

CLOSING THE LOOP: OPTIMAL STIMULATION OF NEURONAL NETWORKS VIA

ADAPTIVE CONTROL ALGORITHMS

Julia Santos

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2015

Committee:

Eli Shlizerman

Mark Kot

Program Authorized to Offer Degree:

Applied Mathematics

2

©Copyright 2015

Julia Santos

3

University of Washington

Abstract

CLOSING THE LOOP: OPTIMAL STIMULATION OF NEURONAL NETWORKS VIA

ADAPTIVE CONTROL ALGORITHMS

Julia Santos

Chair of the Supervisory Committee:

Professor Eli Shlizerman

Applied Mathematics

The Caenorhabditis elegans (C. elegans) worm is a well-studied biological organism

model. The nervous system of C. elegans is particularly appealing to study, since it is a tractable

fully functional neuronal network for which electro-physical connectivity map (connectome) is

fully resolved [1,2]. In this work, we use a recently established computational dynamical model

of the C. elegans nervous system, which incorporated the static connectome data with intrinsic

properties of neurons and their interactions. With this model, it has been demonstrated that

robust oscillatory movements in motor neurons along the body can be invoked by constant

current excitation of command sensory neurons (e.g., PLM neurons associated with forward

crawling), and that their activation corresponds to low-dimensional Hopf bifurcation [3]. While

these first results validated the model, it is exciting to learn and visualize how the nervous

system transforms its oscillatory dynamics to the muscles to support robust full body movements

(e.g., forward crawling) [4]. Moreover, it is intriguing to understand the optimal sensory

stimulations that cause these movements to persist.

4

We explore these questions by developing methods to visualize network activity in a

physical space and creating a model for C. elegans musculature as a viscoelastic rod with

discrete rigid segments [5]. We map the neuronal dynamics such that they activate the muscles

and deform the rod. When motor neuron activity stimulates muscles [2], this activation is

translated into force applied to the rod, which moves in accordance with the physical properties

of C. elegans. By stimulating the command PLM neurons, we establish for the first time that

motor neuron dynamics are indeed producing coherent oscillatory full body movements that

resemble forward crawling.

We utilize our computational full body model to determine the appropriate sensory input

for behavior, such as crawling, to persist after explicit external stimulation (touch) has ceased, as

observed in experiments [5]. Since such persistence could be explained by a feedback loop

between the environment and sensory neurons, we propose an adaptive control algorithm that

extends existing recursive least squares-based algorithms (e.g., FORCE [6]). The RLS algorithm

is divided into training and operational phases. In the training phase, we reduce the error between

desired and actual outputs by making small, rapid modifications to the weights which are applied

to the network input (feedback). When the weighted feedback into sensory neurons prompts the

system to produce the desired output without significant weight modification between iterations,

a correct set of weights has been found [6]. We use a low-dimensional projection of motor

neuron dynamics to calculate expected and actual output, and our algorithm is capable of finding

sensory input patterns that will lead to the desired movement.

5

Supplementary Videos

1. Visualization of neuronal activity:

celegans_neuronal_activity.avi

2. Visualization of movement using low-dimensional coefficients:

celegans_low_dim_neuronal_activity.avi

3. Viscoelastic rod-based movement simulations

celegans_combined_simulations.avi

6

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor, Professor Eli Shlizerman,

for his instruction, guidance and support throughout the research and writing process. I could not

imagine a more contagiously enthusiastic and inspiring advisor.

I would like to thank Professor Mark Kot for his time and willingness to be on my thesis

committee.

I also greatly appreciate the help of my classmate, Judith Moore, and her valuable editing skills.

Last, but certainly not least, I would like thank my family: my parents, Carolyn and Lewis

Merryman, for encouraging my interests in math and science, and my husband, David Santos, for

his endless support and confidence in my abilities.

7

Table of Contents

Abstract ...3

Acknowledgements ..6

Introduction ..9

Visualization of C. elegans Neuronal Activity during Forward Motion 11

Calculation of Neuron Coordinates in Varying Body States ...13

Transformations Modeling C. elegans Forward Motion ...14

Basic Network Activity Filtering for Visualization ..16

Principal Component Analysis of Simulated Neural Activity ..16

Viscoelastic Rod Model ...20

Physical Model for Anguilliform Swimmers ..20

Physical Model Applied to C. elegans ..24

Adaptive Control Algorithms ..27

Delta Rule - A Gradient Descent Algorithm ...27

Recursive Least Squares Algorithm – Background ..29

Implementation of Gradient Descent Algorithm for C. elegans ...32

Implementation of RLS Algorithm for C. elegans ..37

Results ..39

Uniform/Random Weights ..41

Gradient Descent ...42

8

Recursive Least Squares ..44

Conclusion ..50

References ...53

Appendix ..54

9

I. INTRODUCTION

With its well described and classified repertoire of physical behaviors and its neural

network comprised of only 302 neurons, Caenorhabditis elegans is an ideal organism for the

study of neuron stimulation and physical response [7]. Through cell staining and electron

microscopy, all of C. elegans’ neurons have been identified and neuron types mapped, allowing

it to become the first organism to have its full connectome constructed. More recently, a full

computational model of the C. elegans neural network was implemented to represent the

system’s dynamics in response to time-dependent stimuli [1]. This model provides an interactive

dynamical system through which we can simulate network behavior, enabling further study of

neuronal connectivity and interaction, along with broader system dynamics [1,3].

Even with C. elegans’ fully-mapped connectome and a computational model of its neural

network, the path from sensory stimulation to physical response is complex; it requires

integrating the model of the complex nonlinear dynamic network with a representation of muscle

activation and subsequent physical action. As such, we focus on understanding the interactions

between network dynamics, muscle movement, and the physical environment in the particular

behavior of forward crawling.

Links between full stimulation of neurons in the C. elegans network and specific physical

behaviors have been established in the case of forward motion (crawling) [8]. Research has

shown that when the pair of posterior lateral microtubule (PLM) touch receptor neurons are

stimulated at specific levels, a supercritical Hopf bifurcation occurs and the system enters a limit

cycle. When PLM neurons are stimulated at slightly higher levels, analysis of the network

dynamics shows low-dimensional oscillatory patterns indicative of forward motion. Thus, the

10

behavior of the C. elegans neural network during forward motion is simulated by applying

specific constant external input to the PLM neurons [3].

To gain further intuition into the behavior of the C. elegans neural network, we create

dynamic visualizations of the activity of individual neurons during PLM excitation. At small

intervals of time, we calculate the level of activity of each neuron relative to its equilibrium and

plot the approximate location of the neuron based on its excitation status and approximate body

location [9]. We sequentially combine these plots to create videos that allow us to observe the

way the activity of individual neuron changes over time. These videos also help us recognize

general trends in neuron behavior that we subsequently will investigate through filters and data

analysis.

Moving beyond visualizations of the activity of the neural network itself, we seek to

model the impact of neural excitation on muscle contraction and ensuing body movement.

Representing the C. elegans body and muscle structures as a viscoelastic rod with discrete

segments [4], we use existing maps between neurons and muscles [10] to approximate muscle

stimulation based on neuron activity. To physically imitate muscle movement, we apply force to

segments of the rod based on the input from connected neurons. We once again update neuron

activity and muscle stimulation at small intervals in time and visualize the sequential motion of

the viscoelastic rod as it models the physical behavior of C. elegans based on the state of its

neural network.

Lastly, we strive to close the loop between neuron stimulation and forward movement in

C. elegans. Computational simulations of prolonged forward motion can be generated by

supplying constant external input to PLM neurons [3]; however, it is clear that in reality C.

elegans continues to swim for a substantial amount of time after external stimulation (touch) has

11

ceased [5]. This extended period of movement could be explained by proprioceptive excitation,

or a feedback loop in which physical movement excites sensory neurons like PLM, which in turn

activate motor neurons that sustain the swimming motion [11,12]. Leveraging our physical

model of C. elegans movement, we implement an algorithm based on recursive least squares [6]

to strategically search for a feedback relationship between motor neuron activity and sensory

neuron stimulation. Specifically, we seek a map from motor neuron output to sensory neuron

input that will perpetuate forward motion dynamics in the neural network.

II. VISUALIZATION OF C. ELEGANS NEURONAL ACTIVITY DURING FORWARD

MOTION

In order to gain better understanding of the behavior of the C. elegans neural network, we

first model the physical form of the neural network. As a basis for this physical model, we

leverage neuron activity data (Figure 1A) from simulations of C. elegans forward motion based

on the single-compartment membrane equation (1) as defined in [3]. The equation

𝐶�̇� = −𝐺𝐶(𝑉𝑖 − 𝐸𝑐𝑒𝑙𝑙) − 𝐼𝑖
𝐺𝑎𝑝

(�⃗⃗�) − 𝐼𝑖
𝑆𝑦𝑛

(�⃗⃗�) + 𝐼𝑖
𝐸𝑥𝑡, (1)

where 𝐼𝑖
𝐺𝑎𝑝

= ∑ 𝐺𝑖𝑗
𝑔
(𝑉𝑖 − 𝑉𝑗)𝑗 (2)

and 𝐼𝑖
𝑆𝑦𝑛

= ∑ 𝐺𝑖𝑗
𝑠 𝑠𝑗(𝑉𝑖 − 𝐸𝑗), (3)𝑗

uses total cell capacitance C, leakage conductance G
C
, leakage potential Ecell, external input I

ext
,

and neural interactions through synapses and gap junctions, I
Syn

 and I
Gap

 (2,3), to model

membrane potential over time. In equation (2), 𝐺𝑖𝑗
𝑔
 is the total conductivity of gap junctions

between neurons i and j defined in the connectome data, and in equation (3), 𝐺𝑖𝑗
𝑠 is the maximum

total conductivity of the synapses between neurons i and j regulated by the synaptic activity

variable

12

𝑠𝑖 = 𝑎𝑟𝜙(𝑉𝑖; 𝛽, 𝑉𝑡ℎ)(1 − 𝑠𝑖) − 𝑎𝑑𝑠𝑖. (4)

In Eq. (4), ar and ad are the activity’s rise and decay time scale coefficients respectively, and 𝜙 is

the sigmoid function

𝜙(𝑣𝑖; 𝛽, 𝑉𝑡ℎ) =
1

1 + exp(−𝛽(𝑉𝑖 − 𝑉𝑡ℎ))
. (5)

We then seek to transform simulated voltage activity into a physical representation of

network dynamics, allowing us to visualize neuronal activity along with neuron type and

connectivity. The visual interpretation of individual neurons is particularly helpful in

Figure 1. A) Motor neuron voltage oscillations during forward motion B) Layout of the axes

used in transforming the position of neurons in C. elegans. During forward motion, the worm is

undulating in the z-direction. The position of the neurons relative to the y-axis changes as the

worm undulates. Since no rotation is included in the simulations, the position of the worm

relative to the x-axis remains constant. C) Five physical representations of the C. elegans neural

network. Undulation with the head upward corresponds with positive motor neuron activity (red

stripes in figure A) and undulation with the head downward corresponds with negative motor

activity (dark blue stripes in figure A).

