize

the occurrence of such topics in our experiments by filtering out words with low information

content. To do this, we apply a tf − idf filter to the corpus [16]. Here, tf is simply the raw
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frequency of a word within a corpus, and idf is defined in Equation 4.1.

idf(t,D) = log
N

|{d ∈ D} : {t ∈ d}
(4.1)

In this evaluation t is the term to evaluate and N is the number of documents in the corpus

D in which the term is in. From this formulation, we define tf − idf as simply the product

of a term’s frequency and its idf .

Once this value has been calculated, we filter out the lowest decile of terms based on their

tf − idf content.

In addition to this filter, we additionally apply a simple stop word check to all terms in the

corpus. These words have been determined by experts using some external metric of utility

in natural language processing tasks. For this work, we use the stop word lists provided as

part of the Stanford NLP Toolkit [17].

As a final pre-processing step, we filter out all formatting and markup artifacts within

each corpus. While this may not necessarily be a required task in many topic modeling

applications, the presence of formatting and markup may have detrimental effects on the

conceived interpretability of a topic model. As one of the evaluation metrics we describe

attempts to address the understandability of topic models, we exclude these artifacts from

the data.
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Chapter 5

EVALUATION METRICS

5.1 Perplexity

The most common way to evaluate a probabilistic model as seen in a wide review of existing

literature is to measure the log-likelihood of a held-out test set. Perplexity for topic models

is a measurement of how well a model can generate a set of unseen documents, with lower

perplexity corresponding to greater generative power. In this evaluation, the test set is a

collection of documents w of size d not used in the inference of the topic distributions. The

model is represented as the matrix of topic-term probabilities ϕ and the hyperparameter

β, representative of the distribution of topics over documents. The LDA topic distribution

parameter θ is not taken into consideration as it represents the topic-distributions for the

documents of the training set, and can therefore be ignored to compute the likelihood of

unseen documents. These measurements are evaluated using Equations 5.1 and 5.2.

L(w) = log p(w|ϕ, β) =
∑
d

log p(wd|φ, β) (5.1)

perplexity(test setw) = e
(− L(w)

count of tokens
)

(5.2)

5.2 Coherence

While perplexity gives a good evaluation of the representative power of a topic model, it has

been shown to be negatively correlated with human understanding of topics in certain cases

[8]. For this reason, topic coherence is often used as an additional evaluation metric for

topic models. The intuition behind this metric, which uses pointwise mutual information

(PMI) as described in Equation 5.3 using external data, comes from the observation that

occasionally a topic has some odd-words-out within the top ten most probable words for

that topic. This leads to the idea of a scoring model based on word association between
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pairs of words, for all word pairs in a topic. But instead of using the collection itself to

measure word association (which could reinforce noise or unusual word statistics), a large

external text data source is used to provide regularization.

For this work, we measure co-occurrence of word pairs from a single huge external text

dataset: all articles from English Wikipedia. For the dataset, we counted a co-occurrence

as words wi and wj co-occurring in any 10-word window in any article. These co-occurrences

are counted over a corpus of over a billion words, so they will produce reasonably reliable

statistics.

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(5.3)

In this equation, we calculate the log of the division of the probability of terms wi and

wj occurring in a document by the product of the probability of occurrence for both wi and

wj .
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Chapter 6

EXPERIMENTAL RESULTS

6.1 Experiment Design

In order to evaluate the utility of the algorithms proposed in Section 3, we compare both DD-

LDA and OD-LDA to the implementation of LDA in Mallet [18], a popular topic modeling

toolkit, as well as to a version of AD-LDA adapted to Spark from [22]. All experiments

are run using virtual machines running on the Microsoft Azure cloud computing platform.

The virtual machines used all run the Ubuntu 12.04 operating system, have 14 gigabytes of

memory, and two core processors clocked at approximately 2.2 gigahertz.

For DD-LDA/OD-LDA cluster, we utilize a group of up to four of the above mentioned

virtual machines. Each virtual machine has an installation of Spark 1.0.0. Spark is deployed

in standalone mode (without extra resource management software) using HDFS as the

distributed file-system.

All experiments are repeated ten times using both the myPersonality and Stack Overflow

datasets.

6.2 Scalability Analysis

In order to determine the speed improvements achieved by DD-LDA, OD-LDA, and AD-

LDA over LDA, we run the algorithm on three cluster configurations: two nodes, three

nodes, and four nodes. We do not run the algorithms on one node as in this configuration

the algorithm is essentially utilizing the same sequential algorithm as LDA.

In both the OD-LDA and DD-LDA implementations, the time required to train a model

is less than that required for the Mallet implementation of LDA, as seen in Table 6.1 and

Table 6.2. It should be noted, however, that in OD-LDA, the performance gains are very

slight considering the number of nodes being added to the computation, with a less than
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Algorithm

Nodes LDA AP-LDA OD-LDA DD-LDA

1 216.75 - - -

2 - 125.52 183.30 130.76

3 - 92.56 147.04 100.28

4 - 74.26 126.83 82.19

Table 6.1: Runtime performance of LDA and DD-LDA/OD-LDA in minutes on myPerson-
ality dataset

Algorithm

Nodes LDA AD-LDA OD-LDA DD-LDA

1 628.31 - - -

2 - 352.69 536.67 375.21

3 - 269.46 429.04 288.88

4 - 214.02 381.59 238.64

Table 6.2: Runtime performance of LDA and DD-LDA/OD-LDA in minutes on Stack Over-
flow dataset

50% improvement seen for the four node cluster. This is due to the amount of computations

required to find an “ideal” matching of topics from all nodes as described in Section 3.2.

