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Abstract

Joint Modeling of Survival and Longitudinal Data Measured with Error, with Application
to Assessing Immune Correlates of Protection in Vaccine Efficacy Trials

Rong Fu

Chair of the Supervisory Committee:

Professor Peter B. Gilbert

Department of Biostatistics

Assessing immune correlates of protection, the immune responses that reliably predict the

vaccine efficacy on the clinical endpoint, has always been an important objective in vaccine

efficacy trials. In this dissertation, we study the continuous and dichotomized trajectory of

time-varying immune response as the immune correlate of protection in two-phase sampling

design cohort studies. We adopt the joint modeling framework that models the immune re-

sponse data measured longitudinally and with error and the time-to-event clinical endpoint

simultaneously. The inherent evolution of the time-varying immune response is character-

ized by a random effects model, and its relationship with the instantaneous risk of the

clinical event is modeled by the Cox proportional hazards regression. This regression model

allows for direct assessment of immune correlates of protection in Prentice’s framework.

This evaluation is different from the traditional work that is based on measured values of

biomarkers. Instead, by studying the underlying trajectory, the application is to generate

hypotheses about the biological mechanisms of protection. The main objective of the disser-

tation is to develop statistical methods to make inference on the regression model accounting

for the missing immune response data due to two-phase sampling. For the inference on the

continuous immune response trajectory, we extend the existing conditional score method

to the two-phase sampling design cohort studies by using the technique of weighting the

complete cases by the inverse probabilities of observing the immune response data, and the



augmented inverse probability weighting. For the dichotomized immune response trajectory,

we propose estimating equations based on regression calibration method. We also general-

ize it to two-phase samples by the inverse probability weighting method. We finally apply

the proposed methods to the AIDS Clinical Trials Group (ACTG) 175 dataset, a random-

ized clinical trial comparing monotherapy with combination therapy among HIV-1-infected

subjects.
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Chapter 1

INTRODUCTION

Vaccination has been widely used to prevent infectious disease. The basis of how vac-

cination works is the long-term immunological memory of the adaptive immune system.

Our adaptive immune system protects us against the attack from specific pathogens in two

aspects of immunity: humoral and cellular immunity. The humoral immunity refers to the

production of antibodies (five isotypes in human: IgA, IgD, IgE, IgG and IgM) which bind

to specific antigens to block their ability to infect; and the cell mediated immunity involves

the function of CD4+ T-cell and CD8+ cytotoxic T lymphocyte which protect the body

against the intracellular infection [Letvin, 2005, Pantaleo and Koup, 2004]. After an initial

exposure and response to a pathogen, when being attacked by the same pathogen in future,

the immune system is able to react more rapidly and more effectively to it. This is how the

immunological memory is built up. A good candidate vaccine can provide durable protec-

tion against the infection or disease. It is a central goal in vaccine research to investigate

the correlates of immunity: which and what type of immune responses are functional and

predictive in conferring protection. In Phase IIb or Phase III vaccine efficacy trials, besides

the assessment of vaccine efficacy (VE) to prevent or control the infection and disease, it is

another very important objective to evaluate and determine the immune correlates of risk

(CoRs) and immune correlates of protection (CoPs) [Haynes et al., 1996]. This is particular

of interest when evidence of VE of a vaccine has been found.

[Qin et al., 2007] defined the CoR as an immunological biomarker that predicts the

clinical endpoint used to assess the VE in some population. Ascertainment of a CoR can

be done by statistical association analysis between the immune biomarker and the clinical

endpoint. Such assessment requires the observation of variability in the immune biomarkers.

However, for example, in HIV-1 vaccine efficacy trial on healthy volunteers, the immune

response level could be zero for placebo recipients because of no prior exposure to the virus.
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In that case, the CoR analysis is done among vaccinees only. In other vaccine efficacy trials,

like the chimeric-yellow fever-dengue (CYD) vaccine, substantial variability in antibody

titers can be observed in both the vaccine and placebo group. The CoR analysis can be

done in each treatment group or pooled together adjusting for the vaccination status [Gilbert

et al., 2008, Plotkin and Gilbert, 2012]. The assessment of a CoR is more straightforward

than for a CoP, because the parameters of interest are statistical parameters that do not

require extra causal modeling assumptions. It is the usually the first step to establish a

CoR before moving forward to ascertainment of it as a CoP.

The concept of CoP has always been confusing. Informally speaking, identifying a CoP

is to validate an immunological surrogate biomarker that can be used to reliably predict the

protection effect of the vaccine for subgroups. It is of great use in the sense that it could

substitute for the clinical endpoint which takes long time or even is unethical to study. It

also provides the guidance of the vaccine development once we understand which immune

biomarkers explain the vaccine effect on the clinical endpoint. For a CoR to be a CoP, the

ambiguity and challenge arise to distinguish between a CoP that predicts the protection

effect of the vaccine statistically versus mechanistically. We adopt the recent definition of

CoP given by [Plotkin and Gilbert, 2012] that a CoP is an immune biomarker that can be

used to reliably statistically predict VE. If a CoP predicts the VE because it is in the causal

pathway that vaccine provides protection, it is called a mechanistic correlate of protection

(mCoP). Otherwise, it is called a non-mechanistic correlate of protection (nCoP), which is

not directly responsible for the protection but is correlated with a mechanistic one to be

able to reliably statistically predict VE.

Statistical assessment of a CoP can be done using a number of approaches to evaluate a

surrogate endpoint or causal mediator. [Joffe and Greene, 2009] reviewed and compared four

major frameworks: Prentice’s framework [Prentice, 1989]; direct and indirect causal effects

of treatment [Pearl, 2001, Robins and Greenland, 1992]; principal stratification [Frangakis

and Rubin, 2002] and meta-analysis. We discuss the first three more in subsequent sections.

To further evaluate a CoP as a mCoP is more challenging because we need knowledge of

biologic function of immune responses induced by vaccine and the disease process, and we

even need to do intervention trial on animals or humans with or without exposure to the
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immune responses.

This dissertation is built upon the importance of immune correlates analysis. However,

it is not dealing with same problems as many other papers did conventionally to identify

an measured immune biomarker as CoR and/or CoP. Observed immune biomarkers are

contaminated by measurement errors and our methods assume that their evolution follows

underlying trajectories. This dissertation, instead, concentrates on assessing how these

unobserved hypothetical immune response processes predict the clinical endpoint and the

protection effect of the vaccine. Therefore the dissertation is not aimed to propose a method

to validate a biomarker as a CoP to be substituted for the clinical endpoint in real trials.

Instead, by studying the underlying trajectories, the application is more to generate hy-

potheses about the biological mechanisms of protection. We consider it as an addendum

to the traditional CoR/CoP analysis of observed immune responses. To address these sci-

entific objectives, we consider statistical methods in the framework of jointly modeling the

biomarker trajectories with a random or mixed effects model and the event time data with

a Cox model simultaneously [DeGruttola and Tu, 1994, Faucett and Thomas, 1996, Tsiatis

et al., 1995, Wang and Taylor, 2001a, Wulfsohn and Tsiatis, 1997]. More discussion on this

is in Section 1.1.

In a large Phase IIb/III vaccine efficacy trial, it is costly and even redundant to assess

the blood samples of all participants for evaluation of immune biomarkers, especially when

there is a low rate of clinical event. Therefore cost-effective sampling designs are applied to

reduce the number of participants on whom the biomarkers are collected. For example in

HIV-1 vaccine efficacy trials, the serum and plasma samples can be only analyzed on a case-

control subsample of participants who acquire HIV-1 infection and on a random subsample

of participants who are not infected during the entire study. Also, a random subcohort could

be selected at the time initiating the study and biomarkers are collected on the subcohort

and all participants who have the clinical endpoint, which is referred to as the prospective

case-cohort sampling [Prentice, 1986]. In this dissertation, we consider a general technique,

two-phase sampling design, which includes case-control and retrospective case-cohort design

as special cases. Since the biomarker measurements are missing for a subset of sample,

statistical methods should account for this to achieve consistent estimates. However, the
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joint modeling approaches have been rarely applied to the situation where the longitudinal

measurements are only available on a subset of the study cohort. One research objective

of this dissertation is therefore to apply the joint modeling approach to evaluate the time-

dependent CoR or CoP under the two-phase sampling design. In Section 1.2, we introduce

the definition of the two-phase sampling considered in this dissertation, and then review

and discuss popular statistical strategies employed in two-phase sampling study.

Most joint modeling approaches are built up for continuous time-dependent covariates.

Our experience with the immune response data in HIV-1 and dengue trials shows that in

some vaccinated participants the level of immune marker declines almost to zero during

a short period after the final immunization, while for others the level stays positive until

the end of follow-up. This inspires us to look into if having a positive reaction to the

presence of an immune response could predict the clinical endpoint. It is also interesting

to consider what if the immune response begins to protect only when its value is above

some threshold. Therefore the second research objective of this dissertation is motivated

to develop statistical model to characterize the association between the time-to-failure data

and the dichotomized current status (negative vs. positive or low vs. high) based on the

underlying true immune responses.

In the following sections of this chapter, we first explain the motivation and statistical

methods developed to address our scientific questions, and then review the two-phase sam-

pling design and related statistical methods. Finally we introduce HIV-1 vaccine efficacy

trials and dengue vaccine efficacy trials that motivate this dissertation.

1.1 Time-dependent CoR/CoP

1.1.1 Time-dependent CoR

In randomized vaccine efficacy trials, participants are randomly assigned to either placebo

or vaccine group. Then they are followed up until the occurrence of a significant clinical

endpoint, drop out, or the termination of study. We focus on the clinical endpoint which

is the time to a clinically significant infection or disease. At the same time, their blood

samples are collected frequently at multiple visits for measurements of immune responses.
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The immune biomarker measured at a certain time point such as at the peak value after

full immunization is of great interest in immune correlates analysis. However, additional

information can be learned by studying the entire time-dependent biomarker process. In-

tuitively, it is closer to the mechanism of protection by evaluating how the current value

of immune biomarker if exposed at this time to predict the occurrence of an endpoint in

next short time period, than using the immune marker at a single time point to predict the

endpoint in subsequent months or years of follow-up [Pawitan and Self, 1993]. Even though

the CoR analysis is based on post-randomization immune biomarkers and can only identify

association which has no causal interpretation, it is still useful in providing the insight and

generating hypothesis of biological mechanism to be validated in future intervention exper-

iment. This dissertation is therefore motivated with the first scientific goal of evaluating a

immune biomarker as a time-dependent CoR.

One naive approach to model the association between longitudinal covariates and a time-

to-event endpoint is the standard Cox proportional hazards model with time-dependent

covariate [Kalbfleisch and Prentice, 2002]. It is reasonable and useful in the sense that

it approximates the average instantaneous transmission probability of infection or disease

per exposure to the current value of biomarker [Halloran et al., 1998, Rhodes et al., 1996].

However, one needs to be very cautious in interpreting this model when the time-dependent

covariates are internal or not predictable [Kalbfleisch and Prentice, 2002](p196-199). This

is especially an issue when the endpoint is time-to-death, because the measurement of an

internal covariate requires the survival of the individual. Having become infected or diseased

can also have dramatic influence on the level of immune response.

Another issue with the standard Cox model with a time-dependent covariate is that

the covariate history over the entire follow-up period is required to obtain asymptotically

consistent estimation [Andersen and Gill, 1982]. However such observations are not feasible

in reality due to periodic collection of longitudinal immune biomarkers. One commonly

used solution for this is to assume constant biomarker value between measurement time

points. However it does not hold for the immune response levels that often decrease after

immunization. Moreover, the laboratory assessment of the immune biomarkers are often

subject to measurement errors, and ignoring such measurement errors may lead to biased
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inference [Prentice, 1982].

Considering all these pros and cons with the standard Cox model, in this dissertation, we

develop our statistical method to evaluate the time-dependent CoR in the context of joint

modeling framework, i.e. modeling the longitudinal data with a mixed effects model and the

event time data with a Cox model simultaneously [DeGruttola and Tu, 1994, Faucett and

Thomas, 1996, Tsiatis et al., 1995, Wang and Taylor, 2001a, Wulfsohn and Tsiatis, 1997].

Unlike the standard Cox model assuming a hazard function conditional on the observed

longitudinal immune biomarkers, the joint modeling method aims to quantify the effect of

underlying true and unobserved evolution of the immune biomarker process on the time-to-

event process. It assumes that the underlying true trajectory of the time-dependent immune

biomarker has all of its effects on the time-to-event process through the random effects. In

this way, by specifying the same functional form of the random effects and time in the

Cox model as that in the longitudinal data model, we are able to estimate how the current

value of hypothetical true biomarker if exposed at this time predicts the instantaneous rate

of clinical endpoint. This evaluation of CoR is different from the traditional work that

is based on measured value of biomarkers. We think it is of interest because studying

the underlying trajectory may be better for generating hypotheses about the biological

mechanisms of protection.

1.1.2 Time-dependent CoP

Statistical assessment of a CoP or an immunological surrogate biomarker can go back to

Prentice’s landmark paper in 1989 [Prentice, 1989]. By Prentice’s definition, testing the

null hypothesis of no vaccine effect on an immunological surrogate provides a valid test

of the null hypothesis of no vaccine effect on the clinical endpoint. The criteria to vali-

date a surrogate include (i) the vaccine has an effect on both the clinical endpoint and the

surrogate biomarker; (ii) the surrogate is correlated with the clinical endpoint; and (iii)

conditional on the surrogate, the distribution of the clinical endpoint is independent of the

vaccination status. The joint modeling method itself enables the evaluation of statistical

surrogates within this Prentice framework, envisioning the “surrogate” as the true underly-
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ing biomarker trajectory. In this formulation, the Cox model includes both the vaccination

status and the hypothetical immune biomarker trajectory process, as well as adjustment of

confounders (assuming not affected by vaccination) of the biomarker-clinical-endpoint rela-

tionship. However checking these conditions, especially (c) is difficult in practice because

we need to test the null hypothesis of “non-zero coefficient” and alternative hypothesis of

“zero coefficient” of the vaccination status in aforementioned adjusted Cox model, which

is infeasible in finite sample. An alternative to this hypothesis is to use the proportion of

the vaccine effect on clinical endpoint that is explained by the biomarker [Freedman et al.,

1992]. The proportion of treatment effect explained (PTE) under the Cox proportional

model can be found in [Lin et al., 1997].

However, even though this framework has been widely used in evaluating a statistical

surrogate, it may give misleading conclusion. Some literature criticized the attempt to use

Prentice’s framework to evaluate a surrogate biomarker for time-to-event endpoint because

they are sufficient and necessary conditions for Prentice’s definition of surrogate only for

binary endpoints [Buyse and Molenberghs, 1998, Weir and Walley, 2006]. Moreover, either

the hypothesis testing or the PTE estimates are operationally to estimate the vaccine effect

adjusting for the biomarker based on observed data. However, this statistical control on the

biomarker variable is generally biased estimation of the real estimand we desire, i.e. a mea-

sure of the vaccine effect that is not causally explained by the biomarker. Briefly speaking,

this is because the adjustment of post-randomization biomarker introduces selection bias

and the clinical endpoint is actually compared between individuals with and without vacci-

nation but belong to two different sub-populations [Frangakis and Rubin, 2002, Joffe et al.,

2007]. Again, we would like to emphasize that, by utilizing the joint modeling framework in

Prentice’s surrogate evaluation framework, we tend to deal with the latent biomarker tra-

jectory instead of the observed one, with the purpose of obtaining the insight in generating

the hypotheses about the biological mechanisms of protection.

The principal stratification framework is another way to assess a biomarker that statisti-

cally predicts the VE [Frangakis and Rubin, 2002]. This is developed based on potential or

counterfactual endpoints and aims at estimating how the VE varies across subgroups defined

by the vaccine effect of biomarker, or defined by the biomarker in vaccine recipients. For
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the purpose of demonstration, we introduce some notations. Let T be the time to a clinical

endpoint and Z is the vaccination status. For simplicity, we first do not distinguish between

the observed longitudinal immune biomarkers and the unobserved latent time-dependent

biomarker trajectory. Let S(t) denote the value of a general post-randomization biomarker

at time t which we would like to assess as a surrogate and let S̃(t) = {S(u), 0 ≤ u ≤ t} be its

history. Write S̃ = S̃(T ). We apply the counterfactual notations: T zs̃ is the time to clinical

endpoint if the vaccination status and the entire immune biomarker process are assigned to

z and s̃ respectively. Similarly a counterfactual surrogate endpoint can be defined for S̃(t)

and S(t) with superscript z = {0, 1}.

In the principal stratification framework, we are interested in the causal effect of vac-

cination in a union of basic principal strata subgroups each defined by a pair of potential

biomarker values {S0(t1), S1(t2)}. At a given time t0, for example, the estimand defined

on a particular stratum of interest is P(T 1 > t0|S0(u) = S1(u) = 0, 0 ≤ u ≤ t0) − P(T 0 >

t0|S0(u) = S1(u) = 0, 0 ≤ u ≤ t0), which compares the vaccine effect on the probability of

no occurrence of clinical endpoint before and include t0 for individuals who would have had

zero immune biomarkers value at all times whether or not they were vaccinated.

We also would like to introduce another set of concepts defined on potential or coun-

terfactual endpoints: “controlled direct effects” and “natural direct/indirect effects” [Pearl,

2001, Robins and Greenland, 1992]. The controlled direct effect is contrasting T 1s̃ with T 0s̃

where the treatment and biomarker process are jointly manipulated to z and s̃. A natural

direct effect contrasts T 1S̃z
∗

with T 0S̃z
∗

where the surrogate biomarker level is left the value

that would be if vaccination status had been z∗, z∗ ∈ {0, 1}. The controlled direct effect

makes sense when the full intervention on the biomarker is available. The natural direct ef-

fect allows for the biomarker to be the natural value if the one treatment had been imposed,

so it is relevant to the mechanism how the treatment results in an endpoint. Most existing

literatures discuss the identifiability of controlled or natural direct effect based on observed

data focus on linear models with continuous clinical endpoints. Until recently there have

only been a few paper on time-to-event endpoint and time-independent surrogate biomarker

[Lange and Hansen, 2011, Martinussen et al., 2011, Tchetgen Tchetgen, 2011, VanderWeele,

2011]. [VanderWeele, 2011] proved that under certain no-unmeasured confounder assump-
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tions as well as the rare event assumption, the natural direct effect comparing the ratio of

hazard functions can be written as a complex formula of the Cox regression model coef-

ficients adjusting for biomarker and the biomarker-treatment regression coefficients fitted

on observed data. This provides insight that it could be very complicated to estimate and

interpret the direct effects defined on the hazard scale. Therefore, a more straightforward

estimand could be defined in terms of survival probabilities as above for principal stratifi-

cation. [Zheng and van der Laan, 2012] investigated a more complex problem with event

time endpoint and time-dependent surrogate. The challenge of such a problem is that the

event time process may have an implication on the time-dependent biomarker process. The

identifiability is troublesome if we also block the back door path from the event time process

to the biomarker process.

Without certain assumptions, neither the natural/controlled direct effects nor the esti-

mand defined on principal stratification can be identified from observed data, because only

the endpoints under the assigned treatment can be observed [Tchetgen Tchetgen, 2014,

Zheng and van der Laan, 2012]. In the case like in HIV-1 vaccine trials where the immune

response levels for placebo recipients are zero and thus have no variability, the natural direct

effect can be evaluated among the placebo recipients only with a simplified form [Lendle

et al., 2013]. For the principal stratification method, we could naturally make a monotonic-

ity assumption that S1(t) > S0(t), t ∈ [0, τ ]. This facilitates its identification in observed

data [Tchetgen Tchetgen, 2014]. These three types of estimands are all of interest, and may

be more or less fitting for different settings. In this dissertation, we are always interested

in the latent true biomarker trajectories instead of their observed values. Therefore the

definitions and interpretations of these estimands do no fit directly to our setting. Actually,

since the latent trajectories are determined by some random effects models, intervention or

stratification on Sz(u) could be obtained totally through that on the random effects.

This dissertation is working mainly within the Prentice’s framework by using joint mod-

eling approach. We also attempt to relate it to the causal effect framework described above

by exploring the definition of estimands and identifiability assumptions, as well as how to

do estimation and interpretation.
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1.2 Sampling design

1.2.1 Two-phase sampling design

Two-phase sampling is a cost-effective design which was first introduced by [Neyman, 1938].

It is particularly useful and efficient when it is expensive to measure some covariates or re-

dundant to collect them on all subjects, especially in the rare event setting. [Haneuse et al.,

2011] described a general two-phase sampling scheme. In vaccine efficacy trials, the first

phase sample, or the study cohort, usually consist of all study subjects enrolled into the

trial that are sampled from a super population of interest. On them, we follow up for

the primary clinical endpoint, and measure covariates such as demographic characteristics,

baseline health and medical information. Given these variables collected on all study sub-

jects, we can further divide them into exclusive and exhaustive strata. Then within each

stratum, we sample the Phase II subjects and the immune biomarkers of interest are only

assessed on these Phase II subjects. The second phase sample could also be just a random

subsample from the study cohort, but utilizing the stratified sampling scheme may increase

efficiency. Such efficiency gain could be due to oversampling of the most informative indi-

viduals. Also it could be due to the retrieving of additional information that is associated

with the covariate in the analysis model. Commonly, either Bernoulli sampling scheme or

the sampling without replacement scheme are used to sample subjects for measurement of

immune biomarkers. By Bernoulli sampling, each subject is examined independently for a

Bernoulli indicator of whether or not they will be sampled. The feature of the Bernoulli

sampling is that the sampled subjects are independent from each other, but the final num-

ber of subjects being sampled is random. By sampling without replacement, we are able

to control for the total number of subjects being sampled but we loose the independency

between them. In this dissertation, we focus on Bernoulli sampling.

Case-control study is one of the applications of two-phase sampling that has been widely

used for rare binary outcomes in epidemiology. It is retrospectively sampling based on

outcome status, where all cases who develop the disease, and a number of controls who do

not have disease at the same time point are sampled at random or by stratum.

Another application is the case-cohort design in analyzing event time data, especially
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in a large cohort study for rare event disease. It was first proposed in [Prentice, 1986] in

a manner of prospective sampling where a simple random sample from the study cohort

is taken at baseline (called subcohort) and the Phase II covariates are collected on this

subcohort and all cases. [Borgan et al., 2000] extended it to the exposure stratified case-

cohort design where the subcohort is taken independently from each stratum defined by

Phase I covariates. The simple case-cohort or exposure stratified case-cohort design is

considered as the stratified two-phase sampling design by considering all cases as a separate

stratum and being sampled with probability one [Nan, 2004]. Note that, in this dissertation,

we consider a general two-phase sampling design that does not necessarily include all cases.

1.2.2 Statistical methods

Regardless of whether the each individual is independently sampled or not, as long as the

probability of being selected depends on the variables in the analysis model, the subsample

selected is unrepresentative of the study population [Seaman and White, 2011]. The naive

complete case (CC) analysis based on the complete observations is generally biased. One

popular way to deal with missing data is multiple imputation (MI), where the missing obser-

vations are estimated by assumed distribution of observed and missing variables. Another

widely used technique is inverse probability weighting (IPW) complete-case method. The

concept of IPW was first proposed by [Horvitz and Thompson, 1952], where the complete

observation is weighted by the inverse of the probability it being sampled. The intuition

behind the IPW is to try to reconstruct the entire study population. MI does not need

a model for the missing probability but does need a model for how the missing variables

can be predicted from the observed data, while IPW requires the missing probability model

only. The IPW estimator using pre-specified sampling probabilities is generally less efficient

than the MI estimator, because it only makes use of the complete observations, and discards

the subjects with missing data. However, the IPW estimator is still a favorable approach

because it is easy to implement and easy to interpret. The IPW estimator provides unbi-

ased inference if the score function and the sampling probability model are correctly specify.

The unbiasedness of an MI estimator however requires the correct specification of the joint
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distribution of observed and missing covariates to make correct imputation. Comparatively,

the sampling probability model is easier to specified. Also in the two-phase sampling study

where the longitudinal measurements are missing entirely for subjects outside the Phase II

sample, the MI approach might not be very helpful since it is very hard to predict the entire

course of the time-dependent covariate process.

[Breslow and Wellner, 2007] discussed the simple semi-parametric IPW estimators for

both Bernoulli sampling and sampling without replacement in a general likelihood setting.

They took the Cox proportional hazards model with time-independent covariates as a spe-

cial case. As pointed out above, weighting the complete observations by the known sampling

probabilities generally leads to inefficient estimation. So there has forthcoming a rich num-

ber of literatures to improve the efficiency. One popular way is to use estimated weights

or calibrated weights leveraging Phase I covariates [Breslow et al., 2009a,b]. [Saegusa and

Wellner, 2013] provided theoretical work on the asymptotic properties for them in a gen-

eral semi-parametric model. They also compared the Bernoulli sampling to the sampling

without replacement in terms of asymptotic variance of estimates. The estimated weights

or calibrated weights help in a sense to account for the variability of the actual sampling

fractions by utilizing the information from variables observed on all subjects. How much

efficiency gain in finite sample setting may depend on the sample size and the correlation

of Phase I covariates with the influence function. [Kulich and Lin, 2004] proposed a dou-

bly weighted estimator specifically for Cox model with time-dependent variables. In their

method, two levels of time-dependent weights were used. They offered a way in determining

the second-level weight matrix using phase I covariates that led to an approximately optimal

estimator.

Another direction is based on the augmented inverse probability weighting (AIPW)

method proposed by [Robins et al., 1994], where an additional augmentation term as a

function of the Phase I data (which are also called as auxiliary variables in such models)

is added. This class of estimators has been almost exclusively focused on Bernoulli sam-

pling. They demonstrated that an augmentation term as the conditional expectation of the

influence function given the auxiliary variables achieved the optimal efficiency within the

class of estimators with arbitrary forms of augmentation term. In this method, the IPW
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estimator can be considered as a special case with augmentation term always equal to zero.

AIPW estimators have the property of double robustness, which means the estimators are

consistent as long as either the sampling probability model or the augmentation term as the

conditional expectation of estimating score are correctly specified. The IPW estimators are

however biased if the sampling probability model is misspecified. The application of AIPW

specifically for the Cox proportional hazards model can be found in [Luo et al., 2009, Qi

et al., 2005, Wang and Chen, 2001]. [Qi et al., 2005] proposed to estimate the sampling

probability and the augmentation term via non-parametric kernel estimators, whose esti-

mator have been proved to achieve the optimal efficiency. However, they all focused on

time-independent covariates.

Several other semi-parametric methods were developed specifically for making inference

on Cox regression model with time-independent covariates in an efficient manner under

Bernoulli sampling[Chatterjee and Chen, 2007, Chatterjee et al., 2003, Nan, 2004, Nan

et al., 2004, Scheike and Martinussen, 2004].

1.3 Motivating studies

1.3.1 VAX004 HIV-1 trial

VAX004, completed in 2003, was the world’s first phase III placebo-controlled HIV-1 vaccine

efficacy trial. The study was conducted to test the efficacy of AIDSVAX B/B, a recombinant

HIV-1 envelope glycoprotein subunit (rgp120) vaccine[Flynn et al., 2005]. A total of 5,403

HIV-1-uninfected volunteers in North America and The Netherlands were included in the

study. Participants were randomly assigned in 2:1 allocation to receive injections of vaccine

or placebo at months 0, 1, 6, 12, 18, 24 and 30 and were followed up until Month 36.

During the follow-up, 368 participants became HIV-1-infected. The VE, defined as (1 -

hazard ratio of infection) × 100%, was estimated as 6% (95% CI: -17 to 24, p-value 0.59).

Immune response biomarkers were measured at and two weeks after each immunization

visit.

A follow-up study was published in 2005 evaluating the correlation of risk of eight

vaccine-induced binding or neutralizing antibody responses to the hazard of HIV-1 infection
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[Gilbert et al., 2005]. The antibody levels for immune correlates analysis were evaluated

at the last peak time point (two weeks after vaccination) before HIV-1 infection for all

HIV-1 infected vaccine recipients, and at all peak time points for a prospectively defined

case-cohort sample that included 5% of vaccine recipients. It used the classic case-cohort

sampling [Prentice, 1986] where the subcohort was determined by Bernoulli sampling at

baseline and the immune response were measured in all cases of the last HIV-1 negative

time-point only. The antibody levels for vaccinees were modeled both quantitatively and in

discretized quartiles. For analyses with the quartile antibody levels, the relative risks, esti-

mated by hazard ratios, comparing the higher response quartiles to the first quartile, and

comparing each response quartile of vaccinees to the placebo were estimated independently

for each antibody response variable. The Self-Prentice [Self and Prentice, 1988] method ac-

commodating the case-cohort sampling was used to estimate the hazard ratios. Generally,

a pattern of inverse correlation between antibody responses and the risk of HIV-1 infection

was identified. Because the vaccine did not protect against HIV-1 infection, these correlates

are interpreted as markers of susceptibility to HIV-1 infection.

[Forthal et al., 2007] performed the immune correlates analysis for the antibody-dependent,

cell mediated virus inhibition (ADCVI) antibody generated by the vaccine. The antibody

level measured at week 12.5 was used for uninfected vaccinees, and the antibody level mea-

sured at two weeks after the last vaccination before infection was used for infected vaccinees.

The case-control sample for immune correlate analysis here consisted of all infected vaccinees

and 5% uninfected vaccinees as well as an enriched sample of high-risk uninfected vaccinees.

The hazard ratio of infection associated with ADCVI activity was estimated using Borgan

II Estimator [Borgan et al., 2000], which respected the stratified and outcome-depending

sampling. High level of vaccine-induced ADCVI activity was found to be correlated low

HIV-1 infection rate.

[Li et al., 2008] investigated the same antibody as in [Forthal et al., 2007], but considered

its longitudinal peak measurements after Month 6, i.e. at months 6.5, 12.5, 18.5, 24.5

and 30.5. The scientific objective of this immune correlate analysis was to evaluate the

association of current ADCVI levels with HIV-1 infection over the next 6 months. The data

were collected for a two-phase sample consisting of all infected vaccinees and a stratified
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sample of uninfected vaccinees, with the strata defined by sex, race and high risk status.

For infected vaccinees only the measurements taken at the visit before the diagnosis of

infection were used. Unlike the former two immune correlates analyses, they treated the

time-to-event data as grouped discrete failure time data. This had advantages in vaccine

trial studies where the immune responses were tested at some pre-specified visits. The

actual time-to-infection was only able to be identified within a time interval between two

visits and the immune responses are assumed to be constant within each time interval and

varying between them (a simplifying assumption known to be false). So this method was

able to capture the time-dependence of the immune response somehow. The estimator of

hazard ratio was obtained by maximizing the IPW likelihood of second phase subjects given

such grouped event data structure. Multiple imputation was used for the missing biomarker

data in the subcohort. They identified that the antibody was inversely associated with the

risk of HIV-1 infection as well.

1.3.2 RV144 HIV-1 trial

RV144 was a randomized, placebo-controlled efficacy trial on a prime-boost HIV-1 vaccine (a

combination of vaccines ALVAC-HIV and AIDSVAS B/E) in Thailand [Rerks-Ngarm et al.,

2009]. In this study, 16,402 HIV-uninfected volunteers were randomized to the vaccine or

placebo group in 1:1 allocation. The vaccine or placebo were administrated at weeks 0, 4,

12, and 24, with ALVAC-HIV administrated at all four visits and a boosting with AIDSVAX

B/E at weeks 12 and 24 for vaccinees. Volunteers were then followed up for 42 months after

entry. The testing for HIV-1 infection was made at weeks 0, 26, and every 6-month follow-up

visit until the termination of study. A total of 125 HIV-1 infections were diagnosed in the

modified intention-to-treat analysis set (excluding 7 participants who were HIV-1 infected

at baseline). The corresponding VE from Cox model was estimated as 31.2% (95% CI=1.1

to 52.1; log-rank test p-value=0.04), suggesting a modest protective effect of the vaccine

against HIV-1 infection. It was the first supporting evidence of a partially efficacious HIV-1

vaccine.

The subsequent immune correlates analysis on six pre-selected immune responses mea-
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sured at Week 26 (two weeks after the final immunization) identified two of them were

significantly correlated with the risk of HIV-1 infection in vaccinees [Haynes et al., 2012].

So the focus of the immune correlates analysis is to evaluate the CoR in vaccine recipi-

ents. The immune responses were taken on a two-phase sample, including all vaccinees who

were diagnosed with HIV-1 infection after week 26 and a stratified subsample of vaccinees

who were not infected throughout the study. The stratification variables included sex, the

number of vaccinations received, and per-protocol status. The hazard ratio of infection was

estimated using Borgan II estimator [Borgan et al., 2000]. Two immune variables, IgA bind-

ing antibody and the binding of IgG antibody to V1V2 of the gp120 Env, were identified

as significantly correlated with HIV-1 infection. This analysis was unable to evaluate the

immune correlates of protection within the Prentice’s frame work [Prentice, 1989] since the

immune responses were not variable in the placebo arm. The positive findings of RV144

in vaccine efficacy and correlates of risk have been interpreted as being very important for

the HIV-1 vaccine and general vaccine fields, providing guidance for the design of future

vaccines and vaccine trials.

There are forthcoming data which include measurements of immune responses at all

6-monthly visits (from Month 0 to 36) prior to HIV-1 infection diagnosis for all vaccine

recipients who acquired HIV-1 infection during the trial, and measuring immune responses

at all 6-monthly visits for a selected random sample of vaccine recipients who reached the

Month 42 terminal study visit HIV-1 negative. The longitudinal data are anticipated from

41 infected and 205 uninfected vaccine recipients. This dataset allows for the time-dependent

immune correlates analyses.

1.3.3 CYD14 and CYD15 dengue vaccine trials

In 2014, two phase III vaccine efficacy trials on live attenuated tetravalent dengue vaccine

(CYD-TDV) demonstrated substantial vaccine efficacy in preventing the dengue primary

disease, virologically confirmed symptomatic dengue of any serotype. The CYD14 trial

consisted of 10,275 children in five Asian countries with an estimated VE of 56.5% (95% CI

= 43.8 to 66.4) [Capeding et al., 2014]. The CYD15 trial was conducted in Latin America
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with a total of 20,869 participants and an estimated VE of 60.8% (95% CI = 52.0 to 68.0) in

a recent press release [Villar et al., 2014]. In both trials, study participants were randomized

in 2:1 allocation to receive vaccine or a placebo at months 0, 6 and 12, and then were followed

for 13 months as active phase for dengue disease. The immune responses, four anti-dengue

serotype-specific neutralizing antibody titers, were measured at months 0, 7, 13 and 25 on

a random immunogenicity subset including both placebo and vaccine recipients. In the

dengue trials, because many of the trial participants were previously exposed to dengue

viruses and hence the antibody responses substantially vary in the placebo arm. Therefore,

we are able to evaluate the time-dependent immune correlates of protection for these dengue

trials using Prentice’s framework.

1.4 The outline of this dissertation

This dissertation is motivated to evaluate the time-dependent CoRs and CoPs in vaccine

efficacy trials where the immune response variables are measured under the two-phase sam-

pling design. The subjects to be sampled for measurement of immune response data are

by Bernoulli sampling. Statistically, we could evaluate the time-dependent CoPs in the

frameworks of Prentice’s criteria based on Cox the proportional hazards model with the

(continuous or dichotomized) time-varying process of the immune biomarker as a covariate.

Considering the measurement error of the immune responses, we adopt the “joint modeling”

framework to make inference on such Cox models and account for the missing biomarker

data by design.

The structure of the dissertation is as follows: Chapter 2 develops the IPW and AIPW

conditional score estimator for the joint model of continuous longitudinal biomarker and

event time data under two-phase sampling design. Results on asymptotic properties are

provided. Chapter 3 presents simulation studies to evaluate the performance of the IPW

and AIPW conditional score estimators in terms of consistency and efficiency. Chapter 4 de-

velops the risk set recalibration method and related theories for the model with dichotomized

biomarker process and Chapter 5 includes the corresponding simulation studies. In Chap-

ter 6, we applied the proposed method to AIDS Clinical Trials Group (ACTG) 175 study

[Hammer et al., 1996]. In Chapter 7 there are discussions on the proposed methods as well
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as open questions for future research.
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Chapter 2

JOINT MODELING FOR CONTINUOUS TIME-DEPENDENT
BIOMARKERS IN TWO-PHASE SAMPLING DESIGN COHORT

STUDIES

2.1 Background

This chapter focuses on evaluating the continuous underlying trajectory of immune biomark-

ers as time-dependent CoRs and CoPs in vaccine efficacy trials. As mentioned in Section 1.1,

there are several complications in analyzing the classic Cox regression with time-dependent

covariate. First, a valid inference of the model requires the functional form of the time-

varying trajectory of the covariate. One most commonly used solution to this is assuming

constant covariate values between two subsequent measurement time-points. However, this

approach fails to capture any variation of the covariate values between two time points,

especially for long intervals. Also the measured immune responses from assays are subject

to measurement errors and the classic Cox regression ignoring such errors could lead to

biased inference. This inspires us to adopt the “joint modeling” strategy that models the

underlying true trajectory of the time-dependent covariate and the event time endpoint

simultaneous.