13

investigating the voltage oscillations that occur in C. elegans during forward motion. Our

visualizations are also valuable in analyzing the dominant patterns (modes) derived from the

simulated forward motion neuronal activity.

A. Calculation of Neuron Coordinates in Varying Body States

The C. elegans neuronal map is first visualized by creating three-dimensional plots of all

of the neuron locations based on data from [9]. This data provides coordinates for each C.

elegans neuron in Euclidean space (Figure 1B), forming a caricature of the worm undulating in

the z-direction. By combining physical location with neuron names, types and connectivity, we

have the ability to create a variety of informative visualizations.

Our derived neuron coordinates assume that C. elegans is undulating with its head upward,

which is a body form associated with forward motion. Since these coordinates assume a specific

body position, we transform them to approximate neuron locations when the body of the

nematode is in different states. First, we differentiate between an actively swimming and a

resting C. elegans by approximating the location of the neurons when the body is in a

straightened equilibrium state.

To straighten the upwardly undulating form, we first calculate the approximate physical

length of the nematode’s neural network. As there are hundreds of neurons in the network, we

smooth the shape by averaging each z-coordinate with its four closest neighbors. This allows us

to generate a better approximation of the high-level form of the network, from which we derive

its length. We transform the y-coordinate of each neuron to the straightened form based on the

calculated network length and data describing the location of each neuron along the anterior-

posterior (AP) axis of the body [10]. With this information, we scale the y-coordinates from [10]

to match our existing coordinate range.

14

We generate z-coordinates for the resting network by evaluating the z-coordinate of each neuron

relative to the neurons surrounding it. For example, if one neuron has a higher z-value than its

neighbors in the undulating state, it continues to be positioned higher than proximal neurons in

the relaxed state. The relative z-coordinates are calculated by averaging z-coordinates of small

groups of neurons and considering the z-value of each neuron relative to the group’s average.

The mean of the z-coordinates is removed from each z-value, and the resulting z-value is scaled

by the standard deviation to avoid exaggerated scattering in the z-direction. The x-coordinates of

the C. elegans neurons are untouched as we convert from upwardly undulating to the resting

state since no rotation is applied in this transformation.

From observations of forward motion in C. elegans [2], we know that the swimming

movement often follows a periodic wave, such that the head can point either upward or

downward. As we want to be able to model both cases, we next approximate the coordinates

when C. elegans is undulating with is head down. We continue to assume that the body of the

nematode is not rotating in its transformations, which means that all of the downward undulation

coordinates are not a reflection of the upward undulation coordinates. To achieve consistency in

representing the relative location of the neurons, we classify certain neurons as representing AP-

axis of the C. elegans body, such that their downward z-coordinates are a reflection of the

upward coordinates about the y-axis. We then calculate the z-coordinates of the remaining

neurons relative to the AP-axis, such that they remain on the same side of the axis in both the

upward and downward undulation models.

B. Transformations Modeling C. elegans Forward Motion

In order to create dynamic visualizations of the activity of the C. elegans neural network

during forward motion, we combine our three physical models of the C. elegans neural network

15

(upward/downward undulation and resting) with simulated neuron activity data [3] and form a

map between neuron activity and position (Figure 1C). We consider highly active neurons to be

represented by their undulating coordinates, whereas inactive neurons are represented by their

resting coordinates. To accurately position a neuron based on its simulated activity, we calculate

the equilibrium (aeq) and the largest positive (apos) and negative (aneg) activity levels for each

neuron, such that aneg < aeq < apos. We then map apos to the upward undulation coordinates, aneg to

the downward undulation coordinates, and aeq to the resting coordinates.

During forward motion many neurons have activity levels that oscillate between apos , aeq,

and aneg over time. When activity is not at a maximal state and the neuron is not at rest, the

physical position of the neuron is scaled based on the activity relative to the benchmark states.

For example, if a neuron is at half of its apos activity level, we calculate the y and z-coordinates to

be halfway between the upwardly undulating and resting locations, with x-coordinates remaining

unchanged. Thus, the relationship between neuronal activity and physical location can be

described by

𝑦 =

{

 𝑦𝑒𝑞 + (𝑦𝑝𝑜𝑠 − 𝑦𝑒𝑞) ∗

𝑎 − 𝑎𝑒𝑞
𝑎𝑝𝑜𝑠 − 𝑎𝑒𝑞

, 𝑎 > 𝑎𝑒𝑞

 𝑦𝑒𝑞 − 𝑎𝑏𝑠 ((𝑦𝑒𝑞 − 𝑦𝑛𝑒𝑔) ∗
𝑎 − 𝑎𝑒𝑞
𝑎𝑛𝑒𝑔 − 𝑎𝑒𝑞

) , 𝑎 < 𝑎𝑒𝑞

 𝑦𝑒𝑞 , 𝑎 = 𝑎𝑒𝑞

 (6)

and 𝑧 =

{

 𝑧𝑒𝑞 + (𝑧𝑝𝑜𝑠 − 𝑧𝑒𝑞) ∗

𝑎−𝑎𝑒𝑞

𝑎𝑝𝑜𝑠−𝑎𝑒𝑞
, 𝑎 > 𝑎𝑒𝑞

𝑧𝑒𝑞 − 𝑎𝑏𝑠 ((𝑧𝑒𝑞 − 𝑧𝑛𝑒𝑔) ∗
𝑎−𝑎𝑒𝑞

𝑎𝑛𝑒𝑔−𝑎𝑒𝑞
) , 𝑎 < 𝑎𝑒𝑞

𝑧𝑒𝑞 , 𝑎 = 𝑎𝑒𝑞

. (7)

We apply our map between neuron activity and position to data from simulations of C. elegans

forward motion to generate visualizations of the network dynamics over time as videos. In these

videos, neurons move up the positive z-axis as they approach 𝑎𝑝𝑜𝑠, down the negative z-axis as

16

they approach 𝑎𝑛𝑒𝑔, and stay near z = 0 as they near 𝑎𝑒𝑞. With simulation data providing updated

neuron activity values at intervals of 0.01s, we are able to clearly visualize the neurons

oscillating over time.

C. Basic Network Activity Filtering for Visualization

Although we are easily able to see oscillations in the neurons from simulated forward

motion data, it is clear that not all neurons are oscillating in phase with each other. To improve

our understanding of how groups of neurons oscillate together, we filter simulation results to

observe the behavior of neurons that have similar initial voltage changes. Neurons are filtered by

their average voltage change over the first 0.1s of the simulations, and a neuron was only drawn

if its initial mean voltage change was greater than the median voltage change, 𝑛𝑣𝑖𝑠 =

{ 𝑛𝑗 𝑠. 𝑡. ∑ 𝑣𝑑𝑖𝑓𝑓𝑡(𝑛𝑗)
10
𝑡=1 > 𝑣𝑑𝑖𝑓𝑓 𝑡=[1,10]}̃ .

The results of these visualizations show that, generally, neurons with activity levels that

begin oscillating with voltage increases greater than the median change continue to oscillate

together throughout the duration of the simulation. Likewise, we can see that the neurons with

activity levels that begin oscillating with voltage decreases less than the median change each

achieve their maximum and minimum voltages throughout the simulation at similar times. This

broad filtering provides a high-level perspective of the oscillation trends in the C. elegans neural

network, and motivates further investigation through principal component analysis.

D. Principal Component Analysis of Simulated Forward Motion Neural Activity

In order to more rigorously investigate the patterns of the C. elegans neural network

during forward motion, we perform principal component analysis (PCA) on neuronal activity

17

data from simulations of varying duration. We analyze simulation data generated by stimulating

the PLM neurons with input of magnitude for which oscillatory dynamics exist (see [3]). In this

discussion, we focus on analyzing ten-second simulations; however, these results are also

representative of the findings using longer simulations. In all cases, the first second of simulation

data was removed to ignore the effects of the initial forced perturbation.

We perform our singular value decomposition on simulation data from a 275-second

simulation. Instead of using raw simulation data, we subtract the equilibrium value for each

Figure 2. A) Cumulative fraction of variance explained by each mode. The system is dominated

by the first two modes, which account for more than 90% of the variance. B) Pattern values in

the first two modes for neurons along the body C) Two-dimensional trajectory of the low-

dimensional oscillations during forward motion D) Oscillation of the time-dependent

coefficients of the first two modes over time.

18

neuron such that the data points at time t represent the difference between the activity at t and the

equilibrium. For matrix factorization, we use singular value decomposition [13, 14] such that

𝐷 = ∑ 𝑢𝑙𝜎𝑙𝑣𝑙
𝑇𝑁

𝑙=1 , where ul are the eigenvectors of DD
T
, representing the pattern of each mode, vl

are the eigenvectors of D
T
D, representing the time-dependent coefficients of each mode, and σl

are the eigenvalues of both DD
T
 and D

T
D, which are the singular values that act as stretching

factors. We also consider the k-mode truncated decomposition of D is 𝐷𝑘 = ∑ 𝑢𝑖𝜎𝑖𝑣𝑖
𝑇𝑘

𝑖=1 in

which we take the dominant k modes. We find that only few modes (principal components) are

significant for the decomposition: the first principal component explains approximately 65.24%

of the energy and the first two components explain about 90.94% of the energy, where the

energy explained by mode k is defined as ∑ 𝜎𝑖
2/ 𝑘

𝑖=1 ∑σ2 (Figure 2A). After the first eight

components, the increase in the fraction of variance explained is not computationally

measurable. Since the system is dominated by the first two principal components, we focus 2-

mode truncated decomposition, and investigate the modes and time-dependent coefficients in this

decomposition.

