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Abstract
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Rong Fu
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Professor Peter B. Gilbert

Department of Biostatistics

Assessing immune correlates of protection, the immune responses that reliably predict the
vaccine efficacy on the clinical endpoint, has always been an important objective in vaccine
efficacy trials. In this dissertation, we study the continuous and dichotomized trajectory of
time-varying immune response as the immune correlate of protection in two-phase sampling
design cohort studies. We adopt the joint modeling framework that models the immune re-
sponse data measured longitudinally and with error and the time-to-event clinical endpoint
simultaneously. The inherent evolution of the time-varying immune response is character-
ized by a random effects model, and its relationship with the instantaneous risk of the
clinical event is modeled by the Cox proportional hazards regression. This regression model
allows for direct assessment of immune correlates of protection in Prentice’s framework.
This evaluation is different from the traditional work that is based on measured values of
biomarkers. Instead, by studying the underlying trajectory, the application is to generate
hypotheses about the biological mechanisms of protection. The main objective of the disser-
tation is to develop statistical methods to make inference on the regression model accounting
for the missing immune response data due to two-phase sampling. For the inference on the
continuous immune response trajectory, we extend the existing conditional score method
to the two-phase sampling design cohort studies by using the technique of weighting the

complete cases by the inverse probabilities of observing the immune response data, and the



augmented inverse probability weighting. For the dichotomized immune response trajectory,
we propose estimating equations based on regression calibration method. We also general-
ize it to two-phase samples by the inverse probability weighting method. We finally apply
the proposed methods to the AIDS Clinical Trials Group (ACTG) 175 dataset, a random-
ized clinical trial comparing monotherapy with combination therapy among HIV-1-infected

subjects.
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Chapter 1

INTRODUCTION

Vaccination has been widely used to prevent infectious disease. The basis of how vac-
cination works is the long-term immunological memory of the adaptive immune system.
Our adaptive immune system protects us against the attack from specific pathogens in two
aspects of immunity: humoral and cellular immunity. The humoral immunity refers to the
production of antibodies (five isotypes in human: IgA, IgD, IgE, IgG and IgM) which bind
to specific antigens to block their ability to infect; and the cell mediated immunity involves
the function of CD4+4 T-cell and CD8+ cytotoxic T lymphocyte which protect the body
against the intracellular infection [Letvin) 2005, Pantaleo and Koup, 2004]. After an initial
exposure and response to a pathogen, when being attacked by the same pathogen in future,
the immune system is able to react more rapidly and more effectively to it. This is how the
immunological memory is built up. A good candidate vaccine can provide durable protec-
tion against the infection or disease. It is a central goal in vaccine research to investigate
the correlates of immunity: which and what type of immune responses are functional and
predictive in conferring protection. In Phase IIb or Phase III vaccine efficacy trials, besides
the assessment of vaccine efficacy (VE) to prevent or control the infection and disease, it is
another very important objective to evaluate and determine the immune correlates of risk
(CoRs) and immune correlates of protection (CoPs) [Haynes et al., [1996]. This is particular

of interest when evidence of VE of a vaccine has been found.

[Qin et all [2007] defined the CoR as an immunological biomarker that predicts the
clinical endpoint used to assess the VE in some population. Ascertainment of a CoR can
be done by statistical association analysis between the immune biomarker and the clinical
endpoint. Such assessment requires the observation of variability in the immune biomarkers.
However, for example, in HIV-1 vaccine efficacy trial on healthy volunteers, the immune

response level could be zero for placebo recipients because of no prior exposure to the virus.



In that case, the CoR analysis is done among vaccinees only. In other vaccine efficacy trials,
like the chimeric-yellow fever-dengue (CYD) vaccine, substantial variability in antibody
titers can be observed in both the vaccine and placebo group. The CoR analysis can be
done in each treatment group or pooled together adjusting for the vaccination status [Gilbert,
et al., 2008, Plotkin and Gilbert} 2012]. The assessment of a CoR is more straightforward
than for a CoP, because the parameters of interest are statistical parameters that do not
require extra causal modeling assumptions. It is the usually the first step to establish a
CoR before moving forward to ascertainment of it as a CoP.

The concept of CoP has always been confusing. Informally speaking, identifying a CoP
is to validate an immunological surrogate biomarker that can be used to reliably predict the
protection effect of the vaccine for subgroups. It is of great use in the sense that it could
substitute for the clinical endpoint which takes long time or even is unethical to study. It
also provides the guidance of the vaccine development once we understand which immune
biomarkers explain the vaccine effect on the clinical endpoint. For a CoR to be a CoP, the
ambiguity and challenge arise to distinguish between a CoP that predicts the protection
effect of the vaccine statistically versus mechanistically. We adopt the recent definition of
CoP given by [Plotkin and Gilbert} [2012] that a CoP is an immune biomarker that can be
used to reliably statistically predict VE. If a CoP predicts the VE because it is in the causal
pathway that vaccine provides protection, it is called a mechanistic correlate of protection
(mCoP). Otherwise, it is called a non-mechanistic correlate of protection (nCoP), which is
not directly responsible for the protection but is correlated with a mechanistic one to be
able to reliably statistically predict VE.

Statistical assessment of a CoP can be done using a number of approaches to evaluate a
surrogate endpoint or causal mediator. |Joffe and Greenel 2009] reviewed and compared four
major frameworks: Prentice’s framework |[Prenticel |1989]; direct and indirect causal effects
of treatment [Pearl, 2001, Robins and Greenland, |1992]; principal stratification [Frangakis
and Rubin, 2002] and meta-analysis. We discuss the first three more in subsequent sections.
To further evaluate a CoP as a mCoP is more challenging because we need knowledge of
biologic function of immune responses induced by vaccine and the disease process, and we

even need to do intervention trial on animals or humans with or without exposure to the



immune responses.

This dissertation is built upon the importance of immune correlates analysis. However,
it is not dealing with same problems as many other papers did conventionally to identify
an measured immune biomarker as CoR and/or CoP. Observed immune biomarkers are
contaminated by measurement errors and our methods assume that their evolution follows
underlying trajectories. This dissertation, instead, concentrates on assessing how these
unobserved hypothetical immune response processes predict the clinical endpoint and the
protection effect of the vaccine. Therefore the dissertation is not aimed to propose a method
to validate a biomarker as a CoP to be substituted for the clinical endpoint in real trials.
Instead, by studying the underlying trajectories, the application is more to generate hy-
potheses about the biological mechanisms of protection. We consider it as an addendum
to the traditional CoR/CoP analysis of observed immune responses. To address these sci-
entific objectives, we consider statistical methods in the framework of jointly modeling the
biomarker trajectories with a random or mixed effects model and the event time data with
a Cox model simultaneously [DeGruttola and Tu, 1994, Faucett and Thomas, (1996} | Tsiatis
et al. 1995, [Wang and Taylor, 2001a), Wulfsohn and Tsiatis, [1997]. More discussion on this
is in Section [L.1]

In a large Phase IIb/III vaccine efficacy trial, it is costly and even redundant to assess
the blood samples of all participants for evaluation of immune biomarkers, especially when
there is a low rate of clinical event. Therefore cost-effective sampling designs are applied to
reduce the number of participants on whom the biomarkers are collected. For example in
HIV-1 vaccine efficacy trials, the serum and plasma samples can be only analyzed on a case-
control subsample of participants who acquire HIV-1 infection and on a random subsample
of participants who are not infected during the entire study. Also, a random subcohort could
be selected at the time initiating the study and biomarkers are collected on the subcohort
and all participants who have the clinical endpoint, which is referred to as the prospective
case-cohort sampling [Prentice, 1986]. In this dissertation, we consider a general technique,
two-phase sampling design, which includes case-control and retrospective case-cohort design
as special cases. Since the biomarker measurements are missing for a subset of sample,

statistical methods should account for this to achieve consistent estimates. However, the



joint modeling approaches have been rarely applied to the situation where the longitudinal
measurements are only available on a subset of the study cohort. One research objective
of this dissertation is therefore to apply the joint modeling approach to evaluate the time-
dependent CoR or CoP under the two-phase sampling design. In Section we introduce
the definition of the two-phase sampling considered in this dissertation, and then review
and discuss popular statistical strategies employed in two-phase sampling study.

Most joint modeling approaches are built up for continuous time-dependent covariates.
Our experience with the immune response data in HIV-1 and dengue trials shows that in
some vaccinated participants the level of immune marker declines almost to zero during
a short period after the final immunization, while for others the level stays positive until
the end of follow-up. This inspires us to look into if having a positive reaction to the
presence of an immune response could predict the clinical endpoint. It is also interesting
to consider what if the immune response begins to protect only when its value is above
some threshold. Therefore the second research objective of this dissertation is motivated
to develop statistical model to characterize the association between the time-to-failure data
and the dichotomized current status (negative vs. positive or low vs. high) based on the
underlying true immune responses.

In the following sections of this chapter, we first explain the motivation and statistical
methods developed to address our scientific questions, and then review the two-phase sam-
pling design and related statistical methods. Finally we introduce HIV-1 vaccine efficacy

trials and dengue vaccine efficacy trials that motivate this dissertation.

1.1 Time-dependent CoR/CoP

1.1.1  Time-dependent CoR

In randomized vaccine efficacy trials, participants are randomly assigned to either placebo
or vaccine group. Then they are followed up until the occurrence of a significant clinical
endpoint, drop out, or the termination of study. We focus on the clinical endpoint which
is the time to a clinically significant infection or disease. At the same time, their blood

samples are collected frequently at multiple visits for measurements of immune responses.



The immune biomarker measured at a certain time point such as at the peak value after
full immunization is of great interest in immune correlates analysis. However, additional
information can be learned by studying the entire time-dependent biomarker process. In-
tuitively, it is closer to the mechanism of protection by evaluating how the current value
of immune biomarker if exposed at this time to predict the occurrence of an endpoint in
next short time period, than using the immune marker at a single time point to predict the
endpoint in subsequent months or years of follow-up [Pawitan and Self, |1993]. Even though
the CoR analysis is based on post-randomization immune biomarkers and can only identify
association which has no causal interpretation, it is still useful in providing the insight and
generating hypothesis of biological mechanism to be validated in future intervention exper-
iment. This dissertation is therefore motivated with the first scientific goal of evaluating a
immune biomarker as a time-dependent CoR.

One naive approach to model the association between longitudinal covariates and a time-
to-event endpoint is the standard Cox proportional hazards model with time-dependent
covariate [Kalbfleisch and Prentice, 2002]. It is reasonable and useful in the sense that
it approximates the average instantaneous transmission probability of infection or disease
per exposure to the current value of biomarker [Halloran et al., |1998, Rhodes et al., |[1996].
However, one needs to be very cautious in interpreting this model when the time-dependent
covariates are internal or not predictable [Kalbfleisch and Prentice, [2002](p196-199). This
is especially an issue when the endpoint is time-to-death, because the measurement of an
internal covariate requires the survival of the individual. Having become infected or diseased
can also have dramatic influence on the level of immune response.

Another issue with the standard Cox model with a time-dependent covariate is that
the covariate history over the entire follow-up period is required to obtain asymptotically
consistent estimation |[Andersen and Gill, [1982]. However such observations are not feasible
in reality due to periodic collection of longitudinal immune biomarkers. One commonly
used solution for this is to assume constant biomarker value between measurement time
points. However it does not hold for the immune response levels that often decrease after
immunization. Moreover, the laboratory assessment of the immune biomarkers are often

subject to measurement errors, and ignoring such measurement errors may lead to biased



inference |Prentice) 1982].

Considering all these pros and cons with the standard Cox model, in this dissertation, we
develop our statistical method to evaluate the time-dependent CoR in the context of joint
modeling framework, i.e. modeling the longitudinal data with a mixed effects model and the
event time data with a Cox model simultaneously |[DeGruttola and Tul 1994, |Faucett and
Thomas, 1996, (Tsiatis et al., (1995, Wang and Taylor, |2001a), [Wulfsohn and Tsiatis, |1997].
Unlike the standard Cox model assuming a hazard function conditional on the observed
longitudinal immune biomarkers, the joint modeling method aims to quantify the effect of
underlying true and unobserved evolution of the immune biomarker process on the time-to-
event process. It assumes that the underlying true trajectory of the time-dependent immune
biomarker has all of its effects on the time-to-event process through the random effects. In
this way, by specifying the same functional form of the random effects and time in the
Cox model as that in the longitudinal data model, we are able to estimate how the current
value of hypothetical true biomarker if exposed at this time predicts the instantaneous rate
of clinical endpoint. This evaluation of CoR is different from the traditional work that
is based on measured value of biomarkers. We think it is of interest because studying
the underlying trajectory may be better for generating hypotheses about the biological

mechanisms of protection.

1.1.2  Time-dependent CoP

Statistical assessment of a CoP or an immunological surrogate biomarker can go back to
Prentice’s landmark paper in 1989 [Prentice, [1989]. By Prentice’s definition, testing the
null hypothesis of no vaccine effect on an immunological surrogate provides a valid test
of the null hypothesis of no vaccine effect on the clinical endpoint. The criteria to vali-
date a surrogate include (i) the vaccine has an effect on both the clinical endpoint and the
surrogate biomarker; (ii) the surrogate is correlated with the clinical endpoint; and (iii)
conditional on the surrogate, the distribution of the clinical endpoint is independent of the
vaccination status. The joint modeling method itself enables the evaluation of statistical

surrogates within this Prentice framework, envisioning the “surrogate” as the true underly-



ing biomarker trajectory. In this formulation, the Cox model includes both the vaccination
status and the hypothetical immune biomarker trajectory process, as well as adjustment of
confounders (assuming not affected by vaccination) of the biomarker-clinical-endpoint rela-
tionship. However checking these conditions, especially (c) is difficult in practice because
we need to test the null hypothesis of “non-zero coefficient” and alternative hypothesis of

7

“zero coefficient” of the vaccination status in aforementioned adjusted Cox model, which
is infeasible in finite sample. An alternative to this hypothesis is to use the proportion of
the vaccine effect on clinical endpoint that is explained by the biomarker [Freedman et al.,
1992]. The proportion of treatment effect explained (PTE) under the Cox proportional
model can be found in |[Lin et al., 1997].

However, even though this framework has been widely used in evaluating a statistical
surrogate, it may give misleading conclusion. Some literature criticized the attempt to use
Prentice’s framework to evaluate a surrogate biomarker for time-to-event endpoint because
they are sufficient and necessary conditions for Prentice’s definition of surrogate only for
binary endpoints |[Buyse and Molenberghs|, 1998, Weir and Walley, 2006]. Moreover, either
the hypothesis testing or the PTE estimates are operationally to estimate the vaccine effect
adjusting for the biomarker based on observed data. However, this statistical control on the
biomarker variable is generally biased estimation of the real estimand we desire, i.e. a mea-
sure of the vaccine effect that is not causally explained by the biomarker. Briefly speaking,
this is because the adjustment of post-randomization biomarker introduces selection bias
and the clinical endpoint is actually compared between individuals with and without vacci-
nation but belong to two different sub-populations [Frangakis and Rubin, 2002} | Joffe et al.,
2007]. Again, we would like to emphasize that, by utilizing the joint modeling framework in
Prentice’s surrogate evaluation framework, we tend to deal with the latent biomarker tra-
jectory instead of the observed one, with the purpose of obtaining the insight in generating
the hypotheses about the biological mechanisms of protection.

The principal stratification framework is another way to assess a biomarker that statisti-
cally predicts the VE [Frangakis and Rubin, [2002]. This is developed based on potential or
counterfactual endpoints and aims at estimating how the VE varies across subgroups defined

by the vaccine effect of biomarker, or defined by the biomarker in vaccine recipients. For



the purpose of demonstration, we introduce some notations. Let T" be the time to a clinical
endpoint and Z is the vaccination status. For simplicity, we first do not distinguish between
the observed longitudinal immune biomarkers and the unobserved latent time-dependent
biomarker trajectory. Let S(t) denote the value of a general post-randomization biomarker
at time ¢ which we would like to assess as a surrogate and let S(t) = {S(u),0 < u < t} be its
history. Write S = S(T'). We apply the counterfactual notations: T2 is the time to clinical
endpoint if the vaccination status and the entire immune biomarker process are assigned to
z and § respectively. Similarly a counterfactual surrogate endpoint can be defined for S (t)
and S(t) with superscript z = {0, 1}.

In the principal stratification framework, we are interested in the causal effect of vac-
cination in a union of basic principal strata subgroups each defined by a pair of potential
biomarker values {S°(t1), S'(t2)}. At a given time tg, for example, the estimand defined
on a particular stratum of interest is P(T1 > #0|S%(u) = S'(u) = 0,0 < u < to) — P(T° >
to|S%(u) = S (u) = 0,0 < u < tg), which compares the vaccine effect on the probability of
no occurrence of clinical endpoint before and include tg for individuals who would have had
zero immune biomarkers value at all times whether or not they were vaccinated.

We also would like to introduce another set of concepts defined on potential or coun-
terfactual endpoints: “controlled direct effects” and “natural direct/indirect effects” [Pearl,
2001}, Robins and Greenland, [1992]. The controlled direct effect is contrasting 7% with 70
where the treatment and biomarker process are jointly manipulated to z and s. A natural
direct effect contrasts T''° - with 709 " where the surrogate biomarker level is left the value
that would be if vaccination status had been z*, z* € {0,1}. The controlled direct effect
makes sense when the full intervention on the biomarker is available. The natural direct ef-
fect allows for the biomarker to be the natural value if the one treatment had been imposed,
so it is relevant to the mechanism how the treatment results in an endpoint. Most existing
literatures discuss the identifiability of controlled or natural direct effect based on observed
data focus on linear models with continuous clinical endpoints. Until recently there have
only been a few paper on time-to-event endpoint and time-independent surrogate biomarker
[Lange and Hansenl, 2011} Martinussen et al., [2011} Tchetgen Tchetgen| 2011, Vander Weele,

2011]. [VanderWeele, [2011] proved that under certain no-unmeasured confounder assump-



tions as well as the rare event assumption, the natural direct effect comparing the ratio of
hazard functions can be written as a complex formula of the Cox regression model coef-
ficients adjusting for biomarker and the biomarker-treatment regression coefficients fitted
on observed data. This provides insight that it could be very complicated to estimate and
interpret the direct effects defined on the hazard scale. Therefore, a more straightforward
estimand could be defined in terms of survival probabilities as above for principal stratifi-
cation. |Zheng and van der Laan| |2012] investigated a more complex problem with event
time endpoint and time-dependent surrogate. The challenge of such a problem is that the
event time process may have an implication on the time-dependent biomarker process. The
identifiability is troublesome if we also block the back door path from the event time process

to the biomarker process.

Without certain assumptions, neither the natural/controlled direct effects nor the esti-
mand defined on principal stratification can be identified from observed data, because only
the endpoints under the assigned treatment can be observed [Tchetgen Tchetgen, 2014
Zheng and van der Laan, |2012]. In the case like in HIV-1 vaccine trials where the immune
response levels for placebo recipients are zero and thus have no variability, the natural direct
effect can be evaluated among the placebo recipients only with a simplified form |Lendle
et al., 2013]. For the principal stratification method, we could naturally make a monotonic-
ity assumption that S'(t) > SY(¢),t € [0,7]. This facilitates its identification in observed
data [Tchetgen Tchetgen| [2014]. These three types of estimands are all of interest, and may
be more or less fitting for different settings. In this dissertation, we are always interested
in the latent true biomarker trajectories instead of their observed values. Therefore the
definitions and interpretations of these estimands do no fit directly to our setting. Actually,
since the latent trajectories are determined by some random effects models, intervention or

stratification on S?%(u) could be obtained totally through that on the random effects.

This dissertation is working mainly within the Prentice’s framework by using joint mod-
eling approach. We also attempt to relate it to the causal effect framework described above
by exploring the definition of estimands and identifiability assumptions, as well as how to

do estimation and interpretation.
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1.2 Sampling design

1.2.1 Two-phase sampling design

Two-phase sampling is a cost-effective design which was first introduced by [Neyman, |1938].
It is particularly useful and efficient when it is expensive to measure some covariates or re-
dundant to collect them on all subjects, especially in the rare event setting. [Haneuse et al.
2011] described a general two-phase sampling scheme. In vaccine efficacy trials, the first
phase sample, or the study cohort, usually consist of all study subjects enrolled into the
trial that are sampled from a super population of interest. On them, we follow up for
the primary clinical endpoint, and measure covariates such as demographic characteristics,
baseline health and medical information. Given these variables collected on all study sub-
jects, we can further divide them into exclusive and exhaustive strata. Then within each
stratum, we sample the Phase II subjects and the immune biomarkers of interest are only
assessed on these Phase II subjects. The second phase sample could also be just a random
subsample from the study cohort, but utilizing the stratified sampling scheme may increase
efficiency. Such efficiency gain could be due to oversampling of the most informative indi-
viduals. Also it could be due to the retrieving of additional information that is associated
with the covariate in the analysis model. Commonly, either Bernoulli sampling scheme or
the sampling without replacement scheme are used to sample subjects for measurement of
immune biomarkers. By Bernoulli sampling, each subject is examined independently for a
Bernoulli indicator of whether or not they will be sampled. The feature of the Bernoulli
sampling is that the sampled subjects are independent from each other, but the final num-
ber of subjects being sampled is random. By sampling without replacement, we are able
to control for the total number of subjects being sampled but we loose the independency
between them. In this dissertation, we focus on Bernoulli sampling.

Case-control study is one of the applications of two-phase sampling that has been widely
used for rare binary outcomes in epidemiology. It is retrospectively sampling based on
outcome status, where all cases who develop the disease, and a number of controls who do
not have disease at the same time point are sampled at random or by stratum.

Another application is the case-cohort design in analyzing event time data, especially
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in a large cohort study for rare event disease. It was first proposed in |[Prentice, (1986 in
a manner of prospective sampling where a simple random sample from the study cohort
is taken at baseline (called subcohort) and the Phase II covariates are collected on this
subcohort and all cases. [Borgan et al. [2000] extended it to the exposure stratified case-
cohort design where the subcohort is taken independently from each stratum defined by
Phase I covariates. The simple case-cohort or exposure stratified case-cohort design is
considered as the stratified two-phase sampling design by considering all cases as a separate
stratum and being sampled with probability one [Nan, 2004]. Note that, in this dissertation,

we consider a general two-phase sampling design that does not necessarily include all cases.

1.2.2  Statistical methods

Regardless of whether the each individual is independently sampled or not, as long as the
probability of being selected depends on the variables in the analysis model, the subsample
selected is unrepresentative of the study population [Seaman and White, 2011]. The naive
complete case (CC) analysis based on the complete observations is generally biased. One
popular way to deal with missing data is multiple imputation (MI), where the missing obser-
vations are estimated by assumed distribution of observed and missing variables. Another
widely used technique is inverse probability weighting (IPW) complete-case method. The
concept of IPW was first proposed by [Horvitz and Thompson, |1952], where the complete
observation is weighted by the inverse of the probability it being sampled. The intuition
behind the IPW is to try to reconstruct the entire study population. MI does not need
a model for the missing probability but does need a model for how the missing variables
can be predicted from the observed data, while IPW requires the missing probability model
only. The IPW estimator using pre-specified sampling probabilities is generally less efficient
than the MI estimator, because it only makes use of the complete observations, and discards
the subjects with missing data. However, the IPW estimator is still a favorable approach
because it is easy to implement and easy to interpret. The IPW estimator provides unbi-
ased inference if the score function and the sampling probability model are correctly specify.

The unbiasedness of an MI estimator however requires the correct specification of the joint
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distribution of observed and missing covariates to make correct imputation. Comparatively,
the sampling probability model is easier to specified. Also in the two-phase sampling study
where the longitudinal measurements are missing entirely for subjects outside the Phase 11
sample, the MI approach might not be very helpful since it is very hard to predict the entire
course of the time-dependent covariate process.

[Breslow and Wellner, [2007] discussed the simple semi-parametric IPW estimators for
both Bernoulli sampling and sampling without replacement in a general likelihood setting.
They took the Cox proportional hazards model with time-independent covariates as a spe-
cial case. As pointed out above, weighting the complete observations by the known sampling
probabilities generally leads to inefficient estimation. So there has forthcoming a rich num-
ber of literatures to improve the efficiency. One popular way is to use estimated weights
or calibrated weights leveraging Phase I covariates |Breslow et al. 2009ayb|. [Saegusa and
Wellner, 2013] provided theoretical work on the asymptotic properties for them in a gen-
eral semi-parametric model. They also compared the Bernoulli sampling to the sampling
without replacement in terms of asymptotic variance of estimates. The estimated weights
or calibrated weights help in a sense to account for the variability of the actual sampling
fractions by utilizing the information from variables observed on all subjects. How much
efficiency gain in finite sample setting may depend on the sample size and the correlation
of Phase I covariates with the influence function. [Kulich and Lin| 2004] proposed a dou-
bly weighted estimator specifically for Cox model with time-dependent variables. In their
method, two levels of time-dependent weights were used. They offered a way in determining
the second-level weight matrix using phase I covariates that led to an approximately optimal
estimator.

Another direction is based on the augmented inverse probability weighting (AIPW)
method proposed by |[Robins et al., 1994], where an additional augmentation term as a
function of the Phase I data (which are also called as auxiliary variables in such models)
is added. This class of estimators has been almost exclusively focused on Bernoulli sam-
pling. They demonstrated that an augmentation term as the conditional expectation of the
influence function given the auxiliary variables achieved the optimal efficiency within the

class of estimators with arbitrary forms of augmentation term. In this method, the IPW
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estimator can be considered as a special case with augmentation term always equal to zero.
ATPW estimators have the property of double robustness, which means the estimators are
consistent as long as either the sampling probability model or the augmentation term as the
conditional expectation of estimating score are correctly specified. The IPW estimators are
however biased if the sampling probability model is misspecified. The application of AIPW
specifically for the Cox proportional hazards model can be found in [Luo et al., 2009, Qi
et al) 2005, [Wang and Chen|, 2001]. [Qi et al. 2005] proposed to estimate the sampling
probability and the augmentation term via non-parametric kernel estimators, whose esti-
mator have been proved to achieve the optimal efficiency. However, they all focused on
time-independent covariates.

Several other semi-parametric methods were developed specifically for making inference
on Cox regression model with time-independent covariates in an efficient manner under
Bernoulli sampling[Chatterjee and Chen, 2007, Chatterjee et all [2003, Nan, 2004, Nan
et al., 2004, Scheike and Martinussen, |2004].

1.3 Motivating studies

1.3.1 VAX004 HIV-1 trial

VAX004, completed in 2003, was the world’s first phase III placebo-controlled HIV-1 vaccine
efficacy trial. The study was conducted to test the efficacy of AIDSVAX B/B, a recombinant
HIV-1 envelope glycoprotein subunit (rgp120) vaccine[Flynn et al., 2005]. A total of 5,403
HIV-1-uninfected volunteers in North America and The Netherlands were included in the
study. Participants were randomly assigned in 2:1 allocation to receive injections of vaccine
or placebo at months 0, 1, 6, 12, 18, 24 and 30 and were followed up until Month 36.
During the follow-up, 368 participants became HIV-1-infected. The VE, defined as (1 -
hazard ratio of infection) x 100%, was estimated as 6% (95% CI: -17 to 24, p-value 0.59).
Immune response biomarkers were measured at and two weeks after each immunization
visit.

A follow-up study was published in 2005 evaluating the correlation of risk of eight

vaccine-induced binding or neutralizing antibody responses to the hazard of HIV-1 infection
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[Gilbert et al., 2005]. The antibody levels for immune correlates analysis were evaluated
at the last peak time point (two weeks after vaccination) before HIV-1 infection for all
HIV-1 infected vaccine recipients, and at all peak time points for a prospectively defined
case-cohort sample that included 5% of vaccine recipients. It used the classic case-cohort
sampling [Prentice, [1986] where the subcohort was determined by Bernoulli sampling at
baseline and the immune response were measured in all cases of the last HIV-1 negative
time-point only. The antibody levels for vaccinees were modeled both quantitatively and in
discretized quartiles. For analyses with the quartile antibody levels, the relative risks, esti-
mated by hazard ratios, comparing the higher response quartiles to the first quartile, and
comparing each response quartile of vaccinees to the placebo were estimated independently
for each antibody response variable. The Self-Prentice [Self and Prenticel [1988] method ac-
commodating the case-cohort sampling was used to estimate the hazard ratios. Generally,
a pattern of inverse correlation between antibody responses and the risk of HIV-1 infection
was identified. Because the vaccine did not protect against HIV-1 infection, these correlates
are interpreted as markers of susceptibility to HIV-1 infection.

[Forthal et al., 2007] performed the immune correlates analysis for the antibody-dependent,
cell mediated virus inhibition (ADCVI) antibody generated by the vaccine. The antibody
level measured at week 12.5 was used for uninfected vaccinees, and the antibody level mea-
sured at two weeks after the last vaccination before infection was used for infected vaccinees.
The case-control sample for immune correlate analysis here consisted of all infected vaccinees
and 5% uninfected vaccinees as well as an enriched sample of high-risk uninfected vaccinees.
The hazard ratio of infection associated with ADCVT activity was estimated using Borgan
IT Estimator |[Borgan et al. [2000], which respected the stratified and outcome-depending
sampling. High level of vaccine-induced ADCVTI activity was found to be correlated low
HIV-1 infection rate.

[Li et al., 2008] investigated the same antibody as in [Forthal et al., 2007], but considered
its longitudinal peak measurements after Month 6, i.e. at months 6.5, 12.5, 18.5, 24.5
and 30.5. The scientific objective of this immune correlate analysis was to evaluate the
association of current ADCVI levels with HIV-1 infection over the next 6 months. The data

were collected for a two-phase sample consisting of all infected vaccinees and a stratified
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sample of uninfected vaccinees, with the strata defined by sex, race and high risk status.
For infected vaccinees only the measurements taken at the visit before the diagnosis of
infection were used. Unlike the former two immune correlates analyses, they treated the
time-to-event data as grouped discrete failure time data. This had advantages in vaccine
trial studies where the immune responses were tested at some pre-specified visits. The
actual time-to-infection was only able to be identified within a time interval between two
visits and the immune responses are assumed to be constant within each time interval and
varying between them (a simplifying assumption known to be false). So this method was
able to capture the time-dependence of the immune response somehow. The estimator of
hazard ratio was obtained by maximizing the IPW likelihood of second phase subjects given
such grouped event data structure. Multiple imputation was used for the missing biomarker
data in the subcohort. They identified that the antibody was inversely associated with the
risk of HIV-1 infection as well.

1.8.2 RV144 HIV-1 trial

RV144 was a randomized, placebo-controlled efficacy trial on a prime-boost HIV-1 vaccine (a
combination of vaccines ALVAC-HIV and AIDSVAS B/E) in Thailand |Rerks-Ngarm et al.,
2009]. In this study, 16,402 HIV-uninfected volunteers were randomized to the vaccine or
placebo group in 1:1 allocation. The vaccine or placebo were administrated at weeks 0, 4,
12, and 24, with ALVAC-HIV administrated at all four visits and a boosting with AIDSVAX
B/E at weeks 12 and 24 for vaccinees. Volunteers were then followed up for 42 months after
entry. The testing for HIV-1 infection was made at weeks 0, 26, and every 6-month follow-up
visit until the termination of study. A total of 125 HIV-1 infections were diagnosed in the
modified intention-to-treat analysis set (excluding 7 participants who were HIV-1 infected
at baseline). The corresponding VE from Cox model was estimated as 31.2% (95% CI=1.1
to 52.1; log-rank test p-value=0.04), suggesting a modest protective effect of the vaccine
against HIV-1 infection. It was the first supporting evidence of a partially efficacious HIV-1

vaccine.

The subsequent immune correlates analysis on six pre-selected immune responses mea-
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sured at Week 26 (two weeks after the final immunization) identified two of them were
significantly correlated with the risk of HIV-1 infection in vaccinees [Haynes et al., 2012].
So the focus of the immune correlates analysis is to evaluate the CoR in vaccine recipi-
ents. The immune responses were taken on a two-phase sample, including all vaccinees who
were diagnosed with HIV-1 infection after week 26 and a stratified subsample of vaccinees
who were not infected throughout the study. The stratification variables included sex, the
number of vaccinations received, and per-protocol status. The hazard ratio of infection was
estimated using Borgan II estimator [Borgan et al., 2000]. Two immune variables, IgA bind-
ing antibody and the binding of IgG antibody to V1V2 of the gp120 Env, were identified
as significantly correlated with HIV-1 infection. This analysis was unable to evaluate the
immune correlates of protection within the Prentice’s frame work [Prentice, 1989] since the
immune responses were not variable in the placebo arm. The positive findings of RV144
in vaccine efficacy and correlates of risk have been interpreted as being very important for
the HIV-1 vaccine and general vaccine fields, providing guidance for the design of future

vaccines and vaccine trials.

