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Incorporating cognition, i.e., learning and memory, into models of animal movement is in-

creasingly important as models seek to answer more complex questions where individuals’

prior experiences shape their choices. Two example are foraging behavior and predator avoid-

ance. While models of predator–prey dynamics exist, the impact of cognition on movement

and predator–prey interactions is largely unexplored. This dissertation presents a flexible,

continuous-space, and continuous-time model incorporating an animal using memory to nav-

igate a landscape of heterogeneous resources. The forager balances attraction to food with

avoidance of predators in making movement decisions. Two streams make up the resource

memory: a repulsive stream that drives the forager away from recently visited areas and an

attractive stream that draws the forager back to high quality areas. The predator memory is

solely repulsive. The model is used to examine questions related to the advantage of added

cognitive complexity for animals in the context of foraging and balancing the food–safety

trade-off with predators.

First, foraging without predators is considered and several movement processes are com-

pared: a simple correlated random walk; kinesis, a correlated random walk that switches

between searching and feeding behaviors; and memory-informed movement. The model is

used to examine for which landscapes the added cognitive complexity of maintaining mem-

ory is advantageous and to analyze the behavioral differences between using and not using



memory. In general, a landscape where there is a larger payoff for finding a resource patch,

whether in size, value, or difficulty in locating, favors memory. While memory-informed

search can be difficult to differentiate from other sensory-driven search behavior, dispro-

portionate spatial use of higher value areas, higher consumption rates, and consumption

variability all point to memory influencing the movement direction.

Next, predators are introduced that vary in their temporal predictability and in their cor-

relation with the prey’s resources. Memory outperforms simpler movement processes most

for patchy landscapes and more predictable predators, which may be more easily avoided

once learned. In these cases, memory aids foragers in managing the food–safety trade-off, as

particular parameterizations of predator memory reduce predator encounters while maintain-

ing consumption. Non-consumptive effects are highest in landscapes of concentrated, patchy

resources and especially when predators are highly correlated with the forager’s resources.

These non-consumptive effects are also seen with the shift away from the best quality habitat

compared to foraging in a predator-free environment.

Finally, learning is examined in more detail with naive foragers introduced to new land-

scapes as well as predators introduced partway through the simulation. Most non-extreme

learning rates provide the forager with sufficient information. In general, foragers that are

low to moderately exploratory in new habitats are successful, though performance is habitat-

dependent. In the case of introduced predators, predators vary in the area threatened and

foragers vary in their memory state. While area threatened plays a key role in determin-

ing how much habitat use changes, the forager’s knowledge of alternative habitats and ex-

ploratory inclinations affects what types of shifts occur.
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1

INTRODUCTION

Cognition, and in particular learning and memory, gives animals the ability to make

use of their previous experiences in the present or future. This can be used to gain an

advantage, for example, and improve foraging outcomes (Kamil and Roitblat 1985) or to

avoid negative consequences, as with predator avoidance (Kelley and Magurran 2003; Griffin

2004). In predator–prey systems, both predators and prey exhibit a variety of measures and

counter-measures in their interactions that allow for their mutual coexistence (Lima and Dill

1990). Some measures are physiological, such as speed, camouflage, and physical defenses.

Others are cognitive, such as strategies that result in a change in the behavior of the prey

in response to the potential presence of the predator, e.g., refuge use or increased vigilance.

Critical to cognitive strategies is the ability of prey (or predator) to learn from interactions

either directly or by observation of other interactions (Griffin 2004).

Historically, many models of predator–prey interactions have been at the population

level and have ignored spatial complexity and animal movement patterns. In fact, individual

movements underlie virtually all important ecological processes, even those frequently con-

sidered at the population scale. Survival means both finding food and avoiding predators.

Reproduction often involves encountering mates or undertaking migrations. Immigration

and emigration are frequently driven by the need to locate suitable habitat. Movement

is often the observable result of cognitive antipredator strategies, such as shifts in habitat

use in response to learning from predator encounters. However, the implications of prey

and predator movement have not been well-considered. Predators should be treated as dy-

namic components of predator–prey interaction, rather than simply a fixed risk (Lima 2002).

Movement is an important phenomenon, as shown by the failure of optimal foraging theory

to explain forager diets with mobile prey (Sih and Christensen 2001). Empirical evidence
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suggests predator avoidance by prey (Hammond et al. 2007), though alternatives exist to

shifting habitats, such as increasing vigilance (Brown et al. 1999; Sirot and Pays 2011). Thus,

failure to consider the dynamic behaviors of predators (Lima 2002) or their prey (Sih and

Christensen 2001) can result in an incomplete and unrealistic model of the system.

Theories of memory, as well as some experimental results, can give insight into how to

incorporate memory in predator–prey models. Because I am interested in modeling predator–

prey interactions in a spatially-explicit manner, how the brain encodes spatial information is

an important component to consider. For example, in a study of birds foraging on baited and

unbaited feeders containing either nectar or invertebrates, birds revisited unbaited feeders

more frequently when foraging for invertebrates rather than nectar (Sulikowski and Burke

2010). Sulikowski and Burke (2010) interpret this as a difference between foraging for discrete

resources (nectar) versus continuously distributed resources (invertebrates), but one may also

interpret these results in terms of resource renewal and persistence. Remembering unbaited

nectar locations could be useful to avoid them in the short-term (and potentially return to

them in the long-term). Invertebrate locations, on the other hand, may be more temporally

ephemeral, and thus it may not be worth remembering the unbaited invertebratelocations

in order to avoid them. A win-shift bias has been detected in nectivores (Cole et al. 1982),

meaning animals both avoid recently rewarded locations and more easily learn to visit new

locations rather than return to previously rewarded locations. This agrees with the idea of

avoiding recently visited, and thus depleted, patches in the short-term.

Of course there is some degree of uncertainty to spatial information, whether due to envi-

ronmental change, or imperfect learning or recall. Speed–accuracy trade-offs underlie many

decisions (Gold and Shadlen 2007). The same applies to information acquisition on habitat

quality, for example, that will impact the degree of uncertainty in the information. Not only

is the external abiotic environment stochastic, but evidence suggests that animal behavior is

indeterminate rather than determinate as well (Glimcher 2004), adding an additional source

of uncertainty for animals gathering information about other animals.

Given all this uncertainty in the world, it would make sense that animals are able to
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compensate for the uncertainty inherent in their spatial information. For example, ants

navigating using path integration will compensate for the uncertainty of their spatial knowl-

edge by starting to use odor as a secondary cue to locate their nest based on their travel

distance (Wolf and Wehner 2005). Uncertainty comes into play in non-spatial contexts as

well, e.g., how a prey estimates predator risk to make food–safety trade-offs. In contrast

with the extensive literature on optimal foraging, less attention has been paid to the other

side of the coin: how prey learn and make decisions about predator information, though the

cost for mistakes in this case is higher. Experimental work in tadpoles (Ferrari et al. 2010,

2012) shows that the length of time that prey retain predator information increases with risk.

However, the more uncertain the information, the shorter the period of time that prey will

use it. Possible factors associated with the length of the predator memory window include

both extrinsic factors, such as predator turnover rate, frequency of predator diet shifts, and

predator predictability, as well as intrinsic factors, such as prey susceptibility, antipredator

behavior development, information reliability, and age (Ferrari et al. 2010).

Foraging and defensive behaviors are likely independent, as suggested by the lack of

correlation in response thresholds for positive and negative stimuli (sucrose and shock in

honeybees) in the same individual (Roussel et al. 2009). The consequences of mistakes with

aversive stimuli such as predator encounters are clearly higher than reward stimuli, and

animals can learn predator threats after only one encounter (Wiedenmayer 2004; Ferrari

et al. 2006). Fear-conditioned responses tend to be long-lasting (Quirk 2002). Stress from a

predator cue can impair spatial memory (Zoladz et al. 2012). Additionally, animals exhibit

plastic responses in relation to the level of threat (Thaker et al. 2010), which may allow

them to mediate predator induced stress (Clinchy et al. 2013). Furthermore, while an area

associated with a stressful experience will be avoided, that behavior can be reversed through

environmental change if the new alternative is attractive enough, such as a refuge (Nemati

et al. 2013).

It is also important to remember that cognitive abilities, such as learning and memory,

also carry an associated energetic cost. For example, evolutionary studies of fruit flies show
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the genetic capacity to improve general learning abilities (for tasks other than the ones under

selection) (Kawecki 2010). However, improved learning performance always came with some

fitness cost (e.g., competitive ability or lifespan), and such trade-offs run the other direction

as well, with selection to improve other traits resulting in decreased learning performance

(Kawecki 2010). Thus, any assumed cognitive ability should be able to show improved fitness

over simpler abilities.

Despite considerable information on animal learning (Pearce 2008), memory and cogni-

tion have frequently been omitted from models of predator–prey interactions. For example,

models have assumed predators and prey had perfect information on each other’s distribu-

tions (e.g., Hugie and Dill 1994) or that animals have perfect or imperfect knowledge of

local conditions (e.g., Brown et al. 1999; Persson and De Roos 2003). However, simple mod-

els of learning and memory have been incorporated into an agent-based model of foraging

(Anderson 2002) as well as a model of home-range formation (Van Moorter et al. 2009),

among others. The rise of individual-based models (Grimm and Railsback 2005) provide one

framework for the investigation of memory processes in ecology, though alternatives exist as

well. I next review some examples of ecological models which explicitly include memory in

various formulations.

Multi-scale random walks (MRWs) are one way to incorporate spatial memory and hom-

ing into animal movement models (Gautestad and Mysterud 2005). MRWs are a statistical

mechanical approach and mix short-term local steps with infrequent large-scale strategic

steps. Behaviors such as central place foraging, foraging with resource depletion and renewal,

and limited memory can be modeled depending on which previous locations are considered

for revisits (Gautestad 2011). If animals are utilizing landscapes using this form of cognitive

map, then analyzing an individual’s space use in terms of the dispersion of locations can

be used to differentiate whether positive feedbacks (i.e., resource facilitation) and negative

feedbacks (i.e., resource depletion) predominate, giving insight into habitat quality (Gautes-

tad and Mysterud 2010). These models tend to be used on a homogeneous landscape and

ignore heterogeneity. However, habitat quality can also affect revisit probability in addition



5

to familiarity (Boyer et al. 2012). By analyzing visit length and time between visits, Boyer

et al. (2012) conclude that monkey movements are non-random due to the use of memory

and driven by environmental heterogeneity. Mueller et al. (2011) created a simulation model

using evolutionarily-trained artificial neural networks combining three movement behaviors:

oriented (using perceptual cues), non-oriented (correlated with previous step), and mem-

ory (evolutionary knowledge). Across landscapes varying in patch size and predictability,

memory was most important for locating resources in predictable landscapes.

Grove (2013) investigates for which circumstances spatial memory is useful, pointing out

that many models assume either complete omniscience or ignorance. Because spatial memory

is assumed to be energetically costly, in any case where performance between informed and

uninformed individuals is identical, evolution would presumable favor no spatial memory.

Generally spatial memory is predicted to be favored by selection when resources are sparsely

distributed (lower patch densities or smaller patch sizes) or detection distance is small.

Several models provide different ways to represent spatial memory. Bennett and Tang

(2006) modeled elk migration in Yellowstone, including bioenergetics, resource selection,

navigation and spatial memory, and spatial learning. Spatial memory is represented as a

graph of connected patches and information is acquired within a perceptual range. Migration

includes both when to migrate and where to migrate which is probabilistically determined

from the values of adjacent patches. Learning, through observation and mimicry, is modeled

with an evolutionary algorithm to find the optimal edge weight on the cognitive map.

Boyer and Walsh (2010) modeled monkeys foraging on fruiting trees. Monkeys remember

detailed information about visited trees, and at each step take either a random step or a

step towards the best tree (based on food availability and distance). Although they assume a

fairly sophisticated set of cognitive abilities, the basic concept of combining local optimization

using memory-based movement with exploratory behavior using random movement could be

applied more generally.

In a movement model showing a mechanistic basis for home range formation, Van Moorter

et al. (2009) utilized two memory processes: the reference memory, which controls prefer-
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ences for previously visited patches, and the working memory, which avoids backtracking to

recently visited patches. Depending on the strengths of the respective decay rates, differ-

ent dynamics can arise. No reference memory leads to diffusion, while no working memory

results in movement in and out of a single patch. Intermediate working memory and low

reference memory decay rates result in stable home rages with the highest realized utility,

thus reference memory can be considered a long-term memory and the working memory a

short-term memory.

Avgar et al. (2013) model an animal moving discretely in time and space with a biased

random walk informed by a redistribution kernel calculated at each time step for the animal’s

current location. Movement decisions based on the redistribution kernel can be made deter-

ministically or stochastically, by taking the maximum or probabilistically matching the cell

probabilities. The animal senses information from landscape layers (e.g., resource quality,

predation risk) based on sensory distance and commits that information to memory, which

decays with time. A location’s attractiveness combines perception, memory and travel cost,

and the product of the multiple layers forms the redistribution kernel. Avgar et al. (2013)

argue that the redistribution kernel facilities the exploration of interactions among parame-

ter values and landscape characteristics, such as testing whether the statistical properties of

a movement trajectory show evidence for memory use.

These conceptions of memory (Bennett and Tang 2006; Boyer andWalsh 2010; Van Moorter

et al. 2009; Avgar et al. 2013) specifically incorporate habitat quality in one form or another,

in contrast to other formulations that depend only on location (e.g., Gautestad 2011; Mueller

et al. 2011). They thus are able to represent the intentional state of the animal. Furthermore,

these models also get at the dynamic nature of memory. Particular memory decay rates are

a necessary condition for home range behavior to arise (Van Moorter et al. 2009). Memory

capacity should not be limited only by physiological costs, but also that memory capacity

should negatively correlate with the rate of environmental change, given the adaptive value

of forgetting in a temporally dynamic landscape (Avgar et al. 2013).

As noted by several researchers (e.g., Gautestad and Mysterud 2010; Boyer et al. 2012),
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animal trajectories frequently contain returns to previously visited locations that violate

the assumptions of low Markovian order models of movement processes, necessitating the

development of alternative techniques that take cognitive processes such as memory into

account. Indeed, incorporating memory into models of animal movement has been suggested

as a future direction in movement ecology (Morales et al. 2004; Patterson et al. 2008). The

models discussed above provide ideas for how memory can be integrated into predator–

prey models. However, they generally treat predators as searching for immobile prey (or

mobile prey within a fixed patch but ignoring the details of the predator catching the prey)

and so need to be extended to consider predators a dynamic component of predator–prey

models (Lima 2002). Regardless of how memory is implemented, using memory must be

demonstrably better that ignorance or random behavior (Grove 2013).

While memory models utilized in predator–prey models are necessarily more simplistic

than how these cognitive processes actually work (Avgar et al. 2013; Grove 2013), information

on memory function can be gained from the studies in psychology and neuroscience. For

example, it is important that information be spatially salient when modeling spatially-explicit

memory (Sulikowski and Burke 2010). Another important consideration for modeling is how

to incorporate uncertainty about spatial information. Finally, there may be asymmetries in

learning food location compared to predation risk.

Given the enormous range of cognitive abilities among species, this raises the question of

what advantages cognitive complexity brings and in what circumstances is it most effective.

Consider an animal foraging in a patchy environment. This could be an aquatic species,

like a fish selecting habitat along a stream or the temporary aggregations of plankton in a

pelagic environment. Similarly, in the terrestrial environment, resource distribution is also

heterogeneous. For nectarivores, like many species of insects and birds, high quality habitat

may be groups of flowering plants or the individual plant itself, while for ungulates like

moose or elk, it may be open clearings or sections of forest. Depending on what the animal

is eating, the different strategies of the forager (or consumer of the resource) can vary in

effectiveness. While returning to patches regularly could be advantageous for nectarivores to
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coincide with the next set of blooms, the same would not necessarily hold for planktivores if

the patches have drifted in the meantime. For other herbivores, the location of the patches

could be important to remember, but randomly visiting them may be just as an effective

strategy. Next consider how the forager’s strategy changes in the presence of predators,

which could be a larger fish, bird of prey, or pack of wolves. The forager now has two

potentially competing objectives: to obtain sufficient food resources and to avoid being

eaten by predators. Depending on the predictability and legality of the predators, it could

be more or less advantageous to remember predator encounters and seek to avoid them.

These questions—about how movement and cognitive abilities impact foraging choices

and predator–prey interactions—are what this project seeks to address. What is the advan-

tage of added cognitive complexity, such as memory, for animals in the context of foraging

and balancing the food–safety trade-off with predators? What environmental characteristics,

e.g., of the habitat or predators, make memory more advantageous? How does learning affect

forager behavior, such as the case of a naive forager introduced into a novel environment or

predators introduced to an environment in which they had not previously been present?

Chapter 1. This chapter describes the foraging model. Several movement processes

are compared: a simple correlated random walk; kinesis, in which correlated random walk

parameters are set based on consumption rate, i.e., searching and feeding behaviors; and

memory-informed movement. Two streams make up the memory: a short-term repulsive

stream that drives the forager away from recently visited areas and a long-term attractive

stream that draws the forager back to high quality areas. These movement processes are

evaluated across a range of landscape characteristics.

Chapter 2. This chapter introduces predation into the model. Predators are formu-

lated as a Poisson process and vary in their spatial correlation with habitat quality and their

temporal predictability. Foragers have an additional memory stream for predator encounters

which they must balance against the resource memory to determine movement direction.

Predator environment and resource distribution are varied to examine when memory is par-

ticularly useful and how it impacts the food–safety trade-off as well as the non-consumptive
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effects of predation.

Chapter 3. This chapter considers newly introduced foragers naive to their environment.

The movement processes kinesis and memory both switch between feeding and searching be-

haviors based on the average consumption rate. While in previous chapters foragers knew the

average value of the landscape, they now must learn it. Foragers using memory additionally

value unexplored habitat differently based on where they fall on the exploratory–avoidant

temperament axis. These individual differences, as well as learning rates, are compared to

fully informed foragers and those not using memory to examine how they affect learning of

unfamiliar habitats.

Chapter 4. This chapter examines the effects on foragers and the resource of introducing

predators to a system in which they were previously absent. After a period of foraging

without predation, predators appear in the area of highest resource quality. The habitat use

of the forager before and after predation is compared under several predator scenarios to

examine the effect on the foragers and the underlying resource.
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Chapter 1

INVESTIGATING THE EFFECT OF MEMORY ON

FORAGING BEHAVIOR

Abstract

Incorporating memory into models of animal movement is increasingly important as models

seek to answer more complex questions regarding individuals whose prior experiences shape

their choices. Foraging behavior is one example of learning and memory and is observed

across a variety of taxa. This chapter presents a flexible, continuous-space, and continuous-

time model incorporating memory of an animal moving through a landscape of variable-

quality resources. The model is used to examine for which landscapes the added cognitive

complexity of maintaining memory is advantageous and to analyze the behavioral differences

between using and not using memory. In general, a landscape where there is a larger payoff

for finding a resource patch, whether in size, value, or difficulty in locating, favors memory.

These landscapes consist of sparse, contiguous patches of high-value resources that regenerate

quickly, located on a space that is mostly devoid of resources. While memory-informed search

can be difficult to differentiate from other sensory-driven search behavior, disproportionate

spatial use of higher value areas, higher consumption rates, and consumption variability all

point to memory influencing the movement direction.

1.1 Introduction

It has long been recognized that foraging behavior in the field provides evidence for learning

and memory across a variety of taxa, complementing more controlled laboratory studies (re-

viewed in Kamil and Roitblat 1985). Observed foraging behavior also motivates experiments

based on spatial memory. For example, whether spatial learning can be detrimental with
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temporally unpredictable food even if it is advantageous for spatio-temporally predictable

food (Haupt et al. 2010).

Examples of evidence for spatial memory are many and occur in taxa ranging from insects

to primates. Bees, for example, learn reward values (Gil and De Marco 2009). When dis-

placed into familiar territory, they can both choose between two goals and navigate (Menzel

et al. 2005). They thus demonstrate a map-like memory (Menzel et al. 2005), though path

integration and learned landmarks may be sufficient to accomplish these tasks (Cruse and

Wehner 2011). Fish on coral reefs use learned landmarks to navigate between food patches,

including the possibility of novel routes indicating a cognitive map (Reese 1989). Birds re-

peatedly return to previously visited sites (Regular et al. 2013). An analysis of visit length

and time between visits suggests that monkey movements are non-random due to the use of

memory and driven by environmental heterogeneity (Boyer et al. 2012).

Memory-informed search as a foraging behavior can, however, be difficult to differentiate

from other sensory-driven search behaviors (Fagan et al. 2013). Much of the literature on

animal cognition from psychology focuses on food-rewarded behavior—essentially foraging

behavior (Shettleworth 2001). Memory-driven movement behaviors are numerous, encom-

passing foraging and more (e.g., migration, caching, home ranging, and searching, among

others), and the necessary orientation abilities range from the simple movement along a gra-

dient to more complex goal-oriented behaviors using path integration or landmarks (Fagan

et al. 2013).

Unlike other physiological attributes such as energy reserves or hormone levels, memory

is an internal state of the animal that cannot be measured directly. This is especially true

in ecological contexts when the history of the animal’s experiences may be unknown. Even

in controlled laboratory conditions, issues such as motivation and salience may confound

attempts to study memory. In fact, formulating clear behavioral criteria in order to infer

cognitive processes is a particular challenge for studying animal learning and memory (Shet-

tleworth 2001). Models thus are a useful tool to investigate hypotheses that involve direct

measures or manipulation of memory.
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To date, models of animal movement have generally avoided the complexity of modeling

memory in favor of simpler formulations such as area-restricted search or those based on

random walks (Watkins and Rose 2013). However, incorporating memory has been suggested

as a future direction for improving movement models (Morales et al. 2004; Patterson et al.