In reviewing the first two modes, it is evident that the neurons with stronger patterns

values fall toward the posterior region of the body (Figure 2B), indicating that the posterior

region contains neurons that have a more significant role in motivating C. elegans’ forward

movement. Our pattern plot also reveals that the ventral motor neurons (V*) have noticeably

stronger pattern values than the dorsal motor neurons (D*), which implies that these neurons are

responsible for a greater amount of the activity that creates the network oscillations.

To better identify the motor neurons responsible for the network behavior during forward

motion, we look at the pattern values for motor neurons. We consider a neuron “active,” or

motivating forward motion, if its pattern value is above the median. Neurons with pattern values

19

below the median are not considered to be contributing substantially to the forward motion

behavior, and are therefore labeled “inactive” (Figure 3). We identify 32 active ventral motor

neurons in each of the first two modes, 21 active dorsal motor neurons in the first mode, and 18

active dorsal motor neurons in the second mode. In the first mode, we see 29 motor neurons that

are positively activated (undulating upward), and 38 motor neurons that are negatively activated

(undulating downward). In the second mode we find an opposite trend, with 37 motor neurons

that are positively activated and 26 neurons that are negatively activated. Analysis of active

neurons in each mode shows that there are a total of 74 active neurons, with 17 of them active

only in one mode and 57 active in both modes. We will investigate the role of these motor

neurons in generating forward motion as we explore the relationship between motor and sensory

neuron activity in a forwardly-mobile C. elegans.

We also examine the first two time-dependent coefficients and see clear periodic

oscillations in both. Summing these two coefficients, we see that oscillations with a period of

about 1.2s (about two times the tail thrashing period found experimentally [15]), and note the

Figure 3. Visualization of the location and pattern values of active C. elegans motor neurons in

the first two modes. Neurons are positioned according to their location on the AP-axis and the

muscle group(s) they stimulate (dorsal or ventral). Colors indicate whether or not the neuron has

a positive or negative pattern value in that particular mode.

20

roughly circular trajectory of the coefficients in the principle component plane (Figure 4 C,D).

The oscillations we see over time in the time dependent coefficients (projected voltages onto the

modes) support the relationship between the activity of the neural network and the physical form

of the nematode; when C. elegans is physically swimming forward with its body following a

periodic wave pattern, and the activity of the neural network is also undergoing periodic

oscillations.

III. VISCOELASTIC ROD MODEL

To gain further intuition into the relationship between neuronal activity and physical

movement in C. elegans, we investigate how excitation of the neural network translates into

muscle contraction. Modeling the physical state of C. elegans’ muscles allows us to create a

more accurate model of proprioception and environmental interaction, giving us the opportunity

to estimate sensory input based on the approximate physical form of the nematode.

A. Physical Model for Anguilliform Swimmers

In order to realistically represent C. elegans movement, we apply a discrete viscoelastic

rod model that has been used to describe motion in anguilliform swimmers [4]. This rod

representation is chosen based on the anguilliform motion seen in C. elegans as it reacts to nose

touch and similar stimuli [2,3]. In this model, the swimmer’s body is represented as a rod

composed of discrete rigid segments and joints [4], and the swimmer’s muscle activity is

represented by forces acting on the rod. The environment of the organism is modeled through

damping, which may be varied to imitate different media.

21

The state of the viscoelastic rod at

any point in time is described by the x-y

coordinates of the midpoint of each

segment of the rod, and by the angle, 𝜑,

of each rod segment relative to the

horizontal plane (Figure 4A) .

We consider the joints connecting

the segments of the rod to be actuated by

passive springs, dashpots, and time-

dependent force generators (Figure 4B).

Given this model, force applied near one

end of the rod can lead to movement that

travels through the other end of the rod,

depending on the magnitude of initial

force and parameters governing the rod

and its environment [4].

The equations used to calculate the position of the segments of the viscoelastic rod are [4]

𝑥𝑖+1 =
ℎ

2
(𝑐𝑜𝑠 (𝜑𝑖) + 𝑐𝑜𝑠 (𝜑𝑖+1)) + 𝑥𝑖, (8)

𝑦𝑖+1 =
ℎ

2
(𝑠𝑖𝑛 (𝜑𝑖) + 𝑠𝑖𝑛 (𝜑𝑖+1)) + 𝑦𝑖 . (9)

The differential equation determining the change in 𝜑, based on the forces f and g applied to the

segments of the rod in the x and y directions, respectively, is

𝐽�̈� = 𝑀𝑖 −𝑀𝑖−1 +
ℎ

2
(𝑔𝑖 + 𝑔𝑖−1)𝑐𝑜𝑠 (𝜑) −

ℎ

2
(𝑓𝑖 + 𝑓𝑖−1)𝑠𝑖𝑛(𝜑). (10)

Figure 4. A) Representation of C. elegans body as a

viscoelastic rod with discrete rigid segments.

Segment position is governed by its length and the

angle it forms with the horizontal plane B) The

viscoelastic rod behavior is based on a spring and

dashpot model with force g applied in the y-

direction.

22

We define the components of (10) as the contact moment Mi (11), the moment of inertia Ji for

link i (12), and the moment of inertia I for motions in the x-y plane (13), as

𝑀𝑖 = 𝐸𝐼𝑖 (
(𝜑𝑖+1 − 𝜑𝑖)

ℎ
− 𝑘𝑖) + 𝛿𝑖 (

(�̇�𝑖+1 − �̇�𝑖)

ℎ
), (11)

𝐽𝑖 = 𝜌ℎ (𝐼𝑖 +
𝜋

12
𝑟2ℎ2), (12)

𝐼 =
𝜋𝐷4

64
. (13)

In Eq. (11), we solve for the contact moment based on the preferred curvature of the rod ki, the

rod’s elasticity E (Young’s modulus), the environmental damping coefficient 𝛿, and the segment

lengths hi. The parameters of equations defining the moments of inertia J and I (12-13) depend

on the rod’s material density 𝜌, rod radius r, segment length hi and rod diameter D.

Expanding equation (10) by substituting in equations (11-13) we solve for 𝜑𝑖̈ ,

𝐽𝑖�̈� = 𝑀𝑖 −𝑀𝑖−1 +
ℎ

2
(𝑔𝑖 + 𝑔𝑖−1)𝑐𝑜𝑠 (𝜑𝑖) −

ℎ

2
(𝑓𝑖 + 𝑓𝑖−1)𝑠𝑖𝑛(𝜑𝑖), (14)

𝜌ℎ (𝐼𝑖 +
𝜋

12
𝑟2ℎ2) �̈� = 𝐸𝐼𝑖(

(𝜑𝑖+1 − 𝜑𝑖)

ℎ
− 𝑘𝑖) + 𝛿𝑖(

(�̇�𝑖+1 − �̇�𝑖)

ℎ
) − 𝐸𝐼𝑖−1(

(𝜑𝑖 −𝜑𝑖−1)

ℎ
− 𝑘𝑖)

 −𝛿𝑖−1 (
(�̇�𝑖 − �̇�𝑖−1)

ℎ
) +

ℎ

2
(𝑔𝑖 + 𝑔𝑖−1)𝑐𝑜𝑠(𝜑𝑖) −

ℎ

2
(𝑓𝑖 + 𝑓𝑖−1)𝑠𝑖𝑛(𝜑𝑖), (15)

𝜑𝑖̈ = {𝐸𝐼𝑖(
(𝜑𝑖+1 − 𝜑𝑖)

ℎ
− 𝑘𝑖) + 𝛿𝑖(

(�̇�𝑖+1 − �̇�𝑖)

ℎ
) − 𝐸𝐼𝑖−1(

(𝜑𝑖 −𝜑𝑖−1)

ℎ
− 𝑘𝑖) − 𝛿𝑖−1(

(�̇�𝑖 − �̇�𝑖−1)

ℎ
)

 +
ℎ

2
(𝑔𝑖 + 𝑔𝑖−1)𝑐𝑜𝑠(𝜑𝑖) −

ℎ

2
(𝑓𝑖 + 𝑓𝑖−1)𝑠𝑖𝑛(𝜑𝑖)} ∙

1

𝜌ℎ(𝐼𝑖+
𝜋

12
𝑟2ℎ2)

. (16)

We then transform Eq. (16) into a system of first order differential equations

𝑝1 = 𝜑; 𝑝2 = �̇�; �̇�1 = �̇� = 𝑝2 (17)

 �̇�2𝑖 = 𝜑𝑖̈ = {𝐸𝐼𝑖 (
(𝑝1(𝑖+1) − 𝑝1𝑖)

ℎ
− 𝑘𝑖) + 𝛿𝑖 (

(𝑝2(𝑖+1) − 𝑝2𝑖)

ℎ
)

23

 −𝐸𝐼𝑖−1 (
(𝑝1𝑖 − 𝑝1(𝑖−1))

ℎ
− 𝑘𝑖) − 𝛿𝑖−1 (

(𝑝2𝑖 − 𝑝2(𝑖−1))

ℎ
) +

ℎ

2
(𝑔𝑖 + 𝑔𝑖−1) cos(𝑝1𝑖)

 −
ℎ

2
(𝑓𝑖 + 𝑓𝑖−1)𝑠𝑖𝑛(𝑝1𝑖)} ∙

1

𝜌ℎ (𝐼𝑖 +
𝜋
12𝑟

2ℎ2)
 (18)

that can be solved computationally.

Figure 5. A) Map of the 95 muscles represented as segments of the viscoelastic rod. Segment

length is determined by position of each muscle relative to the AP-axis, with the overall body

length scaled to 1. B) Force is applied to segments of the viscoelastic rod to represent muscle

activation. Dorsal and ventral muscles are combined based on their locations relative to the

AP-axis, and summing the input into each group of muscles determines the overall force

applied to a segment of the rod.

24

B. Physical Model Applied to C. elegans

We apply the viscoelastic rod model to C. elegans by representing each muscle group in

the nematode as a segment of the rod connected with joints. We approximate the forces applied

to the rod segments using neuron activity data from forward motion simulations and a neuron-to-

muscle map which are experimentally determined [10]. The combined activity of the neurons

connected to a muscle is considered the muscle’s input, which leads to activation and application

of force.

In order to represent C. elegans most accurately, we model 95 muscles relevant to C.

elegans forward motion and use their approximate sizes and locations to determine segment

length and position. These 95 individual muscles are divided into four groups based on their

physical location in the nematode: dorsal left, dorsal right, ventral left and ventral right. Every

muscle is assigned a position along the AP- axis of the nematode, and the dorsal left and dorsal

right muscles are coupled into single segments representing the dorsal muscle groups, and

likewise for the ventral muscles. Dorsal (ventral) left muscles are paired only with dorsal

(ventral) right muscles, and left-right pairs are determined from muscle location along the AP-

axis, as in Figure 5A.