There are forthcoming data which include measurements of immune responses at all
6-monthly visits (from Month 0 to 36) prior to HIV-1 infection diagnosis for all vaccine
recipients who acquired HIV-1 infection during the trial, and measuring immune responses
at all 6-monthly visits for a selected random sample of vaccine recipients who reached the
Month 42 terminal study visit HIV-1 negative. The longitudinal data are anticipated from
41 infected and 205 uninfected vaccine recipients. This dataset allows for the time-dependent

immune correlates analyses.

1.3.3 CYD14 and CYD15 dengue vaccine trials

In 2014, two phase III vaccine efficacy trials on live attenuated tetravalent dengue vaccine
(CYD-TDV) demonstrated substantial vaccine efficacy in preventing the dengue primary
disease, virologically confirmed symptomatic dengue of any serotype. The CYD14 trial
consisted of 10,275 children in five Asian countries with an estimated VE of 56.5% (95% CI
= 43.8 to 66.4) [Capeding et al., [2014]. The CYD15 trial was conducted in Latin America
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with a total of 20,869 participants and an estimated VE of 60.8% (95% CI = 52.0 to 68.0) in
a recent press release |Villar et al.,[2014]. In both trials, study participants were randomized
in 2:1 allocation to receive vaccine or a placebo at months 0, 6 and 12, and then were followed
for 13 months as active phase for dengue disease. The immune responses, four anti-dengue
serotype-specific neutralizing antibody titers, were measured at months 0, 7, 13 and 25 on
a random immunogenicity subset including both placebo and vaccine recipients. In the
dengue trials, because many of the trial participants were previously exposed to dengue
viruses and hence the antibody responses substantially vary in the placebo arm. Therefore,
we are able to evaluate the time-dependent immune correlates of protection for these dengue

trials using Prentice’s framework.
1.4 The outline of this dissertation

This dissertation is motivated to evaluate the time-dependent CoRs and CoPs in vaccine
efficacy trials where the immune response variables are measured under the two-phase sam-
pling design. The subjects to be sampled for measurement of immune response data are
by Bernoulli sampling. Statistically, we could evaluate the time-dependent CoPs in the
frameworks of Prentice’s criteria based on Cox the proportional hazards model with the
(continuous or dichotomized) time-varying process of the immune biomarker as a covariate.
Considering the measurement error of the immune responses, we adopt the “joint modeling”
framework to make inference on such Cox models and account for the missing biomarker
data by design.

The structure of the dissertation is as follows: Chapter 2 develops the IPW and AIPW
conditional score estimator for the joint model of continuous longitudinal biomarker and
event time data under two-phase sampling design. Results on asymptotic properties are
provided. Chapter 3 presents simulation studies to evaluate the performance of the IPW
and AIPW conditional score estimators in terms of consistency and efficiency. Chapter 4 de-
velops the risk set recalibration method and related theories for the model with dichotomized
biomarker process and Chapter 5 includes the corresponding simulation studies. In Chap-
ter 6, we applied the proposed method to AIDS Clinical Trials Group (ACTG) 175 study

[Hammer et al., [1996]. In Chapter 7 there are discussions on the proposed methods as well
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as open questions for future research.
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Chapter 2

JOINT MODELING FOR CONTINUOUS TIME-DEPENDENT
BIOMARKERS IN TWO-PHASE SAMPLING DESIGN COHORT
STUDIES

2.1 Background

This chapter focuses on evaluating the continuous underlying trajectory of immune biomark-
ers as time-dependent CoRs and CoPs in vaccine efficacy trials. As mentioned in Section
there are several complications in analyzing the classic Cox regression with time-dependent
covariate. First, a valid inference of the model requires the functional form of the time-
varying trajectory of the covariate. One most commonly used solution to this is assuming
constant covariate values between two subsequent measurement time-points. However, this
approach fails to capture any variation of the covariate values between two time points,
especially for long intervals. Also the measured immune responses from assays are subject
to measurement errors and the classic Cox regression ignoring such errors could lead to
biased inference. This inspires us to adopt the “joint modeling” strategy that models the
underlying true trajectory of the time-dependent covariate and the event time endpoint
simultaneous.

The fundamental setup of a joint model consists of two sub-models: one for the in-
herent trajectory of the time-dependent covariate and one for the time-to-event process.
The covariate sub-model characterizes the hypothetical underlying trajectory of the time-
dependent covariate. Commonly used models include the linear mixed effects model |Guo
and Carlin} 2004, Henderson et al.l 2000, |[Rizopoulos et al.l 2009] or linear random effects
model |[Dafni and Tsiatis|, [1998] [Tsiatis and Davidian, 2001, Wulfsohn and Tsiatis, |1997].
Great flexibilities can be achieved to model the evolution of the covariate process over time
by using a polynomial or a spline function of time. Several other papers dealt with the
generalized mixed effects model [Xu and Zeger, [2001] or nonlinear mixed effects model [Wu

et al., 2010]. The model of [Wu et al., 2010] also accounted for the biological understanding
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of the biomarker process in response to treatment. With the help of such trajectory models,
the covariate value can be obtained at any time point continuously. Most literatures use a
Cox proportional hazards model for the sub-model of time-to-event data process. Acceler-
ated failure time (AFT) models are also studied [Hanson et al., 2011, Tseng et al., 2005].
As discussed in Section [I.1] we focus on the Cox regression model in this dissertation. This
model can be a good fit to the infectious disease setting where there is major interest in
understanding how the current level of biomarkers affect the instantaneous risk, a setting
where instantaneous hazard rates are interpretable and the proportional hazards assump-
tion may be reasonable. Various ways have also been proposed to link the two sub-models
together, by incorporating different functional forms of the random effects (and other time-
dependent predictors) in the random effects model (or mixed effects model) to the hazard
function. In other words, these two sub-models are linked together via the random effects.
For example the majority of the literatures take the hazard function depending on the
current underlying covariate value [Tseng et al., 2005, Wang and Taylor, 2001b| and some
others use only several components of the random effects and/or their interaction with time
[Guo and Carlin) 2004, [Henderson et al., |2000, |Song et al., 2002, Wang}, 2006].

In the early stage, the two-stage method is used for making inference on the joint model.
The time-dependent covariate models are fitted first and the covariate values are imputed
at desirable time points to fit the Cox regression separately [Pawitan and Self, [1993]. Such
a naive imputation method suffers from non-eliminated bias since it ignores the relationship
between the measured longitudinal covariates and the event time data. For example, more
measurements may indicate longer time to event. Another class of methods are recalibration
methods based on |Prentice, [1982], which are aimed to reduce the bias by estimating the
hazard function given the observed covariate values [Dafni and Tsiatis, (1998, Tsiatis et al.l
1995, Wang et al., 1997, |2000, 2001]. However since it is complex to derive the analytical
form of the observed-covariate-hazard, such methods are generally based on strong model
assumptions and approximations, thus still failing to reduce the bias entirely. Likelihood
approaches have also been developed to making inference for joint models [DeGruttola and
Tu, (1994} Rizopoulos et al., 2009, Wulfsohn and Tsiatis, |1997]. The likelihood approach is

most often considered due to its efficiency. However, despite the requirement of specifying
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the joint distribution of the random effects and the event time data, the likelihood function
usually involves no-closed form of the integral over unknown random effects. Therefore con-
siderable computational burden is anticipated due to the numerical integration. R packages
are available for the likelihood inference: JM |[Rizopoulos, 2010 and joineR [Philipson et al.,
2012]. Some other researchers developed a set of Bayesian procedures for inference using
Markov Chain Monte Carlo (MCMC), which relies further on the specification for distri-
bution of parameters and requires the examination for convergence |[Faucett and Thomas,
1996, Xu and Zegerl 2001]. The above mentioned methods are easy to interpret but have
their own drawbacks such as the complication to implement and the needs for distributional
assumptions. |[Tsiatis and Davidian, 2001] developed a conditional score method with a no-
table innovation that it does not rely on the distributional assumption of the random effects
at all. The rationale of the method is to derive the intensity density of the event time process
conditional on a complete and sufficient statistic of the unknown random effects. Therefore,
the induced conditional hazard function given it does not depend on the unknown random
effects at all. Then estimating equations for coefficients of the Cox regression model are
constructed in a spirit similar to that for partial likelihood score. This method is much
less computationally intensive and is easy to generalize to handle multiple time-dependent
covariates |Song et al., [2002]. [Wang, [2006] developed a corrected score method by con-
structing estimating equations whose conditional expectation given the random effects are
asymptotically equivalent to the partial likelihood score equations in terms of the true un-
derlying time-dependent covariates. Both conditional score and corrected score methods
are consistent and asymptotically normal under regularity conditions. For reviews of more
joint modeling research please see [McCrink et al., 2013 Tsiatis and Davidian, 2004, Wu
et al., 2012].

This dissertation favors the advantages of conditional score estimator. In particular the
motivating studies include multiple immune biomarkers indicating an interest of analyzing
the association of one single biomarker to the clinical endpoint adjusting for others, a setting
where the likelihood approach may computationally fail. However, to the best of our knowl-
edge, no joint modeling approaches focus on the situation where the longitudinal biomarkers

are measured on a random or a biased subsample of the full study cohort, which is usually



22

the case in vaccine efficacy trials and generally in prevention efficacy trials. As a result, in
this chapter, we adopt the conditional score method, and develop the corresponding IPW
and ATPW estimator to accommodating the missingness due to the two-phase sampling.
We only consider the Bernoulli sampling for the second phase sample. For demonstration
simplicity, we concentrate on the model with a single longitudinal biomarker. The theories

and deviations apply to the model with multiple longitudinal biomarkers immediately.

2.2 Notation and modeling

2.2.1 Longitudinal data model and survival data model

Let T and C be the event time and censoring time. The observed right-censored data is
V = min(T,C) and A = I(T < C). Let Z = (Z,LT)T where Z is the treatment group
(1 for vaccination and 0 for placebo) and L is a p — 1 dimensional vector of baseline time-
independent confounding variables. We denote the time-dependent biomarker process which
is not observed directly by X(7) = {X(u),0 < u < 7}, with 7 being the time when the
follow-up ends and X (u) being the value of biomarker at time u. We assume the following

random effects model representing the inherent trajectory of X (u)
X (u) = o f(u) (2.1)

where f(u) is a ¢ dimensional vector of known functions of time u and « are the subject-
specific random effects. Flexible models (e.g., polynomial or spline model) are obtainable via
different specifications of f(u). For example f(u) = (1,u)” specifies a simple linear model.

The observed longitudinal biomarker values are from an additive measurement error model
W () = o f(u) + e(u) (2.2)

The measurement errors e(u) are Normal distributed with mean zero and variance Cov(e(u),
e(s)) = I(u = s)o?. Also we assume e(u) is independent of . Suppose the set of measure-
ment time points are T = (17", --- ,T}”)T with 0 <T7" <T3" < --- <T7 <V,and J

being the total number of time points. We allow 7™ to be varying by subjects. Then let
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W = Wy, , W)L, where W, = W(T]") and let e = (e1,- - ,e;) where e; = e(T}").

For any fixed time u, let J(u) be the maximum number of measurement time points
up to and including time w (ie. 0 < T7" < --- < Ty < u < ﬁu)+1) and T™(u) =
(-, T}Zu))T be the corresponding vector of ordered measuring time points. We consider
the following proportional hazards model of the event time

1 ~
AMu) = lim —P(u<T <u+dulT>u,a Z,T"(u),C)
du—0 du

1 -
= lim —Pu<T <u+dulT >u,a,2)
du—0 du

= Xo(u) exp{X (u)B + ZTn+ X (u) Z7} (2.3)

In this model, we assume non-informative censoring and non-informative measuring time
to the event time given the information already provided by a and Z. [Song et al., 2002]
considered a more generalized hazard function than , where they assumed A(u) =
Xo(u) exp{BTG(u)a +n" Z}, with G(u) being a matrix of functions of u. Such specification
links the event time to the time-dependent biomarker through the G(u)a. For example,
when G(u) = fT (u), it reduces to the hazard function we are considering; when G(u)
is a ¢ x q identity matrix, it becomes the Cox proportional hazards model taking the random
effects as covariates, which is the model considered in [Wang, 2006]. Modeling the random
effects as covariates is particularly of interest when the trend of X (u) is believed to dominate
the association between time-dependent biomarker and the event time. This dissertation
considers the hazard function and intends to evaluate how the current hypothetical
true value of biomarker predicts the instantaneous hazard of interest, which intuitively is
closer to the mechanism of protection. Our derivations based on are ready to be

extended to Song’s proportional hazards model.

2.2.2 Two-phase sampling model

We consider the vaccine efficacy trials where immune biomarker data are not collected on all
participants by design. For example, in the RV144 HIV-1 Thai trial, the immune responses

were assessed on a case-control sample. In CYD dengue vaccine trials, the longitudinal pro-
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file of the antibody titers for each serotype were only measured on a random immunogenicity
set (~ 18%) from the study cohort. To obtain valid inference, we must apply appropriate
statistical technique to account for such sampling design, which is called two-phase sampling
[Breslow and Wellner, 2007, Haneuse et all [2011, Neyman, 1938]. Now we introduce the
sampling design we consider in this dissertation and the associated notations.

Generally, in the first phase, a large sample with size N is taken from the study pop-
ulation. Let (V;, A;, Z;, LT, ATYT i = 1,--- | N be the data collected on N independent
subjects. The vector A; are auxiliary variables which might be predictive of the immune
biomarker. In the second phase, a random Bernoulli sample is taken from the IV subjects,
with sampling probabilities given by 7(0;), where O; are (a subset of) the variables col-
lected at the first phase. Let &; be the binary indicator of being sampled (§; = 1). Then the
longitudinal immune biomarkers {W;, 7", J;} are assessed only on subjects with & =1, i.e.
the observed data for i = 1,--- | N are {Vi, Ay, Z;, L;, Ay, &, &Ws, &I, & Ji}e

To emphasize, the sampling probability model is characterized by a parametric model

in terms of finite-dimensional parameter p
P(¢ = 1/0,0, W, T™,.J) = P(¢ = 1/0) = 7(0; p) (2.4)

This is the missing at random (MAR) assumption. We also assume positive sampling
probabilities with 0 < § < m;(O;;p) < 1 for some constant value § > 0 and for all i =

1 N.

Now considering the special situation where the second phase sample is taken by a strat-
ified Bernoulli sampling. That is to say, suppose the NV subjects can be divided exclusively
and exhaustively into S strata based on O: {Oy,---,0g}. We use I(O € Oy) to indicate
whether a subject belongs to stratum O;. In a case-control sampling, the strata are defined
by A. Let Ny,---,Ng be the size of each stratum such that Ny +---+ Ng = N. In the
second phase, if a subject belongs to stratum O, then with a probability ps the subject

will be sampled, i.e.

m(0;p) = > 1(0 € O4)ps (2.5)
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We also let the probability of belonging to a stratum as vs =P(O € Og) >0, s=1,---,85.

2.3 DMethods to evaluate time-dependent CoP

The central application of this dissertation is to evaluate how the current level/status of
immune response is associate with the instantaneous risk of the clinical endpoint and to
assess the validity of current level/status of immune response as a CoP for measuring VE.
The assessment of association is straightforward based on model . For the assessment
of a CoP, this dissertation mainly focuses on the Prentice’s framework [Prentice, |1989] in
terms of statistical parameters. As a complement, we also introduce the framework based
on causal effects, which leads to causal interpretation. This section therefore describes these
two frameworks which the joint model can be applied to assess the time-dependent
CoP.

2.8.1 Prentice’s criteria

The implementation of joint modeling approach in two-phase sampling provides the way
to analyze the underlying hypothetical trajectory of time-dependent immune biomarkers as
correlates of risk directly in vaccine efficacy trials where the biomarker data are only mea-
sured in a subset of subjects. This approach also enables the evaluation of time-dependent
immune correlates of protection in the framework of Prentice’s approach [Prentice, |1989].
By Prentice’s definition, for an immune biomarker to be an immunological surrogate, is one
on which the test of the null hypothesis of no vaccine effect is also a valid test of the null
hypothesis of no vaccine effect on the clinical endpoint. To apply the Prentice’s framework
to assess the time-dependent CoP based on model , we need to check
(i) Z has an effect on T, and Z has an effect on the immune biomarker X (7).
(ii) X(7) is correlated with the clinical endpoint 7' in both treatment groups.
(iii) Z has no effect on T’ given the immune biomarker X (7). To check this, we need first
to rule out that the vaccine effect on T is modified by the biomarker, i.e. there is a
significant interaction effect in . Otherwise, the biomarker fails to meet Prentice’s

criteria. If we do declare v = 0, then we fit A(u) = Ao(u) exp{X (u)B+ Znzx + L 1L}
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including all dual predictors L for X (u) and T, and to see if 17 x = 0 is plausibly

close to zero.

However checking condition (iii) is difficult statistically because conceptually we need to
test the null hypothesis of 17 x # 0 versus the alternative 7z x = 0, which requires infinity
sample size. An insignificant p-value for the regression coefficient 77 x could be lack of
evidence to reject nzx = 0, instead of evidence to accept 1z x = 0. We could use the
confidence interval of 17 x to judge the precision with which it is near zero. An alternative
way is to use a value to measure the proportion of treatment effect explained (PTE) by
the biomarker, defined as 1 — 1y x /12, where 7z is the regression coefficient of Z without
adjustment of the biomarker |[Freedman et al., 1992 Lin et al., 1997]. However, PTE is
not guaranteed to be in [0,1] and could be quite variable, suggesting it is only very useful
when the 77 is very large [Flandre and Saidi, |1999]. A recent published paper defined a new
measurement, the proportion of treatment effect captured by the potential surrogate (PCS),
still with 1 indicating a perfect surrogate and 0 indicating a useless surrogate [Kobayashi

and Kuroki, 2014]. PCS is guaranteed to be in [0,1] and is less variable.

2.8.2 Causal effects framework

Another framework to evaluate the CoP which confers causal effects interpretation is based

on the concepts of natural direct and indirect effects.

In Section [1.1.2] we define the conterfactual underlying biomarker history up to and
including time ¢ as X*(t) = {X?(u),0 < u < t} if the vaccination status had taken Z = z.
To evaluate the underlying biomarker trajectory as a surrogate, we would like to look at
the potential time to clinical endpoint 7% when the vaccination status had taken z and the
underlying biomarker trajectory history had taken . Note that, under the random effects
model assumption , the hypothetical biomarker trajectory is entirely determined by the
random effects. Besides, the time to clinical endpoint depends on this trajectory all through
the random effects. Therefore, in this section, instead of using the notation of a biomarker
process X*(t), we use notation X? to emphasize that the whole biomarker trajectory is

determined all by a.
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Under this potential-outcome framework, the concepts of direct and indirect causal ef-
fects of treatment have been defined. The controlled direct effect (CDE) contrasts T1%
with T0%  ie. comparing the time to clinical endpoint when the treatment had taken 1 to
that when the treatment had taken 0, manipulating the biomarker process to Z,. It is often
of interest in policy making. The natural direct effect (NDE,) contrasts T'Xa with T0%a,
where the biomarker level is allowed to be the value it would be if treatment had been z,
z € {0,1}. The total effect (T'E) can be decomposed into the sum of NDE, and the natural
indirect effect (NIE,). This provokes the measurement NIE,/TFE, or the PCS, defined in
[Kobayashi and Kuroki, 2014] as

NIE?
PCS, = 2
* NDE?+ NIE?

to quantify the proportion of causal effect captured by X,. A proportion close to one could
indicate a good surrogate. The problem with these definitions based on counterfactual
endpoints is that only the ones under the assigned treatment can be observed. Thus in
order to make inference on the causal effects based on observed dataset, we need to make
some identification assumptions given in Assumption I. Recall that L is a vector of potential

confounders measured at baseline.

Assumption I

I1. Consistency. T'=T%" if Z = z and X, = zo. Xq = X2 if Z = 2.
12. (Z,Xa) L Ta|L

3. Z L XZ|L

4. T« | XZ'|Z, L, for any z, z* € {0,1}

I5. Zero biomarker level among the untreated P(X, = 0|Z =0) = 1,a.s

For a fixed time point tg € [0,7], we define the natural direct effect for treatment

z=140,1} as

NDE,(ty) = B[I(T™> > tq) — I(T™ > t0)] (2.6)
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and the natural indirect effect for treatment as
NIE,(t)) = E[I(T"*a > tg) — I(T'" X2 > ¢)] (2.7)

So that NDE,(tg) + NIE,(to) = TE(ty) = E[I(T' > to) — I(T° > t()]. From the following
theorems, we are able to estimate NDE,(ty) and NIE,(ty) based on observed data and
then further evaluate the PCS, (o).

Theorem 2.3.1. Under Assumptions 11 - 1}, NDE.(ty) and NIE.(to) are identifiable

from the observed data.

Proof. Note that by Assumption I1 - I3 we have

E[I(T* % > to)|L] = E[I(T¥% >ty)|Z = 2*, Xo = q, L]
= E[(T >ty)|Z = 2", Xoa = 2a, L]
= Sr(to|Z = 2%, Xo = Ta, L)
dPx:(za|l) = dP(X; < 24|lZ =2,L)

= dP(Xy < zo|Z =2,L)
Therefore
E[[(T % > to)] = E{E{E[[(T**% > 19)|Z, X7, ]2, L}}
= E{/ E[I(T* % > t0)|Z, X2 = 24, L|dPx: (v4|Z, L)}
. / E[[(T*'" > t9)|Z, X = @a, L|dPx: (zalL)} (Assumption I1,13)
_ B / E[[(T*' > ty)|Z, L|dPx: (z4|L)} (Assumption T1,14)
= IE{/ E[I(T* % > to)|L]dPxz(ro|L)} (Assumption I1,12)
= E{/ St(to|Z = 2%, Xo = o, L)px, (0| Z = 2z, L)dzs}

= E [gz*,z(L; to, )\07 9a ea)]

where A\g = Ao(u), @ = (8,17, )" are parameters involved in the hazard function of observed
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data given in (2.3), and 6, are the parameters involved in the density px,(za|Z = z,L).
The first term Sp(to|-) inside the integration over z, can be fitted from observed data
using . The second term is the conditional density function of X, which is indeed
determined by «, given Z = z,L. The conditional score estimator, however, dose not
require any distributional assumption on the random effects. Therefore, in order to further
identify NDE.,(ty) and NIE,(ty), we have to make the distributional assumption for «,
and estimate 6, through likelihood approach based on data W, Z, L. Finally NDE,(to) and
NIE,(ty) can be estimated by

N
NDE.(tg) =N"'>" {9172'([/2'; to, 20,0, 0a;) — go,2(Li; to, Ao, 0, 9%-)}
i=1
—_— N
NIE.(t)) =N"")_ {gl—z,l(Li§ t0, 20,0, 0a,) — g1-2,0(Li; to, Ao, 0, 9ai)}
i=1
where the calculation of g.- . needs the help of numerical integration. O

In HIV vaccine trials, it is reasonable to assume that the underlying biomarker level is
zero if the participants in the placebo group are healthy and have no prior exposure to the
virus. That is to say P(X, = 0|Z = 0) = 1,a.s, or P(X? = 0) = 1,a.s. In this case with
constant biomarker in the placebo group, we could consider the parameter of natural direct
effect among the untreated proposed by [Lendle et al2013]. We consider the natural direct

effect among the untreated
NDU(t,) = E { [I(Tng > to) — I(TOX& > to)} Z = o} (2.8)

One good property of such parameter known from [Lendle et al., 2013| is that under
complete randomization assumption, Z L (X2, 7%« L), and conditions 11,14, we have
NDEy(tg) = NDU(tp), i.e. the natural direct effect among the placebo group equals the

total natural direct effect of placebo.

Theorem 2.3.2. Under Assumptions I1 - 13, NDU ((ty) is identifiable from observed data.
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Proof. Similar as in the proof of Theorem we have

E[I(T* % > t)|Z = 0]
= E{E{E[I(T**% > 1))|Z = 0, X0, L]Z = 0, L}|Z = 0}

= E{/ E[I(T%& > t,)|Z = 0, X0 = o, LIdP xo (14|Z = 0, L)|Z = 0}
T

= E{/ E[I(T*% > t)|Z = 0, Xo = To, L]dPxo(24|L)|Z =0} (Assumption I1,13)
T

= E{/ E[I(T* % > to)|L]|dPxo (zalL)|Z = 0}  (Assumption 11,12)
T

= E{/ Sr(to|Z = 2, Xo = o, L)px, (xa|Z = 0, L)dx,|Z = 0}

= E[gz*,O(L;tUa)‘O’eaea)‘Z = O]

Similarly NDU () can be estimated by

N N
NDU(to) =Y _I(Z; = 0) {gl,o<Lz-; to, M0, 0,0a,) — go.0(Li; to, Mo, 0, ea»} /> 1(Zi =0)
i=1 =1

Under Assumption I5 additionally, g.« ¢ reduces to
9=+ 0(L; to, Mo, ) = exp{—Ao(to) exp{z*nz + L nL}}

which can be directly estimated by fitting model .

To evaluate the confidence interval of these quantities, since it is hard to obtain the
analytical form of the standard errors, we suggest using the bootstrap method. Note for the
time-dependent immune response process, we are only interested in the immune response
level measured before the event. We know that if a subject becomes infected or develops
the disease, the pattern of his/her immune response level could alter dramatically. There-
fore even though in our setting the trajectory is fully determined by the time-independent
random effects, it is crucial to clearly define the natural direct and indirect effects in terms

of the “random effects” that quantify the trajectory before the occurrence of an event. It is
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always a complication in dealing with the time-dependent variable and event time process
simultaneously. Here we propose the initial work with the definitions of estimands and

procedure for estimation. More detailed work is needed along this direction.

2.4 Methods of IPW and AIPW

In this section, we discuss the general models and properties for IPW and AIPW estimators.

In next section, we will apply them to make inference for the joint model (2.3)).

Suppose the parameter of interest 6 can be estimated by solving the estimating equation
Mp(0) = Zf\i 1 M;(0) = 0 when there is no missing data. In following sections, we will derive
specific forms of estimating equations for the conditional score methods under two-phase
sampling. Here the notation M;(6) is used to denote for a general estimating equations sat-
isfying regularity conditions. We use it here to review and describe some general properties
for IPW and ATPW estimators.. Let 6 be the true parameter with Eo[M (6y)] = 0, where
Eo[-] denotes the expectation evaluated under the truth. We also use fy = 8f/d6 to denote
the derivative of function f with respect to the parameter . We sometimes omit 6 in the

subscript and use f when f is fully parameterized by 6.

Under the situation of two-phase sampling, we first consider a class of estimating equa-

tions defined by

N
M, = {h My (6,7, h) = Z; W(%i)Mi(e) + Z; <1 - w(%-)) h(Os: 0) = 0} (2.9)
where h(é; 0) is a function of O , and O is a union of the sampling variables O and pos-
sibly other predictor variables from {V, A, Z L, A}. We assume the sampling probabilities
involved in this class of estimating equations are fully and correctly specified. This is a
reasonable assumption because the sampling are usually conducted by design. Note when
h =0, My,(8,7,h) =0 leads to the IPW estimator, and h = E[M ()|O] leads to the ATPW
estimator proposed by [Robins et al.; [1994].

Similarly to the Proposition 2.2 in [Robins et al., 1994], under some regularity conditions
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we can show that 8, (7) 5 6y as N — co where 0),(r) solves My,(0, 7, h) = 0 and

() ) = (s 8]}

N
Z (60,7, h) 4 0,(1)

3\

with

My, (60,7, h) = W(%i)Mi(Oo) + <1 — W(%i>) h(O;; 60)

By the Law of Total Variance Var(X) = E[Var(X|Y)] + Var[E(X]Y)], the covariance

matrix for My, ;(6o, 7, h) is

1—m

1
Eo [MMT} —Eq [ hohOT]
™

+Eo {1;” [h— ho) [l — hoHT} + Eo {1;” [hoh™ = hhg] }

where for notational simplicity, we let ho(O;60y) = Eo[M(6)|O]. Apparently the vari-
ance is minimized with & = E[M(6)|0]. The result also implies that, for the IPW es-
timator 67py (m) which solves Mj(0,7,0) = 0 with & = 0, the asymptotic variance of
N1/2 (éfpw(w) _ 90) is

Srew(r) = {Eo 1] }_1E0 [JTMMT] {Bo |27] }—1

And for the AIPW estimator 4y (7) which solves My (0,7, E) = 0 with h = E[M(0)|0],

the asymptotic variance of N1/2 (éAyg(w) — 00) is

cu) = (i} L] 1] o)

— Sl - {80 [31]} s [1 = ﬂhohg] (&[]}

It shows that that the IPW estimator is inefficient in this class of estimates. It can be

improved by using h = E[M(#)|O]. Or, there is an alternative way to use the estimated

sampling probabilities [Breslow and Wellner}, 2007]. Naturally we also consider another set
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of estimating equations defined by

& 5 0y
ﬁ(Oi)>h(Oz,9) o} (2.10)

where 7(0;) = 7(O;; p) where p maximizes the likelihood based on the correctly specified

probability model (2.4)), i.e.

p:argmaXHW 5 p)% (1 —7m(0g p)' % (2.11)
=1

or solves the score equations

3 . 9 13 1-¢&
Ser(p) =3 Snale) = 35 toa{m(0ip)" (1= (05 )% }
i=1 =1
N
_ (Oi; p) on(Os;p)
= ;W 1—71'(0 PR =0 (2.12)

Suppose pg are the true parameters for the sampling probability model. Let Hh( ) denote
the solution to My (6, #, h) = 0. Still, under regularity conditions (7)) = 6y as N — oo
and

v () ) = (s o))

90,71' h + Op(l)

||M2

with
(B, ) = Mo, . + B | (07 = ) % | {80 [$]} St

The covariance matrix of ¢y, ;(6o, 7, h) is

Eo [MyMT] + Eq [(M — h) Z] (B0 [5:]} 7 Eo [(M —h) ﬂ T

1 1
= E, [MMT} —E [ 7ThOhOT]
T



34

+Eq [1;” [h— hol [h — ho]ﬂ +Eo [1 —= [hon™ — hhoT]]
_E, HEO[M@] - h} Z] {EO L(T-TW) }_1 Eo [[ho ~h) ﬂT

It is not straightforward to seek the function i at which the minimal variance is achieved,
because it is hard to compare the third to the fifth term without further information about
the sampling probability model. However, we can still have the asymptotic variance for
the IPW estimator f;pyw () which solves My (0, #,0) = 0 with & = 0, and for the ATPW
estimator 0y (#) which solves My(0,#,E) = 0 with h = E[M(0)|0]. The asymptotic

variance of N1/2 <éjpw(ﬁ) — 90> is

Sipw () = Zrpw(m)
o ]} oo e oo [ o 2] o ]}

And for N1/2 (éAUG(fr) - 90) is

Yava(r) = Xrpw(m) — {EO [M] }71E0 [1 - Whohg] {EO {M} }71

™

So far, we can tell that 6; pw (7) is the least efficient among the four estimators considered

above, and 0 Avc(7) and Oavc (m) are asymptotically equal.

Now we consider the special case with stratified Bernoulli sampling where the probabil-

ities are given by ([2.5)), the scores for subject i are simplified as

Sri(p) = (Sryi(p), -+ Srs,i(p))” (2.13)
) _ ) fz — Ps
Srailp) = 101 € 0)) S (2.14)

Then it can be verified that

. 0S, . vy Vg }
FolSy] = (o |22™|) =Diagd——2 .. ¥ | (935
ol ( ’ { op Dkl 1ag{ po1(1 — po1) pos(1 — pos) (2.15)
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T vy Vs
Eo[M~] = <EO|1[M]7 e EOS[M]> (2.16)
7r Po1 PosS
where Eg|s[-] = Eo[-|O € O] is the expectation evaluated given the membership in stratum

O;. Now we have

mewte) = {0 [ur]} e [Laner] {mo ]}
Save(r) = Sipw(r) — {EO:AZ:}]{gigjlﬁmfosVAEOS[hohg]} {Eo[ﬂf]}*l
Siew(R) = Sipw(r) — {EO | }*1 {i L~ pos VSEOS[M]EO|S[M]T} {Eo [M] }*1
o s=1 s
= Ypw(n) — {EO Wi }_1 {i 1~ ros vsEo|s [ho] Eg|s [ho]T} {Eo [M} }_1
o s=1 s

Yava(®) = Yavg(n)

On the other hand, for the class of estimates given by Mz, the covariance of their

influence function ¢, (6o, 7, h) is

1—m

1 1
Eo [MMT} ~Eo [ 7ThOhOT] +Eo { [hoh™ — hh{] }

+Z pOsVSEO‘S “h ho][h — ho] ]

- Z —P0s VSEO\S [h hO] IE:O|s [h hO]
s=1

The last two terms are actually ZSSZI 1;5’:5 vsVargs [h — ho).