The fundamental setup of a joint model consists of two sub-models: one for the in-

herent trajectory of the time-dependent covariate and one for the time-to-event process.

The covariate sub-model characterizes the hypothetical underlying trajectory of the time-

dependent covariate. Commonly used models include the linear mixed effects model [Guo

and Carlin, 2004, Henderson et al., 2000, Rizopoulos et al., 2009] or linear random effects

model [Dafni and Tsiatis, 1998, Tsiatis and Davidian, 2001, Wulfsohn and Tsiatis, 1997].

Great flexibilities can be achieved to model the evolution of the covariate process over time

by using a polynomial or a spline function of time. Several other papers dealt with the

generalized mixed effects model [Xu and Zeger, 2001] or nonlinear mixed effects model [Wu

et al., 2010]. The model of [Wu et al., 2010] also accounted for the biological understanding
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of the biomarker process in response to treatment. With the help of such trajectory models,

the covariate value can be obtained at any time point continuously. Most literatures use a

Cox proportional hazards model for the sub-model of time-to-event data process. Acceler-

ated failure time (AFT) models are also studied [Hanson et al., 2011, Tseng et al., 2005].

As discussed in Section 1.1, we focus on the Cox regression model in this dissertation. This

model can be a good fit to the infectious disease setting where there is major interest in

understanding how the current level of biomarkers affect the instantaneous risk, a setting

where instantaneous hazard rates are interpretable and the proportional hazards assump-

tion may be reasonable. Various ways have also been proposed to link the two sub-models

together, by incorporating different functional forms of the random effects (and other time-

dependent predictors) in the random effects model (or mixed effects model) to the hazard

function. In other words, these two sub-models are linked together via the random effects.

For example the majority of the literatures take the hazard function depending on the

current underlying covariate value [Tseng et al., 2005, Wang and Taylor, 2001b] and some

others use only several components of the random effects and/or their interaction with time

[Guo and Carlin, 2004, Henderson et al., 2000, Song et al., 2002, Wang, 2006].

In the early stage, the two-stage method is used for making inference on the joint model.

The time-dependent covariate models are fitted first and the covariate values are imputed

at desirable time points to fit the Cox regression separately [Pawitan and Self, 1993]. Such

a naive imputation method suffers from non-eliminated bias since it ignores the relationship

between the measured longitudinal covariates and the event time data. For example, more

measurements may indicate longer time to event. Another class of methods are recalibration

methods based on [Prentice, 1982], which are aimed to reduce the bias by estimating the

hazard function given the observed covariate values [Dafni and Tsiatis, 1998, Tsiatis et al.,

1995, Wang et al., 1997, 2000, 2001]. However since it is complex to derive the analytical

form of the observed-covariate-hazard, such methods are generally based on strong model

assumptions and approximations, thus still failing to reduce the bias entirely. Likelihood

approaches have also been developed to making inference for joint models [DeGruttola and

Tu, 1994, Rizopoulos et al., 2009, Wulfsohn and Tsiatis, 1997]. The likelihood approach is

most often considered due to its efficiency. However, despite the requirement of specifying
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the joint distribution of the random effects and the event time data, the likelihood function

usually involves no-closed form of the integral over unknown random effects. Therefore con-

siderable computational burden is anticipated due to the numerical integration. R packages

are available for the likelihood inference: JM [Rizopoulos, 2010] and joineR [Philipson et al.,

2012]. Some other researchers developed a set of Bayesian procedures for inference using

Markov Chain Monte Carlo (MCMC), which relies further on the specification for distri-

bution of parameters and requires the examination for convergence [Faucett and Thomas,

1996, Xu and Zeger, 2001]. The above mentioned methods are easy to interpret but have

their own drawbacks such as the complication to implement and the needs for distributional

assumptions. [Tsiatis and Davidian, 2001] developed a conditional score method with a no-

table innovation that it does not rely on the distributional assumption of the random effects

at all. The rationale of the method is to derive the intensity density of the event time process

conditional on a complete and sufficient statistic of the unknown random effects. Therefore,

the induced conditional hazard function given it does not depend on the unknown random

effects at all. Then estimating equations for coefficients of the Cox regression model are

constructed in a spirit similar to that for partial likelihood score. This method is much

less computationally intensive and is easy to generalize to handle multiple time-dependent

covariates [Song et al., 2002]. [Wang, 2006] developed a corrected score method by con-

structing estimating equations whose conditional expectation given the random effects are

asymptotically equivalent to the partial likelihood score equations in terms of the true un-

derlying time-dependent covariates. Both conditional score and corrected score methods

are consistent and asymptotically normal under regularity conditions. For reviews of more

joint modeling research please see [McCrink et al., 2013, Tsiatis and Davidian, 2004, Wu

et al., 2012].

This dissertation favors the advantages of conditional score estimator. In particular the

motivating studies include multiple immune biomarkers indicating an interest of analyzing

the association of one single biomarker to the clinical endpoint adjusting for others, a setting

where the likelihood approach may computationally fail. However, to the best of our knowl-

edge, no joint modeling approaches focus on the situation where the longitudinal biomarkers

are measured on a random or a biased subsample of the full study cohort, which is usually
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the case in vaccine efficacy trials and generally in prevention efficacy trials. As a result, in

this chapter, we adopt the conditional score method, and develop the corresponding IPW

and AIPW estimator to accommodating the missingness due to the two-phase sampling.

We only consider the Bernoulli sampling for the second phase sample. For demonstration

simplicity, we concentrate on the model with a single longitudinal biomarker. The theories

and deviations apply to the model with multiple longitudinal biomarkers immediately.

2.2 Notation and modeling

2.2.1 Longitudinal data model and survival data model

Let T and C be the event time and censoring time. The observed right-censored data is

V = min(T,C) and ∆ = I(T ≤ C). Let Z̃ = (Z,LT )T where Z is the treatment group

(1 for vaccination and 0 for placebo) and L is a p− 1 dimensional vector of baseline time-

independent confounding variables. We denote the time-dependent biomarker process which

is not observed directly by X̃(τ) = {X(u), 0 ≤ u ≤ τ}, with τ being the time when the

follow-up ends and X(u) being the value of biomarker at time u. We assume the following

random effects model representing the inherent trajectory of X(u)

X(u) = αT f(u) (2.1)

where f(u) is a q dimensional vector of known functions of time u and α are the subject-

specific random effects. Flexible models (e.g., polynomial or spline model) are obtainable via

different specifications of f(u). For example f(u) = (1, u)T specifies a simple linear model.

The observed longitudinal biomarker values are from an additive measurement error model

W (u) = αT f(u) + e(u) (2.2)

The measurement errors e(u) are Normal distributed with mean zero and variance Cov(e(u),

e(s)) = I(u = s)σ2. Also we assume e(u) is independent of α. Suppose the set of measure-

ment time points are Tm = (Tm1 , · · · , TmJ )T with 0 ≤ Tm1 < Tm2 < · · · < TmJ ≤ V , and J

being the total number of time points. We allow Tm to be varying by subjects. Then let
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W = (W1, · · · ,WJ)T , where Wj = W (Tmj ) and let e = (e1, · · · , eJ) where ej = e(Tmj ).

For any fixed time u, let J(u) be the maximum number of measurement time points

up to and including time u (i.e. 0 ≤ Tm1 < · · · < TmJ(u) ≤ u < TmJ(u)+1) and Tm(u) =

(Tm1 , · · · , TmJ(u))
T be the corresponding vector of ordered measuring time points. We consider

the following proportional hazards model of the event time

λ(u) = lim
du→0

1

du
P(u ≤ T < u+ du|T ≥ u, α, Z̃, Tm(u), C)

= lim
du→0

1

du
P(u ≤ T < u+ du|T ≥ u, α, Z̃)

= λ0(u) exp{X(u)β + Z̃T η +X(u)Zγ} (2.3)

In this model, we assume non-informative censoring and non-informative measuring time

to the event time given the information already provided by α and Z̃. [Song et al., 2002]

considered a more generalized hazard function than (2.3), where they assumed λ(u) =

λ0(u) exp{βTG(u)α+ ηT Z̃}, with G(u) being a matrix of functions of u. Such specification

links the event time to the time-dependent biomarker through the G(u)α. For example,

when G(u) = fT (u), it reduces to the hazard function (2.3) we are considering; when G(u)

is a q×q identity matrix, it becomes the Cox proportional hazards model taking the random

effects as covariates, which is the model considered in [Wang, 2006]. Modeling the random

effects as covariates is particularly of interest when the trend of X(u) is believed to dominate

the association between time-dependent biomarker and the event time. This dissertation

considers the hazard function (2.3) and intends to evaluate how the current hypothetical

true value of biomarker predicts the instantaneous hazard of interest, which intuitively is

closer to the mechanism of protection. Our derivations based on (2.3) are ready to be

extended to Song’s proportional hazards model.

2.2.2 Two-phase sampling model

We consider the vaccine efficacy trials where immune biomarker data are not collected on all

participants by design. For example, in the RV144 HIV-1 Thai trial, the immune responses

were assessed on a case-control sample. In CYD dengue vaccine trials, the longitudinal pro-
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file of the antibody titers for each serotype were only measured on a random immunogenicity

set (∼ 18%) from the study cohort. To obtain valid inference, we must apply appropriate

statistical technique to account for such sampling design, which is called two-phase sampling

[Breslow and Wellner, 2007, Haneuse et al., 2011, Neyman, 1938]. Now we introduce the

sampling design we consider in this dissertation and the associated notations.

Generally, in the first phase, a large sample with size N is taken from the study pop-

ulation. Let (Vi,∆i, Zi, L
T
i , A

T
i )T , i = 1, · · · , N be the data collected on N independent

subjects. The vector Ai are auxiliary variables which might be predictive of the immune

biomarker. In the second phase, a random Bernoulli sample is taken from the N subjects,

with sampling probabilities given by π(Oi), where Oi are (a subset of) the variables col-

lected at the first phase. Let ξi be the binary indicator of being sampled (ξi = 1). Then the

longitudinal immune biomarkers {Wi, T
m
i , Ji} are assessed only on subjects with ξi = 1, i.e.

the observed data for i = 1, · · · , N are {Vi,∆i, Zi, Li, Ai, ξi, ξiWi, ξiT
m
i , ξiJi}.

To emphasize, the sampling probability model is characterized by a parametric model

in terms of finite-dimensional parameter ρ

P(ξ = 1|O,α,W, Tm, J) = P(ξ = 1|O) = π(O; ρ) (2.4)

This is the missing at random (MAR) assumption. We also assume positive sampling

probabilities with 0 < δ < πi(Oi; ρ) ≤ 1 for some constant value δ > 0 and for all i =

1, · · · , N .

Now considering the special situation where the second phase sample is taken by a strat-

ified Bernoulli sampling. That is to say, suppose the N subjects can be divided exclusively

and exhaustively into S strata based on O: {O1, · · · ,OS}. We use I(O ∈ Os) to indicate

whether a subject belongs to stratum Os. In a case-control sampling, the strata are defined

by ∆. Let N1, · · · , NS be the size of each stratum such that N1 + · · · + NS = N . In the

second phase, if a subject belongs to stratum Os, then with a probability ρs the subject

will be sampled, i.e.

π(O; ρ) =
S∑
s=1

I(O ∈ Os)ρs (2.5)
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We also let the probability of belonging to a stratum as νs = P(O ∈ Os) > 0, s = 1, · · · , S.

2.3 Methods to evaluate time-dependent CoP

The central application of this dissertation is to evaluate how the current level/status of

immune response is associate with the instantaneous risk of the clinical endpoint and to

assess the validity of current level/status of immune response as a CoP for measuring VE.

The assessment of association is straightforward based on model (2.3). For the assessment

of a CoP, this dissertation mainly focuses on the Prentice’s framework [Prentice, 1989] in

terms of statistical parameters. As a complement, we also introduce the framework based

on causal effects, which leads to causal interpretation. This section therefore describes these

two frameworks which the joint model (2.3) can be applied to assess the time-dependent

CoP.

2.3.1 Prentice’s criteria

The implementation of joint modeling approach in two-phase sampling provides the way

to analyze the underlying hypothetical trajectory of time-dependent immune biomarkers as

correlates of risk directly in vaccine efficacy trials where the biomarker data are only mea-

sured in a subset of subjects. This approach also enables the evaluation of time-dependent

immune correlates of protection in the framework of Prentice’s approach [Prentice, 1989].

By Prentice’s definition, for an immune biomarker to be an immunological surrogate, is one

on which the test of the null hypothesis of no vaccine effect is also a valid test of the null

hypothesis of no vaccine effect on the clinical endpoint. To apply the Prentice’s framework

to assess the time-dependent CoP based on model (2.3), we need to check

(i) Z has an effect on T , and Z has an effect on the immune biomarker X̃(τ).

(ii) X̃(τ) is correlated with the clinical endpoint T in both treatment groups.

(iii) Z has no effect on T given the immune biomarker X̃(τ). To check this, we need first

to rule out that the vaccine effect on T is modified by the biomarker, i.e. there is a

significant interaction effect in (2.3). Otherwise, the biomarker fails to meet Prentice’s

criteria. If we do declare γ = 0, then we fit λ(u) = λ0(u) exp{X(u)β+ZηZ|X +LT ηL}
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including all dual predictors L for X(u) and T , and to see if ηZ|X = 0 is plausibly

close to zero.

However checking condition (iii) is difficult statistically because conceptually we need to

test the null hypothesis of ηZ|X 6= 0 versus the alternative ηZ|X = 0, which requires infinity

sample size. An insignificant p-value for the regression coefficient ηZ|X could be lack of

evidence to reject ηZ|X = 0, instead of evidence to accept ηZ|X = 0. We could use the

confidence interval of ηZ|X to judge the precision with which it is near zero. An alternative

way is to use a value to measure the proportion of treatment effect explained (PTE) by

the biomarker, defined as 1 − ηZ|X/ηZ , where ηZ is the regression coefficient of Z without

adjustment of the biomarker [Freedman et al., 1992, Lin et al., 1997]. However, PTE is

not guaranteed to be in [0,1] and could be quite variable, suggesting it is only very useful

when the ηZ is very large [Flandre and Saidi, 1999]. A recent published paper defined a new

measurement, the proportion of treatment effect captured by the potential surrogate (PCS),

still with 1 indicating a perfect surrogate and 0 indicating a useless surrogate [Kobayashi

and Kuroki, 2014]. PCS is guaranteed to be in [0,1] and is less variable.

2.3.2 Causal effects framework

Another framework to evaluate the CoP which confers causal effects interpretation is based

on the concepts of natural direct and indirect effects.

In Section 1.1.2, we define the conterfactual underlying biomarker history up to and

including time t as X̃z(t) = {Xz(u), 0 ≤ u ≤ t} if the vaccination status had taken Z = z.

To evaluate the underlying biomarker trajectory as a surrogate, we would like to look at

the potential time to clinical endpoint T zx̃ when the vaccination status had taken z and the

underlying biomarker trajectory history had taken x̃. Note that, under the random effects

model assumption (2.1), the hypothetical biomarker trajectory is entirely determined by the

random effects. Besides, the time to clinical endpoint depends on this trajectory all through

the random effects. Therefore, in this section, instead of using the notation of a biomarker

process X̃z(t), we use notation Xz
α to emphasize that the whole biomarker trajectory is

determined all by α.
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Under this potential-outcome framework, the concepts of direct and indirect causal ef-

fects of treatment have been defined. The controlled direct effect (CDE) contrasts T 1x̃α

with T 0x̃α , i.e. comparing the time to clinical endpoint when the treatment had taken 1 to

that when the treatment had taken 0, manipulating the biomarker process to x̃α. It is often

of interest in policy making. The natural direct effect (NDEz) contrasts T 1Xz
α with T 0Xz

α ,

where the biomarker level is allowed to be the value it would be if treatment had been z,

z ∈ {0, 1}. The total effect (TE) can be decomposed into the sum of NDEz and the natural

indirect effect (NIEz). This provokes the measurement NIEz/TE, or the PCSz defined in

[Kobayashi and Kuroki, 2014] as

PCSz =
NIE2

z

NDE2
z +NIE2

z

to quantify the proportion of causal effect captured by Xα. A proportion close to one could

indicate a good surrogate. The problem with these definitions based on counterfactual

endpoints is that only the ones under the assigned treatment can be observed. Thus in

order to make inference on the causal effects based on observed dataset, we need to make

some identification assumptions given in Assumption I. Recall that L is a vector of potential

confounders measured at baseline.

Assumption I

I1. Consistency. T = T zxα if Z = z and Xα = xα. Xα = Xz
α if Z = z.

I2. (Z,Xα) ⊥ T zxα |L

I3. Z ⊥ Xz
α|L

I4. T zxα ⊥ Xz∗
α |Z,L, for any z, z∗ ∈ {0, 1}

I5. Zero biomarker level among the untreated P(Xα = 0|Z = 0) = 1, a.s

For a fixed time point t0 ∈ [0, τ ], we define the natural direct effect for treatment

z = {0, 1} as

NDEz(t0) = E[I(T 1Xz
α ≥ t0)− I(T 0Xz

α ≥ t0)] (2.6)
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and the natural indirect effect for treatment as

NIEz(t0) = E[I(T 1−z,X1
α ≥ t0)− I(T 1−z,X0

α ≥ t0)] (2.7)

So that NDEz(t0) +NIEz(t0) = TE(t0) ≡ E[I(T 1 ≥ t0)− I(T 0 ≥ t0)]. From the following

theorems, we are able to estimate NDEz(t0) and NIEz(t0) based on observed data and

then further evaluate the PCSz(t0).

Theorem 2.3.1. Under Assumptions I1 - I4, NDEz(t0) and NIEz(t0) are identifiable

from the observed data.

Proof. Note that by Assumption I1 - I3 we have

E[I(T z
∗xα ≥ t0)|L] = E[I(T z

∗xα ≥ t0)|Z = z∗, Xα = xα, L]

= E[I(T ≥ t0)|Z = z∗, Xα = xα, L]

= ST (t0|Z = z∗, Xα = xα, L)

dPXz
α
(xα|L) = dP(Xz

α ≤ xα|Z = z, L)

= dP(Xα ≤ xα|Z = z, L)

Therefore

E[I(T z
∗Xz

α ≥ t0)] = E{E{E[I(T z
∗Xz

α ≥ t0)|Z,Xz
α, L]Z,L}}

= E{
∫
xα

E[I(T z
∗Xz

α ≥ t0)|Z,Xz
α = xα, L]dPXz

α
(xα|Z,L)}

= E{
∫
xα

E[I(T z
∗xα ≥ t0)|Z,Xα = xα, L]dPXz

α
(xα|L)} (Assumption I1,I3)

= E{
∫
xα

E[I(T z
∗xα ≥ t0)|Z,L]dPXz

α
(xα|L)} (Assumption I1,I4)

= E{
∫
xα

E[I(T z
∗xα ≥ t0)|L]dPXz

α
(xα|L)} (Assumption I1,I2)

= E{
∫
xα

ST (t0|Z = z∗, Xα = xα, L)pXα(xα|Z = z, L)dxα}

= E [gz∗,z(L; t0, λ0, θ, θα)]

where λ0 = λ0(u), θ = (β, ηT , γ)T are parameters involved in the hazard function of observed
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data given in (2.3), and θα are the parameters involved in the density pXα(xα|Z = z, L).

The first term ST (t0|·) inside the integration over xα can be fitted from observed data

using (2.3). The second term is the conditional density function of Xα, which is indeed

determined by α, given Z = z, L. The conditional score estimator, however, dose not

require any distributional assumption on the random effects. Therefore, in order to further

identify NDEz(t0) and NIEz(t0), we have to make the distributional assumption for α,

and estimate θα through likelihood approach based on data W,Z,L. Finally NDEz(t0) and

NIEz(t0) can be estimated by

N̂DEz(t0) = N−1
N∑
i=1

{
g1,z(Li; t0, λ̂0, θ̂, θ̂αi)− g0,z(Li; t0, λ̂0, θ̂, θ̂αi)

}
N̂IEz(t0) = N−1

N∑
i=1

{
g1−z,1(Li; t0, λ̂0, θ̂, θ̂αi)− g1−z,0(Li; t0, λ̂0, θ̂, θ̂αi)

}

where the calculation of gz∗,z needs the help of numerical integration.

In HIV vaccine trials, it is reasonable to assume that the underlying biomarker level is

zero if the participants in the placebo group are healthy and have no prior exposure to the

virus. That is to say P(Xα = 0|Z = 0) = 1, a.s, or P(X0
α = 0) = 1, a.s. In this case with

constant biomarker in the placebo group, we could consider the parameter of natural direct

effect among the untreated proposed by [Lendle et al., 2013]. We consider the natural direct

effect among the untreated

NDU(t0) = E
{[
I(T 1X0

α ≥ t0)− I(T 0X0
α ≥ t0)

]
|Z = 0

}
(2.8)

One good property of such parameter known from [Lendle et al., 2013] is that under

complete randomization assumption, Z ⊥ (Xz
α, T

zxα , L), and conditions I1,I4, we have

NDE0(t0) = NDU(t0), i.e. the natural direct effect among the placebo group equals the

total natural direct effect of placebo.

Theorem 2.3.2. Under Assumptions I1 - I3, NDU(t0) is identifiable from observed data.
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Proof. Similar as in the proof of Theorem 2.3.1, we have

E[I(T z
∗X0

α ≥ t0)|Z = 0]

= E{E{E[I(T z
∗X0

α ≥ t0)|Z = 0, X0
α, L]Z = 0, L}|Z = 0}

= E{
∫
xα

E[I(T z
∗X0

α ≥ t0)|Z = 0, X0
α = xα, L]dPX0

α
(xα|Z = 0, L)|Z = 0}

= E{
∫
xα

E[I(T z
∗xα ≥ t0)|Z = 0, Xα = xα, L]dPX0

α
(xα|L)|Z = 0} (Assumption I1,I3)

= E{
∫
xα

E[I(T z
∗xα ≥ t0)|L]dPX0

α
(xα|L)|Z = 0} (Assumption I1,I2)

= E{
∫
xα

ST (t0|Z = z∗, Xα = xα, L)pXα(xα|Z = 0, L)dxα|Z = 0}

= E [gz∗,0(L; t0, λ0, θ, θα)|Z = 0]

Similarly NDU(t0) can be estimated by

N̂DU(t0) =
N∑
i=1

I(Zi = 0)
{
g1,0(Li; t0, λ̂0, θ̂, θ̂αi)− g0,0(Li; t0, λ̂0, θ̂, θ̂αi)

}
/

N∑
i=1

I(Zi = 0)

Under Assumption I5 additionally, gz∗,0 reduces to

gz∗,0(L; t0, λ0, η) = exp{−Λ0(t0) exp{z∗ηZ + LT ηL}}

which can be directly estimated by fitting model (2.3).

To evaluate the confidence interval of these quantities, since it is hard to obtain the

analytical form of the standard errors, we suggest using the bootstrap method. Note for the

time-dependent immune response process, we are only interested in the immune response

level measured before the event. We know that if a subject becomes infected or develops

the disease, the pattern of his/her immune response level could alter dramatically. There-

fore even though in our setting the trajectory is fully determined by the time-independent

random effects, it is crucial to clearly define the natural direct and indirect effects in terms

of the “random effects” that quantify the trajectory before the occurrence of an event. It is
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always a complication in dealing with the time-dependent variable and event time process

simultaneously. Here we propose the initial work with the definitions of estimands and

procedure for estimation. More detailed work is needed along this direction.

2.4 Methods of IPW and AIPW

In this section, we discuss the general models and properties for IPW and AIPW estimators.

In next section, we will apply them to make inference for the joint model (2.3).

Suppose the parameter of interest θ can be estimated by solving the estimating equation

MF (θ) =
∑N

i=1Mi(θ) = 0 when there is no missing data. In following sections, we will derive

specific forms of estimating equations for the conditional score methods under two-phase

sampling. Here the notation Mi(θ) is used to denote for a general estimating equations sat-

isfying regularity conditions. We use it here to review and describe some general properties

for IPW and AIPW estimators.. Let θ0 be the true parameter with E0[M(θ0)] = 0, where

E0[·] denotes the expectation evaluated under the truth. We also use ḟθ = ∂f/∂θ to denote

the derivative of function f with respect to the parameter θ. We sometimes omit θ in the

subscript and use ḟ when f is fully parameterized by θ.

Under the situation of two-phase sampling, we first consider a class of estimating equa-

tions defined by

Mπ =

{
h : Mh(θ, π, h) =

N∑
i=1

ξi
π(Oi)

Mi(θ) +

N∑
i=1

(
1− ξi

π(Oi)

)
h(Õi; θ) = 0

}
(2.9)

where h(Õ; θ) is a function of Õ , and Õ is a union of the sampling variables O and pos-

sibly other predictor variables from {V,∆, Z, L,A}. We assume the sampling probabilities

involved in this class of estimating equations are fully and correctly specified. This is a

reasonable assumption because the sampling are usually conducted by design. Note when

h ≡ 0, Mh(θ, π, h) = 0 leads to the IPW estimator, and h = E[M(θ)|Õ] leads to the AIPW

estimator proposed by [Robins et al., 1994].

Similarly to the Proposition 2.2 in [Robins et al., 1994], under some regularity conditions
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we can show that θ̂h(π)
p→ θ0 as N →∞ where θ̂h(π) solves Mh(θ, π, h) = 0 and

N1/2
(
θ̂h(π)− θ0

)
= −

{
E0

[
Ṁ
]}−1 1√

N

N∑
i=1

Mh,i(θ0, π, h) + op(1)

with

Mh,i(θ0, π, h) =
ξi

π(Oi)
Mi(θ0) +

(
1− ξi

π(Oi)

)
h(Õi; θ0)

By the Law of Total Variance Var(X) = E[Var(X|Y )] + Var[E(X|Y )], the covariance

matrix for Mh,i(θ0, π, h) is

E0

[
1

π
MMT

]
− E0

[
1− π
π

h0h
T
0

]
+E0

{
1− π
π

[h− h0] [h− h0]]T
}

+ E0

{
1− π
π

[
h0h

T − hhT0
]}

where for notational simplicity, we let h0(Õ; θ0) = E0[M(θ0)|Õ]. Apparently the vari-

ance is minimized with h = E[M(θ)|Õ]. The result also implies that, for the IPW es-

timator θ̂IPW (π) which solves Mh(θ, π, 0) = 0 with h ≡ 0, the asymptotic variance of

N1/2
(
θ̂IPW (π)− θ0

)
is

ΣIPW (π) =
{
E0

[
Ṁ
]}−1

E0

[
1

π
MMT

]{
E0

[
Ṁ
]}−1

And for the AIPW estimator θ̂AUG(π) which solves Mh(θ, π,E) = 0 with h = E[M(θ)|Õ],

the asymptotic variance of N1/2
(
θ̂AUG(π)− θ0

)
is

ΣAUG(π) =
{
E0

[
Ṁ
]}−1

{
E0

[
1

π
MMT

]
− E0

[
1− π
π

h0h
T
0

]}{
E0

[
Ṁ
]}−1

= ΣIPW (π)−
{
E0

[
Ṁ
]}−1

E0

[
1− π
π

h0h
T
0

]{
E0

[
Ṁ
]}−1

It shows that that the IPW estimator is inefficient in this class of estimates. It can be

improved by using h = E[M(θ)|Õ]. Or, there is an alternative way to use the estimated

sampling probabilities [Breslow and Wellner, 2007]. Naturally we also consider another set
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of estimating equations defined by

Mπ̂ =

{
h : Mh(θ, π̂, h) =

N∑
i=1

ξi
π̂(Oi)

Mi(θ) +
N∑
i=1

(
1− ξi

π̂(Oi)

)
h(Õi; θ) = 0

}
(2.10)

where π̂(Oi) = π(Oi; ρ̂) where ρ̂ maximizes the likelihood based on the correctly specified

probability model (2.4), i.e.

ρ̂ = arg max
ρ

N∏
i=1

π(Oi; ρ)ξi (1− π(Oi; ρ))1−ξi (2.11)

or solves the score equations

Sπ,F (ρ) =

N∑
i=1

Sπ,i(ρ) =

N∑
i=1

∂

∂ρ
log
{
π(Oi; ρ)ξi (1− π(Oi; ρ))1−ξi

}
=

N∑
i=1

ξi − π(Oi; ρ)

π(Oi; ρ)(1− π(Oi; ρ))

∂π(Oi; ρ)

∂ρ
= 0 (2.12)

Suppose ρ0 are the true parameters for the sampling probability model. Let θ̂h(π̂) denote

the solution to Mh(θ0, π̂, h) = 0. Still, under regularity conditions θ̂h(π̂)
p→ θ0 as N → ∞

and

N1/2
(
θ̂h(π̂)− θ0

)
= −

{
E0

[
Ṁ
]}−1 1√

N

N∑
i=1

φh,i(θ0, π, h) + op(1)

with

φh,i(θ0, π, h) = Mh,i(θ0, π, h) + E0

[
(M − h)

π̇

π

]{
E0

[
Ṡπ

]}−1
Sπ,i(ρ0)

The covariance matrix of φh,i(θ0, π, h) is

E0

[
MhM

T
h

]
+ E0

[
(M − h)

π̇

π

]{
E0

[
Ṡπ

]}−1
E0

[
(M − h)

π̇

π

]T
= E0

[
1

π
MMT

]
− E0

[
1− π
π

h0h
T
0

]
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+E0

[
1− π
π

[h− h0] [h− h0]T
]

+ E0

[
1− π
π

[
h0h

T − hhT0
]]

−E0

[[
E0[M |Õ]− h

] π̇
π

]{
E0

[
π̇π̇T

π(1− π)

]}−1

E0

[
[h0 − h]

π̇

π

]T

It is not straightforward to seek the function h at which the minimal variance is achieved,

because it is hard to compare the third to the fifth term without further information about

the sampling probability model. However, we can still have the asymptotic variance for

the IPW estimator θ̂IPW (π̂) which solves Mh(θ, π̂, 0) = 0 with h ≡ 0, and for the AIPW

estimator θ̂AUG(π̂) which solves Mh(θ, π̂,E) = 0 with h = E[M(θ)|Õ]. The asymptotic

variance of N1/2
(
θ̂IPW (π̂)− θ0

)
is

ΣIPW (π̂) = ΣIPW (π)

−
{
E0

[
Ṁ
]}−1

{
E0

[
M
π̇

π

]{
E0

[
π̇π̇T

π(1− π)

]}−1

E0

[
M
π̇

π

]T}{
E0

[
Ṁ
]}−1

And for N1/2
(
θ̂AUG(π̂)− θ0

)
is

ΣAUG(π̂) = ΣIPW (π)−
{
E0

[
Ṁ
]}−1

E0

[
1− π
π

h0h
T
0

]{
E0

[
Ṁ
]}−1

So far, we can tell that θ̂IPW (π) is the least efficient among the four estimators considered

above, and θ̂AUG(π̂) and θ̂AUG(π) are asymptotically equal.

Now we consider the special case with stratified Bernoulli sampling where the probabil-

ities are given by (2.5), the scores for subject i are simplified as

Sπ,i(ρ) = (Sπ1,i(ρ), · · · , SπS ,i(ρ))T (2.13)

Sπs,i(ρ) = I(Oi ∈ Os)
ξi − ρs

ρs(1− ρs)
(2.14)

Then it can be verified that

E0[Ṡπ] ≡
(
E0

[
∂Sπk
∂ρl

])
k,l

= Diag

{
− ν1

ρ01(1− ρ01)
, · · · ,− νS

ρ0S(1− ρ0S)

}
(2.15)
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E0[M
π̇

π
] =

(
ν1

ρ01
E0|1[M ], · · · , νS

ρ0S
E0|S [M ]

)
(2.16)

where E0|s[·] = E0[·|O ∈ Os] is the expectation evaluated given the membership in stratum

Os. Now we have

ΣIPW (π) =
{
E0

[
Ṁ
]}−1

E0

[
1

π
MMT

]{
E0

[
Ṁ
]}−1

ΣAUG(π) = ΣIPW (π)−
{
E0

[
Ṁ
]}−1

{
S∑
s=1

1− ρ0s

ρ0s
νsE0|s

[
h0h

T
0

]}{
E0

[
Ṁ
]}−1

ΣIPW (π̂) = ΣIPW (π)−
{
E0

[
Ṁ
]}−1

{
S∑
s=1

1− ρ0s

ρ0s
νsE0|s[M ]E0|s[M ]T

}{
E0

[
Ṁ
]}−1

= ΣIPW (π)−
{
E0

[
Ṁ
]}−1

{
S∑
s=1

1− ρ0s

ρ0s
νsE0|s [h0]E0|s [h0]T

}{
E0

[
Ṁ
]}−1

ΣAUG(π̂) = ΣAUG(π)

On the other hand, for the class of estimates given by Mπ̂, the covariance of their

influence function φh,i(θ0, π, h) is

E0

[
1

π
MMT

]
− E0

[
1− π
π

h0h
T
0

]
+ E0

{
1− π
π

[
h0h

T − hhT0
]}

+
S∑
s=1

1− ρ0s

ρ0s
νsE0|s

[
[h− h0][h− h0]T

]
−

S∑
s=1

1− ρ0s

ρ0s
νsE0|s [h− h0]E0|s [h− h0]T

The last two terms are actually
∑S

s=1
1−ρ0s

ρ0s
νsVar0|s [h− h0].

Since νs > 0 and 0 < ρ0s < 1, in order to minimize the variance above, we need to find

a function h that satisfies Var0|s [h− h0] = 0 for all s = 1, · · · , S. This implies that h =

E[M |Õ], a.s.. Therefore, under stratified Bernoulli sampling, ΣAUG(π) and ΣAUG(π̂) achieve

the minimal variance within the class of estimates yielded by Mπ and Mπ̂ respectively and

they are asymptotically equivalent. Therefore, if the correct model E[M |Õ] is available, or

a set of estimating equations equivalent to Mh(θ, π,E) can be found, the resulting estimates

are efficient. However, it is unusual to specify a correct model for E[M |Õ], thus resulting in
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even less efficient estimators than IPW. IPW estimators are relatively easy to implement, but

could give unstable estimate if some sampling probabilities are outliers [Kang and Schafer,

2007]. [Cao et al., 2009] discussed this issue based on a simple mean model to find the

optimal γopt for a known function h(Õ; θ, γ), and proposed a relatively stable method even

if the sampling probabilities are close to zero. [Han, 2012] also provided a way to search for

a better variance given one estimated function h(Õ; θ, γ̂). [Qi et al., 2005] applied the non-

parametric local constant regression to estimate E[M |Õ] on which the optimal efficiency is

obtained. Their method was developed for the Cox regression model with time-independent

covariate X, so it only needs to estimate E[f(X)|Õ] once regardless of the time. However

in this dissertation, it is the model with time-dependent covariate and unknown random

effects, so the augmentation term in the form of E[·|Õ] needs to be taken care of over time.

In following sections of this chapter, we will develop the IPW and AIPW estimators for

the joint model (2.3). We first review and generalize the conditional score method with

interaction term in the Cox regression model.

2.5 Conditional score estimator

The conditional score method was developed by [Tsiatis and Davidian, 2001] and then was

generalized for multiple time-dependent biomarkers by [Song et al., 2002]. This estimator

does not require specific distributional assumption for the random effects α other than

Normal measurement errors. The derivations are parallel to that in [Tsiatis and Davidian,

2001], so we do not put too much details here and only outline the key steps in constructing

the estimating equations.

Let θ = (β, ηT , γ)T be the regression coefficients in (2.3). Define the event process as

N(u) = I(V ≤ u,∆ = 1, J(u) ≥ q) and the at risk process as Y (u) = I(V ≥ u, J(u) ≥ q),

where J(u) ≥ q indicates that at least q measurements have been observed up to and

including time u. We also define the design matrix, the vector of observed longitudinal

measurements and the vector of measurement errors for each subject up to and including

time u as
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F̃ (u) =


fT (Tm1 )

...

fT (TmJ(u))

 , W̃ (u) =


W1

...

WJ(u)

 , ẽ(u) =


e1

...

eJ(u)

 (2.17)

Then (2.2) implies that W̃ (u) = F̃ (u)α + ẽ(u). Let α̂(u) = [F̃ T (u)F̃ (u)]−1F̃ T (u)W̃ (u) be

the least squares estimate for α using data up to and including time u. Conditional on

{α, Z̃, Tm(u), J(u), Y (u) = 1}, the least squares estimate of X(u), X̂(u) = α̂T (u)f(u) is

Normal distributed as N(X(u), d(u, σ2)), where d(u, σ2) = σ2fT (u) [F̃ T (u)F̃ (u)]−1f(u).