Differentiation between the dorsal and ventral muscle groups in this model is necessitated

by the way these two muscle groups act in opposition to each other; in order for forward motion

to occur, the dorsal muscles contract while the ventral muscles relax, and vice versa [2]. As such,

we model activation of the muscles in the dorsal group through downward force, and the muscles

in the ventral group through upward force. We then merge the dorsal and ventral muscle groups

based on their location along the AP-axis to form a single discrete rod. We sum the dorsal

(downward) and ventral (upward) forces over the dorsal-ventral muscle pairs to determine the

25

overall force applied to each segment of the rod: for example, if a large downward force is

applied by a dorsal muscle and a small upward force is applied by the corresponding ventral

muscle, the net result will be application of downward force on the segment of the rod

representing the merged muscles (Figure 5B).

Unlike the generic anguilliform swimmer model, the basic C. elegans viscoelastic rod

representation assumes force is only applied in the y-direction, meaning f is a zero vector. Given

Figure 6. A) Three main contraction/relaxation sections of the worm. It is expected that dorsal

and ventral muscles will not continuously be activated to contract simultaneously and that the

stimulation of the three sections of the worm will be staggered B) Results of the simulations of

viscoelastic rod movement over time during PLM stimulation. The worm is swimming from left

to right, with the size of each rod segment represented by the diameter of each circle. C)

Activation patterns of the groups of dorsal/ventral muscles based on input from connected motor

neurons during PLM excitation showing the repeating activation pattern of the six muscle

groups

26

the absence of force in the x-direction, we eliminate the sine term from (18), resulting in the final

system of equations

�̇�1𝑖 = �̇�𝑖 = 𝑝2𝑖 (19)

�̇�2𝑖 = 𝜑𝑖̈ = {𝐸𝐼𝑖 (
(𝑝1(𝑖+1) − 𝑝1𝑖)

ℎ
− 𝑘𝑖) + 𝛿𝑖(

(𝑝2(𝑖+1) − 𝑝2𝑖)

ℎ
) − 𝐸𝐼𝑖−1 (

(𝑝1𝑖 − 𝑝1(𝑖−1))

ℎ
− 𝑘𝑖)

 − 𝛿𝑖−1 (
(𝑝2𝑖−𝑝2(𝑖−1))

ℎ
) +

ℎ

2
(𝑔𝑖 + 𝑔𝑖−1)𝑐𝑜𝑠 (𝑝1𝑖) } ∙

1

𝜌ℎ(𝐼𝑖+
𝜋

12
𝑟2ℎ2)

 (20)

for modeling C. elegans as a viscoelastic rod.

Applying this model with parameters specific to C. elegans [5,16] (see Appendix), we

simulate the movement of C. elegans during constant PLM excitation of 2x10
4

mV using the

activity of the motor neurons responsible for forward motion (VD/VB/DD/DB) as input. The

behavior of our physical model is validated by the known contraction and relaxation patterns

found in the nematode’s body during forward motion [3]. These patterns closely align with the

simulated formations of the viscoelastic rod as it moves over time (Figure 6B).

The behavior of the viscoelastic rod as it models PLM excitation shows a clear relationship

between stimulation of motor neurons along the body and muscle movement. Since our model is

sensitive to the magnitude of motor neuron stimulation a muscle receives, we observe that

greater force is applied in certain sections of the worm over time, creating the undulating form

associated with C. elegans forward motion. Specifically, we often see the anterior and posterior

sections receiving force in the opposite direction of the force applied to the middle section of the

worm (Figure 6 A,B). This configuration represents dorsal (ventral) contraction in the anterior

and posterior sections with ventral (dorsal) contraction in the middle section, which is precisely

the expected muscle usage during forward motion [2].

27

IV. ADAPTIVE CONTROL ALGORITHMS

Leveraging our models of C. elegans neural activity and physical movement, we seek to

identify feedback loops in the network that will output the prolonged oscillating signal associated

with forward motion. In order to determine how sensory neurons can be stimulated to generate

the desired activity in motor neurons, we develop two different adaptive control methods based

on generic adaptive control methods such as gradient descent (Delta Rule) and recursive least

squares (FORCE). Each algorithm uses training and operational phases. In the training phase, we

reduce error between the desired and actual outputs by making small, rapid modifications to the

weights, which are applied to the network input. When the system produces the desired output

without significant weight modification between iterations, a correct set of weights has been

found [6]. During the operational phase, weights are held at the static values found through

training, and the resulting simulated dynamics demonstrate whether or not the weights converged

upon function without modification.

A. Delta Rule - A Gradient Descent Algorithm

First method of supervised learning that we have implemented in this investigation was

the gradient descent (or the Delta Rule [6, 14]). Traditionally, this method trains a system to

produce a desired response by applying weights to the system output, with weights iteratively

adjusted to minimize the difference between the desired system output and the estimated output

[17]. The components of the gradient descent method for a generic neural network of N neurons

are w(t), the column vector of weights wn for n = 1,…,N at time t, and the column vector r(t)

defining the activity of each neuron rn(t) at time t. We define scalar estimated network output as

𝑧(𝑡) = 𝒘𝑻(𝑡)𝒓(𝑡). (21)

28

The scalar desired network output is denoted f(t), define our learning rate as α, and calculate

scalar estimation error as

𝑒(𝑡) = 𝑓(𝑡)– 𝑧(𝑡). (22)

In the method of gradient descent, initial weight vector w(t0) is randomly generated and learning

rate α is generally in the interval [1,N] [17].

The goal of this method is to adjust the values of w during training such that after training

is complete, applying the final weights, wfinal to the system output will minimize network error.

In order to find the set of weights that will accomplish this, the weight-based cost function

𝐸(𝒘(𝑡)) =
1

2
(𝑓(𝑡) − 𝒘(𝑡)𝑇 ∗ 𝒓(𝑡))

2
=
1

2
(𝑓(𝑡) − 𝑧(𝑡))

2
 (23)

is defined. In equation (23), we consider the network error to be the difference between the

desired output, f(t), and the estimated output, z(t). We square the error to scale the cost for larger

errors, and ensure that the cost function always yields non-negative values. We multiply the

squared error by ½ in order to simplify the calculation of the gradient (see Eq. 24).

In order to determine how to adjust w to minimize cost, and therefore diminish network

error, we calculate the gradient,

∇𝐸 =
𝛿𝐸

𝛿𝑧
∗
𝛿𝑧

𝛿𝒘
= −(𝑓(𝑡) − 𝑧(𝑡)) ∗ 𝒓(𝑡) = −𝑒(𝑡) ∗ 𝒓(𝑡), (24)

Figure 7. Basic RLS (FORCE)

system structure in which

dynamically updated weights

are applied to system activity to

generate estimated system

output. This output is compared

with the expected system output

and weights are updated

accordingly.

29

of E(w). We then define our weight update function,

𝒘(𝑡 + 𝛥𝑡) = 𝒘(𝑡) + 𝛼𝛥𝒘, (25)

where 𝛥𝒘 = −
𝛿𝐸

𝛿𝒘𝑛
= 𝑒(𝑡) ∗ 𝒓(𝑡) (26)

and 𝒘(𝑡 + 𝛥𝑡) = 𝒘(𝑡) + 𝛼(𝑒(𝑡) ∗ 𝒓(𝑡)), (27)

based on the gradient of the cost function and the learning rate (α). As can be seen in Eq. (27),

smaller α values will keep w(t+Δt) closer to w(t), emphasizing the contribution of the previous

weight. In contrast, larger α values will increase the impact of the gradient term on the updated

weight value.

B. Recursive Least Squares Algorithm - Background

To enhance our ability to accurately adjust feedback weights to create the desired system

dynamics, we leverage our RLS-based adaptive control algorithm. The advantage of this method

is in its use of the estimated inverse correlation matrix of network activity to update weights

instead of the computed derivative used in the method of gradient descent. The inverse

correlation matrix models the neuron activity correlations over the entire duration of the training

phase, with more emphasis given to recent activity.

The recursive least squares (RLS) algorithm proposed in [17] and developed by Sussillo

and Abbott in [6] offers a training procedure specifically developed for recurrent neural networks

and was called as FORCE – First Order Reduced and Controlled Error. The principal difference

between the RLS-based algorithm and the method of gradient descent is that the RLS method is

designed for recurrent networks and operates with network feedback, whereas the basic gradient

descent algorithm simply applies weights on the network output to achieve the desired system

behavior (Figure 7). Given a recurrent neural network and a function representing the desired

network output, the RLS algorithm seeks a set of weights that can be applied to the network

30

feedback in order to create the desired output. Once RLS has found a set of correct weights

(assuming they exist), they are applied to the network feedback without further modification, and

the network will generate the desired output. In [6] the approach was developed and applied to

training output or internal weights of recurrent networks. It was shown that the algorithm is most

successful when it is applied to random networks that exhibit chaotic dynamics.

The consideration of the feedback loop as an entity separate from overall network output allows

us to more accurately model the C. elegans sensory-motor feedback.

In order to find a functional set of weights to apply to the network feedback, the RLS

algorithm employs a training phase in which small modifications are made to the weights. The

goal of this phase is not only to reduce the error between the desired and estimated outputs, but

also to reduce the amount of modification required to weights on each update. The minimization

of weight change is a significant requirement, as the updates to the weights must be sufficiently

small for the algorithm to converge; if large weight updates are required to keep the output error

small, then the network will not produce the desired output once the training period ends and the

weights are static.

The RLS algorithm has several factors that drive convergence of the weights to values

that will produce the desired network behavior. First, the RLS algorithm does not clamp the

feedback exactly to the estimated network output, as this could create longer term deviations

from the expected (desired) output function. Instead, it implements small and rapid changes to

the feedback weights based on output error to minimize negative delayed effects. Additionally,

the algorithm holds feedback close to desired output function, but not fixed at the desired output

function. This allows the network to stabilize during training, and is beneficial to the network

31

post-learning phase when the feedback may not be exactly as expected and weights are no longer

updated by the training algorithm.

The RLS training method supports three network models, each with a different feedback

method. The most basic version is when the RLS method is applied to a network with one

readout unit that is used as a basis to provide feedback to the generator network, as seen in the

model to the left.