Since v > 0 and 0 < pgs < 1, in order to minimize the variance above, we need to find
a function h that satisfies Vargs [h — ho] = 0 for all s = 1,---,S. This implies that h =
E[M|O], a.s.. Therefore, under stratified Bernoulli sampling, ¥ 4y () and ¥ 4y (7) achieve
the minimal variance within the class of estimates yielded by M, and M; respectively and
they are asymptotically equivalent. Therefore, if the correct model E[M|O] is available, or
a set of estimating equations equivalent to Mp (6, m, E) can be found, the resulting estimates

are efficient. However, it is unusual to specify a correct model for E[M |O], thus resulting in
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even less efficient estimators than IPW. IPW estimators are relatively easy to implement, but
could give unstable estimate if some sampling probabilities are outliers [Kang and Schafer,
2007]. [Cao et al.l [2009] discussed this issue based on a simple mean model to find the
optimal 7,,¢ for a known function h(O;6,~), and proposed a relatively stable method even
if the sampling probabilities are close to zero. [Han| 2012 also provided a way to search for
a better variance given one estimated function h(0;6,%). |Qi et all 2005] applied the non-
parametric local constant regression to estimate E[M|O] on which the optimal efficiency is
obtained. Their method was developed for the Cox regression model with time-independent
covariate X, so it only needs to estimate E[f(X)|O] once regardless of the time. However
in this dissertation, it is the model with time-dependent covariate and unknown random
effects, so the augmentation term in the form of E[-|O] needs to be taken care of over time.
In following sections of this chapter, we will develop the IPW and AIPW estimators for
the joint model . We first review and generalize the conditional score method with

interaction term in the Cox regression model.

2.5 Conditional score estimator

The conditional score method was developed by |Tsiatis and Davidian), 2001] and then was
generalized for multiple time-dependent biomarkers by [Song et al., |2002]. This estimator
does not require specific distributional assumption for the random effects « other than
Normal measurement errors. The derivations are parallel to that in [Tsiatis and Davidian),
2001], so we do not put too much details here and only outline the key steps in constructing

the estimating equations.

Let 0 = (B,n7,7)" be the regression coefficients in . Define the event process as
N(u) =1V <u,A=1,J(u) > q) and the at risk process as Y (u) = I[(V > u, J(u) > q),
where J(u) > ¢ indicates that at least ¢ measurements have been observed up to and
including time u. We also define the design matrix, the vector of observed longitudinal
measurements and the vector of measurement errors for each subject up to and including

time u as
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S 441 el
F(u) = : Wwy=| : |.ew=]| : (2.17)

F(TH,) W) €J(u)

Then implies that W(u) = F(u)a + é(u). Let &(u) = [FT(u)F(u)] " FT(u)W (u) be
the least squares estimate for o using data up to and including time w. Conditional on
{o, Z,T™(u), J(u),Y (u) = 1}, the least squares estimate of X (u), X(u) = &7 (u)f(u) is
Normal distributed as N(X(u),d(u, 02)), where d(u,0?) = o2fT(u) [FT (u)F(u)] " f (u).
Similarly as in |Tsiatis and Davidian, 2001], we have the following conditional intensity for
N(u).

Lemma 2.5.1. Define Q(u,0,0%) = &% (u)f(u) + dN(u)d(u,c?)(8 +vZ) if Y(u) = 1.

Assuming the conditional independency T L (C,T™,J) given o and Z. Then conditioning
on {Q(u,0,0%), Z,T™(u), J(u),Y (u) = 1} the intensity process for dN(u) is

lim di]P’(dN(u) =1|Q(u,0,0%), Z, T™(u), J(u), Y (u) = 1)

du—0 au

= Xo(u)exp {BQ(u, 0,0%) + 1" Z +vZQ(u,0,0%) — = (B +~2)%d(u, 02)} (2.18)

1
2
which does not depend on the unknown random effects .

Proof. Let C = {Z,T™(u), J(u),Y (u) = 1}. At any time w, like in |[Tsiatis and Davidian,
2001), under T' L (C,T™, J)|(c, Z) we have

P(dN (u) = r, X (u) = z|o, C)

= P(dN(u) = r|X (u) = z, 0, C)P(X (u) = z|e, C)

= :)\o(u)du exp{BX (u) +n" Z+7X(w)Z }} '
. -r T — u 2
_1 — Xo(u)duexp{BX (u) +nT Z + WX(u)Z}} 1 W eXP{—(Qd(qug)))}
1= do(w)du(w) exp{ BX () + 17 Z + X () Z})] " expf di(ﬁl)

[z +d(u,0®)(B+~Z)r]}
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The conditional intensity process is therefore derived as follows.

P(dN(u) = 1,Q(u, 8, 0?) = ¢|C)

P(dN (u) = 1,Q(u, 8, 0%) = g|a, C)p(c|C)dex

/IP’(dN(u) =1,X(u) = ¢ — d(u,0)(8 + vZ)|a,C)p(a|C)da

1 - 2 1
= W)\o(u)duexp{nTZ — 2d(3702> +(B+~2)q — Qd(u, 02)(6 + ,YZ)Q}
u) — 2 u
J LR I
= op(1)

P(dN (u) = 0,Q(u, 0, 0%) = ¢|C)
= /IF’(dN(u) =0,Q(u,0,0%) = qla, C)p(a|C)de
= /P(dN(u) =0, X (u) = ¢la, C)p(a|C)da

2

{5 o)
= —_— X —
2rd(u, 0?) P 2d(u, 0?)

~ u) — 2 u
/ {1 dow)duexp{8X (u) + 1" Z + X (u) 2} } exp qu2( : ()u ;2() (W (alC)da

- W }/ Zqudwz L) ptaie)da + (1)

as du — 0. And

%P(dN(u) — 11Q(u,0,0%) = ¢,C)
1 P(dN(u) = 1,Q(u, 0,0?) = ¢|C)

duP(dN (u) = 1,Q(u, 0, 02) = ¢|C) + P(dN (u) = 0, Q(u, 0, 02) = ¢|C)
No(u) exp{n” Z — szl + (B + V24— Ld(u, 02)(8+72)%} [ exp{ 20— yp(a[C)da

m 2(y
exp{— 5o} [ ep{*E 55 p(alC)da

+op(1)

= Now)exp{Ba -+ "7 +4Z) — Ldu, o) +72)’} + op(1)
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as du — 0. ]

For notational simplicity, throughout this chapter, we let
2 2\ 5T 2 T
Hi(u7670 ) - [Qi(uaeva )721 7Qi(u7970 )ZZ)

If the variance of measurement errors o2 is known, the unbiased estimating equations for @

can be therefore derived as

N T (1) 2
E.(u,0,0°)

Up(0,0%) = / Hi(u,0,0%) — —£E 22" 2 % dN;(u) =0 (2.19)
=170 E}O)(u,e,a?)

where for r =0,1

B (,0,0%) = exp{Hi(u,0,0%)70 — (8 + 772 ds(u, %))

E(I)(u,9,02) = H;(u,0, UQ)E(O)(u 6,0

(2

EV(u,6,0%) = 1ZY VE" (u,0,0%)

2

However o is usually unknown. We can estimate it as 62 by solving S, p(0?) = Zf\; 1 Se.i(d?)

= 0 where

Seilo?) = (i = q){[’WZ(m ~RWam)] [ - Eavh)] - o —q)}

(2.20)

And we can estimate 6 by solving Ur(6,52) = 0. The baseline hazards are estimated by

- (2.21)
EW (u,6,52)
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2.6 IPW conditional score estimator

2.6.1 Prespecified sampling probabilities

We start with the case with correctly and fully specified sampling probabilities. We define
the IPW conditional score estimator 67 pyy () for 6 as the solution to Uy pyy (6, 6%y (), m) =

0 where

N T (1) ~2
. i E u, 0,6 T, T
Urpw (0, 5% py (), ) E é./0 {Hi(u,9,02) %D)W( ipw (7) )}le(u)

=1 T [pw(%a)&%Pw(W)vﬂ')
(2.22)
6% by () estimates o2 by solving Se rpw (02, ) = Zf\il (&/mi) Sei(0?) = 0, and
") &
r 2 T 2
Epy(u,0,0%,m) = Z:; E; "/ (u,0,0%), r=0,1 (2.23)
The baseline hazards are estimated via
N; N

E}(}Qw(u 91PW(W), 62(), )

Define

T e(l)u 0_2
Mi(0,0%) = /O{Hi(uﬁ,a) (Q;}dD() (2.25)

e (u, 0,02
dDi(u) = dNi(u) — Ao(w)Y;(u) B (u, 0, 02)du (2.26)
e (u,0,0?) = E[YW)E" (u,0,0)],r=0,1 (2.27)

By Lemma and the same arguments as for (8a) in [Tsiatis and Davidian) |2001],
we know if 0y is the true parameter of and o2 is the true variance of measurement
errors, then E[M (6p,02)] = 0. In the following regularity conditions, we also assume that
they are also the unique solutions. We shall show next that the estimating equations
N=U;pw (0,62 py, (), m) are asymptotically equivalent to N~ SN | (€i/mi) Mi(6,02). The

latter is a sum of i.i.d. random variates on which the empirical theories are readily applied
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under the following regularity conditions. Let (67,02, pf)T be the true parameters. For

any parameter, for example 6, We use NV (6p) to denote the compact neighborhood of 6y

and N (7,00) for [0,7] x N'(6y). Let Eo[-] and Varg[] denote the expectation and variance

evaluated under the truth.

Assumption A:

A1l. The event time T is independent of the censoring time and the measuring schedule
information (C,T™,.J), given a and Z.

A2, Ag(7) < 00, P(Y(1)=1) > 0.

A3. The parameter space for (67,02, p7)T is compact and the true values (1, 02, p&)7 lie
in the interior.

A4 P =1|0,a,W, T™, J) =P =1|0) = n(0; p) > 6 > 0, for all p and some constant
6> 0.

A5. supyeio,r |H(u,6,0%)|, sup,epor
and Var [ \dEi(r) (u,0,02%)| < oo.

A6. E[M(0,02)] # 0 if (67,0%)T £ (07, 03)T.

A7. Vary[M] is finite and positive definite. Eo[M] exists and is invertible.

A8. E |:Sup(9702)6./\/(9070(2)) ‘M(9,0'2)‘] < oo, E [Sup(e,UZ)EN(eo,US) ‘M(G,UQ)M(9702)T‘] <

M(G,O'Q)H < 0.

H97O.2 (u,0,0?)|, and SUPye[0,7] ‘d(u, o?)| are bounded

00, and E SUP(9,62)eN (09,02)

Lemma 2.6.1. Under conditions A1-A5, as N — oo,

E}}D)W(u, 0,02, ) e(l)(u, 0,02)

E}?D)W(u, 0,02, ) O (u,0,0%)

5o, r=o0,1

sup
(U,G,JQ)EN(T,HO 703)

Proof. By the Double Expectation Theorem E[X]| = E[E[X|Y]], we have

E E}Qw(u,e,gﬂw)} =k {&E(r)(U,9,J2)] =e(u,0,0%), =01

v ’
Apparently E((u,0,0?) is a continuous function of H(u,#,0?) and d(u,c?), and they are

all continuous in (67, 0%)T. Therefore by condition A4-A5 we have the uniform convergence

swp By (,0,0% 1) — €O (w,0,0%)] B0, r=01
(u,0,02)eN(1,00,03)
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Also we can prove that e()(u,6,0?) is bounded away from zero on N(r, 6o, 03), following
similar arguments as in [Fleming and Harrington| 1991] (page 305-306). Therefore the

uniform convergence stated in the Lemma holds. O

Lemma 2.6.2. Under conditions A1-AJ, N_1/2U1pw(90, ag, ™) is asymptotically equivalent

to a sum of i.i.d. mean zero random variates,
N 13
N=2Upw (00,08, 7) = N2 > #Mi(Qo, o) + op(1)
i=1 "

Proof. We rewrite N_1/2U1pw(9,a2,7r) as

N T 1 2
T Jo

() 2
— e (u, 0,0

(g 0. o2 (1) 2 N o
_N—l/Q/0 { 1pw(u, 0,0 ,7r)_e (u,6,0%) Z%dl)z(u)

E}?D)W(u, 0,02, 1) e®(u,0,02)

~—
L
S
£
U
IS

N
NT2N éM,-(e,cﬂ) + N~V2Up5(0, 02, 7) (2.28)
Uv
=1

It suffices to show that N~12Un4 (g, 02, 7) = 0,(1). Let dDo;(u) = {dN;(u)—Xo(u)Yi(u)
EZ-(O)(u, 00,02)du} and dDon(u) = N~'S°N (& /mi)dDgi(u). By the Double Expecta-
tion Theorem and Lemma we have E[(&/m;)dDgi(u)] = 0. The Proposition A.1
in [Kulich and Lin, 2004] implies that N'/2dDg n(u) converges weakly in 1°°[0,7] to a
mean-zero Gaussian process uniformly in u. Then the convergence in probability to zero of

N=Y2Upo(0p, 02, ) follows from Lemma and Lemma 4.2 in [Kosorok, 2008§]. O

Theorem 2.6.3. Under conditions A1-A8, as N — oo, (i) Orpw(m) B 0o; and (ii)
VN <éjpw(7r) — 90> converges weakly to a Normal random wvariate with mean zero and

covariance A~ B(A™)T, where
. 1 T
A=E, [Ma} B=Fy|-RR
™

R = M(by, 02) — Eq [M(,Q} {Eo [S] }_1 Se(03)
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Proof. (i) Consistency. The proof is similar to that in [Tsiatis and Davidian, 2001]. We
first demonstrate that N~ U;pw (6,02, 7) = N~ 2N (&/m)M;i(6,02) + 0,(1) uniformly
in (67,0%)T € N(6p,02). Actually,

sup N~ UIPW(H o2 ,T0) IZ & M; (6, o?
(6,02)EN (80,03) =1 T
= sup /T E§2W(u’9702’ﬂ) - eV, 6,0%) ! Z i =dD;(
(6,02)EN (60,02) | /0O E}?;).W(U,Q,O'z,ﬂ') 6(0)(%9702 oy T
< E}gw(u, 6,02, ) e(l)(u, 9,0?)
S sup -
(’LL,G,O’Q)GN(T 00,02) E;?D)W(U,H,O'Q,Tr) 6(0)(71,,9,02)

: E “ { / . 0) 2
N2, S Ao(w)Yi(w) B (u, 0, 0%)du
{5 N i1 i (6,02)eN (fo,02) LJO

Lemma yields the convergence to zero of the first term. The second term, by the

Double Expectation Theorem and Law of Large Numbers, converges to

1
—-+E
5-1—

sup / Ao(u E(O)(u 0,0%)du| < oo
(0,02)eN( 90700

Therefore

1 —1 61
N~ U]pw(9 O’ 7'(' ;ﬂ'l 9 g )+Op(1)

uniformly in (#7,02)T. On the other hand, since
~1 51 2

i(0,0°) =E|M(6 1
;fﬂz 0?) = E[M(6.0%)] + 0,(1)

T

uniformly in (§7,02)”, then for any consistent estimator 52 RN o3,

N_lU]pw(9,5'2,7T) = N_IZfMi(Q,(ATQ)-i-Op(l)
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uniformly in €. Condition A6 implies the uniqueness of 6y as the root of E [M (0, 0(2])] =0.

It follows from Theorem 5.9 in [van der Vaart, 1998] that 6;py (1) 2 6y as N — co.

(ii) Asymptotic normality. Consider

— U[pw(e,UQ,ﬂ') N & Mi(9,0'2)
N"Uipw(0,0%7) = N7 =N"T) >
]PW( , O ,71') ;ﬂ_i

Se.rpw (02, T)

By Taylor expansion we have

Orpw () — 6o

N=Y2U1pw 6y, 08, 7) = =N "'Urpw (0%, 0%, m)N'/?
62(mr) — od
R T
where (0*T, *2)T lies on the segment between (OIPW(W)T, 6’?PW(7T)> and (67, a%)T. Since

we can prove the uniform convergence of N~ U;py (6,02, 7) in the same way as that for

N7 U;pw (0,02, 7), together with the consistency of the estimates, we have

. N . 2
< - M6, 0"
N_lU]PW<9*7U*277r) = N_lzé ( 2 ) +0P(1)
i=1 Ti Se,i(g* )
Eo[My| Eo[M?2
0 Eo[Se]
It leads to
~ . . 71 N 2
0 .y Eo[My] Eo[M, M;(6o,
we [ Orewlm) =00\ [Eo[Mp] EolM,] LZQ (6o, o) T op(1)
&7pw () — b 0 Eo[Se] VN Z i\ 5, (02)

and further

NY2 (G pyy () — o)

=m0 - Bl {RelS} St} o)
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Ny
Z;R +0p

ﬂ\

The asymptotic variance for 0;py () is A~1B(A~1)T. O

2.6.2 Estimated sampling probabilities

We have shown in Section that the IPW estimator with prespecified sampling probabili-
ties 7 are inefficient. Therefore it is often suggested to use the estimated # = 7(p) to improve
efficiency. We still apply here the sampling probability model , and the resulting like-
lihood and score functions ) discussed in Section The IPW estimators 67 pyy ()
and éjpw(fr) are obtained by solving S, jpw(d ) = 0 and Urpw (6, UIPW( ), m) = 0,

respectively.

Lemma 2.6.4. Under conditions A1-A5, as N — oo,

EE;),W(U, 0,02, 7) 6(1)(u, 9,02)

P
— -0, r=0,1
Eg);)”,(u, 0,02, 7) e©(u,0,0?)

sup
(u,0,02)EN (1,60,02)

Proof. Actually, consider (£/m(p)) E")(u,6,0?) as a function of (#7062, p7)T. Then we
can also prove its empirical mean uniformly converges to e(’")(u, 6,02) by Glivenko-Cantelli

Theorem. Therefore it follows naturally that

sup ‘EIPW u,0,0%,7(p)) — e(r)(UaH,UZ)‘
(u,0,02)EN(1,00,02)
< sup sup ‘E[PW(u 0,0%,7(p)) — e(r)(u,H,JQ)‘
14 (u,0,02)EN(1,00,02)

= 0

O]

Theorem 2.6.5. (i) O;pw (7)) = 0o; and (i) \/N(é[PW(’fr) - 0()) converges weakly to a

Normal random variate with mean zero and covariance A~ B*(A~1)T, where

A=E [Ma} B*=B— Eo[Rg] {EO[SWSE]}_lEo[Rg]T
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B and R are defined in Theorem [2.6.3,

Proof. (i) Consistency. Still, consider N~ Urpw (6,02, 7(p)) as a function of (87,02, p7)7,
which can be shown as in Theorem [2.6.3] to satisfy

N

N Uy (0,02, 7(p) = N—lzﬂ%‘[))Mi(e,a?)mp(l)
i=1 ¢

= E[M(0,0%)] + 0p(1)

uniformly in (87,02, p7)T. Therefore it follows naturally that

sup N~ Urpw (0,0°,7(p)) — E[M(0,0°))|
(u,0,02)EN(7,00,02)
< sup{ sup IN“'Urpw (0,02, 7(p)) —]E[M(¢9,02)H}
P (u,0,02)EN(7,60,03)

=0

Paralell result holds also for o?: N'S, ;pw (02, %) = E [Se(0?)] + 0p(1) uniformly in o2,
Then the consistency of 8 py () and 62y (7) follows from Theorem 5.9 in [van der Vaart)

1998].

ii) Asymptotic normality. This can be demonstrated in the same way as for é[PW T
ymp Y

in Theorem We only outline the key steps. Consider

UIPW(Ha 027 W(p))
U]PW<9,0'2,7T(P)) = SeJPW(O'Z,Tf(P))
SW,F(/))

By Taylor expansion, finally we have

>

) — 6o Eo[Mg] Eo[M,2] —Eo[MZ] o w050y Mi(00, 03)
2 ~ ~ . .
N2 62, (7) - of = - 0 Eo[Se]  —Eo[Se7] Vo z_; %S&i(o—g)

P — po 0 0 Eo[S] Sxi(po)

Orpw (
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+op(1)
This further implies that
N2 (Brpw (7) — 00 )
N

= —A_ \/NZ{R E(] {EOS S } Sﬂz PO)}+0p(1)

=1

with asymptotic variance A~ B*(A~1)T. O

2.7 AIPW conditional score estimator

The IPW estimator is easy to implement but could be unstable with sampling probabilities
close to zero. Also in above sections we assume the sampling model is correctly specified,
but if it is not, the IPW estimator is biased. In Section we also show that using estimated
sampling probabilities for IPW estimators can improve the efficiency, but still do not achieve
the minimal variance bound, which is achieved by ATPW estimator with correct model of

full data given O.

The AIPW estimator has the property of double robustness. That is as long as either
the sampling probability model for 7(O;p) or E[M(6)|0] in .. is correct, then the

estimating equations are unbiased for 6.

pU(9),£]0) _ p(£lU(6), 0)p(U(6)|0)

pUO)IE0) === 50y ~ p(£]0)

=p(U(0)|0)

Since in practice it is hard to derive the correct form of E[M(6)|O], we need to estimate it
as close as possible the truth. Given the MAR assumption in (2.4)), we have E[M(0)|¢ =
1,0] = E[M(6)|O]. Therefore we could build a model to estimate it based on using complete
data. In following sections, we first develop the AIPW conditional score estimator and its
asymptotic properties assuming 7 and EHO] are fully and correctly specified. Then we

move on to the situations where either or both of them are estimated.
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2.7.1 Prespecified sampling probabilities and E[-|O]

We start with the simplest case where 7 and E[-|O] are fully and correctly specified and
no unknown parameters are involved. Similar as in [Qi et al., 2005] we define the AIPW

conditional score estimating functions for 6 in the form of

Uava(9, 0%, 7, E)

(1)
ZS / { (u,8,0%) — EAUG(U’G’GQ’W)}CZNZ*(U)

0
EI(L‘L),G(U7 0,02, )

+Z <1 - ) /O {E {Hi(u,H,az)dNi(u)]Oi} . E%;JG(“’H’“Z’”)E [dNi(u)\Oi]}

E%UG(U, 0,02, )

(2.29)

where for r =0, 1,

N
EX()]G(U 0,0%, ) Z fTi l- (u,6,0%) + %Z (1 — &> |:Y7,(U)EZ.(T)(’LL,‘9,O'2)’O7L:|

T
i=1 i=1 ¢

Note here unlike in the partial likelihood for the classic Cox regression, we define the at
risk process as Y;(u) = I(V; > w, J;(u) > ¢) which contains the incomplete data of mea-
surement time-points. Therefore even if the event time information is included in O;,
we still need to leave it inside the expectation. The estimate éAUg(ﬂ‘,E) for 6 solves

Uavc(0,6%c(m, E), 7, E) = 0, with 6%;,5(m, E) solves

Se.avalo?, . E) = Z(&) +Z(1—) Sea(@)IO] =0 (230)

e
i=1 v
Define

Mave,i(0,0%m) = &M(Ga) (1—&> [Mi(9,02)|éi (2.31)

i Uy

Apparently E[Maya(0,02,7)] = E[M(6,0?)]. We will demonstrate that under the follow-
ing regularity conditions in additional to those in Assumption A, N~ 'Uspg (0, 0%, 7, E) is

asymptotically equivalent to N ! Ef\il (&/mi) Mavc.i(0,0% 7). The latter is a sum of i.i.d.
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random variates on which the empirical theories are readily applied.
Assumption B
B1. The conditional expectations E[-|O] involved in have bounded variation.
B2. Varg[Mapyg] is finite and positive definite. E [M Auc) exists and is invertible.
B3. E [Sup(&(f?)e/\/'(%,ag) ‘MAUg(9,02)H < 00,
E [sup(9702)€/\/(907a(2)) ‘MAyg(G,JQ)MAyg(G,JQ)T‘] < 0o, and
MAUg(Q,Uz)H < 0.

E [Sup(e,a2)ej\/(90,ag)
Lemma 2.7.1. Under conditions A and B, as N — oo,

ES[)]G(U,Q,O'Q,TF) e(l)(u,H,UQ)

P
-0
EQI)JG(U,Q,OQ,TF) e (u,6,02?)

sup
(u’9702)€N(T’90 70(2))

Proof. By Lemma [2.6.1] it is sufficient to show that for r = 0,1

sup )EAUG(U 0,0%, 1) — EED)W(U,@,O'Q,TF)‘ 20

(u,0,02)EN(7,00,02)

Actually

N
B (. 60,0%7) = By (1,0,0% 7) = ]1VZ<1‘)E[E<U>E§”<MU>1 ]

uniformly in (u, 67, 02)T. O

Lemma 2.7.2. Under conditions A and B, N_I/QUAUG(H(), 0(2), m, E) is asymptotically equiv-

alent to a sum of i.i.d. mean zero random variates

N
N"2Uapa(bo, 05,7 E) = N2 " Mave,i(6o, 05, 7) + 0p(1)
=1

Proof. We actually can replace dN;(u) in Uapg(0, 02,7, E) (2.29) with dD;(u) = dN;(u) —
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)\o(u)Ei(O) (u, 6, 0?)du. Moreover, we further rewrite N~'/2U (6, 0%, 7, E) as

fz ( ) u, 0,0
1/2UAUG(9 g ,T, E 1/22 ﬂ-l/ {HT u, 9 g ) W dDz('U/)
=1

N2 ZN: <1 _ i) /0 {]E [HT (,0,0%)aDi() 0} - W(u.6,0%) [4D(u)[0] }

e (u,0,0%)

- {E;zgw S e | {7 fann|
0 E;&G(UQO',W) e (u,0,0?) i=1 T l
[ (Bt wsenl (o (€Y o))
0 E‘S{O&G(UQO' ) e (u,0,0?) i=1 T
= YV2Mavci(0,0%, ) — N7V2Uny(0,0%, 1) — N~12Uns(0, 0%, 7) (2:32)

We shall show that N~Y2Unz (0o, 03, 7) = 0,(1) and N~2Upn3(60,02,7) = 0,(1) as

N — oo. Let dD,i(u) = dN;(u) — )\O(u)Yi(u)EZ-(O) (u, 09, 03)du. Actually by Lemma [2.5.1
and the Double Expectation Theorem,

[& dDo.(u )} —E [dNi(u) - Ao(u)E§0)(u,90,ag)du] =0
E [(1 - €z> E [dDo,i(u)@H —E [0 x E [dDO,Z-(u)@” ~0
ur
The Proposition A.1 in [Kulich and Lin} 2004] implies that N=1/2 3N (¢ /m;)d Dy ;(u) and
N2y N (1 - ¢&/m)E [dDO,i(u)\Oi} converge weakly in [*°[0, 7] to a mean-zero Gaussian

process uniformly in u. Then we have N ~Y/2Uxs (0o, 02, 7) = 0p(1) and N~V2Un3(80, 03, 71) =

0p(1) from Lemma and Lemma 4.2 in [Kosorok, |2008|. Thus

N
N2Uavc(fo, 05,7, E) = N~ " Maya,i(0o, 05, 7) + 0p(1)
i=1

Theorem 2.7.3. Under conditions A1-A8, B1-B4, as N — oo, (1) éAUG(ﬂ',E) 2 6y; and

(ii) VN <éAUg(F,E) — 00) converges weakly to a Normal random variate with mean zero
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and covariance A~1C(A™NT | where

. 1— - -
A=Eg[My] C=B—Eg|—Eo[R|O]E[R|O]”

Proof. (i) Consistency. Consider the form of Uayg(f, 0%, m,E) given in (2.32)) in the proof
of Lemma [2.7.2]

N
N'Uapa(0,0%,mE) = N> Mave,i(0,0°,7) = N~ 'Una(0,0%, 7) = N~ 'Uns(0, 07, 7)
i=1
We shall show that N~1Upns(0,0%,7) = 0,(1) and N~ Up3(0, 0%, 7) = 0,(1) uniformly in
(07, 0%)T. Actually the former comes from Lemma and

o

sup
(6,02)EN (00,02)

N

S5 [ an
"

Z\H

3

(2

N
1 & / (0) 2
= sup <2 (u) = Ao(w)Yi(u)E;™ (u, 0, 07)du
(9,02)6/\/(00,00 N ; i Jo }
clily S / Ao (W)Y () B (1,0, 0%)du
0 N = i (9.52)eN(00,02) J0
_ 1 E© 2
= —+E sup )\0 E; 7 (u,0,0%)du| + op(1) < 0o
0 (0,02)eN( 90,00

Similarly N=1Un3(6, 02, 7) = 0,(1) uniformly in (67, 02)T because

1§:<15>/ E [dD;(u)|0]
NS T/ Jo Z l
1\ 1 & T ©
0 2\(10).
<1+6>N;(9702>§A1290703>/0 {H)‘O(U)E [E (w,6,0 )‘O’]}d“

0/ |0.02)eN(0.02) 0

Thus N~ 'Uapg(0,0%,7,E) = N~} Zf\il Mavygi(0,02,7) + 0,(1) uniformly in (87,0%)7.

sup
(6,02)eN (60,03)

IN

+0p(1) < o0
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On the other hand

N

NN Mapgi(0,0°7) = E[Maya(0,0°,m)] + op(1)
=1

= E [M(9702)] +0p(1)

uniformly in (#7, 02)”. For any consistent estimator 62 EN 02, wehave N Uy (0,62, 7, E) =
E [M(6,03)] + 0p(1). By assumption A6 and Theorem 5.9 in [van der Vaart, [1998] it yields
the consistency that 647¢(m, E) 5 6.

(ii) Asymptotic normality. This can be proved in the same way as that in Theorem

We only outline the key steps. Consider

UAUG(97 0-25 T, ]E)

UAUG(97 0-27 7T) -
Se,AUG(U27 T, E)

Then @\(;;(éAUg(ﬂ', E),62(), ) = 0. By Taylor expansion, finally we have

-1

N bava(mE)—60\  (Eo[My] Eo[M,] iv: Mavg (6o, 03, ) (1)
= . »
6%(m) — oo 0 Eo[Se] \ﬁ Se,avc,i(of)
Therefore
VN (GAUG (m,E) 90)
1 al -1
_ = 1 ; S (52
=~ (Bon]y {Mavies(00,03,m) ~ Blita] {BalSi1} ' Sevealad) | + oyl
1 al ¢
- = 1 _ 3 10
= g (o o S (1 2 BRI} o)
Thus the asymptotic variance of O ¢(m, E) is A~1C(A~ T, O

2.7.2 Estimated sampling probabilities, prespecified ]E[|O]

The results in this section are parallel to that in Section [2.6.2]
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Lemma 2.7.4. Under conditions A and B, as N — oo,

ES[)]G(U,Q,O'Z,ﬁ) e(l)(u,0,02) »

- =0, r=0,1
E’f()]G(u,H,J{fr) e©(u,0,0?)

sup
(U,0,02)€N(T,00 70(2))

Theorem 2.7.5. Under conditions A and B, as N — oo, (i) Oava(#,E) 2 0y; and (ii)
VN (éAU(;(fT,E) — 00> converges weakly to a Normal random variate with mean zero and

covariance AV B(A™Y)T, with A,C defined in Theorem .

Proof. (i) Consistency. See the proof for Theorem m
(ii) Asymptotic normality. This can be proved in the same way as that in Theorem

We only outline the key steps. Consider

UAUG(97 0-25 W(p)v E)
UAUG(H’ 027 W(p)v ]E) = Se,AUG<U27 7'('(/)), E)
Sx(p)

By Taylor expansion, finally we have

1/2 R .
NY UiUG(WaE) —03

p—po
. . _1
Eo[My] Eo[M,2] 0 v [ Mave,i(0o. o5, 7(po))
. 1
= - 0 Eo[Se] 0 X —= Z Se,avc,i(05,m(po)) | +op(1)
. \/N =1
0 0 Eo[Sx] Sx.i(po)

This implies that 0 Avc(7,E) is asymptotically equivalent to 0 Ava(m, E), with asymptotic
variance A~'C(A~1)T. O

Theorem [2.7.5| indicates that when the augmentation terms in the AIPW formula are
fully specified by the correct conditional expectation given O, using the estimated sampling
probabilies 7 to make inference does not further improve the efficiency compared to using

the prespeficied probabilities.
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2.7.3 Prespeficied sampling probabilities, estimated E[-|O]

In reality it is hard to derive the analytical form of E[-|O]. Commonly used way is to replace
it with a function h(O,~) in terms of finite parameter . However, when h(O;~) # E[-|O]
for any -« the resulting estimate cannot achieve the optimal asymptotic variance given in

Theorem and Theorem [Cao et al., [2009] investigated the optimal way to find

~ which can finally lead to an estiamte of 6 having the minimal variance with h fixed.

Qi et al. 2005] investigated the AIPW estimator for the Cox regression with time-
independent covariates. They proposed to estimate the E[-|O] by nonparametric Nadaraya-
Watson method, and proved that the optimal asymptotic variance can be achieved. In our
model, we are however dealing with a more complicated case with time-dependent covariate.

So we need to extend their method to our setting.

The expression of estimating scores in (2.29) tells that we need to estimate E[G(u, 8, 02)|O]
as a continuous function of v and integrate it over u, where G (u, 8, o) could be Y (u) E™) (u, 6, 62),
dN(u) or H(u,0,0?)dN(u). Suppose the predictor variables O are d continuous variables,

we estimate it via the non-parametric Nadaraya-Watson estimator, i.e. for any random

variate g(u, 0;0,02) = E[G(u,@,(f?)lé],

- L 206G(u,0.0°) KR (0 - 0))
SN &KR(0 - 0y)

(2.33)

where Kp(-) is a s—th order kernel function and H is the bandwidth which is a d x d
symmetric and positive definite matrix. If any component of O is discrete, we consider the
kernel regression with mixed types of predictor variables [Hall et al., [2004]. As the “band-
width” of the kernel function for the discrete variable goes to zero, the estimator reduces to
the kernel estimator with respect to the continuous components within each stratum defined
by the discrete variable. The resulting estimating equations for @ is Uayg(0, 02, 7, E) =0
where replacing E in with E given by .