Similarly as in [Tsiatis and Davidian, 2001], we have the following conditional intensity for

N(u).

Lemma 2.5.1. Define Q(u, θ, σ2) = α̂T (u)f(u) + dN(u)d(u, σ2)(β + γZ) if Y (u) = 1.

Assuming the conditional independency T ⊥ (C, Tm, J) given α and Z̃. Then conditioning

on {Q(u, θ, σ2), Z̃, Tm(u), J(u), Y (u) = 1} the intensity process for dN(u) is

lim
du→0

1

du
P(dN(u) = 1|Q(u, θ, σ2), Z̃, Tm(u), J(u), Y (u) = 1)

= λ0(u) exp

{
βQ(u, θ, σ2) + ηT Z̃ + γZQ(u, θ, σ2)− 1

2
(β + γZ)2d(u, σ2)

}
(2.18)

which does not depend on the unknown random effects α.

Proof. Let C = {Z̃, Tm(u), J(u), Y (u) = 1}. At any time u, like in [Tsiatis and Davidian,

2001], under T ⊥ (C, Tm, J)|(α, Z̃) we have

P(dN(u) = r, X̂(u) = x|α, C)

= P(dN(u) = r|X̂(u) = x, α, C)P(X̂(u) = x|α, C)

=
[
λ0(u)du exp{βX(u) + ηT Z̃ + γX(u)Z}

]r
[
1− λ0(u)du exp{βX(u) + ηT Z̃ + γX(u)Z}

]1−r 1√
2πd(u, σ2)

exp{−(x−X(u))2

2d(u, σ2)
}

∝
[
1− λ0(u)du(u) exp{βX(u) + ηT Z̃ + γX(u)Z}

]1−r
exp{ X(u)

d(u, σ2)[
x+ d(u, σ2)(β + γZ)r

]
}
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The conditional intensity process is therefore derived as follows.

P(dN(u) = 1, Q(u, θ, σ2) = q|C)

=

∫
P(dN(u) = 1, Q(u, θ, σ2) = q|α, C)p(α|C)dα

=

∫
P(dN(u) = 1, X̂(u) = q − d(u, σ2)(β + γZ)|α, C)p(α|C)dα

=
1√

2πd(u, σ2)
λ0(u)du exp{ηT Z̃ − q2

2d(u, σ2)
+ (β + γZ)q − 1

2
d(u, σ2)(β + γZ)2}∫

exp{2qX(u)−X2(u)

2d(u, σ2)
}p(α|C)dα

= op(1)

as du→ 0.

P(dN(u) = 0, Q(u, θ, σ2) = q|C)

=

∫
P(dN(u) = 0, Q(u, θ, σ2) = q|α, C)p(α|C)dα

=

∫
P(dN(u) = 0, X̂(u) = q|α, C)p(α|C)dα

=
1√

2πd(u, σ2)
exp{− q2

2d(u, σ2)
}∫ {

1− λ0(u)du exp{βX(u) + ηT Z̃ + γX(u)Z}
}

exp{2qX(u)−X2(u)

2d(u, σ2)
}p(α|C)dα

=
1√

2πd(u, σ2)
exp{− q2

2d(u, σ2)
}
∫

exp{2qX(u)−X2(u)

2d(u, σ2)
}p(α|C)dα+ op(1)

as du→ 0. And

1

du
P(dN(u) = 1|Q(u, θ, σ2) = q, C)

=
1

du

P(dN(u) = 1, Q(u, θ, σ2) = q|C)
P(dN(u) = 1, Q(u, θ, σ2) = q|C) + P(dN(u) = 0, Q(u, θ, σ2) = q|C)

=
λ0(u) exp{ηT Z̃ − q2

2d(u,σ2)
+ (β + γZ)q − 1

2d(u, σ2)(β + γZ)2}
∫

exp{2qX(u)−X2(u)
2d(u,σ2)

}p(α|C)dα

exp{− q2

2d(u,σ2)
}
∫

exp{2qX(u)−X2(u)
2d(u,σ2)

}p(α|C)dα
+op(1)

= λ0(u) exp{βq + ηT Z̃ + γqZ)− 1

2
d(u, σ2)(β + γZ)2}+ op(1)
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as du→ 0.

For notational simplicity, throughout this chapter, we let

Hi(u, θ, σ
2) =

[
Qi(u, θ, σ

2), Z̃Ti , Qi(u, θ, σ
2)Zi)

]T
If the variance of measurement errors σ2 is known, the unbiased estimating equations for θ

can be therefore derived as

UF (θ, σ2) =
N∑
i=1

∫ τ

0

{
Hi(u, θ, σ

2)−
E

(1)
F (u, θ, σ2)

E
(0)
F (u, θ, σ2)

}
dNi(u) = 0 (2.19)

where for r = 0, 1

E
(0)
i (u, θ, σ2) = exp{Hi(u, θ, σ

2)T θ − 1

2
(β + γZi)

2di(u, σ
2)}

E
(1)
i (u, θ, σ2) = Hi(u, θ, σ

2)E
(0)
i (u, θ, σ2)

E
(r)
F (u, θ, σ2) = N−1

N∑
i=1

Yi(u)E
(r)
i (u, θ, σ2)

However σ2 is usually unknown. We can estimate it as σ̂2 by solving Se,F (σ2) ≡
∑N

i=1 Se,i(σ
2)

= 0 where

Se,i(σ
2) = JiI(Ji ≥ q)

{[
W̃i(Vi)− F̃i(Vi)α̂i(Vi)

]T [
W̃i(Vi)− F̃i(Vi)α̂i(Vi)

]
− σ2(Ji − q)

}
(2.20)

And we can estimate θ by solving UF (θ, σ̂2) = 0. The baseline hazards are estimated by

dΛ̂F0 (u) =

∑
i dNi(u)/N

E
(0)
F (u, θ̂, σ̂2)

(2.21)
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2.6 IPW conditional score estimator

2.6.1 Prespecified sampling probabilities

We start with the case with correctly and fully specified sampling probabilities. We define

the IPW conditional score estimator θ̂IPW (π) for θ as the solution to UIPW (θ, σ̂2
IPW (π), π) =

0 where

UIPW (θ, σ̂2
IPW (π), π)

N∑
i=1

ξi
πi

∫ τ

0

{
Hi(u, θ, σ

2)−
E

(1)
IPW (u, θ, σ̂2

IPW (π), π)

E
(0)
IPW (u, θ, σ̂2

IPW (π), π)

}
dNi(u)

(2.22)

σ̂2
IPW (π) estimates σ2 by solving Se,IPW (σ2, π) ≡

∑N
i=1 (ξi/πi)Se,i(σ

2) = 0, and

E
(r)
IPW (u, θ, σ2, π) =

1

N

N∑
i=1

ξi
πi
Yi(u)E

(r)
i (u, θ, σ2), r = 0, 1 (2.23)

The baseline hazards are estimated via

dΛ̂IPW0 (u) =

∑
i dNi(u)/N

E
(0)
IPW (u, θ̂IPW (π), σ̂2(π), π)

(2.24)

Define

Mi(θ, σ
2) =

∫ τ

0

{
Hi(u, θ, σ

2)− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}
dDi(u) (2.25)

dDi(u) = dNi(u)− λ0(u)Yi(u)E
(0)
i (u, θ, σ2)du (2.26)

e(r)(u, θ, σ2) = E[Y (u)E(r)(u, θ, σ2)], r = 0, 1 (2.27)

By Lemma 2.5.1 and the same arguments as for (8a) in [Tsiatis and Davidian, 2001],

we know if θ0 is the true parameter of (2.3) and σ2
0 is the true variance of measurement

errors, then E[M(θ0, σ
2
0)] = 0. In the following regularity conditions, we also assume that

they are also the unique solutions. We shall show next that the estimating equations

N−1UIPW (θ, σ̂2
IPW (π), π) are asymptotically equivalent to N−1

∑N
i=1 (ξi/πi)Mi(θ, σ

2). The

latter is a sum of i.i.d. random variates on which the empirical theories are readily applied
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under the following regularity conditions. Let (θT0 , σ
2
0, ρ

T
0 )T be the true parameters. For

any parameter, for example θ, We use N (θ0) to denote the compact neighborhood of θ0

and N (τ, θ0) for [0, τ ] × N (θ0). Let E0[·] and Var0[·] denote the expectation and variance

evaluated under the truth.

Assumption A:

A1. The event time T is independent of the censoring time and the measuring schedule

information (C, Tm, J), given α and Z̃.

A2. Λ0(τ) <∞, P(Y (τ) = 1) > 0.

A3. The parameter space for (θT , σ2, ρT )T is compact and the true values (θT0 , σ
2
0, ρ

T
0 )T lie

in the interior.

A4. P(ξ = 1|O,α,W, Tm, J) = P(ξ = 1|O) = π(O; ρ) > δ > 0, for all ρ and some constant

δ > 0.

A5. supu∈[0,τ ]

∣∣H(u, θ, σ2)
∣∣, supu∈[0,τ ]

∣∣∣Ḣθ,σ2(u, θ, σ2)
∣∣∣, and supu∈[0,τ ]

∣∣d(u, σ2)
∣∣ are bounded

and Var
∫ τ

0 |dE
(r)
i (u, θ, σ2)| <∞.

A6. E[M(θ, σ2)] 6= 0 if (θT , σ2)T 6= (θT0 , σ
2
0)T .

A7. Var0[M ] is finite and positive definite. E0[Ṁ ] exists and is invertible.

A8. E
[
sup(θ,σ2)∈N (θ0,σ2

0)

∣∣M(θ, σ2)
∣∣] < ∞, E

[
sup(θ,σ2)∈N (θ0,σ2

0)

∣∣M(θ, σ2)M(θ, σ2)T
∣∣] <

∞, and E
[
sup(θ,σ2)∈N (θ0,σ2

0)

∣∣∣Ṁ(θ, σ2)
∣∣∣] <∞.

Lemma 2.6.1. Under conditions A1-A5, as N →∞,

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣∣∣E
(1)
IPW (u, θ, σ2, π)

E
(0)
IPW (u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

∣∣∣∣∣ p→ 0, r = 0, 1

Proof. By the Double Expectation Theorem E[X] = E[E[X|Y ]], we have

E
[
E

(r)
IPW (u, θ, σ2, π)

]
= E

[
ξi
πi
E

(r)
i (u, θ, σ2)

]
= e(r)(u, θ, σ2), r = 0, 1

Apparently E(r)(u, θ, σ2) is a continuous function of H(u, θ, σ2) and d(u, σ2), and they are

all continuous in (θT , σ2)T . Therefore by condition A4-A5 we have the uniform convergence

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣E(r)
IPW (u, θ, σ2, π)− e(r)(u, θ, σ2)

∣∣∣ p→ 0, r = 0, 1
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Also we can prove that e(0)(u, θ, σ2) is bounded away from zero on N (τ, θ0, σ
2
0), following

similar arguments as in [Fleming and Harrington, 1991] (page 305-306). Therefore the

uniform convergence stated in the Lemma holds.

Lemma 2.6.2. Under conditions A1-A5, N−1/2UIPW (θ0, σ
2
0, π) is asymptotically equivalent

to a sum of i.i.d. mean zero random variates,

N−1/2UIPW (θ0, σ
2
0, π) = N−1/2

N∑
i=1

ξi
πi
Mi(θ0, σ

2
0) + op(1)

Proof. We rewrite N−1/2UIPW (θ, σ2, π) as

N−1/2
N∑
i=1

ξi
πi

∫ τ

0

{
HT
i (u, θ, σ2)− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}
dDi(u)du

−N−1/2

∫ τ

0

{
E

(1)
IPW (u, θ, σ2, π)

E
(0)
IPW (u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}
N∑
i=1

ξi
πi
dDi(u)

≡ N−1/2
N∑
i=1

ξi
πi
Mi(θ, σ

2) +N−1/2UN2(θ, σ2, π) (2.28)

It suffices to show thatN−1/2UN2(θ0, σ
2
0, π) = op(1). Let dD0,i(u) = {dNi(u)−λ0(u)Yi(u)

E
(0)
i (u, θ0, σ

2
0)du} and dD̄0,N (u) = N−1

∑N
i=1(ξi/πi)dD0,i(u). By the Double Expecta-

tion Theorem and Lemma 2.5.1 we have E [(ξi/πi)dD0,i(u)] = 0. The Proposition A.1

in [Kulich and Lin, 2004] implies that N1/2dD̄0,N (u) converges weakly in l∞[0, τ ] to a

mean-zero Gaussian process uniformly in u. Then the convergence in probability to zero of

N−1/2UN2(θ0, σ
2
0, π) follows from Lemma 2.6.1 and Lemma 4.2 in [Kosorok, 2008].

Theorem 2.6.3. Under conditions A1-A8, as N → ∞, (i) θ̂IPW (π)
p→ θ0; and (ii)

√
N
(
θ̂IPW (π)− θ0

)
converges weakly to a Normal random variate with mean zero and

covariance A−1B(A−1)T , where

A = E0

[
Ṁθ

]
B = E0

[
1

π
RRT

]
R = M(θ0, σ

2
0)− E0

[
Ṁσ2

]{
E0

[
Ṡe

]}−1
Se(σ

2
0)
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Proof. (i) Consistency. The proof is similar to that in [Tsiatis and Davidian, 2001]. We

first demonstrate that N−1UIPW (θ, σ2, π) = N−1
∑N

i=1(ξi/πi)Mi(θ, σ
2) + op(1) uniformly

in (θT , σ2)T ∈ N (θ0, σ
2
0). Actually,

sup
(θ,σ2)∈N (θ0,σ2

0)

∣∣∣∣∣N−1UIPW (θ, σ2, π)−N−1
N∑
i=1

ξi
πi
Mi(θ, σ

2)

∣∣∣∣∣
= sup

(θ,σ2)∈N (θ0,σ2
0)

∣∣∣∣∣
∫ τ

0

{
E

(1)
IPW (u, θ, σ2, π)

E
(0)
IPW (u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}{
N−1

N∑
i=1

ξi
πi
dDi(u)du

}∣∣∣∣∣
≤

{
sup

(u,θ,σ2)∈N (τ,θ0,σ2
0)

∣∣∣∣∣E
(1)
IPW (u, θ, σ2, π)

E
(0)
IPW (u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

∣∣∣∣∣
}

×

{
1

δ
+

1

N

N∑
i=1

ξi
πi

sup
(θ,σ2)∈N (θ0,σ2

0)

{∫ τ

0
λ0(u)Yi(u)E

(0)
i (u, θ, σ2)du

}}

Lemma 2.6.1 yields the convergence to zero of the first term. The second term, by the

Double Expectation Theorem and Law of Large Numbers, converges to

1

δ
+ E

[
sup

(θ,σ2)∈N (θ0,σ2
0)

∫ τ

0
λ0(u)Yi(u)E

(0)
i (u, θ, σ2)du

]
<∞

Therefore

N−1UIPW (θ, σ2, π) = N−1
N∑
i=1

ξi
πi
Mi(θ, σ

2) + op(1)

uniformly in (θT , σ2)T . On the other hand, since

N−1
N∑
i=1

ξi
πi
Mi(θ, σ

2) = E
[
M(θ, σ2)

]
+ op(1)

uniformly in (θT , σ2)T , then for any consistent estimator σ̂2 p→ σ2
0,

N−1UIPW (θ, σ̂2, π) = N−1
N∑
i=1

ξi
πi
Mi(θ, σ̂

2) + op(1)

= E
[
M(θ, σ2)

]
σ2=σ̂2 + op(1)

= E
[
M(θ, σ2

0)
]

+ op(1)
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uniformly in θ. Condition A6 implies the uniqueness of θ0 as the root of E
[
M(θ, σ2

0)
]

= 0.

It follows from Theorem 5.9 in [van der Vaart, 1998] that θ̂IPW (π)
p→ θ0 as N →∞.

(ii) Asymptotic normality. Consider

N−1ŨIPW (θ, σ2, π) ≡ N−1

UIPW (θ, σ2, π)

Se,IPW (σ2, π)

 = N−1
N∑
i=1

ξi
πi

Mi(θ, σ
2)

Se,i(σ
2)

+ op(1)

By Taylor expansion we have

N−1/2ŨIPW (θ0, σ
2
0, π) = −N−1 ˙̃

UIPW (θ∗, σ∗2, π)N1/2

 θ̂IPW (π)− θ0

σ̂2(π)− σ2
0



where (θ∗T , σ∗2)T lies on the segment between
(
θ̂IPW (π)T , σ̂2

IPW (π)
)T

and
(
θT0 , σ

2
0

)T
. Since

we can prove the uniform convergence of N−1 ˙̃
UIPW (θ, σ2, π) in the same way as that for

N−1ŨIPW (θ, σ2, π), together with the consistency of the estimates, we have

N−1 ˙̃
UIPW (θ∗, σ∗

2
, π) = N−1

N∑
i=1

ξi
πi

Ṁi(θ
∗, σ∗

2
)

Ṡe,i(σ
∗2)

+ op(1)

=

E0[Ṁθ] E0[Ṁ2
σ ]

0 E0[Ṡe]

+ op(1)

It leads to

N1/2

 θ̂IPW (π)− θ0

σ̂2
IPW (π)− σ2

0

 = −

E0[Ṁθ] E0[Ṁσ2 ]

0 E0[Ṡe]

−1 1√
N

N∑
i=1

ξi
πi

Mi(θ0, σ
2
0)

Se,i(σ
2
0)

+ op(1)

and further

N1/2
(
θ̂IPW (π)− θ0

)
= −

{
E0[Ṁθ]

}−1 1√
N

N∑
i=1

ξi
πi

{
Mi(θ0, σ

2
0)− E0[Ṁσ2 ]

{
E0[Ṡe]

}−1
Se,i(σ

2
0)

}
+ op(1)
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= −A−1 1√
N

N∑
i=1

ξi
πi
Ri + op(1)

The asymptotic variance for θ̂IPW (π) is A−1B(A−1)T .

2.6.2 Estimated sampling probabilities

We have shown in Section 2.4 that the IPW estimator with prespecified sampling probabili-

ties π are inefficient. Therefore it is often suggested to use the estimated π̂ = π̂(ρ̂) to improve

efficiency. We still apply here the sampling probability model (2.4), and the resulting like-

lihood and score functions (2.13) discussed in Section 2.4. The IPW estimators σ̂2
IPW (π̂)

and θ̂IPW (π̂) are obtained by solving Se,IPW (σ2, π̂) = 0 and UIPW (θ, σ̂2
IPW (π̂), π̂) = 0,

respectively.

Lemma 2.6.4. Under conditions A1-A5, as N →∞,

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣∣∣E
(1)
IPW (u, θ, σ2, π̂)

E
(0)
IPW (u, θ, σ2, π̂)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

∣∣∣∣∣ p→ 0, r = 0, 1

Proof. Actually, consider (ξ/π(ρ))E(r)(u, θ, σ2) as a function of (θT , σ2, ρT )T . Then we

can also prove its empirical mean uniformly converges to e(r)(u, θ, σ2) by Glivenko-Cantelli

Theorem. Therefore it follows naturally that

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣E(r)
IPW (u, θ, σ2, π̂(ρ̂))− e(r)(u, θ, σ2)

∣∣∣
≤ sup

ρ

{
sup

(u,θ,σ2)∈N (τ,θ0,σ2
0)

∣∣∣E(r)
IPW (u, θ, σ2, π(ρ))− e(r)(u, θ, σ2)

∣∣∣ }
= 0

Theorem 2.6.5. (i) θ̂IPW (π̂)
p→ θ0; and (ii)

√
N
(
θ̂IPW (π̂)− θ0

)
converges weakly to a

Normal random variate with mean zero and covariance A−1B∗(A−1)T , where

A = E0

[
Ṁθ

]
B∗ = B − E0[R

π̇

π
]
{
E0[SπS

T
π ]
}−1 E0[R

π̇

π
]T
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B and R are defined in Theorem 2.6.3.

Proof. (i) Consistency. Still, consider N−1UIPW (θ, σ2, π(ρ)) as a function of (θT , σ2, ρT )T ,

which can be shown as in Theorem 2.6.3 to satisfy

N−1UIPW (θ, σ2, π(ρ)) = N−1
N∑
i=1

ξi
πi(ρ)

Mi(θ, σ
2) + op(1)

= E[M(θ, σ2)] + op(1)

uniformly in (θT , σ2, ρT )T . Therefore it follows naturally that

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣N−1UIPW (θ, σ2, π̂(ρ̂))− E[M(θ, σ2)]
∣∣

≤ sup
ρ

{
sup

(u,θ,σ2)∈N (τ,θ0,σ2
0)

∣∣N−1UIPW (θ, σ2, π(ρ))− E[M(θ, σ2)]
∣∣}

= 0

Paralell result holds also for σ2: N−1Se,IPW (σ2, π̂) = E
[
Se(σ

2)
]

+ op(1) uniformly in σ2.

Then the consistency of θ̂IPW (π̂) and σ̂2
IPW (π̂) follows from Theorem 5.9 in [van der Vaart,

1998].

(ii) Asymptotic normality. This can be demonstrated in the same way as for θ̂IPW (π)

in Theorem 2.6.3. We only outline the key steps. Consider

ŨIPW (θ, σ2, π(ρ)) ≡


UIPW (θ, σ2, π(ρ))

Se,IPW (σ2, π(ρ))

Sπ,F (ρ)


By Taylor expansion, finally we have

N1/2


θ̂IPW (π̂)− θ0

σ̂2
IPW (π̂)− σ2

0

ρ̂− ρ0

 = −


E0[Ṁθ] E0[Ṁσ2 ] −E0[M π̇

π ]

0 E0[Ṡe] −E0[Se
π̇
π ]

0 0 E0[Ṡπ]


−1

1√
N

N∑
i=1


ξi

πi(ρ0)Mi(θ0, σ
2
0)

ξi
πi(ρ0)Se,i(σ

2
0)

Sπ,i(ρ0)
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+op(1)

This further implies that

N1/2
(
θ̂IPW (π̂)− θ0

)
= −A−1 1√

N

N∑
i=1

{
Ri − E0[R

π̇

π
]
{
E0[SπS

T
π ]
}−1

Sπ,i(ρ0)

}
+ op(1)

with asymptotic variance A−1B∗(A−1)T .

2.7 AIPW conditional score estimator

The IPW estimator is easy to implement but could be unstable with sampling probabilities

close to zero. Also in above sections we assume the sampling model is correctly specified,

but if it is not, the IPW estimator is biased. In Section 2.4 we also show that using estimated

sampling probabilities for IPW estimators can improve the efficiency, but still do not achieve

the minimal variance bound, which is achieved by AIPW estimator with correct model of

full data given Õ.

The AIPW estimator has the property of double robustness. That is as long as either

the sampling probability model for π(O; ρ) or E[M(θ)|Õ] in (2.4)(2.4) is correct, then the

estimating equations are unbiased for θ0.

p(U(θ)|ξ,O) =
p(U(θ), ξ|O)

p(ξ|O)
=
p(ξ|U(θ), O)p(U(θ)|O)

p(ξ|O)
= p(U(θ)|O)

Since in practice it is hard to derive the correct form of E[M(θ)|Õ], we need to estimate it

as close as possible the truth. Given the MAR assumption in (2.4), we have E[M(θ)|ξ =

1, Õ] = E[M(θ)|Õ]. Therefore we could build a model to estimate it based on using complete

data. In following sections, we first develop the AIPW conditional score estimator and its

asymptotic properties assuming π and E[·|Õ] are fully and correctly specified. Then we

move on to the situations where either or both of them are estimated.
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2.7.1 Prespecified sampling probabilities and E[·|Õ]

We start with the simplest case where π and E[·|Õ] are fully and correctly specified and

no unknown parameters are involved. Similar as in [Qi et al., 2005] we define the AIPW

conditional score estimating functions for θ in the form of

UAUG(θ, σ2, π,E)

=
N∑
i=1

ξi
πi

∫ τ

0

{
Hi(u, θ, σ

2)−
E

(1)
AUG(u, θ, σ2, π)

E
(0)
AUG(u, θ, σ2, π)

}
dNi(u)

+
N∑
i=1

(
1− ξi

πi

)∫ τ

0

{
E
{
Hi(u, θ, σ

2)dNi(u)|Õi
}
−
E

(1)
AUG(u, θ, σ2, π)

E
(0)
AUG(u, θ, σ2, π)

E
[
dNi(u)|Õi

]}
(2.29)

where for r = 0, 1,

E
(r)
AUG(u, θ, σ2, π) =

1

N

N∑
i=1

ξi
πi
Yi(u)E

(r)
i (u, θ, σ2) +

1

N

N∑
i=1

(
1− ξi

πi

)
E
[
Yi(u)E

(r)
i (u, θ, σ2)|Õi

]

Note here unlike in the partial likelihood for the classic Cox regression, we define the at

risk process as Yi(u) = I(Vi ≥ u, Ji(u) ≥ q) which contains the incomplete data of mea-

surement time-points. Therefore even if the event time information is included in Õi,

we still need to leave it inside the expectation. The estimate θ̂AUG(π,E) for θ solves

UAUG(θ, σ̂2
AUG(π,E), π,E) = 0, with σ̂2

AUG(π,E) solves

Se,AUG(σ2, π,E) =
N∑
i=1

(
ξi
πi

)
Se,i(σ

2) +
N∑
i=1

(
1− ξi

πi

)
E[Se,i(σ

2)|Õi] = 0 (2.30)

Define

MAUG,i(θ, σ
2, π) =

ξi
πi
Mi(θ, σ

2) +

(
1− ξi

πi

)
E
[
Mi(θ, σ

2)|Õi
]

(2.31)

Apparently E[MAUG(θ, σ2, π)] = E[M(θ, σ2)]. We will demonstrate that under the follow-

ing regularity conditions in additional to those in Assumption A, N−1UAUG(θ, σ2, π,E) is

asymptotically equivalent to N−1
∑N

i=1 (ξi/πi)MAUG,i(θ, σ
2, π). The latter is a sum of i.i.d.
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random variates on which the empirical theories are readily applied.

Assumption B

B1. The conditional expectations E[·|Õ] involved in (2.29) have bounded variation.

B2. Var0[MAUG] is finite and positive definite. E0[ṀAUG] exists and is invertible.

B3. E
[
sup(θ,σ2)∈N (θ0,σ2

0)

∣∣MAUG(θ, σ2)
∣∣] <∞,

E
[
sup(θ,σ2)∈N (θ0,σ2

0)

∣∣MAUG(θ, σ2)MAUG(θ, σ2)T
∣∣] <∞, and

E
[
sup(θ,σ2)∈N (θ0,σ2

0)

∣∣∣ṀAUG(θ, σ2)
∣∣∣] <∞.

Lemma 2.7.1. Under conditions A and B, as N →∞,

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣∣∣E
(1)
AUG(u, θ, σ2, π)

E
(0)
AUG(u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

∣∣∣∣∣ p→ 0

Proof. By Lemma 2.6.1, it is sufficient to show that for r = 0, 1

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣E(r)
AUG(u, θ, σ2, π)− E(r)

IPW (u, θ, σ2, π)
∣∣∣ p→ 0

Actually

E
(r)
AUG(u, θ, σ2, π)− E(r)

IPW (u, θ, σ2, π) =
1

N

N∑
i=1

(
1− ξi

πi

)
E
[
Yi(u)E

(r)
i (u, θ, σ2)|Õi

]
= E

[(
1− ξi

πi

)
E
[
Yi(u)E

(r)
i (u, θ, σ2)|Õi

]]
+ op(1)

= op(1)

uniformly in (u, θT , σ2)T .

Lemma 2.7.2. Under conditions A and B, N−1/2UAUG(θ0, σ
2
0, π,E) is asymptotically equiv-

alent to a sum of i.i.d. mean zero random variates

N−1/2UAUG(θ0, σ
2
0, π,E) = N−1/2

N∑
i=1

MAUG,i(θ0, σ
2
0, π) + op(1)

Proof. We actually can replace dNi(u) in UAUG(θ, σ2, π,E) (2.29) with dDi(u) = dNi(u)−
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λ0(u)E
(0)
i (u, θ, σ2)du. Moreover, we further rewrite N−1/2UAUG(θ, σ2, π,E) as

N−1/2UAUG(θ, σ2, π,E) = N−1/2
N∑
i=1

ξi
πi

∫ τ

0

{
HT
i (u, θ, σ2)− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}
dDi(u)

+N−1/2
N∑
i=1

(
1− ξi

πi

)∫ τ

0

{
E
{
HT
i (u, θ, σ2)dDi(u)|Õi

}
− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)
E
[
dDi(u)|Õi

]}

−
∫ τ

0

{
E

(1)
AUG(u, θ, σ2, π)

E
(0)
AUG(u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}{
N−1/2

N∑
i=1

ξi
πi
dDi(u)

}

−
∫ τ

0

{
E

(1)
AUG(u, θ, σ2, π)

E
(0)
AUG(u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}{
N−1/2

N∑
i=1

(
1− ξi

πi

)
E
[
dDi(u)|Õi

]}
≡ N−1/2MAUG,i(θ, σ

2, π)−N−1/2UN2(θ, σ2, π)−N−1/2UN3(θ, σ2, π) (2.32)

We shall show that N−1/2UN2(θ0, σ
2
0, π) = op(1) and N−1/2UN3(θ0, σ

2
0, π) = op(1) as

N → ∞. Let dDo,i(u) = dNi(u) − λ0(u)Yi(u)E
(0)
i (u, θ0, σ

2
0)du. Actually by Lemma 2.5.1

and the Double Expectation Theorem,

E
[
ξi
πi
dD0,i(u)

]
= E

[
dNi(u)− λ0(u)E

(0)
i (u, θ0, σ

2
0)du

]
= 0

E
[(

1− ξi
πi

)
E
[
dD0,i(u)|Õi

]]
= E

[
0× E

[
dD0,i(u)|Õi

]]
= 0

The Proposition A.1 in [Kulich and Lin, 2004] implies that N−1/2
∑N

i=1(ξi/πi)dD0,i(u) and

N−1/2
∑N

i=1(1− ξi/πi)E
[
dD0,i(u)|Õi

]
converge weakly in l∞[0, τ ] to a mean-zero Gaussian

process uniformly in u. Then we haveN−1/2UN2(θ0, σ
2
0, π) = op(1) andN−1/2UN3(θ0, σ

2
0, π) =

op(1) from Lemma 2.7.1 and Lemma 4.2 in [Kosorok, 2008]. Thus

N−1/2UAUG(θ0, σ
2
0, π,E) = N−1/2

N∑
i=1

MAUG,i(θ0, σ
2
0, π) + op(1)

Theorem 2.7.3. Under conditions A1-A8, B1-B4, as N → ∞, (i) θ̂AUG(π,E)
p→ θ0; and

(ii)
√
N
(
θ̂AUG(π,E)− θ0

)
converges weakly to a Normal random variate with mean zero
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and covariance A−1C(A−1)T , where

A = E0[Ṁθ] C = B − E0

[
1− π
π

E0[R|Õ]E0[R|Õ]T
]

Proof. (i) Consistency. Consider the form of UAUG(θ, σ2, π,E) given in (2.32) in the proof

of Lemma 2.7.2:

N−1UAUG(θ, σ2, π,E) = N−1
N∑
i=1

MAUG,i(θ, σ
2, π)−N−1UN2(θ, σ2, π)−N−1UN3(θ, σ2, π)

We shall show that N−1UN2(θ, σ2, π) = op(1) and N−1UN3(θ, σ2, π) = op(1) uniformly in

(θT , σ2)T . Actually the former comes from Lemma 2.7.1 and

sup
(θ,σ2)∈N (θ0,σ2

0)

∣∣∣∣∣ 1

N

N∑
i=1

ξi
πi

∫ τ

0
dDi(u)

∣∣∣∣∣
= sup

(θ,σ2)∈N (θ0,σ2
0)

∣∣∣∣∣ 1

N

N∑
i=1

ξi
πi

∫ τ

0

{
dNi(u)− λ0(u)Yi(u)E

(0)
i (u, θ, σ2)du

}∣∣∣∣∣
≤ 1

δ
+

1

N

N∑
i=1

ξi
πi

sup
(θ,σ2)∈N (θ0,σ2

0)

∫ τ

0
λ0(u)Yi(u)E

(0)
i (u, θ, σ2)du

=
1

δ
+ E

[
sup

(θ,σ2)∈N (θ0,σ2
0)

∫ τ

0
λ0(u)Yi(u)E

(0)
i (u, θ, σ2)du

]
+ op(1) <∞

Similarly N−1UN3(θ, σ2, π) = op(1) uniformly in (θT , σ2)T because

sup
(θ,σ2)∈N (θ0,σ2

0)

∣∣∣∣∣ 1

N

N∑
i=1

(
1− ξi

πi

)∫ τ

0
E
[
dDi(u)|Õi

]∣∣∣∣∣
≤

(
1 +

1

δ

)
1

N

N∑
i=1

sup
(θ,σ2)∈N (θ0,σ2

0)

∫ τ

0

{
1 + λ0(u)E

[
E(0)(u, θ, σ2)|Õi

]}
du

=

(
1 +

1

δ

)
E

[
sup

(θ,σ2)∈N (θ0,σ2
0)

∫ τ

0

{
1 + λ0(u)E

[
E(0)(u, θ, σ2)|Õi

]}
du

]
+ op(1) <∞

Thus N−1UAUG(θ, σ2, π,E) = N−1
∑N

i=1MAUG,i(θ, σ
2, π) + op(1) uniformly in (θT , σ2)T .
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On the other hand

N−1
N∑
i=1

MAUG,i(θ, σ
2, π) = E

[
MAUG(θ, σ2, π)

]
+ op(1)

= E
[
M(θ, σ2)

]
+ op(1)

uniformly in (θT , σ2)T . For any consistent estimator σ̂2 p→ σ2
0, we haveN−1UAUG(θ, σ̂2, π,E) =

E
[
M(θ, σ2

0)
]

+ op(1). By assumption A6 and Theorem 5.9 in [van der Vaart, 1998] it yields

the consistency that θ̂AUG(π,E)
p→ θ0.

(ii) Asymptotic normality. This can be proved in the same way as that in Theorem

2.6.3. We only outline the key steps. Consider

ŨAUG(θ, σ2, π) =

UAUG(θ, σ2, π,E)

Se,AUG(σ2, π,E)


Then ŨAUG(θ̂AUG(π,E), σ̂2(π), π) = 0. By Taylor expansion, finally we have

√
N

θ̂AUG(π,E)− θ0

σ̂2(π)− σ0

 = −

E0[Ṁθ] E0[Ṁσ2 ]

0 E0[Ṡe]

−1

1√
N

N∑
i=1

MAUG,i(θ0, σ
2
0, π)

Se,AUG,i(σ
2
0)

+ op(1)

Therefore

√
N
(
θ̂AUG(π,E)− θ0

)
= − 1√

N

{
E0[Ṁθ

]
}−1

N∑
i=1

{
MAUG,i(θ0, σ

2
0, π)− E0[Ṁσ2 ]

{
E0[Ṡe]

}−1
Se,AUG,i(σ

2
0)

}
+ op(1)

= − 1√
N

{
E0[Ṁθ

]
}−1

N∑
i=1

{
ξi
πi
Ri +

(
1− ξi

πi

)
E0[Ri|Õi]

}
+ op(1)

Thus the asymptotic variance of θ̂AUG(π,E) is A−1C(A−1)T .

2.7.2 Estimated sampling probabilities, prespecified E[·|Õ]

The results in this section are parallel to that in Section 2.6.2.
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Lemma 2.7.4. Under conditions A and B, as N →∞,

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣∣∣E
(1)
AUG(u, θ, σ2, π̂)

E
(0)
AUG(u, θ, σ2, π̂)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

∣∣∣∣∣ p→ 0, r = 0, 1

Theorem 2.7.5. Under conditions A and B, as N → ∞, (i) θ̂AUG(π̂,E)
p→ θ0; and (ii)

√
N
(
θ̂AUG(π̂,E)− θ0

)
converges weakly to a Normal random variate with mean zero and

covariance A−1B(A−1)T , with A,C defined in Theorem 2.7.3.

Proof. (i) Consistency. See the proof for Theorem 2.6.5.