The RLS training algorithm for a generic recurrent network of N neurons uses vectors

w(t), r(t), scalar functions z(t) =w
T
(t)r(t) and f(t), and learning rate α as defined in the method of

gradient descent. Unlike the method of gradient descent, RLS employs two different error

calculations. To represent the estimated error prior to the weight update at time t, we define

 𝑒−(𝑡) = 𝒘
𝑻(𝑡 − 𝛥𝑡)𝒓(𝑡)– 𝑓(𝑡). (28)

To represent the estimated error after the weight update at time t, we define

 𝑒+(𝑡) = 𝒘
𝑻(𝑡)𝒓(𝑡)– 𝑓(𝑡). (29)

As in the method of gradient descent, we initialize w(t0) randomly and expect α to be a positive

whole number with α << N [6, 14].

During training, updates to the weights,

𝒘(𝑡) = 𝒘(𝑡 − 𝛥𝑡)– 𝑒−(𝑡)𝑃(𝑡)𝒓(𝑡), (30)

are calculated based on Recursive Least Squares results (see Appendix section Derivation of RLS

Equation and P Matrix for details). Here, P(t) is an NxN matrix,

𝑃(𝑡) = 𝑃(𝑡 − 𝛥𝑡) −
𝑃(𝑡 − 𝛥𝑡)𝒓(𝑡)𝒓(𝑡)𝑇𝑃(𝑡 − 𝛥𝑡)

1 + 𝒓(𝑡)𝑇𝑃(𝑡 − 𝛥𝑡)𝒓(𝑡)
, 𝑃(0) =

𝐼

𝛼
. (31)

In Eqs. (30, 31), P is an approximation of the inverse of the correlation matrix of r. In addition,

the regularization term is used to ensure smoothness in the updates to the weights with network

learning rate 𝛼. This inverse correlation matrix serves as a memory to emphasize activity in the

32

recent past, and give less weight to activity in the distant past. Smaller values of 𝛼 lead to faster

learning as the emphasis on the inverse correlation matrix is larger, but can simultaneously make

the algorithm unstable. Increasing 𝛼 can remedy the instability, however in this case the

relationship 𝛼 ≪ 𝑁should be maintained, as larger 𝛼 allows the output to quickly diverge from

the desired output, causing instability in the P and training failure [17].

Using the RLS algorithm, training ceases when e+(t) and e-(t) are approximately equal,

or when
𝑒−

𝑒+
≅ 1, and the change in weights has converged to near zero value. We can see the

relationship between these two requirements by rewriting the error in terms of P,

𝑒+(𝑡) = 𝑒−(𝑡)(1 − 𝒓
𝑇(𝑡)𝑃(𝑡)𝒓(𝑡)). (32)

Thus, we can see that as r
T
(t)P(t)r(t) asymptotically approaches zero, e+(t) ≈ e-(t) such that both

convergence requirements are satisfied [6].

C. Implementation of Gradient Descent Algorithm for C. elegans

In the C. elegans neural network, the method of gradient descent is utilized to determine

inputs to sensory neurons that instigate and maintain the network oscillation associated with

forward motion. The ultimate goal of the gradient descent implementation is to find a set of

weights that could provide functional sensory neuron inputs based on motor neuron output,

however the model excluding network feedback is also considered as a basic case.

Since the method of gradient descent is not designed for recurrent networks, some

modifications of the generic algorithm are required to best model the C. elegans sensory-motor

feedback loop. In the C. elegans implementation of the gradient descent algorithm, network

output is considered principally from motor neurons, and network input is allowed only to

sensory neurons. The movement is a feedback loop since the input into sensory neurons is

calculated based on the motor neuron output, the motor neuron output is defined by the motor

33

neurons’ activity, and motor neuron activity is affected by the input to sensory neurons (Figure

8A).

As the objective of this implementation is to determine functional inputs that perpetuate

C. elegans forward motion, the traditional gradient descent algorithm is altered to apply and

adjust weights on the network inputs instead of modifying weights on the network output. Thus,

our algorithm weights the network input, which was formulated from motor neuron output. The

method of gradient descent is implemented for C. elegans with vector w(t) representing sensory

neuron input weights, which are initialized such that w(t0) = 0. We define our desired network

output function as f(t) = σ1a1 + σ2a2,where σn is the singular value of the n
th

 PCA mode and an is

the vector of time-dependent coefficients of the n
th

 PCA mode. We denote the n
th

 principal

component vector as PCn. As in the generic model, we consider neuronal activity r(t), but base

our implementation on req(t) = r(t) – vequilibrium, the neuronal activity relative to equilibrium. Our

overall estimated network output is

Figure 8. A) Diagram of gradient descent algorithm for the simple non-recurrent scenario.

Weights are used as direct input into sensory neurons and are updated based on error and

estimated derivative of r(t) with respect to w(t). The use of the estimated output is solely for

error calculation, as there is no feedback in this scenario. B) To determine output error, we

compare the trajectory of the network activity during training with the expected network

trajectory during forward motion. The error is calculated as the difference between the expected

and estimated radius at angle θ.

34

z (t) = √(𝑷𝑪𝟏
𝑇𝒓𝒆𝒒(𝑡))

2 + (𝑷𝑪𝟐
𝑇𝒓𝒆𝒒(𝑡))

2 (33)

and our motor neuron output is calculated as

zfeedback(t) = √(𝑷𝑪𝟏
𝑇(𝒎.∗ 𝒓𝒆𝒒(𝑡)))

2 + (𝑷𝑪𝟐
𝑇(𝒎.∗ 𝒓𝒆𝒒(𝑡)))

2 , (34)

where m is a mask vector that selects only motor neurons. Lastly, we define our estimation error

and learning rate as in the generic method, such that e(t) = f(t) – z(t) (or �̃�(γ) = 𝑓(γ) – �̃�(γ)) and α

=1, and we consider sinput(t) to be vector of input into sensory neurons.

In practice, we project our desired output f(t) and estimated output functions z(t) into the

reduced principal component plane, such that 𝑓 and �̃� are functions of phase angle θ and yield

the expected and estimated radii of the output trajectory of θ, respectively. We determine θ at

time t by projecting the current network activity req(t) onto the PC plane such that

 𝑎1 = 𝑷𝑪𝟏 ∗ 𝒓𝒆𝒒(𝑡), 𝑎2 = 𝑷𝑪𝟐 ∗ 𝒓𝒆𝒒(𝑡), 𝑧(𝑣) = 𝑎1 + 𝑖𝑎2, and 𝜃 = 𝐴𝑟𝑔 (𝑧). (35)

We perform this conversion in consideration of the fact we are training the system to produce the

oscillations expected from forward motion, and these oscillations may begin at any point in time.

Thus, instead of calculating error at time t based on the value of our desired output at time t, we

model the network behavior in polar coordinates, which eliminates direct time dependency

(Figure 8B).

Given our conversion of f and z to polar coordinates, we also adjust our weight update

metric from a time-based interval to a Poincaré map. With this implementation, instead of

updating weights every s seconds, we update weights each time the estimated output trajectory

crosses a particular plane (e.g., the positive imaginary axis). Since there are scenarios,

particularly early in training, in which the output trajectory would not cross the positive

35

imaginary axis, we also apply a time-based limit that forces the algorithm to update weights if

necessary.

In order to define our weight updating function, we redefine our cost function, as in Eq.

(25). Since we have modified the gradient descent method to apply weights w to the network

input instead of output, we must reconsider our cost function and the calculation of its gradient

from Eq. (30). We maintain the same overall form of our cost function, but take into

consideration the fact that the definition of z(t) is now defined

𝑧(𝑡) = √(𝑷𝑪𝟏
𝑇𝒓𝒆𝒒(𝑡))

2 + (𝑷𝑪𝟐
𝑇𝒓𝒆𝒒(𝑡))

2, (36)

such that 𝐸(𝑤(𝑡)) =
1

2
(𝑓(𝑡) − √(𝑷𝑪𝟏

𝑇𝒓𝒆𝒒(𝑡))
2 + (𝑷𝑪𝟐

𝑇𝒓𝒆𝒒(𝑡))
2)

2

=
1

2
(𝑓(𝑡) − 𝑧(𝑡))

2
. (37)

While the equation of the cost function (37) does not directly depend on the input weights, w(t),

the network activity r(t) does depend on the input weights through simulation. Thus, we will

define the gradient of the cost function as

𝛿𝐸

𝛿𝒘
=
𝛿𝐸

𝛿𝑧
∗
𝛿𝑧

𝛿𝒓𝒆𝒒
∗
𝛿𝒓𝒆𝒒

𝛿𝒘
= −(𝑓(𝑡) − 𝑧(𝑡)).∗ √(𝑷𝑪𝟏

2 +𝑷𝑪𝟐
2)

𝑇

∗
𝛿𝒓𝒆𝒒

𝛿𝒘
. (38)

Since analytical calculation of the derivative of the network activity with respect to the input

weights cannot feasibly be used in the calculation of the cost function’s gradient, we will

computationally estimate
𝛿𝒓

𝛿𝒘
 as

𝛿𝒓𝒆𝒒

𝛿𝒘
=
𝛿𝒓𝒆𝒒

𝛿𝑡
∗
𝛿𝑡

𝛿𝒘
≈
𝛿𝒓𝒆𝒒

𝛿𝑡
∗

𝛥𝑡

𝒘(𝑡) − 𝒘(𝑡 − 𝛥𝑡)
. (39)

Substituting Eq. (39) into Eq. (38) yields the expanded form of the gradient of the cost function

E(w(t)),

∇𝐸 = −(𝑓(𝑡) − 𝑧(𝑡)) ∗ √(𝑷𝑪𝟏
2 + 𝑷𝑪𝟐

2)

𝑇

∗
𝒓𝒆𝒒(𝒘(𝑡)) − 𝒓𝒆𝒒(𝒘(𝑡 − 𝛥𝑡))

𝒘(𝑡) − 𝒘(𝑡 − 𝛥𝑡)
. (40)

36

We then update the input weights based on the gradient of the cost function and the learning rate

(α),

𝒘(𝑡 + 𝛥𝑡) = 𝒘(𝑡) + 𝛼𝛥𝒘, (41)

where 𝛥𝒘 = −∇𝐸 = 𝑒(𝑡) ∗ √(𝑷𝑪𝟏
2 + 𝑷𝑪𝟐

2)

𝑇

∗
𝛿𝒓𝒆𝒒

𝛿𝒘
 (42)

and 𝒘(𝑡 + 𝛥𝑡) = 𝒘(𝑡) + 𝛼 (𝑒(𝑡) ∗ √(𝑷𝑪𝟏
2 + 𝑷𝑪𝟐

2)

𝑇

∗
𝛿𝒓𝒆𝒒

𝛿𝒘
). (43)

We first use our weights to create a model of the network without using any explicit

feedback between motor and sensory neurons. In this scenario, we simply use our weight vector

w directly as sensory input, s

𝒔𝒊𝒏𝒑𝒖𝒕(𝑡 + 𝛥𝑡) = (𝒘(𝑡 + 𝛥𝑡).∗ 𝒔𝒎𝒂𝒔𝒌). (44)

To add recurrence to this model by applying feedback directly from motor neurons to sensory

neurons, we calculate zfeedback(t) and apply this motor neuron feedback to the sensory neuron

using a remapping matrix A. In this method, we use to approximate feedback into sensory

neurons with A as a static map of the physical proximity of motor and sensory neurons. Through

this map, active motor neurons provide greater input to nearby sensory neurons than to distant

sensory neurons. This feedback model is based on the assumption that motor neurons activate

proximal muscles, and nearby sensory neurons are subsequently stimulated by the activation and

motion.