However, intuitively such estimation relies on strong assumption on the functional form
on u. By examining the two stochastic processes involving dN(u) mentioned above, we find

that they are always zero for time u if there is no event occurring at that time. This implies
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practically, the estimates of their conditional expectations given O at non-event time points
are zero. So we only need to estimate them at event time points. Alternatively, if O include

the event time (V, A), then conditioning on it we have Uaya(6, 02, 7, E) reduced to

UAUG(97027 7-‘_7IAE>
N T (1) 2
% E 79a ;
= g/ {Hz(U; 0,0%) — A’(%I)JG(U o) } dN;(u)
T i Jo Eyba(u,0,0% )

1=

N T F(1) 2
. 3 E 9 _
+Z (1 - §Z> / 9" (u,0i;0,0%) — A’?O()]G(u’ d 77T)f]‘](u,Oi;O,aQ) dN} (u)
=1 i 0 EAUG(ua 970-2777)
(2.34)
where Y*(u) = I(V; > u), dN}(u) = I[(V; = u,A; = 1) and for r = 0,1
(r) 1 ¢ (r) 1 & ¢

A (r 9 . iy r 2 ¢ * (AT .. 2
Bapg(w,0,0%m) = & ; 7Yz(u)E¢ (v,0,0%) + & ; <1 - m) Vi (w)g" (u, 03 0,07)

GJ(u,9,02) = I(J(u) >q), gJ(u,O;9,02) = E[GJ(U,H,UQ)\O]
GH(u,0,0%) = I(J(u) > q)H(u,0,0?), gH(u,O;G,UQ) = E[GQ(u,9,02)|O]
(J(

G (u,0,0%) = I(J(u)>q)ET(u,0,0%), ¢ (u,0;0,0%) =E[G")(u,0,0%)|0]

2 can be estimated by solving Se7AU(;(U2, T, E)

Similarly, the variance of measurement error o
= 0 defined in the same manner. The corresponding estimators are denoted by 6 ava(T, I@)
and 5’%UG(7T, I@) We need additional regularity conditions to validate the consistency and
asymptotic normality of 6 ava(m, E) We need additional assumptions. The boundary is uni-

form with respect to u, 6, o%. We also use G(u, 0, 02) to stand for any of Y (u)E") (u, 0, 02),
dN (u) and H(u,6,0%)dN (u) that need evaluation in the augmentation terms.
Assumption C
C1. The order of the kernel function (the first non-zero moment) is s.
C2. Nh?? = o0 and Nh?* — 0 as N — co.
C3. The marginal probability density function of O and the conditional probability density
function of O given & are bounded away from zero. They also have s continuous and

bounded partial derivatives with respect to the continuous components of 0.
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C4. The conditional expectation E[G (u, 8, 5%)|0] in (2.29) have s continuous and uniformly
bounded partial derivatives with respect to the continuous components of O.

C5. The conditional variance of Var[G(u, 6, 2)|0] is uniformly bounded.
Lemma 2.7.6. Under conditions A, B and C, as N — oo,

sup ES[)]G(U 0,02, ) B eW(u,0,0%)| p
(u,0,02)EN(1,00,02) EI(M)]G(U 0, o2 7T) e(o)(u70>02)

PTOOf' Let Gz = Gl(u7 970-2) = le(u)Ez(O) (U, 970-2)7 gi = gz(u7 Ola 95 02) = E[Gl(ua 07 02)|Oi]a

and

- Y 6G(u,0,01)Ku (0 - 0;)
SN KR (0; — 0;)

U

N
~ 1 : " )
E’(L?[)]G(u’g’aj’ﬂ-) = EI(;][)]G(U,Q, 0'2,7'(') + N Z <1 B §> (gz( ) _gz( )>
i=1

Then by Lemma [2.7.1) we only need to prove the second term converges in probability to

zero uniformly. The second term is

_ li < Z) S &G — 9t Ku(0; — 0))
N

Zj’vﬂ &K (0; — O;)

=1

In Appendix I we show that E[Ay] = 0 and Var[Ax] = o0,(1) uniformly in (u,67,02)T.

Therefore Ay = 0,(1) uniformly in (u, 87, 02)T. The proof for r = 1 is similar. O

Theorem 2.7.7. Under conditions A, B and C, as N — oo, (i) Oapa(m,E) 2 0o; and (i)
VN <éAUg(W,E) — 90) converges weakly to a Normal random variate with mean zero and

covariance A~YC(A™Y)T, where A and C are defined in Theorem .

Proof. Since ([2.33)) is a linear operator, UAUg(Q,UQ,W,E) in (2.34) can be rewritten with
dN;(u) replaced by dD;(u) everywhere. We can further rewrite this as

— T e (u,0,0?)

X T )
UAUG(9>O-257T7E) = Z 61/0 {Hi(uaeao]) - el(u’m} le(’U,)
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+§; <1 - W) /OT {E | Hi(u, 0,0%)dDy(w)| 0] - Z(;)EZZZE)E[ ( )|0}}
() w, 0,0, 7 eM(u, 0,02 N :

_/0 { AE)EZEU,Z,O'Q,W; el )Eu,z,a ;} ; éldDZ(u)}
N N ) 2

+; <1 - m)/o {E [Hi(u 0,0 )dDz(U)IOZ} -E [Hl(u,e,a )dDZ(u)|OZ}}
= i (B u, 0,02, ) A

_; (1 - ﬂi) 0 {§§52Eu79,02,ﬂ;E {Hz(u,9,02)dDz(u)]OZ} —

N
= ZMAUG,i(Hv 02>7T) - UN2(9a 0277T) +

=1

(«90 ,TT) — UN4(9,J2,7T)

(i) Consistency. We show that N 1Un2(0, 02, ) = 0,(1), N~ 1Un3(0,02,7) = 0,(1) and
N=1Un4(0,02%,7) = 0p(1) uniformly in (§7,0%)T. Actually, N~1Un2(0, 02, ) converging
in probability to zero uniformly follows from Lemma [2.7.6] and the similar arguments in
Theorem For N~'Up3(0,0% m) = 0p(1), we can show it in a spirit similar to the
proof of Lemma And N~'Un4(0,02, ) can be rewritten as

r (1) 2 N

E ' " )

s iz (1-2) (& [mtwo.oham10] -
0 E) (u,9,02 N e

UG

st 010 )

(W) u,0,0%, 1) eW(u, 0,0 N i )
g {gﬁiiu?a ﬁiwéuzai}{&m <>[}}

which also converges to zero in probability uniformly in (67, 02)". Thus N~'Uapq(6, 0%, 7, E)

Nt Ef\il Mavygi(0,02, 7)+0p(1) uniformly in (67, 02). This implies that Oavc(m,B) B
0y as N — oo.
(ii) Asymptotic normality. Note O,(y/h? + (Nh?)=2) = o0,(1). Therefore by using
the Lemma 1 and Lemma 2 in [Wang and Wang, 2001, we have N_I/QUNQ,(@(),O'%,?T) =
op(1). For N’1/2UN2(00, o3,), the Proposition A.1 in |[Kulich and Lin, 2004] implies that

—1/2 Efi 1(&/mi)dD;(u) converges weakly in 1°°[0, 7] to a mean-zero Gaussian process at
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6. Thus together with Lemma and Lemma 4.2 in [Kosorok, 2008], N~Y2Un3 (6o, 02, 7) =
0p(1). The convergence in probability to zero of N~Y2Uny4(6,03,7) follows similarly.

Therefore

N
N_l/ZUAUg((g(), 0(2), T, E) = N_1/2 Z MAUG,i(e()’ 0(2), 7T) + Op(l)
i=1

which is also asymptotically equivalent to N -2y AUg(Ho,ag,w,E). Thus the asymptotic

variance of Oapa(m, ) is still A=1C(A~1)T. O

2.7.4  Estimated sampling probabilities, estimated E[-|O]

When the sampling probabilities are estimated via (2.11]), parallel results hold as those in
Section We estimate 6 and o2 by solving Uayg (6, 02,7, E) = 0 and S avg(o?, 71, E) =
0. The obtained estimates are denoted as § 4y (7, E) and Aualf, ). We have the following

Theorem.

Theorem 2.7.8. Under conditions A, B, and C, as N — oo, (i) Oavc(7,B) 2 0o; and (ii)
VN <éAUg(ﬁ,I@l) — 90) converges weakly to a Normal random variate with mean zero and

covariance A~YC(A T, where A and C are defined in Theorem .

Proof. The proof is similar to that of Theorem [2.7.5[ and Theorem ]

2.7.5 Appendiz 1

Proof. For simplicity, we only show the proof when predictor variables O are all continuous
variables and when the bandwidth matrix H is diagonal with all diagonal elements equal

to h. Let

1 I -
71(0) = 573 > &Ku(6-0;)
Jj=1

dij = <1 _ fi) &(Gj — g)Ku(0; — Oj)
' p1(0;)

Uy

Then by the proof in Appendix of [Wang and Wang, [2001] we have Ay = An1+0,(h%* +
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1 al A\ & DK (0; —
Am:mzzQ_i)&( 5%)91(1{() N2hdZde

=1 j=1

Let All; denote all variables observed for subject j, i.e. All; = {A;,V}, Zj, &, EWj, §jij}.
Note that E[G4]O;] = g;. By direct calculation

E[dij]:E{fﬂ(Gj‘izfg;Oi‘éj)E[(l—5’) AlL;, 0 ]}zo, i

st-e (2] 2520

Therefore E[A;n] = 0. Now we look at E[A1xyATy]. Let 4, j,k,1 be four distinct integers.

Then

E[AinATy] = 7N41h2d D didii 42> 0 dudip +2> 0 digdi +2) Y 0> diidgy
% 7 J 7 J % 7 k
DI IIIIEE) 3 SLIIED ) ) IHIED 3 L7
% 7 k A i k 7 7 k % 7

N didi 0D didi+ Y D >N dijdkl} (2.35)
TR P ik

Note that for any function f(6) has s continuous and bounded partial derivative with

respect to the continuous components, since the order of the kernel is s, we have

/KH(z—x)f(z)dz:/K(u)f(a:+hu)du:f( )+ f /K u’du + o(h®)
[ K- a5 = g [ K@+ hudu= @) [ K2@dut ;000

We will use these two expressions repeatedly to show that E[A;xATy] = 0,(1) uniformly in

(u,07,02)T. We examine each of the sums in ([2.35)).
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1 B 1 &i 5 (Gi gi)2K2(0)
N 2 Bldidi] = (1- 7r> 200 ]
B L o (1—m)?(G1 — g1)?K?(0)
- N3pad 1 P2 (01)
1
= OP(W) = 0p(1)

1
N4p2d Z Z Z E[dijdik]

1 [ ' G — 9)(Gr — 9) K (0; — 0) K (0; — O
_ sz;E <1_€> 6, G1 = 9)(Gr — g0 H(A ) K ( k)

_ 1 (1 mi)mime (G — 9:)(Gr — 9) K (0; — 0;) K (O; — Oy,)
R 0,

1 —(1 — )T -~ =112

(N — 1)(N — Q)E[ PE [ 1—m

N3 h2d Wlp% (Ol)
N-—-1)(N -2 1—m - 2
= ( Ngégd )]E[T(' ]2E [ﬂ-lp%(oll) {E |:(gg - gl)KH(Ol 02)|O }}
= O = 0,(1)

since E [(gg — gl)KH(Ol — Og)‘ol} = Op(hs).

1
N4h2d Z Z E[d’ﬁjd”] = N4h2d Z Z E
i

Y p}(O;
i m; (G 91)2K2(~1_ N])
- N4h2dZZE[ p?(gz)
T3 )T 5 G; ¢2K2 OZ—O
- N4h2dzzE{E =)
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1

N253a (Op(1) + Op(h)) = 0p(1)

1
~gaa O D Bldijds]
]
= @ZZE (1 — i’) <1 _ iﬂ) 123 (Gj — 9:)(Gi — g;))K%(0; — O;)
7 j i j

1
=  N4p2d ZZE
i

p1(0:)p1(0;)

1-m)(1-m

o (95 = 9)* K31 (01 = 05) 5
= WZZE{E [(1_7”)(1_7”) (G (0) 'Oj}
— N%W(op(l)jLOp(h)):op(l)

The rest terms in ([2.35)) are zero by noting that E[G; —g;|O;] = 0 and E[1—&;/m;] = 0. So
combining all results above we have shown that Var[A;n] = o0p(1). Also by Assumption C
the O, and o, above are all uniform in u, 6, o2. Therefore it follows the uniform convergence

in probability of Ay to zero.
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Chapter 3

SIMULATION STUDIES FOR JOINT MODELING WITH
CONTINUOUS BIOMARKERS

In this chapter, we evaluate the method developed in Chapter 2 via simulation studies.
The event time data (A,V) are generated from Cox proportional hazards models with
different combinations of the time-varying biomarker and vaccination indicator. We carry
out 500 simulation runs for each scenario. Our primary goal is to evaluate the IPW and
ATPW conditional score methods in two-phase sampling design cohort studies. For the
purpose of comparison, we also calculate the conditional score estimator based on full cohort
data (Full), the unobtainable benchmark in real vaccine trail studies, and conduct the naive
complete-case (CC) analysis using only subjects being selected in the second phase and

without any weighting.

We conduct mainly three simulation studies. Simulation Study I studies the Cox model
with only one immune biomarker as the covariate. It is aimed to compare the IPW and
AIPW estimators using various sets of auxiliary variables to estimate the augmentation
terms. Simulation Study II considers the Cox model with both the immune biomarker
variable and the vaccination indicator as covariates. We study the impact of the number
of measurements and misspecified measurement error models on the performance of the
proposed methods. Simulation Study III demonstrates the performance on the Cox model
with immune biomarker and vaccination interaction term. All IPW and AIPW methods are
implemented using both the pre-specified true sampling probabilities (7) and the estimated
sampling probabilities (7). In all simulation studies, we summarize the bias, Monte Carlo
standard deviation (SD) and the average of estimated standard errors (ASE) for obtained

estimates.
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3.1 Simulation Study I

3.1.1 Data generation

We first consider the model with only one time-varying biomarker A(u) = Ao(u) exp{8X (u)},
where the time-varying immune biomarker process X (u) is characterized by a linear random
effects model X (u) = ap + aju. We simulate X (u) to imitate the log;; CD4 cell counts in
ACTG 175 study as described in [Song et al.,|2002]. The random effects (ag, 1)’ are gener-
ated from a bivariate Normal distribution with E(a) = (2.5915, —0.00315)7, and Cov(a) =
D with elements (D11, D12, Da2)T = (0.02408, —0.0008, 0.000014)”. The variance of mea-
surement error e is 02 = 0.01. It represents a noise-to-signal ratio of Var(e)/Var(X(0)) ~
42%, which is approximately the same to that in the ACTG 175 data. The scheduled time
points for a visit to measure X (u) are at baseline and within a series of time windows: 2, 4,
8, 20, 32, 44, 56, 68, 80 £0.5. The event time data are generated from the Cox model with
hazard ratios e = {1,0.5,0.25}. The censoring time follows the exponential distribution
Exp(1/180) and is subject to an administrative censoring at u = 85. We chose the baseline
hazards to yield an event rate of around 10%. Specifically, the proportions of subjects drop-
ping off the study during the follow-up and completing the study free of events are (35.5%,
54.1%), (36.0%, 54.0%) and (36.2%, 53.3%) when the hazard ratios are 1, 0.5 and 0.25, re-
spectively. This high censoring rate reflects an HIV-1 vaccine efficacy trial where a typical
infection rate is about 10%. The average number of immune biomarker measurements per
subject is around 8.

The sample size for the full cohort data is N = 1500. The phase II sample is taken from

the full cohort data from the case-control sampling (S1):
(S1): P(é=1A=1)=1, P(¢=1|A=0)=0.33

This results in around 60% missingness. Table [3.1 shows the average sample sizes for Phase
I and Phase IT samples.
For the AIPW method, we evaluate several sets of predictor variables which serve to es-

timate the augmentation terms in the non-parametric kernel regression (Nadaraya-Watson).
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Table 3.1: The sample size for Phase I (V) and Phase II (n) sample under case-control
sampling (S1) for Simulation Study I.

Case (A =1) Control (A =0)

B N(n) N(n)

0 156 (156) 1344 (443)
~In2 151 (151) 1349 (445)
—Ind4 158 (158) 1342 (443)

We generate three sets of auxiliary variables A = (A1, A2)” with null, moderate, and strong
correlation with the immune biomarker values. The correlation is quantified by R?. Specifi-
cally, we consider three sets of correlations with R? = {0,0.5,0.95}. For R? = 0, A is gener-
ated independently from o and (A, V), from A1 ~ N(E(aq),1) and Az ~ N(E(a;+4002),1).
For R? = 0.5,0.95, A1 = a1 +e1, Ay = a1 +40as +ez, e; ~ N(0,d?), ea ~ N(ay+40aq, d3),
with

1 1
d} = (—; — 1)Var(ay), d3 = (? — 1)Var(ag + 40a3)

3.1.2 Methods

In this simulation study, the goal is to evaluate and compare different methods in making
inference on the regression coefficient g: Full, CC, IPW and AIPW. We are particularly
interested to do extensive exploration on the AIPW method. Specifically, eleven sets of
predictor variables are used in the kernel regression: A, (A, V), A, (A, A) and (A, V, A). For
each set of variables including A, there are also three choices for A with R? = 0,0.5,0.95 as
described above. By comparing these eleven AIPW estimators, we look in how the predictor

variables in the augmentation terms influence the performance of the ATIPW method.

3.1.3 Results

From Table we see that the results based on pre-specified sampling probabilities (7) and
estimated sampling probabilities (7) are very similar. In Figure we plot the biases, 95%

coverage probabilities and the relative efficiencies (calculated as the Monte Carlo variance
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of 3 compared to that from Full). We only show the estimates obtained using m. The x
axis lists the methods we are comparing with. The variables enclosed in the parentheses
of AIPW() indicate which variables are used in estimating the augmentation terms. The
numbers enclosed in the parentheses of AIPW() indicate which set of auxiliary variables A
(corresponding to R? = 0,0.5,0.95) are used in AIPW(A), AIPW(A, A) or AIPW(A,V, A).

As expected the CC analysis generates very biased estimates when the 3 is large. We
observe slightly large biases for AIPW(A,V, A) estimators when 8 = —In4, even though
the theory of double robustness guarantees its consistency as the sampling probabilities
are correctly specified. This suggests a concern in terms of bias when including too many
variables in the non-parametric kernel method. Actually we can see from the plot of relative
efficiency that, as long as we include strong predictor A, adding additional variables A or
V' does not help to improve the efficiency. Also, if we cannot find auxiliary variables that
are highly correlated with the immune biomarker, we suggest just using IPW or AIPW(A).
However, we hesitate to use AIPW(A), even though the figure shows that it is more efficient
than IPW and ATPW(A). Actually, the observed efficiency gain in this situation could be
just due to that A is continuous and has great variability. In additional simulation studies
with A being discrete or less variable, the efficiency gain disappears and even the efficiency
loss shows up (Table . When the auxiliary variables are highly correlated with the
X (u), including them and using AIPW method provides less variable estimates than other
methods, especially when X (u) has strong effect on the event time. The 95% coverage
probabilities are slightly below the nominal level when 5 = —In4, suggesting SE(B) is

underestimated by the sandwich variance estimation.

3.2 Simulation Study II

3.2.1 Data generation

We next consider the Cox model including both the immune biomarker and the vacci-
nation indicator A(u) = Ao(u)exp{SX(u) + nZ}. When there is variability of immune
response levels in the placebo arm, we can use this model to assess the Prentice’s sur-

rogate by examining if 7 is plausibly closed to zero (assuming no dual predictors for
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Table 3.2: Simulation results for Simulation Study I: A(u) = A\o(u) exp{SX (u)}

R?  Sampling 5=0 B=—In2 S =—1In4
Method Prob. Bias SD(B) ASE(3) Bias SD(3) ASE(8) Bias SD(8) ASE()
Full -0.012 0404 0404 -0.013 0.377  0.367 -0.007 0.354  0.330
CC -0.001 0.401 0.406  0.062 0.372 0.365  0.165 0.343 0.328
IPW ™ -0.001 0439 0446 -0.020 0.415 0.408  -0.020 0.402 0.383
ATIPW(A) ™ -0.001 0439 0446 -0.018 0.413 0.408  -0.009 0.395 0.382
ATPW(A,V) ™ -0.001 0440 0445 -0.017 0.413 0.407  -0.016 0.399 0.382
ATPW(A) 0 ™ -0.003 0439 0438 -0.004 0.407 0.400 0.020 0.388 0.372
ATPW(A,A) 0 ™ -0.006 0.441 0.437  -0.017 0.414 0.399 -0.016 0.402 0.373
AIPW(A, A, V) 0 7r -0.006  0.445 0.433  -0.020 0.419 0.397  -0.014 0.399 0.370
ATPW(A) 0.5 ™ -0.011  0.435 0.435 -0.012 0.401 0.398 -0.004 0.384  0.370
ATPW(A, A) 0.5 ™ -0.010 0437 0436 -0.013 0.401 0.398  -0.019 0.391 0.371
ATPW(A,A, V) 05 ™ -0.014 0.440 0.436 -0.020 0.405 0.397 -0.023 0.394  0.370
ATPW(A) 0.95 7r -0.010 0418 0419 -0.021 0.387 0381 -0.026 0.368 0.351
ATPW(A, A) 0.95 ™ -0.011 0419 0420 -0.023 0.389 0.382  -0.025 0.366 0.353
ATPW(A,A, V) 0.95 ™ -0.011 0428 0426 -0.031 0.395 0.387  -0.039 0.368 0.356
IPW i -0.001 0439 0446 -0.020 0.415 0.408 -0.021 0.402 0.383
ATIPW(A) fr -0.001 0439 0446 -0.017 0.412 0.408  -0.010 0.395 0.382
ATPW(A,V) i -0.001 0440 0445 -0.017 0.413 0.407 -0.017 0.397  0.382
ATPW(A) 0 fr -0.003 0439  0.438 -0.010 0411 0.400  0.018 0.386 0.372
AIPW(A,A) 0 w -0.006  0.442 0.438 -0.017 0.415 0.400 -0.017 0.401 0.373
AIPW(A,AV) 0 w -0.006  0.445 0.433  -0.020 0.419 0.397  -0.011 0.398 0.370
ATPW(A) 0.5 i -0.011  0.435 0.436  -0.013 0.401 0.398  -0.006 0.381 0.370
ATPW(A, A) 0.5 T -0.011 0437 0436 -0.013 0.401 0.398  -0.017 0.390 0.371
ATPW(A, A, V) 05 fr -0.014 0440 0.436 -0.020 0.405 0.397  -0.024 0.395 0.371
AIPW(A) 0.95 w -0.010 0418 0419 -0.021 0.387  0.381 -0.025 0.367  0.351
ATPW(A, A) 0.95 w -0.011 0419 0420 -0.024 0.389 0.382  -0.030 0.368 0.353
ATPW(A,A, V) 0.95 T -0.011 0428 0426 -0.031 0.395 0.387  -0.039 0.370 0.356

[1] w: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. #: The IPW and AIPW
methods are implemented using estimated sampling probabilities.

[2] R? quantifies the correlation of A and X (u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is OA75N71/3sd(P)A
[4] The sampling probability model is 7(A) = A 4+ 0.33(1 — A).
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Figure 3.1: Simulation results for Simulation Study I: A(u) = Ao(u) exp{SX (u)}. The IPW
and ATPW estimates are based on pre-specified true sampling probabilities 7.
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Table 3.3: Simulation results of AIPW(A) for Simulation Study I, with different sets of
auxiliary variables.

R? Sampling 6=0 B=—In2 S =—1In4
Method Prob. Bias SD(8) ASE(3) Bias SD(B) ASE(3) Bias SD(3) ASE()
IPW T -0.001 0439 0446 -0.020 0.415 0408 -0.020 0.402  0.383
ATPW(A) T -0.001 0439 0446 -0.018 0.413 0408 -0.009 0.395  0.382
AIPW(A) 0 # -0.003 0439 0438 -0.004 0407 0400  0.020 0.388  0.372
AIPW(A*) 0 T 0.001 0434 0444 -0.014 0411 0406 -0.002 0.394  0.380
AIPW(A) 0 T 0.000 0438 0445 -0.014 0412 0407 -0.011 0.400  0.381
IPW 7 -0.001 0439 0446 -0.020 0.415 0408 -0.021 0.402  0.383
ATPW(A) ﬁ' -0.001 0439 0446 -0.017 0412 0408 -0.010 0.395  0.382
AIPW(A) 0 # -0.003 0439 0438 -0.010 0411 0400 0.018 0.386  0.372
AIPW(A*) 0 # 0.001 0434 0444 -0.014 0411  0.407 -0.005 0.395  0.381
AIPW(A) 0 # 0.000 0.438 0445 -0.015 0412 0407 -0.013 0.402  0.382

[1] A= (A, A5)T are generated independently from « and (A, V): A1 ~ N(E(a1),1) and Ay ~ N(E(aq4+40a3),1) (See Table
[2] A* = (A7, A;)T: A; is discrete variable generated based on quartiles of Aj, j = 1,2.
[3] A= (Al,Ag)T are generated independently from o« and (A, V): Ay~ N (E(a1),0.01) and Ay ~ N (E(aq + 40a2), 0.01)

X(u) and T). The time-varying immune biomarker process X (u) is still characterized
by a linear random effects model X(u) = oy + aju, and Z ~ Bernoulli(0.5) is the
1:1 treatment arm assignment with Z = 1 for vaccine and Z = 0 for placebo. The
random effects o are simulated from bivariate Normal distribution with E(a|Z = 0) =
(2.5915, —0.00145)T, E(a|Z = 1) = (2.5915, —0.00315)7 and Cov(a|Z) = D with elements
(D11, D12, D22)T = (0.02408, —0.0008,0.000014)”. We consider two sets of hazard ratios
(e?,enT = {(0.5,1)T,(0.5,0.5)T}. The censoring time follows the exponential distribution

Exp(1/180) and is subject to an administrative censoring at u = 85.

In Simulation Study I, we have especially explored different AIPW estimators. In this
simulation study, we would also like to compare several AIPW estimators to IPW and Full
estimators in a similar setting as that in Simulation Study I. Beyond that however we also
aim to evaluate the influence of 1) the number of measuring time points; and 2) misspecified
measurement error model. We consider the following four scenarios in terms of different

measuring schedules or measurement error distributions.

1. Simulation Study II(a): The scheduled visits for measuring X (u) are at baseline and

within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 +0.5. Measurement
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error e ~ N(0,0.01).

2. Simulation Study II(b): The scheduled visits for measuring X (u) are at baseline and
within a series of time windows: 8, 44, 80 £0.5. Measurement error e ~ N(0,0.01).

3. Simulation Study II(c): The scheduled visits for measuring X (u) are at baseline and
within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 £0.5. Measurement
error e ~ Exp(10) — 0.1.

4. Simulation Study II(d): The scheduled visits for measuring X (u) are at baseline and
within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 £0.5. Measurement
error depends on the value of the immune biomarker: e ~ N(0,0.01) if X (u) > 2.5;
e ~ N(0,0.05) if X (u) < 2.5.

The conditional score estimator, though does not require any distributional assumption
on the random effects «, does assume the measurement errors are random and Normal.
Simulation Study II(a) is the setting with random Normal measurement errors as required
by the model assumptions. Also the visit schedule provides decent number of immune
biomarker measurements for the inferential analysis. Simulation Study II(b), compared to
Simulation Study II(a), reduces 60% of the number of available immune biomarker measure-
ments. [Tsiatis and Davidian, 2001 and [Song et al. [2002] conducted simulation studies
investigating different distributions for random effects and different levels of variance for
the measurement errors. Here we set up Simulation Study II(c) and Simulation Study II(d)
to assess the influence when the measurement error is not Normal or even worse, depends

on the biomarker values.

For all models, the proportions of subjects dropping off the study during the follow-up
and completing the study free of events are (35.9%, 53.7%) and (36.1%, 53.4%) when the
hazard ratios (¢?, e")T are (0.5,1)T, (0.5,0.5)7, respectively. The average number of immune
biomarker measurements per subject in Simulation Study II(a),(c), and (d) is around 8.3,
and in Simulation Study II(b) is around 3.3. For all studies, the full cohort data consists
of N = 1500 subjects, and the second phase sample is still taken by case-control sampling
(51) with sampling probabilities P(é = 1|A = 1) = 1 and P(¢ = 1|A = 0) = 0.33. Table[3.4]

shows the average sample sizes for Phase I and Phase II samples.
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Table 3.4: The sample size for Phase I (V) and Phase II (n) sample under case-control
sampling (S1) for simulation Simulation Study II(a).

Case (A =1) Control (A =0)

(—In2,0) 156 (156) 1344 (443)
(—~In2,—In2) 157 (157) 1343 (443)

3.2.2  Results for Simulation Study II(a)

Table summarizes the fitting for Simulation Study II(a). Still the results from using 7
and 7 are very similar so we only plot the results from using 7 in Figure Since Z is
always included to estimate the augmentation terms in AIPW estimators, the corresponding
estimates for 7 are almost as efficient as that from the full cohort data. On the other hand,
B from AIPW(A, Z) has slightly smaller variance than that from AIPW(A, Z, A) when A
is independent of X (u) and (A, V) (R? = 0). From Figure we still observe increasing
efficiency for 3 from AIPW(A, Z, A) when A has higher correlation with X (u). The coverage

probabilities are closed to the nominal value.

3.2.8 Results for Simulation Study II(b)

We now reduce the frequency to measure the immune biomarker and summarize the results
in Table The average number of measurements per subject is around 3.3. By direct
comparison of SD(f) in this table to that from Simulation Study II(a), we observe dramatic
reduction in the efficiency. Still the results from using 7w and 7 are very similar so we only plot
the results from using 7 in Figure There is a concern on the bias for AIPW estimators
with (8,7)7 = (=1n2,0). Also only adding A that has extremely strong correlation with
the biomarker in AIPW method can yield slightly efficiency gain. It suggests that when the
event time depends on the biomarker only, but only very limited number of measurements
are available for the biomarker variable, using more complex AIPW method can give poorer

results than using the simple IPW method. We also found in this simulation study that for

around 1%~2% of the runs the program failed.
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Table 3.5: Simulation results for Simulation Study II(a): A(u) = \o(u) exp{SX (u) +nZ}

R?  Samp. (8,m) = (=1n2,0) (B,m) =(=1In2,—In2)
Prob. B n B n
Method Bias SD ASE Bias SD ASE Bias SD ASE Bias SD ASE
Full 0.008 0.350 0.361 0.009 0.165 0.164 0.019 0.348 0.338 -0.000 0.178 0.171
CC 0.079 0.351 0.361 0.005 0.166 0.165 0.113 0.335 0.338 0.080 0.172 0.171
IPW ™ -0.002 0.395 0.405 0.008 0.188 0.185 0.023 0.384 0.385 -0.001 0.195 0.192
AIPW(A, Z) ™ -0.001 0.395 0.405 0.008 0.166 0.166 0.025 0.382 0.385 -0.000 0.181 0.173
AIPW(A, Z, A) 0 T -0.006 0.399 0.392 0.008 0.166 0.166 0.017 0.388 0.370 -0.001 0.182 0.173
AIPW(A,Z,A) 0.5 T -0.007 0.390 0.394 0.007 0.166 0.166 0.018 0.378 0.373 -0.000 0.181 0.173
AIPW(A,Z,A) 0.95 T -0.013  0.368 0.380 0.007 0.166 0.165 0.005 0.366 0.358 -0.002 0.179 0.172
IPW 7 -0.002 0.395 0.405 0.008 0.188 0.185 0.023 0.384 0.385 -0.001 0.195 0.192
AIPW(A, Z) 7 -0.002 0.395 0.405 0.008 0.166 0.166 0.025 0.382 0.385 -0.000 0.181 0.173
AIPW(A, Z, A) 0 T -0.006 0.399 0.392 0.008 0.166 0.166 0.017 0.388 0.370 -0.001 0.182 0.173
AIPW(A,Z,4) 05 7 -0.007 0.390 0.394 0.007 0.166 0.166 0.019 0.378 0.373 -0.000 0.181 0.173
AIPW(A,Z,A) 0.95 T -0.014 0.368 0.380 0.007 0.166 0.165 0.005 0.366 0.358 -0.002 0.179 0.172

[1] w: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. #: The IPW and AIPW
methods are implemented using estimated sampling probabilities.

[2] R? quantifies the correlation of A and X (u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0A75N71/33d(P)A
[4] The sampling probability model is 7(A) = A + 0.33(1 — A).

[5] The scheduled visits for measuring X (u) are at baseline and within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 £0.5.
[6]: Measurement error e ~ N(0,0.01).