(ii) Asymptotic normality. This can be proved in the same way as that in Theorem

2.6.5. We only outline the key steps. Consider

ŨAUG(θ, σ2, π(ρ),E) ≡


UAUG(θ, σ2, π(ρ),E)

Se,AUG(σ2, π(ρ),E)

Sπ(ρ)


By Taylor expansion, finally we have

N1/2


θ̂AUG(π̂,E)− θ0

σ̂2
AUG(π̂,E)− σ2

0

ρ̂− ρ0



= −


E0[Ṁθ] E0[Ṁσ2 ] 0

0 E0[Ṡe] 0

0 0 E0[Ṡπ]


−1

× 1√
N

N∑
i=1


MAUG,i(θ0, σ

2
0, π(ρ0))

Se,AUG,i(σ
2
0, π(ρ0))

Sπ,i(ρ0)

+ op(1)

This implies that θ̂AUG(π̂,E) is asymptotically equivalent to θ̂AUG(π,E), with asymptotic

variance A−1C(A−1)T .

Theorem 2.7.5 indicates that when the augmentation terms in the AIPW formula are

fully specified by the correct conditional expectation given Õ, using the estimated sampling

probabilies π̂ to make inference does not further improve the efficiency compared to using

the prespeficied probabilities.
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2.7.3 Prespeficied sampling probabilities, estimated E[·|Õ]

In reality it is hard to derive the analytical form of E[·|Õ]. Commonly used way is to replace

it with a function h(Õ, γ) in terms of finite parameter γ. However, when h(Õ; γ) 6= E[·|Õ]

for any γ the resulting estimate cannot achieve the optimal asymptotic variance given in

Theorem 2.7.3 and Theorem 2.7.5. [Cao et al., 2009] investigated the optimal way to find

γ which can finally lead to an estiamte of θ having the minimal variance with h fixed.

[Qi et al., 2005] investigated the AIPW estimator for the Cox regression with time-

independent covariates. They proposed to estimate the E[·|Õ] by nonparametric Nadaraya-

Watson method, and proved that the optimal asymptotic variance can be achieved. In our

model, we are however dealing with a more complicated case with time-dependent covariate.

So we need to extend their method to our setting.

The expression of estimating scores in (2.29) tells that we need to estimate E[G(u, θ, σ2)|Õ]

as a continuous function of u and integrate it over u, whereG(u, θ, σ2) could be Y (u)E(r)(u, θ, σ2),

dN(u) or H(u, θ, σ2)dN(u). Suppose the predictor variables Õ are d continuous variables,

we estimate it via the non-parametric Nadaraya-Watson estimator, i.e. for any random

variate g(u, Õ; θ, σ2) = E[G(u, θ, σ2)|Õ],

ĝ(u, Õ; θ, σ2) = Ê[G(u, θ, σ2)|Õ] =

∑N
j=1 ξjGj(u, θ, σ

2)KH(Õ − Õj)∑N
j=1 ξjKH(Õ − Õj)

(2.33)

where KH(·) is a s−th order kernel function and H is the bandwidth which is a d × d

symmetric and positive definite matrix. If any component of Õ is discrete, we consider the

kernel regression with mixed types of predictor variables [Hall et al., 2004]. As the “band-

width” of the kernel function for the discrete variable goes to zero, the estimator reduces to

the kernel estimator with respect to the continuous components within each stratum defined

by the discrete variable. The resulting estimating equations for θ is UAUG(θ, σ2, π, Ê) = 0

where replacing E in (2.29) with Ê given by (2.33).

However, intuitively such estimation relies on strong assumption on the functional form

on u. By examining the two stochastic processes involving dN(u) mentioned above, we find

that they are always zero for time u if there is no event occurring at that time. This implies
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practically, the estimates of their conditional expectations given Õ at non-event time points

are zero. So we only need to estimate them at event time points. Alternatively, if Õ include

the event time (V,∆), then conditioning on it we have UAUG(θ, σ2, π, Ê) reduced to

UAUG(θ, σ2, π, Ê)

=
N∑
i=1

ξi
πi

∫ τ

0

{
Hi(u, θ, σ

2)−
Ê

(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

}
dNi(u)

+
N∑
i=1

(
1− ξi

πi

)∫ τ

0

{
ĝH(u, Õi; θ, σ

2)−
Ê

(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

ĝJ(u, Õi; θ, σ
2)

}
dN∗i (u)

(2.34)

where Y ∗i (u) = I(Vi ≥ u), dN∗i (u) = I(Vi = u,∆i = 1) and for r = 0, 1

Ê
(r)
AUG(u, θ, σ2, π) =

1

N

N∑
i=1

ξi
πi
Yi(u)E

(r)
i (u, θ, σ2) +

1

N

N∑
i=1

(
1− ξi

πi

)
Y ∗i (u)ĝ(r)(u, Õi; θ, σ

2)

GJ(u, θ, σ2) = I(J(u) ≥ q), gJ(u, Õ; θ, σ2) ≡ E[GJ(u, θ, σ2)|Õ]

GH(u, θ, σ2) = I(J(u) ≥ q)H(u, θ, σ2), gH(u, Õ; θ, σ2) ≡ E[GQ(u, θ, σ2)|Õ]

G(r)(u, θ, σ2) = I(J(u) ≥ q)E(r)(u, θ, σ2), g(r)(u, Õ; θ, σ2) ≡ E[G(r)(u, θ, σ2)|Õ]

Similarly, the variance of measurement error σ2 can be estimated by solving Se,AUG(σ2, π, Ê)

= 0 defined in the same manner. The corresponding estimators are denoted by θ̂AUG(π, Ê)

and σ̂2
AUG(π, Ê). We need additional regularity conditions to validate the consistency and

asymptotic normality of θ̂AUG(π, Ê). We need additional assumptions. The boundary is uni-

form with respect to u, θ, σ2. We also use G(u, θ, σ2) to stand for any of Y (u)E(r)(u, θ, σ2),

dN(u) and H(u, θ, σ2)dN(u) that need evaluation in the augmentation terms.

Assumption C

C1. The order of the kernel function (the first non-zero moment) is s.

C2. Nh2d →∞ and Nh2s → 0 as N →∞.

C3. The marginal probability density function of Õ and the conditional probability density

function of Õ given ξ are bounded away from zero. They also have s continuous and

bounded partial derivatives with respect to the continuous components of Õ.
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C4. The conditional expectation E[G(u, θ, σ2)|Õ] in (2.29) have s continuous and uniformly

bounded partial derivatives with respect to the continuous components of Õ.

C5. The conditional variance of Var[G(u, θ, σ2)|Õ] is uniformly bounded.

Lemma 2.7.6. Under conditions A, B and C, as N →∞,

sup
(u,θ,σ2)∈N (τ,θ0,σ2

0)

∣∣∣∣∣Ê
(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

∣∣∣∣∣ p→ 0

Proof. Let Gi ≡ Gi(u, θ, σ
2) = Yi(u)E

(0)
i (u, θ, σ2), gi ≡ gi(u, Õi; θ, σ

2) = E[Gi(u, θ, σ
2)|Õi],

and

ĝi ≡ ĝi(u, Õi; θ, σ2) =

∑N
j=1 ξjGj(u, θ, σ

2)KH(Õi − Õj)∑N
j=1 ξjKH(Õi − Õj)

Ê
(0)
AUG(u, θ, σ2, π) = E

(0)
AUG(u, θ, σ2, π) +

1

N

N∑
i=1

(
1− ξi

πi

)(
ĝ

(r)
i − g

(r)
i

)

Then by Lemma 2.7.1, we only need to prove the second term converges in probability to

zero uniformly. The second term is

AN =
1

N

N∑
i=1

(
1− ξi

πi

) ∑N
j=1 ξj {Gj − gi}KH(Õi − Õj)∑N

j=1 ξjKH(Õi − Õj)

In Appendix I we show that E[AN ] = 0 and Var[AN ] = op(1) uniformly in (u, θT , σ2)T .

Therefore AN = op(1) uniformly in (u, θT , σ2)T . The proof for r = 1 is similar.

Theorem 2.7.7. Under conditions A, B and C, as N →∞, (i) θ̂AUG(π, Ê)
p→ θ0; and (ii)

√
N
(
θ̂AUG(π, Ê)− θ0

)
converges weakly to a Normal random variate with mean zero and

covariance A−1C(A−1)T , where A and C are defined in Theorem 2.7.3.

Proof. Since (2.33) is a linear operator, UAUG(θ, σ2, π, Ê) in (2.34) can be rewritten with

dNi(u) replaced by dDi(u) everywhere. We can further rewrite this as

UAUG(θ, σ2, π, Ê) =

N∑
i=1

ξi
πi

∫ τ

0

{
Hi(u, θ, σ

2)− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}
dDi(u)
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+
N∑
i=1

(
1− ξi

πi

)∫ τ

0

{
E
[
Hi(u, θ, σ

2)dDi(u)|Õi
]
− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)
E
[
dDi(u)|Õi

]}

−
∫ τ

0

{
Ê

(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}{
N∑
i=1

ξi
πi
dDi(u)

}

+

N∑
i=1

(
1− ξi

πi

)∫ τ

0

{
Ê
[
Hi(u, θ, σ

2)dDi(u)|Õi
]
− E

[
Hi(u, θ, σ

2)dDi(u)|Õi
]}

−
N∑
i=1

(
1− ξi

πi

)∫ τ

0

{
Ê

(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

Ê
[
Hi(u, θ, σ

2)dDi(u)|Õi
]
−

e(1)(u, θ, σ2)

e(0)(u, θ, σ2)
E
[
Hi(u, θ, σ

2)dDi(u)|Õi
]}

≡
N∑
i=1

MAUG,i(θ, σ
2, π)− UN2(θ, σ2, π) + UN3(θ, σ2, π)− UN4(θ, σ2, π)

(i) Consistency. We show that N−1UN2(θ, σ2, π) = op(1), N−1UN3(θ, σ2, π) = op(1) and

N−1UN4(θ, σ2, π) = op(1) uniformly in (θT , σ2)T . Actually, N−1UN2(θ, σ2, π) converging

in probability to zero uniformly follows from Lemma 2.7.6 and the similar arguments in

Theorem 2.7.3. For N−1UN3(θ, σ2, π) = op(1), we can show it in a spirit similar to the

proof of Lemma 2.7.6. And N−1UN4(θ, σ2, π) can be rewritten as

∫ τ

0

Ê
(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

{
1

N

N∑
i=1

(
1− ξi

πi

)(
Ê
[
Hi(u, θ, σ

2)dDi(u)|Õi
]
−

E
[
Hi(u, θ, σ

2)dDi(u)|Õi
])}

+

∫ τ

0

{
Ê

(1)
AUG(u, θ, σ2, π)

Ê
(0)
AUG(u, θ, σ2, π)

− e(1)(u, θ, σ2)

e(0)(u, θ, σ2)

}{
1

N

N∑
i=1

(
1− ξi

πi

)
E
[
Hi(u, θ, σ

2)dDi(u)|Õi
]}

which also converges to zero in probability uniformly in (θT , σ2)T . ThusN−1UAUG(θ, σ2, π, Ê)

= N−1
∑N

i=1MAUG,i(θ, σ
2, π)+op(1) uniformly in (θT , σ2)T . This implies that θ̂AUG(π, Ê)

p→

θ0 as N →∞.

(ii) Asymptotic normality. Note Op(
√
h2s + (Nhd)−2) = op(1). Therefore by using

the Lemma 1 and Lemma 2 in [Wang and Wang, 2001], we have N−1/2UN3(θ0, σ
2
0, π) =

op(1). For N−1/2UN2(θ0, σ
2
0, π), the Proposition A.1 in [Kulich and Lin, 2004] implies that

N−1/2
∑N

i=1(ξi/πi)dDi(u) converges weakly in l∞[0, τ ] to a mean-zero Gaussian process at
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θ0. Thus together with Lemma 2.7.4 and Lemma 4.2 in [Kosorok, 2008], N−1/2UN2(θ0, σ
2
0, π) =

op(1). The convergence in probability to zero of N−1/2UN4(θ0, σ
2
0, π) follows similarly.

Therefore

N−1/2UAUG(θ0, σ
2
0, π, Ê) = N−1/2

N∑
i=1

MAUG,i(θ0, σ
2
0, π) + op(1)

which is also asymptotically equivalent to N−1/2UAUG(θ0, σ
2
0, π,E). Thus the asymptotic

variance of θ̂AUG(π, Ê) is still A−1C(A−1)T .

2.7.4 Estimated sampling probabilities, estimated E[·|Õ]

When the sampling probabilities are estimated via (2.11), parallel results hold as those in

Section 2.7.2. We estimate θ and σ2 by solving UAUG(θ, σ2, π̂, Ê) = 0 and Se,AUG(σ2, π̂, Ê) =

0. The obtained estimates are denoted as θ̂AUG(π̂, Ê) and σ̂2
AUG(π̂, Ê). We have the following

Theorem.

Theorem 2.7.8. Under conditions A, B, and C, as N →∞, (i) θ̂AUG(π̂, Ê)
p→ θ0; and (ii)

√
N
(
θ̂AUG(π̂, Ê)− θ0

)
converges weakly to a Normal random variate with mean zero and

covariance A−1C(A−1)T , where A and C are defined in Theorem 2.7.3.

Proof. The proof is similar to that of Theorem 2.7.5 and Theorem 2.7.7.

2.7.5 Appendix I

Proof. For simplicity, we only show the proof when predictor variables Õ are all continuous

variables and when the bandwidth matrix H is diagonal with all diagonal elements equal

to h. Let

p̂1(õ) =
1

Nhd

N∑
j=1

ξjKH(õ− Õj)

dij =

(
1− ξi

πi

)
ξj(Gj − gi)KH(Õi − Õj)

p1(Õi)

Then by the proof in Appendix of [Wang and Wang, 2001] we have AN = AN1+Op(h
2s+
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1
Nhd

) = op(1), where

AN1 =
1

N2

N∑
i=1

N∑
j=1

(
1− ξi

πi

)
ξj(Gj − gi)KH(Õi − Õj)

hdp1(Õi)
=

1

N2hd

N∑
i=1

N∑
j=1

dij

LetAllj denote all variables observed for subject j, i.e. Allj = {∆j , Vj , Z̃j , ξj , ξjWj , ξjT
m
j }.

Note that E[Gi|Õi] = gi. By direct calculation

E[dij ] = E

{
ξj(Gj − gi)KH(Õi − Õj)

p1(Õi)
E
[(

1− ξi
πi

)
|Allj , Õi

]}
= 0, i 6= j

E[dii] = E
{
E
[(

1− 1

πi

)
πi

(Gi − gi)KH(0)

p1(Õi)
|Õi
]}

= 0

Therefore E[A1N ] = 0. Now we look at E[A1NA
T
1N ]. Let i, j, k, l be four distinct integers.

Then

E[A1NA
T
1N ] =

1

N4h2d

∑
i

diidii + 2
∑
i

∑
j

diidij + 2
∑
i

∑
j

dijdjj + 2
∑
i

∑
j

∑
k

diidjk

+
∑
i

∑
j

∑
k

dijdik + 2
∑
i

∑
j

∑
k

dijdki +
∑
i

∑
j

∑
k

dijdkj +
∑
i

∑
j

diidjj

+
∑
i

∑
j

dijdij +
∑
i

∑
j

dijdji +
∑
i

∑
j

∑
k

∑
l

dijdkl

 (2.35)

Note that for any function f(õ) has s continuous and bounded partial derivative with

respect to the continuous components, since the order of the kernel is s, we have

∫
KH(z − x)f(z)dz =

∫
K(u)f(x+ hu)du = f(x) +

1

s!
f (s)(x)hs

∫
K(u)usdu+ o(hs)∫

K2
H(z − x)f(z)dz =

1

hd

∫
K2(u)f(x+ hu)du =

1

hd
f(x)

∫
K2(u)du+

1

hd
O(h)

We will use these two expressions repeatedly to show that E[A1NA
T
1N ] = op(1) uniformly in

(u, θT , σ2)T . We examine each of the sums in (2.35).
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1

N4h2d

∑
i

E[diidii] =
1

N3h4d
E

[(
1− ξi

πi

)2

ξ2
i

(Gi − gi)2K2(0)

p2
1(Õi)

]

=
1

N3h4d
E

[
(1− π1)2

π1

(G1 − g1)2K2(0)

p2
1(Õ1)

]
= Op(

1

N3h4d
) = op(1)

1

N4h2d

∑
i

∑
j

∑
k

E[dijdik]

=
1

N4h2d

∑
i

∑
j

∑
k

E

[(
1− ξi

πi

)2

ξjξk
(Gj − gi)(Gk − gi)KH(Õi − Õj)KH(Õi − Õk)

p2
1(Õi)

]

=
1

N4h2d

∑
i

∑
j

∑
k

E

[
(1− πi)πjπk

πi

(Gj − gi)(Gk − gi)KH(Õi − Õj)KH(Õi − Õk)
p2

1(Õi)

]

=
1

N4h2d

∑
i

∑
j

∑
k

E

[
(1− πi)πjπk
πip2

1(Õi)

{
E
[
(Gj − gi)KH(Õi − Õj)|Õi

]}2
]

=
(N − 1)(N − 2)

N3h2d
E[π1]2E

[
1− π1

π1p2
1(Õ1)

{
E
[
(G2 − g1)KH(Õ1 − Õ2)|Õ1

]}2
]

=
(N − 1)(N − 2)

N3h2d
E[π1]2E

[
1− π1

π1p2
1(Õ1)

{
E
[
(g2 − g1)KH(Õ1 − Õ2)|Õ1

]}2
]

=
1

Nh2d
Op(h

2s) = op(1)

since E
[
(g2 − g1)KH(Õ1 − Õ2)|Õ1

]
= Op(h

s).

1

N4h2d

∑
i

∑
j

E[dijdij ] =
1

N4h2d

∑
i

∑
j

E

[(
1− ξi

πi

)2

ξ2
j

(Gj − gi)2K2
H(Õi − Õj)

p2
1(Õi)

]

=
1

N4h2d

∑
i

∑
j

E

[
(1− πi)πj

πi

(Gj − gi)2K2
H(Õi − Õj)

p2
1(Õi)

]

=
1

N4h2d

∑
i

∑
j

E

{
E

[
(1− πi)πj

πi

(Gj − gi)2K2
H(Õi − Õj)

p2
1(Õi)

|Allj

]}
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=
1

N2h3d
(Op(1) +Op(h)) = op(1)

1

N4h2d

∑
i

∑
j

E[dijdji]

=
1

N4h2d

∑
i

∑
j

E

[(
1− ξi

πi

)(
1− ξj

πj

)
ξiξj

(Gj − gi)(Gi − gj)K2
H(Õi − Õj)

p1(Õi)p1(Õj)

]

= − 1

N4h2d

∑
i

∑
j

E

[
(1− πi)(1− πj)

(gj − gi)2K2
H(Õi − Õj)

p1(Õi)p1(Õj)

]

=
1

N4h2d

∑
i

∑
j

E

{
E

[
(1− πi)(1− πj)

(gj − gi)2K2
H(Õi − Õj)

p1(Õi)p1(Õj)
|Õj

]}

=
1

N2h3d
(Op(1) +Op(h)) = op(1)

The rest terms in (2.35) are zero by noting that E[Gi−gi|Õi] = 0 and E[1−ξi/πi] = 0. So

combining all results above we have shown that Var[A1N ] = op(1). Also by Assumption C

the Op and op above are all uniform in u, θ, σ2. Therefore it follows the uniform convergence

in probability of AN to zero.
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Chapter 3

SIMULATION STUDIES FOR JOINT MODELING WITH
CONTINUOUS BIOMARKERS

In this chapter, we evaluate the method developed in Chapter 2 via simulation studies.

The event time data (∆, V ) are generated from Cox proportional hazards models with

different combinations of the time-varying biomarker and vaccination indicator. We carry

out 500 simulation runs for each scenario. Our primary goal is to evaluate the IPW and

AIPW conditional score methods in two-phase sampling design cohort studies. For the

purpose of comparison, we also calculate the conditional score estimator based on full cohort

data (Full), the unobtainable benchmark in real vaccine trail studies, and conduct the naive

complete-case (CC) analysis using only subjects being selected in the second phase and

without any weighting.

We conduct mainly three simulation studies. Simulation Study I studies the Cox model

with only one immune biomarker as the covariate. It is aimed to compare the IPW and

AIPW estimators using various sets of auxiliary variables to estimate the augmentation

terms. Simulation Study II considers the Cox model with both the immune biomarker

variable and the vaccination indicator as covariates. We study the impact of the number

of measurements and misspecified measurement error models on the performance of the

proposed methods. Simulation Study III demonstrates the performance on the Cox model

with immune biomarker and vaccination interaction term. All IPW and AIPW methods are

implemented using both the pre-specified true sampling probabilities (π) and the estimated

sampling probabilities (π̂). In all simulation studies, we summarize the bias, Monte Carlo

standard deviation (SD) and the average of estimated standard errors (ASE) for obtained

estimates.
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3.1 Simulation Study I

3.1.1 Data generation

We first consider the model with only one time-varying biomarker λ(u) = λ0(u) exp{βX(u)},

where the time-varying immune biomarker process X(u) is characterized by a linear random

effects model X(u) = α0 + α1u. We simulate X(u) to imitate the log10 CD4 cell counts in

ACTG 175 study as described in [Song et al., 2002]. The random effects (α0, α1)T are gener-

ated from a bivariate Normal distribution with E(α) = (2.5915,−0.00315)T , and Cov(α) =

D with elements (D11, D12, D22)T = (0.02408,−0.0008, 0.000014)T . The variance of mea-

surement error e is σ2 = 0.01. It represents a noise-to-signal ratio of Var(e)/Var(X(0)) ≈

42%, which is approximately the same to that in the ACTG 175 data. The scheduled time

points for a visit to measure X(u) are at baseline and within a series of time windows: 2, 4,

8, 20, 32, 44, 56, 68, 80 ±0.5. The event time data are generated from the Cox model with

hazard ratios eβ = {1, 0.5, 0.25}. The censoring time follows the exponential distribution

Exp(1/180) and is subject to an administrative censoring at u = 85. We chose the baseline

hazards to yield an event rate of around 10%. Specifically, the proportions of subjects drop-

ping off the study during the follow-up and completing the study free of events are (35.5%,

54.1%), (36.0%, 54.0%) and (36.2%, 53.3%) when the hazard ratios are 1, 0.5 and 0.25, re-

spectively. This high censoring rate reflects an HIV-1 vaccine efficacy trial where a typical

infection rate is about 10%. The average number of immune biomarker measurements per

subject is around 8.

The sample size for the full cohort data is N = 1500. The phase II sample is taken from

the full cohort data from the case-control sampling (S1):

(S1) : P(ξ = 1|∆ = 1) = 1, P(ξ = 1|∆ = 0) = 0.33

This results in around 60% missingness. Table 3.1 shows the average sample sizes for Phase

I and Phase II samples.

For the AIPW method, we evaluate several sets of predictor variables which serve to es-

timate the augmentation terms in the non-parametric kernel regression (Nadaraya-Watson).
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Table 3.1: The sample size for Phase I (N) and Phase II (n) sample under case-control
sampling (S1) for Simulation Study I.

Case (∆ = 1) Control (∆ = 0)
β N(n) N(n)

0 156 (156) 1344 (443)
− ln 2 151 (151) 1349 (445)
− ln 4 158 (158) 1342 (443)

We generate three sets of auxiliary variables A = (A1, A2)T with null, moderate, and strong

correlation with the immune biomarker values. The correlation is quantified by R2. Specifi-

cally, we consider three sets of correlations with R2 = {0, 0.5, 0.95}. For R2 = 0, A is gener-

ated independently from α and (∆, V ), from A1 ∼ N(E(α1), 1) and A2 ∼ N(E(α1+40α2), 1).

For R2 = 0.5, 0.95, A1 = α1 +e1, A2 = α1 +40α2 +e2, e1 ∼ N(0, d2
1), e2 ∼ N(α1 +40α2, d

2
2),

with

d2
1 = (

1

R2
− 1)Var(α1), d2

2 = (
1

R2
− 1)Var(α1 + 40α2)

3.1.2 Methods

In this simulation study, the goal is to evaluate and compare different methods in making

inference on the regression coefficient β: Full, CC, IPW and AIPW. We are particularly

interested to do extensive exploration on the AIPW method. Specifically, eleven sets of

predictor variables are used in the kernel regression: ∆, (∆, V ), A, (∆, A) and (∆, V, A). For

each set of variables including A, there are also three choices for A with R2 = 0, 0.5, 0.95 as

described above. By comparing these eleven AIPW estimators, we look in how the predictor

variables in the augmentation terms influence the performance of the AIPW method.

3.1.3 Results

From Table 3.2, we see that the results based on pre-specified sampling probabilities (π) and

estimated sampling probabilities (π̂) are very similar. In Figure 3.1 we plot the biases, 95%

coverage probabilities and the relative efficiencies (calculated as the Monte Carlo variance
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of β̂ compared to that from Full). We only show the estimates obtained using π. The x

axis lists the methods we are comparing with. The variables enclosed in the parentheses

of AIPW() indicate which variables are used in estimating the augmentation terms. The

numbers enclosed in the parentheses of AIPW() indicate which set of auxiliary variables A

(corresponding to R2 = 0, 0.5, 0.95) are used in AIPW(A), AIPW(∆, A) or AIPW(∆, V, A).

As expected the CC analysis generates very biased estimates when the β is large. We

observe slightly large biases for AIPW(∆, V, A) estimators when β = − ln 4, even though

the theory of double robustness guarantees its consistency as the sampling probabilities

are correctly specified. This suggests a concern in terms of bias when including too many

variables in the non-parametric kernel method. Actually we can see from the plot of relative

efficiency that, as long as we include strong predictor A, adding additional variables ∆ or

V does not help to improve the efficiency. Also, if we cannot find auxiliary variables that

are highly correlated with the immune biomarker, we suggest just using IPW or AIPW(∆).

However, we hesitate to use AIPW(A), even though the figure shows that it is more efficient

than IPW and AIPW(∆). Actually, the observed efficiency gain in this situation could be

just due to that A is continuous and has great variability. In additional simulation studies

with A being discrete or less variable, the efficiency gain disappears and even the efficiency

loss shows up (Table 3.3). When the auxiliary variables are highly correlated with the

X(u), including them and using AIPW method provides less variable estimates than other

methods, especially when X(u) has strong effect on the event time. The 95% coverage

probabilities are slightly below the nominal level when β = − ln 4, suggesting SE(β̂) is

underestimated by the sandwich variance estimation.

3.2 Simulation Study II

3.2.1 Data generation

We next consider the Cox model including both the immune biomarker and the vacci-

nation indicator λ(u) = λ0(u) exp{βX(u) + ηZ}. When there is variability of immune

response levels in the placebo arm, we can use this model to assess the Prentice’s sur-

rogate by examining if η is plausibly closed to zero (assuming no dual predictors for
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Table 3.2: Simulation results for Simulation Study I: λ(u) = λ0(u) exp{βX(u)}

R2 Sampling β = 0 β = − ln 2 β = − ln 4

Method Prob. Bias SD(β̂) ASE(β̂) Bias SD(β̂) ASE(β̂) Bias SD(β̂) ASE(β̂)

Full -0.012 0.404 0.404 -0.013 0.377 0.367 -0.007 0.354 0.330
CC -0.001 0.401 0.406 0.062 0.372 0.365 0.165 0.343 0.328

IPW π -0.001 0.439 0.446 -0.020 0.415 0.408 -0.020 0.402 0.383

AIPW(∆) π -0.001 0.439 0.446 -0.018 0.413 0.408 -0.009 0.395 0.382
AIPW(∆, V ) π -0.001 0.440 0.445 -0.017 0.413 0.407 -0.016 0.399 0.382

AIPW(A) 0 π -0.003 0.439 0.438 -0.004 0.407 0.400 0.020 0.388 0.372
AIPW(A,∆) 0 π -0.006 0.441 0.437 -0.017 0.414 0.399 -0.016 0.402 0.373
AIPW(A,∆, V ) 0 π -0.006 0.445 0.433 -0.020 0.419 0.397 -0.014 0.399 0.370

AIPW(A) 0.5 π -0.011 0.435 0.435 -0.012 0.401 0.398 -0.004 0.384 0.370
AIPW(A,∆) 0.5 π -0.010 0.437 0.436 -0.013 0.401 0.398 -0.019 0.391 0.371
AIPW(A,∆, V ) 0.5 π -0.014 0.440 0.436 -0.020 0.405 0.397 -0.023 0.394 0.370

AIPW(A) 0.95 π -0.010 0.418 0.419 -0.021 0.387 0.381 -0.026 0.368 0.351
AIPW(A,∆) 0.95 π -0.011 0.419 0.420 -0.023 0.389 0.382 -0.025 0.366 0.353
AIPW(A,∆, V ) 0.95 π -0.011 0.428 0.426 -0.031 0.395 0.387 -0.039 0.368 0.356

IPW π̂ -0.001 0.439 0.446 -0.020 0.415 0.408 -0.021 0.402 0.383

AIPW(∆) π̂ -0.001 0.439 0.446 -0.017 0.412 0.408 -0.010 0.395 0.382
AIPW(∆, V ) π̂ -0.001 0.440 0.445 -0.017 0.413 0.407 -0.017 0.397 0.382

AIPW(A) 0 π̂ -0.003 0.439 0.438 -0.010 0.411 0.400 0.018 0.386 0.372
AIPW(A,∆) 0 π̂ -0.006 0.442 0.438 -0.017 0.415 0.400 -0.017 0.401 0.373
AIPW(A,∆, V ) 0 π̂ -0.006 0.445 0.433 -0.020 0.419 0.397 -0.011 0.398 0.370

AIPW(A) 0.5 π̂ -0.011 0.435 0.436 -0.013 0.401 0.398 -0.006 0.381 0.370
AIPW(A,∆) 0.5 π̂ -0.011 0.437 0.436 -0.013 0.401 0.398 -0.017 0.390 0.371
AIPW(A,∆, V ) 0.5 π̂ -0.014 0.440 0.436 -0.020 0.405 0.397 -0.024 0.395 0.371

AIPW(A) 0.95 π̂ -0.010 0.418 0.419 -0.021 0.387 0.381 -0.025 0.367 0.351
AIPW(A,∆) 0.95 π̂ -0.011 0.419 0.420 -0.024 0.389 0.382 -0.030 0.368 0.353
AIPW(A,∆, V ) 0.95 π̂ -0.011 0.428 0.426 -0.031 0.395 0.387 -0.039 0.370 0.356

[1] π: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. π̂: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R2 quantifies the correlation of A and X(u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N−1/3sd(P ).
[4] The sampling probability model is π(∆) = ∆ + 0.33(1−∆).
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Figure 3.1: Simulation results for Simulation Study I: λ(u) = λ0(u) exp{βX(u)}. The IPW
and AIPW estimates are based on pre-specified true sampling probabilities π.
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Table 3.3: Simulation results of AIPW(A) for Simulation Study I, with different sets of
auxiliary variables.

R2 Sampling β = 0 β = − ln 2 β = − ln 4

Method Prob. Bias SD(β̂) ASE(β̂) Bias SD(β̂) ASE(β̂) Bias SD(β̂) ASE(β̂)

IPW π -0.001 0.439 0.446 -0.020 0.415 0.408 -0.020 0.402 0.383
AIPW(∆) π -0.001 0.439 0.446 -0.018 0.413 0.408 -0.009 0.395 0.382
AIPW(A) 0 π̂ -0.003 0.439 0.438 -0.004 0.407 0.400 0.020 0.388 0.372
AIPW(A∗) 0 π 0.001 0.434 0.444 -0.014 0.411 0.406 -0.002 0.394 0.380

AIPW(Ã) 0 π 0.000 0.438 0.445 -0.014 0.412 0.407 -0.011 0.400 0.381

IPW π̂ -0.001 0.439 0.446 -0.020 0.415 0.408 -0.021 0.402 0.383
AIPW(∆) π̂ -0.001 0.439 0.446 -0.017 0.412 0.408 -0.010 0.395 0.382
AIPW(A) 0 π̂ -0.003 0.439 0.438 -0.010 0.411 0.400 0.018 0.386 0.372
AIPW(A∗) 0 π̂ 0.001 0.434 0.444 -0.014 0.411 0.407 -0.005 0.395 0.381

AIPW(Ã) 0 π̂ 0.000 0.438 0.445 -0.015 0.412 0.407 -0.013 0.402 0.382

[1] A = (A1, A2)T are generated independently from α and (∆, V ): A1 ∼ N(E(α1), 1) and A2 ∼ N(E(α1+40α2), 1) (See Table 3.2)

[2] A∗ = (A∗
1 , A

∗
2)T : A∗

j is discrete variable generated based on quartiles of Aj , j = 1, 2.

[3] Ã = (Ã1, Ã2)T are generated independently from α and (∆, V ): Ã1 ∼ N(E(α1), 0.01) and Ã2 ∼ N(E(α1 + 40α2), 0.01)

X(u) and T ). The time-varying immune biomarker process X(u) is still characterized

by a linear random effects model X(u) = α0 + α1u, and Z ∼ Bernoulli(0.5) is the

1:1 treatment arm assignment with Z = 1 for vaccine and Z = 0 for placebo. The

random effects α are simulated from bivariate Normal distribution with E(α|Z = 0) =

(2.5915,−0.00145)T , E(α|Z = 1) = (2.5915,−0.00315)T and Cov(α|Z) = D with elements

(D11, D12, D22)T = (0.02408,−0.0008, 0.000014)T . We consider two sets of hazard ratios

(eβ, eη)T = {(0.5, 1)T , (0.5, 0.5)T }. The censoring time follows the exponential distribution

Exp(1/180) and is subject to an administrative censoring at u = 85.

In Simulation Study I, we have especially explored different AIPW estimators. In this

simulation study, we would also like to compare several AIPW estimators to IPW and Full

estimators in a similar setting as that in Simulation Study I. Beyond that however we also

aim to evaluate the influence of 1) the number of measuring time points; and 2) misspecified

measurement error model. We consider the following four scenarios in terms of different

measuring schedules or measurement error distributions.

1. Simulation Study II(a): The scheduled visits for measuring X(u) are at baseline and

within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 ±0.5. Measurement
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error e ∼ N(0, 0.01).

2. Simulation Study II(b): The scheduled visits for measuring X(u) are at baseline and

within a series of time windows: 8, 44, 80 ±0.5. Measurement error e ∼ N(0, 0.01).

3. Simulation Study II(c): The scheduled visits for measuring X(u) are at baseline and

within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 ±0.5. Measurement

error e ∼ Exp(10)− 0.1.

4. Simulation Study II(d): The scheduled visits for measuring X(u) are at baseline and

within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 ±0.5. Measurement

error depends on the value of the immune biomarker: e ∼ N(0, 0.01) if X(u) > 2.5;

e ∼ N(0, 0.05) if X(u) ≤ 2.5.

The conditional score estimator, though does not require any distributional assumption

on the random effects α, does assume the measurement errors are random and Normal.

Simulation Study II(a) is the setting with random Normal measurement errors as required

by the model assumptions. Also the visit schedule provides decent number of immune

biomarker measurements for the inferential analysis. Simulation Study II(b), compared to

Simulation Study II(a), reduces 60% of the number of available immune biomarker measure-

ments. [Tsiatis and Davidian, 2001] and [Song et al., 2002] conducted simulation studies

investigating different distributions for random effects and different levels of variance for

the measurement errors. Here we set up Simulation Study II(c) and Simulation Study II(d)

to assess the influence when the measurement error is not Normal or even worse, depends

on the biomarker values.

For all models, the proportions of subjects dropping off the study during the follow-up

and completing the study free of events are (35.9%, 53.7%) and (36.1%, 53.4%) when the

hazard ratios (eβ, eη)T are (0.5, 1)T , (0.5, 0.5)T , respectively. The average number of immune

biomarker measurements per subject in Simulation Study II(a),(c), and (d) is around 8.3,

and in Simulation Study II(b) is around 3.3. For all studies, the full cohort data consists

of N = 1500 subjects, and the second phase sample is still taken by case-control sampling

(S1) with sampling probabilities P(ξ = 1|∆ = 1) = 1 and P(ξ = 1|∆ = 0) = 0.33. Table 3.4

shows the average sample sizes for Phase I and Phase II samples.
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Table 3.4: The sample size for Phase I (N) and Phase II (n) sample under case-control
sampling (S1) for simulation Simulation Study II(a).

Case (∆ = 1) Control (∆ = 0)
(β, η) N(n) N(n)

(− ln 2, 0) 156 (156) 1344 (443)
(− ln 2,− ln 2) 157 (157) 1343 (443)

3.2.2 Results for Simulation Study II(a)

Table 3.5 summarizes the fitting for Simulation Study II(a). Still the results from using π

and π̂ are very similar so we only plot the results from using π in Figure 3.2. Since Z is

always included to estimate the augmentation terms in AIPW estimators, the corresponding

estimates for η are almost as efficient as that from the full cohort data. On the other hand,

β̂ from AIPW(∆, Z) has slightly smaller variance than that from AIPW(∆, Z,A) when A

is independent of X(u) and (∆, V ) (R2 = 0). From Figure 3.2, we still observe increasing

efficiency for β̂ from AIPW(∆, Z,A) when A has higher correlation with X(u). The coverage

probabilities are closed to the nominal value.