Using our static weight matrix A, we define zfeedback(t) = A*z(t), yielding sensory neurons input

𝒔𝒊𝒏𝒑𝒖𝒕(𝑡 + 𝛥𝑡) = (𝒘(𝑡 + 𝛥𝑡).∗ 𝒔𝒎𝒂𝒔𝒌) ∗ 𝑧𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑡). (45)

Extending the basic proximity-based transformation, we implement a model that includes

connectivity between motor neurons and muscles, and an approximation of C. elegans body

movement based on calculated muscle activation. With these enhancements, we calculate the

37

input into a sensory neuron based on the state of the body in its immediate area. This

implementation models proprioception and environmental interaction, as sensory neurons are

activated based on the C. elegans body formation, which changes through movement over time.

The enhanced proprioceptive model is formed based on muscle-to-neuron connectivity

map M and the viscoelastic rod model of C. elegans movement. We define the components of

this system as muscle activity 𝑎(𝑡) = 𝒓𝒎(𝑡) ∗ 𝑀, viscoelastic rod-based physical model v(a),

and input weights w. After calculating v(a), we formulate our sensory input as

𝒔𝒊𝒏𝒑𝒖𝒕(𝑡 + 𝛥𝑡) = 𝑣(𝑎) ∗ 𝒘(𝑡). (46)

D. Implementation of RLS Algorithm for C. elegans

In order to represent the specific feedback loop between motor and sensory neurons,

some modifications to the original RLS-based FORCE algorithm were required. Unlike the

generic algorithm, our RLS-based proprioceptive model considers the relationships between

motor neuron output, muscle movement and sensory neuron input [18]. While the weight update

algorithm remains unchanged, we calculate sensory neuron input by applying a transformation to

the motor neuron output and weighting sensory neuron input instead of feeding the weighted

output directly back into the network. As in the method of gradient descent, we calculate the

estimated output using the motor neuron activity projected into the principal component space,

and compare it with the expected trajectory during forward motion (Figure 8B). This

methodology provides flexibility for training; since the expected output is not based on a

particular point in simulation time, error can be accurately calculated regardless of when

oscillations begin.

38

We define the motor

neuron network activity as

rm(t) = req(t).*m and network

output, exclusively based on

motor neuron activity, as z (t)

= w
T
(t)*rm(t). The pre- and

post-weight update error

functions (Eqs. 28, 29) remain

unchanged from the generic

algorithm, except that they are

based solely on motor neuron

output.

As in the gradient

descent algorithm, our first

means of approximating

sensory neuron input through

a weighted map based on the

physical proximity of motor

and sensory neurons (matrix

A). We apply this map to the

weighted output of motor

neurons such that the input into the sensory neurons is calculated as sinput = A*(rm(t).*w(t))

(Figure 9A).

Figure 9. A) Adaptive control structure with weights applied to

motor neuron output. Input is mapped to sensory neurons using

a map based on the proximity of sensory and motor neurons B)

Adaptive control structure with weights applied to sensory

neuron input. Output is estimated based on motor neuron

activity, which is then transformed through the viscoelastic rod

model. The state of the viscoelastic rod is then weighted and

used as input to sensory neurons.

39

We then progress to enhanced proprioceptive model, which includes the viscoelastic rod

simulation of movement and body state (Figure 9B). In this model, we modify our algorithm to

weight sensory neuron input, with weights modified based on the trajectory error and the inverse

correlation matrix as before. As in the previously described methods, we update weights in order

to minimize the cost function, which is defined as

𝐸(𝑤(𝑡)) =
1

2
(𝑓(𝑡) − √(𝒘𝑇𝒓𝒎(𝑡))

2)
2
=
1

2
(𝑓(𝑡) − 𝑧(𝑡))

2
. (47)

With our modifications to weight sensory input and use our motor activity-based viscoelastic rod

model, v(a), we define the weight update and sensory input functions as

𝑤(𝑡) = 𝑤(𝑡 − 𝛥𝑡) − 𝑒𝑚(𝑡)𝑃(𝑡)𝑟(𝑡) (48)

and 𝒔𝑖𝑛𝑝𝑢𝑡 = 𝑣(𝑎) ∗ 𝑤(𝑡). (49)

RESULTS

To investigate the performance of the algorithms we experiment with various training

scheme to subsets of sensory and motor neurons. For network output we include the motor

neurons known to be involved in forward motion and limit sensory neurons which receive

feedback to a small set of neurons, known as tap responsive (PLM neurons), and then expand to

consider additional neurons identified as integral to C. elegans forward crawling [15].

We first investigate whether or not any control algorithm is needed to elicit forward motion in C.

elegans. Thus, we consider basic scenarios with constant random or uniform PLM input on the

scale of the known solution (2x10
4
). We also experiment with random or uniform weights on

viscoelastic rod feedback to PLM neurons, justifying the need for a training algorithm. Next, we

40

Figure 10. Examples of

network dynamics in uniform

and random input as

compared to the expected

forward motion dynamics. In

PLM scenarios, input was

required to be of the same

magnitude as the known

PLM solution. A) Simulation

of network behavior with

arbitrary constant uniform

input into PLM neurons B)

Simulation of network

behavior with constant

random input into PLM

neurons C) Simulation of

network behavior with

arbitrary constant uniform

input into the sub-circuit of

seven sensory neurons

associated with forward

motion D) Simulation of

network behavior with

constant random input into

the sub-circuit of seven

sensory neurons

explore random or uniform input and weights on the seven sensory neurons identified as relevant

to C. elegans crawling [15].

We apply adaptive control algorithms to two different models of the C. elegans neural

network, one with feedback, and one without direct feedback. In the scenario without feedback,

we first confirm the algorithm’s ability to find known PLM input solution. We then use the

algorithm search for a set of inputs into a sub-circuit of seven sensory neurons that generates

41

forward motion dynamics similar to the known PLM excitation. In the model with feedback,

sensory neuron input is determined by feedback from motor activity, and we use the algorithms

to find input weights such that forward motion dynamics are perpetuated after PLM excitation

ceases.

A. Uniform/Random Weights

In order to determine whether or not forward motion could be instigated through arbitrary

uniform input into tail tap response PLM neurons, we randomly choose positive input on the

scale of 2x10
4
 and constantly provide this stimulation over several seconds. We determine that

the forward motion solution we seek cannot be generated with generic uniform input, even if it is

of the same magnitude as the known PLM excitation (Figure 10A). Likewise, we find that

random (non-uniform) input into PLM neurons does not generate the neuronal patterns

associated with forward movement (Figure 10B). We perform the same experiment providing

input into the sub-circuit of seven sensory neurons identified as relevant to forward motion, with

results failing to indicate any pattern associated with crawling (Figure 10 C,D).

Next, we investigate the neuronal behavior when feedback is used to determine sensory

neuron input. We start with considering the basic cases of uniformly weighted feedback and

randomly weighted feedback. We find that when uniformly weighted feedback into the PLM

neurons follows 4s of constant PLM stimulation at 2x10
4

 mV, the feedback does not maintain

the oscillations associated with forward motion. Although initial feedback evokes a response (see

outliers in Figure 11A), the system slowly settles back toward equilibrium. Similarly, randomly

weighted PLM feedback is unable to perpetuate the oscillations associated with forward motion

(Figure 11B). In testing feedback on a larger set of seven sensory neurons, we find that the error

is significantly larger than in the PLM feedback case (Figure 11 C,D). While providing feedback

42

into the seven neurons clearly elicits a neural response, the response does not align with the

expected dynamics of forward motion and appears to be of random behavior.

B. Gradient Descent

Given our failure to create the dynamics of forward motion using random/uniform inputs

or weights, we employ the method of gradient descent to search for appropriate system inputs

Figure 11. Examples of recurrent network dynamics with uniformly and randomly weighted

feedback as compared to the expected forward motion dynamics. A) Simulation of network

behavior with arbitrary constant uniform weights on feedback into PLM neurons B) Simulation

of network behavior with constant random weights on feedback into PLM neurons C)

Simulation of network behavior with arbitrary constant uniform weights on feedback into the

sub-circuit of seven sensory neurons associated with forward motion D) Simulation of network

behavior with constant random weights on feedback into the sub-circuit of seven sensory

neurons.

43

and then to search for functional feedback weights. Using the previously described algorithm, we

initialize the system with small random input into PLM neurons and search for values that will

produce the network output expected during forward motion. The algorithmic converges on

Figure 12. A) Convergence of motor output toward output expected during PLM excitation of

2x10
4
. Input modifications were made each time the trajectory of the activity crossed the

positive imaginary axis (training points). After gradient descent training, PLML and PLMR

ended at 1.8x10
4
 and 1.9x10

4
, respectively. B) Training of weights on feedback into PLM

neurons, the algorithm did not converge and no oscillations were generated. C) Gradient descent

results when training with input into seven sub-circuit sensory neurons without feedback D)

Gradient descent results with training feedback input into seven sub-circuit sensory neurons.

44

values of 1.8x10
4
 and 1.9x10

4
mV for the input into to PLMR and PLML, respectively. These

input values, which are near the optimal known solution of 2x10
4
 mV, are determined over the

course of approximately 70s of training (Figure 12A).