Table 3.6: Simulation results for Simulation Study II(b): A(u) = Ao(u) exp{8X (u) +nZ}

R?  Samp. (B,m) =(—1n2,0) (Bym) =(—In2,—1In2)
Prob. 5 0 b {
Method Bias SD ASE Bias SD ASE Bias SD ASE  Bias SD ASE
Full -0.008 0.552 0.535 0.008 0.167 0.169 0.006 0.487 0.477 -0.001 0.180 0.174
CcC 0.058 0.570 0.548 0.003 0.169 0.170 0.098 0.477 0.480 0.078 0.174 0.175
IPW ™ -0.026 0.627 0.605 0.005 0.191 0.192 0.003 0.532 0.536 -0.003 0.198 0.197
AIPW(A, Z) m -0.062 0.640 0.606 0.003 0.171 0.174 -0.020 0.539 0.537 -0.004 0.184 0.179
AIPW(A, Z, A) 0 T -0.080 0.670 0.599 0.001 0.172 0.173 -0.022 0.536 0.523 -0.008 0.186 0.179
AIPW(A,Z,A) 0.5 m -0.067 0.638 0.600 0.002 0.171 0.174 -0.024 0.539 0.530 -0.006 0.185 0.178
AIPW(A,Z,A) 0.95 ™ -0.074 0.609 0.597 0.001 0.170 0.172 -0.038 0.534 0.520 -0.006 0.183 0.177
IPW T -0.026 0.627 0.605 0.005 0.191 0.192 0.003 0.532 0.536 -0.003 0.198 0.197
AIPW(A, Z) T -0.062 0.640 0.606 0.002 0.171 0.174 -0.020 0.539 0.537 -0.004 0.184 0.179
AIPW(A, Z, A) 0 T -0.080 0.670 0.599 0.001 0.172 0.173 -0.023 0.536 0.523 -0.008 0.186 0.179
AIPW(A,Z,A) 0.5 T -0.067 0.638 0.600 0.002 0.171 0.174 -0.025 0.539 0.530 -0.006 0.185 0.178
AIPW(A,Z,A) 0.95 T -0.072  0.609 0.596 0.001 0.170 0.172 -0.038 0.534 0.520 -0.006 0.183 0.177

[1] w: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. #: The IPW and AIPW
methods are implemented using estimated sampling probabilities.

[2] R? quantifies the correlation of A and X (u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N_1/3sd(P).
[4] The sampling probability model is 7(A) = A + 0.33(1 — A).

[56] The scheduled visits for measuring X (u) are at baseline and within a series of time windows: 8, 44, 80 £0.5.

[6]: Measurement error e ~ N(0,0.01).
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Figure 3.2: Simulation results for Simulation Study II(a): A(u) = Ao(u) exp{B8X (u) +nZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities 7.
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Figure 3.3: Simulation results for Simulation Study II(b): A(u) = Xo(u) exp{BX (u) +nZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities 7.
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3.2.4  Results for Simulation Study II(c)

Here we intend to assess the influences on the methods when the measurement errors are
not Normal. We simulate the measurement error e from Exp(10) — 0.1 so that it still has
E(e) = 0 and Var(e) = 0.01. However the density of e is no longer in a bell shape and has
heavy right tail. We compare the results showing in Table [3.7 and Figure [3.4] to those from
Simulation Study II(a). From the plot we see slightly large bias on $ for all methods, but not
on 7). This might be because Z does not involve any measurement errors. The 95% coverage
probabilities are very closed to the nominal level expect for the CC method. Similar patter
in the relative efficiency as in Simulation Study II(a) is observed here, suggesting unless
very strong predictors for the biomarker exist, using IPW method rather than the AIPW
method is recommended. The influence of misspecified measurement error seems to center

on the bias of B , but the level of bias is acceptable: with relative bias up to 7.4%.

Table 3.7: Simulation results for Simulation Study II(c): A(u) = Ao(u) exp{SX (u) +nZ}

R? Samp. (ﬁﬂ]) = (—1112,0) (ﬁvn) = (—1112,—1112)
Prob. B 7 B 7
Method Bias SD ASE Bias SD ASE Bias SD ASE  Bias SD ASE
Full -0.036 0.354 0.370 0.010 0.170 0.165 -0.023 0.345 0.344 -0.000 0.183 0.171
CcC 0.044 0.366 0.371 0.003 0.168 0.165 0.063 0.365 0.344 0.078 0.179 0.171
IPW T -0.041 0.409 0.416 0.006 0.189 0.186 -0.033  0.416 0.392 -0.003 0.202 0.193
AIPW(A, Z) T -0.040 0.409 0.416 0.010 0.172 0.167 -0.030  0.408 0.392 -0.002 0.185 0.174
AIPW(A, Z, A) 0 T -0.039 0.411 0.403 0.011 0.173 0.166 -0.040 0.425 0.378 -0.004 0.188 0.173
AIPW(A,Z,A) 0.5 T -0.047 0.403 0.405 0.010 0.174 0.166 -0.049 0.409 0.380 -0.005 0.187 0.173
AIPW(A,Z,A) 0.95 T -0.051 0.381 0.391 0.009 0.171 0.165 -0.048 0.379 0.365 -0.004 0.185 0.172
IPW T -0.041 0.409 0.416 0.006 0.189 0.186 -0.034 0.417 0.392 -0.003 0.202 0.193
AIPW(A, Z) T -0.040 0.409 0.416 0.010 0.172 0.167 -0.030 0.408 0.392 -0.002 0.185 0.174
AIPW(A, Z, A) 0 7 -0.039 0.411 0.403 0.011 0.173 0.166 -0.040 0.426 0.378 -0.004 0.188 0.173
AIPW(A,Z,A) 0.5 T -0.047 0.403 0.405 0.010 0.174 0.166 -0.049 0.409 0.380 -0.005 0.187 0.173
AIPW(A,Z,A) 0.95 7 -0.050 0.381 0.391 0.009 0.170 0.165 -0.046 0.378 0.365 -0.003 0.184 0.172

[1] w: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. #: The IPW and AIPW
methods are implemented using estimated sampling probabilities.

[2] R? quantifies the correlation of A and X (u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0475N71/35d(P).
[4] The sampling probability model is m(A) = A 4+ 0.33(1 — A).

[5] The scheduled visits for measuring X (u) are at baseline and within a series of time windows: 0, 2, 4, 8, 20, 32, 44, 56, 68, 80
+0.5.

[6]: Measurement error e ~ Exp(10) — 0.1.
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Figure 3.4: Simulation results for Simulation Study II(c): A(u) = Ao(u) exp{SX (u) +nZ}.

The IPW and AIPW estimates are based on pre-specified true sampling probabilities 7.
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3.2.5 Results for Simulation Study II(d)

We further look into the impact of misspecified measurement error model by considering
the situation where the measurement error depends on the level of underlying immune
biomarker: if the underlying biomarker level is greater than 2.5, ¢ ~ N(0,0.01); otherwise
e ~ N(0,0.05). This represents the case when the measured immune biomarker level is
more variable when its level is low. The results are shown in Table and Figure|3.5] Here
we have more serious issue of bias than that in Simulation Study II(c) for B, especially in

the setting with (8,7)7 = (—In2, —In2)T. The relative bias can be as high as 10.7%.

Table 3.8: Simulation results for Simulation Study II(d): A(u) = Ao(u) exp{SX (u) +nZ}

R? Samp. (»&77) = (—1112,0) (»&77) = (—1112,—1112)
Prob. B 7 8 7
Method Bias SD ASE Bias SD ASE Bias SD ASE Bias SD ASE
Full 0.061 0.359 0.368 0.013 0.165 0.165 0.071 0.349 0.343 0.004 0.178 0.171
CcC 0.122 0.362 0.372 0.008 0.168 0.165 0.157 0.347 0.347 0.084 0.171 0.171
PW T 0.049 0.397 0.409 0.011 0.190 0.186 0.074 0.391 0.388 0.004 0.195 0.193
AIPW(A, Z) T 0.049 0.398 0.409 0.011 0.167 0.167 0.074 0.391 0.388 0.004 0.181 0.174
AIPW(A, Z, A) 0 T 0.045 0.404 0.397 0.011 0.167 0.166 0.066 0.399 0.376 0.003 0.182 0.173
AIPW(A,Z,A) 0.5 T 0.047 0.396 0.400 0.009 0.168 0.166 0.067 0.393 0.380 0.001 0.182 0.173
AIPW(A,Z,A) 0.95 T 0.040 0.381 0.390 0.011 0.167 0.166 0.057 0.379 0.367 0.003 0.179 0.172
IPW T 0.049 0.397 0.409 0.011 0.190 0.186 0.074 0.391 0.389 0.004 0.195 0.193
AIPW(A, Z) T 0.049 0.398 0.409 0.011 0.167 0.167 0.074 0.391 0.389 0.005 0.181 0.174
AIPW(A, Z, A) 0 7 0.045 0.404 0.397 0.011 0.167 0.166 0.065 0.399 0.376 0.003 0.182 0.173
AIPW(A,Z,A) 0.5 T 0.047 0.396 0.400 0.009 0.168 0.166 0.067 0.393 0.380 0.001 0.182 0.173
AIPW(A,Z,A) 0.95 7 0.039 0.382 0.390 0.011 0.166 0.166 0.057 0.379 0.367 0.003 0.179 0.172

[1] 7: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. #: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R? quantifies the correlation of A and X (u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0475N71/35d(P).
[4] The sampling probability model is 7(A) = A 4+ 0.33(1 — A).

[5] The scheduled visits for measuring X (u) are at baseline and within a series of time windows: 0, 2, 4, 8, 20, 32, 44, 56, 68, 80
+0.5.

[6]: Measurement error e ~ N(0,0.01) if X (u) > 2.5; e ~ N(0,0.05) if X(u) < 2.5.

3.3 Simulation Study 111

3.3.1 Data generation

We finally consider the Cox model including the interaction of the immune biomarker and the

vaccination indicator A(u) = Ag(u) exp{8X (u) + nZ +~vX (u)Z}. The simulation data set is
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Figure 3.5: Simulation results for Simulation Study II(d): A(u) = Xo(u) exp{BX (u) +nZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities 7.
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exactly the same as that in Simulation Study I1(a) with hazard ratio (¢?,e")T = (0.5,0.5).

It means the true hazard ratios in this study are (e, e, ¢7)” = (0.5,0.5,1)7.

3.3.2 Results

For this interaction model, we observe slightly larger bias and greater variability in 7. If the

purpose of fitting the interaction model is to test and examine any effect modification of the

immune biomarker on the treatment effect, the focus lies on the coefficient ~y, which shows

negligible bias. For further evaluation of the association between immune biomarker and

the event endpoint, we suggest fitting the model by treatment subgroups or pooled vaccine

and placebo groups and considering models in Simulation Study II. The efficiency gain from

ATIPW(A, Z, A) is not significant unless A has extremely strong correlation with the immune

biomarker variable. The 95% coverage probabilities are very close to the nominal value.

Table 3.9: Simulation results for Simulation Study IIL: A(u) = Ao(u) exp{BX (u) +nZ +

X (u)2)}
R? Samp.
Prob. B=—In2 n=—In2 y=0
Method Bias SD ASE Bias SD ASE Bias SD ASE
Full 0.010 0444 0422 -0.071 1.713 1.654 0.028 0.704 0.682
CC 0.109 0.424 0423 0.040 1.701 1.669 0.015 0.698 0.688
IPW T 0.012 0.498 0.491 -0.077 1.914 1.874 0.030 0.781 0.769
AIPW(A, Z) T 0.012 0.499 0.491 -0.080 1.904 1.871 0.032 0.780 0.769
AIPW(A, Z, A) 0 T 0.004 0.509 0.470 -0.090 1.893 1.811 0.035 0.773 0.745
AIPW(A,Z,A) 0.5 T 0.006 0.495 0473 -0.072 1.904 1.819 0.028 0.780 0.749
AIPW(A,Z,A) 0.95 ™ -0.004 0.473 0.450 -0.070 1.806 1.751 0.027 0.741 0.722
IPW 7 0.012 0.499 0.491 -0.077 1.915 1.874 0.030 0.782 0.769
ATPW(A, Z) 7 0.012 0.499 0.492 -0.080 1.904 1.871 0.032 0.780 0.769
AIPW(A, Z, A) 0 b 0.002 0.511 0471 -0.085 1.892 1.813 0.034 0.773 0.746
AIPW(A,Z,A) 0.5 7 0.006 0.495 0474 -0.078 1.908 1.820 0.031 0.781 0.749
AIPW(A,Z,A) 0.95 T -0.004 0.473 0.450 -0.070 1.805 1.751 0.027 0.741 0.722

[1] w: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. #:

methods are implemented using estimated sampling probabilities.
[2] R? quantifies the correlation of A and X (u).
[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0475N71/3sd(P)A
[4] The sampling probability model is 7(A) = A 4+ 0.33(1 — A).

The IPW and AIPW
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Figure 3.6: Simulation results for Simulation Study III: A(u) = Ao(u) exp{BX (u) + nZ +
vX(u)Z}. The IPW and AIPW estimates are based on pre-specified true sampling proba-
bilities 7.
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3.4 Discussion

Joint model of longitudinal data measured with error and the event time data has been
studied extensively on full cohort data. Here we focus on the conditional score method gen-
eralized for the two-phase sampling design cohort studies. We also conduct the simulation
studies evaluating the model with an interaction of the time-varying immune biomarker
and the treatment indicator. We study the design where only subjects in the second phase
sample have the longitudinal records of the immune response data, and subjects outside
the second phase sample have their immune biomarker profiles completely missing. Since
conditional score method is a semi-parametric method, using the technique of weighting the
complete case by the inverse of the sampling probability is a natural way to deal with our
problem of missingness. In order to obtain more efficient estimator, we also consider the

ATPW technique and assess their performance in finite sample via simulation studies.

It is known that for non-parametric kernel regression, the choice of bandwidth is crucial.
The R package np has functions that can handle multivariate kernel regression with mixed
types of predictor variables (continuous, categorical, binary) and provide the algorithms
such as cross-validation to determine the optimal bandwidth. However, it takes considerable
computational time in finding the optimal bandwidth. In our AIPW method, it requires
fitting the kernel regression across time points, so it becomes even more impractical to
seek the optimal bandwidth for each regression. Therefore in our all simulation studies
for AIPW method, we use fixed bandwidth determined from the variance of the predictor
variables over time and do not explore the influence of different choices of bandwidth. Even
so the ATPW method outperforms the IPW method when some auxiliary variables strongly
correlated with the biomarker variable are included. However, when the correlation is very
weak, including them could reduce the efficiency or even increase the bias in finite sample,
especially when the number of immune biomarker measurements per subject is very limited.
In that case, the IPW method is recommended.

Our simulation studies on misspecified measurement error models suggest that when
the measurement error is not Normal but still random, the conditional score methods (Full,

IPW, or AIPW) could lead to slightly biased estimates. More serious problem arises when
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the measurement error violates the homoscedasticity assumption. These results suggest
that checking if the assumption of random Normal measurement error should be necessary
before applying the proposed methods. If evidence of violation of the assumption has
been found, transforming the original biomarker variable to meet such an assumption is
recommended. However it could be very hard to check this assumption based on observed
biomarker data because of the complication in specifying a correct distribution for the
inherent true biomarker level first. It might be able to obtain more information when using
replicated samples where for every single subject there are repeated measurements at the
same time point. Learning from the principles of the assays used to obtain the immune
biomarker measurements is also a way to justify or disprove this assumption.

In additional to the simulation studies described above, we also explore different sampling
design other than S1. We consider various stratified sampling designs among controls based
on some strong predictor of the immune biomarker. In doing this we attempt to oversample
controls having potentially higher variability in the inherent immune response profiles, and
to construct somehow “more efficient” sampling design than S1. However, the resulting
estimates are not as efficient as those from S1, as long as the sampling probabilities and the
size of Phase II sample under different designs are controlled to be compatible. It might be
because we already include all cases, and they dominate the variance of influence functions.
So which controls are selected could provide only very limited influence on the efficiency as
long as all cases are included. More exploration in this direction could be considered for a
design where not all cases are sampled.

In Chapter 2, we also introduce the framework of natural direct/indirect effects for
assessment of time-dependent CoPs. However, we do not conduct simulation studies for
detailed evaluation of its performance. We calculate the proportion PCS defined in Section

for data analysis of ACTG 175 in Chapter [6]
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Chapter 4

JOINT MODELING FOR DICHOTOMIZED TIME-DEPENDENT
BIOMARKERS

4.1 Background

Our experience with the immune response data in HIV-1 and dengue trials shows that
in some vaccinated participants the level of immune response declines below the lower
quantification limit of the assay during a short period after the final immunization, while
for others the level stays positive until the end of follow-up. The immune response could
start to have an effect in protection only when its value is above some threshold. This
suggests an interest in investigating the binary status of the immune response level (e.g.
responder vs. non-responder, high vs. low) as an immune CoR/CoP. The threshold to
determine the dichotomization of the immune response level could be obtained from the
quantification limit of the assay itself, the study data and prior knowledge. In the vaccine
trials we are considering, we do have observations of quantitative immune response levels,
only that they are subject to measurement error. So this motivates the need for statistical
methods starting with mis-measured quantitative immune biomarker level and ends up with
modeling its underlying true dichotomized trajectory over time.

However, most existing joint modeling methods center on modeling continuous longitu-
dinal biomarkers. Few papers have been found on joint modeling for binary longitudinal
processes. |[Faucett et al. [1998] published their work assuming the observed data were bi-
nary and used a Markov model to construct the correlation between two binary data points
measured at adjacent time points. Likelihood methods are capable to solve such problems
but they usually involve intense numerical integration. Our exploration on the likelihood

method actually suggests a serious issue of convergence on this joint modeling framework.

The conditional score method [Tsiatis and Davidian) 2001] and corrected score method

[Wang], 2006] developed for continuous biomarkers rely heavily on the properties of ordinary
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least squares estimates of the subject-specific random effects. However, the least squares
estimates are biased and inefficient for the binary data scenario. Thus there is no straight-
forward extension of those methods to our binary data model. We therefore explored this
problem from the angle of measurement error methods. [Zucker and Spiegelman, 2008|
proposed a corrected score method for mis-classified discrete covariates in Cox regression
model. They identified a function of the mis-classified covariates whose conditional expecta-
tion given the true covariates were asymptotically equivalent to the desired partial likelihood
equations. Their method in theory could be extended to our model since we are also in-
terested in the true “binary” covariate. However, because we are dealing with time-varying
covariates and the actually observed biomarker values are quantitative, adopting their idea
of corrected score method is more complex and would majorly reduce the efficiency since
we need to manually dichotomize the observed quantitative first. Another popular analysis
approach for the Cox model with mis-measured covariates is the calibration method pro-
posed by |Prenticel [1986]. With an objective of estimating the Cox regression coefficients for
the true covariates which are not observed directly, Prentice defined an observed-covariate
hazard function, which is obtained by taking the expectation of the true-covariate haz-
ard function, conditioning on the observed biomarkers and being at risk. If the induced
observed-covariate hazard function were analytically achievable, then by maximizing the
corresponding partial likelihood function we would get the estimates of coefficients. [Wang
et al., 2000] has utilized the regression calibration method for the joint modeling frame-
work. However, usually the conditional expectation is in a complicated form which depends
on the unknown baseline hazard and coefficient parameters. [Zucker] [2005] proposed a
pseudo-partial-likelihood approach and utilized Expectation-Maximization (EM) algorithm
to maximize the induced observe-covariate partial likelihood. Again, their model included
only time-independent biomarkers and generalizing it to time-varying biomarkers and joint
modeling framework is very complicated. So far, most regression calibration methods are
conducted by seeking an approximation to the conditional expectations given the true co-
variates. It is relative simple to implement but at a cost of getting inconsistent estimates.
To reduce the bias, a recalibration strategy can be adopted by evaluating the conditional

expectations within each at-risk set [Dafni and Tsiatis, (1998, [Tsiatis et al.l |1995] Xie et al.,
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2001]. Even though the bias cannot be eliminated, simulation studies show that the mag-
nitude of the bias could be very small in the rare event setting. We are therefore motivated
to use the risk set recalibration (RRC) method to solve our model, since the event rates
in the vaccine trials are low. In this chapter, we propose our model in a general way with

multiple biomarkers.

4.2 Risk set recalibration method in full cohort studies

4.2.1 Notation and modeling

For each subject, let (V, A) denote the observed failure/censoring time and failure status.
Assume the K time-varying biomarker processes { Xy (u),0 <u <7}, k=1,---, K are not
observed directly. For each time-varying biomarker process, we observe the mismeasured
values of Xj(u) at discrete time points 0 < T} < --- < Ty, <V, denoted by Wy; =
Xk(T,?;f) +egj, j = 1,---,Ji. We assume the errors ej; are normal with zero mean. As
in [Song et al.| [2002], we also assume non-zero covariance between measurement errors for
biomarkers measured at the same time point, i.e. Cov(ey;,exj) = akk/I(Tg’} = T]Z‘j,). Let

&:{O']Ck/7k,k/:].,"' ,K}

We assume a random effects model for each time-varying biomarker process Xy (u) such
that Xy(u) = of fx(u), with fx(u) being a gi-dimension vector of u. For example fi(u) =
(1,u)T specifies a random effects model linear in time for the trajectory of X(u). We
define the design matrix, the vector of observed longitudinal biomarkers and the vector of

measurement errors for each subject up to and including time u for Xp(u) as

FE) Wi ekl
Fi(u) = : , Wi(u) = : ;o ex(u) = : (4.1)

RS, ) Wi (w) €k ()

with Ji(u) indicating the maximum number of measuring time points for X (u) up to time

u, and Ti"(u) = (T, -+, T}, (u))T being the vector of measuring time points for Xy (u) up
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to and including time u. Obviously for k =1,.-- | K
Wie(u) = Fip(u)a + x(w)

Let a = (Oé?,"' ’O‘%)Tv W(u) = (WlT(u)v 7W§(u)>T7 g(u) = (g{(u), ag{((u))T>

Fl(u) 0
Flu)=| (4.2)
0 Fre(u)
Then
W(u) = F(u)o + e(u) (4.3)

For a pre-specified cutoff value by, we define the binary indicator process By (u) as
By (u) = I(Xg(u) > by) (4.4)

and the vector of binary biomarker process as B(u) = (B1(u),--- , Bx(u))”. Then we study
the proportional hazards model

1 ~
Mu;a, Z) = dlimo —Pu<T<u+dula,Z,T",C,T > u)
u—r u

1 .
= lim —Pu<T <u+dula,Z, T > u)
du—0 du

= Xo(w) exp{8TB(u) + 0" Z + 5" B(w)Z} (4.5)

where Z = (Z,L")". Z is a binary indicator of vaccination arm (1 for vaccine and 0 for
placebo), L is a vector of p—1 dimensional vector of potential baseline confounding variables.
Here we restrict our attention to L being categorical variables, since we need to estimate
the distribution of unobserved random effects o given Z. The hazard function implies that

the measurement time points and censoring time are not informative to the hazard given «
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and Z. Tt also says that only whether or not the biomarkers values X (u) being above the

thresholds matter for the hazard.

4.2.2  Ideal risk set recalibration estimator

Now we outline the risk set recalibration (RRC) method to estimate 6 = (37,77, y1)T. At
any given time u, define the at risk process as Y (u) = I(V > w) and the increment of event
process dN(u) = I(V = u,A = 1). Under the assumption of non-informative censoring
given « and Z, the hazard for V is the same as that for T'. Also, as discussed in [Prentice,
1982], we assume the hazard is independent of {IW,T™} given  and Z. Then the induced

hazard function from (4.5)) conditional on the observed covariates and being at risk is

A W (u), T"(u), Z) = lim 7LI@(U <V <u+dulW(w),T"(w), Z,Y (u) = 1)
~ lim di /P(u <V < ut du[W(w), T™(u), e, Z,Y (u) = 1)
pla|W (u), T™(u), Z,Y (u) = 1)da
= //\(u; W (), T™(u), a, Z)p(a|W (u), T™(u), Z,Y (u) = 1)de
= [ Muifo 20p(ali (). 77 (0), 2, () = 1)de
- E[A w; a, Z)|W (), T™ (), Z,Y (u) = 1]
= o(u)R(u,0) (4.6)

where
R%(u, ) = exp {nTZ}IE exp{ﬁTB(u) + 'yTB(u)Z}]va(u), T™(u), Z, Y(u)=1 (4.7)

Let {V;, Ay, W3, T]™, J;, Zi, eit,i =1,---,N be a random sample. Then the corresponding

induced partial-likelihood can be written as

i

RY(V;,6)
(4.8)
H[ SN Y5 (Vi) RY(V;, 0)
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and we can estimate 6 by solving 0log L(0)/00 = 0, i.e.

xl {Rg DURSS IRTOTIO0) A (49)

where R?(u,0) = OR?(u,6)/00.

In practice the analytical form of R%(u, #) is unobtainable so (4.9)) are unobtainable ideal
score equations for estimating 6. As a result, in the next subsection, we propose a working

assumption to solve the problem.

4.2.3 RRC estimating equations

We assume « is independent of {77 (u), J(u)} given {Y (u) = 1,Z} and is independent of
the measurement errors €(u). Let a’s mean and covariance matrix conditioning on {Y (u) =

1,7} be p(u, Z) and %(u, Z) where

ul(u,Z) Ell(u,Z) ElK(’U,,Z)
p(u, Z) = : , X(u,2) = : : (4.10)

MK(U,Z) EKl(u,Z) EKK(U,Z)

Elag|Y (u) = 1, Z]) = up(u, Z), and Covlay, ap|Y (u) = 1, Z] = S (u, Z). Then the mean

and covariance matrix for (af, WT(u))T given {Y (u) = 1, Z,T™(u), J(u)} are

pe(u, Z) Sk (u, Z) Sii(u, Z)FT(u) -+ Spre(u, Z)FE(u)

Awme2) | | @S Tawd o Twd) |

Fre(w)pg (u, Z) Fr(wSge(u, Z)  Tig(u,Z) - ik (u, Z)
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where Ty (u, Z) = ﬁk(u)Ekk/(u, Z)ﬁkT,(u) + Agpogr and Agp is a Jg(u) X Jipr(u) matrix

with (a,b) — th element equal to 1 if T}' = T/}, and 0 otherwise. Let

Y1 (u, Z)
Sk (u, Z) = : C Sk ) = (S Z) - Ska(uZ))
Sk (u, Z)
Fll(u,Z) FlK(u,Z)
Iu, Z) = : :
Tig(u,Z) - Trx(u,Z)

Write C = {Y(u) = 1, Z,T™(u)}, P[] = P[-|C], Ec[] = E[-|C], and Couvc[] = Couv[-|C]. If we

further make the normality assumption, then it follows that

pe(w) = Ee [alW(w)] = p(u, Z) + S(u, 2)FT ()T~ (u, 2) (W (w) = Flu)u(u, Z))

Ye(u) = Couve {Q\W(u)] =S(u, Z) — S(u, Z2)FT (w)T ™ (u, Z)F (u)2(u, Z) (4.13)

In other words, uc(u) and X¢(u) fully specify the conditional distribution of a given {Y (u) =

1,Z,T™(u), WN/(U)} So we are able to calculate for m = (my,--- ,mg), my,--- ,mg = 0,1,
pe(m;u, u, X) = Pe [Bl(u) =my, Ba(u) = ma, -+, Bg(u) = mK\W(u)} (4.14)
which further yields the risk function in as
R(u,0,1,8) = exp{nTZ)E [exp{ﬁTB(u) FATBW)ZYW (), T™ (w), Z, Y (u) = 1}

K
= exp{n'Z}| Y exp{D_(Br+wZ)mitpc(miu, p,X) | (4.15)

my,-,mg=0,1 k=1

Note unlike in [Dafni and Tsiatis|, 1998, [Wang et al., 2000, Xie et al., 2001] where R°(u, )
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is approximated by exp {nTZ + (BT +~4T2)TE {B(u)lfﬂ\//'(u), T (u), Z,Y (u) = 1] }, here we
derive the expression of R°(u,#) directly from the assumed conditional distribution of «
given observed covariates and being at risk. Since we have made the normality assumption,
the form of R%(u,f) depends on the nuisance parameters y and . Therefore we use the

notation R(u, @, 1, ) in our proposed method accordingly.

Moreover (.15 contains unknown nuisance parameters p(u, Z), 2(u, Z) and & = {op;
kK =1,--- | K}. Therefore, one more step is needed to estimate them before we solve the

estimating equations for 6.

To estimate the covariance oy, we can do it similarly to that in [Song et al., [2002] by

solving

T
Se,r(Okk!) ik > Qs Jiy > Q) {(Wik(V}) — Fik(%)@k(%)) Aikry

Aan

Wir (Vi) — zk'(W)dik'(Vz’)) — Opprtr (BkAikk'Pik'A;{k/)} =0 (4.16)

where Py, = I, — ﬁzk(W){Ej,;(%)ﬁ;k(Vl)}_lﬁflg(‘/z) To simplify the notations and for-
mula, we establish the estimating equations for 6 from now on assuming ¢ are known. All
the asymptotic theories can be extended to the case with ¢ unknown by considering the

estimating equations for 8 and for o simultaneously.

Since pg(u, Z ) and g (u, Z ) are Z-dependent and Z are categorical variables, we pro-
pose to estimate them separately within each category. Suppose there are v discrete values
of Z, 21, -, %, Let pu(u) = tugy(u),j = 1, v} and X(u) = {X(u),j = 1,--- v},
where for each Zj, ugy(u) = p(u,z;) and X (u) = X(u,Z;). We would like to obtain

estimates that satisfy

zl&)pllveC{ﬂ(U)—u(u)HAO, Zl[lop] vee{S(u) = R(w)}| B0 (4.17)
NY2pec{fi(u) — p(u)} = N~ 1/22@ + 0,(1) (4.18)

N'Y2pec{S(u) — B(u)} = N~ 1/2Z¢ u) + 0p(1) (4.19)
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as N — oo, with ¢;(u) and 9;(u) the influence functions and vec the vectorization of the

matrices.

The problem with estimating the distribution of « is that « itself is not observed di-
rectly. So the usual approach such as regressing o on the observed data or the kernel
density method do not work out here. However since p(u) and Y (u) are nuisance parame-
ters related to the observed biomarker values W, we could maximize the likelihood of the
observed data based on the random effects model. Another way to estimate ji(;)(u) and
¥(j)(u) is by the method of moments in a way similar to that in [Dafni and Tsiatis, [1998].
Let &;(u) denote the least squares estimates of subject-specific random effects «; using data
up to and including time w, ie. &;(u) = {ﬁZT(u)E(u)}_leT(u)WZ(u) It can be easily
verified that &;(u) = (&4 (u),-- -, 6% ()T, with &% (u) = {FL(u)F(u)} " FE (u) Wi (u)
being the least squares estimate for a;, the random effects governing the k& — th under-
lying biomarker process. Since &p(u) = ok + {ﬁ;,;(u)f’zk(u)}_lﬁzjl;(u)gzk(u), we have
Ec [Gir(u)] = p(u, Z), and Couve [Qir(u), dip ()] = S (u, Zi)+ S, (u), with Sg,,, (u) =
{ﬁ;q,;(u)ﬁk(u)}*ng(u)Alk;{/ (u) Fye (u){ﬁf,;, (u)Fypr (1)} " 'ogg. Therefore naturally the esti-
mating equations for pu(u, 2) and Sy (u, 2) for the category with Z = % are

N
D Vi) (Jig(u) > qp)1(Zi = 2) (@i () — px(u, 2)) = 0 (4.20)
i;l
D Vi) (T () = qr, T (w) > qr)I(Z; = %) {[@ik(u) — i, )] (G (w) — e (u, 2)]"

=1

—Ypw(u,2) = Bpg,, (u)} =0 (4.21)

Apparently, under certain regularity conditions, (4.17))(4.18)(4.19) hold for the estimates

of p(u) and X(u) from the likelihood approach or the method of moments.