3.2.3 Results for Simulation Study II(b)

We now reduce the frequency to measure the immune biomarker and summarize the results

in Table 3.6. The average number of measurements per subject is around 3.3. By direct

comparison of SD(β̂) in this table to that from Simulation Study II(a), we observe dramatic

reduction in the efficiency. Still the results from using π and π̂ are very similar so we only plot

the results from using π in Figure 3.3. There is a concern on the bias for AIPW estimators

with (β, η)T = (− ln 2, 0). Also only adding A that has extremely strong correlation with

the biomarker in AIPW method can yield slightly efficiency gain. It suggests that when the

event time depends on the biomarker only, but only very limited number of measurements

are available for the biomarker variable, using more complex AIPW method can give poorer

results than using the simple IPW method. We also found in this simulation study that for

around 1%∼2% of the runs the program failed.
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Table 3.5: Simulation results for Simulation Study II(a): λ(u) = λ0(u) exp{βX(u) + ηZ}

R2 Samp. (β, η) = (− ln 2, 0) (β, η) = (− ln 2,− ln 2)

Prob. β̂ η̂ β̂ η̂
Method Bias SD ASE Bias SD ASE Bias SD ASE Bias SD ASE

Full 0.008 0.350 0.361 0.009 0.165 0.164 0.019 0.348 0.338 -0.000 0.178 0.171
CC 0.079 0.351 0.361 0.005 0.166 0.165 0.113 0.335 0.338 0.080 0.172 0.171

IPW π -0.002 0.395 0.405 0.008 0.188 0.185 0.023 0.384 0.385 -0.001 0.195 0.192

AIPW(∆, Z) π -0.001 0.395 0.405 0.008 0.166 0.166 0.025 0.382 0.385 -0.000 0.181 0.173
AIPW(∆, Z,A) 0 π -0.006 0.399 0.392 0.008 0.166 0.166 0.017 0.388 0.370 -0.001 0.182 0.173
AIPW(∆, Z,A) 0.5 π -0.007 0.390 0.394 0.007 0.166 0.166 0.018 0.378 0.373 -0.000 0.181 0.173
AIPW(∆, Z,A) 0.95 π -0.013 0.368 0.380 0.007 0.166 0.165 0.005 0.366 0.358 -0.002 0.179 0.172

IPW π̂ -0.002 0.395 0.405 0.008 0.188 0.185 0.023 0.384 0.385 -0.001 0.195 0.192

AIPW(∆, Z) π̂ -0.002 0.395 0.405 0.008 0.166 0.166 0.025 0.382 0.385 -0.000 0.181 0.173
AIPW(∆, Z,A) 0 π̂ -0.006 0.399 0.392 0.008 0.166 0.166 0.017 0.388 0.370 -0.001 0.182 0.173
AIPW(∆, Z,A) 0.5 π̂ -0.007 0.390 0.394 0.007 0.166 0.166 0.019 0.378 0.373 -0.000 0.181 0.173
AIPW(∆, Z,A) 0.95 π̂ -0.014 0.368 0.380 0.007 0.166 0.165 0.005 0.366 0.358 -0.002 0.179 0.172

[1] π: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. π̂: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R2 quantifies the correlation of A and X(u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N−1/3sd(P ).
[4] The sampling probability model is π(∆) = ∆ + 0.33(1−∆).
[5] The scheduled visits for measuring X(u) are at baseline and within a series of time windows: 2, 4, 8, 20, 32, 44, 56, 68, 80 ±0.5.
[6]: Measurement error e ∼ N(0, 0.01).

Table 3.6: Simulation results for Simulation Study II(b): λ(u) = λ0(u) exp{βX(u) + ηZ}

R2 Samp. (β, η) = (− ln 2, 0) (β, η) = (− ln 2,− ln 2)

Prob. β̂ η̂ β̂ η̂
Method Bias SD ASE Bias SD ASE Bias SD ASE Bias SD ASE

Full -0.008 0.552 0.535 0.008 0.167 0.169 0.006 0.487 0.477 -0.001 0.180 0.174
CC 0.058 0.570 0.548 0.003 0.169 0.170 0.098 0.477 0.480 0.078 0.174 0.175

IPW π -0.026 0.627 0.605 0.005 0.191 0.192 0.003 0.532 0.536 -0.003 0.198 0.197

AIPW(∆, Z) π -0.062 0.640 0.606 0.003 0.171 0.174 -0.020 0.539 0.537 -0.004 0.184 0.179
AIPW(∆, Z,A) 0 π -0.080 0.670 0.599 0.001 0.172 0.173 -0.022 0.536 0.523 -0.008 0.186 0.179
AIPW(∆, Z,A) 0.5 π -0.067 0.638 0.600 0.002 0.171 0.174 -0.024 0.539 0.530 -0.006 0.185 0.178
AIPW(∆, Z,A) 0.95 π -0.074 0.609 0.597 0.001 0.170 0.172 -0.038 0.534 0.520 -0.006 0.183 0.177

IPW π̂ -0.026 0.627 0.605 0.005 0.191 0.192 0.003 0.532 0.536 -0.003 0.198 0.197

AIPW(∆, Z) π̂ -0.062 0.640 0.606 0.002 0.171 0.174 -0.020 0.539 0.537 -0.004 0.184 0.179
AIPW(∆, Z,A) 0 π̂ -0.080 0.670 0.599 0.001 0.172 0.173 -0.023 0.536 0.523 -0.008 0.186 0.179
AIPW(∆, Z,A) 0.5 π̂ -0.067 0.638 0.600 0.002 0.171 0.174 -0.025 0.539 0.530 -0.006 0.185 0.178
AIPW(∆, Z,A) 0.95 π̂ -0.072 0.609 0.596 0.001 0.170 0.172 -0.038 0.534 0.520 -0.006 0.183 0.177

[1] π: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. π̂: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R2 quantifies the correlation of A and X(u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N−1/3sd(P ).
[4] The sampling probability model is π(∆) = ∆ + 0.33(1−∆).
[5] The scheduled visits for measuring X(u) are at baseline and within a series of time windows: 8, 44, 80 ±0.5.
[6]: Measurement error e ∼ N(0, 0.01).
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Figure 3.2: Simulation results for Simulation Study II(a): λ(u) = λ0(u) exp{βX(u) + ηZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities π.
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Figure 3.3: Simulation results for Simulation Study II(b): λ(u) = λ0(u) exp{βX(u) + ηZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities π.
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3.2.4 Results for Simulation Study II(c)

Here we intend to assess the influences on the methods when the measurement errors are

not Normal. We simulate the measurement error e from Exp(10) − 0.1 so that it still has

E(e) = 0 and Var(e) = 0.01. However the density of e is no longer in a bell shape and has

heavy right tail. We compare the results showing in Table 3.7 and Figure 3.4 to those from

Simulation Study II(a). From the plot we see slightly large bias on β̂ for all methods, but not

on η̂. This might be because Z does not involve any measurement errors. The 95% coverage

probabilities are very closed to the nominal level expect for the CC method. Similar patter

in the relative efficiency as in Simulation Study II(a) is observed here, suggesting unless

very strong predictors for the biomarker exist, using IPW method rather than the AIPW

method is recommended. The influence of misspecified measurement error seems to center

on the bias of β̂, but the level of bias is acceptable: with relative bias up to 7.4%.

Table 3.7: Simulation results for Simulation Study II(c): λ(u) = λ0(u) exp{βX(u) + ηZ}

R2 Samp. (β, η) = (− ln 2, 0) (β, η) = (− ln 2,− ln 2)

Prob. β̂ η̂ β̂ η̂
Method Bias SD ASE Bias SD ASE Bias SD ASE Bias SD ASE

Full -0.036 0.354 0.370 0.010 0.170 0.165 -0.023 0.345 0.344 -0.000 0.183 0.171
CC 0.044 0.366 0.371 0.003 0.168 0.165 0.063 0.365 0.344 0.078 0.179 0.171

IPW π -0.041 0.409 0.416 0.006 0.189 0.186 -0.033 0.416 0.392 -0.003 0.202 0.193

AIPW(∆, Z) π -0.040 0.409 0.416 0.010 0.172 0.167 -0.030 0.408 0.392 -0.002 0.185 0.174
AIPW(∆, Z,A) 0 π -0.039 0.411 0.403 0.011 0.173 0.166 -0.040 0.425 0.378 -0.004 0.188 0.173
AIPW(∆, Z,A) 0.5 π -0.047 0.403 0.405 0.010 0.174 0.166 -0.049 0.409 0.380 -0.005 0.187 0.173
AIPW(∆, Z,A) 0.95 π -0.051 0.381 0.391 0.009 0.171 0.165 -0.048 0.379 0.365 -0.004 0.185 0.172

IPW π̂ -0.041 0.409 0.416 0.006 0.189 0.186 -0.034 0.417 0.392 -0.003 0.202 0.193

AIPW(∆, Z) π̂ -0.040 0.409 0.416 0.010 0.172 0.167 -0.030 0.408 0.392 -0.002 0.185 0.174
AIPW(∆, Z,A) 0 π̂ -0.039 0.411 0.403 0.011 0.173 0.166 -0.040 0.426 0.378 -0.004 0.188 0.173
AIPW(∆, Z,A) 0.5 π̂ -0.047 0.403 0.405 0.010 0.174 0.166 -0.049 0.409 0.380 -0.005 0.187 0.173
AIPW(∆, Z,A) 0.95 π̂ -0.050 0.381 0.391 0.009 0.170 0.165 -0.046 0.378 0.365 -0.003 0.184 0.172

[1] π: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. π̂: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R2 quantifies the correlation of A and X(u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N−1/3sd(P ).
[4] The sampling probability model is π(∆) = ∆ + 0.33(1−∆).
[5] The scheduled visits for measuring X(u) are at baseline and within a series of time windows: 0, 2, 4, 8, 20, 32, 44, 56, 68, 80
±0.5.
[6]: Measurement error e ∼ Exp(10)− 0.1.
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Figure 3.4: Simulation results for Simulation Study II(c): λ(u) = λ0(u) exp{βX(u) + ηZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities π.
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3.2.5 Results for Simulation Study II(d)

We further look into the impact of misspecified measurement error model by considering

the situation where the measurement error depends on the level of underlying immune

biomarker: if the underlying biomarker level is greater than 2.5, e ∼ N(0, 0.01); otherwise

e ∼ N(0, 0.05). This represents the case when the measured immune biomarker level is

more variable when its level is low. The results are shown in Table 3.8 and Figure 3.5. Here

we have more serious issue of bias than that in Simulation Study II(c) for β̂, especially in

the setting with (β, η)T = (− ln 2,− ln 2)T . The relative bias can be as high as 10.7%.

Table 3.8: Simulation results for Simulation Study II(d): λ(u) = λ0(u) exp{βX(u) + ηZ}

R2 Samp. (β, η) = (− ln 2, 0) (β, η) = (− ln 2,− ln 2)

Prob. β̂ η̂ β̂ η̂
Method Bias SD ASE Bias SD ASE Bias SD ASE Bias SD ASE

Full 0.061 0.359 0.368 0.013 0.165 0.165 0.071 0.349 0.343 0.004 0.178 0.171
CC 0.122 0.362 0.372 0.008 0.168 0.165 0.157 0.347 0.347 0.084 0.171 0.171

IPW π 0.049 0.397 0.409 0.011 0.190 0.186 0.074 0.391 0.388 0.004 0.195 0.193

AIPW(∆, Z) π 0.049 0.398 0.409 0.011 0.167 0.167 0.074 0.391 0.388 0.004 0.181 0.174
AIPW(∆, Z,A) 0 π 0.045 0.404 0.397 0.011 0.167 0.166 0.066 0.399 0.376 0.003 0.182 0.173
AIPW(∆, Z,A) 0.5 π 0.047 0.396 0.400 0.009 0.168 0.166 0.067 0.393 0.380 0.001 0.182 0.173
AIPW(∆, Z,A) 0.95 π 0.040 0.381 0.390 0.011 0.167 0.166 0.057 0.379 0.367 0.003 0.179 0.172

IPW π̂ 0.049 0.397 0.409 0.011 0.190 0.186 0.074 0.391 0.389 0.004 0.195 0.193

AIPW(∆, Z) π̂ 0.049 0.398 0.409 0.011 0.167 0.167 0.074 0.391 0.389 0.005 0.181 0.174
AIPW(∆, Z,A) 0 π̂ 0.045 0.404 0.397 0.011 0.167 0.166 0.065 0.399 0.376 0.003 0.182 0.173
AIPW(∆, Z,A) 0.5 π̂ 0.047 0.396 0.400 0.009 0.168 0.166 0.067 0.393 0.380 0.001 0.182 0.173
AIPW(∆, Z,A) 0.95 π̂ 0.039 0.382 0.390 0.011 0.166 0.166 0.057 0.379 0.367 0.003 0.179 0.172

[1] π: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. π̂: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R2 quantifies the correlation of A and X(u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N−1/3sd(P ).
[4] The sampling probability model is π(∆) = ∆ + 0.33(1−∆).
[5] The scheduled visits for measuring X(u) are at baseline and within a series of time windows: 0, 2, 4, 8, 20, 32, 44, 56, 68, 80
±0.5.
[6]: Measurement error e ∼ N(0, 0.01) if X(u) > 2.5; e ∼ N(0, 0.05) if X(u) ≤ 2.5.

3.3 Simulation Study III

3.3.1 Data generation

We finally consider the Cox model including the interaction of the immune biomarker and the

vaccination indicator λ(u) = λ0(u) exp{βX(u) + ηZ+γX(u)Z}. The simulation data set is
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Figure 3.5: Simulation results for Simulation Study II(d): λ(u) = λ0(u) exp{βX(u) + ηZ}.
The IPW and AIPW estimates are based on pre-specified true sampling probabilities π.
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exactly the same as that in Simulation Study II(a) with hazard ratio (eβ, eη)T = (0.5, 0.5)T .

It means the true hazard ratios in this study are (eβ, eη, eγ)T = (0.5, 0.5, 1)T .

3.3.2 Results

For this interaction model, we observe slightly larger bias and greater variability in η̂. If the

purpose of fitting the interaction model is to test and examine any effect modification of the

immune biomarker on the treatment effect, the focus lies on the coefficient γ, which shows

negligible bias. For further evaluation of the association between immune biomarker and

the event endpoint, we suggest fitting the model by treatment subgroups or pooled vaccine

and placebo groups and considering models in Simulation Study II. The efficiency gain from

AIPW(∆, Z,A) is not significant unless A has extremely strong correlation with the immune

biomarker variable. The 95% coverage probabilities are very close to the nominal value.

Table 3.9: Simulation results for Simulation Study III: λ(u) = λ0(u) exp{βX(u) + ηZ +
γX(u)Z)}

R2 Samp.
Prob. β = − ln 2 η = − ln 2 γ = 0

Method Bias SD ASE Bias SD ASE Bias SD ASE

Full 0.010 0.444 0.422 -0.071 1.713 1.654 0.028 0.704 0.682
CC 0.109 0.424 0.423 0.040 1.701 1.669 0.015 0.698 0.688

IPW π 0.012 0.498 0.491 -0.077 1.914 1.874 0.030 0.781 0.769

AIPW(∆, Z) π 0.012 0.499 0.491 -0.080 1.904 1.871 0.032 0.780 0.769
AIPW(∆, Z,A) 0 π 0.004 0.509 0.470 -0.090 1.893 1.811 0.035 0.773 0.745
AIPW(∆, Z,A) 0.5 π 0.006 0.495 0.473 -0.072 1.904 1.819 0.028 0.780 0.749
AIPW(∆, Z,A) 0.95 π -0.004 0.473 0.450 -0.070 1.806 1.751 0.027 0.741 0.722

IPW π̂ 0.012 0.499 0.491 -0.077 1.915 1.874 0.030 0.782 0.769

AIPW(∆, Z) π̂ 0.012 0.499 0.492 -0.080 1.904 1.871 0.032 0.780 0.769
AIPW(∆, Z,A) 0 π̂ 0.002 0.511 0.471 -0.085 1.892 1.813 0.034 0.773 0.746
AIPW(∆, Z,A) 0.5 π̂ 0.006 0.495 0.474 -0.078 1.908 1.820 0.031 0.781 0.749
AIPW(∆, Z,A) 0.95 π̂ -0.004 0.473 0.450 -0.070 1.805 1.751 0.027 0.741 0.722

[1] π: The IPW and AIPW methods are implemented using pre-specified true sampling probabilities. π̂: The IPW and AIPW
methods are implemented using estimated sampling probabilities.
[2] R2 quantifies the correlation of A and X(u).

[3] For the kernel regression, the standard Normal kernel is used, and the bandwidth for predictor variable P is 0.75N−1/3sd(P ).
[4] The sampling probability model is π(∆) = ∆ + 0.33(1−∆).
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Figure 3.6: Simulation results for Simulation Study III: λ(u) = λ0(u) exp{βX(u) + ηZ +
γX(u)Z}. The IPW and AIPW estimates are based on pre-specified true sampling proba-
bilities π.
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3.4 Discussion

Joint model of longitudinal data measured with error and the event time data has been

studied extensively on full cohort data. Here we focus on the conditional score method gen-

eralized for the two-phase sampling design cohort studies. We also conduct the simulation

studies evaluating the model with an interaction of the time-varying immune biomarker

and the treatment indicator. We study the design where only subjects in the second phase

sample have the longitudinal records of the immune response data, and subjects outside

the second phase sample have their immune biomarker profiles completely missing. Since

conditional score method is a semi-parametric method, using the technique of weighting the

complete case by the inverse of the sampling probability is a natural way to deal with our

problem of missingness. In order to obtain more efficient estimator, we also consider the

AIPW technique and assess their performance in finite sample via simulation studies.

It is known that for non-parametric kernel regression, the choice of bandwidth is crucial.

The R package np has functions that can handle multivariate kernel regression with mixed

types of predictor variables (continuous, categorical, binary) and provide the algorithms

such as cross-validation to determine the optimal bandwidth. However, it takes considerable

computational time in finding the optimal bandwidth. In our AIPW method, it requires

fitting the kernel regression across time points, so it becomes even more impractical to

seek the optimal bandwidth for each regression. Therefore in our all simulation studies

for AIPW method, we use fixed bandwidth determined from the variance of the predictor

variables over time and do not explore the influence of different choices of bandwidth. Even

so the AIPW method outperforms the IPW method when some auxiliary variables strongly

correlated with the biomarker variable are included. However, when the correlation is very

weak, including them could reduce the efficiency or even increase the bias in finite sample,

especially when the number of immune biomarker measurements per subject is very limited.

In that case, the IPW method is recommended.

Our simulation studies on misspecified measurement error models suggest that when

the measurement error is not Normal but still random, the conditional score methods (Full,

IPW, or AIPW) could lead to slightly biased estimates. More serious problem arises when
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the measurement error violates the homoscedasticity assumption. These results suggest

that checking if the assumption of random Normal measurement error should be necessary

before applying the proposed methods. If evidence of violation of the assumption has

been found, transforming the original biomarker variable to meet such an assumption is

recommended. However it could be very hard to check this assumption based on observed

biomarker data because of the complication in specifying a correct distribution for the

inherent true biomarker level first. It might be able to obtain more information when using

replicated samples where for every single subject there are repeated measurements at the

same time point. Learning from the principles of the assays used to obtain the immune

biomarker measurements is also a way to justify or disprove this assumption.

In additional to the simulation studies described above, we also explore different sampling

design other than S1. We consider various stratified sampling designs among controls based

on some strong predictor of the immune biomarker. In doing this we attempt to oversample

controls having potentially higher variability in the inherent immune response profiles, and

to construct somehow “more efficient” sampling design than S1. However, the resulting

estimates are not as efficient as those from S1, as long as the sampling probabilities and the

size of Phase II sample under different designs are controlled to be compatible. It might be

because we already include all cases, and they dominate the variance of influence functions.

So which controls are selected could provide only very limited influence on the efficiency as

long as all cases are included. More exploration in this direction could be considered for a

design where not all cases are sampled.

In Chapter 2, we also introduce the framework of natural direct/indirect effects for

assessment of time-dependent CoPs. However, we do not conduct simulation studies for

detailed evaluation of its performance. We calculate the proportion PCS defined in Section

2.3.2 for data analysis of ACTG 175 in Chapter 6.
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Chapter 4

JOINT MODELING FOR DICHOTOMIZED TIME-DEPENDENT
BIOMARKERS

4.1 Background

Our experience with the immune response data in HIV-1 and dengue trials shows that

in some vaccinated participants the level of immune response declines below the lower

quantification limit of the assay during a short period after the final immunization, while

for others the level stays positive until the end of follow-up. The immune response could

start to have an effect in protection only when its value is above some threshold. This

suggests an interest in investigating the binary status of the immune response level (e.g.

responder vs. non-responder, high vs. low) as an immune CoR/CoP. The threshold to

determine the dichotomization of the immune response level could be obtained from the

quantification limit of the assay itself, the study data and prior knowledge. In the vaccine

trials we are considering, we do have observations of quantitative immune response levels,

only that they are subject to measurement error. So this motivates the need for statistical

methods starting with mis-measured quantitative immune biomarker level and ends up with

modeling its underlying true dichotomized trajectory over time.

However, most existing joint modeling methods center on modeling continuous longitu-

dinal biomarkers. Few papers have been found on joint modeling for binary longitudinal

processes. [Faucett et al., 1998] published their work assuming the observed data were bi-

nary and used a Markov model to construct the correlation between two binary data points

measured at adjacent time points. Likelihood methods are capable to solve such problems

but they usually involve intense numerical integration. Our exploration on the likelihood

method actually suggests a serious issue of convergence on this joint modeling framework.

The conditional score method [Tsiatis and Davidian, 2001] and corrected score method

[Wang, 2006] developed for continuous biomarkers rely heavily on the properties of ordinary
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least squares estimates of the subject-specific random effects. However, the least squares

estimates are biased and inefficient for the binary data scenario. Thus there is no straight-

forward extension of those methods to our binary data model. We therefore explored this

problem from the angle of measurement error methods. [Zucker and Spiegelman, 2008]

proposed a corrected score method for mis-classified discrete covariates in Cox regression

model. They identified a function of the mis-classified covariates whose conditional expecta-

tion given the true covariates were asymptotically equivalent to the desired partial likelihood

equations. Their method in theory could be extended to our model since we are also in-

terested in the true “binary” covariate. However, because we are dealing with time-varying

covariates and the actually observed biomarker values are quantitative, adopting their idea

of corrected score method is more complex and would majorly reduce the efficiency since

we need to manually dichotomize the observed quantitative first. Another popular analysis

approach for the Cox model with mis-measured covariates is the calibration method pro-

posed by [Prentice, 1986]. With an objective of estimating the Cox regression coefficients for

the true covariates which are not observed directly, Prentice defined an observed-covariate

hazard function, which is obtained by taking the expectation of the true-covariate haz-

ard function, conditioning on the observed biomarkers and being at risk. If the induced

observed-covariate hazard function were analytically achievable, then by maximizing the

corresponding partial likelihood function we would get the estimates of coefficients. [Wang

et al., 2000] has utilized the regression calibration method for the joint modeling frame-

work. However, usually the conditional expectation is in a complicated form which depends

on the unknown baseline hazard and coefficient parameters. [Zucker, 2005] proposed a

pseudo-partial-likelihood approach and utilized Expectation-Maximization (EM) algorithm

to maximize the induced observe-covariate partial likelihood. Again, their model included

only time-independent biomarkers and generalizing it to time-varying biomarkers and joint

modeling framework is very complicated. So far, most regression calibration methods are

conducted by seeking an approximation to the conditional expectations given the true co-

variates. It is relative simple to implement but at a cost of getting inconsistent estimates.

To reduce the bias, a recalibration strategy can be adopted by evaluating the conditional

expectations within each at-risk set [Dafni and Tsiatis, 1998, Tsiatis et al., 1995, Xie et al.,
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2001]. Even though the bias cannot be eliminated, simulation studies show that the mag-

nitude of the bias could be very small in the rare event setting. We are therefore motivated

to use the risk set recalibration (RRC) method to solve our model, since the event rates

in the vaccine trials are low. In this chapter, we propose our model in a general way with

multiple biomarkers.

4.2 Risk set recalibration method in full cohort studies

4.2.1 Notation and modeling

For each subject, let (V,∆) denote the observed failure/censoring time and failure status.

Assume the K time-varying biomarker processes {Xk(u), 0 ≤ u ≤ τ}, k = 1, · · · ,K are not

observed directly. For each time-varying biomarker process, we observe the mismeasured

values of Xk(u) at discrete time points 0 ≤ Tmk1 < · · · < TmkJk ≤ V , denoted by Wkj =

Xk(T
m
kj ) + ekj , j = 1, · · · , Jk. We assume the errors ekj are normal with zero mean. As

in [Song et al., 2002], we also assume non-zero covariance between measurement errors for

biomarkers measured at the same time point, i.e. Cov(ekj , ek′j′) = σkk′I(Tmkj = Tmk′j′). Let

σ̃ = {σkk′ , k, k′ = 1, · · · ,K}.

We assume a random effects model for each time-varying biomarker process Xk(u) such

that Xk(u) = αTk fk(u), with fk(u) being a qk-dimension vector of u. For example fk(u) =

(1, u)T specifies a random effects model linear in time for the trajectory of Xk(u). We

define the design matrix, the vector of observed longitudinal biomarkers and the vector of

measurement errors for each subject up to and including time u for Xk(u) as

F̃k(u) =


fTk (Tmk1)

...

fTk (TmkJk(u))

 , W̃k(u) =


Wk1

...

WkJk(u)

 , ẽk(u) =


ek1

...

ekJk(u)

 (4.1)

with Jk(u) indicating the maximum number of measuring time points for Xk(u) up to time

u, and Tmk (u) = (Tmk1, · · · , TmkJk(u))
T being the vector of measuring time points for Xk(u) up
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to and including time u. Obviously for k = 1, · · · ,K

W̃k(u) = F̃k(u)αk + ẽk(u)

Let α =
(
αT1 , · · · , αTK

)T
, W̃ (u) =

(
W̃ T

1 (u), · · · , W̃ T
K(u)

)T
, ẽ(u) =

(
ẽT1 (u), · · · , ẽTK(u)

)T
,

Tm(u) = (Tm1
T (u), · · · , TmK

T (u))T , J(u) = (J1(u), · · · , JK(u))T , and

F̃ (u) =


F̃1(u) · · · 0

...
. . .

...

0 · · · F̃K(u)

 (4.2)

Then

W̃ (u) = F̃ (u)α+ ẽ(u) (4.3)

For a pre-specified cutoff value bk, we define the binary indicator process Bk(u) as

Bk(u) = I(Xk(u) ≥ bk) (4.4)

and the vector of binary biomarker process as B(u) = (B1(u), · · · , BK(u))T . Then we study

the proportional hazards model

λ(u;α, Z̃) = lim
du→0

1

du
P(u ≤ T < u+ du|α, Z̃, Tm, C, T ≥ u)

= lim
du→0

1

du
P(u ≤ T < u+ du|α, Z̃, T ≥ u)

= λ0(u) exp{βTB(u) + ηT Z̃ + γTB(u)Z} (4.5)

where Z̃ = (Z,LT )T . Z is a binary indicator of vaccination arm (1 for vaccine and 0 for

placebo), L is a vector of p−1 dimensional vector of potential baseline confounding variables.

Here we restrict our attention to L being categorical variables, since we need to estimate

the distribution of unobserved random effects α given Z̃. The hazard function implies that

the measurement time points and censoring time are not informative to the hazard given α



86

and Z̃. It also says that only whether or not the biomarkers values X(u) being above the

thresholds matter for the hazard.

4.2.2 Ideal risk set recalibration estimator

Now we outline the risk set recalibration (RRC) method to estimate θ = (βT , ηT , γT )T . At

any given time u, define the at risk process as Y (u) = I(V ≥ u) and the increment of event

process dN(u) = I(V = u,∆ = 1). Under the assumption of non-informative censoring

given α and Z̃, the hazard for V is the same as that for T . Also, as discussed in [Prentice,

1982], we assume the hazard is independent of {W,Tm} given α and Z̃. Then the induced

hazard function from (4.5) conditional on the observed covariates and being at risk is

λ(u; W̃ (u), Tm(u), Z̃) = lim
du→0

1

du
P(u ≤ V < u+ du|W̃ (u), Tm(u), Z̃, Y (u) = 1)

= lim
du→0

1

du

∫
P(u ≤ V < u+ du|W̃ (u), Tm(u), α, Z̃, Y (u) = 1)

p(α|W̃ (u), Tm(u), Z̃, Y (u) = 1)dα

=

∫
λ(u; |W̃ (u), Tm(u), α, Z̃)p(α|W̃ (u), Tm(u), Z̃, Y (u) = 1)dα

=

∫
λ(u; |α, Z̃)p(α|W̃ (u), Tm(u), Z̃, Y (u) = 1)dα

= E
[
λ(u;α, Z̃)|W̃ (u), Tm(u), Z̃, Y (u) = 1

]
= λ0(u)R0(u, θ) (4.6)

where

R0(u, θ) = exp {ηT Z̃}E
[
exp{βTB(u) + γTB(u)Z}|W̃ (u), Tm(u), Z̃, Y (u) = 1

]
(4.7)

Let {Vi,∆i,Wi, T
m
i , Ji, Z̃i, ei}, i = 1, · · · , N be a random sample. Then the corresponding

induced partial-likelihood can be written as

L(θ) =
N∏
i=1

[
R0
i (Vi, θ)∑N

j=1 Yj(Vi)R
0
j (Vi, θ)

]∆i

(4.8)
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and we can estimate θ by solving ∂ logL(θ)/∂θ = 0, i.e.

N∑
i=1

∫ τ

0

{
Ṙ0
i (u, θ)

R0
i (u, θ)

−
∑N

j=1 Yj(u)Ṙ0
j (u, θ)∑N

j=1 Yj(u)R0
j (u, θ)

}
dNi(u) = 0 (4.9)

where Ṙ0
i (u, θ) = ∂R0

i (u, θ)/∂θ.

In practice the analytical form of R0(u, θ) is unobtainable so (4.9) are unobtainable ideal

score equations for estimating θ. As a result, in the next subsection, we propose a working

assumption to solve the problem.

4.2.3 RRC estimating equations

We assume α is independent of {Tm(u), J(u)} given {Y (u) = 1, Z̃} and is independent of

the measurement errors ẽ(u). Let α’s mean and covariance matrix conditioning on {Y (u) =

1, Z̃} be µ(u, Z̃) and Σ(u, Z̃) where

µ(u, Z̃) =


µ1(u, Z̃)

...

µK(u, Z̃)

 , Σ(u, Z̃) =


Σ11(u, Z̃) · · · Σ1K(u, Z̃)

...
. . .

...

ΣK1(u, Z̃) · · · ΣKK(u, Z̃)

 (4.10)

E[αk|Y (u) = 1, Z̃] = µk(u, Z̃), and Cov[αk, αk′ |Y (u) = 1, Z̃] = Σkk′(u, Z̃). Then the mean

and covariance matrix for (αTk , W̃
T (u))T given {Y (u) = 1, Z̃, Tm(u), J(u)} are


µk(u, Z̃)

F̃1(u)µ1(u, Z̃)

F̃K(u)µK(u, Z̃)

 ,


Σkk(u, Z̃) Σk1(u, Z̃)F̃ T1 (u) · · · ΣkK(u, Z̃)F̃ TK(u)

F̃1(u)Σ1k(u, Z̃) Γ11(u, Z̃) · · · Γ1K(u, Z̃)
...

...
. . .

...

F̃K(u)ΣKk(u, Z̃) Γ1K(u, Z̃) · · · ΓKK(u, Z̃)

(4.11)
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where Γkk′(u, Z̃) = F̃k(u)Σkk′(u, Z̃)F̃ Tk′ (u) + Akk′σkk′ and Akk′ is a Jk(u) × Jk′(u) matrix

with (a, b)− th element equal to 1 if Tmka = Tmk′b, and 0 otherwise. Let

Σk.(u, Z̃) =


Σk1(u, Z̃)

...

ΣkK(u, Z̃)

 , Σ.k(u, Z̃) =
(

Σ1k(u, Z̃) · · · ΣKk(u, Z̃)
)

Γ(u, Z̃) =


Γ11(u, Z̃) · · · Γ1K(u, Z̃)

...
. . .

...

Γ1K(u, Z̃) · · · ΓKK(u, Z̃)


Write C = {Y (u) = 1, Z̃, Tm(u)}, PC [·] = P[·|C], EC [·] = E[·|C], and CovC [·] = Cov[·|C]. If we

further make the normality assumption, then it follows that

µC(u) ≡ EC
[
α|W̃ (u)

]
= µ(u, Z̃) + Σ(u, Z̃)F̃ T (u)Γ−1(u, Z̃)

(
W̃ (u)− F̃ (u)µ(u, Z̃)

)
(4.12)

ΣC(u) ≡ CovC
[
α|W̃ (u)

]
= Σ(u, Z̃)− Σ(u, Z̃)F̃ T (u)Γ−1(u, Z̃)F̃ (u)Σ(u, Z̃) (4.13)

In other words, µC(u) and ΣC(u) fully specify the conditional distribution of α given {Y (u) =

1, Z̃, Tm(u), W̃ (u)}. So we are able to calculate form = (m1, · · · ,mK)T , m1, · · · ,mK = 0, 1,

pC(m;u, µ,Σ) ≡ PC
[
B1(u) = m1, B2(u) = m2, · · · , BK(u) = mK |W̃ (u)

]
(4.14)

which further yields the risk function in (4.7) as

R(u, θ, µ,Σ) = exp {ηT Z̃}E
[
exp{βTB(u) + γTB(u)Z}|W̃ (u), Tm(u), Z̃, Y (u) = 1

]
= exp {ηT Z̃}

 ∑
m1,··· ,mK=0,1

exp{
K∑
k=1

(βk + γkZ)mk}pC(m;u, µ,Σ)

 (4.15)

Note unlike in [Dafni and Tsiatis, 1998, Wang et al., 2000, Xie et al., 2001] where R0(u, θ)
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is approximated by exp
{
ηT Z̃ + (βT + γTZ)TE

[
B(u)|W̃ (u), Tm(u), Z̃, Y (u) = 1

]}
, here we

derive the expression of R0(u, θ) directly from the assumed conditional distribution of α

given observed covariates and being at risk. Since we have made the normality assumption,

the form of R0(u, θ) depends on the nuisance parameters µ and Σ. Therefore we use the

notation R(u, θ, µ,Σ) in our proposed method accordingly.

Moreover (4.15) contains unknown nuisance parameters µ(u, Z̃), Σ(u, Z̃) and σ̃ = {σkk′ ;

k, k′ = 1, · · · ,K}. Therefore, one more step is needed to estimate them before we solve the

estimating equations for θ.

To estimate the covariance σkk′ , we can do it similarly to that in [Song et al., 2002] by

solving

Se,F (σkk′) =
N∑
i=1

I(Jik ≥ qk, Jik′ ≥ qk′)
{(

W̃ik(Vi)− F̃ik(Vi)α̂ik(Vi)
)T

Aikk′(
W̃ik′(Vi)− F̃ik′(Vi)α̂ik′(Vi)

)
− σkk′tr

(
PikAikk′Pik′A

T
kk′
)}

= 0 (4.16)

where Pik = IJik − F̃ik(Vi){F̃ Tik(Vi)F̃ik(Vi)}−1F̃ Tik(Vi). To simplify the notations and for-

mula, we establish the estimating equations for θ from now on assuming σ̃ are known. All

the asymptotic theories can be extended to the case with σ̃ unknown by considering the

estimating equations for θ and for σkk′ simultaneously.

Since µk(u, Z̃) and Σkk′(u, Z̃) are Z̃-dependent and Z̃ are categorical variables, we pro-

pose to estimate them separately within each category. Suppose there are ν discrete values

of Z̃, z̃1, · · · , z̃ν . Let µ(u) = {µ(j)(u), j = 1, · · · , ν} and Σ(u) = {Σ(j)(u), j = 1, · · · , ν},

where for each z̃j , µ(j)(u) = µ(u, z̃j) and Σ(j)(u) = Σ(u, z̃j). We would like to obtain

estimates that satisfy

sup
u∈[0,τ ]

|vec{µ̂(u)− µ(u)}| p→ 0, sup
u∈[0,τ ]

∣∣∣vec{Σ̂(u)− Σ(u)}
∣∣∣ p→ 0 (4.17)

N1/2vec{µ̂(u)− µ(u)} = N−1/2
N∑
i=1

φi(u) + op(1) (4.18)

N1/2vec{Σ̂(u)− Σ(u)} = N−1/2
N∑
i=1

ψi(u) + op(1) (4.19)
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as N → ∞, with φi(u) and ψi(u) the influence functions and vec the vectorization of the

matrices.