2008). Investigations into more complex processes, such as how individual movements affect

survival and reproduction and in turn population dynamics, make incorporating memory into

movement models more important, as individuals’ prior experience will shape their choices

(e.g., returning to or avoiding specific locations) (Morales et al. 2010). One technique for

including memory include reinforced random walks (random walks on a lattice in which

previously visited nodes or edges are more likely to be used again), although an important

consideration is to also allow for movements towards distant remembered locations (Smouse

et al. 2010). Another suggestion is to represent spatial memory as multiple layers, allowing

the modeling of the process of memory decay as declining memory intensity and precision

with time, which in turn affects the strength and directionality of the movement process

(Fagan et al. 2013).

Previous approaches to including memory in movement models have varied from sta-

tistical approaches incorporating current or visited locations into random walks to more

mechanistic formulations of spatial memory. For example, in a model combining mem-

ory, non-oriented random walks, and perceptually oriented movements using evolutionarily

trained artificial neural networks (ANNs), memory is most important for locating resources

in predictable landscapes (Mueller et al. 2011). In this model, memory can be thought of

as evolutionary knowledge, as learning happens through the generations of the evolution-

ary algorithm. While memory was also used to create systematic circular searches useful

even for unpredictable landscapes, this may have been the ANN exploiting the orthogonal

xy-coordinate system used to encode position, and there is little reason to think that ani-

mals navigate or search using such human space representations (Bennett 1996). Multi-scale

random walks (Gautestad and Mysterud 2005) combining truncated Lévy flight (short-term

local steps) interspersed with returns to previously visited locations (infrequent large-scale
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strategic steps), can model the avoidance of recent locations of foraging with resource deple-

tion and renewal (Gautestad and Mysterud 2010; Gautestad 2011). However, these models

tend to be used on a homogeneous landscape and ignore heterogeneity as habitat quality can

also affect revisit probability in addition to familiarity (Boyer et al. 2012).

Some mechanistic models of memory are targeted to specific systems. For example, spa-

tial memory is represented as a graph of connected patches and information is acquired

within a perceptual range in a model of elk migration in Yellowstone (Bennett and Tang

2006). Modeling monkeys foraging on fruiting trees, Boyer and Walsh (2010) showed spatial

memory could result in repeated routes. In this case, the route itself was not learned, but

only the state of visited trees, and movement was a mixture of random steps and optimal

steps without route planning. However, general theoretical questions can also be addressed.

Home range behavior has been shown to arise from learning about the environment as an

intermediate state between dispersal and movement centered on a single location (Spencer

2012; Van Moorter et al. 2009). In both models, returning to a location is a function of

information decay and distance. Van Moorter et al. (2009) focus on the spatial location of

patches with two memory streams: a repulsive working memory and an attractive reference

memory. The memory streams are weighted by distance and decay at different rates. Home

range behavior arises with intermediate working memory and small reference memory de-

cay rates, leading to a balance between diffusion and single patch fidelity. Spencer (2012)

emphasizes learning ancillary site-specific information that improves the foraging rate. An

expected value of a linear arrangements of patches is calculated based on the decay of infor-

mation and the time to regeneration. Home range behavior arises when foragers benefit from

information after a time delay, such that there is a dynamic equilibrium between resource

consumption and regeneration, and information allows foragers to more efficiently exploit

those resources.

Another area of research is determining the environments in which memory is most useful

or most likely to have evolved. Avgar et al. (2013) use a biased random walk informed by a

redistribution kernel in which a location’s attractiveness combines perception, memory and
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travel cost. The model suggests that memory capacity should not be limited only by physio-

logical costs. It should also negatively correlate with the rate of environmental change, given

the adaptive value of forgetting in a temporally dynamic landscape. Because spatial memory

is assumed to be energetically costly, in any case where performance between informed and

uninformed individuals is identical, evolution would presumably favor no spatial memory

(Grove 2013). Using derived inter-patch distances for naive and memory-informed foragers,

Grove (2013) computes patch encounter rates. Spatial memory is predicted to be favored

by selection when resources are sparsely distributed (lower patch densities or smaller patch

sizes) or detection distance is small.

My goal is both to create a flexible, continuous model incorporating memory of an animal

moving through a landscape of variable quality resources, and to use that model to examine

when the added cognitive complexity of maintaining memory is advantageous. A key feature

of the model is that it is continuous-space and continuous-time in order to be a versatile,

realistic framework for considering animal movements. While collected movement data are

generally a discrete set of times and locations, it is important to remember that data are a

sample of a continuous movement trajectory across a landscape (Gurarie et al. in review).

While this model would be able to be applied to many organisms and systems, the proto-

typical scenario is an animal foraging on stationary resources that deplete and regenerate,

though scales could vary from a nectarivore foraging on flowering plants to a fish feeding in

seagrass beds to a cervid browsing forest clearings. In order to illustrate the model, I com-

pare an animal using three different movement processes: (1) a simple correlated random

walk, (2) kinesis, in which correlated random walk parameters are set based on consumption

rate, i.e., searching and feeding behaviors, and (3) memory-informed movement, across a

range of landscape characteristics (patchiness, correlation, and regeneration rate). These

nested behaviors allow the evaluation of what landscape characteristics result in memory

outperforming other movement processes, and what that may suggest for the evolution of

memory. Further, I analyze the behavioral differences in terms of habitat use and time allo-

cation among the movement processes, and what they suggest one is likely to observe in an
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animal of using memory.

1.2 Methods

1.2.1 Model

In the foraging model, the animal moves across a habitat of variable resource quality, con-

suming those resources. Depending on the movement process, the animal’s movements are

random (random walk), informed by its current consumption rate (kinesis), or informed by

its memory of the resource quality and current consumption rate (memory). In the frame-

work of Nathan et al. (2008), the animal’s movement is motivated by finding food resources

and its internal goal is to maximize consumption. The motion capacity in terms of velocity

is the same across all three movement processes, but the navigational capacity differs. For

random walk, there is no navigation abilities, and no external factors influence the move-

ment trajectory. Kinesis does not navigate towards a goal, but the current resource quality

affects the movement process. With memory, on the other hand, navigation towards previ-

ously learned habitat areas is possible as spatial memory and current resource quality affect

the movement trajectory. Throughout the model description, almost all components are

functions of two-dimensional space z ∈ R2 and time t (e.g., f(z, t)), though the dependent

variables are omitted in some equations for clarity. Consult Table 1.1 for a complete list of

parameters.

Habitat quality and consumption

In the modeled habitat, resource productivity varies heterogeneously across the landscapes,

with both the amount of heterogeneity and the regeneration rate being parameterized. The

intrinsic habitat quality, Q0(z), is constant through time, meaning that transient or moving

patches are not considered here. The instantaneous habitat quality, Q(z, t) depends on both

consumption, C(z, t), by the animal and logistic regeneration, R(z, t),

∂Q

∂t
= (R− C)Q. (1.1)
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Table 1.1: Parameters used in the foraging model and values for simulations. Because units are arbitrary in the
simulations, L is used for generic length units and T is used for generic time units.

Parameter Definition Units Values
Simulations

∆t model time step T 1
T simulation length (time steps) 1000

Landscapes
µQ patch concentration (GRF mean) -1.5, -1, -0.5, 0, 1
γQ patch size (GRF scale) 2, 10

Consumption
βR regeneration rate 1/T 0.005, 0.01, 0.05
βC consumption rate 1/T 1
γC consumption spatial scale L 1

Memorya

ψM short-term memory factor 2, 5, 10
βL, βS learning rates 1/T 1
φL, φS decay rates 1/T 0, 1e-5, 1e-4, 0.001, 0.01, 0.1, 0.5
γL, γS learning spatial scale L 1

Movementb

τS, τF autocorrelation time scale T 4, 2
νS, νF length of µ L/T 6, 1
γZ memory spatial scale L 1, 5, 10
λ mean time to update θ T 0.5, 1, 2

aL = long-term memory, S = short-term memory
bS = searching, F = feeding
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Table 1.2: Spatial kernels used in the foraging model. N2 is the bivariate normal distribution
and I is the 2 x 2 identity matrix.

Description Equation Form
Consumption kernel fC N2(0, γ

2

CI)
Short-term memory learning kernel fS N2(0, γ

2

SI)
Long-term memory learning kernel fL N2(0, γ

2

LI)
Memory distance-weighting kernel fZ Exp(γZ)

Consumption and regeneration are defined as

C = βC fC(|z − Z|), (1.2)

R = βR

(

1−
Q

Q0

)

, (1.3)

where consumption occurs in the vicinity of an animal’s position, z = Z and is described

by a spatial kernel, fC(|z − Z|), and consumption rate, βC , and βR is the regeneration rate.

The spatial kernel is solely a function of distance from the animal’s location, |z − Z|, i.e., it

is isotropic. Here fC is the bivariate normal distribution centered on the animal’s location

Z with the variance parameter γ2C (the length scale of the spatial kernel) characterizing how

widely the animal consumes about its location (Table 1.2). This conception of resource con-

sumption, high in the animal’s immediate vicinity and decaying to zero at greater distances,

is a good fit for grazing animals, with the length scale representing how far an animal can

reach for food as it moves or fine-scale movements on a smaller scale than the trajectory.

Memory map

As the animal moves across the landscape observing habitat quality, it builds up a memory

map, M(z, t) made up of two streams. Two memory streams have been used to detect

changes in the environment (Kacelnik et al. 1987), combine short-term tactical and longer-

term strategic behaviors in foraging (Anderson 2002), give rise to stable non-territorial home

ranges (Van Moorter et al. 2009), and represent neural circuits in conditioning (Anderson
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et al. 2010). Multiple memory layers have also been suggested for modeling memory decay

(Fagan et al. 2013). The memory map includes a long-term stream, L(z, t), which decays

slowly and attracts the animal to high quality habitat, and a short-term stream, S(z, t),

which decays quickly and repels the animal from depleted habitat it has recently occupied.

The two memory streams combine linearly to form the memory map, so that positive values

are attractive, zero indicates neutrality, and negative values are repulsive:

M = L− ψMS. (1.4)

Because L and S have the same maximum value (Q0) and S decays faster than L, the

short-term memory factor, ψM , ensures that the value at a just-visited location will initially

be negative, or repulsive, with ψM > 1. As L and S decay, the value will eventually turn

positive and thus attractive for good quality habitat.

Each memory component (L and S) is a mixture of two parts, learning and forgetting,

∂L

∂t
= βLfL(|z − Z|)(Q0 − L)− φLL, (1.5)

∂S

∂t
= βSfS(|z − Z|)(Q0 − S)− φSS, (1.6)

where βL and βS are the learning rates of the long- and short-term memory streams, fL and

fS are spatial kernels describing learning (Table 1.2), and φL and φS are the decay rates.

As for consumption, a spatial kernel is used to describe how an animal learns about its

immediate vicinity, though the length scale could differ. For example, an animal might be

able to visually inspect a larger surrounding area than it is able to browse.

Movement model

Movement process. An animal’s movements through a landscape are described by a

continuous trajectory, Z(t). Taking velocity, V (t), the animal’s position is thus Z(t) =
∫ t

0
V (t′)dt′ + Z(0), where Z(0) is the animal’s initial position. An autocorrelated, directed,

continuous movement process is

dV =
1

τ
(µ(t)− V )dt. (1.7)
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Table 1.3: Behavioral states in the model and corresponding movement process parameters.

State Direction ( 6 µ) Speed (||µ||) Time scale (τ)
Searching memory: 6 µ ∼ g(θ) νS (fast) τS (large)

kinesis: 6 µ ∼ U(0, 2π)

Feeding 6 µ ∼ U(0, 2π) νF (slow) τF (small)

This is similar to the Ornstein-Uhlenbeck process, but without the white noise component.

Instead, stochasticity is introduced through the bias vector, µ(t) = (ν, 6 θ). The movement

process is parameterized by τ , the time scale of autocorrelation, and ν = ||µ(t)||, the mag-

nitude of the bias vector which controls the average speed of the process. The angle θ is set

probabilistically, either from a uniform circular distribution resulting in a random walk or

from a probability distribution computed from the memory map. A Poisson process with

rate parameter λ is used to update θ, meaning µ(t) is constant between updates.

Behavior states. Three versions of the movement process are compared: random walk,

kinesis, and memory. For the single-state random walk, a single set of speed and time

scale parameters determine the movement process with the bias angle set randomly. With

kinesis and memory, the animal switches between searching and feeding states (Table 1.3).

These three movement processes have the advantage of being nested, facilitating comparisons.

Kinesis is a movement model that performed well in a variety of environments and avoids

the strong assumptions of perceptual abilities of area-restricted search (Watkins and Rose

2013), which also performs sub-optimally in very patchy environments (Humston et al. 2004).

Random walk provides a useful null model to compare against.

For both kinesis and memory, movement in the feeding state is tortuous and slow as

the animal seeks to exploit the local high quality habitat. The angle θ of the bias term is

drawn from a uniform distribution as movement is undirected. In the searching state, on

the other hand, the timescale of autocorrelation is large, leading to more linear movements

and directional persistence, and the animal moves with a higher rate of speed. The bias
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angle is still set randomly for kinesis, but with memory, the animal seeks productive patches

with the direction determined from the memory map. The angular probability distribution

is computed by integrating transects of the memory map radiating out from the forager’s

location with the memory value at each point weighted by distance. The integrated transects

are then normalized by the integrated value for the whole memory. The angular probability

density function is given by

g(θ) =

∫ r

0
M(r, θ)fZ(r)dr

∫

2π

0

∫ r

0
M(r, θ′)fZ(r)drdθ′

, (1.8)

where r = |z−Z| and fZ(r) is a kernel function (e.g., exponential with length scale parameter

γZ) that weights according to distance, such that closer resources are preferred all else being

equal (Table 1.2).

If the memory map is empty, the probability is undefined. In this case, an angle is chosen

at random with uniform probability leading to an exploratory behavior. Thus each state is

defined by its directional bias (random or memory-driven) and the correlation and speed of

movement.

Behavioral state transitions. The animal begins in the searching state, transitions to

the feeding state when consumption increases, and transitions back to searching whenever

consumption drops. Turning to optimal foraging theory, the marginal value theorem states

that the animal should leave a patch when the foraging rate in the patch drops below the

average foraging rate in the environment (Charnov 1976). Thus the switch between states

occurs when the current consumption rate, C(t), crosses the average consumption rate, C̄.

The average consumption rate is based on the intrinsic habitat quality, C̄ = βC fC(|z−Z|)Q0,

where Q0 is a uniform landscape of average habitat quality extending outward from Z in all

directions. This assumes the animal knows its habitat and the average consumption rate.

Instead, the average consumption rate could be learned, such as for novel environments,

which is explored in Chapter 3.
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1.2.2 Simulations

The simulations compare the following foraging strategies bases on the movement processes

described above: memory (complete model), kinesis (no memory, but animal switches be-

tween feeding and searching), and a random walk (single state). The same speed and

timescale autocorrelation parameters are used for both memory and kinesis. The random

walk uses the searching speed and timescale autocorrelation, which outperformed the feed-

ing parameters and intermediate values aligning with encounter theory favoring faster speeds

with destructive encounters of dynamic targets (Gurarie and Ovaskainen 2013).

In order to examine a stationary scenario (i.e., after the animal is familiar with its envi-

ronment), the simulation begins with the long-term attractive memory stream initialized to

the habitat quality, Q0, and the short-term repulsive stream initialzed to zero. Initializing

both memory streams to zero allows one to investigate learning of a novel environment. The

simulations compare the three strategies according to the parameter values in Table 1.1. All

strategies are compared across the landscape parameters of patch concentration, patch size,

and regeneration rate. Additional parameters controlling the memory model are also varied

for those simulations.

Landscapes

Landscapes are generated with a Gaussian random field (GRF) using the RandomFields R

package (Schlather et al. 2014) to be 50 x 50 in size using an exponential covariance function

with variance = 1, nugget = 0, and a set of mean (patch concentration, µQ) and scale (patch

size, γQ) values (Fig. 1.1, Table 1.1). Differing amounts of patchiness are simulated by

truncating all negative values to zero, so landscapes simulated with smaller mean values have

more areas of no resources than landscapes simulated with larger mean values. Landscapes

are normalized to sum to one so that the total resource amount remains the same across

all landscapes even as the resource distribution differs. For each combination of µQ and γQ,

twenty different landscape replicates were generated.
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Figure 1.1: Sample generated landscapes for different combinations of patch concentration
from patchy to smooth and patch size from small to large. Color indicates resource quality
from none (white) to low (light green) to high (dark green). Total resources in each landscape
are the same.

The GRF mean parameter, or patch concentration, controls how concentrated resources

are in space along a gradient from patchy (landscapes of very concentrated, high-value re-

sources amongst mostly no resources) to smooth (landscapes of lower-value resources with

few areas of no resources). The GRF scale parameter, or patch size, controls the relative

size of patches in the generated landscape along a gradient from small discontinuous patches

to large continuous patches. The GRF scale parameter controls the scale of the spatial

autocorrelation in the generated field. The effect is to vary the patch size since a larger

scale value results in spatial autocorrelation at larger distances and thus larger patches once

negative values are removed. Note that the parameters are not completely orthogonal. For

a given scale value, patch size will still vary with the mean value, i.e. patchier landscapes

have smaller patches than smooth landscapes. Similarly, for a given mean value, patch con-

centration will still vary with the scale value, i.e. more concentrated patches when patches

are smaller versus larger.
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The boundaries are reflecting boundaries, meaning for any step that would exit the

habitat, the velocity is reversed so that the animal travels away from the boundary. In

addition, the µ vector is reset on hitting a boundary.

Numerics

For the purpose of simulating the model, the continuous variation in habitat quality is dis-

cretized onto a grid. Intrinsic and current habitat quality are tracked for each grid square for

each time step ∆t. Time is simulated as regular intervals (taking a small ∆t to approximate

dt, with the requirement ∆t < τ). If an event from the Poisson process that updates µ(t)

occurs during the interval, then a new angle θ is selected at that interval. The differential

equations described above are approximated using the Euler forward method. While this is

a relatively simple method with comparatively larger errors, another source of error is the

relatively large values of ∆t (step size) and ∆x (grid size) chosen to meet computational

demands. Finally, the reflecting boundaries mean that paths will diverge regardless of time

step size once trajectories hit a boundary since the exact time the reflection happens differs.

However, using an infinite spatial domain was not computationally feasible nor necessarily

ecologically realistic, given natural and artificial barriers to animal movement. This problem

is compounded for the kinesis and memory movement processes because the exact moment

of switching behaviors is also affected by the time step, and, in the case of memory, feeds

back into the memory state.

Because the trajectories will diverge through time because of the issues with boundaries

and behavior switching, space use was compared visually using the utilization distribution

calculated with kernelUD in the adehabitatHR package (Calenge 2006) in R (R Core Team

2014). The three movement processes were simulated on a limited number of landscapes

representing the four extremes (µQ = −1.5, γQ = 2; µQ = −1.5, γQ = 10; µQ = 1, γQ = 2;

µQ = 1, γQ = 10), with one memory parameterization (φL = 0.001, φS = 0.01, ψM = 2,

γZ = 10). For values of ∆t (0.1, 0.5, 1, 2) were compared with three values of λ (0.5, 1, 2).

Space use was similar though variable across combinations of ∆t and λ for each combination
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of landscape and movement process (see Appendix A). Slightly more structure in space use

was seen with smaller values of ∆t and λ, particularly with kinesis and memory. However, the

overall areas of intense use were similar. Despite these challenges, simulation modeling can

still provide insight into the system dynamics even though the approximations are necessarily

coarser than ideal.

Metrics

Analysis of model outputs is done with R (R Core Team 2014). Simulations are evaluated

primarily based on total consumption, the sum of the forager’s consumption (Eq. 1.2) over

the simulation. To track habitat usage differences among movement processes and simula-

tions, the amount of time spent in areas of zero resources and the four quartiles of resource

distribution are tracked. Additionally, for kinesis and memory movement processes, time

spent in each behavioral state, searching and feeding, is tracked.

To evaluate the contribution of different parameters in the memory model, random forests

are used to compute a statistic of relative importance for each parameter (Breiman 2001)

using the party R package (Strobl et al. 2007). An advantage of random forests is that they

are robust to nonlinearity and complex interaction effects (Strobl et al. 2007). The method

first permutes one of the predictors (thereby removing the potential association between that

predictor and the response), then generates random forests (a set of classification trees fit

to bootstrap samples drawn from the original), and compares the prediction accuracy of the

permuted and unpermuted predictor. Because the parameters are continuous in the model,

but simulations were only run for certain specified values, the random forest analysis is done

for treating parameters as continuous and categorical variables.
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1.3 Results

1.3.1 Foraging efficiency

Differences in simulation trajectories for each movement process in terms of space use, which

translate to differences in consumption, are apparent (Fig. 1.2). Even averaging over all

memory parameterizations and landscapes, memory (consumption mean = 0.48, s.e. =

0.32) outperformed kinesis (consumption mean = 0.34, s.e. = 0.13) and random walk (con-

sumption mean = 0.19, s.e. = 0.03). While total consumption was higher for memory, there

was also more variability across simulations, even for the same landscape parameters. How-

ever, the increased variability with memory was generally towards improved performance:

the lower performing memory simulations generally outperformed most kinesis simulations.

In fact, every combination of memory parameters outperformed kinesis for consumption av-

eraged across all landscapes. When matching simulations (i.e., comparing a memory param-

eterization to kinesis or random walk, matching simulations by landscape and regeneration

rate), the performance of the 252 parameterizations of memory ranged from outperforming

97–100% of random walk simulations and 64–97% of the kinesis simulations.

However, landscape characteristics affect how much benefit memory provides (Fig. 1.3).

In more patchy environments (negative µQ), memory (using the best overall parameteri-

zation across all landscapes) strongly outperformed kinesis, which in turn out performed

random walk, but the effect weakened as the landscapes become smoother (positive µQ).

Patterns held across regeneration rates, but were strongest for higher regeneration rates.