Plugging /i(u) and $(u) back into (#.12) {@.13) and (£.14) we obtain

Wi(w) - F(w)i(u, Z))  (4.22)
Se,(u) = B(u, Zi) — S(u, Z)FF (w) D™ u, Zi) Fy(u) S (u, Z;) (4.23)

ﬁCi (m; u, /17 Z) = ﬁCi (m; U, b= ,&(u), Y= Z(u)) (424)
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And finally, solving the following estimating equations yields the RRC estimates 6% for

N ?Au 173 N Yju}%] u,G,A,EA]
Uﬁ(@)Z/{@(u’Z’“’?ggl '( JB5( 9“ ;}dNi(u)O (4.95)

i=1 Ri(u,0, 1, %) j 1Y (w) R (u, ,ﬂvi
where
Ri(u,0,0,%) = exp{nTZ} Zexp{BTm+'miZi}15ci(m;u,/l,XAJ)]
: e ORi(u, 0, 7,5
Ri(uagalua E) = (80)

exp {nTZi} [Zm mexp{BTm + 'miZi}ZScZ. (m;u, fi, )}
= | Ziexp{n" Zi} [, oxp{8Tm + 1 mZ} P, (miu, 1, 5)|
Ziexp{n" Z;} [Z mexp{BTm + y"'mZ;} Pe,(m;u #72)}

4.2.4  Asymptotic distribution theory

In this section, we assume the regularity conditions given in Assumption D hold. Recall

0= (3" n",4v"7" and & = {ow, k, k' = 1,--- , K}. Further define
N
AR (u,0,1,%) = N7 Z Yi(u)Ri(u,0,1,%),  a®(u,0,p,%) =E[Y(u)R(u,0,p,5)]
AD(u,0,0,% lZY (w,6,05),  aV(w,0,,%) =E[Y () R(u, 0, 1,%)]

AP, 0,,5) = N7 Z Yi(w)Ri(u, 0,0,5),  a®(u,0,1,%) =E [Y(U)R(u, 0, 1, 2)}

fi(u, 0,1, %) = 8R(u60 NTY)
b (u,0) = \o(u { u)E [exp{ﬁTB + 07 Z +~4TB(u)Z} ‘W Z,Y(u) = 1}}
b (u,0) = Ao(w)E {Y( >R(“9“’§ [exp {87 Bw) + 772 + 47 B(u) 2} [V ()

R(
)
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Assumption D

D1. Ao(1) < o0, P(Y(1)=1) > 0.

D2. T and (C,T™)" are independent given (a”, ZT)T

D3. Z and J are bounded. The support of discrete variable Z has fixed and finite number
of values and for each value z, u € [0,7] and k, k' =1,--- | K, P(Y(u) = 1, I(Jk(u) >
G 1T (u) > qu)|Z = 2) > 0.

D4. (&.17)@.18) [@.19) hold for ji(u) and S(u).

D5. h(f) = 0 if and only if § = 6*.

D6. There exists an compact set © where 6* lies in the interior, such that a(")(u, 8, u, ¥),
b (u, 0) and ) (u, 0) exists and continuous in (u,0) € © x [0,7], r = 0,1, 2.

D7. E |sup(y,g)c(o,7]x0 ‘Y(U)RO(U,Q)@ < o0,E [sup(uﬁ)e[oﬂxg Y (u) RO (u, H)RO(U,H)T|] <
00

DS. E[H (#*)] exists and invertible.

D9. Var[M (6*)] is finite and positive definite where M (6*) is defined in (4.26).

Lemma 4.2.1. Forr = 0,1, sup(, g)cj0,7]x0 AV )(u 0,0,%) —a (u, B,N,E)‘ 20, as N -
0.

Proof. We only outline the proof for » = 0. The other one for » = 1 can be proved similarly.
By Theorem III.1 in |[Andersen and Gill, [1982] we have Ag))(u, 0,1,%) = a"(u, 0, 1,%) +
0p(1) uniformly in u, 8. Therefore we only need to prove that Ag) (u, 0, 1, ﬁ]) = A%O) (u, 0, pu, X)+
0p(1) uniformly in u, . Actually

sup AR (0,71, 8) = AL (w,0, 0,3

(u,0)€[0,7]x©
= ( e)sl[lbp IZZI (u) exp {n z]}ZeXp{ﬁTm+'y mz;j}x
u,0)€[0,7] j=11i=1 m
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]
(]

{Sup ‘exp {BTm + 77T2j + 'mizj}‘ X
=5 Loeo
N
N1 Z sup
i—1 u€[0,7]

pe,(mzu iy, ) = pe,(ms w1y, 2| }

The second term converges to zero because of the uniform convergence of fi(;, f](j) and the
continuity of p¢(m,u, pu,X) (in the form of Normal cumulative density function) in px and
Y. On the other hand, since v and the number of all possible values of m are fixed finite,

A;?) (u,0,fi,%) = A;g) (u,0, 1, ¥) + op(1) uniformly in w, 6. O

Theorem 4.2.2. Under Assumption D, as N — oo, (i) 68 2 0*: (i) NY2(68 — %)
converges weakly to a Normal random variate with mean zero and covariance A~*B(A=HT,

where
A=E[H(6"),  B=EM@O)M(@O")"]
and M;(0%) is defined in (4.26)).

Proof. (i) We give a sketch of proof similarly to that in [Xie et al., 2001]. Note that

R(u,0,u,X) —~

E (WdN(u) ‘W(u),Z,Y(u)) ‘W(u),Z

R(u,0,pu,X)
R 0,0,5) N (“)]

R(u, 0, 1,%) —~ ~
WCZN(U) W(u), Z

}

(u, 0, u, E)E [dN(u) ‘W(u),Z,Y(U) - 1] E [Y(u) ’W(u), Z]}

(u, 6,1, %)

R(u,0, 1, %)

R(u0,5,5)" exp{87B(u) + 1" Z + 4" B(w)Z} | W (u),

= Ao(u)duE {Y(u)

Il
S
=
—~
£
D
~—
U
IS
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E[AN(W)] = Ao(u)duE {Y () lexp{87B(u) + 0" Z + 7" B(u) 2} [W(w), Z,Y (u) = 1| }

b (u, 0)du

Let N(u) = N"'S°N | Nj(u). Then N7'WUE(9) = N='U 15 (0) + N~ Usn(0) — N~ Usn(6)
where
N~'Uin(6) 1ZH
-1 -1 ’LL 0 /L7 ) Ri(uvevl% Z)
U- - dNZ u
2N Z/ ( u 0 /L, ) Ri(u,e,ﬂ, Z) ( )

T A( ) 0 (1) B
N71U3N<6) _/ F(’) (’LL, 7/’L7 A) o a 5 (u797lu’7 E) dN(’LL)
0o \AQ 0,45 a0 u)

We investigate each of the three terms. For the second term, we can prove as in Lemma

[4.2.7] that

= op(1)

sup

N < o N .
Nfl Z -@l(ua 07 /f? Z}) . Nfl Z Rz(uv 95 L, E)
(u,0)€[0,7]x© R

This implies that supyeg |N " 1Uan (0)] = 0p(1).

By the arguments similar to those in [Fleming and Harrington) 1991] (page 305-306),

we can prove that a(®)(u,, u, ¥) is bounded away from zero on [0,7] x ©. Together with
A;})(u’9>ﬂ72) a(l)(uﬂ,p,,E)

AD (w005 @iy

Lemma @4.2.1, we have sup, g)c[0,7]x0 2 0. Therefore

AW 03 (1) T
ap Ny (0) < sup | AELGREACOAIE [Ty = o,
0co (woyelo,rxo | A (u, 0, 4,%) ol (u,0,1,%) | Jo

Therefore, N"1UE(9) = N~} Zf\il H;(0) + 0p(1) uniformly in 6. On the other hand,
since R(u,0,u,) and R(u,ﬁ,,u,E) are continuous in @, we can show that N~'U;n(0) =

h(0) + o0p(1) uniformly in 6. Therefore 6% converges to 0* as N — co.

(ii) Let dM;(u) = dN;(u) — Ao(u)Y;(u) RY (u, 0)du, dM (u) = N1 Zfil dM;(u). Then we
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have
* 0 T 1 * Ay
N_I/QUFR(H*) — 1/22/ U 9 s s )dN( ) N1/2/ A%)(U,e 5 Ly E)dN(u)
(u, 0%, f1, %) o AV (u, 6%, i, %)
where
@)= n 23 [ Bw 0% %) e [ )
" i=170 Ei(u,e*,/},ﬁ]) ' o a(u,6* u, )
T A ) u, 0* ~ 2 N
0 A (u, 0%, [, ) P
T A(l) 0% | 2 (1) * ~
Usn (6%) N1/2 r (u, 0%, fi, A) a\V(u, 0%, 1, %) A (u)
0) ~ (0) *
0 AF (uue*nu’a E) a (U,H 7”’2)

The Proposition A.1 in [Kulich and Lin, 2004] implies that N'/2dM (u) converges weakly
in [*°[0, 7] to a mean-zero Gaussian process uniformly in u. Then the convergence in prob-
ability to zero of Uy (6*) follows from Lemma[4.2.1]and Lemma 4.2 in [Kosorok|, [2008]. We
can also approximate Usy (6*) with the arguments similarly to those in Theorem 2.1 in |[Lin

and Wei, 1989] and Appendix A in [Xie et al., [2001]

T 1 o aWM(u, 0%, 1, %)
Usn (%) = N1/2/ L 1O 0 ,%) — =~ 2=
(@) o a0 | 7T 006 T

(A(Fo) (1, 0%, 71, 5) — a©(u, 0%, 2)) } E(dN (u)) + 0p(1)

Therefore by direct calculation
NVRUR )
— 1/22/ Ri u 9*7[/J’ )_ a(l)(uae*auvz) dN(U)
R;(u, 0%, 1, Z) a©) (u, 0%, 1, X) '
< A~ (1)(u 0* E) A~ N
N2 /Ri G*AE—%RZ- 0 0.3
Z U/ 9*,/,67 E) (uy 7/’L7 ) (]](())(Ul7 0*,/,1,,2) (’U;, 7lu’7 )

E(dN (u )) +0p(1)
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We need to further expand the above expression at fi and 3. Let N~Y2My(6*) and
N~Y2Mp9(0*) denote the two terms in N~'/2U[(*). Then first by Taylor expansion of

x/y we have

N_1/2MN1(9*)

N
. " R, 05,0,%) 0D (0%, %)
= N7 / - dN;
; o \Ri(u,0%,1,%)  aO(u, 0%, 1, %) (u)
)

N T T *
ey [T RO ) [Ri(,0,0.8) ~ R, 0".1.%)} dN;(w)
0 2(u0 //L ) Zu’ 7#7 /[/u7 7#7 74u
i=1 i

I 1/22:/ R2’LL(9,H, )

U ()u *
B mz/ ( UZZ; <o>EuZZ*ZZZg*CWiWHd(um(u))sz-<u>+op<1>

{132 (60", 5) = Ri(w, 0%, 1, %) } dNi(w) + 0,(1)

where
N (. )
O R 5) OR: (w6 1) L oR(w0 )
=N"!
c(u) ; {R?(u 0,1, %) Ovec{u} - R} (u, 0%, 11,%)  Qvec{u}
d(u) = N_li R;(u, 0%, 1, %) OR;(u, 0, u, ) 1 OR;(u, 0%, 11, %)
B P R%(u,0*,1,Y)  Ovec{XZ} R%(u, 0,1, %)  Qvec{XZ}
Similarly

N71/2MN2(0*)

N
] © Vi
— N 1/22/ i
~ Jo a® (u, 0%, u, ¥

1y )

aV(u, 0, 1, %)

{Ri(u,e*,ﬂ,z) RO T )R( u, 0%, 1, )}E(dN(u))

N T
N Z /0 {e(w)di(u) + f(u)vi(u)} E(AN (u)) + 0p(1)

- Y;(u) 8R’L(u> 9*7 My Z) a(l)(ua 0*7 H, Z) 8R’L(u7 9*7 H, Z)
_ 1
(=N >{ docclp) (w0, %) Gveclu)

0 —
i=1 a (U, e*aﬂvz
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Fu) = N_li Yi(u) ORi(u, 0,11, 8)  aW(u, 0%, 1, %) OR;(u, 0%, 11, %)
YT L0 e D) | vee(S) a0 (w65, 0%)  Ovec{S)

We combine all the results above and define

M;(6%)
B T Rz (u, 9*, i, 2) a(l) (u’ 9*7 1, E) | | |
/o {Ri(u,e*,M 5 aO(u, 0%, 1, %) + c(u)gi(u) + d(uwz(u)} dN; (u)

T Yi(u) . aM(u, 0%, 1, X)
B ) Rt ) — L 2 g o s) SEAN

- /OT {e(u)gi(u) + f(w)ihi(u)} E(dN (u)) (4.26)

Thus we have proved that N~/2UF(9*) = N~1/2 Zf\il M;(6*) + 0p(1). On the other hand
we can also show as in (i) that N~*oUE(9)/00 = N1 Zf\;l H;(6) + 0,(1) uniformly in .
The asymptotic distribution of N¥/2(§% — §*) is therefore A1 B(A~1)T.

Note in this calibration method, we need to estimate the nuisance parameters p(u)
and Y(u) at each observed event time point using subjects at risk and having enough
measurements (i.e. we need at least ¢, measurements to estimate the trajectory of Xy(u)).
This is ensured by Assumption D3. For example, in the dengue vaccine trial, the primary
endpoint is the symptomatic virologically confirmed dengue disease occurred 28 days after
the third vaccination and during the active phase from Month 13 to Month 25. By the time of
the third injection, three visits for measurements of antibody titers have already been made.
This implies that almost all subjects at risk by that time have three measurements available.
However, if we are interested in the dengue disease occurring during the active phase since
the start of the study, then it is possible that by the time of the occurrence of a disease in
the early stage of the study, only one or two scheduled visits for measurements have been
made. That means estimating the trajectories with more than two parameters at that time
point is infeasible. And those subjects who drop out of the study or develop disease before

that time would make no contribution to the estimating equations. Therefore we will lose
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considerate number of early cases in the analysis if a large proportion of the disease events
occur before enough visits for measurements have been made. The ultimate inferential
results could be misleading. Looking back at the conditional score method for continuous
immune response level, even though it has the same issue of losing a number of cases in
the analysis, can still provide consistent estimates because the number of measurements is

incorporated in the estimating equations.

4.3 Risk set recalibration method in two-phase sampling design cohort studies

Since this dissertation is aimed to evaluate the time-dependent CoR and CoP in vaccine
trial studies where the immune response data are collected on a two-phase sample, we need
to further develop the method of RRC for estimating 6 in when the immune response
data are only available on the second phase sample. The sampling design here we considered
is the same as those for the continuous biomarker model in Chapter 2. We briefly restate

the notations and sampling model described in Section [2.2.2]

In the first phase, we take a random sample with size N from the study population with
measurements (W,Ai,Zi,LiT)T,i = 1,---,N. In the second phase, a random Bernoulli
sample is taken from the N subjects, with sampling probabilities given by 7 (O;, p), where
O; are (a subset of) the variables collected at the first phase and p is a finite-dimensional

vector of parameters. Let £ be the binary indicator of being sampled (§ = 1) with probability
P =110,a, W, T™,J) =P(§ = 1|0) = w(O; p)

Then the longitudinal immune biomarkers {W;, ", J;} are assessed only on subjects with
& =1, i.e. the observed data for i =1,--- | N are {V;,A;, Z;, L;, &, &EW;, &T7, & J; . With
such data with missing immune response data, we propose to estimate 6 by solving an IPW

version of the RRC estimating equations, defined as

N < e (1) P
j ' A 0, 0,%
=1 i | Ri(u,0, i, %) AIPW(U,Q,ﬂ,E)
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where

A (w0, ,5) = N1 Z@ Yi(u) Ri(u, 0, 1, 5)

T,
i=1 "

- Sy
A?IQW(U,Q,M, - 12 T U 0 H) )

As in Chapter 2, we consider both situations with correctly and fully specified sampling
probabilities and estimated sampling probabilities by solving Sr r(p) = 0 below. The
corresponding estimates of # are denoted by i PW( ) and éﬁpw (7).

N N 8
Serlp) =D Seile) = Y5 log { (033 p) (1= 7(033.p))' %}

i=1 i=1

=0

N
7 m(Oi3p)  O0n(Oisp)
a ; m(O;p)(1 = 7m(Oisp))  Op

To establish the asymptotic theories for éfpw(ﬂ) and éﬁpw(ﬁ), in additional to Assump-
tion D, we also assume the sampling probabilities are positive: 1 > 7(O;p) > d > 0, for all
p and some constant d > 0. The following theories can be proved based on Theorem
and in a similar way as that in the proof of the theories for IPW estimators for continuous

biomarker model in Theorem 2.6.3 and Theorem 2.6.51

Theorem 4.3.1. As N — oo, (i) éfpw( ) 5 0% and (ii) \ﬁ( B (m) — 9*) converges

weakly to a Normal random variate with mean zero and covariance A~'B*(A~YT | where

A=E [H(e*)} B*=E EM(G*)M(W)T}

where M (0%) is defined in (4.26]).

Theorem 4.3.2. As N — oo, (i) éfpw(ﬁ) L 0*: and (ii) VN (éﬁpw(ﬁ) - 9*) converges

weakly to a Normal random variate with mean zero and covariance A~*B**(A~NYT  where

A=E[H(6Y)| B™ =B —EM(@® {IE 1551} P E[M(07) S ]
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where M (60%) is defined in (4.26]).
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Chapter 5

SIMULATION STUDIES FOR JOINT MODELING WITH
DICHOTOMIZED BIOMARKERS

5.1 Simulation for full cohort studies

In this section, we evaluate the RRC estimator developed for dichotomized immune biomark-
ers in Chapter 4. We compare the RRC estimator with the ideal estimator (Ideal) where
the random effects for each subject are assumed known and the two-stage estimator (TS)
where the subject-specific biomarker trajectories are first fitted by least squares estimates
to predict the binary status of immune biomarker at each time point and then use them to
fit the Cox regression model. We evaluate the three estimators through simulations studies
in terms of the bias, relative bias to the true parameter (Bias %), Monte Carlo standard

deviation (MCSD), and the relative mean squared error (RMSE) to the ideal estimator.

For the RRC estimator, we would also like to evaluate an estimate for its theoretical
sandwich variance given in Theorem However, direct programming of the estimate of
A =E[M(0*)M(6*)T] is very hard as can be seen from the expression of M (6*) defined in
([4.26)). First it requires the derivatives of R(u, 0, 1, %) and R(u, 0, 1, ¥) with respect to u(u)
and X (u) over time, which are apparently nonlinear. Also it depends on the “unknown”
truth R%(u, ) which we propose to approximate based on the Normal working assumption.
The same problem occurred in [Dafni and Tsiatis, 1998] where they dealt with a similar
model but for the continuous biomarker X (u). In their simulation studies (Table 3), they
used the variance estimate obtained from maximizing the induced partial likelihood func-
tion simply with estimated nuisance parameters plugged in. In their simulation studies,
such approximated variance estimates performed quite well compared with the empirical
standard derivation of the parameter estimates. In our simulation studies, we approximate
the standard error (ASE) estimates in a similar way. For a valid estimate of the theoretical

variance we also investigate the bootstrap method as in [Wang et al., 2001].
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5.1.1 Model 1

We first consider the model with one dichotomized biomarker A(u) = Ao(u) exp{SB(u)}.
The biomarker X (u) is generated from X (u) = oy + asu, where (a1, a2)” is from bivari-
ate Normal distribution with mean p = (2.575,—0.009)7 and covariance ¥ with elements
($11, 212, ¥22)T = (0.0191,0.00007,0.0002)”. The parameters p and ¥ are estimated from
the ACTG 175 data [Hammer et al., 1996]. The threshold [ for B(u) = I(X(u) > 1) is 2.393
with P(B(13.5) = 1) = 0.6. The censoring time is simulated from Fxp(1/80) and is subject

to administrative censoring at time 30.

We consider four simulation scenarios (a)(b)(c) and (d) for Model 1. For each scenario,
we simulate the event time data with hazard ratios e = {1,0.75,0.50,0.25}. Also we
consider three settings of measurement errors (low, moderate and high) with the variance
of measurement error o2 = {0.01,0.08,0.15}. They represent a noise-to-signal ratio of
Var(e)/Var(X(0)) ~ 1/2, 4, and 8, and Var(e)/Var(X(10)) ~ 1/4, 2, and 4 respectively.

(a) Low event rate setting with a moderate number of measurement time points. Sample
size N=800. The longitudinal observations W are made at baseline and a random
time point uniformly sampled from each of these 9 time windows 3,6,9,---,27 +0.3.

(b) Low event rate setting with a large number of measurement time points. Sample size
N=800. The longitudinal observations W are made at baseline and a random time
point uniformly sampled from each of these 56 time windows 0.5,1.0, 1.5, - - - , 2840.05.

(c) High event rate setting with a moderate number of measurement time points. Sample
size N=160. The longitudinal observations W are made at baseline and a random
time point uniformly sampled from each of these 9 time windows 3,6,9,---,27 +0.3.

(d) High event rate setting with a large number of measurement time points. Sample size
N=160. The longitudinal observations W are made at baseline and a random time
point uniformly sampled from each of these 56 time windows 0.5,1.0,1.5,--- ;2840.05.

For the two scenarios in Model 1(a) and Model 1(b) with low event rates, the average
event rates are 11.7%, 11.4%, 12.6%, and 13.1% when the hazard ratios are 1, 0.75, 0.50 and
0.25, respectively. For the two scenarios in Model 1(c) and Model 1(d) with high event rates,
the average event rates are 81.2%, 81.2%, 74.8% and 80.2% when the hazard ratios are 1,
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0.75, 0.50 and 0.25, respectively. We only include the measurements before the occurrence
of an event for cases. The average number of measurements available in each of the four
scenarios are 8.0, 45.1, 3.9 and 20.1. See Table and Figure for the simulation
results.

From the results we see that in low-event-rate settings, the RRC estimates provide small
bias with relative bias less than 12% for all hazard ratios. As the number of measurements
collected become large, the relative bias could be controlled below 6%. The TS estimates,
however, can lead to a relative bias as high as 48.3%. Even though we enlarge the number of
measurements, the relative bias with large measurement errors cannot be reduced to below
20% in several settings. In the high-event-rate settings, the RRC method could still give
reasonably small bias except for the setting with e?=0.25 and large measurement errors.
This is what commonly expected for the calibration methods when the effect size of the
covariate is large and event rate is high. The biases from TS estimates generally show a
similar pattern as that in low event rate settings.

Generally speaking the TS method produces smaller MCSD than the RRC method,
especially when the measurement errors are relative large. This is also reflected in the
RMSE such that the TS estimator could give smaller RMSE than the RRC estimator in
some settings even if the T'S estimator is more biased. This implies a bias-variance trade-off
when making the choice of which methods to be used. If it is of interest to estimate the
effect of the biomarker on the event endpoint, we suggest using the RRC method instead of
the TS method due to the high biases yielded by the latter.

The approximated standard errors (ASE) are very closed to the MCSD of 3 as it has
been seen in |[Dafni and Tsiatis, 1998|. It suggests using this simplified approximation of

A~

the SE(B) in such model with one dichotomized biomarker only is an acceptable choice.
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Table 5.1: Simulation results for Model 1(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

0?  Method Bias( % Bias) ASE MCSD RMSE

B8=0 Ideal 0.029 0.229  0.226 1.000
0.01 TS -0.058 0.226  0.235 1.124
0.01 RRC 0.028 0.279  0.269 1.409
0.08 TS -0.141 0.218 0.230 1.395
0.08 RRC 0.030 0.356 0.335  2.176
0.15 TS -0.156 0.215 0.226 1.450
0.15 RRC 0.035 0.408 0.396  3.028
B =—1n4/3 Ideal 0.031 (-10.687) 0.226  0.217  1.000

0.01 TS 0.019
0.01 RRC 0.032
0.08 TS 0.006
0.08 RRC 0.031

(_
(-6.466)  0.225  0.227 1.082
(-11.054) 0.275  0.264 1.473
(-1.947)  0.219 0.227 1.081
(-10.624) 0.354 0.333  2.340
0.15 TS 0.018 (-6.350)  0.217  0.234 1.146
0.15 RRC 0.032 (-11.277) 0.405 0.401 3.388
B=—In2 Ideal 0.020 (-2.925)  0.213  0.207 1.000
(_
(_
(_
(_
(_
(_
(_
(_

0.01 TS 0.106 (-15.293) 0.212  0.220 1.384
0.01 RRC 0.015 (-2.227)  0.261  0.251 1.464
0.08 TS 0.191 (-27.564) 0.207  0.210 1.872
0.08 RRC 0.001 (-0.119)  0.338 0.319  2.366
0.15 TS 0.255 (-36.806) 0.206 0.214  2.571
0.15 RRC 0.009 (-1.235)  0.390 0.377  3.299
8 =—In4 Ideal 0.005 (-0.366)  0.223  0.230 1.000
0.01 TS 0.277 (-20.008) 0.214 0.232  2.459
0.01 RRC -0.008 (0.585)  0.281  0.290 1.589

0.08 TS 0.560 (-40.412) 0.206 0.209  6.730
0.08 RRC -0.028 (1.990) 0.380 0.392  2.912
0.15 TS 0.669 (-48.266) 0.204  0.209  9.253

0.15 RRC -0.043 (3.082)  0.451 0.459  3.998

Sample size is N=800. The longitudinal measurements of W are made at base-
line and randomly from time windows 3, 6,9, - ,27 4+ 0.3, resulting on average
8.0 measurements available per subject.
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Table 5.2: Simulation results for Model 1(b), with low event rates and large numbers of
longitudinal immune response measurements.

02 Method Bias( % Bias) ASE MCSD MSE

=0 Ideal 0.018 0.232 0.229 1.000
0.01 TS -0.030 0.230 0.233 1.041
0.01 RRC 0.022 0.252 0.250 1.191
0.08 TS -0.144 0.225 0.227  1.367
0.08 RRC 0.011 0.285 0.278  1.468
0.15 TS -0.196 0.222 0.229 1.720
0.15 RRC 0.013 0.303 0.301 1.712
f=—1n4/3 Ideal 0.014 (-4.960)  0.228 0.235  1.000
0.01 TS 0.007 (-2.321)  0.228 0.241 1.043
0.01 RRC 0.017 (-5.794)  0.248 0.251 1.138
0.08 TS -0.057 (19.913) 0.225 0.237  1.067
0.08 RRC 0.006 (-2.122)  0.281 0.279 1.404
0.15 TS -0.070 (24.313) 0.223  0.235 1.084
0.15 RRC 0.003 (-1.064)  0.299 0.305 1.676
B=—1In2 Ideal 0.008 (-1.185)  0.214 0.219  1.000
0.01 TS 0.057 (-8.160)  0.214 0.219 1.070
0.01 RRC 0.016 (-2.259)  0.233 0.235 1.161
0.08 TS 0.057 (-8.212)  0.212 0.211  1.001
0.08 RRC -0.004 (0.594)  0.264 0.264 1.456
0.15 TS 0.079 (-11.397) 0.211 0.225 1.186

0.15 RRC -0.005 (0.690)  0.283  0.288 1.731

B=—1In4 Ideal 0.011 (-0.782)  0.223 0.222  1.000
0.01 TS 0.161 (-11.578) 0.219  0.227  1.565
0.01 RRC 0.013 (-0.958)  0.244 0.245 1.224
0.08 TS 0.303 (-21.861) 0.214  0.209  2.746
0.08 RRC 0.007 (-0.473)  0.280 0.277  1.561
0.15 TS 0.366 (-26.424) 0.212 0.226  3.752

0.15 RRC -0.001 (0.059) 0.303 0.306 1.893

Sample size is N=800. The longitudinal measurements of W are made at
baseline and randomly from time windows 0.5,1.0,1.5, - - ,2840.05, resulting
on average 45.1 measurements available per subject.
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Table 5.3: Simulation results for Model 1(c), with high event rates and moderate numbers
of longitudinal immune response measurements.

02  Method Bias( % Bias) ASE MCSD MSE

=0 Ideal -0.001 0.210 0.211  1.000
0.01 TS -0.133 0.201 0.222  1.513
0.01 RRC -0.032 0.279 0.281  1.803
0.08 TS -0.219 0.187 0.215  2.118
0.08 RRC -0.016 0.399 0424  4.055
0.15 TS -0.218 0.183 0.218  2.132
0.15 RRC -0.012 0.464 0478  5.149
B =—1n4/3 Ideal 0.005 (-1.617)  0.207  0.205  1.000
0.01 TS -0.030 (10.453) 0.202 0.221  1.186
0.01 RRC -0.017 (5.861)  0.267 0.276  1.830
0.08 TS -0.066 (22.987) 0.192 0.215  1.207
0.08 RRC -0.016 (5.649)  0.378 0.382  3.488
0.15 TS -0.063 (21.865) 0.189 0.221  1.263
0.15 RRC 0.011 (-3.939)  0.450 0.473  5.332
B=—1In2 Ideal 0.000 (-0.044)  0.193 0.190  1.000
0.01 TS 0.057 (-8.245)  0.191 0.206  1.261

0.01 RRC -0.009 (1.265)  0.261  0.267  1.962

0.08 TS 0.132 (-19.068) 0.182 0.196  1.538
0.08 RRC  0.038 (-5.482) 0.387 0.404  4.534
0.15 TS 0.169 (-24.393) 0.180 0.210  2.010
015 RRC  0.067 (-9.645) 0.446 0.439  5.447
B=—In4 Ideal  0.002 (-0.156) 0.186 0.184  1.000
0.01 TS 0.278 (-20.066) 0.189  0.196  3.429
001 RRC  0.053 (-3.840) 0.260 0.270  2.241
0.08 TS 0.511 (-36.888) 0.182 0.195  8.874
008 RRC  0.202 (-14.605) 0.409 0.417  6.365
0.15 TS 0.609 (-43.902) 0.181 0.196 12.119

0.15 RRC 0.345 (-24.881) 0.476 0.494  10.768

Sample size is N=160. The longitudinal measurements of W are made at base-
line and randomly from time windows 3,6,9,--- ,27 %+ 0.3, resulting on average
3.9 measurements available per subject.
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Table 5.4: Simulation results for Model 1(d), with high event rates and large numbers of
longitudinal immune response measurements.

02 Method Bias( % Bias) ASE MCSD MSE

B=0 Ideal  0.012 0211 0.201 1.000
0.01 TS -0.077 0.206 0.203 1.163
001 RRC  0.010 0235 0.229 1.292
0.08 TS -0.270 0.194 0.206 2.842
0.08 RRC  0.010 0.281 0279 1.927
0.15 TS -0.300 0.190 0.210 3.311
015 RRC  0.011 0.306 0.319 2.512
B=_—Ind/3 Ideal  0.018 (-6.204) 0.207 0.202  1.000
0.01 TS -0.013 (4.640)  0.205 0.207 1.041
001 RRC  0.018 (-6.169) 0.229 0.233 1.323
0.08 TS -0.123 (42.693) 0.197 0.210  1.439
0.08 RRC  0.016 (-5.388) 0.272 0.283 1.956
0.15 TS -0.144 (50.211) 0.194 0.214 1.617
015 RRC  0.025 (-8.531) 0.298 0.313  2.386
B=—In2 Ideal  0.009 (-1.294) 0.193 0.189 1.000
0.01 TS 0.046 (-6.612)  0.193 0.197 1.133
001 RRC  0.008 (-1.189) 0215 0.221  1.366
0.08 TS 0.004 (-0.580)  0.187 0.196  1.065
0.08 RRC  0.018 (-2.534) 0.260 0.277 2.146
0.15 TS 0.016 (-2.254)  0.184 0.197 1.083
015 RRC  0.039 (-5.573) 0.287 0.308 2.674
B=—In4 Ideal  0.003 (-0.218) 0.185 0.186 1.000
0.01 TS 0.172 (-12.386) 0.188 0.184 1.832
001 RRC  0.017 (-1.198)  0.206 0.216 1.353
0.08 TS 0.285 (-20.561) 0.185 0.190  3.398
0.08 RRC  0.083 (-6.016) 0.258 0.278 2.437
0.15 TS 0.353 (-25.459) 0.183  0.192  4.676

0.15 RRC 0.144 (-10.366) 0.291  0.296  3.135

Sample size is N=800. The longitudinal measurements of W are made at
baseline and randomly from time windows 0.5,1.0,1.5, - - ,2840.05, resulting
on average 20.1 measurements available per subject.
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Figure 5.1: Summary of simulation results for Model 1(a) and Model 1(b) with low event
rates.
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Figure 5.2: Summary of simulation results for Model 1(c) and Model 1(d) with high event

rates.
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5.1.2 Model 2

We next consider the model with an adjustment of vaccination indicator A(u) = Ao(u) exp
{BB(u) +nZ}. This model is useful in Prentice’s framework to assess the vaccine effect on
the disease endpoint adjusting for the dichotomized biomarker. The biomarker X (u) is gen-
erated from X (u) = a1 +aou, where a = (a1, ) given Z is generated from a bivariate Nor-
mal distribution with mean E[a|Z = 1] = (2.570, —0.009)T, E[a|Z = 0] = (2.577, —0.007)7,
and covariance Cov[a|Z] = ¥ with elements (X171, Y12, ¥92) = (0.0191,0.00007,0.0002)%".
The threshold [ for B(u) = I(X(u) > 1) is 2.4047 with P(B(13.5) = 1) = 0.6. The vacci-
nation indicator Z is generated from Bernoulli(0.5). The censoring time is simulated from
Exp(1/80) with an administrative censoring time at 30. We still consider four simulation
scenarios (a)(b)(c)(d) as in Model 1. For each scenario, we simulate the event time data

with hazard ratios (e?,e")T = {(0.5,1)7,(0.5,0.5)T}.

For the two settings Model 2(a) and Model 2(b) with low event rates, the average event
rates are 12.6% and 13.0% when the hazard ratios are (0.5, 1) and (0.5,0.5)7, respectively.
For the two settings Model 2(c) and Model 2(d) with high event rates, the average event
rates are 79.5%, 81.7% when the hazard ratios are (0.5,1)7 and (0.5,0.5)7, respectively.
The average number of measurements available per subject for each of the four scenarios

are 8.0, 45.0, 4.1 and 22.0. See Table and Figure for the simulation results.