The problem with estimating the distribution of α is that α itself is not observed di-

rectly. So the usual approach such as regressing α on the observed data or the kernel

density method do not work out here. However since µ(u) and Σ(u) are nuisance parame-

ters related to the observed biomarker values W̃ , we could maximize the likelihood of the

observed data based on the random effects model. Another way to estimate µ(j)(u) and

Σ(j)(u) is by the method of moments in a way similar to that in [Dafni and Tsiatis, 1998].

Let α̂i(u) denote the least squares estimates of subject-specific random effects αi using data

up to and including time u, i.e. α̂i(u) = {F̃ Ti (u)F̃i(u)}−1F̃ Ti (u)W̃i(u). It can be easily

verified that α̂i(u) = (α̂Ti1(u), · · · , α̂TiK(u))T , with α̂Tik(u) = {F̃ Tik(u)F̃ik(u)}−1F̃ Tik(u)W̃ik(u)

being the least squares estimate for αik, the random effects governing the k − th under-

lying biomarker process. Since α̂ik(u) = αik + {F̃ Tik(u)F̃ik(u)}−1F̃ Tik(u)ẽik(u), we have

EC [α̂ik(u)] = µk(u, Z̃), and CovC [α̂ik(u), α̂ik′(u)] = Σkk′(u, Z̃i)+ΣRikk′ (u), with ΣRikk′ (u) =

{F̃ Tik(u)F̃ik(u)}−1F̃ Tik(u)Aikk′(u)F̃ik′(u){F̃ Tik′(u)F̃ik′(u)}−1σkk′ . Therefore naturally the esti-

mating equations for µk(u, z̃) and Σkk′(u, z̃) for the category with Z̃ = z̃ are

N∑
i=1

Yi(u)I(Jik(u) ≥ qk)I(Z̃i = z̃)(α̂ik(u)− µk(u, z̃)) = 0 (4.20)

N∑
i=1

Yi(u)I(Jik(u) ≥ qk, Jik′(u) ≥ qk′)I(Z̃i = z̃)
{

[α̂ik(u)− µk(u, z̃)] [α̂ik′(u)− µk′(u, z̃)]T

−Σkk′(u, z̃)− ΣRikk′ (u)
}

= 0 (4.21)

Apparently, under certain regularity conditions, (4.17)(4.18)(4.19) hold for the estimates

of µ(u) and Σ(u) from the likelihood approach or the method of moments.

Plugging µ̂(u) and Σ̂(u) back into (4.12)(4.13) and (4.14) we obtain

µ̂Ci(u) = µ̂(u, Z̃i) + Σ̂(u, Z̃i)F̃
T
i (u)Γ̂−1(u, Z̃i)

(
W̃i(u)− F̃i(u)µ̂(u, Z̃i)

)
(4.22)

Σ̂Ci(u) = Σ̂(u, Z̃i)− Σ̂(u, Z̃i)F̃
T
i (u)Γ̂−1(u, Z̃i)F̃i(u)Σ̂(u, Z̃i) (4.23)

p̂Ci(m;u, µ̂, Σ̂) = p̂Ci(m;u, µ = µ̂(u),Σ = Σ̂(u)) (4.24)
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And finally, solving the following estimating equations yields the RRC estimates θ̂R for

θ

URF (θ) =

N∑
i=1

∫  ˆ̇Ri(u, θ, µ̂, Σ̂)

R̂i(u, θ, µ̂, Σ̂)
−
∑N

j=1 Yj(u) ˆ̇Rj(u, θ, µ̂, Σ̂)∑N
j=1 Yj(u)R̂j(u, θ, µ̂, Σ̂)

 dNi(u) = 0 (4.25)

where

R̂i(u, θ, µ̂, Σ̂) = exp {ηT Z̃i}

[∑
m

exp{βTm+ γTmZi}P̂Ci(m;u, µ̂, Σ̂)

]

ˆ̇Ri(u, θ, µ̂, Σ̂) =
∂ ˆ̇Ri(u, θ, µ̂, Σ̂)

∂θ

=


exp {ηT Z̃i}

[∑
mm exp{βTm+ γTmZi}P̂Ci(m;u, µ̂, Σ̂)

]
Z̃i exp{ηT Z̃i}

[∑
m exp{βTm+ γTmZi}P̂Ci(m;u, µ̂, Σ̂)

]
Zi exp{ηT Z̃i}

[∑
mm exp{βTm+ γTmZi}P̂Ci(m;u, µ̂, Σ̂)

]


4.2.4 Asymptotic distribution theory

In this section, we assume the regularity conditions given in Assumption D hold. Recall

θ = (βT , ηT , γT )T and σ̃ = {σkk′ , k, k′ = 1, · · · ,K}. Further define

A
(0)
F (u, θ, µ̂, Σ̂) = N−1

N∑
i=1

Yi(u)R̂i(u, θ, µ̂, Σ̂), a(0)(u, θ, µ,Σ) = E [Y (u)R(u, θ, µ,Σ)]

A
(1)
F (u, θ, µ̂, Σ̂) = N−1

N∑
i=1

Yi(u) ˆ̇Ri(u, θ, µ̂, Σ̂), a(1)(u, θ, µ,Σ) = E
[
Y (u)Ṙ(u, θ, µ,Σ)

]
A

(2)
F (u, θ, µ̂, Σ̂) = N−1

N∑
i=1

Yi(u) ˆ̈Ri(u, θ, µ̂, Σ̂), a(2)(u, θ, µ,Σ) = E
[
Y (u)R̈(u, θ, µ,Σ)

]
R̈(u, θ, µ,Σ) =

∂Ṙ(u, θ, µ,Σ)

∂θ

b(0)(u, θ) = λ0(u)E
{
Y (u)E

[
exp{βTB(u) + ηT Z̃ + γTB(u)Z}

∣∣∣W̃ (u), Z̃, Y (u) = 1
]}

b(1)(u, θ) = λ0(u)E

{
Y (u)

Ṙ(u, θ, µ,Σ)

R(u, θ, µ,Σ)
E
[
exp{βTB(u) + ηT Z̃ + γTB(u)Z}

∣∣∣W̃ (u),

Z̃, Y (u) = 1
]}
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Hi(θ) =

∫ τ

0

{
Ṙi(u, θ, µ,Σ)

Ri(u, θ, µ,Σ)
− a(1)(u, θ, µ,Σ)

a(0)(u, θ, µ,Σ)

}
dNi(u)

h(θ) =

∫ τ

0

{
b(1)(u, θ)− a(1)(u, θ, µ,Σ)

a(0)(u, θ, µ,Σ)
b(0)(u, θ)

}
du

Assumption D

D1. Λ0(τ) <∞, P (Y (τ) = 1) > 0.

D2. T and (C, Tm)T are independent given (αT , Z̃T )T

D3. Z̃ and J are bounded. The support of discrete variable Z̃ has fixed and finite number

of values and for each value z̃, u ∈ [0, τ ] and k, k′ = 1, · · · ,K, P(Y (u) = 1, I(Jk(u) ≥

qk, I(Jk′(u) ≥ qk′)|Z̃ = z̃) > 0.

D4. (4.17)(4.18)(4.19) hold for µ̂(u) and Σ̂(u).

D5. h(θ) = 0 if and only if θ = θ∗.

D6. There exists an compact set Θ where θ∗ lies in the interior, such that a(r)(u, θ, µ,Σ),

b(r)(u, θ) and ḃ(r)(u, θ) exists and continuous in (u, θ) ∈ Θ× [0, τ ], r = 0, 1, 2.

D7. E
[
sup(u,θ)∈[0,τ ]×Θ |Y (u)R0(u, θ)|

]
< ∞,E

[
sup(u,θ)∈[0,τ ]×Θ |Y (u)R0(u, θ)R0(u, θ)T |

]
<

∞

D8. E[Ḣ(θ∗)] exists and invertible.

D9. Var[M(θ∗)] is finite and positive definite where M(θ∗) is defined in (4.26).

Lemma 4.2.1. For r = 0, 1, sup(u,θ)∈[0,τ ]×Θ

∣∣∣A(r)
F (u, θ, µ̂, Σ̂)− a(r)(u, θ, µ,Σ)

∣∣∣ p→ 0, as N →

∞.

Proof. We only outline the proof for r = 0. The other one for r = 1 can be proved similarly.

By Theorem III.1 in [Andersen and Gill, 1982] we have A
(0)
F (u, θ, µ,Σ) = a(r)(u, θ, µ,Σ) +

op(1) uniformly in u, θ. Therefore we only need to prove thatA
(0)
F (u, θ, µ̂, Σ̂) = A

(0)
F (u, θ, µ,Σ)+

op(1) uniformly in u, θ. Actually

sup
(u,θ)∈[0,τ ]×Θ

∣∣∣A(0)
F (u, θ, µ̂, Σ̂)−A(0)

F (u, θ, µ,Σ)
∣∣∣

= sup
(u,θ)∈[0,τ ]×Θ

∣∣∣∣∣∣N−1
ν∑
j=1

N∑
i=1

I(Z̃i = z̃j)Yi(u) exp {ηT z̃j}
∑
m

exp{βTm+ γTmzj}×[
p̂Ci(m;u, µ̂(j), Σ̂(j))− pCi(m;u, µ(j),Σ(j))

]∣∣∣
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≤
ν∑
j=1

∑
m

{
sup
θ∈Θ

∣∣exp {βTm+ ηT z̃j + γTmzj}
∣∣ ×

N−1
N∑
i=1

sup
u∈[0,τ ]

∣∣∣p̂Ci(m;u, µ̂(j), Σ̂(j))− pCi(m;u, µ(j),Σ(j))
∣∣∣}

The second term converges to zero because of the uniform convergence of µ̂(j), Σ̂(j) and the

continuity of pC(m,u, µ,Σ) (in the form of Normal cumulative density function) in µ and

Σ. On the other hand, since ν and the number of all possible values of m are fixed finite,

A
(0)
F (u, θ, µ̂, Σ̂) = A

(0)
F (u, θ, µ,Σ) + op(1) uniformly in u, θ.

Theorem 4.2.2. Under Assumption D, as N → ∞, (i) θ̂R
p→ θ∗; (ii) N1/2(θ̂R − θ∗)

converges weakly to a Normal random variate with mean zero and covariance A−1B(A−1)T ,

where

A = E[Ḣ(θ∗)], B = E[M(θ∗)M(θ∗)T ]

and Mi(θ
∗) is defined in (4.26).

Proof. (i) We give a sketch of proof similarly to that in [Xie et al., 2001]. Note that

E

[
Ṙ(u, θ, µ,Σ)

R(u, θ, µ,Σ)
dN(u)

]

= E

{
E

[
Ṙ(u, θ, µ,Σ)

R(u, θ, µ,Σ)
dN(u)

∣∣∣W̃ (u), Z̃

]}

= E

{
E

[
E

(
Ṙ(u, θ, µ,Σ)

R(u, θ, µ,Σ)
dN(u)

∣∣∣W̃ (u), Z̃, Y (u)

)∣∣∣W̃ (u), Z̃

]}

= E

{
Ṙ(u, θ, µ,Σ)

R(u, θ, µ,Σ)
E
[
dN(u)

∣∣∣W̃ (u), Z̃, Y (u) = 1
]
E
[
Y (u)

∣∣∣W̃ (u), Z̃
]}

= λ0(u)duE

{
Y (u)

Ṙ(u, θ, µ,Σ)

R(u, θ, µ,Σ)
E
[
exp{βTB(u) + ηT Z̃ + γTB(u)Z} | W̃ (u),

Z̃, Y (u) = 1
]}

≡ b(1)(u, θ)du
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E [dN(u)] = λ0(u)duE
{
Y (u)E

[
exp{βTB(u) + ηT Z̃ + γTB(u)Z}

∣∣∣W̃ (u), Z̃, Y (u) = 1
]}

≡ b(0)(u, θ)du

Let N̄(u) = N−1
∑N

i=1Ni(u). Then N−1URF (θ) = N−1U1N (θ) + N−1U2N (θ) −N−1U3N (θ)

where

N−1U1N (θ) = N−1
N∑
i=1

Hi(θ)

N−1U2N (θ) = N−1
N∑
i=1

∫ τ

0

(
ˆ̇Ri(u, θ, µ̂, Σ̂)

R̂i(u, θ, µ̂, Σ̂)
− Ṙi(u, θ, µ,Σ)

Ri(u, θ, µ,Σ)

)
dNi(u)

N−1U3N (θ) =

∫ τ

0

(
A

(1)
F (u, θ, µ̂, Σ̂)

A
(0)
F (u, θ, µ̂, Σ̂)

− a(1)(u, θ, µ,Σ)

a(0)(u, θ, µ,Σ)

)
dN̄(u)

We investigate each of the three terms. For the second term, we can prove as in Lemma

4.2.1 that

sup
(u,θ)∈[0,τ ]×Θ

∣∣∣∣∣N−1
N∑
i=1

ˆ̇Ri(u, θ, µ̂, Σ̂)

R̂i(u, θ, µ̂, Σ̂)
−N−1

N∑
i=1

Ṙi(u, θ, µ,Σ)

Ri(u, θ, µ,Σ)

∣∣∣∣∣ = op(1)

This implies that supθ∈Θ |N−1U2N (θ)| = op(1).

By the arguments similar to those in [Fleming and Harrington, 1991] (page 305-306),

we can prove that a(0)(u, θ, µ,Σ) is bounded away from zero on [0, τ ] × Θ. Together with

Lemma 4.2.1, we have sup(u,θ)∈[0,τ ]×Θ

∣∣∣∣A(1)
F (u,θ,µ̂,Σ̂)

A
(0)
F (u,θ,µ̂,Σ̂)

− a(1)(u,θ,µ,Σ)

a(0)(u,θ,µ,Σ)

∣∣∣∣ p→ 0. Therefore

sup
θ∈Θ
|N−1U3N (θ)| ≤ sup

(u,θ)∈[0,τ ]×Θ

∣∣∣∣∣A
(1)
F (u, θ, µ̂, Σ̂)

A
(0)
F (u, θ, µ̂, Σ̂)

− a(1)(u, θ, µ,Σ)

a(0)(u, θ, µ,Σ)

∣∣∣∣∣
∫ τ

0
dN̄(u) = op(1)

Therefore, N−1URF (θ) = N−1
∑N

i=1Hi(θ) + op(1) uniformly in θ. On the other hand,

since R(u, θ, µ,Σ) and Ṙ(u, θ, µ,Σ) are continuous in θ, we can show that N−1U1N (θ) =

h(θ) + op(1) uniformly in θ. Therefore θ̂R converges to θ∗ as N →∞.

(ii) Let dMi(u) = dNi(u)−λ0(u)Yi(u)R0
i (u, θ)du, dM̄(u) = N−1

∑N
i=1 dMi(u). Then we
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have

N−1/2URF (θ∗) = N−1/2
N∑
i=1

∫ τ

0

ˆ̇Ri(u, θ
∗, µ̂, Σ̂)

R̂i(u, θ∗, µ̂, Σ̂)
dNi(u)−N1/2

∫ τ

0

A
(1)
F (u, θ∗, µ̂, Σ̂)

A
(0)
F (u, θ∗, µ̂, Σ̂)

dN̄(u)

= U4N (θ∗)− U5N (θ∗)− U6N (θ∗)

where

U4N (θ∗) = N−1/2
N∑
i=1

∫ τ

0

ˆ̇Ri(u, θ
∗, µ̂, Σ̂)

R̂i(u, θ∗, µ̂, Σ̂)
dNi(u)−N1/2

∫ τ

0

a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)
dM̄(u)

U5N (θ∗) = N1/2

∫ τ

0

A
(1)
F (u, θ∗, µ̂, Σ̂)

A
(0)
F (u, θ∗, µ̂, Σ̂)

(
N−1

N∑
i=1

λ0(u)Yi(u)R0
i (u, θ)

)
du

U6N (θ∗) = N1/2

∫ τ

0

(
A

(1)
F (u, θ∗, µ̂, Σ̂)

A
(0)
F (u, θ∗, µ̂, Σ̂)

− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)

)
dM̄(u)

The Proposition A.1 in [Kulich and Lin, 2004] implies that N1/2dM̄(u) converges weakly

in l∞[0, τ ] to a mean-zero Gaussian process uniformly in u. Then the convergence in prob-

ability to zero of U6N (θ∗) follows from Lemma 4.2.1 and Lemma 4.2 in [Kosorok, 2008]. We

can also approximate U5N (θ∗) with the arguments similarly to those in Theorem 2.1 in [Lin

and Wei, 1989] and Appendix A in [Xie et al., 2001]

U5N (θ∗) = N1/2

∫ τ

0

1

a(0)(u, θ∗, µ,Σ)

{
A

(1)
F (u, θ∗, µ̂, Σ̂)− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)(
A

(0)
F (u, θ∗, µ̂, Σ̂)− a(0)(u, θ∗, µ,Σ)

)}
E(dN(u)) + op(1)

Therefore by direct calculation

N−1/2URF (θ∗)

= N−1/2
N∑
i=1

∫ τ

0

(
ˆ̇Ri(u, θ

∗, µ̂, Σ̂)

R̂i(u, θ∗, µ̂, Σ̂)
− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)

)
dNi(u)

−N−1/2
N∑
i=1

∫ τ

0

Yi(u)

a(0)(u, θ∗, µ,Σ)

{
ˆ̇Ri(u, θ

∗, µ̂, Σ̂)− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)
R̂i(u, θ

∗, µ̂, Σ̂)

}
E(dN(u)) + op(1)
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We need to further expand the above expression at µ̂ and Σ̂. Let N−1/2MN1(θ∗) and

N−1/2MN2(θ∗) denote the two terms in N−1/2URF (θ∗). Then first by Taylor expansion of

x/y we have

N−1/2MN1(θ∗)

= N−1/2
N∑
i=1

∫ τ

0

(
Ṙi(u, θ

∗, µ,Σ)

Ri(u, θ∗, µ,Σ)
− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)

)
dNi(u)

+N−1/2
N∑
i=1

∫ τ

0

Ṙi(u, θ
∗, µ,Σ)

R2
i (u, θ

∗, µ,Σ)

{
R̂i(u, θ

∗, µ̂, Σ̂)−Ri(u, θ∗, µ,Σ)
}
dNi(u)

+N−1/2
N∑
i=1

∫ τ

0

1

R2
i (u, θ

∗, µ,Σ)

{
ˆ̇Ri(u, θ

∗, µ̂, Σ̂)− Ṙi(u, θ∗, µ,Σ)
}
dNi(u) + op(1)

= N−1/2
N∑
i=1

∫ τ

0

(
Ṙi(u, θ

∗, µ,Σ)

Ri(u, θ∗, µ,Σ)
− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)
+ c(u)φi(u) + d(u)ψi(u)

)
dNi(u) + op(1)

where

c(u) = N−1
N∑
i=1

{
Ṙi(u, θ

∗, µ,Σ)

R2
i (u, θ

∗, µ,Σ)

∂Ri(u, θ
∗, µ,Σ)

∂vec{µ}
+

1

R2
i (u, θ

∗, µ,Σ)

∂Ṙi(u, θ
∗, µ,Σ)

∂vec{µ}

}

d(u) = N−1
N∑
i=1

{
Ṙi(u, θ

∗, µ,Σ)

R2
i (u, θ

∗, µ,Σ)

∂Ri(u, θ
∗, µ,Σ)

∂vec{Σ}
+

1

R2
i (u, θ

∗, µ,Σ)

∂Ṙi(u, θ
∗, µ,Σ)

∂vec{Σ}

}

Similarly

N−1/2MN2(θ∗)

= −N−1/2
N∑
i=1

∫ τ

0

Yi(u)

a(0)(u, θ∗, µ,Σ)

{
Ṙi(u, θ

∗, µ,Σ)− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)
Ri(u, θ

∗, µ,Σ)

}
E(dN(u))

−N−1/2
N∑
i=1

∫ τ

0
{e(u)φi(u) + f(u)ψi(u)}E(dN(u)) + op(1)

where

e(u) = N−1
N∑
i=1

Yi(u)

a(0)(u, θ∗, µ,Σ)

{
∂Ṙi(u, θ

∗, µ,Σ)

∂vec{µ}
− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)

∂Ri(u, θ
∗, µ,Σ)

∂vec{µ}

}
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f(u) = N−1
N∑
i=1

Yi(u)

a(0)(u, θ∗, µ,Σ)

{
∂Ṙi(u, θ

∗, µ,Σ)

∂vec{Σ}
− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)

∂Ri(u, θ
∗, µ,Σ)

∂vec{Σ}

}

We combine all the results above and define

Mi(θ
∗)

=

∫ τ

0

{
Ṙi(u, θ

∗, µ,Σ)

Ri(u, θ∗, µ,Σ)
− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)
+ c(u)φi(u) + d(u)ψi(u)

}
dNi(u)

−
∫ τ

0

Yi(u)

a(0)(u, θ∗, µ,Σ)

{
Ṙi(u, θ

∗, µ,Σ)− a(1)(u, θ∗, µ,Σ)

a(0)(u, θ∗, µ,Σ)
Ri(u, θ

∗, µ,Σ)

}
E(dN(u))

−
∫ τ

0
{e(u)φi(u) + f(u)ψi(u)}E(dN(u)) (4.26)

Thus we have proved that N−1/2URF (θ∗) = N−1/2
∑N

i=1Mi(θ
∗) + op(1). On the other hand

we can also show as in (i) that N−1∂URF (θ)/∂θ = N−1
∑N

i=1 Ḣi(θ) + op(1) uniformly in θ.

The asymptotic distribution of N1/2(θ̂R − θ∗) is therefore A−1B(A−1)T .

Note in this calibration method, we need to estimate the nuisance parameters µ(u)

and Σ(u) at each observed event time point using subjects at risk and having enough

measurements (i.e. we need at least qk measurements to estimate the trajectory of Xk(u)).

This is ensured by Assumption D3. For example, in the dengue vaccine trial, the primary

endpoint is the symptomatic virologically confirmed dengue disease occurred 28 days after

the third vaccination and during the active phase from Month 13 to Month 25. By the time of

the third injection, three visits for measurements of antibody titers have already been made.

This implies that almost all subjects at risk by that time have three measurements available.

However, if we are interested in the dengue disease occurring during the active phase since

the start of the study, then it is possible that by the time of the occurrence of a disease in

the early stage of the study, only one or two scheduled visits for measurements have been

made. That means estimating the trajectories with more than two parameters at that time

point is infeasible. And those subjects who drop out of the study or develop disease before

that time would make no contribution to the estimating equations. Therefore we will lose
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considerate number of early cases in the analysis if a large proportion of the disease events

occur before enough visits for measurements have been made. The ultimate inferential

results could be misleading. Looking back at the conditional score method for continuous

immune response level, even though it has the same issue of losing a number of cases in

the analysis, can still provide consistent estimates because the number of measurements is

incorporated in the estimating equations.

4.3 Risk set recalibration method in two-phase sampling design cohort studies

Since this dissertation is aimed to evaluate the time-dependent CoR and CoP in vaccine

trial studies where the immune response data are collected on a two-phase sample, we need

to further develop the method of RRC for estimating θ in (4.5) when the immune response

data are only available on the second phase sample. The sampling design here we considered

is the same as those for the continuous biomarker model in Chapter 2. We briefly restate

the notations and sampling model described in Section 2.2.2.

In the first phase, we take a random sample with size N from the study population with

measurements (Vi,∆i, Zi, L
T
i )T , i = 1, · · · , N . In the second phase, a random Bernoulli

sample is taken from the N subjects, with sampling probabilities given by π(Oi, ρ), where

Oi are (a subset of) the variables collected at the first phase and ρ is a finite-dimensional

vector of parameters. Let ξ be the binary indicator of being sampled (ξ = 1) with probability

P(ξ = 1|O,α,W, Tm, J) = P(ξ = 1|O) = π(O; ρ)

Then the longitudinal immune biomarkers {Wi, T
m
i , Ji} are assessed only on subjects with

ξi = 1, i.e. the observed data for i = 1, · · · , N are {Vi,∆i, Zi, Li, ξi, ξiWi, ξiT
m
i , ξiJi}. With

such data with missing immune response data, we propose to estimate θ by solving an IPW

version of the RRC estimating equations, defined as

URIPW (θ) =

N∑
i=1

∫
ξi
πi

{
ˆ̇Ri(u, θ, µ̂, Σ̂)

R̂i(u, θ, µ̂, Σ̂)
−
A

(1)
IPW (u, θ, µ̂, Σ̂)

A
(0)
IPW (u, θ, µ̂, Σ̂)

}
dNi(u) = 0 (4.27)
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where

A
(0)
IPW (u, θ, µ̂, Σ̂) = N−1

N∑
i=1

ξi
πi
Yi(u)R̂i(u, θ, µ̂, Σ̂)

A
(1)
IPW (u, θ, µ̂, Σ̂) = N−1

N∑
i=1

ξi
πi
Yi(u) ˆ̇Ri(u, θ, µ̂, Σ̂)

As in Chapter 2, we consider both situations with correctly and fully specified sampling

probabilities and estimated sampling probabilities by solving Sπ,F (ρ) = 0 below. The

corresponding estimates of θ are denoted by θ̂RIPW (π) and θ̂RIPW (π̂).

Sπ,F (ρ) =

N∑
i=1

Sπ,i(ρ) =

N∑
i=1

∂

∂ρ
log
{
π(Oi; ρ)ξi (1− π(Oi; ρ))1−ξi

}
=

N∑
i=1

ξi − π(Oi; ρ)

π(Oi; ρ)(1− π(Oi; ρ))

∂π(Oi; ρ)

∂ρ
= 0

To establish the asymptotic theories for θ̂RIPW (π) and θ̂RIPW (π̂), in additional to Assump-

tion D, we also assume the sampling probabilities are positive: 1 ≥ π(O; ρ) > δ > 0, for all

ρ and some constant δ > 0. The following theories can be proved based on Theorem 4.2.2

and in a similar way as that in the proof of the theories for IPW estimators for continuous

biomarker model in Theorem 2.6.3 and Theorem 2.6.5.

Theorem 4.3.1. As N → ∞, (i) θ̂RIPW (π)
p→ θ∗; and (ii)

√
N
(
θ̂RIPW (π)− θ∗

)
converges

weakly to a Normal random variate with mean zero and covariance A−1B∗(A−1)T , where

A = E
[
Ḣ(θ∗)

]
B∗ = E

[
1

π
M(θ∗)M(θ∗)T

]

where M(θ∗) is defined in (4.26).

Theorem 4.3.2. As N → ∞, (i) θ̂RIPW (π̂)
p→ θ∗; and (ii)

√
N
(
θ̂RIPW (π̂)− θ∗

)
converges

weakly to a Normal random variate with mean zero and covariance A−1B∗∗(A−1)T , where

A = E
[
Ḣ(θ∗)

]
B∗∗ = B∗ − E[M(θ∗)

π̇

π
]
{
E[SπS

T
π ]
}−1 E[M(θ∗)

π̇

π
]T
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where M(θ∗) is defined in (4.26).



101

Chapter 5

SIMULATION STUDIES FOR JOINT MODELING WITH
DICHOTOMIZED BIOMARKERS

5.1 Simulation for full cohort studies

In this section, we evaluate the RRC estimator developed for dichotomized immune biomark-

ers in Chapter 4. We compare the RRC estimator with the ideal estimator (Ideal) where

the random effects for each subject are assumed known and the two-stage estimator (TS)

where the subject-specific biomarker trajectories are first fitted by least squares estimates

to predict the binary status of immune biomarker at each time point and then use them to

fit the Cox regression model. We evaluate the three estimators through simulations studies

in terms of the bias, relative bias to the true parameter (Bias %), Monte Carlo standard

deviation (MCSD), and the relative mean squared error (RMSE) to the ideal estimator.

For the RRC estimator, we would also like to evaluate an estimate for its theoretical

sandwich variance given in Theorem 4.2.2. However, direct programming of the estimate of

A = E[M(θ∗)M(θ∗)T ] is very hard as can be seen from the expression of M(θ∗) defined in

(4.26). First it requires the derivatives of R(u, θ, µ,Σ) and Ṙ(u, θ, µ,Σ) with respect to µ(u)

and Σ(u) over time, which are apparently nonlinear. Also it depends on the “unknown”

truth R0(u, θ) which we propose to approximate based on the Normal working assumption.

The same problem occurred in [Dafni and Tsiatis, 1998] where they dealt with a similar

model but for the continuous biomarker X(u). In their simulation studies (Table 3), they

used the variance estimate obtained from maximizing the induced partial likelihood func-

tion simply with estimated nuisance parameters plugged in. In their simulation studies,

such approximated variance estimates performed quite well compared with the empirical

standard derivation of the parameter estimates. In our simulation studies, we approximate

the standard error (ASE) estimates in a similar way. For a valid estimate of the theoretical

variance we also investigate the bootstrap method as in [Wang et al., 2001].
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5.1.1 Model 1

We first consider the model with one dichotomized biomarker λ(u) = λ0(u) exp{βB(u)}.

The biomarker X(u) is generated from X(u) = α1 + α2u, where (α1, α2)T is from bivari-

ate Normal distribution with mean µ = (2.575,−0.009)T and covariance Σ with elements

(Σ11,Σ12,Σ22)T = (0.0191, 0.00007, 0.0002)T . The parameters µ and Σ are estimated from

the ACTG 175 data [Hammer et al., 1996]. The threshold l for B(u) = I(X(u) ≥ l) is 2.393

with P(B(13.5) = 1) = 0.6. The censoring time is simulated from Exp(1/80) and is subject

to administrative censoring at time 30.

We consider four simulation scenarios (a)(b)(c) and (d) for Model 1. For each scenario,

we simulate the event time data with hazard ratios eβ = {1, 0.75, 0.50, 0.25}. Also we

consider three settings of measurement errors (low, moderate and high) with the variance

of measurement error σ2 = {0.01, 0.08, 0.15}. They represent a noise-to-signal ratio of

Var(e)/Var(X(0)) ≈ 1/2, 4, and 8, and Var(e)/Var(X(10)) ≈ 1/4, 2, and 4 respectively.

(a) Low event rate setting with a moderate number of measurement time points. Sample

size N=800. The longitudinal observations W are made at baseline and a random

time point uniformly sampled from each of these 9 time windows 3, 6, 9, · · · , 27± 0.3.

(b) Low event rate setting with a large number of measurement time points. Sample size

N=800. The longitudinal observations W are made at baseline and a random time

point uniformly sampled from each of these 56 time windows 0.5, 1.0, 1.5, · · · , 28±0.05.

(c) High event rate setting with a moderate number of measurement time points. Sample

size N=160. The longitudinal observations W are made at baseline and a random

time point uniformly sampled from each of these 9 time windows 3, 6, 9, · · · , 27± 0.3.

(d) High event rate setting with a large number of measurement time points. Sample size

N=160. The longitudinal observations W are made at baseline and a random time

point uniformly sampled from each of these 56 time windows 0.5, 1.0, 1.5, · · · , 28±0.05.

For the two scenarios in Model 1(a) and Model 1(b) with low event rates, the average

event rates are 11.7%, 11.4%, 12.6%, and 13.1% when the hazard ratios are 1, 0.75, 0.50 and

0.25, respectively. For the two scenarios in Model 1(c) and Model 1(d) with high event rates,

the average event rates are 81.2%, 81.2%, 74.8% and 80.2% when the hazard ratios are 1,
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0.75, 0.50 and 0.25, respectively. We only include the measurements before the occurrence

of an event for cases. The average number of measurements available in each of the four

scenarios are 8.0, 45.1, 3.9 and 20.1. See Table 5.1-5.4 and Figure 5.1-5.2 for the simulation

results.

From the results we see that in low-event-rate settings, the RRC estimates provide small

bias with relative bias less than 12% for all hazard ratios. As the number of measurements

collected become large, the relative bias could be controlled below 6%. The TS estimates,

however, can lead to a relative bias as high as 48.3%. Even though we enlarge the number of

measurements, the relative bias with large measurement errors cannot be reduced to below

20% in several settings. In the high-event-rate settings, the RRC method could still give

reasonably small bias except for the setting with eβ=0.25 and large measurement errors.

This is what commonly expected for the calibration methods when the effect size of the

covariate is large and event rate is high. The biases from TS estimates generally show a

similar pattern as that in low event rate settings.

Generally speaking the TS method produces smaller MCSD than the RRC method,

especially when the measurement errors are relative large. This is also reflected in the

RMSE such that the TS estimator could give smaller RMSE than the RRC estimator in

some settings even if the TS estimator is more biased. This implies a bias-variance trade-off

when making the choice of which methods to be used. If it is of interest to estimate the

effect of the biomarker on the event endpoint, we suggest using the RRC method instead of

the TS method due to the high biases yielded by the latter.

The approximated standard errors (ASE) are very closed to the MCSD of β̂ as it has

been seen in [Dafni and Tsiatis, 1998]. It suggests using this simplified approximation of

the SE(β̂) in such model with one dichotomized biomarker only is an acceptable choice.



104

Table 5.1: Simulation results for Model 1(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = 0 Ideal 0.029 0.229 0.226 1.000
0.01 TS -0.058 0.226 0.235 1.124
0.01 RRC 0.028 0.279 0.269 1.409
0.08 TS -0.141 0.218 0.230 1.395
0.08 RRC 0.030 0.356 0.335 2.176
0.15 TS -0.156 0.215 0.226 1.450
0.15 RRC 0.035 0.408 0.396 3.028

β = − ln 4/3 Ideal 0.031 (-10.687) 0.226 0.217 1.000
0.01 TS 0.019 (-6.466) 0.225 0.227 1.082
0.01 RRC 0.032 (-11.054) 0.275 0.264 1.473
0.08 TS 0.006 (-1.947) 0.219 0.227 1.081
0.08 RRC 0.031 (-10.624) 0.354 0.333 2.340
0.15 TS 0.018 (-6.350) 0.217 0.234 1.146
0.15 RRC 0.032 (-11.277) 0.405 0.401 3.388

β = − ln 2 Ideal 0.020 (-2.925) 0.213 0.207 1.000
0.01 TS 0.106 (-15.293) 0.212 0.220 1.384
0.01 RRC 0.015 (-2.227) 0.261 0.251 1.464
0.08 TS 0.191 (-27.564) 0.207 0.210 1.872
0.08 RRC 0.001 (-0.119) 0.338 0.319 2.366
0.15 TS 0.255 (-36.806) 0.206 0.214 2.571
0.15 RRC 0.009 (-1.235) 0.390 0.377 3.299

β = − ln 4 Ideal 0.005 (-0.366) 0.223 0.230 1.000
0.01 TS 0.277 (-20.008) 0.214 0.232 2.459
0.01 RRC -0.008 (0.585) 0.281 0.290 1.589
0.08 TS 0.560 (-40.412) 0.206 0.209 6.730
0.08 RRC -0.028 (1.990) 0.380 0.392 2.912
0.15 TS 0.669 (-48.266) 0.204 0.209 9.253
0.15 RRC -0.043 (3.082) 0.451 0.459 3.998

Sample size is N=800. The longitudinal measurements of W are made at base-
line and randomly from time windows 3, 6, 9, · · · , 27± 0.3, resulting on average
8.0 measurements available per subject.
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Table 5.2: Simulation results for Model 1(b), with low event rates and large numbers of
longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

β = 0 Ideal 0.018 0.232 0.229 1.000
0.01 TS -0.030 0.230 0.233 1.041
0.01 RRC 0.022 0.252 0.250 1.191
0.08 TS -0.144 0.225 0.227 1.367
0.08 RRC 0.011 0.285 0.278 1.468
0.15 TS -0.196 0.222 0.229 1.720
0.15 RRC 0.013 0.303 0.301 1.712

β = − ln 4/3 Ideal 0.014 (-4.960) 0.228 0.235 1.000
0.01 TS 0.007 (-2.321) 0.228 0.241 1.043
0.01 RRC 0.017 (-5.794) 0.248 0.251 1.138
0.08 TS -0.057 (19.913) 0.225 0.237 1.067
0.08 RRC 0.006 (-2.122) 0.281 0.279 1.404
0.15 TS -0.070 (24.313) 0.223 0.235 1.084
0.15 RRC 0.003 (-1.064) 0.299 0.305 1.676

β = − ln 2 Ideal 0.008 (-1.185) 0.214 0.219 1.000
0.01 TS 0.057 (-8.160) 0.214 0.219 1.070
0.01 RRC 0.016 (-2.259) 0.233 0.235 1.161
0.08 TS 0.057 (-8.212) 0.212 0.211 1.001
0.08 RRC -0.004 (0.594) 0.264 0.264 1.456
0.15 TS 0.079 (-11.397) 0.211 0.225 1.186
0.15 RRC -0.005 (0.690) 0.283 0.288 1.731

β = − ln 4 Ideal 0.011 (-0.782) 0.223 0.222 1.000
0.01 TS 0.161 (-11.578) 0.219 0.227 1.565
0.01 RRC 0.013 (-0.958) 0.244 0.245 1.224
0.08 TS 0.303 (-21.861) 0.214 0.209 2.746
0.08 RRC 0.007 (-0.473) 0.280 0.277 1.561
0.15 TS 0.366 (-26.424) 0.212 0.226 3.752
0.15 RRC -0.001 (0.059) 0.303 0.306 1.893

Sample size is N=800. The longitudinal measurements of W are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, · · · , 28±0.05, resulting
on average 45.1 measurements available per subject.
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Table 5.3: Simulation results for Model 1(c), with high event rates and moderate numbers
of longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

β = 0 Ideal -0.001 0.210 0.211 1.000
0.01 TS -0.133 0.201 0.222 1.513
0.01 RRC -0.032 0.279 0.281 1.803
0.08 TS -0.219 0.187 0.215 2.118
0.08 RRC -0.016 0.399 0.424 4.055
0.15 TS -0.218 0.183 0.218 2.132
0.15 RRC -0.012 0.464 0.478 5.149

β = − ln 4/3 Ideal 0.005 (-1.617) 0.207 0.205 1.000
0.01 TS -0.030 (10.453) 0.202 0.221 1.186
0.01 RRC -0.017 (5.861) 0.267 0.276 1.830
0.08 TS -0.066 (22.987) 0.192 0.215 1.207
0.08 RRC -0.016 (5.649) 0.378 0.382 3.488
0.15 TS -0.063 (21.865) 0.189 0.221 1.263
0.15 RRC 0.011 (-3.939) 0.450 0.473 5.332

β = − ln 2 Ideal 0.000 (-0.044) 0.193 0.190 1.000
0.01 TS 0.057 (-8.245) 0.191 0.206 1.261
0.01 RRC -0.009 (1.265) 0.261 0.267 1.962
0.08 TS 0.132 (-19.068) 0.182 0.196 1.538
0.08 RRC 0.038 (-5.482) 0.387 0.404 4.534
0.15 TS 0.169 (-24.393) 0.180 0.210 2.010
0.15 RRC 0.067 (-9.645) 0.446 0.439 5.447

β = − ln 4 Ideal 0.002 (-0.156) 0.186 0.184 1.000
0.01 TS 0.278 (-20.066) 0.189 0.196 3.429
0.01 RRC 0.053 (-3.840) 0.260 0.270 2.241
0.08 TS 0.511 (-36.888) 0.182 0.195 8.874
0.08 RRC 0.202 (-14.605) 0.409 0.417 6.365
0.15 TS 0.609 (-43.902) 0.181 0.196 12.119
0.15 RRC 0.345 (-24.881) 0.476 0.494 10.768

Sample size is N=160. The longitudinal measurements of W are made at base-
line and randomly from time windows 3, 6, 9, · · · , 27± 0.3, resulting on average
3.9 measurements available per subject.