Although the method of gradient descent is able to correctly identify the input needed to

PLM neurons to induce forward motion, when input is allowed into other neurons, no solution is

found. In experiments introducing input into the sub-circuit of seven sensory neurons, our

algorithm was unable to converge to the correct solution within 250s of training, which is about

200 periods of wave-like body deformations (Figure 12C). Furthermore, when we modify our

algorithm to derive sensory input from feedback, such that the algorithm is setting weights on the

feedback instead providing direct input values, the algorithm is again unable to converge (Figure

12 B,D). The addition of feedback causes significant disruption in the system output, which was

previously avoided in the simple model by requiring low magnitude weight changes. Even with

small weight changes, with feedback included, dramatic input changes can occur, which cause

sharp irregularities in system output. Since the gradient descent method modifies weights based

on the estimated derivative of network activity with respect to the weight change, these

irregularities in output can cause erroneous weights changes and ultimately divergence.

C. Recursive Least Squares

We use our RLS algorithm with feedback only into PLM neurons. Using the proximity-

based map from muscles to neurons, we find that weights do not converge with training

durations up to 100s. In our experiments, we observe that forward motion dynamics are

maintained for a short period of time during training if weights and feedback are updated

according to the Poincaré map implemented in the method of gradient descent, and initial

weights are favorably set. Even in this case, after several simulated seconds of training weights

45

have not been adequately modified to maintain forward motion and ultimately the dynamics

decay (Figure 13 A,B). A significant issue with our application of the RLS method using the

proximal map is that the RLS method is intended to make frequent weight updates, but we are

only updating weights once per cycle. This setup allows the network dynamics to diverge

significantly from the desired behavior between weight updates, making it extremely difficult to

Figure 13. A) Training of PLM neurons using Poincaré map with proximity-based input from

motor neurons. Weights do not converge and the system has repeated settling periods where

activity approaches the resting equilibrium. B) Error during training shown in figure A. The

large spikes in error are due to weight changes or forced stimulation due to system settling. C)

Training of PLM neurons with more frequent weight and feedback updates (approximately 4

updates per cycle), also using proximity-based input from motor neurons. Weights quickly grow

in magnitude due to large error. D) Error during training of PLM neurons in figure C. Error

grows rapidly due to oscillations in motor neuron feedback into sensory neurons.

46

correctly modify weights and converge to a solution within a reasonable training period. In

particular, if PLM input has diminished, the network can settled to its resting equilibrium before

the next weight update. We attempt to mitigate this scenario by providing extra stimulus when

the system settles, but this jolt can cause a disjuncture between weights and sensory input. The

overarching issues from infrequent weight updates could be resolved by updating weights and

Figure 14. A) Magnitude of weight change over time. Large weight changes are made initially

to reduce error, then significantly smaller weight changes are made until error is consistently

near zero, at which point weight modification ceases. B) Actual values of the weights used on

PLML and PLMR during training. Weights continue to change up through 10s of training,

although the magnitude of weight change is very small, given the scale of the weights. C) Motor

neuron voltage oscillations during operational phase (static weights), which can be compared

with the oscillations during forward motion in Figure 1A. D) Trajectory of activity during

training and testing as compared to the expected trajectory during forward motion.

47

feedback more frequently, but this modification introduces another challenge. As motor neuron

activity oscillates during forward motion, feedback-based sensory neuron input also oscillates.

However, oscillating input into PLM neurons does not generate oscillating network dynamics, as

we have demonstrated through training and testing (Figure 13C). This oscillating input poses

further challenges for the weight modification algorithm, as feedback alternates between positive

and negative values, meaning weighted input switches from a large positive number to a large

negative number, creating dramatic increases in error (Figure 13D). This rapid error increase

leads to large weight modifications, which in turn create even larger swings in input, and the

algorithm spirals toward infinite weights and infinite error.

We then enhance our algorithm to use the feedback based on viscoelastic rod, modeling

the actual movement of the worm over time. We initialize the weights uniformly to a randomly

chosen small number and find that weights generally converge within the first twenty simulated

seconds of training when we consider input received from the viscoelastic rod into the PLM

neurons (Figure 14 A,B). Once the weights have converged, the system enters the operational

phase during which weights are held static. During this period of testing, we see that voltage

oscillations in the motor neurons are very similar to those seen during forward motion (Figure

14C). We also map the trajectory of the motor neuron activity as compared to the expected

forward motion trajectory during both training and testing, and we observe that the system settle

to the known forward motion dynamics (Figure 14D).

Given our success in training PLM neurons to produce desired output using network

feedback, we proceed to use the RLS algorithm with feedback into the sub-circuit of seven

sensory neurons. With our static proximity-based map, we are unable to converge upon a set of

weights that enables the system to produce the dynamics of forward motion (Figure 15A). We

48

then advance our algorithm by calculate feedback based on our viscoelastic rod model,

initializing weights with small randomly chosen values, as in PLM training. Over the course of

training of up to one simulated hour (3600s), weights failed to converge, and the network activity

did not generate the oscillations associated with forward motion. Although the resulting

trajectories are centered in a region much closer to our desired trajectory, any oscillations that are

occurring are not of the correct form or magnitude (Figure 15B).

In order to improve our algorithms ability to converge without continuing to extend our

training period, we initialize weights based on observed neuron activity during forward motion.

Thus, we sample voltage activity of the input neurons during standard simulated forward motion,

and use these values as a basis for our initial weights, such that w0 =

sample_voltages./initial_feedback. With this methodology, we again see initial larger weight

changes, followed by a period of small weight changes as error stays small (Figure 16A).

Figure 15. A) Results of training with input to seven sub-circuit sensory neurons using a static

proximity-based map from motor neurons to sensory neurons to model feedback. B) Results of

training with input into seven sub-circuit sensory neurons using feedback based on the

viscoelastic rod model with randomly chosen small initial weights.

49

The algorithm then converges on weights that will generate dynamics and voltage patterns

similar to those of PLM-based forward motion for approximately five to ten simulated seconds

after training ceases (Figure 16 B-D). When the operational period extends past ten seconds,

oscillations become highly irregular and disappear.

Figure 16. A) Weight changes during RLS training of the seven neurons associated with C.

elegans crawling B) Motor neuron activity during testing using weights converged upon during

RLS training C) Training trajectory as compared to the expected trajectory during forward

motion D) Testing trajectory using weights converged upon during RLS training.

50

CONCLUSION

In conclusion, we have developed a realistic model of physical movement based on motor

neuron activity, and we have devised an adaptive control method that transforms feedback from

our physical model into sensory neurons input, such that the desired network dynamics are

Figure 17. A) Table summarizing training results using the two adaptive control algorithms to

elicit forward motion dynamics with various network configurations.

51

generated. We created this system based on an existing computational model of the C. elegans

neural network with known dynamics of forward motion [1,3], and the worm’s known

physiological traits [5,7,15].

Using simple visualizations of neuron movement based on voltage changes, we

recognized high-level similarities between neuronal activity and physical activity. We then

created a viscoelastic rod-based model with the physical attributes of C. elegans and its habitat,

and translated motor neuron activity into force applied to the rod. Activating the rod based on

motor neuron voltage data from forward motion simulations, we confirmed that the motion of the

rod mimicked the known patterns of C. elegans crawling forward [2].

With our functional model of the relationship between motor neuron activity and physical

movement, we proceeded to investigate how to close the loop, integrating motor neuron activity,

physical movement, and sensory neuron stimulation. We sought a means to use the state of the

viscoelastic rod model as feedback into sensory neurons, which would then stimulate motor

neurons and perpetuate forward motion. As experiments with uniformly or randomly weighting

feedback from the viscoelastic rod into sensory neurons failed to generate the desired dynamics,

we employed adaptive control methods to identify input weights that would enable the feedback

to maintain the dynamics of forward motion.

After exploring control via the method of gradient descent and RLS, we found that our

RLS algorithm was able to find input weights for PLM neurons such that the feedback from the

viscoelastic rod perpetuated the dynamics of forward motion. With the relationship between

feedback and PLM input established, we applied our algorithm to a model with input into seven

sensory neurons known to be associated with C. elegans crawling. In this case, we found that the

algorithm converges if weights are given realistic initial values based on sensory neuron activity

52

during forward motion. Using the converged weights, we observed that forward motion is

perpetuated for five to ten simulated seconds after initial PLM excitation, which is realistic given

that C. elegans reaction to touch does cease after a period of time.

The methods for simulating C. elegans’ physical movement based on its neuronal activity

described in this research provide a strong foundation for future development. To build on the

existing model, fluid dynamics could be integrated to provide a more realistic representation of

the body’s interaction with the environment. The accuracy of the model could be improved

further through increased freedom in C. elegans movement, which could be achieved by

allowing force to be applied in other directions (e.g., horizontally), depending on body state and

muscle location. To expand the scope of the physical movement simulations, different actions

like backward motion or the Omega-turns described in [8] could be simulated using a

viscoelastic rod model.

In the realm of adaptive control algorithms, the research presented in this paper describes

methods for identifying optimal stimulation that could be leveraged in several fields of

neuroscience and biomechanics. The RLS-based training methods we used to model feedback

could be modified to help identify ideal inputs for the feedforward controlled systems used in

functional electrical stimulation research. This method could also be used in the development of

the “next generation” of deep brain stimulation, in which researchers are working to develop

closed-loop stimulators that can automatically adjust output based on neural activity. Lastly, the

optimal control algorithms discussed here could be used in conjunction with advancements in

brain-machine interfaces like non-invasive brain stimulation, which can not only monitor

neuronal activity, but also alter it and observe the impact of the modifications.

53

REFERENCES

1. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB: Structural properties of

the Caenorhabditis elegans neuronal network. PLoS Computational Biology, 2011,

7(2):e1001066.

2. Sengupta P, Samuel AD: Caenorhabditis elegans: a model system for systems

neuroscience. Current Opinion in Neurobiology, 2009, 19(6):637–643.

3. Kunert J, Shlizerman E, Kutz JN: Low-dimensional functionality of complex network

dynamics: neurosensory integration in the Caenorhabditis elegans connectome. Physical

Review E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(5):052805.

4. McMillen T, Williams T, Holmes P: Nonlinear muscles, passive viscoelasticity and body

taper conspire to create neuromechanical phase lags in anguilliform swimmers. PLoS

Computational Biology, 2008, 4(8):e1000157.