From the simulation results we can see that both TS and RRC methods provide very
small biases for 7. Moreover, the TS estimator could be around 15% more efficient than
the RRC estimator. This might suggest that if the objective only centers on evaluating the
adjusted vaccine effect on the disease endpoint, TS estimator could also be considered as a
reasonable method. However, if it is also interesting to look at the effect of the dichotomized
biomarker on the disease endpoint, the RRC method is the only one recommended because
the biases from the TS estimator of 5 can be very large, unless there are extremely large
number of immune response measurements. In this model with both B(u) and Z, the ASE
is still very closed to the MCSD of 3 when the measurement error is not high. However, for
n, the coefficient for Z, the ASE could underestimate the SE(7) up to 45% on average in
Table . Considering such high bias, the ASE is no longer considered as a valid estimate
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for SE(7), so we would suggest using the bootstrap method for the standard error estimates.

From Table |5.9 we see the bootstrap method provides reasonable variance estimates.

Table 5.5: Simulation results for Model 2(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

0?2 Method Bias( % Bias) ASE MCSD MSE

(B,n) B=—In2 Ideal  -0.009 (1.365) 0211 0.213  1.000
= 0.01 TS 0.091 (-13.143) 0.210 0.222  1.262
(—=In2,0) 0.0l RRC  -0.015(2.132) 0.253 0.265 1.544
0.08 TS 0.192 (-27.751) 0.206 0.210  1.780

0.08 RRC  -0.003 (0.479) 0.328 0.332  2.420

0.15 TS 0.242 (-34.869) 0.205 0.228  2.425

0.15 RRC  -0.003 (0.413)  0.378 0.404 3.588

n=0 Ideal  0.007 0.201 0.202  1.000

0.01 TS 0.005 0.201 0.202 1.001

0.0l RRC  0.010 0.179 0.216 1.138

0.08 TS 0.001 0.201  0.203 1.005

0.08 RRC  0.010 0.142 0216 1.137

0.15 TS -0.000 0.201  0.203 1.007

0.15 RRC  0.013 0.130 0.223  1.220

(B, 1) B=—In2 Ideal  -0.016 (2.369) 0.209 0.211  1.000
= 0.01 TS 0.076 (-10.981) 0.207 0.220 1.213
(—In2,—In2) 0.0l RRC  -0.024 (3.425) 0.252 0.261 1.532
0.08 TS 0.184 (-26.499) 0.203 0.212  1.756

0.08 RRC  -0.026 (3.747)  0.327 0.336  2.535

0.15 TS 0.233 (-33.569) 0.202 0.221  2.303

0.15  RRC  -0.030 (4.268) 0.379  0.417  3.900

n=—In2 Ideal  0.002 (-0.292) 0.209 0.224  1.000

0.01 TS -0.000 (0.048)  0.209 0.224  1.002

0.0l RRC  0.004 (-0.575) 0.202 0.242 1.168

0.08 TS -0.003 (0.404)  0.209 0.224  1.001

0.08 RRC  0.004 (-0.641) 0.163 0.242 1.168

0.15 TS -0.004 (0.550)  0.209  0.224  1.003

0.15 RRC  0.006 (-0.886) 0.149 0.246  1.200

Sample size is N=800. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 3,6,9, - - - ,27+0.3, resulting on average 8.0 measurements available
per subject.
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Table 5.6: Simulation results for Model 2(b), with low event rates and large numbers of
longitudinal immune response measurements.

0?2  Method Bias( % Bias) ASE MCSD MSE

(B,1m) f=—In2 Ideal 0.011 (-1.545)  0.213  0.219  1.000
= 0.01 TS 0.053 (-7.670)  0.212 0.218 1.041
(—1n2,0) 0.0l RRC 0.003 (-0.467)  0.225 0.240 1.189
0.08 TS 0.071 (-10.185) 0.211  0.221  1.118

0.08 RRC -0.004 (0.548)  0.257 0.264  1.440

0.15 TS 0.100 (-14.454) 0.209 0.216 1.174

0.15 RRC 0.019 (-2.715)  0.273  0.286  1.705

n=0 Ideal -0.002 0.202 0.201  1.000

0.01 TS -0.003 0.202 0.201  0.999

0.0l RRC 0.000 0.185 0.204 1.029

0.08 TS -0.004 0.202  0.200  0.995

0.08 RRC 0.001 0.165 0.203  1.027

0.15 TS -0.005 0.202  0.201  1.000

0.15 RRC -0.002 0.158  0.207  1.068

(B,m) f=—In2 Ideal 0.015 (-2.111)  0.210 0.213  1.000
= 0.01 TS 0.060 (-8.684)  0.210 0.215 1.101
(-1In2,—1n2) 0.01 RRC 0.012 (-1.728)  0.224 0.235 1.220
0.08 TS 0.080 (-11.567) 0.208 0.214  1.152

0.08 RRC 0.013 (-1.805)  0.254 0.254  1.420

(_
(_
(_
(_
(_
0.15 TS 0.099 (-14.333) 0.207 0.215 1.235
0.15 RRC 0.013 (-1.894)  0.272 0.279 1.710
(_
(_
(_
(_
(_
(_

0.15 TS 0.000 (-0.018 0.210 0.216 1.007
0.15 RRC 0.005 (-0.738 0.187 0.219 1.034
Sample size is N=800. The longitudinal measurements of W are made at baseline and ran-

domly from time windows 0.5,1.0,1.5,--- ,28 £0.05, resulting on average 45.0 measurements
available per subject.

n=—1In2 Ideal 0.002 (-0.262)  0.210 0.215  1.000
0.01 TS 0.001 (-0.176)  0.210  0.215  1.003
0.01 RRC 0.005 (-0.713)  0.216  0.218  1.024
0.08 TS 0.000 (-0.070)  0.210 0.215  0.998
0.08 RRC 0.005 (-0.705)  0.195 0.218 1.024
)
)
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Table 5.7: Simulation results for Model 2(c), with high event rates and moderate numbers
of longitudinal immune response measurements.

02 Method Bias( % Bias) ASE MCSD MSE

(B,n) B=—In2 Ideal 20.002 (0.355)  0.193 0.200 1.000
= 0.0l TS 0.075 (-10.802) 0.192 0.219 1.336
~1n2,0) 0.0l RRC 0.007 (-0.956) 0.260 0.268 1.795
0.08 TS 0.138 (-19.959) 0.184 0.208 1.553

0.08 RRC  0.116 (-16.785) 0.429 0.410 4.527

0.15 TS 0.176 (-25.450) 0.182  0.218  1.958

0.15 RRC  0.187 (-26.983) 0.495 0.481 6.638

n=0 Ideal -0.005 0.180 0.188  1.000

0.0l TS -0.005 0.180  0.196  1.080

0.0l RRC -0.000 0171 0.202  1.149

0.08 TS -0.007 0.180 0.195  1.068

0.08 RRC -0.006 0.277 0248 1.737

0.15 TS -0.009 0.180  0.192  1.036

0.15 RRC -0.013 0.391 0313  2.759

(B, ) B=—In2 Ideal -0.008 (1.201) 0.194 0.203 1.000
= 0.01 TS 0.078 (-11.206) 0.193  0.225 1.374
(—In2,—In2) 0.01 RRC 0.017 (-2.406) 0.289 0.286 1.981
0.08 TS 0.132 (-19.045) 0.182 0.217  1.565

(_
0.08 RRC 0.144 (-20.717) 0.470  0.419  4.743
0.15 TS 0.190 (-27.430) 0.180 0.217 2.010
0.15 RRC 0.186 (-26.898) 0.527 0.464 6.049

n=—In2 Ideal -0.012 (1.669) 0.183 0.191  1.000
0.01 TS -0.029 (4.191)  0.182 0.197  1.090
0.01 RRC -0.002 (0.341)  0.216 0.211 1.214
0.08 TS -0.019 (2.785) 0.182  0.196  1.067
0.08 RRC 0.012 (-1.671)  0.360 0.287  2.254
0.15 TS -0.015 (2.149)  0.182 0.195 1.047

0.15 RRC 0.031 (-4.410) 0.511 0.356  3.491

Sample size is N=160. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 3,6, 9, - - - ,27£0.3, resulting on average 4.1 measurements available
per subject.
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Table 5.8: Simulation results for Model 2(d), with high event rates and large numbers of
longitudinal immune response measurements.

02  Method Bias( % Bias) ASE MCSD MSE

(8,7m) B=—1In2 Ideal 0.014 (-2.059) 0.193  0.191  1.000
= 0.01 TS 0.057 (-8.208) 0.193 0.191 1.077
(—1n2,0) 0.01 RRC 0.019 (-2.779) 0.216 0.222  1.351
0.08 TS 0.022 (-3.148) 0.188 0.186  0.957

0.08 RRC 0.061 (-8.810) 0.264 0.259  1.927

0.15 TS 0.040 (-5.712)  0.185 0.197 1.098

0.15 RRC 0.105 (-15.132) 0.287 0.299  2.725

n=20 Ideal -0.004 0.180 0.187  1.000

0.01 TS -0.004 0.180 0.188 1.011

0.01 RRC -0.003 0.167 0.193 1.065

0.08 TS -0.005 0.180 0.188 1.011

0.08 RRC -0.002 0.176  0.205 1.202

0.15 TS -0.004 0.180 0.189 1.012

0.15 RRC -0.008 0.181 0.213 1.297

(8,1m) B=—In2 Ideal 0.015 (-2.231) 0.194 0.194 1.000
= 0.01 TS 0.046 (-6.629) 0.193 0.195 1.052
(—In2,—1n2) 0.01 RRC 0.029 (-4.184) 0.232 0.222 1.316
0.08 TS 0.010 (-1.461) 0.186 0.194  0.997

0.08 RRC 0.088 (-12.668) 0.283 0.272  2.152

0.15 TS 0.032 (-4.685) 0.184 0.198  1.055

0.15 RRC 0.127 (-18.289) 0.306 0.304  2.855

n=—1n2 Ideal -0.019 (2.712)  0.183  0.190  1.000

0.01 TS -0.016 (2.284) 0.183 0.191 1.004

0.01 RRC -0.015 (2.133)  0.206  0.196  1.059

0.08 TS -0.012 (1.764) 0.183 0.192  1.017

0.08 RRC -0.005 (0.750) 0.222  0.208 1.191

0.15 TS -0.006 (0.903) 0.183 0.192 1.015

0.15 RRC -0.002 (0.221) 0.225 0.226  1.399

Sample size is N=160. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 0.5,1.0,1.5,--- ,28 £0.05, resulting on average 22.0 measurements

available per subject.
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Figure 5.3: Summary of simulation results for Model 2(a) and Model 2(b) with low event

rates.
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Figure 5.4: Summary of simulation results for Model 2(c) and Model 2(d) with high event
rates.

Model 2 (c)

(B.n)=(-In(2),0) (Bm=(-In(2).~In(2))
B n B
A
T A &7
. - Ty -
8 S PR a- ” s
= a
[s4]
e+
84 & . o Ay * g +
e —— ° ° ° A—""A——--A
T T T T T T T T T T T T
0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15
P - Tg——
S = g====-s
S B — s
g ¢ HER
L‘al; o1 A —— Ideal al .
~ . _ ~ .
=27 S+ _: ;SRC T
= <. ~
8 A AL E 2
[TR] ~ . e
r ¥ ‘.-$ \_‘*
T T T T T T T T T
0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15
.+
w e ’ 4+
] * a
<
= +
T @ +
I N i + Y s o= . . & . .
T T T T T T T T T T T T
0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15

Model 2(d)

(B.n)=(-In(2),0) B.n)=(-In(2),~In(2))
B n B
F
S +
S +°
[%] .
88 4 ac .
m o = .a al
oS- 7 + s - -8
° ¢ ° ° g
S & e : ?
T T T T T T T T T T
0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15
— A== = AT ————°
DS L S é.‘. Parl Pl
o o —
e ° -3 . . e —
Joprge -7 T - :./.” A
m -7 e —— Ideal .
A
o g4 *.. -A- TS -
= ! t . o " *.
= + RRC +.
© 7 4
x 4+
T T T T T T T T T
0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15
+
+ .
w v :
0 7
z° -+
8w |
v - +
e A g g + o U
o4 $= a = & 4 s O =0 T TR Y
T T T T T T T T T T T T
0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15



117

Table 5.9: Simulation results on RRC bootstrap standard error estimates for Model 2(a)
with (3,1)7 = (= 1n2,0)T.

0%? Bootstrap SE MCSD

B=—-—In2 0.01 0.271 0.264
0.08 0.357 0.349
0.15 0.422 0.384
n=20 0.01 0.212 0.201
0.08 0.212 0.202
0.15 0.214 0.206

The results are based on B = 50 bootstrap
samples and 200 simulation runs.

5.1.3 Model 3

We also consider the model with the interaction effect of the vaccination and dichotomized
biomarker A(u) = Ag(u) exp{B8B(u)+nZ+~vyB(u)Z}. The simulation datasets are generated
exactly the same as those in Model 2 with hazard ratios (e, e”)” = (0.5,0.5)”. This actually
indicates a simulation setting with true e” = 1. See Table [5.10 and Figure for
simulation results.

For this interaction model, if the event rate is low, the RRC method produces much
smaller biases for B than does the TS method. The biases from the TS method reduce as
the number of measurements get very large. In the setting with high event rate, even the
RRC method could give biases larger than 0.1. For v, both RRC and TS methods provide
estimates with very small bias in rare event rate setting. As the event rate gets high, the
TS and RRC estimates can be quite biased. Also we found it could be very unstable to
fit such an interaction model, with only less than 80% of the simulations runs converged.
The interaction model is actually rarely examined in existing literatures on joint modeling
methods. The ASE for the interaction model could overestimate the standard error to as

high as 50%. Therefore we still recommend using the bootstrap method.
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Table 5.10: Simulation results for Model 3(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

0?2  Method Bias( % Bias) ASE MCSD RMSE

B =—1In2 Ideal -0.015 (2.121) 0.255 0.249 1.000
0.01 TS 0.083 (-11.988) 0.254  0.274 1.321
0.01 RRC -0.015 (2.114) 0.454  0.293 1.386
0.08 TS 0.185 (-26.736) 0.251  0.278 1.797
0.08 RRC -0.017 (2.460) 0.780  0.400 2.576
0.15 TS 0.238 (-34.318) 0.250  0.275 2.125
0.15 RRC 0.036 (-5.195) 1.081  0.459 3.412
n=—In2 Ideal -0.001 (0.162) 0.291  0.295 1.000
0.01 TS 0.002 (-0.283) 0.296  0.327 1.233
0.01 RRC 0.019 (-2.779) 0.397 0.276 0.883
0.08 TS -0.008 (1.143) 0.296 0.329 1.246
0.08 RRC 0.013 (-1.804) 0.617 0.340 1.336
0.15 TS -0.003 (0.493) 0.295 0.324 1.207
0.15 RRC 0.003 (-0.489) 0.812 0.397 1.819
=0 Ideal -0.011 0.425 0.424 1.000
0.01 TS -0.030 0.427  0.522 1.524
0.01 RRC -0.065 0.729 0.448 1.141
0.08 TS -0.009 0.426  0.501 1.397
0.08 RRC -0.052 1.236  0.623 2.175
0.15 TS -0.022 0.426  0.503 1.414
0.15 RRC -0.039 1.626 0.733 3.002
Sample size is N=800. The longitudinal measurements of W;; are made at
baseline and randomly from time windows 3,6,9,--- ,27 4+ 0.3, resulting on

average 8.0 measurements available per subject.
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Table 5.11: Simulation results for Model 3(b), with low event rates and large numbers of
longitudinal immune response measurements.

0?2 Method Bias( % Bias) ASE MCSD RMSE
B=—1In2 Ideal 0.018 (-2.566)  0.256  0.256  1.000
8.579) 0256 0.266  1.126

)

0.01 TS 0.059 (-
0.0l RRC  0.021(-3.061) 0.388 0.275 1.153
0.08 TS 0.081 (-11.693) 0.254 0.261  1.134
0.08 RRC  0.024 (-3472) 0485 0.307  1.442
0.15 TS 0.102 (-14.764) 0.253 0.260  1.181
0.15 RRC  0.038 (-5.459) 0.537 0319  1.566
n=—In2 Ideal  -0.001 (0.138) 0.297 0.299  1.000
0.01 TS -0.008 (1.121)  0.301  0.308  1.060
0.0l RRC  0.023(-3.299) 0.357 0.283  0.899
0.08 TS -0.005 (0.714)  0.299  0.299  1.001
0.08 RRC  -0.010 (1.483) 0.419 0.333  1.238
0.15 TS -0.004 (0.625) 0.298  0.313  1.090
0.15 RRC  0.007 (-1.044) 0.456 0.347  1.341
v=0 Ideal  -0.011 0.426 0431  1.000
0.01 TS 0.002 0426 0.439  1.037
0.0l RRC  -0.041 0.583  0.402  0.879
0.08 TS -0.005 0.426  0.430  0.994
0.08 RRC  -0.003 0.736  0.510  1.399
0.15 TS -0.009 0.426 0.448  1.081
0.15 RRC  -0.043 0.836 0.554  1.665

Sample size is N=800. The longitudinal measurements of W;; are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, - - - , 28+0.05, resulting
on average 45.0 measurements available per subject.
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Table 5.12: Simulation results for Model 3(c), with high event rates and moderate numbers
of longitudinal immune response measurements.

0?2  Method Bias( % Bias) ASE MCSD RMSE
B=—In2 Ideal -0.027 (3.966)  0.268  0.276  1.000
0.01 TS 0.022 (-3.155)  0.265 0.382  1.904

6

2

(
0.01 RRC 0.072 (-10.416) 1.379 0.381 1.965
0.08 TS 0.104 (-15.012) 0.249  0.350 1.741
0.08 RRC 0.308 (-44.368) 1.888  0.592 5.794
0.15 TS 0.150 (-21.605) 0.246  0.332 1.729
0.15 RRC 0.373 (-53.871) 1.991  0.642 7.185
n=—In2 Ideal -0.040 (5.838) 0.319 0.321 1.000
0.01 TS -0.119 (17.121) 0.321  0.492 2.444
0.01 RRC 0.037 (-5.389) 1.251 0.363 1.266
0.08 TS -0.063 (9.036) 0.289 0.423 1.741
0.08 RRC 0.138 (-19.918) 1.685  0.586 3.455
0.15 TS -0.069 (9.996) 0.281 0.390 1.497
0.15 RRC 0.176 (-25.405) 1.751  0.607 3.806
=0 Ideal 0.038 0.384 0.376 1.000
0.01 TS 0.125 0.387 0.618 2.778
0.01 RRC -0.053 1.507 0.432 1.321
0.08 TS 0.065 0.369  0.558 2.204
0.08 RRC -0.169 2.252  0.760 4.240
0.15 TS 0.086 0.365 0.542 2.103
0.15 RRC -0.194 2.475  0.867 5.015
Sample size is N=160. The longitudinal measurements of W;; are made at
baseline and randomly from time windows 3,6,9,--- ,27 4+ 0.3, resulting on

average 4.1 measurements available per subject.
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Table 5.13: Simulation results for Model 3(d), with high event rates and large numbers of
longitudinal immune response measurements.

0?2 Method Bias( % Bias) ASE MCSD RMSE
B=—1In2 Ideal 0.003 (-0.387)  0.270  0.292  1.000
0.01 TS 0.032 (-4.559)  0.269  0.301  1.075
0.01 RRC 0.031 (-4.500)  0.856 0.329  1.277
0.08 TS -0.017 (2.439)  0.256 0.293  1.007
0.08 RRC 0.122 (-17.618) 1.164 0.399  2.044
0.15 TS 0.002 (-0.324)  0.252  0.286  0.962
0.15 RRC 0.163 (-23.492) 1.243 0.397  2.159
n=—In2 Ideal -0.037 (5.403)  0.320 0.331  1.000
0.01 TS -0.038 (5.498)  0.319 0.357  1.158
0.01 RRC -0.014 (2.044) 0.819 0364  1.191
0.08 TS -0.050 (7.184)  0.301  0.339  1.053
0.08 RRC 0.027 (-3.964)  1.058 0.410  1.514
0.15 TS -0.046 (6.638)  0.293  0.322  0.951
0.15 RRC 0.041 (-5.948)  1.096 0.393  1.401
7=0 Ideal 0.023 0.385 0.402  1.000
0.01 TS 0.028 0.385 0.439  1.192
0.0l RRC -0.006 0.941 0453  1.263
0.08 TS 0.054 0.373  0.428  1.145
0.08 RRC -0.057 1.326  0.543  1.834
0.15 TS 0.061 0.369  0.403  1.022
0.15 RRC -0.063 1.445 0534  1.782

Sample size is N=160. The longitudinal measurements of W;; are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, - - - , 28+0.05, resulting
on average 22.0 measurements available per subject.
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Figure 5.5: Summary of simulation results for Model 3(a) and Model 3(b) with low event
rates.
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Figure 5.6: Summary of simulation results for Model 2(c) and Model 2(d) with high event

rates.
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5.1.4 Model 4

We finally consider the model with two dichotomized biomarkers A(u) = Ag(u) exp{ 31 B1(u)+
BoBa(u) +nZ}. The biomarkers X;(u) and Xa(u) are generated as X1 (u) = aq + agu, and
Xo(u) = az + aqu, where a = (ay,as, a3, a4)” is multivariate Normal distribution with

mean E[a] = (2.575, —0.009, 2.925, —0.003)” and covariance Cov|a] = ¥

0.0191 7e—05 0.01036 —6e—5
7e —05 0.0002 le—5 le—6
0.01036 le—5 0.0354 —0.00011
—6e—5 1le—6 —0.00011 0.0003

The vaccination indicator Z is generated from Bernoulli(0.5). The censoring time
is simulated from Ezp(1/80) with an administrative censoring time at 30. We consider
only the scenario (a) with low event rate, moderate number of measurements and sam-
ple size N = 800. We simulate the survival data with hazard ratios (661,6'82,€n) =
{(0.5,0.5,1)7,(0.5,0.5,0.5)"}. The average event rates under those two sets of hazard
ratios are 11.1% and 10.8% respectively. See Table and Figure for the simulation
results.

As in Model 2(a) with one biomarker, here with two biomarkers, we also see that both
TS and RRC methods provide very small biases for 7, and the TS method tends to give
slightly smaller MCSD for large measurement error setting. As for estimating 8; and fa,
still only the RRC method performs well. The ASE estimates for all three parameters are

very close to the corresponding MCSDs.
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Table 5.14: Simulation results for Model 4(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

o011 Method Bias( % Bias) ASE MCSD RMSE

(B, B2) B =—In2 Ideal  -0.008 (1.212) 0.227 0.220  1.000
= 0.01 TS 0.086 (-12.394) 0.235 0.240  1.341
(—In2,—1n?2) 0.0l RRC  -0.023 (3.280) 0.279 0.287  1.712
n=0 0.15 TS 0.258 (-37.234) 0.232 0.232  2.485
0.15 RRC  0.008 (-1.104)  0.433 0420  3.649

By =—In2 Ideal  -0.021 (3.006) 0.219 0.222  1.000

0.01 TS 0.108 (-15.516) 0.229 0.230  1.295

001 RRC  -0.034 (4.846) 0.276 0.281  1.614

0.15 TS 0.323 (-46.591) 0.228 0.225  3.112

0.15 RRC  -0.035 (5.044) 0.443 0.464  4.354

n=0 Ideal  -0.002 0.214 0.202  1.000

0.01 TS 0.003 0.226 0215  1.127

001 RRC  0.002 0225 0215 1.134

0.15 TS 0.002 0226 0214  1.124

015 RRC  0.010 0.237 0.226  1.253

(B, B2) B =—In2 Ideal  0.010 (-1.400) 0.231 0.234  1.000
= 0.01 TS 0.098 (-14.161) 0.239 0.241  1.227
(—~In2,—1n2) 001 RRC  -0.003 (0.411) 0.283 0.297  1.599
n=—In2 015 TS 0.274 (-39.525)  0.236  0.238  2.390
015 RRC  0.020 (-2.815) 0.442 0.439  3.503

By = —1In2 Ideal  -0.020 (2.943) 0.223 0219  1.000

0.01 TS 0.110 (-15.889) 0.232 0.228  1.326

001 RRC  -0.033 (4.708) 0281 0.278 1.613

0.15 TS 0.319 (-46.034) 0.232 0.243  3.321

015 RRC  -0.018 (2.652) 0.451 0.483  4.823

n=—In2 Ideal  -0.014 (1.991) 0.230 0.227  1.000

0.01 TS -0.012 (1.669) 0.242 0.239  1.107

0.0l RRC  -0.013 (1.906) 0.242 0240 1.118

0.15 TS -0.008 (1.204) 0.242 0.239  1.101

0.15 RRC -0.007 (0.940)  0.254 0.247  1.183

Sample size is N=800. The longitudinal measurements of W are made at baseline and randomly
from time windows 3,6,9,---,27 + 0.3, resulting on average 8.0 measurements available per
subject.
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Figure 5.7: Summary of simulation results for Model 4(a).
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5.1.5 Alternative fitting on Model 1

As discussed at the end of Chapter 4, subjects experiencing an event before enough visits
for measuring biomarker data have been made make no contribution to the estimating
equations UZ(0) = 0 (if the nuisance parameters p(u) and X(u) are estimated using only
subjects with more than ¢ measurements). Also from the simulation studies above we
have seen that the number of measurements does have an influence on performance of the
RRC and TS estimates, especially for the high-event-rate settings. The reason for this
could be because more cases are getting involved in the estimation procedure. We now
consider an alternative setting where we hope not to lose cases by considering the hazard of
event occurring after some time point (for example, the third scheduled visits for biomarker
measurements), and censoring the event occurring before that time point. So in such an
analysis, the cases experiencing an event would have made at least the first several visits

for measuring biomarker data.
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We modified Model 1(a) and Model 1(c) accordingly in this way. We define the new event
to occur after time u = 8. In this way, all cases would have at least three measurements.
We call the new simulation models as Model 1(a*) and Model 1(c¢*). For Model 1(a*), the
average event rates under hazard ratios 1, 0.75, 0.5, and 0.25 are 8.0%, 9.0%, 8.0% and
10.0%, respectively. For Model 1(c*), the average event rates are 35.8%, 38.2%, 38.0% and
38.1%. This indicates that in Model 1(c), around half of the events occur within u € [0, 8].
Table and Figure [5.8 summarize the simulation results. We see that in the setting
with high event rate and moderate or unity hazard ratio, the TS estimator is majorly
improved and could even perform better than the RRC estimator. The RRC method still

performs as well as it does in Model 1(c).
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Table 5.15: Simulation results for Model 1(a*).

0?2  Method Bias( % Bias) ASE MCSD RMSE

B8=0 Ideal 0.025 0.258  0.255 1.000
0.01 TS -0.011 0.258 0.254  0.983
0.01 RRC 0.024 0.296 0.281 1.214
0.08 TS -0.055 0.257  0.262 1.090
0.08 RRC 0.024 0.371  0.349 1.859
0.15 TS -0.072 0.256  0.260 1.106
0.15 RRC 0.036 0.421 0414  2.627
B =—1n4/3 Ideal 0.029 (-10.136) 0.257  0.248 1.000
0.01 TS 0.055 (-19.068) 0.257 0.254  1.083
0.01 RRC 0.030 (-10.509) 0.295  0.285 1.320
0.08 TS 0.070 (-24.244) 0.256  0.256 1.134
0.08 RRC 0.028 (-9.880)  0.370  0.350 1.979
0.15 TS 0.080 (-27.660) 0.256  0.262 1.202
0.15 RRC 0.033 (-11.330) 0.420 0.416  2.801
f=—In2 Ideal 0.019 (-2.772)  0.246  0.234  1.000
0.01 TS 0.123 (-17.804) 0.244 0.237  1.293
0.01 RRC 0.015 (-2.225)  0.283  0.268 1.297
0.08 TS 0.227 (-32.686) 0.241  0.235 1.922
0.08 RRC 0.001 (-0.137)  0.357  0.332 1.996
0.15 TS 0.293 (-42.229) 0.240 0.243  2.617
0.15 RRC 0.010 (-1.470)  0.408 0.397  2.844
B =—In4 Ideal -0.002 (0.119)  0.266  0.275 1.000
0.01 TS 0.265 (-19.104) 0.250  0.256 1.795
0.01 RRC -0.017 (1.227)  0.313  0.329 1.432
0.08 TS 0.567 (-40.893) 0.238 0.237  4.994
0.08 RRC -0.033 (2.366)  0.412 0.428  2.436
0.15 TS 0.681 (-49.127) 0.235 0.240  6.902

0.15 RRC -0.045 (3.243)  0.494 0.516  3.545




Table 5.16: Simulation results for Model 1(c*).

0?2 Method Bias( % Bias) ASE MCSD RMSE
B=0 Ideal -0.027 0.278 0.276  1.000
0.01 TS -0.066 0.276  0.275  1.040
0.0l RRC -0.042 0.324 0.325  1.395
0.08 TS -0.098 0.274 0274  1.102
0.08 RRC -0.036 0.445 0.476  2.959
0.15 TS -0.111 0273 0.258  1.024
0.15 RRC -0.017 0.506 0.545  3.853
B=—1n4/3 Ideal -0.013 (4.380)  0.264 0.257  1.000
0.01 TS 0.011 (-3.836)  0.264 0.260  1.028
0.0l RRC -0.023 (8.118)  0.306  0.308  1.439
0.08 TS 0.009 (-2.973)  0.263 0.264  1.057
0.08 RRC -0.024 (8.479)  0.414 0.417  2.643
0.15 TS 0.003 (-1.021)  0.262 0.268  1.086
0.15 RRC -0.004 (1.247)  0.488 0.523  4.131
B=—1In2 Ideal -0.010 (1.488)  0.265 0.263  1.000
0.01 TS 0.084 (-12.178) 0.266 0.266  1.125
0.0l RRC -0.009 (1.306)  0.312  0.333  1.598
0.08 TS 0.172 (-24.841) 0.264 0.256  1.375
0.08 RRC 0.028 (-4.092)  0.439 0.464  3.120
0.15 TS 0.206 (-29.783) 0.263 0.260  1.589
0.15 RRC 0.041 (-5.873)  0.491 0.649  6.100
B=—In4 Ideal -0.000 (0.004)  0.265 0.264  1.000
0.01 TS 0.281 (-20.239) 0.268  0.249  2.021
0.01 RRC 0.064 (-4.612)  0.316 0.331  1.632
0.08 TS 0.521 (-37.546) 0.266 0.249  4.772
0.08 RRC 0.243 (-17.503) 0.464 0.461  3.886
0.15 TS 0.594 (-42.832) 0.265 0.255  5.984
0.15 RRC 0.359 (-25.900) 0.526 0.607  7.136
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Figure 5.8: Summary of simulation results for Model 1(a*) and Model 1(c*).
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5.1.6 Investigate the working distributional assumption

Note our working distributional assumption contains three elements: Normal, mean and
variance. We explore which of the three elements in the assumption are most likely to be

violated.

First consider the simple setting with A(u) = Agexp{—1In(4)X (u)} in Model 1(a) with

T are from a bivariate Normal distribu-

X(u) = a1 + agu. The random effects (aq, )
tion with mean p = (2.575,—0.009)” and covariance ¥ with elements (311, 212, X92)? =
(0.0191,0.00007,0.0002)". The baseline hazard is A\g = 0.011. By direct calculation, it is
easy to derive the expression of the true density function for «|T" > u. Our goal here is to
investigate how much our proposed “Normal” working distribution departs from the truth.

We generate one simulation data set and compare the following density functions. At each

time when an event occurs, we calculate the parameters and plot the density functions.

1. Let po(a;u) denote the true density of a|T" > u, and po(u), ¥o(u) denote the corre-
sponding true mean and covariance.
2. Let py(c;u) denote the Normal density function with true mean and covariance, i.e.

N (po(u), Xo(u)).
3. Let pr(a;u) denote the Normal density function estimated in the RRC method, i.e.

N(j(u), %(u)), where fi(u) and S(u) are estimated from (@.20) and (£.21)).

Note pp(c;u) is the correct conditional probability density function of «|T" > w. For
pn(a;u), it leads to the correct mean and variance, but has incorrect distribution. And
pr(a;u) represents the working distributional assumption. Figure shows the plots of
density functions at one chosen time point. As shown in this figure, actually across all
event time points, the shapes of po(a;u) and py(a;u) look very similar. This implies in
such setting with a Normal, «|T" > u could also be approximated by a Normal distribution
across all time points. However, by comparing po(c; u) and pr(a;u), we found that pr(a;u)

tends to have slightly higher peak, suggesting (u) might not be a good estimate for S (u).
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Figure 5.9: Examining the working distributional assumption based on density functions
for Model 1(a) with low event rates.
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Similar investigation was done for Model 1(c) with high event rate (Figure [5.10]). Still
po(c;u) could be approximated by a Normal distribution well.