107

Table 5.4: Simulation results for Model 1(d), with high event rates and large numbers of
longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

β = 0 Ideal 0.012 0.211 0.201 1.000
0.01 TS -0.077 0.206 0.203 1.163
0.01 RRC 0.010 0.235 0.229 1.292
0.08 TS -0.270 0.194 0.206 2.842
0.08 RRC 0.010 0.281 0.279 1.927
0.15 TS -0.300 0.190 0.210 3.311
0.15 RRC 0.011 0.306 0.319 2.512

β = − ln 4/3 Ideal 0.018 (-6.204) 0.207 0.202 1.000
0.01 TS -0.013 (4.640) 0.205 0.207 1.041
0.01 RRC 0.018 (-6.169) 0.229 0.233 1.323
0.08 TS -0.123 (42.693) 0.197 0.210 1.439
0.08 RRC 0.016 (-5.388) 0.272 0.283 1.956
0.15 TS -0.144 (50.211) 0.194 0.214 1.617
0.15 RRC 0.025 (-8.531) 0.298 0.313 2.386

β = − ln 2 Ideal 0.009 (-1.294) 0.193 0.189 1.000
0.01 TS 0.046 (-6.612) 0.193 0.197 1.133
0.01 RRC 0.008 (-1.189) 0.215 0.221 1.366
0.08 TS 0.004 (-0.580) 0.187 0.196 1.065
0.08 RRC 0.018 (-2.534) 0.260 0.277 2.146
0.15 TS 0.016 (-2.254) 0.184 0.197 1.083
0.15 RRC 0.039 (-5.573) 0.287 0.308 2.674

β = − ln 4 Ideal 0.003 (-0.218) 0.185 0.186 1.000
0.01 TS 0.172 (-12.386) 0.188 0.184 1.832
0.01 RRC 0.017 (-1.198) 0.206 0.216 1.353
0.08 TS 0.285 (-20.561) 0.185 0.190 3.398
0.08 RRC 0.083 (-6.016) 0.258 0.278 2.437
0.15 TS 0.353 (-25.459) 0.183 0.192 4.676
0.15 RRC 0.144 (-10.366) 0.291 0.296 3.135

Sample size is N=800. The longitudinal measurements of W are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, · · · , 28±0.05, resulting
on average 20.1 measurements available per subject.
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Figure 5.1: Summary of simulation results for Model 1(a) and Model 1(b) with low event
rates.
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Figure 5.2: Summary of simulation results for Model 1(c) and Model 1(d) with high event
rates.
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5.1.2 Model 2

We next consider the model with an adjustment of vaccination indicator λ(u) = λ0(u) exp

{βB(u) + ηZ}. This model is useful in Prentice’s framework to assess the vaccine effect on

the disease endpoint adjusting for the dichotomized biomarker. The biomarker X(u) is gen-

erated fromX(u) = α1+α2u, where α = (α1, α2)T given Z is generated from a bivariate Nor-

mal distribution with mean E[α|Z = 1] = (2.570,−0.009)T , E[α|Z = 0] = (2.577,−0.007)T ,

and covariance Cov[α|Z] = Σ with elements (Σ11,Σ12,Σ22) = (0.0191, 0.00007, 0.0002)T .

The threshold l for B(u) = I(X(u) ≥ l) is 2.4047 with P(B(13.5) = 1) = 0.6. The vacci-

nation indicator Z is generated from Bernoulli(0.5). The censoring time is simulated from

Exp(1/80) with an administrative censoring time at 30. We still consider four simulation

scenarios (a)(b)(c)(d) as in Model 1. For each scenario, we simulate the event time data

with hazard ratios (eβ, eη)T = {(0.5, 1)T , (0.5, 0.5)T }.

For the two settings Model 2(a) and Model 2(b) with low event rates, the average event

rates are 12.6% and 13.0% when the hazard ratios are (0.5, 1)T and (0.5, 0.5)T , respectively.

For the two settings Model 2(c) and Model 2(d) with high event rates, the average event

rates are 79.5%, 81.7% when the hazard ratios are (0.5, 1)T and (0.5, 0.5)T , respectively.

The average number of measurements available per subject for each of the four scenarios

are 8.0, 45.0, 4.1 and 22.0. See Table 5.5-5.8 and Figure 5.3-5.4 for the simulation results.

From the simulation results we can see that both TS and RRC methods provide very

small biases for η̂. Moreover, the TS estimator could be around 15% more efficient than

the RRC estimator. This might suggest that if the objective only centers on evaluating the

adjusted vaccine effect on the disease endpoint, TS estimator could also be considered as a

reasonable method. However, if it is also interesting to look at the effect of the dichotomized

biomarker on the disease endpoint, the RRC method is the only one recommended because

the biases from the TS estimator of β can be very large, unless there are extremely large

number of immune response measurements. In this model with both B(u) and Z, the ASE

is still very closed to the MCSD of β̂ when the measurement error is not high. However, for

η, the coefficient for Z, the ASE could underestimate the SE(η̂) up to 45% on average in

Table 5.5 . Considering such high bias, the ASE is no longer considered as a valid estimate
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for SE(η̂), so we would suggest using the bootstrap method for the standard error estimates.

From Table 5.9 we see the bootstrap method provides reasonable variance estimates.

Table 5.5: Simulation results for Model 2(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

(β, η) β = − ln 2 Ideal -0.009 (1.365) 0.211 0.213 1.000
= 0.01 TS 0.091 (-13.143) 0.210 0.222 1.262
(− ln 2, 0) 0.01 RRC -0.015 (2.132) 0.253 0.265 1.544

0.08 TS 0.192 (-27.751) 0.206 0.210 1.780
0.08 RRC -0.003 (0.479) 0.328 0.332 2.420
0.15 TS 0.242 (-34.869) 0.205 0.228 2.425
0.15 RRC -0.003 (0.413) 0.378 0.404 3.588

η = 0 Ideal 0.007 0.201 0.202 1.000
0.01 TS 0.005 0.201 0.202 1.001
0.01 RRC 0.010 0.179 0.216 1.138
0.08 TS 0.001 0.201 0.203 1.005
0.08 RRC 0.010 0.142 0.216 1.137
0.15 TS -0.000 0.201 0.203 1.007
0.15 RRC 0.013 0.130 0.223 1.220

(β, η) β = − ln 2 Ideal -0.016 (2.369) 0.209 0.211 1.000
= 0.01 TS 0.076 (-10.981) 0.207 0.220 1.213
(− ln 2,− ln 2) 0.01 RRC -0.024 (3.425) 0.252 0.261 1.532

0.08 TS 0.184 (-26.499) 0.203 0.212 1.756
0.08 RRC -0.026 (3.747) 0.327 0.336 2.535
0.15 TS 0.233 (-33.569) 0.202 0.221 2.303
0.15 RRC -0.030 (4.268) 0.379 0.417 3.900

η = − ln 2 Ideal 0.002 (-0.292) 0.209 0.224 1.000
0.01 TS -0.000 (0.048) 0.209 0.224 1.002
0.01 RRC 0.004 (-0.575) 0.202 0.242 1.168
0.08 TS -0.003 (0.404) 0.209 0.224 1.001
0.08 RRC 0.004 (-0.641) 0.163 0.242 1.168
0.15 TS -0.004 (0.550) 0.209 0.224 1.003
0.15 RRC 0.006 (-0.886) 0.149 0.246 1.200

Sample size is N=800. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 3, 6, 9, · · · , 27±0.3, resulting on average 8.0 measurements available
per subject.
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Table 5.6: Simulation results for Model 2(b), with low event rates and large numbers of
longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

(β, η) β = − ln 2 Ideal 0.011 (-1.545) 0.213 0.219 1.000
= 0.01 TS 0.053 (-7.670) 0.212 0.218 1.041
(− ln 2, 0) 0.01 RRC 0.003 (-0.467) 0.225 0.240 1.189

0.08 TS 0.071 (-10.185) 0.211 0.221 1.118
0.08 RRC -0.004 (0.548) 0.257 0.264 1.440
0.15 TS 0.100 (-14.454) 0.209 0.216 1.174
0.15 RRC 0.019 (-2.715) 0.273 0.286 1.705

η = 0 Ideal -0.002 0.202 0.201 1.000
0.01 TS -0.003 0.202 0.201 0.999
0.01 RRC 0.000 0.185 0.204 1.029
0.08 TS -0.004 0.202 0.200 0.995
0.08 RRC 0.001 0.165 0.203 1.027
0.15 TS -0.005 0.202 0.201 1.000
0.15 RRC -0.002 0.158 0.207 1.068

(β, η) β = − ln 2 Ideal 0.015 (-2.111) 0.210 0.213 1.000
= 0.01 TS 0.060 (-8.684) 0.210 0.215 1.101
(− ln 2,− ln 2) 0.01 RRC 0.012 (-1.728) 0.224 0.235 1.220

0.08 TS 0.080 (-11.567) 0.208 0.214 1.152
0.08 RRC 0.013 (-1.805) 0.254 0.254 1.420
0.15 TS 0.099 (-14.333) 0.207 0.215 1.235
0.15 RRC 0.013 (-1.894) 0.272 0.279 1.710

η = − ln 2 Ideal 0.002 (-0.262) 0.210 0.215 1.000
0.01 TS 0.001 (-0.176) 0.210 0.215 1.003
0.01 RRC 0.005 (-0.713) 0.216 0.218 1.024
0.08 TS 0.000 (-0.070) 0.210 0.215 0.998
0.08 RRC 0.005 (-0.705) 0.195 0.218 1.024
0.15 TS 0.000 (-0.018) 0.210 0.216 1.007
0.15 RRC 0.005 (-0.738) 0.187 0.219 1.034

Sample size is N=800. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 0.5, 1.0, 1.5, · · · , 28± 0.05, resulting on average 45.0 measurements
available per subject.
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Table 5.7: Simulation results for Model 2(c), with high event rates and moderate numbers
of longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

(β, η) β = − ln 2 Ideal -0.002 (0.355) 0.193 0.200 1.000
= 0.01 TS 0.075 (-10.802) 0.192 0.219 1.336
(− ln 2, 0) 0.01 RRC 0.007 (-0.956) 0.260 0.268 1.795

0.08 TS 0.138 (-19.959) 0.184 0.208 1.553
0.08 RRC 0.116 (-16.785) 0.429 0.410 4.527
0.15 TS 0.176 (-25.450) 0.182 0.218 1.958
0.15 RRC 0.187 (-26.983) 0.495 0.481 6.638

η = 0 Ideal -0.005 0.180 0.188 1.000
0.01 TS -0.005 0.180 0.196 1.080
0.01 RRC -0.000 0.171 0.202 1.149
0.08 TS -0.007 0.180 0.195 1.068
0.08 RRC -0.006 0.277 0.248 1.737
0.15 TS -0.009 0.180 0.192 1.036
0.15 RRC -0.013 0.391 0.313 2.759

(β, η) β = − ln 2 Ideal -0.008 (1.201) 0.194 0.203 1.000
= 0.01 TS 0.078 (-11.206) 0.193 0.225 1.374
(− ln 2,− ln 2) 0.01 RRC 0.017 (-2.406) 0.289 0.286 1.981

0.08 TS 0.132 (-19.045) 0.182 0.217 1.565
0.08 RRC 0.144 (-20.717) 0.470 0.419 4.743
0.15 TS 0.190 (-27.430) 0.180 0.217 2.010
0.15 RRC 0.186 (-26.898) 0.527 0.464 6.049

η = − ln 2 Ideal -0.012 (1.669) 0.183 0.191 1.000
0.01 TS -0.029 (4.191) 0.182 0.197 1.090
0.01 RRC -0.002 (0.341) 0.216 0.211 1.214
0.08 TS -0.019 (2.785) 0.182 0.196 1.067
0.08 RRC 0.012 (-1.671) 0.360 0.287 2.254
0.15 TS -0.015 (2.149) 0.182 0.195 1.047
0.15 RRC 0.031 (-4.410) 0.511 0.356 3.491

Sample size is N=160. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 3, 6, 9, · · · , 27±0.3, resulting on average 4.1 measurements available
per subject.
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Table 5.8: Simulation results for Model 2(d), with high event rates and large numbers of
longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD MSE

(β, η) β = − ln 2 Ideal 0.014 (-2.059) 0.193 0.191 1.000
= 0.01 TS 0.057 (-8.208) 0.193 0.191 1.077
(− ln 2, 0) 0.01 RRC 0.019 (-2.779) 0.216 0.222 1.351

0.08 TS 0.022 (-3.148) 0.188 0.186 0.957
0.08 RRC 0.061 (-8.810) 0.264 0.259 1.927
0.15 TS 0.040 (-5.712) 0.185 0.197 1.098
0.15 RRC 0.105 (-15.132) 0.287 0.299 2.725

η = 0 Ideal -0.004 0.180 0.187 1.000
0.01 TS -0.004 0.180 0.188 1.011
0.01 RRC -0.003 0.167 0.193 1.065
0.08 TS -0.005 0.180 0.188 1.011
0.08 RRC -0.002 0.176 0.205 1.202
0.15 TS -0.004 0.180 0.189 1.012
0.15 RRC -0.008 0.181 0.213 1.297

(β, η) β = − ln 2 Ideal 0.015 (-2.231) 0.194 0.194 1.000
= 0.01 TS 0.046 (-6.629) 0.193 0.195 1.052
(− ln 2,− ln 2) 0.01 RRC 0.029 (-4.184) 0.232 0.222 1.316

0.08 TS 0.010 (-1.461) 0.186 0.194 0.997
0.08 RRC 0.088 (-12.668) 0.283 0.272 2.152
0.15 TS 0.032 (-4.685) 0.184 0.198 1.055
0.15 RRC 0.127 (-18.289) 0.306 0.304 2.855

η = − ln 2 Ideal -0.019 (2.712) 0.183 0.190 1.000
0.01 TS -0.016 (2.284) 0.183 0.191 1.004
0.01 RRC -0.015 (2.133) 0.206 0.196 1.059
0.08 TS -0.012 (1.764) 0.183 0.192 1.017
0.08 RRC -0.005 (0.750) 0.222 0.208 1.191
0.15 TS -0.006 (0.903) 0.183 0.192 1.015
0.15 RRC -0.002 (0.221) 0.225 0.226 1.399

Sample size is N=160. The longitudinal measurements of W are made at baseline and ran-
domly from time windows 0.5, 1.0, 1.5, · · · , 28± 0.05, resulting on average 22.0 measurements
available per subject.
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Figure 5.3: Summary of simulation results for Model 2(a) and Model 2(b) with low event
rates.
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Figure 5.4: Summary of simulation results for Model 2(c) and Model 2(d) with high event
rates.
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Table 5.9: Simulation results on RRC bootstrap standard error estimates for Model 2(a)
with (β, η)T = (− ln 2, 0)T .

σ2 Bootstrap SE MCSD

β = − ln 2 0.01 0.271 0.264
0.08 0.357 0.349
0.15 0.422 0.384

η = 0 0.01 0.212 0.201
0.08 0.212 0.202
0.15 0.214 0.206

The results are based on B = 50 bootstrap
samples and 200 simulation runs.

5.1.3 Model 3

We also consider the model with the interaction effect of the vaccination and dichotomized

biomarker λ(u) = λ0(u) exp{βB(u)+ηZ+γB(u)Z}. The simulation datasets are generated

exactly the same as those in Model 2 with hazard ratios (eβ, eη)T = (0.5, 0.5)T . This actually

indicates a simulation setting with true eγ = 1. See Table 5.10-5.13 and Figure 5.5-5.6 for

simulation results.

For this interaction model, if the event rate is low, the RRC method produces much

smaller biases for β̂ than does the TS method. The biases from the TS method reduce as

the number of measurements get very large. In the setting with high event rate, even the

RRC method could give biases larger than 0.1. For γ, both RRC and TS methods provide

estimates with very small bias in rare event rate setting. As the event rate gets high, the

TS and RRC estimates can be quite biased. Also we found it could be very unstable to

fit such an interaction model, with only less than 80% of the simulations runs converged.

The interaction model is actually rarely examined in existing literatures on joint modeling

methods. The ASE for the interaction model could overestimate the standard error to as

high as 50%. Therefore we still recommend using the bootstrap method.
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Table 5.10: Simulation results for Model 3(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = − ln 2 Ideal -0.015 (2.121) 0.255 0.249 1.000
0.01 TS 0.083 (-11.988) 0.254 0.274 1.321
0.01 RRC -0.015 (2.114) 0.454 0.293 1.386
0.08 TS 0.185 (-26.736) 0.251 0.278 1.797
0.08 RRC -0.017 (2.460) 0.780 0.400 2.576
0.15 TS 0.238 (-34.318) 0.250 0.275 2.125
0.15 RRC 0.036 (-5.195) 1.081 0.459 3.412

η = − ln 2 Ideal -0.001 (0.162) 0.291 0.295 1.000
0.01 TS 0.002 (-0.283) 0.296 0.327 1.233
0.01 RRC 0.019 (-2.779) 0.397 0.276 0.883
0.08 TS -0.008 (1.143) 0.296 0.329 1.246
0.08 RRC 0.013 (-1.804) 0.617 0.340 1.336
0.15 TS -0.003 (0.493) 0.295 0.324 1.207
0.15 RRC 0.003 (-0.489) 0.812 0.397 1.819

γ = 0 Ideal -0.011 0.425 0.424 1.000
0.01 TS -0.030 0.427 0.522 1.524
0.01 RRC -0.065 0.729 0.448 1.141
0.08 TS -0.009 0.426 0.501 1.397
0.08 RRC -0.052 1.236 0.623 2.175
0.15 TS -0.022 0.426 0.503 1.414
0.15 RRC -0.039 1.626 0.733 3.002

Sample size is N=800. The longitudinal measurements of Wij are made at
baseline and randomly from time windows 3, 6, 9, · · · , 27 ± 0.3, resulting on
average 8.0 measurements available per subject.
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Table 5.11: Simulation results for Model 3(b), with low event rates and large numbers of
longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = − ln 2 Ideal 0.018 (-2.566) 0.256 0.256 1.000
0.01 TS 0.059 (-8.579) 0.256 0.266 1.126
0.01 RRC 0.021 (-3.061) 0.388 0.275 1.153
0.08 TS 0.081 (-11.693) 0.254 0.261 1.134
0.08 RRC 0.024 (-3.472) 0.485 0.307 1.442
0.15 TS 0.102 (-14.764) 0.253 0.260 1.181
0.15 RRC 0.038 (-5.459) 0.537 0.319 1.566

η = − ln 2 Ideal -0.001 (0.138) 0.297 0.299 1.000
0.01 TS -0.008 (1.121) 0.301 0.308 1.060
0.01 RRC 0.023 (-3.299) 0.357 0.283 0.899
0.08 TS -0.005 (0.714) 0.299 0.299 1.001
0.08 RRC -0.010 (1.483) 0.419 0.333 1.238
0.15 TS -0.004 (0.625) 0.298 0.313 1.090
0.15 RRC 0.007 (-1.044) 0.456 0.347 1.341

γ = 0 Ideal -0.011 0.426 0.431 1.000
0.01 TS 0.002 0.426 0.439 1.037
0.01 RRC -0.041 0.583 0.402 0.879
0.08 TS -0.005 0.426 0.430 0.994
0.08 RRC -0.003 0.736 0.510 1.399
0.15 TS -0.009 0.426 0.448 1.081
0.15 RRC -0.043 0.836 0.554 1.665

Sample size is N=800. The longitudinal measurements of Wij are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, · · · , 28±0.05, resulting
on average 45.0 measurements available per subject.



120

Table 5.12: Simulation results for Model 3(c), with high event rates and moderate numbers
of longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = − ln 2 Ideal -0.027 (3.966) 0.268 0.276 1.000
0.01 TS 0.022 (-3.155) 0.265 0.382 1.904
0.01 RRC 0.072 (-10.416) 1.379 0.381 1.965
0.08 TS 0.104 (-15.012) 0.249 0.350 1.741
0.08 RRC 0.308 (-44.368) 1.888 0.592 5.794
0.15 TS 0.150 (-21.605) 0.246 0.332 1.729
0.15 RRC 0.373 (-53.871) 1.991 0.642 7.185

η = − ln 2 Ideal -0.040 (5.838) 0.319 0.321 1.000
0.01 TS -0.119 (17.121) 0.321 0.492 2.444
0.01 RRC 0.037 (-5.389) 1.251 0.363 1.266
0.08 TS -0.063 (9.036) 0.289 0.423 1.741
0.08 RRC 0.138 (-19.918) 1.685 0.586 3.455
0.15 TS -0.069 (9.996) 0.281 0.390 1.497
0.15 RRC 0.176 (-25.405) 1.751 0.607 3.806

γ = 0 Ideal 0.038 0.384 0.376 1.000
0.01 TS 0.125 0.387 0.618 2.778
0.01 RRC -0.053 1.507 0.432 1.321
0.08 TS 0.065 0.369 0.558 2.204
0.08 RRC -0.169 2.252 0.760 4.240
0.15 TS 0.086 0.365 0.542 2.103
0.15 RRC -0.194 2.475 0.867 5.515

Sample size is N=160. The longitudinal measurements of Wij are made at
baseline and randomly from time windows 3, 6, 9, · · · , 27 ± 0.3, resulting on
average 4.1 measurements available per subject.
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Table 5.13: Simulation results for Model 3(d), with high event rates and large numbers of
longitudinal immune response measurements.

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = − ln 2 Ideal 0.003 (-0.387) 0.270 0.292 1.000
0.01 TS 0.032 (-4.559) 0.269 0.301 1.075
0.01 RRC 0.031 (-4.500) 0.856 0.329 1.277
0.08 TS -0.017 (2.439) 0.256 0.293 1.007
0.08 RRC 0.122 (-17.618) 1.164 0.399 2.044
0.15 TS 0.002 (-0.324) 0.252 0.286 0.962
0.15 RRC 0.163 (-23.492) 1.243 0.397 2.159

η = − ln 2 Ideal -0.037 (5.403) 0.320 0.331 1.000
0.01 TS -0.038 (5.498) 0.319 0.357 1.158
0.01 RRC -0.014 (2.044) 0.819 0.364 1.191
0.08 TS -0.050 (7.184) 0.301 0.339 1.053
0.08 RRC 0.027 (-3.964) 1.058 0.410 1.514
0.15 TS -0.046 (6.638) 0.293 0.322 0.951
0.15 RRC 0.041 (-5.948) 1.096 0.393 1.401

γ = 0 Ideal 0.023 0.385 0.402 1.000
0.01 TS 0.028 0.385 0.439 1.192
0.01 RRC -0.006 0.941 0.453 1.263
0.08 TS 0.054 0.373 0.428 1.145
0.08 RRC -0.057 1.326 0.543 1.834
0.15 TS 0.061 0.369 0.403 1.022
0.15 RRC -0.063 1.445 0.534 1.782

Sample size is N=160. The longitudinal measurements of Wij are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, · · · , 28±0.05, resulting
on average 22.0 measurements available per subject.
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Figure 5.5: Summary of simulation results for Model 3(a) and Model 3(b) with low event
rates.

B
ia

s

0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15

−
0.

05
0.

05
0.

15
0.

25

● ● ●
● ● ●

● ● ●

Model 3(a)

β = − ln(2) η = − ln(2) γ = 0

B
ia

s
R

el
at

iv
e 

B
ia

s 
(%

)

0.01 0.08 0.15 0.01 0.08 0.15

−
30

−
20

−
10

0

● ● ●
● ● ●

● Ideal
TS
RRC

R
el

at
iv

e 
B

ia
s 

(%
)

R
el

at
iv

e 
M

S
E

0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15

1.
0

2.
0

3.
0

● ● ● ● ● ● ● ● ●

R
el

at
iv

e 
M

S
E

σ2

B
ia

s

0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15

0.
00

0.
05

0.
10

● ● ●

● ● ●

● ● ●

Model 3 (b)

β = − ln(2) η = − ln(2) γ = 0

B
ia

s
R

el
at

iv
e 

B
ia

s 
(%

)

0.01 0.08 0.15 0.01 0.08 0.15

−
15

−
10

−
5

0

● ● ●

● ● ●

● Ideal
TS
RRC

R
el

at
iv

e 
B

ia
s 

(%
)

R
el

at
iv

e 
M

S
E

0.01 0.08 0.15 0.01 0.08 0.15 0.01 0.08 0.15

1.
0

1.
2

1.
4

1.
6

● ● ● ● ● ● ● ● ●R
el

at
iv

e 
M

S
E

σ2



123

Figure 5.6: Summary of simulation results for Model 2(c) and Model 2(d) with high event
rates.
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5.1.4 Model 4

We finally consider the model with two dichotomized biomarkers λ(u) = λ0(u) exp{β1B1(u)+

β2B2(u) + ηZ}. The biomarkers X1(u) and X2(u) are generated as X1(u) = α1 + α2u, and

X2(u) = α3 + α4u, where α = (α1, α2, α3, α4)T is multivariate Normal distribution with

mean E[α] = (2.575,−0.009, 2.925,−0.003)T and covariance Cov[α] = Σ

Σ =


0.0191 7e− 05 0.01036 −6e− 5

7e− 05 0.0002 1e− 5 1e− 6

0.01036 1e− 5 0.0354 −0.00011

−6e− 5 1e− 6 −0.00011 0.0003


The vaccination indicator Z is generated from Bernoulli(0.5). The censoring time

is simulated from Exp(1/80) with an administrative censoring time at 30. We consider

only the scenario (a) with low event rate, moderate number of measurements and sam-

ple size N = 800. We simulate the survival data with hazard ratios (eβ1 , eβ2 , eη) =

{(0.5, 0.5, 1)T , (0.5, 0.5, 0.5)T }. The average event rates under those two sets of hazard

ratios are 11.1% and 10.8% respectively. See Table 5.14 and Figure 5.7 for the simulation

results.

As in Model 2(a) with one biomarker, here with two biomarkers, we also see that both

TS and RRC methods provide very small biases for η̂, and the TS method tends to give

slightly smaller MCSD for large measurement error setting. As for estimating β1 and β2,

still only the RRC method performs well. The ASE estimates for all three parameters are

very close to the corresponding MCSDs.
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Table 5.14: Simulation results for Model 4(a), with low event rates and moderate numbers
of longitudinal immune response measurements.

σ11 Method Bias( % Bias) ASE MCSD RMSE

(β1, β2) β1 = − ln 2 Ideal -0.008 (1.212) 0.227 0.220 1.000
= 0.01 TS 0.086 (-12.394) 0.235 0.240 1.341
(− ln 2,− ln 2) 0.01 RRC -0.023 (3.280) 0.279 0.287 1.712
η = 0 0.15 TS 0.258 (-37.234) 0.232 0.232 2.485

0.15 RRC 0.008 (-1.104) 0.433 0.420 3.649

β2 = − ln 2 Ideal -0.021 (3.006) 0.219 0.222 1.000
0.01 TS 0.108 (-15.516) 0.229 0.230 1.295
0.01 RRC -0.034 (4.846) 0.276 0.281 1.614
0.15 TS 0.323 (-46.591) 0.228 0.225 3.112
0.15 RRC -0.035 (5.044) 0.443 0.464 4.354

η = 0 Ideal -0.002 0.214 0.202 1.000
0.01 TS 0.003 0.226 0.215 1.127
0.01 RRC 0.002 0.225 0.215 1.134
0.15 TS 0.002 0.226 0.214 1.124
0.15 RRC 0.010 0.237 0.226 1.253

(β1, β2) β1 = − ln 2 Ideal 0.010 (-1.400) 0.231 0.234 1.000
= 0.01 TS 0.098 (-14.161) 0.239 0.241 1.227
(− ln 2,− ln 2) 0.01 RRC -0.003 (0.411) 0.283 0.297 1.599
η = − ln 2 0.15 TS 0.274 (-39.525) 0.236 0.238 2.390

0.15 RRC 0.020 (-2.815) 0.442 0.439 3.503

β2 = − ln 2 Ideal -0.020 (2.943) 0.223 0.219 1.000
0.01 TS 0.110 (-15.889) 0.232 0.228 1.326
0.01 RRC -0.033 (4.708) 0.281 0.278 1.613
0.15 TS 0.319 (-46.034) 0.232 0.243 3.321
0.15 RRC -0.018 (2.652) 0.451 0.483 4.823

η = − ln 2 Ideal -0.014 (1.991) 0.230 0.227 1.000
0.01 TS -0.012 (1.669) 0.242 0.239 1.107
0.01 RRC -0.013 (1.906) 0.242 0.240 1.118
0.15 TS -0.008 (1.204) 0.242 0.239 1.101
0.15 RRC -0.007 (0.940) 0.254 0.247 1.183

Sample size is N=800. The longitudinal measurements of W are made at baseline and randomly
from time windows 3, 6, 9, · · · , 27 ± 0.3, resulting on average 8.0 measurements available per
subject.
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Figure 5.7: Summary of simulation results for Model 4(a).
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5.1.5 Alternative fitting on Model 1

As discussed at the end of Chapter 4, subjects experiencing an event before enough visits

for measuring biomarker data have been made make no contribution to the estimating

equations URF (θ) = 0 (if the nuisance parameters µ(u) and Σ(u) are estimated using only

subjects with more than q measurements). Also from the simulation studies above we

have seen that the number of measurements does have an influence on performance of the

RRC and TS estimates, especially for the high-event-rate settings. The reason for this

could be because more cases are getting involved in the estimation procedure. We now

consider an alternative setting where we hope not to lose cases by considering the hazard of

event occurring after some time point (for example, the third scheduled visits for biomarker

measurements), and censoring the event occurring before that time point. So in such an

analysis, the cases experiencing an event would have made at least the first several visits

for measuring biomarker data.
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We modified Model 1(a) and Model 1(c) accordingly in this way. We define the new event

to occur after time u = 8. In this way, all cases would have at least three measurements.

We call the new simulation models as Model 1(a∗) and Model 1(c∗). For Model 1(a∗), the

average event rates under hazard ratios 1, 0.75, 0.5, and 0.25 are 8.0%, 9.0%, 8.0% and

10.0%, respectively. For Model 1(c∗), the average event rates are 35.8%, 38.2%, 38.0% and

38.1%. This indicates that in Model 1(c), around half of the events occur within u ∈ [0, 8].

Table 5.15,5.16 and Figure 5.8 summarize the simulation results. We see that in the setting

with high event rate and moderate or unity hazard ratio, the TS estimator is majorly

improved and could even perform better than the RRC estimator. The RRC method still

performs as well as it does in Model 1(c).
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Table 5.15: Simulation results for Model 1(a∗).

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = 0 Ideal 0.025 0.258 0.255 1.000
0.01 TS -0.011 0.258 0.254 0.983
0.01 RRC 0.024 0.296 0.281 1.214
0.08 TS -0.055 0.257 0.262 1.090
0.08 RRC 0.024 0.371 0.349 1.859
0.15 TS -0.072 0.256 0.260 1.106
0.15 RRC 0.036 0.421 0.414 2.627

β = − ln 4/3 Ideal 0.029 (-10.136) 0.257 0.248 1.000
0.01 TS 0.055 (-19.068) 0.257 0.254 1.083
0.01 RRC 0.030 (-10.509) 0.295 0.285 1.320
0.08 TS 0.070 (-24.244) 0.256 0.256 1.134
0.08 RRC 0.028 (-9.880) 0.370 0.350 1.979
0.15 TS 0.080 (-27.660) 0.256 0.262 1.202
0.15 RRC 0.033 (-11.330) 0.420 0.416 2.801

β = − ln 2 Ideal 0.019 (-2.772) 0.246 0.234 1.000
0.01 TS 0.123 (-17.804) 0.244 0.237 1.293
0.01 RRC 0.015 (-2.225) 0.283 0.268 1.297
0.08 TS 0.227 (-32.686) 0.241 0.235 1.922
0.08 RRC 0.001 (-0.137) 0.357 0.332 1.996
0.15 TS 0.293 (-42.229) 0.240 0.243 2.617
0.15 RRC 0.010 (-1.470) 0.408 0.397 2.844

β = − ln 4 Ideal -0.002 (0.119) 0.266 0.275 1.000
0.01 TS 0.265 (-19.104) 0.250 0.256 1.795
0.01 RRC -0.017 (1.227) 0.313 0.329 1.432
0.08 TS 0.567 (-40.893) 0.238 0.237 4.994
0.08 RRC -0.033 (2.366) 0.412 0.428 2.436
0.15 TS 0.681 (-49.127) 0.235 0.240 6.902
0.15 RRC -0.045 (3.243) 0.494 0.516 3.545
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Table 5.16: Simulation results for Model 1(c∗).

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = 0 Ideal -0.027 0.278 0.276 1.000
0.01 TS -0.066 0.276 0.275 1.040
0.01 RRC -0.042 0.324 0.325 1.395
0.08 TS -0.098 0.274 0.274 1.102
0.08 RRC -0.036 0.445 0.476 2.959
0.15 TS -0.111 0.273 0.258 1.024
0.15 RRC -0.017 0.506 0.545 3.853

β = − ln 4/3 Ideal -0.013 (4.380) 0.264 0.257 1.000
0.01 TS 0.011 (-3.836) 0.264 0.260 1.028
0.01 RRC -0.023 (8.118) 0.306 0.308 1.439
0.08 TS 0.009 (-2.973) 0.263 0.264 1.057
0.08 RRC -0.024 (8.479) 0.414 0.417 2.643
0.15 TS 0.003 (-1.021) 0.262 0.268 1.086
0.15 RRC -0.004 (1.247) 0.488 0.523 4.131

β = − ln 2 Ideal -0.010 (1.488) 0.265 0.263 1.000
0.01 TS 0.084 (-12.178) 0.266 0.266 1.125
0.01 RRC -0.009 (1.306) 0.312 0.333 1.598
0.08 TS 0.172 (-24.841) 0.264 0.256 1.375
0.08 RRC 0.028 (-4.092) 0.439 0.464 3.120
0.15 TS 0.206 (-29.783) 0.263 0.260 1.589
0.15 RRC 0.041 (-5.873) 0.491 0.649 6.100

β = − ln 4 Ideal -0.000 (0.004) 0.265 0.264 1.000
0.01 TS 0.281 (-20.239) 0.268 0.249 2.021
0.01 RRC 0.064 (-4.612) 0.316 0.331 1.632
0.08 TS 0.521 (-37.546) 0.266 0.249 4.772
0.08 RRC 0.243 (-17.503) 0.464 0.461 3.886
0.15 TS 0.594 (-42.832) 0.265 0.255 5.984
0.15 RRC 0.359 (-25.900) 0.526 0.607 7.136
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Figure 5.8: Summary of simulation results for Model 1(a∗) and Model 1(c∗).
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5.1.6 Investigate the working distributional assumption

Note our working distributional assumption contains three elements: Normal, mean and

variance. We explore which of the three elements in the assumption are most likely to be

violated.