Mean consumption values remained constant across landscape parameterizations for ran-

dom walk, increased with only increasing patch concentration for kinesis, and increased with

both increasing patch concentration and size (γQ) for memory. Variability across simulations

also increased for all movement processes with increasing patch concentration and size (i.e.,

landscapes with fewer larger patches). Even with increased variability in landscapes with

high-value and/or large patches, the minimum memory consumption was higher than the

maximum random walk and generally higher than or close to the mean kinesis value.
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Figure 1.2: Sample trajectories for the memory (left), kinesis (center), and random walk
(right) movement processes on a landscape with µQ = −1.5 and γQ = 2 (top row) and 10
(bottom row). Trajectories start at the center with color changing through time (green, blue,
purple, magenta). For memory and kinesis, thinner lines indicates searching and thicker lines
indicates feeding behavior. Resources are shown at their undepleted level at the beginning
of the simulation. Memory is parameterized with best overall parameters, φL = 0.001,
φS = 0.01, ψM = 2, γZ = 10.
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Figure 1.3: Consumption for the three movement models across different landscape parame-
ters patch concentration µQ and size γQ for medium regeneration rate βR = 0.01. Bars show
mean consumption values across replicates of landscape parameters while lines show mini-
mum and maximum. Memory is parameterized with best overall parameters, φL = 0.0001,
φS = 0.01, ψM = 2, γZ = 10. In the figure, M = memory, K = kinesis, R = random walk.
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The above results were for a mean update time of λ = 1 for all movement processes,

but simulations were run to compare updating the bias direction (whether from memory or

random) more and less frequently. Changes in mean consumption with increasing λ were

small ( 1% random walk, 1–3% kinesis, and 0–6% memory), but in the opposite direction

for memory versus the randomly directed movement processes. While memory did best with

more frequent directional input, random walk and kinesis both did best with less frequent

input and thus more persistent movements.

1.3.2 Memory parameters

Another approach to evaluating memory is to examine how often and by how much mem-

ory outperforms kinesis when matching simulations by habitat parameters (Fig. 1.4). The

clearest pattern emerges with memory spatial scale, with larger values outperforming smaller

values almost exclusively. Faster short decay rates were generally better, with 0.1 and 0.01

the best performing, while the opposite was true for the long decay rates with 0–0.001 per-

forming best. There is some clustering evident with the short memory factor as well. When

comparing memory parameterizations for specific landscape parameterizations, the general

patterns in parameter values still hold but the differences seen between kinesis and memory

mirror Fig 1.3. In patchy environments with large patches (µQ = −1.5, γQ = 10), mem-

ory outperforms kinesis 77–100% of the time with an increase in consumption of 49–165%

over kinesis, while in smooth landscapes with smaller patches (µQ = 1, γQ = 2), memory

outperforms kinesis 37–95% of the time with an increase in consumption of only -2–8%.

Instead of looking for a single set of memory parameters with the highest overall con-

sumption across different landscapes, the optimum memory parameter combination can be

found for each landscape parameter combination (Table 1.4). While there is less variability

within memory parameterizations than across movement processes, patterns still emerge.

The short decay rate varies consistently with regeneration rate, with the optimum parame-

ter combination tending to include φS of 0.01, 0.01–0.1, and 0.1–0.5 for slow, medium, and

fast regeneration rates respectively. There is less consistency in the long decay rate, other
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Figure 1.4: Percent of memory simulations that outperform kinesis and net amount of con-
sumption gained using memory. Each point represents a parameterization of the memory
movement process. Simulations are matched by landscape and regeneration rate. Percent
outperformed shows the percent of simulations for which memory outperformed kinesis for
that set of parameters. Net percent improvement shows how much consumption improves
with memory over kinesis. It is the sum of the differences between that memory parameter-
ization and kinesis for each simulation divided by the total consumed by kinesis across all
simulations. Panels are each color coded by different memory parameters.
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βR = 0.005 βR = 0.01 βR = 0.05

µQ γQ φL φS ψM γZ φL φS ψM γZ φL φS ψM γZ
-1.5 2 1e-04 0.01 2 10 1e-04 0.01 2 10 0.01 0.5 2 5
-1.5 10 0.001 0.01 5 10 0 0.01 2 10 0.01 0.5 2 10
-1 2 0.001 0.1 5 5 1e-04 0.5 5 10 0.01 0.5 5 10
-1 10 1e-05 0.01 5 10 1e-05 0.01 2 5 1e-04 0.1 5 10
-0.5 2 1e-05 0.01 5 10 0 0.1 10 5 0.01 0.5 5 10
-0.5 10 0 0.01 5 10 1e-04 0.1 10 10 0.01 0.1 5 10
0 2 1e-04 0.01 5 5 0.001 0.01 2 10 0.01 0.1 2 10
0 10 0.001 0.01 2 10 1e-05 0.1 5 10 1e-04 0.5 5 10
1 2 0.001 0.01 5 10 1e-05 0.01 10 10 0.01 0.1 2 5
1 10 0 0.01 10 10 1e-05 0.5 10 10 0.01 0.1 5 10

Table 1.4: Best performing memory parameters (φL, φS, ψM , γZ) for each landscape envi-
ronment, a combination of regeneration rate (βR), patch concentration (µQ), and patch size
(γQ).

than it tends to be 0.01 for fast regeneration and less than 0.01 for slower regeneration rates.

Interestingly, a long decay rate of 0 was selected for only a few combinations, even though

resource stability means there is no obvious advantage to decaying the long-term attractive

memory stream. Little pattern is apparent with the short memory factor in relation to the

landscape parameters, although there appears to be an interaction between the short decay

rate and the short memory factor. Larger short memory factors are associated with relatively

faster short decay rates. Thus the short-term repulsive memory stream may similarly adjust

the overall memory by either a lower weighting of a slowly decaying memory or a higher

weighting of a faster decaying memory (Eqs. 1.4 and 1.6). Finally, a value of 10 is favored

for the memory spatial scale, meaning a weaker discounting by distance giving more weight

to distant patches is preferred.

Comparing variable importance in explaining the differences in consumption, landscape

parameters dominate memory parameters (Table 1.5). A conservative rule of thumb to

interpret variable importance values is that a variable is informative if its value is greater

than the absolute value of the lowest negative value, as irrelevant predictors will randomly
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Parameter Variable importance
µQ landscape patch concentration 1.07e-01
γQ landscape patch size 3.43e-02
βR regeneration rate 1.19e-02
φS short decay rate 5.19e-03
γZ memory spatial scale 3.52e-03
ψM short memory factor 4.30e-04
φL long decay rate 1.61e-04

Table 1.5: Permutation importance scores (mean decrease in accuracy) calculated using ran-
dom forests for the memory movement process. Results shown treat parameters as continuous
variables. Results were similar when parameters were treated as categorical.

vary around zero (Strobl et al. 2009). All parameters had positive variable importance values.

Of the landscape parameters, patch concentration is the most important, followed by patch

size and regeneration rate at a similar order of magnitude. For the memory parameters,

the short decay rate was most important, followed by memory spatial scale at a similar

order of magnitude, then short memory factor and long decay rate. Long decay may only be

important as a threshold (i.e., just needs to be slow enough), and the bulk of the observations

were for smaller long decay rates since the long decay rate must be smaller than the short

decay rate.

1.3.3 Behavior

Differences in habitat usage are apparent across the three movement processes and different

landscape parameterizations (Fig. 1.5), mirroring the differences observable in individual

trajectories (Fig. 1.2). The amount of habitat with zero resources, and thus the remaining

area that each quartile of resource quality occupies, varies with patch concentration, from

nearly all area having zero resources (µQ = −1.5) to nearly all area having some positive

amount of resources (µQ = 1). As expected, the habitat usage of the random walk matches

the distribution of habitat on the landscape. With kinesis, merely by switching states based

on consumption rate, the habitat usage is markedly biased towards areas of higher quality.
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However, patch size, γQ, has no effect and the habitat usage for kinesis is similar across

different values. Memory, on the other hand, results in even more time spent in better

quality habitat that kinesis, and also differs by patch size as well as concentration. Memory

is able to spend more time in better habitat for landscapes with fewer, but high-value, larger

patches.

In addition to differences in habitat usage, memory spent less time searching on average

than kinesis (Fig. 1.6). For kinesis, time searching decreased with smoother landscapes, that

is, as the amount of area with some resources increased. Memory showed a very slight increase

in time searching with patchier landscapes, but was generally consistent across differing

patch concentration values. On the other hand, kinesis showed increasing variability with

increasing patch size, but the median time searching was similar across scales. For memory,

time searching decreased substantially with increasing patch size and variability was less

impacted than for kinesis.

1.4 Discussion

In this chapter, I present a continuous-time, continuous-space foraging model that incor-

porates movement with directional preference based on a memory of habitat quality. The

habitat memory is composed of two streams, a long-term attractive stream and a short-term

repulsive stream, which the forager integrates across the landscape to probabilistically pick

a direction. While the different movement processes perform similarly in smooth landscapes,

patchier landscapes differentiate them. The concentrated resources in patchier landscapes

are both harder to locate and of higher value once located, leading to memory outperform-

ing random walk and kinesis. Similarly, foragers using memory also receive higher rewards

with a faster regeneration rate and larger high-value patches, which also provide a stronger

signal in memory. In general, landscapes that favor memory are those with higher rewards

or higher difficulty for locating resources and are the places best-suited to look for evidence

of memory-informed foraging behavior.

While many existing models have utilized a discrete random walk formulation of move-
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Figure 1.5: Time spent in areas of different resource quality across different landscape param-
eters patch concentration µQ and size γQ for medium regeneration rate βR = 0.01 compared
to the distribution of resources on the landscape. White represents zero resources while
shades of gray from light to dark show quartiles of increasing quality. Memory is parameter-
ized with best overall parameters, φL = 0.0001, φS = 0.01, ψM = 2, γZ = 10. In the figure,
M = memory, K = kinesis, R = random walk, L = landscape.
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Figure 1.6: Time spent searching (as opposed to feeding) for memory and kinesis movement
processes across different landscape parameter values for patch concentration µQ and size
γQ for medium regeneration rate βR = 0.01 as a violin plot showing median values and
kernel density plot. Memory is parameterized with best overall parameters, φL = 0.0001,
φS = 0.01, ψM = 2, γZ = 10. In the figure, M = memory, K = kinesis.
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ment (e.g., Boyer and Walsh 2010; Mueller et al. 2011; Van Moorter et al. 2009), actual

animal movements are a continuous process across a continuous landscape even though they

are generally sampled discretely, and recent advances allow continuous movement processes

to be parameterized from observed trajectory data points, even when sampled irregularly

(Gurarie et al., in review). This also aligns with the push towards continuous-space for-

mulations in spatial population models, which have the advantage of representing spatial

heterogeneity from multiple sources and at multiple scales as well as easily associating ob-

served trajectory data despite the mathematical complexity (Morales et al. 2010). The three

movement processes modeled here are nested, so that the same underlying movement model

is used and additional behavioral complexity, like switching states or using memory-informed

directional biases, can be enabled or disabled within the same framework. This allows for bet-

ter comparisons between movement processes for simulation studies and also for hypothesis

testing if the model is fit to data. The memory implementation is both simple and conforms

to current knowledge in animal cognition. Two memory streams are a common feature of

cognitively-based ecological models (Kacelnik et al. 1987; Anderson 2002; Van Moorter et al.

2009; Anderson et al. 2010) and reflect evidence for multiple parallel memory systems which

interact (Poldrack and Packard 2003; Kolling et al. 2012).

The degree to which consumption varied among the three movement processes depended

on the landscape characteristics (Fig. 1.3). For smooth continuous landscapes that had a rel-

atively even distribution of low resource levels, the different movement processes performed

similarly. However, the patchier the landscape and the larger the amount of space with no

resources, then the more that kinesis outperformed random walk and that memory outper-

formed both. With patchier landscapes, resources are both more difficult to locate and of

higher value (due to the total amount of resources being constant across landscapes), thus

raising the stakes for finding resource locations. In this situation, any tendency to slow down

in the few higher-valued patches is an advantage, as seen by kinesis outperforming random

walk, and memory further outperforms other movement processes by directing movement

towards hard-to-find patches.
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It is not just, however, landscape patchiness that is a factor in differing consumption

across movement processes, but also the corresponding relative patch size. While concentra-

tion relates to resource scarcity and how high-value those patches are, patch size relates to

how large and contiguous patches are (Fig. 1.1). That is, given a location with resources,

what is the likelihood that nearby locations are more likely to also have resources of a similar

quality. While both memory and kinesis increase their mean consumption differential over

random walk with increasing patchiness (µQ), memory shows more dramatic improvement

with increasing patch size (γQ) as well. Kinesis and random walk, on the other hand, mainly

increase consumption variability (as does memory), and mean consumption for kinesis only

slightly improves in landscapes with relatively larger patches. The underlying reason for this

may be search times (Fig. 1.6). Kinesis shows the same mean time searching with increasing

patch size, but increased search time variability, which matches consumption differences over

those landscape parameters. Memory, however, shows a decrease in search time with increas-

ing patch size, as memory is better able to exploit the larger, more contiguous patches and

spend less time traveling between them. Interestingly, with memory, consumption variabil-

ity increased with patch size, but search time variability did not. For kinesis, larger, more

contiguous patches are only slightly advantageous, though variability increases because en-

counters become more unpredictable compared to many smaller patches. Memory, however,

is able to exploit larger patches more efficiently. Larger patches give a stronger signal to the

probabilistic direction (Eq. 1.8), and memory is easily able to return to a large patch after

wandering off, while kinesis does not.

The spatial scale of memory is also, presumably, related to patch size. Larger values of

spatial scale generally performed better, reflecting an advantage to considering food farther

away, and providing the ability to make movements towards distant locations noted by

Smouse et al. (2010). However, the few landscapes where smaller values of spatial scale

were preferred nearly all had smaller-sized patches (Table 1.4). This may be because smaller

patches have a smaller signal in memory, making it is advantageous to weight closer resources

higher, as well as distant patch being too small to be worth the travel time. Patch size may
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also relate to a forager’s perception abilities, which were not considered here, though other

studies (e.g., Mueller et al. 2011) have explicitly modeled perception. Including perception

would likely amplify this effect, as more discontinuous patches would be harder to detect

and exploit.

Finally, landscape regeneration rate also affects each movement process differently. With

higher regeneration rates, differences are more apparent, as there is a stronger reward for

returning to patches, favoring memory. With slower regeneration rates, even a random

walk can consume the bulk of the resources if the simulation lasts long enough (consider

the extreme case of a zero regeneration rate, so that all three movement processes would

eventually consume all the resources). Landscape regeneration rate has the biggest effect

on the optimal parameterization of the memory model (Table 1.4), with the short-term

decay rate ideally increasing as the regeneration rate increases, thus returning the animal

to productive patches once enough time has elapsed for them to regenerate. This suggests

that animals may track an assessment of the lag time to return to a patch (represented

here as the short-term decay rate). This assessment may be inherited or learned based on

environmental conditions. However, memory still generally outperforms the other movement

processes at non-optimal decay rates in patchy landscapes, suggesting that memory using

a single short-term decay rate could be robust to regeneration rates varying seasonally or

among resource types.

Thus, these landscape characteristics paint a picture of the types of landscapes where

memory would be especially favored over a random walk or even a sensory-driven process like

kinesis. In general, a landscape where there is a larger payoff for finding a resource patch,

whether in size, value, of difficulty in locating, favors memory. These landscapes would

consist of sparse, contiguous patches of high-value resources that regenerate quickly located

on a space that was mostly devoid of resources. These then are they types of landscapes

one should look to when considering the evolutionary aspects of memory, or when seeking

evidence for memory-driven search behavior today. In general these match what has been

predicted by other models, even when the conception of memory is very different (e.g., Grove
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2013). The conclusion that memory is more useful for lower patch density (Grove 2013) is

analogous to the result here for patchier landscapes (those with more zero resource area).

In contrast, the previous finding that larger patches decrease the utility of memory (Grove

2013), is less directly comparable, as patch size was increased while maintaining patch density

and quality. However, the qualitative conclusion that memory is less useful when patches are

more easily discoverable without it is supported. Avgar et al. (2013) suggest that memory

should be limited only by physiological constraints in an unchanging environment, but that

in a temporally changing environment, forgetting is adaptive and memory capacity should

negatively correlate with the rate of change. In these simulations, the available amount of

resources varied temporally (though intrinsic quality did not), and the short-term memory

decay rate, that is the rate of forgetting, did track the rate of environmental change as

represented by the regeneration rate. However, it has been suggested that the utility of

memory in high complexity landscapes is reduced due to the high cost of tracking sufficient

information (Fagan et al. 2013). Memory costs were not explicitly modeled here, as I took the

approach of Grove (2013) that memory must outperform naive or sensory-driven processes to

be useful. An interesting extension of this work would be to model memory at different spatial

resolutions and determine if an increasing cost for more detailed memory would produce the

dome-shaped relationship between memory utility and resource complexity suggested by

Fagan et al. (2013).

While evaluated separately here, the differing landscapes could also be thought of as

different habitats an animal encounters throughout its life history. For example, different

resource distributions could represent the differences between feeding and breeding habitats

that an animal migrates between or the seasonally varying differences between summer and

winter habitats. In this case, the total amount of resources may also differ, but the general

conclusions in terms of the relative performance of different movement processes would still

hold. Thus, it may be that memory is most useful in times of resource constraint, such as

hard-to-find winter forage, after a habitat perturbation (e.g., Preen and Marsh 1995), or

during times of more limited mobility, such as the breeding season. For example, ungulate
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species on the Isle of Rhum, Scotland all foraged on high-quality, high-biomass areas in the

summer during high resource availability, but showed resource partitioning during the winter

(Gordon and Illius 1989). The decimation of foraging habitat caused by a cyclone and floods

led to changes in dugong (Dugong dugon) distribution in the area as well as emigration to

other areas (Preen and Marsh 1995).

When looking for systems in which to apply this model, necessary data include heteroge-

neous resources for which a measure of resource quality (not simply habitat type) is available

and movement trajectories of the foragers. One possibility is dugongs foraging on seagrass

beds. Seagrass meadows are patchily located in coastal waters, and the meadows themselves

are spatially heterogeneous in quality based on biomass density and species composition

(Sheppard et al. 2007). Dugongs have been observed to revisit grazing locations and the

revisit time has been observed to correlate with regeneration to ungrazed capacity (Preen

1995). In fact, dugong grazing pressure shapes community structure by creating favorable

conditions for preferred species, a process known as cultivation grazing (Preen 1995; Aragones

et al. 2006). Another possibility is Mongolian gazelles (Procapra gutturosa), a wide-ranging

species (Olson et al. 2010), for which satellite-derived measures of habitat quality are avail-

able (Mueller et al. 2008). Movement processes could by compared by simulating a model

trajectory step-by-step based on an animal’s trajectory and comparing the actual step with

the likelihood of each movement process given the animal’s history up to that point.

In conclusion, the model presented here is a robust framework for considering memory in

a continuous-space and continuous-time movement model that could be applied to a variety

of systems. These results suggest that the best habitats to look for evidence of memory-

driven search would be those with concentrated contiguous patches with faster regenerating

resources. While separating memory-driven foraging from sensory-driven alternatives is diffi-

cult (Fagan et al. 2013), disproportionate space use of higher value areas, higher consumption

rates, and consumption variability all point to memory influencing the movement direction.
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Chapter 2

INVESTIGATING THE EFFECT OF MEMORY ON

PREDATOR–PREY INTERACTIONS

Abstract

Predator–prey interactions are central to fitness as animals seek to avoid death while si-

multaneously feeding sufficiently to ensure growth and reproduction, thus managing a food–

safety trade-off. Predators can also exert strong non-consumptive effects, as prey engage

in antipredator behavior such as shifting habitat use. While models of predator–prey dy-

namics exist, the impact of cognition on movement and predator–prey interactions is largely

unexplored despite evidence of learned responses to predation threat. Here, predators are in-

troduced that relocate based on their persistence and that vary spatially in their correlation

with the prey’s resources. With memory-informed movement, foragers learn from preda-

tor encounters as well as resource quality. They balance attraction to food with repulsion

from predators in making movement decisions. Memory outperforms simpler movement pro-

cesses most for patchy landscapes and more predictable predators, which may be more easily

avoided once learned. In these cases, memory aids foragers in managing the food–safety

trade-off, as particular parameterizations of predator memory reduce predator encounters

while maintaining consumption. Non-consumptive effects are highest in landscapes of con-

centrated, patchy resources and especially when predators are highly correlated with the

forager’s resources. While smooth landscapes provide more opportunities to consume re-

sources and avoid predators, predators are able to effectively guard all resources in very

patchy landscapes. These non-consumptive effects are also seen with the shift away from the

best quality habitat compared to foraging in a predator-free environment.
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2.1 Introduction

The most obvious effects of predation are consumptive or, in other words, the killing of

prey by predators. However, predators can also affect prey behavior, such as movement and

habitat use, leading to non-consumptive effects (Lima 1998; Werner and Peacor 2003), which

can be as strong or stronger than consumptive effects (Preisser et al. 2005; Cresswell 2008).

In fact, even in classic examples of predator–prey dynamics traditionally quantified through

changing densities, non-consumptive effects have been shown to be important (Peckarsky

et al. 2008). For example, in lakes with a simple four-species food web, habitat shifts due

to predation risk can reverse the effect expected from consumption-driven trophic cascades

(Carpenter et al. 1987) or amplify the magnitude of the effects of predators on their prey

(He and Kitchell 1990).

Prey may alter their behavior to balance the trade-off between foraging and predation risk

in many ways including increasing vigilance, spending more time in refuges, changing habitat

use, and changing grouping behavior. Observing these responses, while varying predation

risk, can provide a better measure of the effects of predation than mortality alone (Brown

and Kotler 2004). For example, while predation of marine mammals is rarely observed,

marine mammals give up foraging opportunities and spend less time in high-reward patches

in the presence of predators (Wirsing et al. 2008). Predation affects microhabitat selection

by prey (Main 1987; Pierce 1988). Prey preference shifts away from higher productive ares

in the presence of predators (Hammond et al. 2007).

How prey change their movements in response to predation can depend on the scale

considered. When prey are in the immediate vicinity of predators, reducing movement can be

an antipredator behavior (Lima and Dill 1990). At larger scales, on the other hand, movement

can be advantageous as prey seek to relocate to avoid predators (Mitchell and Lima 2002).