However, the shape of
pr(a;u) could be very different from the truth. We observed this discrepancy more fre-

quently and more extremely than that in Model 1(a), probably due to a number of events



occurring at the early stage by when only two or three measurements were available
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Figure 5.10: Examining the working distributional assumption based on density functions
for Model 1(c) with high event rates.
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5.2 Simulation for two-phase sampling design cohort studies

In this section, we evaluate the RRC estimator for a dichotomous biomarker in two phase
sampling design studies. The second phase sample is selected based on case-control sampling,
including all cases (A = 1) and 14.3% of the controls (A = 0). We consider the IPW RRC
method with pre-specified sampling probabilities (RRC(7)) and with estimated sampling
probabilities (RRC(7)), as well as the complete-case RRC estimator (CC). We only consider
the scenario (a) with low event rate. For the estimates of the standard errors, we consider
both the ASE and the bootstrap SE. The RMSE is calculated as the Monte Carlo variance

of B compared to the RRC estimates obtained based on full cohort data.

5.2.1 Model 1(a)

The full cohort data is generated from Model 1(a) in Section from hazard function
Au) = Mo(u) exp{BB(u)}. The number of subjects being sampled for measuring immune
biomarker data is shown in Table (.17l The simulation results are in Tabld.19l From the
results we see that due to only including around 25% of the sample in IPW analysis, we
could lose around 50% to 80% of the efficiency. As expected, though, the IPW estimates
still have very small biases with relative biases less than 6%. However, the CC estimates
could generate a relative bias as high as 25%. The ASE still provides a good estimate of

A~

SE(B), as what we have seen in the full data analysis.

Table 5.17: The sample size for Phase I (V) and Phase II (n) sample for Model 1(a).

Case (A =1) Control (A =0)

B N(n) N(n)

0 94 (94) 706 (101)
~1n(2) 91 (91) 709 (101)
—In(4) 101 (101) 699 (100)
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Table 5.18: The sample size for Phase I (V) and Phase II (n) sample for Model 2(a).

Case (A =1) Control (A =0)

(B,m) N(n) N(n)
(—In(2),0) 101 (101) 699 (100)
(—In(2),—In(2)) 104 (104) 696 (99)

5.2.2 Model 2(a)

We next consider the two-phase sampling on the data generated from Model 2(a) in Section
with A(u) = Ag(u) exp{BB(u) + nZ}. The number of subjects sampled with mea-
surements of immune biomarker data is shown in Table [£.18 The simulation results are
in Tabld5.21] Similar pattern in terms of biases and RMSE as that for Model 1(a) shows
up here. The only concern is still that the ASE for 7 underestimates SE(7) to 30%~40%,
as what we have seen in full data analysis. So we suggest running bootstrap method for
the standard error estimates for such models with adjustments. We conduct the bootstrap
fixing the Phase II sample. Suppose in the Phase II sample, the number of cases and con-
trols are n; and ng. Then within the Phase II case group, we sample with replacement n;
subjects to form the bootstrap case subjects, and within the Phase II control group, we
sample with replacement ng subjects to form the bootstrap control subjects. It is similar
to the B2 procedure described in |Odile, 2007] by fixing the case and control group and
perform bootstrap within each group independently. See Table for the bootstrap SE.

Again, the bootstrap yields accurate standard error estimates.
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Table 5.19: Simulation results for Model 1(a) with two-phase sampled data.

0?2 Method Bias( % Bias) ASE MCSD RMSE

B=0 0.0l RRCfull 0.028 0.279 0.269  1.000
0.01 CC 0.027 0.297 0277  1.058
0.01 RRC(r) 0.032 0.351  0.346  1.649
0.01 RRC(#) 0.032 0.351  0.346  1.649
0.08 RRCfull 0.030 0.356  0.335  1.000
0.08 CC 0.033 0.323 0.336  1.003
0.08 RRC(w) 0.045 0.446 0.415  1.541
0.08 RRC(#) 0.045 0.446 0.416  1.543
0.15 RRCfull 0.035 0.408 0.396  1.000
0.15 CC 0.037 0432 0418  1.118
0.15 RRC(r) 0.056 0.519 0.508  1.656
0.15 RRC(#) 0.055 0.521  0.509  1.663

B=—-In2 00l RRCful 0.015
001 CC 0.172
0.01 RRC(r) 0.020
0.01 RRC(#) 0.020
0.08 RRCfull 0.001
0.08 CC 0.162
0.08 RRC(r) 0.015
0.08 RRC(7) 0.014
0.15 RRCfull 0.009
0.15 CC 0.163

2227) 0.261 0.251  1.000
24.807) 0.241 0.254  1.492
2.927) 0334 0.326  1.691
2.878) 0.334 0.326  1.692
-0.119)  0.338  0.319  1.000
-23.360) 0.351 0.332  1.339
-2.136) 0430 0.419  1.723
2.074) 0430 0.420  1.727
-1.235)  0.390 0.377  1.000
-23.550) 0.370 0.394  1.281
0.15 RRC(r) 0.038 (-5.453) 0.500 0.505  1.804
0.15 RRC(#) 0.038 (-5.478) 0.500 0.505  1.801
B=—In4 001 RRCfull -0.008 (0.585) 0.281 0290 1.000
0.01 CC 0.302 (-21.759) 0.285 0.282  2.022
0.01 RRC(r) -0.006 (0.443) 0.349 0.353  1.479
0.01 RRC(#) -0.007 (0.494) 0.350 0.353  1.481
0.08 RRCfull -0.028 (1.990) 0.380 0.392  1.000
0.08 CC 0.336 (-24.252) 0.350 0.376  1.645
0.08 RRC(w) -0.023 (1.640) 0.472 0.478  1.482
0.08 RRC(#) -0.024 (1.706) 0.472 0.479  1.486
0.15 RRCfull -0.043 (3.082) 0.451 0.459  1.000
0.15 CC 0.264 (-19.041) 0.422 0.459  1.320
0.15 RRC(w) -0.021 (1.503) 0.569 0.581  1.594
0.15 RRC(#) -0.021 (1.516) 0.569 0.582  1.595

AN N N N N N N N N N N

Sample size is N=800. The longitudinal measurements of W;; are made at
baseline and randomly from time windows 0.5,1.0,1.5,---,28 4+ 0.05. The
two-phase sampling is conducted by sampling all cases (A = 1) and 14.3% of
controls (A = 0).
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Table 5.20: Simulation results on RRC(7) bootstrap standard error estimates for Model

2(a) with two-phase sampled data. Regression parameters are (3,1)” = (—1n2,0)7.

0%? Bootstrap SE MCSD

B=—In2 0.0l 0.344 0.348
0.08 0.480 0.473
0.15 0.538 0.580
n=0 0.01 0.296 0.281
0.08 0.300 0.284
0.15 0.301 0.281

The Bootstrap SE is evaluated for RRC(7).
The results are based on B = 100 bootstrap
samples and 200 simulation runs.

5.3 Discussion

We have evaluated the performance of the RRC and TS method for joint modeling of
dichotomized biomarkers and event time data, as well as the RRC method in the two-phase
sampling design studies. Generally speaking, in the rare-event setting the RRC method
gives reasonably small bias regardless of the magnitude of measurement error and the size
of hazard ratio. In high event rate setting, the RRC estimator tends to be very biased when
the relative risk is very high. The TS estimator seems to give intolerable biases generally,
even though it produces relatively small MCSD compared to the RRC estimator. The
simulation results imply that the RRC estimator could be useful in vaccine efficacy trials
where the infection or disease rate is small. The TS estimator, which is much simpler to
be implemented, can be potentially used when the measurement errors are very small and
the hazard ratios are moderate. We also explored the TS method where the subject-specific
trajectory of biomarker was fitted from the mixed effect model by using the R package 1med
and was fitted from shrinking least squares estimates. We observed only slight improvement
with zero coefficient.

The simulation studies also demonstrate that increasing the number of measurements
can significantly improve the performance of both RRC and TS methods, especially for the

TS method. The TS estimates are more likely to be influenced by the noise-to-signal ratios.



138

Table 5.21: Simulation results for Model 2(a) with two-phase sampled data.

o’ Method  Bias( % Bias) ASE MCSD RMSE

(B, ) B=—In2 0.0l RRCRull -0.015(2.132) 0253 0.265  1.000
= 001 CC 0.131 (-18.920) 0.251 0.254  1.161
(—1n2,0) 0.0l RRC(r) -0.034 (4.898) 0.327 0.337  1.636

001 RRC(#) -0.035(5.002) 0.327 0.338  1.640
0.08 RRCfull -0.003 (0.479) 0.328 0.332  1.000
008 CC 0.144 (-20.789) 0.327 0.335  1.210
0.08 RRC(r) -0.011 (1.568) 0.423 0429  1.670
008 RRC(#) -0.011 (1.647) 0423 0429 1.674
0.15 RRCfull -0.003 (0.413) 0.378 0.404  1.000
015 CC 0.141 (-20.295) 0.373  0.397  1.085
0.15 RRC(r) -0.001 (0.185) 0.495 0521  1.661
0.15 RRC(#) -0.001 (0.154) 0.496 0519  1.648

n=0 0.0 RRCfull 0.010 0179 0216  1.000

001 CC 0.018 0179 0219  1.038

0.0l RRC(r) 0.019 0.234 0295 1873

001 RRC(#) 0.019 0.235 0.295  1.879

0.08 RRCfull 0.010 0.142 0216  1.000

008 CC 0.017 0144 0223 1077

0.08 RRC(r) 0.023 0185 0299 1927

008 RRC(#) 0.023 0185 0.299  1.936

0.15 RRCfull 0.013 0.130  0.223  1.000

015 CC 0.019 0130 0.226  1.029

0.15 RRC(r) 0.019 0172 0299  1.797

0.15 RRC(#) 0.020 0172 0299  1.801

(B, 1) B=—In2 00l RRCfull -0.024 (3.425) 0252 0261  1.000
= 001 CC 0.139 (-20.083) 0.247 0.261  1.278
(~In2,—In2) 001 RRC(r) -0.024 (3.426) 0.330 0.345  1.745

001 RRC(#) -0.025(3.537) 0.331 0.346  1.753
0.08 RRCfull -0.026 (3.747)  0.327 0.336  1.000
008 CC 0.135 (-19.492) 0.321  0.342  1.192
0.08 RRC(r) -0.021(2.980) 0.430 0458  1.856
008 RRC(#) -0.021(3.038) 0.431 0459  1.863
0.15 RRCfull -0.030 (4.268) 0.379  0.417  1.000
015 CC 0.119 (-17.167) 0.374 0.398  0.988
015 RRC(r) -0.016 (2.301) 0.502 0.536  1.646
015 RRC(#) -0.017 (2.513) 0.503 0.537  1.653
n=—-mI2 001 RRCful 0.004 (-0.575) 0.202 0.242  1.000
001 CC 0.192 (-27.631) 0.203 0.246  1.653
001 RRC(r) 0.003 (-0.431) 0.259 0.323  1.778
001 RRC(#) 0.003 (-0.361) 0.259 0.323  1.777
0.08 RRCfull 0.004 (-0.641)  0.163 0.242  1.000
008 CC 0.196 (-28.316) 0.164  0.245  1.679
0.08 RRC(r) -0.000(0.014) 0210 0323  1.775
008 RRC(#) -0.001(0.091) 0210 0.323 1.774
0.15 RRCfull 0.006 (-0.886)  0.149  0.246  1.000
015 CC 0.188 (-27.121) 0.151  0.253  1.646
0.15 RRC(r) 0.003 (-0.493)  0.197 0.330  1.808
0.15 RRC(#) 0.003 (-0.378)  0.197 0.330  1.805

o —

Sample size is N=800. The longitudinal measurements of W;; are made at baseline
and randomly from time windows 0.5,1.0,1.5,--- ;28 + 0.05. The two-phase sampling is
conducted by sampling all cases (A = 1) and 14.3% of controls (A = 0).
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Apparently the larger the measurement error, the more biased the TS estimates. For the
RRC estimator, the bias is consistently small across different magnitudes of measurement
error in the setting with rare event rate, but the precision does decrease. When the event
rate is high, the bias tends to increase with the larger measurement error, though is still
smaller than that from the TS method.

Also we explored the estimates for SFE(f) using the ASE and Bootstrap SE. The former
was used in |Dafni and Tsiatis, [1998] as an approximation of SE (é) In their paper, they
investigated only the Cox model with one immune biomarker as the covariate, which is the
Model 1 in this dissertation. We both found the ASE could provide a good approximation
to SE (B) in such a model. This dissertation also considers the Cox model with adjustment
(Model 2) and with interaction of the immune biomarker and the treatment indicator (Model
3). However in Model 2 and Model 3 we did observe the ASE poorly estimates the SE,
especially for 77 and 4. So as suggested in [Wang et al., |2001], in the latter two settings, we
should use the bootstrap SE estimates.

We also examined the working distributional assumption that o is Normal given (Z , T >
u). All above simulation studies generated « given Z from Normal, where apparently the
working assumption did not hold. We found it was most likely to have a poor estimate of
the covariance matrix, especially when the size of at-risk set or the number of biomarker
measurements were small. We also conducted simulation studies with o from a mixed-
Normal distribution. For example for Model 1, a was generated a mixture of two Normal

distributions with mean (2.2295 — 0.009)7 and (2.9205, —0.009)” respectively. The results

were similarly to those with Normal «, indicating RRC method could still give small biases.
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Chapter 6

DATA ANALYSIS: ACTG 175

6.1 Background

In this chapter we apply the methods developed to AIDS Clinical Trials Group (ACTG) 175
dataset [Hammer et al., |1996]. ACTG 175 was a randomized clinical trial comparing four
treatment regimens (zidovudine only, zidovudine+didanosine, zidovudine+zalcitabine and
didanosine only) among HIV-infected subjects with CD4 cell counts 200-500 per cubic mil-
limeter. Their primary study included 2,467 subjects. The study was designed to measure
the CD4 cell counts on all study subjects at a schedule of every 12 weeks since Week 8. The
study subjects were followed up for endpoint of >50% decline in the CD4 cell count, AIDS
or death. The median follow-up time was 143 weeks. Taking the group with zidovudine
only as the reference group, the original study on all study subjects found significant effect

of each of the other three on the endpoint.

Now for this study, we assess the CD4 cell count as a time-dependent CoR and CoP.
As in [Song et all 2002], the treatment (Z = 1) of interest is combining the three of
zidovudine+didanosine, zidovudine+zalcitabine and didanosine, and zidovudine only is con-
sidered as the control treatment (Z = 0). The primary clinical endpoint of interest in the
correlates of protection analysis is the progression to AIDS or death. We refer any subject
who experienced the primary endpoint during the study as a case and who never had the
primary endpoint throughout the study as a control. A total of 308 cases were observed.
Note this study was not originally designed in a two-phase manner to measure the CD4
cell counts. For a better demonstration of our proposed methods on this data, we created
a case-control sample from the full study cohort and pretended the CD4 cell counts were
measured only on subjects in the case-control sample. The case-control sampling was con-
ducted to include all cases and 14.3% of the controls with CD4 cell counts available. This

led to 306 cases and 306 controls. We only considered the CD4 cell counts measured before
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the primary endpoint for cases. The average number of CD4 cell counts measurements per

subject was 9.25.

6.2 Descriptive analysis

As in [Song et all 2002, we analyzed the inherent trajectory of log;, cell CD4 counts.
Figure shows the observed trajectory of log;y, cell CD4 counts by treatment groups
and by subgroups cross-classified by treatment/control treatment and case/control status.
The red lines are the smoothed mean curves and the shaded areas represent the pointwise
95% confidence intervals. Apparently cases tend to have steeper drop over time in their
trajectories than controls, and subjects in the treatment group have on average higher log;,
CD4 cell counts than those in the control treatment group.

Then we explored if the level of log;; CD4 cell count is predictive of the progression
of AIDS or death. We plotted the cumulative incidence rate of the primary endpoint by
subgroups with low, medium and high log;,; CD4 cell counts measured at the visit of Week 8
(Figure . The subgroups were defined by the tertiles of log;, CD4 cell counts measured
at the visit of Week 8 pooled control treatment and treatment group, taking into account
the case-control sampling weights. The plot shows that higher log CD4 cell counts are
associated with lower rates of the event. And the difference in the cumulative incidence
rates comparing the low and medium group is greater than that comparing the medium

and high group.



142

Figure 6.1: Spaghetti plot of observed log;; CD4 cell counts with smoothed mean curves
and pointwise 95% confidence intervals by subgroups.
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Figure 6.2: Cumulative incidence plot of the primary endpoint by subgroups of log,, CD4
cell count levels (low, medium and high) at the visit of Week 8.
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6.3 Analysis of continuous trajectory of log,, CD4 cell counts

Before we conduct the correlates analysis on log;, CD4 cell counts, we explore the functional
form of its trajectory X (u) over time. We investigate the simple linear (L1) and quadratic
(L2) weighted mixed effects models with fixed effects 5’s and mean-zero Normal random
effects b’s on all case-control samples.

L1: X(u) = fo+ fru+do + diu

L2: X(u) = Bo + Bru + Bau? + do + dyu + dou?

The results on fitted model using maximum-likelihood estimation (MLE) from 1lme()
are shown in Table Figure is the spaghetti plot of observed log;, cell CD4 counts
on 10 randomly selected subjects as well as fitted lines from the linear and quadratic mixed
effects models. Apparently, the results in Table indicates the quadratic model provides
a better fitting than does the simple linear model. The mixed effects models in L1 and
L2 are only used to help to chose the functional form of the trajectory of log,, cell CD4
over time. To model it in the Cox regression model, we use the random effects model as
discussed in . We model the trajectory of log;, CD4 X (u) as being quadratic in time,

ie. X(u) = ag+ aju+ agu?.

Table 6.1: Results on fixed effects from Model L1 and L2.

Model Intercept Time Time? log-likelihood P—Valueﬂ
L1 2.5414  -0.0189 891.85
L2 2.4984  -0.0056 0.0006 1397.50 <0.0001

! Likelihood-ratio test p-value.

We now evaluate the log;; CD4 cell count as time-dependent CoP in Prentice’s frame-
work by a set of Cox regression models. The Prentice’s criteria are given in Section [2.3.1
The models are adjusted for the average baseline log;, CD4 cell counts measured at two
time points before randomization. See Table [6.2] for the estimated coefficients from IPW
and ATPW methods using estimated 7. The two methods yield similar results. The vari-

ables used in predicting the augmentation terms in the AIPW method are the treatment
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Figure 6.3: Spaghetti plot of observed log;, CD4 cell counts on 10 randomly selected subjects
and the fitted lines from linear and quadratic mixed effects models.
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and event status indicators. No significant efficiency improvement is found on all coefficient
estimates for this analysis. We therefore focus on the results from IPW method, since it is
simpler to implement for further exploration as discussed below.

Model 0 shows that the treatment significantly affects the primary endpoint. Model
3 and Model 4 indicate that log;; CD4 cell count has no significant effect on the clinical
endpoint in the treatment group, but has significant effect in the control treatment group.
The effect of log;; CD4 cell count is significantly modified by the treatment group (Model
1). Therefore both the Prentice criteria (ii) and (iii) do not hold. It suggests that log;,
CD4 cell fails to be a Prentice surrogate. Though there is a significant interaction effect,
we still try to calculate the quantities defined below to quantify the surrogacy of log;, CD4

cell count (Table [6.2)).
1. The proportion of treatment effect explained by the surrogate (PTE): 1 — 6044 2/60440,
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where 0,4 ; is the coefficient for treatment indicator in Model j.
2. The proportion of treatment effect captured by the surrogate based on Prentice’s
framework (PCS) [Kobayashi and Kuroki, 2014]: m

3. The proportion of natural indirect effect of the treatment, assuming the identifica-

NIE((26)
NIE, (26)+NDEo (26

NDE((26) = E[I(T'X& > 26) — I(T%X& > 26)] and NIE((26) = E[I[(T'Xa > 26) —

tion assumptions I1-14 given in Section [2.3.2 hold (pNIE):

L where

I(T™Xa > 26)]. Here we chose a time Month 26 which is a relative late stage of
follow-up.

All three quantities are very close to zero. For pNIE, the CI was calculated from 500

bootstrap samples. For PTE and PCS, the Cls were determined from the asymptotic Normal

distribution of (0410, Opre2)”

Table 6.2: Estimates and 95% CIs for the coefficients in Cox regression models, to assess continuous log;q CD4
cell count as time-dependent CoP in Prentice’s framework.

logCD4 trt logCD4 X trt bl.logCD4
Pooled Model 0 -0.37 (-0.61, -0.13)
PW(7)
Pooled Model 1 -2.14 (-2.81, -1.47) -3.33 (-5.31, -1.34) _ 1.42 (0.46, 2.38) -3.60 (-5.16, -2.03)
Model 2 -1.04 (-1.93,-0.15) -0.44 (-0.79, -0.08) -3.61 (-5.70, -1.51)
Treatment Group Model 3 -0.73 (-1.68, 0.22) -4.23 (-6.46, -2.00)
control treatment Group Model 4 -2.89 (-3.60, -2.18) -1.03 (-3.68, 1.62)
AIPW(7)
Pooled Model 1 -2.35 (-3.22, -1.47) -2.93 (-6.29, 0.43)  1.36 (-0.22, 2.94) -1.55 (-2.90, -0.20)
Model 2 -1.17 (-1.94, -0.39) -0.35 (-0.67, -0.02) 2,69 (-6.61, 1.23)
Trt Group Model 3 -0.92 (-2.24, 0.41) -3.14 (-7.91, 1.62)
Control Trt Group Model 4 -3.03 (-3.84, -2.23) -0.57 (-9.33, 8.20)

L For the AIPW method, the variables used in estimating the augmentation terms included treatment indicator and
event indicator.

2PTE = -0.173 (95% CI: -1.026, 0.680).

3 PCS = 0.021 (95% CI: 0.000, 0.586).

4 pNIE = 0.079 (95% CI: -0.836, 0.999).

6.4 Analysis of dichotomized trajectory of log,; CD4 cell counts

We next evaluate the dichotomized log;, CD4 cell count as time-dependent CoP in Pren-

tice’s framework. We dichotomize the count level at [ = log;, 200, below which immediate
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treatment has been recommended for HIV infected patients in treatment guidances for many
years. Table shows the fitted results. For the dichotomized log,; CD4 cell count, Model
3 and 4 suggest it significantly affects the clinical endpoint in both treatment and control
treatment groups. Therefore the Prentice criterion (ii) holds. On the other hand, Model
1 suggests no significant effect modification of dichotomized log;, CD4 cell count by treat-
ment group. Model 2 suggests that after controlling the dichotomized log;, CD4 cell count,
the treatment group does not affect the clinical endpoint. It implies that Prentice criterion
(iii) holds. The overall results show the evidence of the dichotomized log;; CD4 cell count
being consistent with the Prentice’s criteria as a surrogate for the treatment on the primary
endpoint. This can also be seen from the three quantities (PTE, PCS, and pNIE), all of
which demonstrate at least moderate or substantial level of surrogacy for the dichotomized
log;y CD4 cell count. The CIs for all three quantities were determine from 500 bootstrap
samples. We observe very wide Cls for all three quantities, especially for PCE. This is
possibly because some bootstrap samples may have near zero treatment effect ém,g which
leads to large variability in PTE. Compared the finding here to that for the continuous
log;y CD4 cell count, we conjecture that there might exist a non-linear relationship between
the log;y CD4 cell count and the hazard, especially in the treatment group. Chapter [7]
discusses future research directions to examine the assumptions in the Cox proportional

hazards model.

Table 6.3: Estimates and 95% CIs for the coefficients in Cox regression models, to assess dichotomized

log;y CD4 cell count as time-dependent CoP in Prentice’s framework.

d.logCD4 trt d.logCD4 x trt bl.logCD4
Pooled Model I -3.77 (-5.18, -2.35) -0.14 (-0.59, 0.32) 0.51 (-0.96, 1.99) -0.99 (-2.69, 0.72)
Model 2 -3.35 (-3.93, -2.76)  -0.10 (-0.52, 0.33) -1.01 (-2.69, 0.66)
Trt Group Model 3 -3.11 (-3.70, -2.52) -1.56 (-3.37, 0.24)
Control Trt Group Model 4 -4.12 (-5.62, -2.62) 0.43 (-3.00, 3.85)

! The CIs were calculated based on 500 bootstrap samples.

2 The nuisance parameters u(u) and X(u) for the distribution of random effects o were estimated by subgrou
cross-classified by treatment group and dichotomized baseline log;, CD4 cell count (> log;, 300, < log;, 300

2PTE = 0.739 (95% CI: -0.885, 3.721).

3 PCS = 0.889 (95% CI: 0.002, 0.999).

4 pNIE = 0.903 (95% CI: 0.042, 2.116).

ps
).
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Chapter 7

DISCUSSION AND FUTURE DIRECTION

7.1 Discussion

Assessing immune correlates of protection has always been an important objective in vaccine
efficacy trials. This dissertation studies the quantitative and dichotomized inherent time-
varying immune responses as immune correlates of risk and protection in two-phase sampling
design cohort studies. The evaluation is based on Cox proportional hazards models with
the continuous or dichotomized underlying immune response process, which is characterized
by a random effects model. The model has the interpretation of association between the
current value of the inherent immune biomarker and the instantaneous rate of the event. It
provides straightforward assessment of the immune correlate of risk and also allows for the
assessment of immune correlate of protection based on Prentice’s framework. We also study
the framework of causal effects by defining the natural direct and indirect effects of the
vaccine on the probability of being free of event at some fixed time point. They are defined
in terms of counterfactual outcomes that can only be partially observed under assigned
treatment. We show that under certain sequential ignorability assumptions, the defined
effects can be estimated from the Cox model mentioned above fitted on observed data. Since
this dissertation works on the unobserved underlying immune response trajectory, it does
not offer any guidance on the threshold of the protection level, even for the dichotomized
model. The application is more to generate hypotheses about the biological mechanisms of
protection.

The objective of this dissertation is to develop statistical methods to make inference
on such joint models when the longitudinal immune biomarker data are only observed on
study subjects selected in the second phase. In Chapter 2 and Chapter 3, we study the
IPW and AIPW conditional score estimators for the continuous immune response trajec-

tory via asymptotic theories and simulation studies. We explore the efficiency gain from
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the ATIPW method with various sets of predictor variables in estimating the augmentation
terms compared to that from the IPW method. We find that when there exist auxiliary
variables strongly correlated with immune biomarkers, including them to estimate the aug-
mentation terms in ATPW method can provide significant efficiency gain for the parameter
of the biomarker. Otherwise, our simulations studies show that the AIPW method does
not improve the efficiency much, and can even reduce the efficiency if many weak auxiliary
predictors are included. In addition, if the treatment effect is of interest in the Cox model,
we recommend including the treatment indicator in the AIPW predictor in order to achieve
greater precision close to that from the full cohort data analysis.

We also show that when the immune response data are only measured on a very limited
number of time points, the resulting estimates on the biomarker effect can be very vari-
able. Using the AIPW method in this situation can even lead to slightly rising bias and
decreasing precision compared to the simple IPW method. This may be due to the fact that
the conditional score method is constructed based on individual least squares estimates of
the random effects. And such least squares estimates are also calculated at every observed
event time so even fewer measurements are actually used (because we can only use the mea-
surements taken up to and including that time point). If the number of measurements per
subject is low, the fitting of individual trajectories can be very unreliable, especially when
the measurement error is relatively large. The extra step in estimating the augmentation
terms in AIPW method may lead to more variation and uncertainty in finite sample studies.
Note that in our simulation studies, the inherent immune response level varies linearly over
time. However, it is more often to observe curvilinear immune response trajectory over time
in real trial studies, like for the CD4 cell counts in the ACTG 175 study and the antibody
levels in the dengue vaccine trials. It implies more sophisticated models than linear should
be used for a better fitting. However, that comes along with the need of more immune
response measurements. So inadequacy in the number of measurements can also limit the
choice of functional form of the immune response trajectory. Our simulation studies on
misspecified measurement error distributions reveal that if the assumption of random and
Normal measurement error is violated, we would expect slightly biased inferential results.

In Chapter 4, we propose the risk set recalibration method for the dichotomized immune
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response model. Calibration is a commonly used approach in measurement error problems
by deriving an induced hazard function of the observed but mismeasured immune response
as a function of the parameters from the target Cox regression. Our induced hazard function
is established based on a working assumption that the random effects are Normal given the
status of being at risk. We reveal in Chapter 5 that the resulting estimator, even though
theoretically inconsistent, has very small bias in studies with rare event rates even when the
measurement error is relatively large. In contrast, the naive two-stage method is often very
biased. Increasing the number of measurements per subject can majorly reduce the bias,
especially for the two-stage method. Also the two-stage method is sensitive to the magnitude
of measurement errors in that the bias increases with high measurement error. However,
the proposed recalibration method is only slightly influenced by the measurement error in
the rare event rate setting. We also encounter the common problem of the recalibration
method that the variance of resulting estimates could be relatively high compared to the
naive method. For random effects models, it is commonly assumed that the random effects
follow the Normal distribution. We show that under Normal random effects, our working
assumption is generally very close to the truth in the rare event setting as long as the
number of at-risk subjects is moderate. When the number of at-risk subjects is very small,

the inconsistency arises mostly because of poor estimation of the covariance matrix.

The joint modeling framework is intriguing in that it allows the modeling of subject-
specific evolution of the immune response level over time and examining its relationship with
the instantaneous rate of event simultaneously. However, the computation burden is always
a concern for such a model. The semi-parametric methods considered in this dissertation
are much less computationally intensive than approaches that require multidimensional
integrals. But we still encounter an issue of convergence, especially when the measurement

error is relatively large and the number of measurements per subject is small.

7.2 Future directions

Along with the research presented in this dissertation, below we describe several other

interesting related questions.
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7.2.1 Nonlinear models for immune response trajectory

In this dissertation, the immune response trajectory is modeled by a linear mixed effects
model X (u) = o’ f(u). However, the trajectory over time for a single subject can be very
variable and the linear models may not fully capture the entire evolution. Therefore, one
interesting direction for future research is to study the nonlinear models. For the continuous
trajectory, [Wu et al., 2008][Wu et al. [2010] proposed the nonlinear mixed effects model,
like the exponential decay dynamic, to account for the biological understanding of the
biomarker process in response to treatment. An interesting question is how to incorporate
the nonlinear trajectory into the dichotomized model. Also a more complex pattern of the
trajectory, the sawtooth pattern, due to booster doses has been observed in the VAX004
HIV-1 vaccine trial. One possible approach is to use the growing and decaying rates to
characterize a single wave between two subsequent doses [Schlub et al. 2011]. To connect
the waves over time, we may need assumptions on the period as well as on the time it takes

after each dose for the immune response level to reach the peak.

7.2.2  The threshold for dichotomization

Our model on dichotomized immune response is aimed to assess if a “fixed” threshold of the
level can predict the vaccine efficacy. It assumes that before we conduct the analysis there
already exists some prior threshold of interest. However, a more natural question is what
the protection level is if a specific immune response correlates with the protection. Even
though this dissertation does not address the question of guiding the protection level, it still
involves the issue of choosing a threshold. Actually, for our model, if no adequate evidence
is found for a predetermined threshold to be an immune correlate of protection, it may
just because we do not chose the right threshold. The threshold problem is of particular
interest when the true relationship is nonlinear. When no particular preference exits for the
threshold, people may tend to explore a range of candidate thresholds. In that case the type
I error definitely needs to be controlled. Along this direction, one possible way out is to
consider the “changepoint model” [Koziol and Wu, 1996][Vexler and Gurevich) 2009][Fong
et al., 2014].
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7.2.8 Model diagnosis on the proportional hazards assumption

The assessment of immune correlates of risk and protection in this dissertation relies on the
assumption of proportional hazards (PH). If this assumption is strongly violated, applying
the proposed methods can lead to misleading inferential results. In that case alternative
models such as with time-varying coefficients or with interaction of time and the immune
biomarker process may be considered [Song and Wang}, [2008][Song et al.,2002]. [Fleming and
Harrington, |1991](p173) proposed a list of methods to check the validity of PH assumption.
The complication for the Cox model in the joint modeling framework is that it contains the
unobserved random effects as the covariates. Thus any methods based on comparing the
observed to the expected under the PH assumption do not apply directly here. However,
we are able to estimate the random effects for each subject and perform the PH test by
means of residuals obtained from the model with estimated random effects. The question
is if by any way such test based on estimated random effects is linked to our target model
on the unobserved true random effects. Another way possibly applies here is to fit Cox
models for a series of time intervals separately and to see if the obtained coefficients are
compatible across the intervals. It raises a question to develop some formal test statistic
that can quantify the level of compatibility. Or we can add an additional term X (u)g(u)
to the Cox model and test if its coefficient is zero. The problem left is how to choose the
functional form of g(u). This method automatically provides a test p-value. However, even
with an insignificant p-value, we cannot make a statement of inadequate evidence to reject

the null of PH, because it only tests for the specific time-dependent pattern characterized

by g(u).
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