First consider the simple setting with λ(u) = λ0 exp{− ln(4)X(u)} in Model 1(a) with

X(u) = α1 + α2u. The random effects (α1, α2)T are from a bivariate Normal distribu-

tion with mean µ = (2.575,−0.009)T and covariance Σ with elements (Σ11,Σ12,Σ22)T =

(0.0191, 0.00007, 0.0002)T . The baseline hazard is λ0 = 0.011. By direct calculation, it is

easy to derive the expression of the true density function for α|T ≥ u. Our goal here is to

investigate how much our proposed “Normal” working distribution departs from the truth.

We generate one simulation data set and compare the following density functions. At each

time when an event occurs, we calculate the parameters and plot the density functions.

1. Let p0(α;u) denote the true density of α|T ≥ u, and µ0(u), Σ0(u) denote the corre-

sponding true mean and covariance.

2. Let pN (α;u) denote the Normal density function with true mean and covariance, i.e.

N(µ0(u),Σ0(u)).

3. Let pR(α;u) denote the Normal density function estimated in the RRC method, i.e.

N(µ̂(u), Σ̂(u)), where µ̂(u) and Σ̂(u) are estimated from (4.20) and (4.21).

Note p0(α;u) is the correct conditional probability density function of α|T ≥ u. For

pN (α;u), it leads to the correct mean and variance, but has incorrect distribution. And

pR(α;u) represents the working distributional assumption. Figure 5.9 shows the plots of

density functions at one chosen time point. As shown in this figure, actually across all

event time points, the shapes of p0(α;u) and pN (α;u) look very similar. This implies in

such setting with α Normal, α|T ≥ u could also be approximated by a Normal distribution

across all time points. However, by comparing p0(α;u) and pR(α;u), we found that pR(α;u)

tends to have slightly higher peak, suggesting Σ̂(u) might not be a good estimate for Σ0(u).
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Figure 5.9: Examining the working distributional assumption based on density functions
for Model 1(a) with low event rates.
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Similar investigation was done for Model 1(c) with high event rate (Figure 5.10). Still

p0(α;u) could be approximated by a Normal distribution well. However, the shape of

pR(α;u) could be very different from the truth. We observed this discrepancy more fre-

quently and more extremely than that in Model 1(a), probably due to a number of events
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occurring at the early stage by when only two or three measurements were available.

Figure 5.10: Examining the working distributional assumption based on density functions
for Model 1(c) with high event rates.
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5.2 Simulation for two-phase sampling design cohort studies

In this section, we evaluate the RRC estimator for a dichotomous biomarker in two phase

sampling design studies.The second phase sample is selected based on case-control sampling,

including all cases (∆ = 1) and 14.3% of the controls (∆ = 0). We consider the IPW RRC

method with pre-specified sampling probabilities (RRC(π)) and with estimated sampling

probabilities (RRC(π̂)), as well as the complete-case RRC estimator (CC). We only consider

the scenario (a) with low event rate. For the estimates of the standard errors, we consider

both the ASE and the bootstrap SE. The RMSE is calculated as the Monte Carlo variance

of β̂ compared to the RRC estimates obtained based on full cohort data.

5.2.1 Model 1(a)

The full cohort data is generated from Model 1(a) in Section 5.1.1, from hazard function

λ(u) = λ0(u) exp{βB(u)}. The number of subjects being sampled for measuring immune

biomarker data is shown in Table 5.17. The simulation results are in Table5.19. From the

results we see that due to only including around 25% of the sample in IPW analysis, we

could lose around 50% to 80% of the efficiency. As expected, though, the IPW estimates

still have very small biases with relative biases less than 6%. However, the CC estimates

could generate a relative bias as high as 25%. The ASE still provides a good estimate of

SE(β̂), as what we have seen in the full data analysis.

Table 5.17: The sample size for Phase I (N) and Phase II (n) sample for Model 1(a).

Case (∆ = 1) Control (∆ = 0)
β N(n) N(n)

0 94 (94) 706 (101)
− ln(2) 91 (91) 709 (101)
− ln(4) 101 (101) 699 (100)
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Table 5.18: The sample size for Phase I (N) and Phase II (n) sample for Model 2(a).

Case (∆ = 1) Control (∆ = 0)
(β, η) N(n) N(n)

(− ln(2), 0) 101 (101) 699 (100)
(− ln(2),− ln(2)) 104 (104) 696 (99)

5.2.2 Model 2(a)

We next consider the two-phase sampling on the data generated from Model 2(a) in Section

5.1.2, with λ(u) = λ0(u) exp{βB(u) + ηZ}. The number of subjects sampled with mea-

surements of immune biomarker data is shown in Table 5.18. The simulation results are

in Table5.21. Similar pattern in terms of biases and RMSE as that for Model 1(a) shows

up here. The only concern is still that the ASE for η̂ underestimates SE(η̂) to 30%∼40%,

as what we have seen in full data analysis. So we suggest running bootstrap method for

the standard error estimates for such models with adjustments. We conduct the bootstrap

fixing the Phase II sample. Suppose in the Phase II sample, the number of cases and con-

trols are n1 and n0. Then within the Phase II case group, we sample with replacement n1

subjects to form the bootstrap case subjects, and within the Phase II control group, we

sample with replacement n0 subjects to form the bootstrap control subjects. It is similar

to the B2 procedure described in [Odile, 2007] by fixing the case and control group and

perform bootstrap within each group independently. See Table 5.20 for the bootstrap SE.

Again, the bootstrap yields accurate standard error estimates.
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Table 5.19: Simulation results for Model 1(a) with two-phase sampled data.

σ2 Method Bias( % Bias) ASE MCSD RMSE

β = 0 0.01 RRCfull 0.028 0.279 0.269 1.000
0.01 CC 0.027 0.297 0.277 1.058
0.01 RRC(π) 0.032 0.351 0.346 1.649
0.01 RRC(π̂) 0.032 0.351 0.346 1.649
0.08 RRCfull 0.030 0.356 0.335 1.000
0.08 CC 0.033 0.323 0.336 1.003
0.08 RRC(π) 0.045 0.446 0.415 1.541
0.08 RRC(π̂) 0.045 0.446 0.416 1.543
0.15 RRCfull 0.035 0.408 0.396 1.000
0.15 CC 0.037 0.432 0.418 1.118
0.15 RRC(π) 0.056 0.519 0.508 1.656
0.15 RRC(π̂) 0.055 0.521 0.509 1.663

β = − ln 2 0.01 RRCfull 0.015 (-2.227) 0.261 0.251 1.000
0.01 CC 0.172 (-24.807) 0.241 0.254 1.492
0.01 RRC(π) 0.020 (-2.927) 0.334 0.326 1.691
0.01 RRC(π̂) 0.020 (-2.878) 0.334 0.326 1.692
0.08 RRCfull 0.001 (-0.119) 0.338 0.319 1.000
0.08 CC 0.162 (-23.360) 0.351 0.332 1.339
0.08 RRC(π) 0.015 (-2.136) 0.430 0.419 1.723
0.08 RRC(π̂) 0.014 (-2.074) 0.430 0.420 1.727
0.15 RRCfull 0.009 (-1.235) 0.390 0.377 1.000
0.15 CC 0.163 (-23.550) 0.370 0.394 1.281
0.15 RRC(π) 0.038 (-5.453) 0.500 0.505 1.804
0.15 RRC(π̂) 0.038 (-5.478) 0.500 0.505 1.801

β = − ln 4 0.01 RRCfull -0.008 (0.585) 0.281 0.290 1.000
0.01 CC 0.302 (-21.759) 0.285 0.282 2.022
0.01 RRC(π) -0.006 (0.443) 0.349 0.353 1.479
0.01 RRC(π̂) -0.007 (0.494) 0.350 0.353 1.481
0.08 RRCfull -0.028 (1.990) 0.380 0.392 1.000
0.08 CC 0.336 (-24.252) 0.350 0.376 1.645
0.08 RRC(π) -0.023 (1.640) 0.472 0.478 1.482
0.08 RRC(π̂) -0.024 (1.706) 0.472 0.479 1.486
0.15 RRCfull -0.043 (3.082) 0.451 0.459 1.000
0.15 CC 0.264 (-19.041) 0.422 0.459 1.320
0.15 RRC(π) -0.021 (1.503) 0.569 0.581 1.594
0.15 RRC(π̂) -0.021 (1.516) 0.569 0.582 1.595

Sample size is N=800. The longitudinal measurements of Wij are made at
baseline and randomly from time windows 0.5, 1.0, 1.5, · · · , 28 ± 0.05. The
two-phase sampling is conducted by sampling all cases (∆ = 1) and 14.3% of
controls (∆ = 0).
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Table 5.20: Simulation results on RRC(π̂) bootstrap standard error estimates for Model
2(a) with two-phase sampled data. Regression parameters are (β, η)T = (− ln 2, 0)T .

σ2 Bootstrap SE MCSD

β = − ln 2 0.01 0.344 0.348
0.08 0.480 0.473
0.15 0.538 0.580

η = 0 0.01 0.296 0.281
0.08 0.300 0.284
0.15 0.301 0.281

The Bootstrap SE is evaluated for RRC(π̂).
The results are based on B = 100 bootstrap
samples and 200 simulation runs.

5.3 Discussion

We have evaluated the performance of the RRC and TS method for joint modeling of

dichotomized biomarkers and event time data, as well as the RRC method in the two-phase

sampling design studies. Generally speaking, in the rare-event setting the RRC method

gives reasonably small bias regardless of the magnitude of measurement error and the size

of hazard ratio. In high event rate setting, the RRC estimator tends to be very biased when

the relative risk is very high. The TS estimator seems to give intolerable biases generally,

even though it produces relatively small MCSD compared to the RRC estimator. The

simulation results imply that the RRC estimator could be useful in vaccine efficacy trials

where the infection or disease rate is small. The TS estimator, which is much simpler to

be implemented, can be potentially used when the measurement errors are very small and

the hazard ratios are moderate. We also explored the TS method where the subject-specific

trajectory of biomarker was fitted from the mixed effect model by using the R package lme4

and was fitted from shrinking least squares estimates. We observed only slight improvement

with zero coefficient.

The simulation studies also demonstrate that increasing the number of measurements

can significantly improve the performance of both RRC and TS methods, especially for the

TS method. The TS estimates are more likely to be influenced by the noise-to-signal ratios.
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Table 5.21: Simulation results for Model 2(a) with two-phase sampled data.

σ2 Method Bias( % Bias) ASE MCSD RMSE
(β, η) β = − ln 2 0.01 RRCfull -0.015 (2.132) 0.253 0.265 1.000
= 0.01 CC 0.131 (-18.920) 0.251 0.254 1.161
(− ln 2, 0) 0.01 RRC(π) -0.034 (4.898) 0.327 0.337 1.636

0.01 RRC(π̂) -0.035 (5.002) 0.327 0.338 1.640
0.08 RRCfull -0.003 (0.479) 0.328 0.332 1.000
0.08 CC 0.144 (-20.789) 0.327 0.335 1.210
0.08 RRC(π) -0.011 (1.568) 0.423 0.429 1.670
0.08 RRC(π̂) -0.011 (1.647) 0.423 0.429 1.674
0.15 RRCfull -0.003 (0.413) 0.378 0.404 1.000
0.15 CC 0.141 (-20.295) 0.373 0.397 1.085
0.15 RRC(π) -0.001 (0.185) 0.495 0.521 1.661
0.15 RRC(π̂) -0.001 (0.154) 0.496 0.519 1.648

η = 0 0.01 RRCfull 0.010 0.179 0.216 1.000
0.01 CC 0.018 0.179 0.219 1.038
0.01 RRC(π) 0.019 0.234 0.295 1.873
0.01 RRC(π̂) 0.019 0.235 0.295 1.879
0.08 RRCfull 0.010 0.142 0.216 1.000
0.08 CC 0.017 0.144 0.223 1.077
0.08 RRC(π) 0.023 0.185 0.299 1.927
0.08 RRC(π̂) 0.023 0.185 0.299 1.936
0.15 RRCfull 0.013 0.130 0.223 1.000
0.15 CC 0.019 0.130 0.226 1.029
0.15 RRC(π) 0.019 0.172 0.299 1.797
0.15 RRC(π̂) 0.020 0.172 0.299 1.801

(β, η) β = − ln 2 0.01 RRCfull -0.024 (3.425) 0.252 0.261 1.000
= 0.01 CC 0.139 (-20.083) 0.247 0.261 1.278
(− ln 2,− ln 2) 0.01 RRC(π) -0.024 (3.426) 0.330 0.345 1.745

0.01 RRC(π̂) -0.025 (3.537) 0.331 0.346 1.753
0.08 RRCfull -0.026 (3.747) 0.327 0.336 1.000
0.08 CC 0.135 (-19.492) 0.321 0.342 1.192
0.08 RRC(π) -0.021 (2.980) 0.430 0.458 1.856
0.08 RRC(π̂) -0.021 (3.038) 0.431 0.459 1.863
0.15 RRCfull -0.030 (4.268) 0.379 0.417 1.000
0.15 CC 0.119 (-17.167) 0.374 0.398 0.988
0.15 RRC(π) -0.016 (2.301) 0.502 0.536 1.646
0.15 RRC(π̂) -0.017 (2.513) 0.503 0.537 1.653

η = − ln 2 0.01 RRCfull 0.004 (-0.575) 0.202 0.242 1.000
0.01 CC 0.192 (-27.631) 0.203 0.246 1.653
0.01 RRC(π) 0.003 (-0.431) 0.259 0.323 1.778
0.01 RRC(π̂) 0.003 (-0.361) 0.259 0.323 1.777
0.08 RRCfull 0.004 (-0.641) 0.163 0.242 1.000
0.08 CC 0.196 (-28.316) 0.164 0.245 1.679
0.08 RRC(π) -0.000 (0.014) 0.210 0.323 1.775
0.08 RRC(π̂) -0.001 (0.091) 0.210 0.323 1.774
0.15 RRCfull 0.006 (-0.886) 0.149 0.246 1.000
0.15 CC 0.188 (-27.121) 0.151 0.253 1.646
0.15 RRC(π) 0.003 (-0.493) 0.197 0.330 1.808
0.15 RRC(π̂) 0.003 (-0.378) 0.197 0.330 1.805

Sample size is N=800. The longitudinal measurements of Wij are made at baseline
and randomly from time windows 0.5, 1.0, 1.5, · · · , 28± 0.05. The two-phase sampling is
conducted by sampling all cases (∆ = 1) and 14.3% of controls (∆ = 0).
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Apparently the larger the measurement error, the more biased the TS estimates. For the

RRC estimator, the bias is consistently small across different magnitudes of measurement

error in the setting with rare event rate, but the precision does decrease. When the event

rate is high, the bias tends to increase with the larger measurement error, though is still

smaller than that from the TS method.

Also we explored the estimates for SE(θ̂) using the ASE and Bootstrap SE. The former

was used in [Dafni and Tsiatis, 1998] as an approximation of SE(θ̂). In their paper, they

investigated only the Cox model with one immune biomarker as the covariate, which is the

Model 1 in this dissertation. We both found the ASE could provide a good approximation

to SE(β̂) in such a model. This dissertation also considers the Cox model with adjustment

(Model 2) and with interaction of the immune biomarker and the treatment indicator (Model

3). However in Model 2 and Model 3 we did observe the ASE poorly estimates the SE,

especially for η̂ and γ̂. So as suggested in [Wang et al., 2001], in the latter two settings, we

should use the bootstrap SE estimates.

We also examined the working distributional assumption that α is Normal given (Z̃, T ≥

u). All above simulation studies generated α given Z̃ from Normal, where apparently the

working assumption did not hold. We found it was most likely to have a poor estimate of

the covariance matrix, especially when the size of at-risk set or the number of biomarker

measurements were small. We also conducted simulation studies with α from a mixed-

Normal distribution. For example for Model 1, α was generated a mixture of two Normal

distributions with mean (2.2295 − 0.009)T and (2.9205,−0.009)T respectively. The results

were similarly to those with Normal α, indicating RRC method could still give small biases.
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Chapter 6

DATA ANALYSIS: ACTG 175

6.1 Background

In this chapter we apply the methods developed to AIDS Clinical Trials Group (ACTG) 175

dataset [Hammer et al., 1996]. ACTG 175 was a randomized clinical trial comparing four

treatment regimens (zidovudine only, zidovudine+didanosine, zidovudine+zalcitabine and

didanosine only) among HIV-infected subjects with CD4 cell counts 200-500 per cubic mil-

limeter. Their primary study included 2,467 subjects. The study was designed to measure

the CD4 cell counts on all study subjects at a schedule of every 12 weeks since Week 8. The

study subjects were followed up for endpoint of ≥50% decline in the CD4 cell count, AIDS

or death. The median follow-up time was 143 weeks. Taking the group with zidovudine

only as the reference group, the original study on all study subjects found significant effect

of each of the other three on the endpoint.

Now for this study, we assess the CD4 cell count as a time-dependent CoR and CoP.

As in [Song et al., 2002], the treatment (Z = 1) of interest is combining the three of

zidovudine+didanosine, zidovudine+zalcitabine and didanosine, and zidovudine only is con-

sidered as the control treatment (Z = 0). The primary clinical endpoint of interest in the

correlates of protection analysis is the progression to AIDS or death. We refer any subject

who experienced the primary endpoint during the study as a case and who never had the

primary endpoint throughout the study as a control. A total of 308 cases were observed.

Note this study was not originally designed in a two-phase manner to measure the CD4

cell counts. For a better demonstration of our proposed methods on this data, we created

a case-control sample from the full study cohort and pretended the CD4 cell counts were

measured only on subjects in the case-control sample. The case-control sampling was con-

ducted to include all cases and 14.3% of the controls with CD4 cell counts available. This

led to 306 cases and 306 controls. We only considered the CD4 cell counts measured before
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the primary endpoint for cases. The average number of CD4 cell counts measurements per

subject was 9.25.

6.2 Descriptive analysis

As in [Song et al., 2002], we analyzed the inherent trajectory of log10 cell CD4 counts.

Figure 6.1 shows the observed trajectory of log10 cell CD4 counts by treatment groups

and by subgroups cross-classified by treatment/control treatment and case/control status.

The red lines are the smoothed mean curves and the shaded areas represent the pointwise

95% confidence intervals. Apparently cases tend to have steeper drop over time in their

trajectories than controls, and subjects in the treatment group have on average higher log10

CD4 cell counts than those in the control treatment group.

Then we explored if the level of log10 CD4 cell count is predictive of the progression

of AIDS or death. We plotted the cumulative incidence rate of the primary endpoint by

subgroups with low, medium and high log10 CD4 cell counts measured at the visit of Week 8

(Figure 6.2). The subgroups were defined by the tertiles of log10 CD4 cell counts measured

at the visit of Week 8 pooled control treatment and treatment group, taking into account

the case-control sampling weights. The plot shows that higher log CD4 cell counts are

associated with lower rates of the event. And the difference in the cumulative incidence

rates comparing the low and medium group is greater than that comparing the medium

and high group.
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Figure 6.1: Spaghetti plot of observed log10 CD4 cell counts with smoothed mean curves
and pointwise 95% confidence intervals by subgroups.
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Figure 6.2: Cumulative incidence plot of the primary endpoint by subgroups of log10 CD4
cell count levels (low, medium and high) at the visit of Week 8.
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6.3 Analysis of continuous trajectory of log10 CD4 cell counts

Before we conduct the correlates analysis on log10 CD4 cell counts, we explore the functional

form of its trajectory X(u) over time. We investigate the simple linear (L1) and quadratic

(L2) weighted mixed effects models with fixed effects β’s and mean-zero Normal random

effects b’s on all case-control samples.

L1: X(u) = β0 + β1u+ d0 + d1u

L2: X(u) = β0 + β1u+ β2u
2 + d0 + d1u+ d2u

2

The results on fitted model using maximum-likelihood estimation (MLE) from lme()

are shown in Table 6.1. Figure 6.3 is the spaghetti plot of observed log10 cell CD4 counts

on 10 randomly selected subjects as well as fitted lines from the linear and quadratic mixed

effects models. Apparently, the results in Table 6.1 indicates the quadratic model provides

a better fitting than does the simple linear model. The mixed effects models in L1 and

L2 are only used to help to chose the functional form of the trajectory of log10 cell CD4

over time. To model it in the Cox regression model, we use the random effects model as

discussed in (2.1). We model the trajectory of log10 CD4 X(u) as being quadratic in time,

i.e. X(u) = α0 + α1u+ α2u
2.

Table 6.1: Results on fixed effects from Model L1 and L2.

Model Intercept Time Time2 log-likelihood P-value1

L1 2.5414 -0.0189 891.85
L2 2.4984 -0.0056 0.0006 1397.50 <0.0001

1 Likelihood-ratio test p-value.

We now evaluate the log10 CD4 cell count as time-dependent CoP in Prentice’s frame-

work by a set of Cox regression models. The Prentice’s criteria are given in Section 2.3.1.

The models are adjusted for the average baseline log10 CD4 cell counts measured at two

time points before randomization. See Table 6.2 for the estimated coefficients from IPW

and AIPW methods using estimated π̂. The two methods yield similar results. The vari-

ables used in predicting the augmentation terms in the AIPW method are the treatment
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Figure 6.3: Spaghetti plot of observed log10 CD4 cell counts on 10 randomly selected subjects
and the fitted lines from linear and quadratic mixed effects models.
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and event status indicators. No significant efficiency improvement is found on all coefficient

estimates for this analysis. We therefore focus on the results from IPW method, since it is

simpler to implement for further exploration as discussed below.

Model 0 shows that the treatment significantly affects the primary endpoint. Model

3 and Model 4 indicate that log10 CD4 cell count has no significant effect on the clinical

endpoint in the treatment group, but has significant effect in the control treatment group.

The effect of log10 CD4 cell count is significantly modified by the treatment group (Model

1). Therefore both the Prentice criteria (ii) and (iii) do not hold. It suggests that log10

CD4 cell fails to be a Prentice surrogate. Though there is a significant interaction effect,

we still try to calculate the quantities defined below to quantify the surrogacy of log10 CD4

cell count (Table 6.2).

1. The proportion of treatment effect explained by the surrogate (PTE): 1− θtrt,2/θtrt,0,
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where θtrt,j is the coefficient for treatment indicator in Model j.

2. The proportion of treatment effect captured by the surrogate based on Prentice’s

framework (PCS) [Kobayashi and Kuroki, 2014]: 1
1+(1/PTE−1)2

3. The proportion of natural indirect effect of the treatment, assuming the identifica-

tion assumptions I1-I4 given in Section 2.3.2 hold (pNIE): NIE0(26)
NIE0(26)+NDE0(26) , where

NDE0(26) = E[I(T 1X0
α ≥ 26) − I(T 0X0

α ≥ 26)] and NIE0(26) = E[I(T 1X1
α ≥ 26) −

I(T 1X0
α ≥ 26)]. Here we chose a time Month 26 which is a relative late stage of

follow-up.

All three quantities are very close to zero. For pNIE, the CI was calculated from 500

bootstrap samples. For PTE and PCS, the CIs were determined from the asymptotic Normal

distribution of (θtrt,0, θtrt,2)T .

Table 6.2: Estimates and 95% CIs for the coefficients in Cox regression models, to assess continuous log10 CD4
cell count as time-dependent CoP in Prentice’s framework.

logCD4 trt logCD4 × trt bl.logCD4
Pooled Model 0 -0.37 (-0.61, -0.13)

IPW(π̂)
Pooled Model 1 -2.14 (-2.81, -1.47) -3.33 (-5.31, -1.34) 1.42 (0.46, 2.38) -3.60 (-5.16, -2.03)

Model 2 -1.04 (-1.93, -0.15) -0.44 (-0.79, -0.08) -3.61 (-5.70, -1.51)
Treatment Group Model 3 -0.73 (-1.68, 0.22) -4.23 (-6.46, -2.00)

control treatment Group Model 4 -2.89 (-3.60, -2.18) -1.03 (-3.68, 1.62)
AIPW(π̂)

Pooled Model 1 -2.35 (-3.22, -1.47) -2.93 (-6.29, 0.43) 1.36 (-0.22, 2.94) -1.55 (-2.90, -0.20)
Model 2 -1.17 (-1.94, -0.39) -0.35 (-0.67, -0.02) -2.69 (-6.61, 1.23)

Trt Group Model 3 -0.92 (-2.24, 0.41) -3.14 (-7.91, 1.62)
Control Trt Group Model 4 -3.03 (-3.84, -2.23) -0.57 (-9.33, 8.20)

1 For the AIPW method, the variables used in estimating the augmentation terms included treatment indicator and
event indicator.

2 PTE = -0.173 (95% CI: -1.026, 0.680).
3 PCS = 0.021 (95% CI: 0.000, 0.586).
4 pNIE = 0.079 (95% CI: -0.836, 0.999).

6.4 Analysis of dichotomized trajectory of log10 CD4 cell counts

We next evaluate the dichotomized log10 CD4 cell count as time-dependent CoP in Pren-

tice’s framework. We dichotomize the count level at l = log10 200, below which immediate



147

treatment has been recommended for HIV infected patients in treatment guidances for many

years. Table 6.3 shows the fitted results. For the dichotomized log10 CD4 cell count, Model

3 and 4 suggest it significantly affects the clinical endpoint in both treatment and control

treatment groups. Therefore the Prentice criterion (ii) holds. On the other hand, Model

1 suggests no significant effect modification of dichotomized log10 CD4 cell count by treat-

ment group. Model 2 suggests that after controlling the dichotomized log10 CD4 cell count,

the treatment group does not affect the clinical endpoint. It implies that Prentice criterion

(iii) holds. The overall results show the evidence of the dichotomized log10 CD4 cell count

being consistent with the Prentice’s criteria as a surrogate for the treatment on the primary

endpoint. This can also be seen from the three quantities (PTE, PCS, and pNIE), all of

which demonstrate at least moderate or substantial level of surrogacy for the dichotomized

log10 CD4 cell count. The CIs for all three quantities were determine from 500 bootstrap

samples. We observe very wide CIs for all three quantities, especially for PCE. This is

possibly because some bootstrap samples may have near zero treatment effect θ̂trt,0 which

leads to large variability in PTE. Compared the finding here to that for the continuous

log10 CD4 cell count, we conjecture that there might exist a non-linear relationship between

the log10 CD4 cell count and the hazard, especially in the treatment group. Chapter 7

discusses future research directions to examine the assumptions in the Cox proportional

hazards model.

Table 6.3: Estimates and 95% CIs for the coefficients in Cox regression models, to assess dichotomized
log10 CD4 cell count as time-dependent CoP in Prentice’s framework.

d.logCD4 trt d.logCD4 × trt bl.logCD4
Pooled Model 1 -3.77 (-5.18, -2.35) -0.14 (-0.59, 0.32) 0.51 (-0.96, 1.99) -0.99 (-2.69, 0.72)

Model 2 -3.35 (-3.93, -2.76) -0.10 (-0.52, 0.33) -1.01 (-2.69, 0.66)
Trt Group Model 3 -3.11 (-3.70, -2.52) -1.56 (-3.37, 0.24)

Control Trt Group Model 4 -4.12 (-5.62, -2.62) 0.43 (-3.00, 3.85)

1 The CIs were calculated based on 500 bootstrap samples.
2 The nuisance parameters µ(u) and Σ(u) for the distribution of random effects α were estimated by subgroups

cross-classified by treatment group and dichotomized baseline log10 CD4 cell count (≥ log10 300, < log10 300).
2 PTE = 0.739 (95% CI: -0.885, 3.721).
3 PCS = 0.889 (95% CI: 0.002, 0.999).
4 pNIE = 0.903 (95% CI: 0.042, 2.116).
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Chapter 7

DISCUSSION AND FUTURE DIRECTION

7.1 Discussion

Assessing immune correlates of protection has always been an important objective in vaccine

efficacy trials. This dissertation studies the quantitative and dichotomized inherent time-

varying immune responses as immune correlates of risk and protection in two-phase sampling

design cohort studies. The evaluation is based on Cox proportional hazards models with

the continuous or dichotomized underlying immune response process, which is characterized

by a random effects model. The model has the interpretation of association between the

current value of the inherent immune biomarker and the instantaneous rate of the event. It

provides straightforward assessment of the immune correlate of risk and also allows for the

assessment of immune correlate of protection based on Prentice’s framework. We also study

the framework of causal effects by defining the natural direct and indirect effects of the

vaccine on the probability of being free of event at some fixed time point. They are defined

in terms of counterfactual outcomes that can only be partially observed under assigned

treatment. We show that under certain sequential ignorability assumptions, the defined

effects can be estimated from the Cox model mentioned above fitted on observed data. Since

this dissertation works on the unobserved underlying immune response trajectory, it does

not offer any guidance on the threshold of the protection level, even for the dichotomized

model. The application is more to generate hypotheses about the biological mechanisms of

protection.

The objective of this dissertation is to develop statistical methods to make inference

on such joint models when the longitudinal immune biomarker data are only observed on

study subjects selected in the second phase. In Chapter 2 and Chapter 3, we study the

IPW and AIPW conditional score estimators for the continuous immune response trajec-

tory via asymptotic theories and simulation studies. We explore the efficiency gain from
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the AIPW method with various sets of predictor variables in estimating the augmentation

terms compared to that from the IPW method. We find that when there exist auxiliary

variables strongly correlated with immune biomarkers, including them to estimate the aug-

mentation terms in AIPW method can provide significant efficiency gain for the parameter

of the biomarker. Otherwise, our simulations studies show that the AIPW method does

not improve the efficiency much, and can even reduce the efficiency if many weak auxiliary

predictors are included. In addition, if the treatment effect is of interest in the Cox model,

we recommend including the treatment indicator in the AIPW predictor in order to achieve

greater precision close to that from the full cohort data analysis.

We also show that when the immune response data are only measured on a very limited

number of time points, the resulting estimates on the biomarker effect can be very vari-

able. Using the AIPW method in this situation can even lead to slightly rising bias and

decreasing precision compared to the simple IPW method. This may be due to the fact that

the conditional score method is constructed based on individual least squares estimates of

the random effects. And such least squares estimates are also calculated at every observed

event time so even fewer measurements are actually used (because we can only use the mea-

surements taken up to and including that time point). If the number of measurements per

subject is low, the fitting of individual trajectories can be very unreliable, especially when

the measurement error is relatively large. The extra step in estimating the augmentation

terms in AIPW method may lead to more variation and uncertainty in finite sample studies.

Note that in our simulation studies, the inherent immune response level varies linearly over

time. However, it is more often to observe curvilinear immune response trajectory over time

in real trial studies, like for the CD4 cell counts in the ACTG 175 study and the antibody

levels in the dengue vaccine trials. It implies more sophisticated models than linear should

be used for a better fitting. However, that comes along with the need of more immune

response measurements. So inadequacy in the number of measurements can also limit the

choice of functional form of the immune response trajectory. Our simulation studies on

misspecified measurement error distributions reveal that if the assumption of random and

Normal measurement error is violated, we would expect slightly biased inferential results.

In Chapter 4, we propose the risk set recalibration method for the dichotomized immune
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response model. Calibration is a commonly used approach in measurement error problems

by deriving an induced hazard function of the observed but mismeasured immune response

as a function of the parameters from the target Cox regression. Our induced hazard function

is established based on a working assumption that the random effects are Normal given the

status of being at risk. We reveal in Chapter 5 that the resulting estimator, even though

theoretically inconsistent, has very small bias in studies with rare event rates even when the

measurement error is relatively large. In contrast, the naive two-stage method is often very

biased. Increasing the number of measurements per subject can majorly reduce the bias,

especially for the two-stage method. Also the two-stage method is sensitive to the magnitude

of measurement errors in that the bias increases with high measurement error. However,

the proposed recalibration method is only slightly influenced by the measurement error in

the rare event rate setting. We also encounter the common problem of the recalibration

method that the variance of resulting estimates could be relatively high compared to the

naive method. For random effects models, it is commonly assumed that the random effects

follow the Normal distribution. We show that under Normal random effects, our working

assumption is generally very close to the truth in the rare event setting as long as the

number of at-risk subjects is moderate. When the number of at-risk subjects is very small,

the inconsistency arises mostly because of poor estimation of the covariance matrix.

The joint modeling framework is intriguing in that it allows the modeling of subject-

specific evolution of the immune response level over time and examining its relationship with

the instantaneous rate of event simultaneously. However, the computation burden is always

a concern for such a model. The semi-parametric methods considered in this dissertation

are much less computationally intensive than approaches that require multidimensional

integrals. But we still encounter an issue of convergence, especially when the measurement

error is relatively large and the number of measurements per subject is small.

7.2 Future directions

Along with the research presented in this dissertation, below we describe several other

interesting related questions.
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7.2.1 Nonlinear models for immune response trajectory

In this dissertation, the immune response trajectory is modeled by a linear mixed effects

model X(u) = αT f(u). However, the trajectory over time for a single subject can be very

variable and the linear models may not fully capture the entire evolution. Therefore, one

interesting direction for future research is to study the nonlinear models. For the continuous

trajectory, [Wu et al., 2008][Wu et al., 2010] proposed the nonlinear mixed effects model,

like the exponential decay dynamic, to account for the biological understanding of the

biomarker process in response to treatment. An interesting question is how to incorporate

the nonlinear trajectory into the dichotomized model. Also a more complex pattern of the

trajectory, the sawtooth pattern, due to booster doses has been observed in the VAX004

HIV-1 vaccine trial. One possible approach is to use the growing and decaying rates to

characterize a single wave between two subsequent doses [Schlub et al., 2011]. To connect

the waves over time, we may need assumptions on the period as well as on the time it takes

after each dose for the immune response level to reach the peak.

7.2.2 The threshold for dichotomization

Our model on dichotomized immune response is aimed to assess if a “fixed” threshold of the

level can predict the vaccine efficacy. It assumes that before we conduct the analysis there

already exists some prior threshold of interest. However, a more natural question is what

the protection level is if a specific immune response correlates with the protection. Even

though this dissertation does not address the question of guiding the protection level, it still

involves the issue of choosing a threshold. Actually, for our model, if no adequate evidence

is found for a predetermined threshold to be an immune correlate of protection, it may

just because we do not chose the right threshold. The threshold problem is of particular

interest when the true relationship is nonlinear. When no particular preference exits for the

threshold, people may tend to explore a range of candidate thresholds. In that case the type

I error definitely needs to be controlled. Along this direction, one possible way out is to

consider the “changepoint model” [Koziol and Wu, 1996][Vexler and Gurevich, 2009][Fong

et al., 2014].
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7.2.3 Model diagnosis on the proportional hazards assumption

The assessment of immune correlates of risk and protection in this dissertation relies on the

assumption of proportional hazards (PH). If this assumption is strongly violated, applying

the proposed methods can lead to misleading inferential results. In that case alternative

models such as with time-varying coefficients or with interaction of time and the immune

biomarker process may be considered [Song and Wang, 2008][Song et al., 2002]. [Fleming and

Harrington, 1991](p173) proposed a list of methods to check the validity of PH assumption.

The complication for the Cox model in the joint modeling framework is that it contains the

unobserved random effects as the covariates. Thus any methods based on comparing the

observed to the expected under the PH assumption do not apply directly here. However,

we are able to estimate the random effects for each subject and perform the PH test by

means of residuals obtained from the model with estimated random effects. The question

is if by any way such test based on estimated random effects is linked to our target model

on the unobserved true random effects. Another way possibly applies here is to fit Cox

models for a series of time intervals separately and to see if the obtained coefficients are

compatible across the intervals. It raises a question to develop some formal test statistic

that can quantify the level of compatibility. Or we can add an additional term X(u)g(u)

to the Cox model and test if its coefficient is zero. The problem left is how to choose the

functional form of g(u). This method automatically provides a test p-value. However, even

with an insignificant p-value, we cannot make a statement of inadequate evidence to reject

the null of PH, because it only tests for the specific time-dependent pattern characterized

by g(u).
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