Brown et al. (1999) investigated the impact of consumptive and non-consumptive effects

on the stability of predator–prey systems by using game theory to model predator–prey

dynamics. They found that introducing fear through increased vigilance that reduces prey



42

foraging generally stabilizes otherwise extinction prone predator–prey systems by allowing

predators to be efficient at low densities but inefficient at high densities. Non-consumptive

effects (the ‘ecology of fear’) therefore explain why big fierce carnivores are rare (Brown

et al. 1999). Applying a game theoretic approach to predator and prey spatial distribution

across patches that differ in productivity and riskiness showed that prey distribution was

solely dependent on patch riskiness, while the predator’s distribution was determined by both

riskiness and productivity (Hugie and Dill 1994). This implies that changing resource levels

may not affect prey distribution if predators are free to relocate (Hugie and Dill 1994), though

in this case both predators and prey had perfect information on each other’s distributions.

Risk encapsulates one of the key trade-offs prey make in a predator–prey relationship,

balancing the competing goals of consuming enough food to avoid starvation (as well as grow

and reproduce) yet also avoiding predation. Risk is not invariant in space when predators

can move across the landscape (Lima 2002). One way to quantify predation risk is through

measures of predator avoidance, with examples ranging from snails (Turner et al. 2006) to

insects (Sih 1982) and fish (Neill and Cullen 1974; Magurran and Seghers 1990), many of

which indicate a learned response. While there is a wealth of information on animal learning

(Pearce 2008), memory and cognition have frequently been omitted from predator–prey

interactions. For example, models have assumed predators and prey had perfect information

on each other’s distributions (e.g., Hugie and Dill 1994) or that animals have perfect or

imperfect knowledge of local conditions (e.g., Brown et al. 1999; Persson and De Roos 2003).

However, simple models of learning and memory have been incorporated into an agent-

based model of foraging (Anderson 2002) as well as a model of home-range formation

(Van Moorter et al. 2009). Despite memory having been shown to be important to explain-

ing aspects of foraging behavior, it has generally been omitted from predator–prey models.

Modeling of memory-based movement, complete with managing multiple potentially com-

peting goals, is one of the open challenges in studying spatial memory and animal movement

(Fagan et al. 2013).One approach is to maintain multiple layers for different habitat compo-

nents, such as resource quality or predation risk (Avgar et al. 2013). Given the enormous
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span of cognitive abilities ranging from single-celled organisms to wide-ranging forager to

apex predators, this raises the question of what advantages cognitive complexity brings and

in what circumstances is it most effective.

Including memory in models of predator–prey interaction provides a method to investigate

these questions, which are difficult to do experimentally since memory cannot be measured

directly. It is plausible to assume memory could affect these dynamics given research on

memory and foraging behavior (Kamil and Roitblat 1985; Shettleworth 2001; Stephens et al.

2007) and the higher consequences for poor decisions in the context of predation compared to

foraging. Animals can learn negative stimuli faster and retain those memories longer (Quirk

2002; Wiedenmayer 2004; Ferrari et al. 2006). Avoidance of areas of high predation risk is

one antipredator strategy (Lima and Dill 1990) and can imply spatial learning. For example,

stickleback (Culaea inconstans) continue avoid areas after the predator cue is removed though

they will eventually return to those areas (Wisenden et al. 1994).

The goal of this chapter is to investigate the effect of memory on the food–safety trade-

off foragers must make under the risk of predation. We do this with a spatially explicit

continuous-time, continuous-space model of forager behavior with predators as a dynamic

component of the system (Lima 2002). Three movement processes are compared: a random

walk, kinesis (a two-state random walk), and memory-informed movement. With memory,

the forager learns about food resources and encountered predators, combining both pieces

of information to make movement decisions. The predator environment encompasses the

predator’s correlation with the forager’s resource and the predator’s predictability in time.

The resulting movement behavior of the forager is analyzed to address several questions: (1)

are there predator or landscape environments where using memory is particularly useful com-

pared to alternatives, (2) how do characteristics of the predators affect the parameterization

of memory, and (3) what non-consumptive effects can be observed by comparing foraging

with and without predation?
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2.2 Methods

When adding predation to the foraging model (Chapter 1), foragers have two competing

objectives: obtaining food and avoiding predators. The foraging model encompasses the

regenerating resources consumed by foragers moving according to one of three movement

processes: memory, kinesis, and random walk. Resources regenerate logistically to a maxi-

mum intrinsic quality that varies spatially but not temporally. Foragers consume resources

in their vicinity according to a spatial kernel. Foragers move according to an autocorrelated,

directed, continuous movement process. For random walk, this is a single-state process with

the bias vector set randomly. For kinesis, foragers switch between a slower, more tortuous

feeding state and a faster, more linear searching state based on their consumption rate with

the bias vector still set randomly. For memory, foragers switch between feeding and search-

ing states, and the bias vector is set probabilistically based on the forager’s spatial memory

of the resources. The memory consists of attractive and repulsive streams that decay at

different rates, serving to drive the forager away from recently visited, depleted areas but

return them to high-quality area that have regenerated.

To extend the model to include predation, several pieces were added. For all three

movement processes, a new escape behavior sends the forager in the opposite direction when

encountering a predator. When using memory, the foragers now also learn about predators

in a separate predator memory stream. Foragers use that information to asses safety from

predation and combine it with the resource memory to inform movement direction.

Rather than explicitly modeling the movement and learning of predators, they are repre-

sented as a Poisson process. That is, the predator appears at a particular location, remains

there for a period of time, then disappears. The predators can thus be thought of as sit-and-

wait predators or predators with a small home range corresponding to the encounter radius.

The length of time the predator remains therefore represents the activity time or time before

relocating, and the ‘movement’ of the predator is increased by decreasing the predator dura-

tion. While random movement is a simplistic assumption, it is important to remember that
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random movement can be an adaptive strategy if it is advantageous for a predator to appear

unpredictable (Roth and Lima 2007). Additionally, sit-and-wait and sit-and-pursue preda-

tors induced stronger non-consumptive effects including changes in prey activity compared

to wide-ranging actively hunting predators (Preisser et al. 2007), suggesting this predator

hunting mode is well-suited for examining the effects of forager memory.

2.2.1 Predators

Predator presence is modeled as a Poisson process in time and space with two main tunable

parameters: predator persistence (duration) and predator spatial randomness (space use).

Predator persistence refers to the length of time a predator remains after appearing and

affects the forager’s likelihood of subsequent encounters with a predator after learning about

it. Predator spatial randomness refers to the extent to which the distribution of predators

is correlated with the resource distribution, which affects the degree of trade-off a forager

must make.

The location of the predator appearances is a spatial Poisson process. For random preda-

tors, this is simply a random location in the landscape using a homogeneous Poisson process.

To increase the food–safety trade-off, predators are more likely to appear in areas of high

quality food which is accomplished using an inhomogeneous Poisson process. A parameter ρ

controls the transition from random predator appearances in space to predator appearances

proportional to resource quality. Thus, for random predators, the intensity of the spatial

generation process at all points is uniform, while for non-random predators, the intensity

of the process is proportional to landscape quality at that point, Q0(z). The parameter ρ

controls the shift between these two extremes with ρ ∈ (0, 1) for the intensity function used

to generate predator locations,

λp(z) = ρQ̄0 + (1− ρ)
Q0(z)

max
z
Q0(z)

, (2.1)

where Q̄0 is the average habitat quality.
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Thus, two parameters govern the predator environment that the foragers experience:

predator duration, δ = ∆t, or the predator’s predictability in time, and predator spatial ran-

domness, ρ, or the predator’s predictability in space. Note that this formulation does include

predator movement. The predator’s movements are unaffected by the foragers, though the

model could be extended to allow for this possibility.

Escape behavior

The escape behavior when encountering predators is the same across all three movement

processes. In the case of a single predator encounter, the velocity V is instantaneously and

discontinuously changed at the moment of encounter to be directly away from the predator.

The angle is given by 6 (Z − Zp), where Z is the forager’s location and Zp is the predator’s

location, and the speed by ν (recall that ν is the magnitude of the µ bias vector, Chapter 1,

Eq. 1.7). In the case of multiple predators encountered simultaneously, the escape angle is

the sum of the angles away from the i predators weighted by distance, i.e., 6 V =
∑

i
6 (Z −

Zp,i)/||Z − Zp,i|| and the speed is ν still. Further, there is no consumption when escaping a

predator.

2.2.2 Predation risk learning

Foragers using the memory movement process must now store information on predators in

addition to resource quality, which is accomplished by adding another layer for predator

memory in addition to a layer for resource quality. The memory for predator encounters

only requires a single stream, in contrast to the resource memory with its short- and long-

term memory streams, as the function of the predator memory is always repulsive. The

forager learns about predators in its vicinity, and this memory decays with time. Similar to

the resource memory, where the memory decay rates are related to the resource regeneration

and persistence time scales, the decay rate for the predator memory is presumably related

to the predator persistence and predictability in a location.
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The predator memory and resource memory are maintained in parallel in separate lay-

ers. This approach was suggested by Fagan et al. (2013) as a way to deal with multiple

objectives, such as finding food and avoiding predation. In addition, a similar approach of

multiplicatively combining multiple layers was used by (Avgar et al. 2013) to calculate a

redistribution kernel to model an animal moving discretely in time and space with a biased

random walk. Experimental evidence also suggests that foraging and defensive behaviors

are likely independent, such as the lack of correlation in response thresholds for positive

and negative stimuli (sucrose and shock in honeybees) in the same individual (Roussel et al.

2009). The consequences of mistakes with aversive stimuli such as predator encounters are

clearly higher than reward stimuli, and animals can learn predator threats after only one

encounter (Wiedenmayer 2004; Ferrari et al. 2006). Fear-conditioned responses tend to be

long-lasting (Quirk 2002).

Specifically, the forager detecting the predator is a boolean event, E(t), depending on

whether a predator is present in the forager’s encounter radius ǫ, E(t) = I(|Zp − Zf | < ǫ),

where Zp and Zf are the predator and forager locations respectively and I is the indicator

function. If the forager detects a predator, it learns about the predator with a spatial kernel

centered on the predator’s location. While this is currently implemented deterministically

(any predator within the encounter radius is detected), it could also be probabilistic, with

the detection probability determined by the distance between predator and prey or by the

prey’s vigilance level.

The equation governing the learning and decay of the predators by the prey is

∂P

∂t
= βPfP (|z − Z|)(P0 − P )− φPP, (2.2)

where βP is the learning rate, fP is the spatial kernel centered on the predator’s location,

and P0 = 1.0 describes the maximum learning threshold. Because predators are a point

location and are dangerous throughout their encounter radius, the kernel function for fP is

the top-hat kernel with length scale (i.e., radius) γP (Table 2.1). In these simulations γP

is matched to the predator encounter radius. If multiple predators are encountered at the
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Table 2.1: Spatial kernels used in the predation model.

Description Equation

Predator learning kernel fP (|z − Z|) =

{

1

πγ2

P

if |z − Z| < γP

0 otherwise

Predator safety kernel fR(|z − Z|) = 1

γZ
exp

(

−|z−Z|
γR

)

same time, they are treated additively (assuming no predator interference with one another

or possible multiplicative effects). Note that learning rates greater than one are considered,

reflecting the rapid learning of negative stimuli such as conditioned fear (Fendt and Fanselow

1999) and novel predator cues (Brown 2003).

Decision rules

How foragers combine their information on both resource and predator location gets to the

heart of the food–safety trade-off. Here we take the approach that foragers are attracted

in the direction of high-quality habitat as before, but that attraction is tempered by the

perceived risk in that direction. We realize this trade-off by first calculating the resource

probability distribution, g(θ), as in Chapter 1, Eq. 1.8. Next the predator risk is calculated

similarly to the resource probability distribution by integrating transects of the predation

memory map, P , radiating out from the forager’s location with the memory value at each

point weighted by a spatial kernel. The predation risk values are transformed into a predator

safety metric, p(θ), which ranges between 0 (low safety) and 1 (high safety).

p(θ) = 1−max(1,

∫ r

0

ψPP (r, θ)fR(r)dr) (2.3)

where ψP is the predator memory factor, r = |z − Z|, and fR(r) is a distance-dependent

two-dimensional kernel, here the exponential kernel with length scale γR (Table 2.1). This

predator safety metric is also a circular function of θ with values in [0, 1] but not a probability

density function. Finally, the resource probability distribution is multiplied by the predator

safety metric and re-normalized to create a new probability distribution that incorporates
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attraction to resources and aversion to areas where predators were previously encountered,

h(θ) =
g(θ)p(θ)

∫

2π

0
g(θ′)p(θ′)dθ′

. (2.4)

The angle of the bias term, µ(t), in the movement process is then drawn from h(θ) as

described in the ‘Behavior states’ section of Chapter 1.

2.2.3 Simulations

Parameter values for simulations are shown in Table 2.2. Simulations were run for the three

movement processes (memory, kinesis, and random walk) across landscape environments

(the same landscapes as Chapter 1) and predator environments (δ and ρ). For memory,

simulations were run across parameterizations of predator memory with resource memory

parameters set according to the best performing values from Chapter 1.

The simulations were run across the environments defined by the resource parameters of

µQ and γQ and the predation parameters δ and ρ. However, in order to avoid escape behavior

sending foragers outside the landscape boundary, an empty border with no predators or

resources was added around the landscapes. Because the escape behavior is simple, it is

possible for a forager to be stuck between predators, escaping one only to encounter the

other, and repeat. In order to avoid biasing the results with the resulting large number

of encounters, simulations were restarted with a new random seed if there are five or more

repeated encounters.

Encounters happen deterministically within an encounter radius, ǫ. The total number

of encounters during the simulation was tracked, but the simulation was never terminated

early due to encounters. Encounters are thus dynamic, non-destructive, and hard (Gurarie

and Ovaskainen 2013). The highest fitness would come from high consumption and low

encounters, while the lowest fitness would come from low consumption and high encounters.

A quantitative measure of fitness was computed as consumption ∗ sencounters where s is the

survival rate. Two survival rates were compared for a high and low probability of a forager

surviving an encounter with a predator. The fitness metric collapses the competing trade-offs
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Table 2.2: Parameters used in the predation model and values for simulations. Because units are arbitrary in the
simulations, L is used for generic length units and T is used for generic time units.

Parameter Definition Units Values
Simulations

∆t model time step T 1
T simulation length (time steps) 1000

Landscapes
µQ patch concentration -1.5, -1, -0.5, 0, 1
γQ patch size 2, 10

Predator environment
total predation pressure T 5000

δ predator duration T 10, 300, 1000
ρ predator spatial randomness 0, 0.5, 1
ǫ encounter radius L 5
s encounter survival rate 0.8, 0.99

Consumption
βR regeneration rate 1/T 0.01
βC consumption rate 1/T 1
γC consumption spatial scale L 1

Memorya

ψM short-term memory factor 2
βL, βS learning rates 1/T 1, 1
φL, φS decay rates 1/T 0, 0.01
γL, γS learning spatial scale L 1, 1
γZ memory spatial scale L 10

aL = long-term memory, S = short-term memory
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Table 2.2: (continued)

Parameter Definition Units Values
Predator memory

ψP predator memory factor 1, 10, 100
βP predator learning rate 1/T 1, 10, 20
φP predator decay rate 1/T 0, 0.001, 0.01, 0.1
γP predator learning spatial scale L 5
γR predator risk spatial scale L 1, 10, 20

Movementb

τS, τF autocorrelation time scale T 4, 2
νS, νF length of µ L/T 6, 1
λ mean time to update θ T 1

bS = searching, F = feeding
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of maximizing consumption and minimizing predator encounters but depends additionally

on defining the survival rate.

Predator generation

A set of predator appearance times and locations was generated for each combination of δ,

ρ, and landscape (and also depends on total simulation time T and total predation pressure

which were not varied). These predator sets were cached across simulations so that different

parameter combinations and movement processes experience the same predator environment.

When changing predator duration, constant predation pressure across simulations was

maintained by altering the number of predator appearances, such that total predation pres-

sure was
∑p

i=0
∆t, where there are p predator appearances that each last δ = ∆t amount

of time. The Poisson process has the property that given an interval (0, t) and the num-

ber of arrivals in the interval N(t) = n, then the n arrivals are uniformly distributed on

the interval. While in a Poisson process the number of arrivals is Poisson distributed (i.e.,

N(t) ∼ Poisson(λt)), in order to maintain constant predation pressure, the number of preda-

tor appearances p was set based on δ (thus a quasi-Poisson process). Then p predator

appearance times were independently drawn from the uniform distribution on the interval

(0, T−δ) where T is the total amount of time in a simulation. Altering the predator duration

δ moved the predator appearances along the gradient from persistent to ephemeral.

The predator spatial randomness is controlled by transitioning between a homogeneous

and inhomogeneous Poisson process when generating spatial locations. One way to simulate

an inhomogeneous Poisson process with an intensity function (Eq. 2.1) that varies over a

surface (the two-dimensional landscape in this case), is to simulate a homogeneous process

with an intensity equal to that of the maximum intensity of the surface. Random appearances

(i.e., a homogeneous process) can be simulated with the algorithm by having the probability

of location retention be uniform across the landscape. The simulated points are thinned

using a retention probability equal to the intensity at that point divided by the maximum

intensity. I applied this method by creating a probability surface for the grid points in
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the landscape. For each of the p predator appearance times, a location was generated by

sampling the x and y coordinates independently from a uniform distribution. The location

was retained with probability corresponding to the grid square in which it is located (see Eq.

2.1). This process was repeated until a location is accepted for that appearance time.

2.3 Results

2.3.1 Comparing consumption and encounters

Overall, predator environment strongly affects both consumption and encounter rates, though

more so for memory than other movement processes (Fig. 2.1). Predator predictability af-

fects predator encounters with more encounters for ephemeral predators (δ = 10) compared

to more stationary predators (δ = 300, 1000). Consumption decreases as predators become

more correlated with resource abundance with increasing spatial randomness (ρ).

Random walk is relatively less sensitive to both predator and landscape environment.

When predators are correlated with the resource (ρ = 0), there is some food–safety trade-off

with lower consumption and encounters for landscapes with large high-value patches and vice

versa for landscapes with smaller patches. The interaction of predators co-located with food

resources that are more diffuse (smaller patches) is necessary to produce the trade-off across

landscapes with a random walk. Whereas encounters decrease for memory with increasing

predator spatial randomness, the opposite is true for random walk, where encounters slightly

increase.

With kinesis, on the other hand, a food–safety trade-off with landscape parameters oc-

curs across all predator environments. Patchiness is the most important to the food–safety

trade-off for kinesis, and increasing patchiness leads to increasing encounters and higher con-

sumption. Interestingly, kinesis evinces this trade-off across all predator environments, unlike

random walk and memory. However, predator environment, especially predator spatial ran-

domness, does not vary consumption and encounters much for kinesis compared to the other

movement processes, with the exception of higher encounters with ephemeral predators.
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Figure 2.1: Predator encounters versus consumption for the three movement processes, ran-
dom walk (red), kinesis (orange), and memory (blue) across the predator environments de-
scribed by predator duration and spatial randomness. Different color shades show results for
different landscape environments described by patch concentration and size (legend provided
for memory only). Multiple points for different landscape environments for memory show
different parameterizations of predator memory (Table 2.2). Encounters and consumption
are normalized by mean and standard deviation, so positive values are above average and
negative values are below average.
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For memory, the food–safety trade-off manifests both across landscape environments as

well as across parameter combinations within a specific landscape environment. In both

cases, the trade-off is more muted as predator spatial randomness increases, meaning mem-

ory is able to increase consumption in some cases (i.e., certain landscapes or predator memory

parameterizations) without necessarily increasing encounters at all or to the same degree.

Similarly, as the food–safety trade-off diminishes with increasing predator spatial random-

ness, encounters decrease and the variability among predator memory parameterizations

decreases as well. In essence, by using memory to exploit food resources, foragers are able

to ‘avoid’ predators randomly located in unsuitable habitat.

When there are two competing objectives, maximizing consumption and minimizing en-

counters, there is not always a clear optimal strategy; however, a result that has more en-

counters for similar or less consumption (or conversely, lower consumption for a given number

of encounters) is clearly worse. Kinesis outperforms random walk across all predator and

landscape environments. Memory outperforms random walk and kinesis when predators are

randomly located and more persistent, though in other cases there are some parameteriza-

tions of predator memory that lead to higher encounters but also higher consumption. With

ephemeral predators (δ = 10), some memory parameterizations are demonstrably worse than

kinesis though not random walk. Encounter rates range higher for memory when predators

are on resources (ρ = 0) because the resource memory attracts foragers to these locations.

This is exacerbated by patchy landscapes, which concentrate predators much more than

smooth landscapes. When predators are random, memory has lower encounter rates than

random walk or kinesis across all landscapes, as memory is able to exploit resources away

from predators across all parameterizations of the predator memory.

2.3.2 Differing survival rates

Given these competing objectives, another way to compare movement processes and param-

eterizations is with a measure of fitness using high and low survival rates. At high survival,

all predator memory parameterizations outperform random walk and nearly all outperform
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Environment High survival Low survival
δ ρ φP βP ψP γR φP βP ψP γR
10 1 0.1 10 1 1 0.1 20 100 1
10 0.5 0.1 20 1 1 0 20 100 20
10 0 0.1 20 10 10 0 20 100 10
300 1 0.01 20 10 10 0.001 10 100 10
300 0.5 0.01 10 100 10 0 20 100 20
300 0 0.01 10 100 10 0.001 20 100 10
1000 1 0 20 100 1 0.001 20 100 10
1000 0.5 0 20 10 10 0 20 100 10
1000 0 0.001 10 100 10 0.001 20 100 10

Table 2.3: Best performing predator memory parameters in different predator environments
using fitness under high and low survival as a metric. Best performing parameters were the
same across all landscape environments for a given predator environment. Predator envi-
ronment parameters are duration δ and spatial randomness ρ. Predator memory parameters
are decay rate φP , learning rate βP , memory factor ψP , and spatial scale γR.

kinesis as well. At low survival, the percent of parameterizations that outperform, analogous

to the importance of parameterizing the predator memory correctly, varies. For example, in

a landscape of spatially correlated persistent predators (δ = 1000, ρ = 0), 76% of memory

parameterizations outperform kinesis while 93% outperform random walk, while with less

correlated ephemeral predators (δ = 10, ρ = 0.5) 19% and 80% outperform, respectively.