For the DD-LDA implementation, however, the improvement seen is closer to being linear

as computational nodes are introduced. The speedup is not quite linear, as is expected from

the operations required to determine a proper “merging” of the topics from each node as

described in Section 3.2. Speedups for the Stack Overflow and myPersonality datasets are

visualized in Figure 6.1 and Figure 6.2. Speedup in DD-LDA is comparable to that achieved

by AD-LDA, although slightly slower.
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Figure 6.1: Speedups for DD-LDA, OD-LDA, and AD-LDA based on cluster size for Stack
Overflow Data

6.3 Model Quality Analysis

While improved computation time is the primary goal of this work, in order to be viable our

algorithm must also create topic models that are at least as good of quality as those created

using LDA in a non-distributed fashion. To evaluate topic model quality, we examine both

the perplexity and coherence of the topic models created by DD-LDA, OD-LDA, AD-LDA

and Mallet LDA. All metrics for the distributed algorithms are collected using a four node

cluster. We use the Wikipedia abstracts dataset in order to evaluate both perplexity and

coherence metrics using external data.

As shown in Figure 6.3 and Figure 6.4, perplexity results for DD-LDA are demonstrably

improved over those seen using all other methods used, and are statistically significant with

p < 0.05.

Coherence results are, unlike those for perplexity, worse at first look for DD-LDA compared

to other approaches. However, using two one sided tests, the coherence of the DD-LDA

models are both equivalent to those using Mallet LDA with p < 0.05.

A notable difference between the approaches is the number of topics contained in the final
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Figure 6.2: Speedups for DD-LD, OD-LDA, and AD-LDA based on cluster size for myPer-
sonality Data

models. For all approaches, the topic count stays constant at 100, with the exception of

DD-LDA. This is due to the ability given to DD-LDA to increase the resulting model’s topic

count.
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Algorithm Perplexity Coherence Topic Count

Mallet LDA 1329.62 2.19 100

AD-LDA 1335.30 2.14 100

OD-LDA 1349.73 2.21 100

DD-LDA 1284.26 1.97 457

Table 6.3: Perplexity and Coherence of LDA and DD-LDA models on myPersonality dataset

Algorithm Perplexity Coherence Topic Count

Mallet LDA 1517.14 3.78 100

AD-LDA 1537.42 3.69 100

OD-LDA 1531.73 3.72 100

DD-LDA 1484.12 3.49 457

Table 6.4: Perplexity and Coherence of LDA and DD-LDA models on Stack Overflow dataset
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Chapter 7

CONCLUSION AND FUTURE WORK

In this work we have reviewed the various applications of topic models with a specific

focus placed on the generative LDA model. The LDA model allows for documents to be

represented as a mixture of latent topics; a useful trait when performing tasks such as

document summarization and information extraction. However, as noted in this work, the

Gibbs sampling algorithm typically associated with topic distribution inference in LDA is

extremely computationally demanding. In order to make the application of topic models

feasible in the era of big data, we have noted several proposed methods for distributing

topic inference for LDA models.

Leading up to the proposal of a new algorithm for topic model training, we reviewed existing

frameworks and paradigms used for big data processing such as MPI, Hadoop, and Spark.

We explained how the iterative nature of the Gibbs sampling algorithm for LDA makes it

a perfect candidate for the Spark cluster computing framework. We justified this by noting

in Section 2.1.5 that Spark has been shown to perform well on such iterative tasks.

We then went on to propose two novel algorithms for topic model inference: OD-LDA

and DD-LDA. The two extend ideas presented in existing works on distributed topic model

training, with extensions to the manner in which results from different computational nodes

were resolved.

We compared the time, perplexity, and coherence performance of the two proposed algo-

rithms to existing inference algorithms; one from the popular topic modeling toolkit Mallet

and one from an existing work on distributed topic model inference. Models for experi-

ments were completed on two large datasets, with a third external dataset used for metric

evaluation.

Experimental results showed that OD-LDA did not yield satisfying speedups over sequen-

tially performed LDA Gibbs sampling. However, we found that by modifying the topic
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merging optimization problem, significant performance could be gained. For this variation,

which we presented as DD-LDA, we have seen speedups in computation time that are much

improved over sequential LDA, and comparable to the existing AD-LDA algorithm.

Additionally, we have shown that by allowing topics to diverge as in DD-LDA, improve-

ments in model perplexity can be seen compared to all reference algorithms.

Finally, we have shown that, while topic coherence for our DD-LDA algorithm were slightly

lower than those seen in other algorithms, they are statistically equivalent and thus not

concerning.

Interesting directions for future work are additional scaling experiments using larger com-

putational clusters for DD-LDA and the application of DD-LDA to various case studies.

In order to better understand the limits of DD-LDA, future research may involve applying

the algorithm to at least one truly massive dataset (e.g. the Wikipedia dump of all abstracts

in all languages) on a very large Spark cluster.

As this was a novel approach to inferring topic models, various case studies must be pur-

sued in order to determine the usability of models trained using DD-LDA. Case studies

may include tested applications of LDA based topic models such as document similarity in

academic journals, as well as high stakes applications such as modeling healthcare data sets

as a means of data exploration.
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