5. Backholm M, Ryu WS, Dalnoki-Veress K: Viscoelastic properties of the nematode

Caenorhabditis elegans, a self-similar, shear-thinning worm. Proceedings of the National

Academy of Sciences of the United States of America, 2013, 110(12):4528–4533.

6. Sussillo D, Abbott LF: Generating coherent patterns of activity from chaotic neural

networks. Neuron, 2009, 63(4):544–557.

7. Maricq AV, Peckol E, Driscoll M, Bargmann CI: Mechanosensory signaling in C.

elegans mediated by the GLR-1 glutamate receptor. Nature, 1995, 378(6552):78–81.

8. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS: Dimensionality and dynamics in the

behavior of C. elegans. PLoS Computational Biology, 2008, 4(4):e1000028.

9. OpenWorm, Palyanov A, Szigeti B, Idili G, Hokanson J, Cantarelli M, Currie M, Gleeson

P, Khayrulin S, Larson S (ed.s) 2011–2014. http://www.openworm.org/

10. WormAtlas, Altun ZF, Herndon LA, Crocker C, Lints R, and Hall DH (ed.s) 2002–2015.

http://www.wormatlas.org

11. Tytell ED, Holmes P, Cohen AH: Spikes alone do not behavior make: why neuroscience

needs biomechanics. Current Opinion in Neurobiology, 2011, 21(5):816–822.

12. Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ: Interactions between internal

forces, body stiffness, and fluid environment in a neuromechanical model of lamprey

swimming. Proceedings of the National Academy of Sciences of the United States of

America, 2010, 107(46):19832–19837.

13. Shlizerman E, Schroder K, and Kutz JN: Neural activity measures and their dynamics.

SIAM Journal on Applied Mathematics, 2012, 72(4):1260–1291.

14. Sirovich L: Modeling the functional organization of the visual cortex. Physica D:

Nonlinear Phenomena, 1996, 96(1–4):355–366.

15. Wicks SR, Roehrig CJ, Rankin CH: A dynamic network simulation of the nematode tap

withdrawal circuit: predictions concerning synaptic function using behavioral criteria.

The Journal of Neuroscience, 1996, 16(12):4017–4031.

16. Sznitman J, Purohit PK, Krajacic P, Lamitina T, Arratia PE: Material properties of

Caenorhabditis elegans swimming at low Reynolds number. Biophysical Journal, 2010,

98(4):617–626.

17. Haykin SS: Adaptive filter theory, 3rd edn. Upper Saddle River, N.J.: Prentice Hall;

1996.

18. Paoletti P, Mahadevan L: A proprioceptive neuromechanical theory of crawling.

Proceedings of the Royal Society of London B, 2014, 281(1790):20141092.

54

APPENDIX

Parameters of Viscoelastic Rod

The parameters defining the remaining physical characteristics of the rod were set based on

published analyses of high-speed images of C. elegans forward-swimming in a controlled

environment (Material Properties of C. elegans) and micropipette deflection experimentation on

anesthetized C. elegans (Viscoelastic properties of the nematode C. elegans). We model an adult

C. elegans with diameter 𝐷 = 65𝜇𝑚, Young’s modulus 𝐸 = 3.77𝑘𝑃𝐴 and material density

𝜌 = 1.0
𝑔

𝑐𝑚3. We assume the preferred curvature to be the equilibrium state of the nematode,

represented by the zero vector, and assign damping coefficient 𝛿 = 1
𝑁𝑠

𝑚
 as an approximate

representation of the substrates making up C. elegans habitat (broadly ranging from rotting

vegetation to animal intestines). As previously described, we assign segment lengths to

vector ℎ𝑖based on approximate muscle length.

Derivation of RLS Equation and P Matrix

We begin our derivation with the equations

𝑃(𝑡) = (∑𝑟(𝑡)𝑟𝑇(𝑡) + 𝛼𝐼

𝑡

)

−1

 (50)

and 𝑃(𝑡) = 𝑃(𝑡 − 𝛥𝑡) −
𝑃(𝑡−𝛥𝑡)𝑟(𝑡)𝑟𝑇(𝑡)𝑃(𝑡−𝛥𝑡)

1+ 𝑟𝑇(𝑡)𝑃(𝑡−𝛥𝑡)𝑟(𝑡)
 (51)

defining matrix P from General Patterns of Chaotic Networks. We derive Eq. (50) from the

recursive least squares algorithm applied to a system with desired output f(t), actual output z(t),

activity r(t) and weights w(t). We define the relationship between output and weights as z(t) =

55

w
T
r(t) and calculate error as e(t) = f(t) - w

T
r(t) = z(t) - f(t). Thus, by the least squares criterion,

we set E(t) = (f(t) - z(t))
2
. We then find the least squares solution to the setting of weights, �̃�, by

minimizing the sum of squared error (SSE),

𝑆𝑆𝐸 = ∑𝐸(𝑡)

𝑛

= 𝑒𝑇(𝑡)𝑒(𝑡), letting �̃� = 𝑤𝑇

 = (𝑓(𝑡) − �̃�𝑟(𝑡))𝑇(𝑓(𝑡) − �̃�𝑟(𝑡))

 = (𝑓𝑇(𝑡) − 𝑟𝑇(𝑡)�̃�𝑇)(𝑓(𝑡) − �̃�𝑟(𝑡))

 = 𝑓𝑇(𝑡)𝑓(𝑡) − 𝑓𝑇�̃�𝑟(𝑡) − 𝑟𝑇(𝑡)�̃�𝑇𝑓(𝑡) − 𝑟𝑇(𝑡)�̃�𝑇�̃�𝑟(𝑡)

 = 𝑓𝑇(𝑡)𝑓(𝑡) − 2𝑓𝑇𝑟�̃�𝑟(𝑡) − 𝑟𝑇(𝑡)�̃�𝑇�̃�𝑟(𝑡).

Differentiating SSE with respect to �̃�, we find

𝜕𝑆𝑆𝐸

𝜕�̃�
=

𝜕

𝜕�̃�
(𝑓𝑇(𝑡)𝑓(𝑡) − 2𝑓𝑇𝑟�̃�𝑟(𝑡) − 𝑟𝑇(𝑡)�̃�𝑇�̃�𝑟(𝑡))

 = −2𝑟𝑇(𝑡)𝑓(𝑡) + 2𝑟𝑇(𝑡)𝑟(𝑡) 𝑤.̃

Setting this result to zero, we find the optimal value of �̃�,

0 = −2𝑟𝑇(𝑡)𝑓(𝑡) + 2𝑟𝑇(𝑡)𝑟(𝑡)�̃�

𝑟𝑇(𝑡)𝑟(𝑡)�̃� = 𝑟𝑇(𝑡)𝑓(𝑡)

�̃� =
𝑟𝑇(𝑡)𝑓(𝑡)

𝑟𝑇(𝑡)𝑟(𝑡)
.

We expand �̃� over t, which yields

�̃�(𝑡) =∑𝑟(𝑡)𝑟𝑇(𝑡)

𝑡

−1

∑𝑟(𝑡)𝑓(𝑡),

𝑡

56

�̃�(𝑡) =∑𝑟(𝑡)𝑟𝑇(𝑡)

𝑡

−1

∑𝑟(𝑡)𝑓(𝑡)

𝑡

= 𝛷−1(𝑡)𝜓(𝑡),

where 𝛷(𝑡) = ∑ 𝑟(𝑡)𝑟𝑇(𝑡)𝑡

and 𝜓(𝑡) = ∑ 𝑟(𝑡)𝑓(𝑡)𝑡 .

Now, we observe that 𝛷(𝑡) is the inverse of Eq. (50) without the regularization term. To

recursively compute 𝛷(𝑡) and 𝜓(𝑡) based on 𝑡 − 𝛥𝑡, we rewrite our equations as

𝛷(𝑡) = 𝛷(𝑡 − 𝛥𝑡) + 𝑟(𝑡)𝑟𝑇(𝑡)

and 𝜓(𝑡) = 𝜓(𝑡 − 𝛥𝑡) + 𝑟(𝑡)𝑓(𝑡).

Setting 𝑃(𝑡) = 𝛷−1(𝑡) as in Eq. (49), we can rewrite P(t) as

𝑃(𝑡) = (𝛷(𝑡 − 𝛥𝑡) + 𝑟(𝑡)𝑟𝑇(𝑡))
−1
.

To verify the equality of P(t) from Eq. (50) and Eq. (51), we use the Woodbury Matrix Identity,

(𝐴 + 𝑈𝑉𝑇)−1 = 𝐴−1 − 𝐴−1𝑈(𝐶−1 + 𝑉𝑇𝐴−1𝑈)−1𝑉𝑇𝐴−1.

Substituting Eq. (50) into the RHS of the Woodbury Matrix Identity yields

𝐴−1 = 𝑃(𝑡 − 𝛥𝑡); 𝑈 = 𝑉 = 𝑟(𝑡); 𝐶 = 𝐼.

Since 𝛷(𝑡 − 𝛥𝑡) = 𝑃−1(𝑡 − 𝛥𝑡),

𝐼 = 𝑃−1(𝑡 − 𝛥𝑡) + 𝑟(𝑡)𝑟𝑇(𝑡){𝑃(𝑡 − 𝛥𝑡)

 −𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡)(𝐼 + 𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡))−1𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)}

 = 𝐼 + 𝑟(𝑡)𝑟𝑇(𝑡) 𝑃(𝑡 − 𝛥𝑡) −
(𝑟(𝑡) + 𝑟(𝑡)𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡))𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)

𝐼 + 𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡)

57

 = 𝐼 + 𝑟(𝑡)𝑟𝑇(𝑡) 𝑃(𝑡 − 𝛥𝑡) −
𝑟(𝑡)(𝐼 + 𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡))𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)

𝐼 + 𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡)

 = 𝐼 + 𝑟(𝑡)𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡) − 𝑟(𝑡)𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡) = 𝐼.

Thus, we have verified the equality

𝑃(𝑡) = ∑𝑟(𝑡)𝑟𝑇(𝑡)

𝑡

−1

= (𝛷(𝑡 − 𝛥𝑡) + 𝑟(𝑡)𝑟𝑇(𝑡))
−1
 = 𝑃(𝑡 − 𝛥𝑡) −

𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡)𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)

1 + 𝑟𝑇(𝑡)𝑃(𝑡 − 𝛥𝑡)𝑟(𝑡)
.