Landscape environment is important too: the percent outperforming kinesis varies from 36–

97% in the first case and 6–56% in the second across landscapes. How the predator memory

is parameterized is most important with low survival, and landscapes with large high-value

patches.

Similarly, the optimal parameterization of predator memory depends both on the survival

rate as well as the predator environment (Table 2.3). For a given predator environment and

survival rate, the ordering of predator memory parameterizations from best to worst is con-

sistent across landscape environments. However, the landscape environment does affect the

magnitude of consumption and encounters and thus fitness, as well as how differentiated the

parameterizations are. The optimal decay rate decreases with increasing predator duration
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and is lower for low survival compared to high survival. The other memory parameters do

not follow as clear a pattern, but values are generally larger with lower survival and when

predators are more correlated with the resource. The optimal parameterizations are more

similar for low survival and the increased importance of avoiding encounters.

In the case of persistent predators (δ = 1000) correlated with patchy resources (Fig. 2.2),

the best performing parameters are a small decay rate and large values for learning rate,

memory factor, and spatial scale. Here the amount consumed is similar across parameteri-

zations, and the main difference is number of encounters, so there is an increase in fitness

for both high and low survival as encounters drop. Thus, in comparison to other movement

processes, in which a decrease in movement would decrease both consumption and encoun-

ters, memory reduces the food–safety trade-off. Predator encounters can be reduced without

changing consumption. While the memory parameterizations with lower fitness have more

encounters than random walk and kinesis, fitness is still similar or higher. This holds true as

predator spatial randomness increases, except that memory reduces encounters below that of

random walk and kinesis for all parameterizations. With increasing landscape smoothness,

there is less differentiation across memory parameterizations.

On the other hand, ephemeral predators (δ = 10) result in a food–safety trade-off within

memory parameterizations: the same parameters that maximize fitness under high survival

conditions are the worst performing under low survival conditions (Fig. 2.3). The best per-

forming parameterization for low survival is the same as above with persistent predators.

The best parameters for high survival tend to be either a fast decay rate with larger values

for the other parameters or a slow decay rate and at least some small values for the other

parameters. Random walk and kinesis fall in the middle with kinesis providing a better

compromise for maximizing both high and low survival than nearly all memory parameter-

izations (except φP = 0, βP = 10, ψP = 10, γR = 10), although memory clearly outperforms

for high or low survival taken individually. As the landscape patch concentration and/or

size decreases, this trade-off persists, but the differences between parameterizations again

decrease. The trade-off increases with predator correlation with the resource, and disap-



58

−5 −3 −1 0 1

−1

0

1

2

3

4

Fitness (high survival)

F
it
n

e
s
s
 (

lo
w

 s
u

rv
iv

a
l)

KR

0
0.001
0.01
0.1

Decay rate

−5 −3 −1 0 1

−1

0

1

2

3

4

Fitness (high survival)

KR

1
10
20

Learning rate

−5 −3 −1 0 1

−1

0

1

2

3

4

Fitness (high survival)

KR

1
10
100

Memory factor

−5 −3 −1 0 1

−1

0

1

2

3

4

Fitness (high survival)

KR

1
10
20

Memory spatial scale

−5 −4 −3 −2 −1 0 1

−2

−1

0

1

2

3

4

5

Consumption

E
n

c
o

u
n

te
rs

K
R

−5 −4 −3 −2 −1 0 1

−2

−1

0

1

2

3

4

5

Consumption

K
R

−5 −4 −3 −2 −1 0 1

−2

−1

0

1

2

3

4

5

Consumption

K
R

−5 −4 −3 −2 −1 0 1

−2

−1

0

1

2

3

4

5

Consumption

K
R

Figure 2.2: Performance of different parameterizations of predator memory in a predation
environment of persistent predators correlated with patchy resources (δ = 1000, ρ = 0, µQ =
−1.5, γQ = 2). Points are color-coded by predator memory parameters (left to right) decay
rate φP , learning rate βP , memory factor ψP , and spatial scale γR. Consumption, encounter,
and fitness values are normalized by mean and standard deviation, so positive values are
above average and negative values are below average for this particular environment.

pears when the predators are randomly located. With low survival, a decay rate of zero

is optimal, even though predators are ephemeral, as long as they are correlated with the

resource. Once the predator location is random, a large decay rate is favored. High survival

always favors a large decay rate, though a similar pattern can be seen with the decrease in

the other memory parameters as predators are more randomly located.

2.3.3 Predator memory parameters

Evaluating the variable importance of parameters, the environment parameters dominate the

predator memory parameters though the ordering of the parameters by importance depends

on the metric considered (Table 2.4). A conservative rule of thumb for interpreting variable
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Figure 2.3: Performance of different parameterizations of predator memory in a pre-
dation environment of ephemeral predators moderately correlated with patchy resources
(δ = 10, ρ = 0.5, µQ = −1.5, γQ = 10). Points are color-coded by predator memory parame-
ters (left to right) decay rate φP , learning rate βP , memory factor ψP , and spatial scale γR.
Consumption, encounter, and fitness values are normalized by mean and standard deviation,
so positive values are above average and negative values are below average for this particular
environment.
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Parameter Consumption Encounters Fitness Fitness
(high s) (low s)

µQ landscape patch concentration 4.34e-02 2.41e+02 2.46e-02 1.21e-03
γQ landscape patch size 1.15e-02 9.76e+01 8.06e-03 1.41e-03
δ predator duration 4.76e-03 3.04e+02 8.81e-03 2.60e-03
ρ predator spatial randomness 1.58e-02 1.86e+02 1.89e-02 2.63e-03
ψP predator memory factor 1.88e-03 9.29e+01 6.07e-04 3.33e-04
βP predator learning rate 3.00e-04 2.10e+01 5.69e-05 8.62e-05
φP predator decay rate 1.39e-03 3.72e+01 4.00e-04 1.99e-04
γP predator risk spatial scale 3.26e-05 2.14e+01 -7.85e-05 5.24e-07

Table 2.4: Permutation importance scores (mean decrease in accuracy) calculated using ran-
dom forests for the memory movement process for four metrics: consumption, encounters,
and fitness with high and low survival. Results shown treat parameters as continuous vari-
ables. Results were similar when parameters were treated as categorical. Magnitudes of
scores depend on the values of the metric, and thus vary among metrics.

importance values is that a variable is informative if its value is greater than the absolute

value of the lowest negative value, as irrelevant predictors will randomly vary around zero

(Strobl et al. 2009). Using this criterion, all parameters are informative in explaining the

variance in the metrics, with the exception of memory spatial scale for high survival. For

consumption, landscape patch concentration and size (which switch order from the case with

no predators, Chapter 1) and predator spatial randomness are the most important environ-

mental parameters, while predator memory factor and decay rate are the most important

memory parameters. For encounters, predator duration, landscape patchiness, and predator

spatial randomness are the most important environmental parameters, and predator memory

factor and decay rate are still the most important memory parameters. When combining

consumption and encounters into fitness, the ordering of the memory parameters is the same.

Predator environment is most important under low survival, while landscape patchiness and

predator spatial randomness are most important under high survival.

The different components of predator memory can also be evaluated by looking at the

effects of one parameter across predator environments while averaging over the other mem-
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ory parameters and landscape environments (Fig. 2.4). Taking the parameters in order of

importance, increasing the predator memory factor serves to decrease consumption and en-

counters. This is particularly important when encounter survival is low, as fitness generally

increases with increasing memory factor values. Predator decay rate has a stronger effect on

consumption for shorter predator durations and on encounters for more spatially correlated

predator locations. Small decay rates are strongly favored under low survival, while values

vary more by predator environment under high survival. Learning rate and spatial scale

both exhibit a threshold effect for encounters: there is a difference between one and larger

values, but less difference among larger values. Low survival tends to favor larger values for

those parameters while high survival is less sensitive.

2.3.4 Changes to resource

One way to consider the non-consumptive effects of predation is to examine the effect on the

resource. All movement processes consume less resources with predation compared to with-

out, though the effect is most pronounced for memory, followed by kinesis then random walk

(Fig. 2.5). Not surprisingly, consumption is most reduced as spatial randomness decreases

and predators are more correlated with resources. Similarly, consumption is also reduced for

ephemeral predators. For landscape environment, consumption is most reduced for patchy

landscapes with large high-value patches (Fig. 2.6, the same pattern occurs with kinesis),

with the effect of patch size being much larger than patch concentration. Across memory

parameterizations, the parameters that most reduce encounters (i.e., small decay rate and

large values for learning rate, memory factor, and spatial scale) are also those that result in

the biggest change in consumption. The variability in the consumption change across preda-

tor memory parameterizations is highest for very short duration predators and minimal for

long duration predators.

When looking at the underlying causes of this change, the habitat use also changes

dramatically when there is a strong drop in consumption (Fig. 2.7). In patchy landscapes

(Fig. 2.7, top and middle), time spent in the best habitat is dramatically reduced for memory,
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Figure 2.4: Metrics consumption, encounters, and fitness compared across parameter values
of predator memory and kinesis and random walk. For each predator memory parameter,
results are averaged across all other predator memory parameters. Results are shown for in-
dividual predator environments (δ, ρ), but averaged across landscape environments (µQ, γQ).
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Figure 2.5: Decrease in consumption for different movement processes across predator spatial
randomness comparing average total consumption on that landscape with predators to that
without predators. Color shows landscape environment, γQ = 2 (orange) and γQ = 10
(purple), with darker colors indicating increasing patchiness (i.e., decreasing µQ). Predator
duration is 300. Memory results are averaged across parameterizations of predator memory
(but see Fig. 2.6).

though it is still well above the landscape distribution. Habitat usage is similar between

high and low survival, except in the case of ephemeral, spatially correlated predators, which

also show the largest change in habitat usage. Time spent in the highest quality areas

decreases precipitously when predators are spatially correlated with resources. Even under

predation, foragers still spend more time in higher quality resources in landscapes with large

high-value patches compared to either smoother landscapes or those with smaller patches,

despite the large declines. In smooth landscapes (Fig. 2.7, bottom), time spent in high

quality areas is higher, but those areas are more diffuse and of lower quality than in patchy

landscapes. There are more differences in habitat usage between high and low survival for

ephemeral predators compared to persistent predators. In fact, foragers using memory under

low survival conditions spends less time in high quality habitat than kinesis with ephemeral

predators.
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Figure 2.6: Decrease in consumption for different predator memory parameterizations in
different predator environments comparing average total consumption on that landscape
with predators to that without predators. Color shows landscape environment, γQ = 2
(orange) and γQ = 10 (purple), with darker colors indicating increasing patchiness (i.e.,
decreasing µQ). Each line represents a predator memory parameterization (Table 2.2).

2.4 Discussion

In this chapter, the foraging model presented in Chapter 1 is extended to include preda-

tion in a dynamic, spatially explicit way (Lima 2002). Predators encounter foragers and

are able to relocate, rather than being abstracted into a measure of risk. Foragers learn

by encountering predators, then combine layers of information on resource quality and pre-

dation risk to make movement decisions. This framework allows the investigation of the

food–safety trade-off experienced by foragers at risk from predation, which is challenging

to do experimentally given the unobservable nature of memory (Fagan et al. 2013). Across

landscape and predator environments, memory is particularly useful with longer duration

predators and patchy landscapes. These same landscapes are also those with the highest

non-consumptive effects of predation, seen in the changes in resource consumption with and

without predation. The longer predators persist, the better memory is able to aid foragers
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Figure 2.7: Time spent in areas of different resource quality across different predator environ-
ments compared to the distribution of resources on the landscape. Rightmost column (none)
is no predators. Landscape environments are µQ = −1.5, γQ = 10 (top), µQ = −1.5, γQ = 2
(middle), and µQ = 0, γQ = 2 (bottom). White represents zero resources while shades of
gray from light to dark show quartiles of increasing quality. In the figure, M+ = memory
(high survival), M– = memory (low survival), K = kinesis, R = random walk, L = landscape.
Memory is parameterized with best parameters according to fitness in Table 2.3.
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in managing the food–safety trade-off.

While multiple competing goals make comparisons more difficult, it is clear that memory

provides a survival advantage in most predator environments. The size of that advantage

depends on the environment. More persistent predators are easier to learn to avoid. However,

even if the predators themselves are not persistent, it is still possible to avoid them using

learning if they are correlated with some other measure, e.g., resource quality, that varies

spatially. Like foraging without predation risk (Chapter 1), memory provides the most

benefit in patchy landscapes where it is better able to exploit resources. When predators are

correlated with resources, encounters go up as well. Here the patch size works differently

than with no threat of predation. In a predator-free landscape, larger and more contiguous

patches are a huge advantage for memory, which fully utilizes those patches and minimizes

travel time. However, with low predator spatial randomness and fewer but larger high-value

patches, predators in effect ‘guard’ those resources. Smaller patches, on the other hand,

are more numerous, giving foragers alternative resources to utilize, as the predators cannot

occupy all of them.

These same effects of landscape environment also relate to the non-consumptive effects of

predation. Not surprisingly, consumption is most reduced in landscape environments where

it was the highest without predation. These landscapes with large high-value patches are also

the same ones where predators can effectively monopolize resource locations. In smoother

landscapes or those with smaller patches, consumption decreases less from a smaller starting

point. The parameters that are best for low survival of encounters also reduce consumption

the most. This suggests that even though encounters might be rare in these contexts, the

effects of predation can still be significant on the ecosystem. Indeed, the potential strength

of non-consumptive effects of predation compared to consumptive effects has been noted

(Lima and Dill 1990; Preisser et al. 2005; Cresswell 2008). In the case of changes in habitat,

avoidance could be due to sensory predator cues (e.g., Brown 2003). However, it is also likely

that memory plays a role in some of these observed non-consumptive effects as well.

One notable point is that the effects of predator environment are non-linear for memory
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(see Fig. 2.4). For example, consumption is much higher and encounters lower for spatially

random predators (ρ = 1) than any degree of correlation with the resources (ρ = 0, 0.5).

Similarly, predators with any degree of persistence (δ = 300, 1000) are much more similar

to each other than more ephemeral predators (δ = 10). This suggests that while memory

is not useful in some extreme environments such as very ephemeral predators, it may not

take a large increase in persistence to switch to a state in which memory is favored. On the

other hand, it may not take a large degree of correlation between the predator’s locations

and the forager’s food resources before increasing effects of predation are felt in terms of

increased encounters and decreased consumption. It is advantageous for the predator to be

unpredictable in time, but not in location, especially if a forager’s resources are sparsely

located rather than broadly distributed.

Of the predator memory parameters, predator memory factor explains more of the vari-

ation in consumption, encounters, and fitness, followed by predator decay rate (Table 2.4).

Notably, the ordering of variable importance was consistent across metrics even if optimal

values differed. Predator decay rate has the clearest pattern with predator environment,

with the optimal decay rate decreasing as predators are more persistent (Table 2.3). Be-

cause memories of a predator encounter will steer a forager away from that location whether

that predator is still there or not, a balance must be struck between a decay rate small

enough to avoid future encounters while at the same time not unnecessarily forgoing future

feeding opportunities. This balance depends on both the predictability of the predators and

the survivability of encounters. The predator memory factor was always at its largest value

under low survival, and tended to decrease with less persistence and spatial randomness

under high survival. The memory factor serves to scale the integrated measure of predation

risk when calculating predator safety in a particular direction (Eq. 2.3). Larger memory

factor values give greater weight to the riskiness of a particular direction. Larger values thus

increase the likelihood that the safety value, p(θ), in the direction of a previously encountered

predator will be zero, so there is no chance of going in that direction. Larger values were

always preferred for the learning rate, which reflects the need to learn quickly after a single
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encounter. In contrast, a forager can learn more slowly about resources as it moves through

an area. Finally, the memory risk spatial scale reflects the degree to which predator risk is

weighted by distance, i.e., should the forager only be concerned with nearby predators or

also those farther away. In general a medium value performed best, reflecting a compromise

between avoiding getting too close to predators, even those not in the immediate vicinity,

and exploiting feeding opportunities between the forager and a more distant predator.

Animals face a food–safety trade-off in their quest for food under threat of predation.

Many predator avoidance strategies also reduce consumption, such as limiting foraging time

or increasing vigilance. Here, using memory gives the forager the ability to reduce encounters

without necessarily reducing consumption. Namely, when predators are persistent and less

correlated with resources. While example exist of predators being spatially random and

not correlated with the prey’s resource quality, the predators in this case are temporally

unpredictable as well, such as hawks (Accipiter striatus) preying on other birds (Roth and

Lima 2007). Evidence suggests this is a deliberate strategy rather than due to cognitive

limitations of the hawks. This makes it unlikely that memory could mitigate the food–

safety trade-off in this case, and indeed, Roth and Lima (2007) surmise that the predator

unpredictability is due to a behaviorally response prey. Another example of a predator

uncorrelated with its prey’s resource could be a generalist predator feeding on multiple prey

with non-overlapping diet preferences. In the terminology of Preisser et al. (2007), this

would be a broad-domain predator, and temporal predictability would necessitate that the

predator use a sit-and-wait or sit-and-pursue hunting mode. This combination was relatively

uncommon, however, perhaps because prey with spatial memory capabilities could employ

highly effective counter measures.

Other predator environments, particularly ephemeral predators, reduce the usefulness of

memory. Foragers still face a trade-off when using memory, i.e., different parameterizations

of memory tend to increase consumption and encounters in tandem. However, even when

memory can help mitigate the food–safety trade-off, this is in relation to other movement

processes or parameterizations of memory. There can still be strong non-consumptive effects,
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even with fewer encounters. It would also be possible to consider the food–safety trade-off

more dynamically, where predator memory and possibly other parameters would depend on

the forager’s state and goals (McNamara and Houston 1986; Higginson et al. 2012). That is,

a hungry animal might take more risks to obtain food than a satiated one. How the different

pieces of information are weighted could depend on a variety of factors such as vigilance

levels or bioenergetic criteria such as food reserves or recency of feeding. In this case, how

much an animal pays attention to its memory of previous encounters would become another

strategy to manage the food–safety trade-off.

Although particular parameterizations of memory can help the forager manage the food–

safety trade-off in terms of reducing encounters without reducing consumption, consumption

is still reduced compared to foraging without predators. In fact, the reduction in consump-

tion is generally larger for memory compared to other movement processes given memory’s

higher starting point. These reductions are present even with minimal encounters, showing

that strong non-consumptive effects are possible, particularly when encounter survival is low.

While changes in habitat use (i.e., spending less time in good areas) were greater under low

survival with the greater emphasis on avoiding encounters, this was particularly the case for

ephemeral non-random predators (Fig. 2.7). Because the optimal predator memory param-

eterization in this case included no decay of the predator memory (Table 2.3), the forager

essentially tries to avoid predators everywhere they have been encountered. This minimally

works to reduce encounters when predators are spatially correlated, but also strongly affects

habitat usage. Spatially random or temporally persistent predators, on the other hand, are

much easier for a forager using memory to avoid, and consequently the observed habitat

usage changes are smaller.

In conclusion, modeling provides a unique perspective in being able to control aspects of

memory and compare memory-informed movement to other movement processes under the

same circumstances, both predator environment and landscape environment. This model

demonstrates one way to include predators as a dynamic part of the system. This allows

one to investigate the food–safety trade-off inherent to foraging under risk of predation while
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manipulating the forager’s memory. The results suggest that the types of landscapes where

one is most likely to find memory-driven movement in search of resources (Chapter 1) are also

those where memory provides the most benefit when predators are considered as well. Unlike

many antipredator strategies in which reducing predator encounters also reduces consump-

tion (e.g., reduced movement, increased vigilance), memory allows the forager to reduce en-

counters while still maintaining consumption when predators are temporally predictable and

alternative foraging locations exist. However, even when using memory, non-consumptive

effects from predation are still found, as foragers reduce consumption and shift their habitat

use compared to foraging without predators.
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Chapter 3

EFFECTS OF MEMORY AND LEARNING ALONG THE

EXPLORATION–AVOIDANCE AXIS FOR RELOCATED

ANIMALS

Abstract

Conservation biologists use animal relocations to reintroduce extirpated populations and

augment existing populations. One factor that can affect relocation success is animal tem-

perament, or where individuals fall on axes such as bold–shy and exploration–avoidance.

These same axes correlate with the fast–slow cognitive styles underlying learning, memory,

and decision-making. I ran simulations introducing naive animals to new landscapes (good

and poor release sites). Parameters explored include the learning rates for spatial memory

(used to locate resources), average consumption rates (used in behavior switching), and the

memory value along the exploration–avoidance axis (used for new habitat). Foragers were

relatively insensitive to the consumption rate at their previous location negatively impact-

ing their ability to adapt to their new environment. Likewise, most non-extreme learning

rates for average consumption effectively provide the forager with the necessary information

to switch between feeding and searching behaviors. Performance along the exploration–

avoidance spectrum was habitat-dependent, though in general, foragers that are low to mod-

erately exploratory in new habitats are successful. These results suggest that memory and

an animal’s ability to learn about its environment could be important for relocation success,

and that variability in exploratory tendency could help animals adapt to a range of new

habitat conditions.
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3.1 Introduction

Animal relocations encompass reintroductions, the re-establishing of a locally extirpated

species; translocations, moving wild animals from one part of their range to another; and

supplementations, augmenting the number or genetic diversity of an existing population

(Fischer and Lindenmayer 2000). Examples include conservation efforts to reintroduce en-

dangered or threatened populations (Fritts et al. 1997; Zidon et al. 2009), supplementing

small relict population to aid species recovery (Weinberger et al. 2009), managing problem-

atic animals in human–animal conflict (Linnell et al. 1997; Athreya et al. 2011), and assisted

colonization to attempt to prevent extinctions of species threatened by climate change (Shirey

and Lamberti 2010).

Animals released into novel environments, where they have no knowledge of the resource

availability and quality or habitat structure, can learn about this new environment as they

explore their new surroundings. One factor affecting relocation success is preference for habi-

tat conditions similar to their natal habitat (Stamps and Swaisgood 2007). This preference

is predicted to occur when previous habitat was high quality and when it is difficult for the

animal to estimate the quality of newly encountered habitat, and it can lead to relocated an-

imals dispersing long distances rather than settling in the vicinity of the release site (Stamps

and Swaisgood 2007). In a study of translocated elk (Cervus elaphus), for example, animals

showed a preference for previously visited sites of high quality, showing the importance of

spatial familiarity in habitat selection (Wolf et al. 2009). Releasing animals in high quality

habitat was one factor that contributed to the successful reintroduction of black bears (Ursus

americanus) to Arkansas (Smith and Clark 1994). Another study of translocated elk found

forage biomass directly influenced release-site fidelity (Frair et al. 2007).

Animal temperament has been suggested as an important consideration in reintroduction

programs, both through potential changes induced by captive breeding programs or as a way

to increase the success of animal relocations (McDougall et al. 2006). Temperament refers

to individual differences which are consistent across time and between situations in traits
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such as aggressiveness or exploration (Réale et al. 2007). This concept is important because

it shows behavioral plasticity may actually be more limited than previously thought, and

variation in temperament can maintain variation in behavior across individuals (Sih et al.

2004). Limited behavioral plasticity is one explanation for animals engaging in non-optimal

behavior in some contexts (Sih et al. 2004).

Personality traits, or behavioral types, are frequently described along a continuum or axis,

such as shyness–boldness, exploration–avoidance, activity, sociability and aggressiveness, and

evidence suggests these traits are ecologically important (Réale et al. 2007). Behavioral

types can also be considered in relation to cognition where the speed–accuracy trade-off is

fundamental to individual differences (e.g., in perception, learning, memory, and decision-

making) (Sih and Del Giudice 2012). Many behavioral-type axes can be mapped onto a

fast–slow continuum, with bold, aggressive, proactive, and fast-exploring types being ‘fast

types’ and cautious, nonaggressive, reactive, and slow-exploring types being ‘slow types.’

Fast types are considered high risk and high reward, and this risk–reward trade-off links

behavioral types to the speed–accuracy trade-off of cognitive styles.

Behavioral types and individual differences in cognitive style can affect memory in three

phases: encountering new situations, assessing new situations, and altering behavior in re-

sponse to new assessments. Fast behavioral types, such as bold or fast-exploring individuals,

are likely to encounter new situations more quickly than slow behavioral types, and thus

appear to learn more quickly. However, they are also more likely to rely on prior assessments

(particularly proactive individuals) and thus slower to learn changes in the environment or

alter their behavior in response to new information (Sih and Del Giudice 2012).

While individual differences in behavioral type are likely to relate to differences in how

individuals process and store information, memory is also something that will differ both

among individuals and through time for a single individual as a result of an individual’s

experiences. A clear distinction in memory is between naive, newly introduced animals and

experienced individuals that have been resident for some period of time. In a study of elk

introduced to a novel environment, Fryxell et al. (2008) analyzed movements, which were
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initially dispersive and then transitioned to home range behavior, where movement modes

can be thought of as structured by the relationship between an animal’s internal state and the

external state of the environment (Owen-Smith et al. 2010). Home-range movement patterns

showed a preference for areas that were nearby, familiar, and attractive habitat. Dispersal

distance and time varied by individual. These dispersal distances were likely mediated by

individual differences in behavioral type, as social animals were more sedentary than solitary

individuals (Fryxell et al. 2008).

Managers have also tried manipulating or selecting for behavioral types to improve relo-

cation success. For example, selecting against boldness in both breeding stock and animals

to release has been suggested, as bold captive-bred swift foxes (Vulpes velox ) were more likely

to die soon after reintroduction (Bremner-Harrison et al. 2004). In a meta-analysis on the

fitness effects of temperament, exploration had a positive effect on survival but no effect on

reproductive success, and boldness increased reproductive success (especially for males) but

at the cost of reduced survival (Smith and Blumstein 2008). This suggests that variation

in boldness may be maintained through trade-offs, where fitness varies depending on the

environment. Additionally, releasing only shy individuals may increase short-term success,

but with long-term consequences for reproductive success (Smith and Blumstein 2008).

While it has been suggested that issues with animals learning and remembering resources

in their new environment may be an important underlying cause of relocation failures (Teix-

eira et al. 2007), this issue has been largely unexplored. Behavioral type correlates to dis-

persal tendency with important implications for relocations (Sih et al. 2012). Simulation

modeling provides a means to explore interactions of memory, learning, and exploratory

tendency which are difficult to control experimentally.

This chapter examines how individual differences on the fast–slow spectrum, such as

learning rates (speed) and exploration–avoidance, affect relocation success, memory forma-

tion, and habitat use. Total consumption over the simulation is used as a proxy for the

animal finding suitable habitat as a measure of relocation success. In simulations, I vary

learning rates and memory parameters for naive relocated animals. How animals learn un-
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familiar habitat quality is also considered through explicitly modeling foragers learning the

average consumption rate with different start values. For comparison, simulations are also

run with fully informed individuals already habituated to their environment and animals

using kinesis rather than memory. With kinesis, foragers learn the average consumption rate

used for behavior switching, but do not form spatial memories.

3.2 Methods

In this chapter, animals are introduced to a new landscape and tracked as they explore

their new habitat. In Chapters 1 and 2, foragers using memory were assumed to already

have a spatial map of habitat quality in the area, and foragers were additionally assumed to

‘know’ the average landscape quality under optimal foraging theory (Charnov 1976). Foragers

using the memory and kinesis movement processes used this average consumption rate, C, to

switch between searching and feeding behaviors. However, after being introduced to a new

landscape, a mismatch between an animal’s previous average consumption rate and the new

habitat quality is possible. This previous average consumption rate could remain fixed, or the

animal could adjust it by learning from their experience in the new habitat. The Marginal

Value Theorem (MVT), that the forger should leave a patch when the consumption rate

within the patch declines to the average consumption rate in the environment including travel

time, assumes discrete patches and knowledge of the average consumption rate as originally

formulated (Charnov 1976). However, the MVT has been extended to show animals could

estimate the average consumption rate by summing their consumption and foraging time

or using an exponentially weighted estimate in stochastic environments (McNamara and

Houston 1985) and to apply to continuously distributed resources (Arditi and Dacorogna

1988).

Relocated individuals have no way of knowing the average consumption rate of their new

environment. Thus, they presumably use the value from their prior experience or perhaps

some default value to switch between behaviors when exploring a new environment. Here
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the learning is modeled as a exponentially weighted moving average,

C(t) = αC(t) + (1− α)C(t− 1), (3.1)

where α is the average consumption learning rate and C(0) is the average consumption start

value. Note that α = 1−exp(−∆t τ) if the consumption rate is sampled irregularly where τ is

the filter time constant, though here the sampling is assumed to be regular for simplicity. This

is a reasonable assumption for this model when the animal is consuming continuously, but

might not apply to more discretely distributed resources. A learning rate of zero corresponds

to an average consumption rate set genetically or at some specific developmental period, while

non-zero values correspond to a plastic average consumption rate set through the forager’s

experience of the landscape. The larger the learning rate, the more heavily weighted the

average consumption rate is to recent experience. Thus C̄ is now dynamic quantity rather

than the fixed value based on assumed knowledge of average habitat quality used in Chapter

1. This is the same equation used to model a forager learning the search time or energy

intake thresholds for patch leaving with discretely encountered prey (Esposito et al. 2010).

Those foragers using memory are released into the new landscape naive, with no knowl-

edge of their environment, in contrast to the fully informed individuals considered earlier

(Chapters 1 and 2). Previously, the long-term stream was initialized to the habitat quality

and the short-term stream to zero (see Eq. 1.4), meaning the forager already knew the lo-

cations of food patches. The question then, in a brand new environment, is how do foragers

initialize their spatial memoryM , and in particular the long-term attractive stream L. That

is, how exploratory or not is the animal about the potential resources in unknown areas?

This parameter is M∗, the uninformed memory value or attractiveness of unexplored habi-

tat. M∗ sets the value assigned to L at the start of the simulation (S is still initialized to

zero). As the forager moves about its new habitat, it learns in the area in its vicinity using

a bivariate normal learning kernel for the short- and long-term memory streams (Chapter 1,

Eqs. 1.5 and 1.6).

Based on the results of previous chapters, here the focus is on patchy landscapes with
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Figure 3.1: Landscapes used in simulations: poor release site (PRS, left panel) and good
release site (GRS, right panel). White indicates areas of no resources and resource quality
increases with darker shades of green. Release site marked with x.

large high-value patches where memory is more likely to show interesting differences among

parameterizations and with other movement processes. Two landscapes were created (Fig.

3.1), to simulate a common practice of releasing relocated animals in areas of presumed high

quality habitat (e.g., Smith and Clark 1994), as well as a second case in which better quality

habitat is located farther from the release site. The landscapes are 25 time bigger than

those used in Chapters 1 and 2 to allow for the examination of the dispersal process. In

order to create patches of varying quality, four landscape layers were created with different

parameterizations: 1) µQ = −2, γQ = 10,
∑

Q = 10, 2) µQ = −2, γQ = 10,
∑

Q = 7.5,

3) µQ = −1.5, γQ = 10,
∑

Q = 5, and 4) µQ = −1.5, γQ = 10,
∑

Q = 2.5, where µQ is

patch concentration, γQ is patch size, and
∑

Q is total quality (see Chapter 1). For the

good release site (GRS), the layers were added together for a total
∑

Q = 25. For the poor

release site (PRS), the center 1/25 square of habitat (forager release location) was set to 0
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for the best quality layers 1 and 2, then the layers were added together and renormalized to

sum to 25 like the good release site landscape.

In order to characterize the value of learning in a new landscape by relocated individuals,

parameterizations of memory were compared to the kinesis movement process. For both

memory and kinesis, different values for the average consumption learning rate and start

value were examined. For memory, the short and long learning rates and the value for

uninformed memory were also varied. Each parameter combination (Table 3.1) was repeated

20 times to account for the variability in exploration of a novel habitat across both the good

and poor quality release site landscapes. The main metric tracked is total consumption

over the simulation. Consumption is a proxy for the animal finding suitable habitat as a

measure of relocation success. In order to better understand the mechanisms leading to

differences in consumption among scenarios, forager trajectories are also recorded. This

allows the examination how foragers explored the landscape and how that exploration varied

depending on the movement process and underlying parameterization of that process.

3.3 Results

3.3.1 Learning rates

There are two classes of learning rates manipulated in this chapter: the average consumption

learning rate (and associated start value) used by both kinesis and memory and the short-

and long term learning rates for habitat quality for spatial memory. We first consider the

latter.

Memory learning rates

The differentiation of performance across the short- and long-term learning rates for the

respective resource memory streams varied by landscape (Fig. 3.2). For the PRS, there was

little variation in consumption with learning rates. For the GRS, on the other hand, there was

a clear increase in consumption with both higher long-term learning rates and lower short-
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Figure 3.2: Consumption amounts across values of short-term learning rates (colors), βS,
and long-term learning rates (x-axis), βL, and landscapes, GRS (solid) and PRS (dashed).
For comparison, fully informed memory (F) shown with points, GRS (diamond) and PRS
(circle). Other parameter values in Table 3.1.
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Table 3.1: Parameters used in the model and values for relocations simulations. Because units are arbitrary in the
simulations, L is used for generic length units, T is used for generic time units, and R is used for generic resource
biomass units.

Parameter Definition Units Values
Simulations

∆t model time step T 1
T simulation length (time steps) 1000

Consumption
βR regeneration rate 1/T 0.01
βC consumption rate 1/T 1
γC consumption spatial scale L 1
α average consumption learning rate 1
C(0) average consumption start value R 0, 1e–6, 1e–4, 1e–2

Memorya

ψM short-term memory factor 2
βL long-term learning rate 1/T 0.5, 1, 2, 5
βS short-term learning rate 1/T 0.5, 1, 2, 5
φL, φS decay rates 1/T 0.0001, 0.01
γL, γS learning spatial scale L 1, 1
γZ memory spatial scale L 2, 10, 100
M∗ uninformed memory R 0, 1e–14, 1e–12, 1e–10,

1e–8, 1e–6, 1e–4, 1e–3,
1e–2, 0.1

Movementb

τS, τF autocorrelation time scale T 4, 2
νS, νF length of µ L/T 6, 1
λ mean time to update θ T 1

aL = long-term memory, S = short-term memory
bS = searching, F = feeding
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term learning rates, though there was no interaction between short- and long-term learning

rates. However, even the best-performing learning rates did not match the performance of

fully informed memory (points in Fig. 3.2), which has the advantage of complete knowledge

of resource locations.

The same ordering of the performance of short-and long-term learning rates remained

across the range of exploration–avoidance for the GRS (Fig. 3.3). However, for low ex-

ploratory individuals (small M∗), naive foragers approached the consumption rates of fully

informed individuals. For the PRS, the picture was more complicated. For more extreme

values of M∗, whether on either end of the exploration–avoidance spectrum, consumption

was largely unaffected by learning rates (i.e., similar to Fig. 3.2). For midrange values closer

to the true average landscape quality (Q̄0 = 4e − −4), the patterns with both short- and

long-term learning rates matched those of the GRS. The remaining simulations used βS = 1

and βL = 5, the optimal learning rate parameterization across values on the exploration–

avoidance spectrum.

Learning the average consumption rate

Both memory and kinesis displayed a dome-shaped relationship between consumption and

the average consumption value learning rate, α (Fig. 3.4). This learning rate is used by

foragers to learn the average consumption rate, C̄, used to switch between searching and

feeding behaviors (Eq. 3.1). The optimum values were similar for both, with a slightly

smaller α preferred for kinesis for the GRS. In general, the starting value, C(0), the forager’s

uniformed guess at the average habitat quality, was unimportant, except when it was never

updated (α = 0). In that case, values closer to the true average quality (4e–4) performed

best for kinesis and memory. However, a large value (0.01) did nearly as well or better than

the near-true value (1e–4) for memory but was the worst performing value for kinesis.
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Figure 3.3: Consumption rates for short-term learning rates (colors, left panel) and long-term
learning rates (colors, right panel) across values of unexplored memory values (x-axis), M∗,
and landscapes, GRS (solid) and PRS (dashed). For comparison, fully informed memory (F)
shown with points, GRS (diamond) and PRS (circle). Other parameter values in Table 3.1.
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Interactions with exploratory tendencies

Returning to the exploration–avoidance spectrum of memory values for new habitat, the pat-

terns across landscapes seen with learning rates (Fig. 3.2) occurred across other parameters

such as average consumption learning rate, α, and memory spatial scale, γZ (Fig. 3.5). For

the GRS, there was a plateau across low to moderate exploration values, followed by a steep

decline in consumption with more exploratory values. For the PRS, consumption values were

generally smaller (true also for kinesis and fully informed memory), and peak consumption

occurred with moderately exploratory values of uninformed memory. The ordering of per-

formance of the learning rate α was consistent across the exploration–avoidance spectrum

(M∗) and between landscapes. A relatively slow learning rate performed best, meaning a

longer-term consumption average is preferred. The exception was the case with no learning

(α = 0), which was the worst performing option by far for the GRS, but did better than

‘decide based on the last experience’ (α = 1) for PRS (no learning also outperformed faster

learning rates for kinesis).

For γZ , large spatial scales (γZ = 10 and 100) performed similarly and better than small

spatial scales (γZ = 2) for the GRS. This ordering was consistent with fully informed memory,

though the largest spatial scale (γZ = 100) was more strongly preferred. For the PRS, there

were not large differences among values, but a small spatial scale (γZ = 2) was best with low

exploration values for uninformed memory, a larger spatial scale (γZ = 10) was best with

exploratory values, and the largest spatial scale (γZ = 100) underperformed. This was in

marked contrast to the fully informed memory, where the smallest spatial scale (γZ = 2) was

the worst performing.

3.3.2 Space use

Trajectories

How foragers explored their new habitat changes considerably across movement processes

and memory state. With kinesis (Fig. 3.6), trajectories tended to be wide-ranging and
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Figure 3.5: Consumption rates for average consumption learning rate (colors, left panel)
and memory spatial scale (colors, right panel) across unexplored memory values (x-axis),
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informed memory (F) shown with points, GRS (diamond) and PRS (circle). Other parameter
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Figure 3.6: Sample trajectories for foragers using kinesis for the PRS (left panel; α =
0.01, C(0) = 0.01) and GRS (right panel; α = 0.001, C(0) = 1e–6). Colors (red, orange,
yellow, purple, pink) denote separate trajectories with gradient increasing from light to dark
with time. Other parameter values in Table 3.1.
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in Table 3.1 and γZ = 10, βL = 1, βS = 1.



88

50 100 150 200 250

5
0

1
0

0
1

5
0

2
0

0
2

5
0

PRS

M* = 0

50 100 150 200 250

5
0

1
0

0
1

5
0

2
0

0
2

5
0

GRS

M* = 0

50 100 150 200 250

5
0

1
0

0
1

5
0

2
0

0
2

5
0

M* = 1e−6

50 100 150 200 250

5
0

1
0

0
1

5
0

2
0

0
2

5
0

M* = 1e−6

Figure 3.8: Sample trajectories for foragers using uninformed memory for the PRS (left
panels) and GRS (right panels). Top row is low exploration foragers (α = 0.01, C(0) = 1e–6,
γZ = 10,M∗ = 0), and bottom row is moderate exploration foragers (α = 0.01, C(0) = 1e–6,
γZ = 10,M∗ = 1e–6). Colors (red, orange, yellow, purple, pink) denote separate trajectories
with gradient increasing from light to dark with time. Other parameter values in Table 3.1
and βL = 5, βS = 1.
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frequently encountered one of the boundaries. While trajectories sometimes appeared to be

area-constrained, that tendency was mostly an artifact of the initial stochastic direction and

reflecting boundaries.

The fully informed memory trajectories (Fig. 3.7), on the other hand, tended to be densely

concentrated on one or several patches, leaving the majority of the landscape untraveled.

Even with individuals having the exact same memory representation and release site, the

stochasticity present in probabilistically picking a direction resulted in different individuals

utilizing different patches.

For the uninformed memory trajectories (Fig. 3.8), the low exploration individuals (M∗ =

0) tended to stay in the same location near the release site for both the PRS and GRS. More

exploratory individuals (M∗ = 1e–6) tended to stay near the release site like low exploration

individuals for the GRS but move further afield for the PRS. Compared to fully informed

foragers, uninformed foragers tended to concentrate their movements in a single area rather

than several nearby areas, even when some initial exploration was required to find that area.

Changes in space use through time

Like the individual trajectories, the dispersiveness with time also varies considerably across

movement processes and memory state. For both the PRS (Fig. 3.9) and GRS (Fig. 3.10),

kinesis displayed a diffusion outwards from the release point at the center with time. Kinesis

fully explored/utilized all available habitat, and while it is possible to see some intensity of

use of high quality patches, the trajectories in general were not focused there. The initial

stages of the trajectories (green) were focused around the center release point, and this initial

central space use was actually over a larger area in the high quality GRS scenario. The fully

informed memory trajectories also displayed the pattern of initial focus around the center

but they were followed by later intensive use (purple/magenta) of high quality patches both

proximate to and farther from the initial release point. The patterns did not look markedly

different between the PRS and GRS other than the bias towards the lower left in the PRS

scenario likely due to the poor quality patch immediately left of the release site.
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Figure 3.9: Space use for PRS across multiple trajectories with color changing through time
(green, blue, purple, magenta). Clockwise from upper left: PRS landscape, uninformed mem-
ory (α = 0.01, C(0) = 1e–6, γZ = 10,M∗ = 0), uninformed memory (α = 0.01, C(0) = 1e–6,
γZ = 10,M∗ = 1e − −6), uninformed memory (α = 0.01, C(0) = 1e–6, γZ = 10,M∗ = 1e–
2), kinesis (α = 0.01, C(0) = 0.01, and fully informed memory (γZ = 10). Other parameter
values in Table 3.1.
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Figure 3.10: Space use for GRS across multiple trajectories with color changing through
time (green, blue, purple, magenta). Clockwise from upper left: GRS landscape, uninformed
memory (α = 0.01, C(0) = 1e–6, γZ = 10,M∗ = 0), uninformed memory (α = 0.01, C(0) =
1e–6, γZ = 10,M∗ = 1e–6), uninformed memory (α = 0.01, C(0) = 1e–6, γZ = 10,M∗ = 1e–
2), kinesis (α = 0.01, C(0) = 0.01), and fully informed memory (γZ = 10). Other parameter
values in Table 3.1.
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The space use of the uninformed memory trajectories were highly dependent on the

forager’s position along the exploration–avoidance axis for new habitat. Low exploration

foragers stayed in a small area near the release site irrespective of habitat quality in the

vicinity. This was also true of moderate exploration with the GRS: the uniformed forager

stayed near the release site whereas the fully informed forager exploited other high quality

nearby patches. With the PRS, the moderately exploratory uninformed trajectories more

closely resembled those of the fully informed foragers in terms of variety of patches used

though with more variability due to more stochasticity in initial direction. Finally, as explo-

ration increased, the uninformed trajectories more closely resembled those of kinesis as the

forager was quite dispersive with no area restriction.

3.4 Discussion

This chapter evaluates the value of learning compared to movement processes that are either

memoryless or already fully informed with respect to habitat quality. This chapter also

examines how foragers may update their assessment of the average consumption rate when

switching behaviors. An individual’s learning ability and tendency to explore are important

to the animal’s ability to adapt to a new environment. The model provides a chance to

explore relocation scenarios with memory that can be hard to manipulate experimentally.

Foragers seem relatively insensitive to the consumption rate at their previous location or

recent experience negatively impacting their ability to adapt to their new environment.

Likewise, most non-extreme learning rates for average consumption are effective at providing

the forager with the information it needs to switch between feeding and searching behaviors.

Turning to learning rates for memory streams of habitat quality, faster rates are preferred for

long-term memory and slower rates for short-term memory. Finally, performance along the

exploration–avoidance spectrum was habitat-dependent, with more values performing well at

the GRS compared to the PRS, though in general low to moderately exploratory values are

successful. These results have implications for how stress may impact relocation success, the

importance of the average consumption rate being based on a long-term average in stochastic
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environments, and issues with selecting animals for relocation based on behavioral type.

Most values for the average consumption learning rate, α, and start value, C̄(0), allowed

foragers to adapt to the consumption rate of their new environment. This assumes foragers

can learn the quality of new habitat (Brown 1998; Morris 2003), though there has been

some suggestion that foragers cannot accurately asses unfamiliar habitat and instead rely on

simple cues to evaluate new habitat (Stamps and Swaisgood 2007). Here we used a fairly

simplistic learning algorithm (Esposito et al. 2010) that did not take into account the signal

given by the transition to a new place from the relocation event. In addition, the start

value, i.e., how different the previous environment may have been, did not have a big effect

either. Most learning rates had reasonable performance other than values at the extremes

of small and large. The exceptions are when no learning takes place, in which case having a

well-calibrated start value becomes important, and with very fast learning rates that heavily

weight very recent experience.

No learning (α = 0) but a good start value still outperforms faster learning rates, showing

the importance of having the average consumption value reflect a long-term average. This

would suggest that foragers relocated from habitats of very different quality and using a

fixed average consumption rate would be at a disadvantage. Indeed, dispersers coming from

high quality habitat may experience a strong preference for habitat similar to their natal

habitat, resulting in long dispersals from translocation release sites (Stamps and Swaisgood

2007). One difference between the movement processes is that the largest start value (0.01)

performs as well as the most accurate start value with memory, even with small/zero learning

rate, while it is the worst performing with kinesis. For memory, it is more of an advantage

to find the best performing patches, which a large value for behavior switching facilitates,

because the forager will be able to return there once found. For kinesis, on the other hand, it

is better to exploit any relatively good patch when there, since the forager may never return

to that spot again.

The result that animals integrating their experience over a longer time scale (i.e., slower

learning rates for average consumption) perform better is in accordance with other model
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results of patch foraging behavior (McNamara and Houston 1985; Esposito et al. 2010). In

particular, Esposito et al. (2010) found that the combination of very fast learning rates (so

that behavior is only based on recent experience) combined with heterogenous landscapes led

to great variability in consumption and greater risk of death. When discrete resources were

patchily distributed, both search time and energy intake were important in patch leaving

decisions (Esposito et al. 2010). Here only energy intake is a factor, but it would be interesting

to consider some search time criteria for a relocated animal making larger-scale movements.

That is, average consumption rate, or energy gain, would affect small-scale switching between

searching and feeding behavior, while time searching (as opposed to feeding) would affect

larger-scale habitat selection, perhaps through the value of uninformed memory.

For foragers using memory, there are separate learning rates (βS, βL) for the short- and

long-term streams representing habitat quality. For the long-term attractive memory stream,

there is a clear preference for faster learning rates for the GRS and vice versa for the short-

term repulsive memory stream. For the PRS, there is also a benefit from faster learning

rates, but this is only apparent with moderate levels of exploration–avoidance for new habitat

(uninformed memory value). This is likely due to the fact that at the GRS site, it is relatively

easy for foragers to find good quality habitat irregardless of the uninformed memory value,

thus there is a clear preference with memory values. For the PRS, on the other hand, good

patches are more difficult to locate, so the learning rate only matters for those uninformed

memory values that actually succeed in locating and remaining long enough in good patches

to learn about them and return to them.

There is an asymmetry in the best performing learning rates: faster learning rates yielded

higher consumption for the long-term attractive memory stream and slower learning rates

yielded higher consumption for the short-term repulsive memory stream. For the short-term

memory stream, on the other hand, high learning rates can be a disadvantage depending on

the values of other parameters (e.g., short-term decay rate and short memory factor). Like

the results in Chapter 1, the short-term memory stream needs to be large enough to initially

repulse the animal, but a short-term memory stream that gets too large or decays too slowly
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is a long-term detriment, preventing the animal from returning to a regenerated area.

It seems self-evident that a faster learning rate would be more successful for long term-

memory, and given the structure of the spatial learning kernel, this is likely to increase up to

infinity. Even though the learning in the local area quickly saturates at its maximum, larger

learning rates still incrementally improve learning about habitat quality farther away due to

the bivariate normal kernel (or any kernel with infinite support). Actual learning rates in

animals are likely limited by energetic costs or physiological constraints. In fact, stress can

impair spatial learning (Hölscher 1999; Zoladz et al. 2012), a concern for relocated animals

given that relocations can increase stress (Chipman et al. 2007; Stamps and Swaisgood

2007). In fact, the impact of relocation stress on an animal’s ability to learn about its new

environment is a particular concern (Teixeira et al. 2007). Relocation stress could effectively

lower a forager’s long-term learning rate (Fig. 3.3), and thus impair the formation of a spatial

map of resources. Teixeira et al. (2007) suggest that this stress-induced resource memory

impairment could be an important but unacknowledged factor in the high mortality observed

in many animal relocations.

With spatial scale, the same step function-like response observed in Chapter 1, where

all but the smallest values perform well, is also apparent here. Spatial scale is important

for how differences are integrated across the landscape and how far away habitat quality

influences movement decisions. For a fully informed individual, knowing the full extent of

resource locations, a larger spatial scale allows access to high quality patches located farther

away. This holds true for an uninformed individual as well, though the spatial scale values

are less clearly distinguished than the optimal uninformed memory values. This points to

the importance of knowing or discovering high quality areas as a precondition to using the

appropriate memory spatial scale to relocate them, something that could be impaired by

relocation stress (Teixeira et al. 2007).

Indeed, the exploration–avoidance axis is critical for how an animal using memory ex-

plores its environment, even more so than the average consumption learning rate. While the

average consumption learning rate does affect the total amount consumed, it does not change
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how the animal uses space or its ultimate location. How precisely the value placed on unex-

plored habitat changes the resulting habitat use depends on the quality of the release site.

With the GRS, little variation was observed across a wide range of exploration–avoidance

values, and all but the most exploratory values led to a similar result of exploiting the

nearby good patch. It was only extreme exploratory values that resulted in kinesis-like be-

havior of wide-ranging space use and lower consumption. However, when there was not

sufficient quality habitat immediate to the release site, then the precise calibration of the

uninformed memory value along the exploration–avoidance axis became more important.

Less exploratory and the animal remains in suboptimal habitat near the release site, but too

exploratory and the animal moves widely with kinesis-like behavior and never settles into a

home range (Fig. 3.9). In fact, with the optimal uninformed memory value, the space use of

the uninformed individual most close approximates that for the fully informed individual.

Correlations exist between behavioral types, so individuals scoring high in boldness are

also likely to have a high exploratory tendency (Sih and Del Giudice 2012). Behavioral types

are also correlated with dispersal behavior. Bolder individuals dispersing more readily and

farther away can lead to later species interactions, such as larger impacts on the dispersers

prey (Sih et al. 2012). These differences in dispersal tendencies, and the variation in perfor-

mance for foragers with different exploratory tendencies with release site quality examined

here point to additional reasons to be wary about selecting against boldness in relocated

individuals (Smith and Blumstein 2008).

It is worth noting that there is no cost in this model associated with ever larger learning

rates or even with memory storage itself. A more realistic version could include some debiting

of consumption to account for cognitive costs, which could vary by learning rate or other

factors. While memory, both of resources and and predation risk in the case of predators,

decays in intensity with time, decays in spatial precision could also be included (Fagan

et al. 2013). That is, the memory would lose precision of the exact location of resources

as time away from the area increased. Decay rates could also have cognitive costs such

that maintaining memories more accurately in time and space would be more expensive.
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Another limitation of the current model is that animals are considered individually with

no competitive effects. Thus, in the case of the GRS, if multiple animals are released at

the same location, they might not all be able to take advantage of the nearby good patch.

Instead, the PRS might be more representative when competitive interactions come into

play. Sociality can also be important, with dispersal distances and mortality both higher in

solitary individuals compared to those in groups for introduced elk (Haydon et al. 2008).

While animals may be able to learn average habitat quality, this is just one simplified

metric. Other habitat factors may be important (e.g., water sources, nesting/breeding lo-

cations, cover) that cannot be encompassed one variable. Another important consideration

not covered here is predation. In addition to learning predator locations from encounters

(Chapter 2), a forager must have the ability to recognize predators at all and have the appro-

priate antipredator behavior (Fischer and Lindenmayer 2000). The model also suggests the

dispersal period could be critical, especially when resources are unavailable in the immediate

release location due to habitat unsuitability there or competition from conspecifics. Animals

must be exploratory enough to disperse, but also not too exploratory that they fail to stop

at appropriate locations. However, given the differences in optimum values of exploration–

avoidance between the GRS and the PRS, habitat differences may be related to maintaining

variability in exploration–avoidance within populations.

Spatially-explicit population model that incorporate dispersal and life history traits can

be used to predict the distribution of introduced species (Macdonald and Rushton 2003).

Animals were assumed to form home ranges in unoccupied habitat of suitable size. However,

given the importance of memory to home range formation (Van Moorter et al. 2009; Spencer

2012) and the results here on the effect of memory state on dispersal patterns, incorporating

memory into these models could affect the dispersal dynamics of introduced species. Model

robustness in predicting dispersal patterns appeared linked to quality of habitat data (Mac-

donald and Rushton 2003), and lack of finer-scaled habitat quality data could be a barrier

to the inclusion of memory to the dispersal process.
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Chapter 4

DOES MEMORY STATE MEDIATE THE EFFECT OF

PREDATOR INTRODUCTIONS ON FORAGER BEHAVIOR?

Abstract

Predators are important to community structure, and predator reintroductions can serve to

protect species and restore ecosystem function. While some observations of prey behavior

changes, such as shifts in habitat use, exist, prey response to predator introductions is

not well studied. Here a modeling framework is used to examine the impacts of predator

reintroduction on foragers and how the forager’s habitat memory influences these dynamics.

Introduced predators vary in the area threatened and foragers vary in their memory state.

Results indicate that area threatened plays a key role in determining how much habitat

use changes. The forager’s knowledge of alternative habitats and exploratory inclinations

affects what types of shifts occur. This finding suggests that habitat shifts by prey can be

extreme in some cases, but that prey can make use of refugia in others and are particularly

likely to do so when they have less exploratory inclinations. In general, search time increases

and consumption decreases after predator introduction. However, spatial memory of the

surrounding area can mitigate the effect of introduced predators, as foragers can better

access alternate habitat.

4.1 Introduction

Predators can play a key role in ecosystem dynamics, making their reintroduction after

extirpation important for both conservation goals and for the complex top-down effects

predators can exert (Terborgh et al. 1999; Hayward and Somers 2009; Johnson 2010; Grange

et al. 2012). Trophic cascades are widespread and have been documented in a variety of
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freshwater, marine, and terrestrial ecosystems (Estes et al. 2011). Evidence from aquatic

systems shows that both density effects (i.e., changes due to predator-induced changes in prey

densities) and behaviorally mediated effects (i.e., changes due to predator-induced changes

in prey behavior) are important to trophic cascades triggered by predator declines (Heithaus

et al. 2008). Removals of top predators impact ecosystem processes ranging from disease

to biodiversity (Prugh et al. 2009; Estes et al. 2011). For example, in a lake system, the

removal of the top predator largemouth bass (Micropterus salmoides) resulted in dramatic

changes to community structure, both in numbers and species composition; critically, after

bass were reintroduced, the ecosystem steadily returned to its previous state (Mittelbach

et al. 1995). When most carnivores were removed from an area in the northern Serengeti,

small ungulate densities increased dramatically compared to a nearby non-removal area while

the less-vulnerable larger ungulate did not; again, ungulate densities returned to lower levels

with the reintroduction of predators (Sinclair et al. 2003).

Most existing studies in reintroduction biology have been retrospective, however, and

Seddon et al. (2007) emphasized the need to shift to more hypothesis-driven research, such

as well-designed experiments and modeling approaches. Additionally, topics such as general

accounts and population dynamics dominate, with relatively little attention payed to ecosys-

tem effects such as predator–prey interactions (Seddon et al. 2007). This chapter examines

predator reintroductions from the perspective of the forager prey and explores how forager

memory state can affect habitat shifts by the prey.

First, I survey some examples of predator reintroductions. Perhaps one of the most

well-known and well-studied terrestrial predator reintroduction is wolves (Canis lupus) in

Yellowstone National Park (Fritts et al. 1997). Early studies of plant communities suggested a

trophic cascade in which riparian vegetation recruitment ceased when wolves were extirpated

from the area in the 1920’s, releasing elk (Cervus elaphus) from predation risk; with their

reintroduction in 1995–1996, wolves were thought to reduce elk densities as well as modify

their movement and browsing patterns leading to new recruitment and increased height of

woody browse species (Ripple and Larsen 2000; Beschta 2003; Ripple and Beschta 2004,
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2006). There is evidence for behavioral changes in elk with the reintroduction of wolves.

Elk displayed fine-scale habitat shifts to protective woody areas away from preferred but

higher risk open grassland when wolves were present (Creel et al. 2005). Elk preference

shifted from aspen stands to conifer forest in high wolf-use areas in winter (Fortin et al.

2005), though comparing elk distribution before and after wolf reintroduction mainly showed

habitat selection changes in summer rather than winter (Mao et al. 2005). A winter kill site

analysis showed landscape features determine patterns of predation suggesting distinct areas

of predation risk and prey refugia independent of wolf distribution (Kauffman et al. 2007).

However, further research complicated the initial picture, and recent studies do not support

the hypothesis of a behavior-mediated trophic cascade (Vucetich et al. 2005; Kauffman et al.

2010; Winnie 2012; Marshall et al. 2013).

Another example of predator reintroductions is large carnivores, particularly lions (Pan-

thera leo), in protected areas of South Africa (Hayward et al. 2007a; Grange et al. 2012).

Reintroductions have generally been successful (Hayward et al. 2007a) and, in some cases,

negatively impacted prey populations (Hayward et al. 2007b). Predator reintroductions have

been used to limit prey populations and restore ecosystem function in reducing forager im-

pacts on vegetation (Brooks and Macdonald 1983). Predators did not necessarily affect prey

population trends, even when accounting for most observed prey mortality (Grange et al.

2012). Prey vulnerability can shift with shifting habitat quality (driven by rainfall), which

can then affect predator prey preference (Owen-Smith and Mills 2008).

Recolonizations are also examples of predators returning to areas where they have been

absent for some time, albeit without direct human involvement. Indirect evidence for the

impact of recolonizing lynx (Lynx lynx ) on their prey in the Swiss Alps comes from obser-

vations of smaller home ranges and closely spaced kills at the leading edge of recolonization

(Breitenmoser and Haller 1993). For recolonizing lynx in Finland with a four-level food web,

habitat productivity alone did not predict species densities (Elmhagen et al. 2010). The rela-

tive abundance of the top-predator lynx was important: when lynx controlled mesopredator

abundance, lynx and herbivore biomass increased with productivity, while otherwise only
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mesopredator biomass increased with productivity.

In these studies of predator reintroductions, resulting changes in forager behavior have

generally not been considered, with the exception of habitat use changes in Yellowstone elk

(Creel et al. 2005; Fortin et al. 2005; Mao et al. 2005). In particular, how foragers might

use memory to mediate the effects of predator reintroductions may aid in understanding the

behavioral responses of foragers, given the impact of memory on foraging behavior (Chap-

ter 1)) and predator avoidance (Chapter 2). Memory is particularly challenging to study

in an ecological context, however, given that it cannot be measured directly, so memory

state cannot be inferred even from difficult-to-obtain detailed information on an animal’s

past experiences. However, experimental evidence exists for the role memory plays in direct-

ing foraging behavior (Kamil and Roitblat 1985; Shettleworth 2001; Stephens et al. 2007).

Likewise, animals are known to learn from and avoid predator encounters (Huntingford and

Wright 1989; Wisenden et al. 1994; Griffin et al. 2000; Nomikou et al. 2003).

Forager state is known to affect risk-taking behavior, particularly in the case of hunger or

body condition (McNamara and Houston 1986; Lima 1988; Whitham and Mathis 2000; Ols-

son et al. 2002; Heithaus et al. 2007). Memory can also be a component of forager state that

influences risk-taking. For example, predator-experienced mice (Mus domesticus) changed

their foraging behavior in response to signals of increased predation risk while predator-naive

mice did not, and those differences in foraging behavior correlated with survival (Dickman

1992). These changes in foraging behavior as a result of food–safety trade-offs mean that

non-consumptive effects from predators are also possible (Lima and Dill 1990; Preisser et al.

2005; Cresswell 2008). Foragers using memory, as compared to kinesis-driven foraging behav-

ior, have stronger non-consumptive effects from predation (Chapter 2). Given these factors,

memory likely plays a role in changing foraging behavior after predator introduction for for-

agers with those cognitive capabilities. A modeling approach provides a way to gain insight

into how memory influences these predator–prey interactions.

This chapter investigates the impact of predator reintroduction on foragers and, indi-

rectly, the resource when foragers are using memory to make movement decisions informed
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by both habitat quality and predator encounters. Predators are introduced to the areas

of highest-quality habitat and vary in how large an area they threaten. Foragers differ in

their knowledge of the surrounding habitat and how exploratory they are in the face of new

habitat. The movements of the foragers are analyzed before and after predators are intro-

duced to understand how memory influences changes in forager behavior in three areas: (1)

consumption, (2) time budget, and (3) space use.

4.2 Methods

Rather than the introduction of naive foragers to a new landscape, as in Chapter 3, this

chapter focuses on the before/after experiences of foragers when predators are reintroduced

to a landscape. As a framing device, the landscape used for these simulations is the northern

range in Yellowstone National Park. Using this landscape provides realistic spatial variation

where there are habitat quality data available, not simply habitat type. Note that the model

presented here is a generic model of predator reintroduction and is not an attempt to model

wolf–elk dynamics there, as wolf hunting mode does not match that of the modeled predators

(Preisser et al. 2007), though see Bennett and Tang (2006)for a model that includes memory

and learning on the part of the elk. Instead, this chapter seeks to address how memory could

impact forager habitat use changes after predator introduction in a general way.

4.2.1 Resource data

The data used for the habitat quality come from the CASA Express NPP dataset, a scaled-

down version of the Carnegie Ames Stanford Approach (CASA), which produces estimates

of net primary productivity (NPP) in units of g C/m2/month on a 500m grid (Yellowstone

Ecological Research Center and Ecological Forecasting Lab at NASA Ames Research Center

2014). The data used are the 11-year average for 2000–2010 for the month of July when

productivity was highest. The spatial extent used in the model was (44.6◦, -111◦) to (45.02◦,

-110◦) resulting in a 240 x 100 grid, representing the northern park territory.

Because the original data resembled the smoother landscapes of Chapters 1 and 2, a
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Table 4.1: Parameters used in the model and values for simulations. Because units are arbitrary in the simulations, L
is used for generic length units, T is used for generic time units, and R is used for generic resource biomass units.

Parameter Definition Units Values
Simulations

∆t model time step T 1
T simulation length (time steps) 4000
T ′ predator introduction (time steps) 2000

Predator environment
total predation pressure T 15000

δ predator duration T 1000
ρ predator spatial randomness 0
ǫ encounter radius L 5, 10, 20

Consumption
βR regeneration rate 1/T 0.01
βC consumption rate 1/T 1
γC consumption spatial scale L 1

Memorya

ψM short-term memory factor 2
βL, βS learning rates 1/T 5, 1
φL, φS decay rates 1/T 0, 0.01
γL, γS learning spatial scale L 1, 1
γZ memory spatial scale L 10
M∗ uninformed memory R 0, 1e-4, 1e-3

Predator memory
ψP predator memory factor 100
βP predator learning rate 1/T 10
φP predator decay rate 1/T 0.001
γP predator learning spatial scale L ǫ
γR predator risk spatial scale L 10

aL = long-term memory, S = short-term memory
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Table 4.1: (continued)

Parameter Definition Units Values

Movementb

τS, τF autocorrelation time scale T 4, 2

νS, νF length of µ L/T 6, 1

λ mean time to update θ T 1

bS = searching, F = feeding
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Figure 4.1: Landscape used in the simulation based on transformed NPP in northern Yel-
lowstone National Park (2000–2010) for July showing A) habitat quality and box bounding
locations of introduced predators with forager’s starting location shown with x, B) Predators
with encounter radius of 5, C) Predators with encounter radius of 10, and D) Predators with
encounter radius of 20.

transformation was used to more clearly differentiate the poor quality areas from the best

quality areas. This transformation can be thought of as a preference function of the forager,

expressing a non-linear preference for areas high in NPP compared to areas low in NPP.

The transformation used is f(x) = exp(0.1x) (Fig. 4.1A). In the resulting landscape, the

distribution of resources is 42% in the northeast quadrant, 20% in the southeast quadrant,

14% in the southwest quadrant, and 24% in the northwest quadrant.

4.2.2 Simulations

Simulations begin with no predation, then predators appear in the northeast quadrant of the

landscape half way through the simulation. Within this quadrant, containing the best quality

habitat, predator locations are correlated with landscape quality. That is, the probability of
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a predator being at a location is proportional to that location’s quality relative to the quality

in the quadrant. Different predator encounter radii represent the variability in space these

could take on, from fairly small to large enough to cover most of the quadrant (Fig. 4.1B-D).

A long predator duration is used to represent relatively stable territories for the introduced

predators, but still allowing for some variability.

Simulations start with the forager located in the center of the northeast quadrant, the

area of highest quality, where predators are eventually released (Fig. 4.1A). All parameters

used in the simulation are shown in Table 4.1. Parameters controlling the resource and

predation memories that were not varied are set based on the results from Chapter 2 using

the optimally performing parameters for the predator environment under high survival.

Foragers vary in their memory initialization, or memory state. Some foragers start out

fully informed, knowing the resource quality for the whole landscape. Other foragers start out

naive and have a chance to explore the landscape before predators are introduced. It should

be emphasized that “naive” refers to the forager being unfamiliar with their surroundings,

not the predator (Sih et al. 2010). That is, it is assumed that the foragers display effective

antipredator behaviors of escape and remember encounter locations. Memory state is set at

the beginning of the simulation by initializing the long-term attractive memory stream, L,

and the short-term repulsive memory stream, S (see Eq. 1.4, Chapter 1). For fully informed

foragers, S is initialized to zero and L is initialized to the intrinsic resource quality, Q0.

For naive foragers, S is initialized to zero and L is initialized to the uninformed memory

parameter M∗, i.e., how unexplored habitat is valued. In all cases, it is assumed that the

foragers know the true average consumption rate of the landscape used to switch between

searching and feeding behaviors. Thus foragers differ in their knowledge of the landscape

outside their starting region when predators are introduced or how exploratory they are with

new habitat.

Half way through the simulation at t = T ′, predators are introduced. Predators vary

in their encounter radii, or how much of the landscape they occupy. This variation affects

whether there are refugia within the northeast quadrant once it is occupied by predators.
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Each set of parameters is repeated 50 times given the stochastic nature of the results.

4.2.3 Metrics

Foragers’ habitat use, consumption, and state are tracked. Several measures permit com-

parison of forager behavior before and after predator introduction. One key metric is the

amount that foragers are consuming, which is a measure of the predator’s indirect impact

on the resource. The number of predator encounters after predators are introduced is also

important to evaluate consumption changes. Another behavior to examine is the forager’s

time budget, or how it divides its time between searching and feeding. Finally, in order to

compare the space use before and after predators are introduced, trajectories are visually

examined and the utilization distribution is calculated using kernelUD in the adehabitatHR

package (Calenge 2006) in R (R Core Team 2014).

4.3 Results

4.3.1 Consumption changes

Increasing the predator encounter radius decreased consumption and increased encounters

(Table 4.2). Naive foragers with a low exploratory inclination (M∗ = 0) had the highest

consumption but also the highest encounters. Fully informed foragers and naive, moderately

exploratory foragers (M∗ = 1e–4) had the next highest consumption and encounters. Naive

foragers that were very exploratory (M∗ = 1e–3) had much lower consumption and slightly

lower encounters.

In all scenarios, predator reintroductions depressed the amount consumed relative to the

period before predators (Fig. 4.2). The forager’s memory state primarily partitioned the

pre-predator consumption amounts, although this carried through to the post-predator envi-

ronment as well, with higher pre-predator consumption associated with higher post-predator

consumption. Surprisingly, the least-exploratory forager performed the best, followed by the

fully informed forager, the moderately exploratory forager, and then the very exploratory
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Figure 4.2: Top row: pre-predator consumption vs. post-predator consumption for memory
state (left panel) and encounter radii (right panel). Bottom row: encounters vs. consumption
in the post-predator environment for memory state (left panel) and encounter radii (right
panel).
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Table 4.2: Mean total consumption and number of predator encounters for each scenario
(memory state and encounter radius) for 50 replicate simulations.

Scenario Consumption Encounters
M∗ ǫ
full 5 1.68 4.1
full 10 1.65 4.5
full 20 1.55 7.5
0 5 1.94 4.1
0 10 1.86 5.9
0 20 1.62 17.7
1e–4 5 1.68 3.7
1e–4 10 1.58 4.5
1e–4 20 1.40 7.1
1e–3 5 1.25 3.3
1e–3 10 1.20 3.0
1e–3 20 1.15 7.0

forager. For a given memory state, the predator encounter radius controlled how large a de-

cline in consumption occurred after predator introduction, with larger radii associated with

larger declines.

The flip side of consumption is predator encounters, and in general higher encounter rates

were associated with lower consumption, unlike the food–safety trade-off frequently observed

in Chapter 2. Within a memory state, larger encounter radii led to higher encounters and also

depressed consumption. While the largest encounter radius of 20 had the highest absolute

encounter rate, smaller encounter radii are only ordered with respect to encounters within

memory states, not absolutely. The performance of fully informed memory and moderately

exploratory (M∗ = 1e–4) was quite similar for both consumption and encounters.

4.3.2 Time budget changes

The time spent searching increased after predators were introduced, as foragers leave their

initial habitat to avoid predators (Fig. 4.3). This occurred even with fully informed memory,

where the forager had knowledge of other resource locations (though still had to relocate
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escape behavior (mean 3–17).
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there), and uninformed memory, in which case the forager had to initially locate resources.

The increase in time spent searching was also larger with increasing encounter radius. This

increase could be slight (as in the case of fully informed memory) or dramatic (as with less-

exploratory foragers, M∗ = 0). Significantly, the largest increase in search time occurred in

the same scenarios with the largest decreases in consumption.

4.3.3 Space use changes

Trajectories

Space use varied dramatically with memory state (Figs. 4.4, 4.5). The least-exploratory

forager (Fig. 4.4, right) was the most constrained with large areas of habitat completely

unexplored and space use concentrated in the area of release. Fully informed memory (Fig.

4.4, left) exploited the entire landscape but concentrated use in the best quality habitat and

minimally traveled through unproductive habitat. The moderately exploratory forager (Fig.

4.5) similarly exploited the entire landscape focusing on high quality areas but spent more

time in unproductive habitat as well. Finally, the very exploratory forager (Fig. 4.5) had

the most dispersed space use across the entire landscape. The effect of predator radii is also

apparent, with all memory states being farther displaced from the best quality northeast

quadrant with increasing values of predator encounter radius. The partition of space by

time was also clearer with larger encounter radii.

Utilization distribution

The kernel density of space use clearly changed after predators were introduced across en-

counter radii for fully informed memory (Fig. 4.6) and naive foragers with exploratory incli-

nations varying from least-exploratory (M∗ = 0, Fig. 4.7) to moderately exploratory (M∗ =

1e–4, Fig. 4.8) to very exploratory (M∗ = 1e–3, Fig. 4.9). Examining the space use before

predators were introduced, similar patterns in memory state and tendency towards explo-

ration as discussed in Chapter 3 were observed. The least-exploratory forager remained at
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Figure 4.4: Trajectories for all 50 replicate simulations. Color of line indicates time, with
color transitioning from red to orange before predators are introduced and green to blue
after. Columns show memory state: foragers with fully informed memory (left) and less-
exploratory naive foragers,M∗ = 0 (right). Rows show encounter radii: small (top), medium
(middle), and large (bottom).
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Figure 4.5: Trajectories for all 50 replicate simulations. Color of line indicates time, with
color transitioning from red to orange before predators are introduced and green to blue
after. Columns show memory state: moderately exploratory naive foragers, M∗ = 1e–4
(left) and very exploratory naive foragers, M∗ = 1e–3 (right). Rows show encounter radii:
small (top), medium (middle), and large (bottom).
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Figure 4.6: Space use for foragers with fully informed memory quantified by kernel utilization
distributions comparing before predators (orange, panels A, C, E) to after predators (blue,
panels B, D, F). Predator encounter radius varies from small (ǫ = 5, top panels A and B) to
medium (ǫ = 10, middle panels C and D) to large (ǫ = 20, bottom panels E and F). Contour
lines show 20-90% utilization. Predator center point locations shown with red x’s (see Fig.
4.1 for radii). Intrinsic habitat quality shown in grayscale.
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Figure 4.7: Space use for naive less-exploratory foragers (M∗ = 0) quantified by kernel uti-
lization distributions comparing before predators (orange, panels A, C, E) to after predators
(blue, panels B, D, F). Predator encounter radius varies from small (ǫ = 5, top panels A and
B) to medium (ǫ = 10, middle panels C and D) to large (ǫ = 20, bottom panels E and F).
Contour lines show 20-90% utilization. Predator center point locations shown with red x’s
(see Fig. 4.1 for radii). Intrinsic habitat quality shown in grayscale.
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Figure 4.8: Space use for naive moderate exploratory foragers (M∗ = 1e–4) quantified by
kernel utilization distributions comparing before predators (orange, panels A, C, E) to after
predators (blue, panels B, D, F). Predator encounter radius varies from small (ǫ = 5, top
panels A and B) to medium (ǫ = 10, middle panels C and D) to large (ǫ = 20, bottom panels
E and F). Contour lines show 20-90% utilization. Predator center point locations shown
with red x’s (see Fig. 4.1 for radii). Intrinsic habitat quality shown in grayscale.
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Figure 4.9: Space use for naive very exploratory foragers (M∗ = 1e–3) quantified by kernel
utilization distributions comparing before predators (orange, panels A, C, E) to after preda-
tors (blue, panels B, D, F). Predator encounter radius varies from small (ǫ = 5, top panels
A and B) to medium (ǫ = 10, middle panels C and D) to large (ǫ = 20, bottom panels E
and F). Contour lines show 20-90% utilization. Predator center point locations shown with
red x’s (see Fig. 4.1 for radii). Intrinsic habitat quality shown in grayscale.
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the high quality patches closest to the release site, while the moderately exploratory forager

exploited the high quality areas of the eastern half of the landscape, and the very exploratory

forager was already using the entire landscape. The fully informed memory space use most

closely resembled that of the moderately exploratory forager, but was more tightly focused

on the best patches. After predators were introduced, the space use changed across all sce-

narios as foragers were pushed out of the highest-quality areas in the northeast portion of

the landscape.

The least-exploratory forager (Fig. 4.7) relocated the least. With the smallest encounter

radius, it moved out of the immediate vicinity of the predators but remained in the northeast

quadrant exploiting the gaps between predators—the utilization distribution looks remark-

able similar, just the upper portion shifted eastward. As the encounter radius increased,

the distribution shifted southwards but remained in the northeast quadrant. Finally with

the largest encounter radius, the distribution was completely altered moving into the south-

eastern quadrant. Thus by remaining in the highest-quality quadrant despite predation risk,

the least-exploratory forager tended to maintain high consumption but at the cost of higher

encounters as well.

The more exploratory foragers showed a stronger shift in habitat use after predatory

introduction. The moderately exploratory forager (Fig. 4.8) continued to utilize the better

quality habitat in the gaps between predators when the encounter radius was small, but it

also expanded into patches to the south and west. This intensified as the encounter radius

increased, and the forger shifted to predominately using the patches south and west of the

predators. The very exploratory forager (Fig. 4.9), on the other hand, utilized patches across

the landscape before predators were introduced, and predators served to move a greater

proportion of use to that habitat. With increasing encounter radius, the foragers shifted

from using the margins around the predators to being nearly completely excluded from most

of the northeast quadrant in the vicinity of the predators.

The space use of fully informed memory (Fig. 4.6) was most similar to the moderately

exploratory forager in how the forager relocated in the face of predation. This mirrored the
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patterns seen with the trajectories (Figs. 4.4, 4.5). The main difference between the fully

informed and naive foragers was that the fully informed forager was quicker to exploit more

distant patches, even when the encounter radius was small. And while the fully informed

forager also continued to exploit habitat close to predators, it did this to a lesser extent that

the naive foragers, especially as the encounter radius became large.

4.4 Discussion

How, then, does memory state mediate the effect of predator introductions on forager behav-

ior? Forager behavior, in terms of consumption rates, time budget, and space use, showed

clear changes when comparing before and after the introduction of predators. How behavior

changed, however, depended on the memory state of the forager as well as the area threat-

ened by the predator. Consumption generally decreased and time spent searching (rather

than feeding) increased after predator introduction, with the largest changes seen for larger

areas threatened by predators. Foragers with pre-existing knowledge of alternative habitat

were quicker to relocated to other areas. Less-exploratory naive foragers exploited refugia

between predators while more exploratory naive foragers shifted habitat use farther away

from predators. Increases in area threatened by predators led to larger habitat use changes

across forager memory state.

One surprising result is that the naive least-exploratory forager has higher consumption

than the fully informed forager. This is due to the initial release location being in the highest-

quality habitat, a situation where foragers along the low to mildly exploratory spectrum

perform well (Chapter 3). Because the northeast quadrant contained nearly half the total

resource amount, remaining in that area despite the predation risk led to higher consumption.

However, this high consumption is accompanied by high encounters as well, reminiscent of

the food–safety trade-off discussed earlier (Chapter 2). Fully informed individuals had pre-

existing knowledge of other quality patch locations at the time of predator introduction.

This changed their decision-making calculus when evaluating the trade-off between available

resources and predation risk compared to naive less-exploratory individuals. When picking a
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direction, fully informed individuals are attracted to resources in the vicinity of predators and

farther away, so when resource directional preferences are scaled by safety from predators,

those alternative locations make attractive targets. It is also worth noting that when the

encounter radius is increased enough that the foragers are pushed out and must seek new

habitat, the naive least-exploratory forager is the among the worst performing, with low

consumption and extremely high encounters (the naive highly exploratory forager had slightly

lower consumption but much lower encounters).

Habitat shifts due to changing predation threat have been observed in a wide variety of

both terrestrial and aquatic systems (Sih 1980; Heithaus and Dill 2002; Creel et al. 2005; Mao

et al. 2005; Wirsing et al. 2007; Belovsky et al. 2011) as animals seek to manage the food–

safety trade-off. A forager’s internal state may also be a factor, with animals in poor condition

being more likely to risk foraging in high-quality, high-risk locations (Olsson et al. 2002;

Heithaus et al. 2007). Additionally, the optimal predator memory parameterization that

best manages this food–safety trade-off depends on the survivability of encounters (Chapter

2), here assumed to be high. That is, remaining in the vicinity of predators to continue

to exploit the best resources makes sense when encounters are likely to be survived, but

does not when the risk of death is higher. Thus the degree of habitat shift observed with

predator reintroductions will likely depend on both the encounter survival rate as well as

alternative antipredator behavior that foragers could employ in the presence of predators

such as increased vigilance.

The non-consumptive effects of predation across all scenarios are clear with the reduced

consumption before and after predator introduction. Here, there were no forager removals,

so all of the decline in resources consumed was due to non-consumptive effects (i.e., habitat

shifts) rather than consumptive effects, which would be an additional effect. Increasing

encounter radius led to more encounters but also larger drops in consumption as foragers

were effectively excluded from a larger area where the highest-quality habitat was located.

There was less influence of encounter radius on the most exploratory foragers, as they tended

to have the most kinesis-like wide ranging movements and were less likely to still remain in
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the initial release location when the predators were introduced.

An increase in search time is another underlying reason for the decrease in consump-

tion. All memory states spent more time searching compared to feeding after predator

introduction, and the largest increases in search time correspond with the largest drops in

consumption. The pattern of the naive less-exploratory forager is interesting with the switch

from the smallest to largest search time between small to medium and large encounter radii

mirroring the large drop in consumption. With the smaller encounter radii, the main space

use is similar between the less-exploratory forager and the fully informed forager though

more constrained (see Figs. 4.6BD and 4.7BD). Once the less-exploratory forager is forced

out more completely by the larger encounter radius, it primarily moved just south to lesser

quality habitat rather than the better patches farther south or west used by other memory

states (Fig. 4.7F).

For foragers with fully informed memory, the increase in search time after predator in-

troduction were relatively modest, reflecting the advantage of knowing alternate resource

locations. This suggests that animals with knowledge of habitat beyond the immediate area

threatened by the introduced predators might better adapt to that predator, or conversely

that the introduced predator in this scenario might struggle to find prey. While differenti-

ating between searching and feeding behavior is more challenging in field situations, this is

an active area of research (Morales et al. 2004; Gurarie et al. 2009; McClintock et al. 2012).

Changes in time allocation pre- and post-predator introduction could provide important in-

formation on prey response, either in addition to or as an alternative to habitat changes,

especially if vigilance levels could be quantified.

In a larger context, these results suggest that how large an area predators threaten and

potentially exclude foragers from mediates the impact of predation risk on foragers. An

animal’s habitat domain is the part of the available microhabitat it uses, with broad-domain

species that range throughout the available microhabitat contrasted with narrow-domain

species using only some subset of the available microhabitat (Preisser et al. 2007). Applying

this paradigm to the model results, predators switch from narrow-domain to broad-domain
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as encounter radius increases and removes potential refugia in the high-quality northeast

quadrant. The broad-domain foragers also retain an additional refuge in the lower-quality

habitat spatially removed from the predators. Predator hunting mode affects the strength

of non-consumptive effects (stronger effects for sit-and-wait and sit-and-pursue versus active

predators). Within a hunting mode, habitat domain may also affect non-consumptive effect

strength, with evidence for stronger effects from broad domain predators than narrow domain

predators (Preisser et al. 2007). That agrees with the reduced consumption and increased

time searching seen with increasing area threatened. Finally, multiple predators sharing

a habitat domain can reduce the predation risk experienced by the prey, an important

consideration for multi-predator systems (Woodcock and Heard 2011).

Spatial memory of the surrounding area can mitigate the effect of introduced predators,

as foragers can better access alternate habitat. Empirical field studies do not usually consider

memory directly since it cannot be measured, but the potential implications for some example

systems can be examined. The tiger sharks (Galeocerdo cuvier) that threaten dolphins

(Tursiops aduncus) (Heithaus and Dill 2002) and dugongs (Dugong dugon) (Wirsing et al.

2007) are not introduced predators, but their seasonal presence and absence work like a

small-scale repeated predator introduction scenario. Tiger shark densities were highest in

shallow productive habitat, and dolphins and dugongs shifted their habitat use towards

deeper less-productive areas when sharks were present. If we assume dolphins and dugongs

are familiar with the entire habitat area, the best-matching model scenario would be that of

the forager with fully informed memory that can shift quickly to alternative habitats. It is

also important to consider changing levels of vigilance, as the degree of the shift can depend

on the background level of predation risk (Creel et al. 2008). Thus it is not just the absolute

level of risk that is important, but the changing pattern of risk.

For foragers pushed out of their existing habitat, the simulations with naive foragers

suggest that the level of exploration strongly influences their ultimate location. Addition-

ally, the survivability of encounters affects the optimal predator memory parameterization

(Chapter 2), and thus how willing foragers are to risk increased encounters in order to access
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high-quality foraging areas. Here, we can see memory state, in terms of knowledge of alter-

native habitat and exploratory tendency, also affects risk-taking behavior by the forager in

the willingness to remain in the area after predators are introduced. How foragers weigh this

food–safety trade-off could also depend on energy reserves or other antipredator behaviors

(e.g., vigilance) to mitigate risk. An interesting extension of the model would be to con-

trast large-scale habitat-use changes (like those explored here) with small-scale habitat-use

changes and other antipredator behavior like vigilance. Another interesting direction would

be to change encounters from static certainties to instead be based on a predation risk map

(such as the one developed by Kauffman et al. (2007) based on kill sites) that would modify

encounter probability and encounter riskiness. The predator memory would then have two

spatial layers for predator location and predation riskiness that could modify the directional

decision-making of the forager.

In conclusion, predator introductions can change habitat usage and consumption rates of

foragers to a large or small degree depending on area threatened and how critical it is to avoid

encounters. When foragers do shift habitat use in response to predator introductions, mem-

ory state (habitat knowledge and degree of exploratory inclination) mediates how foragers

use alternative habitats. Search time increased and consumption decreased after predator

introduction across all memory states. For foragers with full knowledge of the habitat, the

increase in search time was relatively modest, reflecting the advantage of knowing alternate

resource locations. Thus, spatial memory of the surrounding area can mitigate the effect of

introduced predators, as foragers can better access alternate habitat. Potential changes in

foraging behavior are an important, though often neglected, component of predator reintro-

ductions, given the far-reaching ecological consequences of top-predator losses (Estes et al.

2011). While memory is challenging to consider in experimental studies of reintroduction,

evidence from modeling here suggests that memory is a important component of how forager

behavior changes.
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Appendix A

APPENDIX A

Comparisons of space use using the utilization distribution calculated with kernelUD in
the adehabitatHR package (Calenge 2006) in R (R Core Team 2014). The three movement
processes were simulated on a limited number of landscapes representing the four extremes
(µQ = −1.5, γQ = 2; µQ = −1.5, γQ = 10; µQ = 1, γQ = 2; µQ = 1, γQ = 10), with one
memory parameterization (φL = 0.001, φS = 0.01, ψM = 2, γZ = 10). For values of ∆t (0.1,
0.5, 1, 2) were compared with three values of λ (0.5, 1, 2). Space use was similar though
variable across combinations of ∆t and λ for each combination of landscape and movement
process
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.1: Space use for random walk on a small-patch, concentrated landscape (µQ =
−1.5, γQ = 2) across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.2: Space use for random walk on a large-patch, concentrated landscape (µQ =
−1.5, γQ = 10) across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.3: Space use for random walk on a small-patch, smooth landscape (µQ = 1, γQ = 2)
across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.4: Space use for random walk on a large-patch, smooth landscape (µQ = 1, γQ = 10)
across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.5: Space use for kinesis on a small-patch, concentrated landscape (µQ = −1.5, γQ =
2) across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.6: Space use for kinesis on a large-patch, concentrated landscape (µQ = −1.5, γQ =
10) across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.7: Space use for kinesis on a small-patch, smooth landscape (µQ = 1, γQ = 2)
across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.8: Space use for kinesis on a large-patch, smooth landscape (µQ = 1, γQ = 10)
across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.9: Space use for memory on a small-patch, concentrated landscape (µQ =
−1.5, γQ = 2) across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.10: Space use for memory on a large-patch, concentrated landscape (µQ =
−1.5, γQ = 10) across a range of values for ∆t and λ.
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dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.11: Space use for memory on a small-patch, smooth landscape (µQ = 1, γQ = 2)
across a range of values for ∆t and λ.



150

dt = 0.1 , update = 0.5 dt = 0.1 , update = 1 dt = 0.1 , update = 2

dt = 0.5 , update = 0.5 dt = 0.5 , update = 1 dt = 0.5 , update = 2

dt = 1 , update = 0.5 dt = 1 , update = 1 dt = 1 , update = 2

dt = 2 , update = 0.5 dt = 2 , update = 1 dt = 2 , update = 2

Figure A.12: Space use for memory on a large-patch, smooth landscape (µQ = 1, γQ = 10)
across a range of values for ∆t and λ.


